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The so-called Welded Tree Problem provides an example of a black-box problem that can

be solved exponentially faster by a quantum walk than by any classical algorithm [1]. Given the

name of a special ENTRANCE vertex, a quantum walk can find another distinguished EXIT vertex

using polynomially many queries, though without finding any particular path from ENTRANCE

to EXIT. It has been an open problem for twenty years whether there is an efficient quantum

algorithm for finding such a path, or if the path-finding problem is hard even for quantum

computers. We show that a natural class of efficient quantum algorithms provably cannot find a

path from ENTRANCE to EXIT in the Welded Tree Problem. Specifically, we consider algorithms

that, within each branch of their superposition, always store a set of vertex labels that form

a connected subgraph including the ENTRANCE, and that only provide these vertex labels as

inputs to the oracle. While this does not rule out the possibility of a quantum algorithm that

efficiently finds a path, it is hard to imagine how an algorithm could benefit by deviating from

this behavior. Our no-go result suggests that, to outperform classical computation, quantum

algorithms must necessarily forget the path they take to reach a solution.
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Foreword

“For certain, you have to be lost to find a place that can’t be found. Elseways, everyone

would know where it was.” — Captain Hector Barbossa.
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Chapter 1: Introduction

Quantum algorithms use interference of many branches of a superposition to solve problems

faster than is possible classically. Shor’s factoring algorithm [2] achieves a superpolynomial

speedup over the best known classical algorithms by efficiently finding the period of a modular

exponentiation function, and several other quantum algorithms provide a speedup by similarly

detecting periodic structures [3, 4, 5]. While a few other examples of dramatic quantum speedup

are known—notably including the simulation of quantum dynamics [6]—our understanding of

the capabilities of quantum algorithms remains limited. To gain more insight into the possible

applications of quantum computers, we would like to better understand the kinds of problems

they are able to solve efficiently and what features of problems they are able to exploit.

Another example of exponential quantum speedup is based on quantum analogs of random

walks. Specifically, quantum walks provide an exponential speedup for the so-called Welded

Tree Problem [1]. The symmetries of this problem, and the structure of the quantum algorithm

for solving it, seem fundamentally different from all preceding exponential quantum speedups.

In particular, the Welded Tree Problem provably requires polynomial “quantum depth” to solve

efficiently [7], whereas all previously known exponential quantum speedups only require logarithmic

quantum depth, including Shor’s factoring algorithm [8]. (The only other known computational

problem exhibiting an exponential quantum speedup, yet requiring polynomial quantum depth,

was recently constructed in [9].)

The Welded Tree Problem is defined on a “welded tree graph” that is formed by joining
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entrance exit

Figure 1.1: Example of a welded tree graph with n = 3.

the leaves of two binary trees with a cycle that alternates between them, as shown in Figure 1.1.

The root of one tree is designated as the ENTRANCE, and the root of the other tree is designated

as the EXIT. The graph structure is provided through an oracle that gives adjacency-list access

to the graph, where the vertices are labeled arbitrarily. Given the label of the ENTRANCE vertex

and access to the oracle, the goal of the Welded Tree Problem is to return the label of the EXIT

vertex. On a quantum computer, this black box allows one to perform a quantum walk, whereby

the graph is explored locally in superposition. Interference obtained by following many paths

coherently causes the quantum walk to reach the EXIT in polynomial time. In contrast, no

polynomial-time classical algorithm can efficiently find the EXIT—essentially because it cannot

distinguish the welded tree graph from a large binary tree

While the quantum walk algorithm efficiently finds the EXIT by following exponentially

many paths in superposition, it does not actually output any of those paths. Classical intuition

might suggest that an efficient algorithm for finding the EXIT could be used to efficiently find a

2



path by simply recording every intermediate state of the EXIT-finding algorithm. However, in

general, the intermediate state of a quantum algorithm cannot be recorded without destroying

superposition and ruining the algorithm. In other words, the Welded Tree Problem can be

viewed as a kind of multi-slit experiment that takes the classic double-slit experiment into the

high-complexity regime. This raises a natural question: Is it possible for some quantum algorithm

to efficiently find a path from the ENTRANCE to the EXIT? This question was already raised in

the original paper on the Welded Tree Problem [1] and has remained open since, recently being

highlighted in a survey of Aaronson [10].

In one attempt to solve this problem, Rosmanis introduced a model of “snake walks,”

which allow extended objects to move in superposition through graphs [11]. The state of a snake

walk is a superposition of “snakes” of adjacent vertices, rather than a superposition of individual

vertices as in a standard quantum walk. While Rosmanis did not show conclusively that snake

walks cannot find a path through the welded tree graph, his analysis suggests that a snake walk

algorithm is unlikely to accomplish this using only polynomially many queries to the Welded

Tree Oracle. While this is only one particular approach, its failure supports the conjecture that

it might not be possible to find a path efficiently. If such an impossiblity result could be shown

for general quantum algorithms, it would establish that, in order to find the solution to some

computational problems, a quantum algorithm must necessarily “forget” the path it takes to that

solution. While forgetting information is a common feature of quantum algorithms, which often

uncompute intermediate results to facilitate interference, many algorithms are able to efficiently

produce a certificate for the solution once they have solved the problem.1 In contrast, hardness

of path finding in the Welded Tree Problem would show not only that trying to remember a path

would cause one particular algorithm to fail, but in fact no algorithm can efficiently collect such

1For example, in Simon’s algorithm [12], we learn the hidden string and can easily find collisions. In Shor’s
algorithm [2], the factors reveal the structure of the input number and their correctness can be easily checked.
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information.

In this thesis, we take a step toward showing hardness of the welded tree path-finding

problem. Specifically, we show hardness under two natural assumptions that we introduce in

Section 2.2, namely that the algorithm is genuine and rooted.

First, we assume that the algorithm accesses the oracle for the input graph in a way that we

call genuine. A genuine algorithm is essentially one that only provides meaningful vertex labels

as inputs to the Welded Tree Oracle. Both the ordinary quantum walk [1] and the snake walk

[11] can be implemented by genuine algorithms. It is hard to imagine that non-genuine behavior

could be useful, although we leave formalizing this for future work.

We also assume that the algorithm is rooted. Informally, a rooted algorithm is one that

always maintains a path from the ENTRANCE to every vertex appearing in its state. While

remembering a path to the ENTRANCE limits how interference can occur, it does not eliminate

quantum interference entirely. Indeed, if the snake walk of [11] were to find a path from ENTRANCE

to EXIT, the most natural way of doing so would be in a rooted fashion. A non-rooted algorithm

would effectively have to find the ENTRANCE again after detaching from it. While we cannot

rule out this possibility, it seems implausible.

Our main result is that a genuine, rooted quantum algorithm cannot find a path from

ENTRANCE to EXIT in the Welded Tree Graph using only polynomially many queries. To show

this, we suppose that such a quantum algorithm exists and use it to construct a classical query

algorithm that could solve the Welded Tree Problem using only polynomially many classical

queries, with a certain error probability. To bound this error, we show (in an analysis reminiscent

of the classical hardness result of [1], but enhanced to show hardness given additional edge-

coloring information as discussed below) that our classical query algorithm cannot solve the

Welded Tree Problem with more than exponentially small probability. This establishes our main
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result.

We construct the classical query algorithm in this argument as follows. First, using exponential

time and only a constant number of classical queries, the classical query algorithm employs

a special procedure to process the circuit diagram of the assumed genuine, rooted quantum

algorithm and sample a “transcript” (defined in Section 3.1) that describes a computational path

the quantum algorithm could have taken, neglecting the possibility of encountering a cycle. The

classical algorithm then makes polynomially many queries to the classical oracle, in a manner

prescribed by the sampled transcript, and outputs the vertices of the welded tree graph that were

reached by those queries. We prove in Chapter 3 that this efficient classical query algorithm

is almost as likely to find an ENTRANCE–EXIT path as the original genuine, rooted quantum

algorithm.

A subtle—yet unexpectedly significant—detail in our analysis is that we consider a version

of the Welded Tree Problem in which the oracle provides a 3-coloring of the edges of the graph,

instead of using a 9-coloring as in [1].2 This alternative coloring scheme substantially reduces

the complexity of the analysis in Chapters 2 and 3. This is because it allows us to determine,

with high probability, whether starting at the ENTRANCE and following the edges prescribed

by a polynomial-length color sequence t ∈ C×q(n), will lead to a valid vertex of the Welded

Tree Graph, using only a constant number of classical queries to the Welded Tree Oracle. In

particular, it suffices to check whether t departs from the ENTRANCE along one of the two valid

edges (which can be determined using only three queries to the oracle). This is a key property

used in our argument that the transcript state (see Definition 28) can track much of the behavior

of a genuine rooted quantum algorithm while only making a small number of classical queries

to the Welded Tree Oracle.
2Note that the quantum walk algorithm can solve the Welded Tree Problem using a 3-coloring, or even if it is not

provided with a coloring at all [1].
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However, our choice of the 3-coloring model comes at the cost of having the redesign the

proof of classical hardness of finding the EXIT vertex in the Welded Tree Graph. The original

classical hardness proof [1] crucially considers a special type of 9-coloring with the property

that, starting from a valid coloring, the color of any edge can be altered arbitrarily, and only edges

within distance 2 need to be re-colored to produce a valid coloring with that newly assigned edge

color. This “local re-colorability” property is used at the crux of the classical hardness result, first

in reducing from Game 2 to Game 3, and again implicitly in part (i) of the proof of Lemma 8 [1].

In contrast, a valid 3-coloring of the Welded Tree Graph does not have this “local re-colorability”

property, and changing a single edge color might require a global change of many other edge

colors to re-establish validity of the coloring. Thus we are forced to develop a modification of

the classical hardness proof, given in Chapter 4 (which may also be of independent interest).

While our result does not definitively rule out the possibility of an efficient quantum

algorithm for finding a path from ENTRANCE to EXIT in the Welded Tree Graph, it constrains the

form that such an algorithm could take. In particular, it shows that the most natural application

of a snake walk to the Welded Tree Problem, in which the snake always remains connected to

the ENTRANCE, cannot solve the problem. While it is conceivable that a snake could detach from

the ENTRANCE and later expand to connect the ENTRANCE and EXIT, this seems unlikely. More

generally, non-genuine and non-rooted behavior do not intuitively seem useful for solving the

problem. We hope that future work will be able to make aspects of this intuition rigorous.

Open questions This work leaves several natural open questions. The most immediate is

to remove the assumption of a rooted, genuine algorithm to show unconditional hardness of

finding a path (or, alternatively, to give an efficient path-finding algorithm by exploiting non-

genuine or non-rooted behavior). We also think it should be possible to show classical hardness
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of the general Welded Tree Problem when the oracle provides a 3-coloring. Finally, it would be

instructive to find a way of instantiating the welded tree problem in an explicit (non-black box)

fashion, giving a quantum speedup in a non-oracular setting.
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Chapter 2: Welded tree problem and genuine rooted algorithms

We begin this chapter by precisely defining the Welded Tree EXIT-finding and path-finding

problems. In Section 2.2, we formalize the definitions of genuine and rooted algorithms that we

referred to in Chapter 1. Then, we briefly describe the notion of continuous-time quantum walk

algorithms in Section 2.3, concluding with an overview of the EXIT-finding algorithm of [1] in

Section 2.3.1 and the path-finding algorithm of [11] in Section 2.3.2.

2.1 Welded tree problem

We begin by describing the so-called Welded Tree Graph Gn. Even though we briefly

mentioned this graph in Chapter 1, we will precisely define it here for the ease of reading.

Definition 1 (Welded Tree). A graph Gn is a Welded Tree of size n if it is formed by joining the 2 · 2n

leaves of two balanced binary trees of height n with a cycle that alternates between the two sets of leaves

(as shown in Figure 1.1).

In order to distinguish between the two binary trees used to form Gn, we will call one the

left and other the right binary trees used to form Gn. For the rest of this thesis, we will refer to

the input Welded Tree Graph of size n by G. We will label vertices of Gn as follows.

Definition 2 (Vertex labels). Let ENTRANCE and EXIT denote the 2n-bit strings that labels the roots of

the left and the right binary trees respectively. We will use the 2n-bit strings NOEDGE and INVALID to

indicate the non-existence of an edge and to denote the output of an invalid query respectively. We also
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entrance

010110

101000

011101

101001

110100

101010

001100

110011

101111

111001

011000

010100

101110

000001

exit

101101

001010

101100

001011

011110
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100100

001001

010001

000101

000100

110101

001110

110110

Figure 2.1: Example of a 3-colored labeled welded tree graph for n = 3.

define SpecialVertices := {02n, ENTRANCE, EXIT, NOEDGE, INVALID}. Each non-root vertex in Gn is

labeled by an arbitrary 2n-bit string not in SpecialVertices. The set of vertices of Gn is denoted VG.

Figure 2.1 shows a valid coloring and labelling of the Welded Tree Graph in Figure 1.1. We

will usually refer to the vertex labelled ENTRANCE (respectively EXIT) as ENTRANCE (respectively

EXIT). Since Gn is bipartite and each vertex v ∈ VG has degree at most 3, it can be edge-colored

using only 3 colors. Therefore, we suppose that the edges of Gn are colored from the set C :=

{red, green, blue}. We define a classical oracle function ηc : {0, 1}2n → {0, 1}2n that encodes the

edges of color c ∈ C in Gn.

Definition 3 (ηc). For any v ∈ VG and c ∈ C, let Ic(v) be the indicator variable that is 1 if the vertex
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labeled v has an edge colored c and 0 otherwise. If Ic(v) = 1 for some v ∈ VG and c ∈ C, let Nc(v) be the

label of the vertex joined to v with an edge of color c. Then

ηc(v) :=



Nc(v) v ∈ VG and Ic(v) = 1

NOEDGE v ∈ VG and Ic(v) = 0

INVALID v /∈ VG,

(2.1)

We will refer to the collection of ηc for c ∈ C as the oracle OGn of the Welded Tree Graph Gn. When Gn is

clear from context, we will use O to represent the oracle OGn for simplicity.

Since Gn is 3-colored, for any vertex label v ∈ VG, Ic(v) = 0 only if v ∈ {ENTRANCE, EXIT}.

For any v ∈ VG and c ∈ C, if Ic(v) = 1, then we will call Nc(v) the c-neighbor of v in Gn.

We are ready to express the Welded Tree EXIT-finding and path-finding problems.

Definition 4 (Welded Tree EXIT-finding). Given access to an oracle O for a Welded Tree Graph Gn

and the label ENTRANCE, the Welded Tree EXIT-finding problem requires finding the label EXIT. The

query complexity of a quantum (respectively classical) query algorithm A solving the Welded Tree

EXIT-finding problem is the number of quantum (respectively classical) queries made by A to O. The

quantum (respectively classical) query complexity of the Welded Tree EXIT-finding problem is

the minimum quantum (respectively classical) query complexity of any quantum (respectively classical)

query algorithm solving the Welded Tree EXIT-finding problem.

Definition 5 (Welded Tree path-finding). Given access to an oracle O for a Welded Tree Graph Gn and

the label ENTRANCE, the Welded Tree path-finding problem requires finding a connected subgraph of

Gn that contains the vertices with labels ENTRANCE and EXIT. The query complexity of a quantum

(respectively classical) query algorithm A solving the Welded Tree path-finding problem is the number

of quantum (respectively classical) queries made by A to O. The quantum (respectively classical)
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query complexity of the Welded Tree path-finding problem is the minimum quantum (respectively

classical) query complexity of any quantum (respectively classical) query algorithm solving the Welded

Tree path-finding problem.

In an alternate formulation of the Welded Tree path-finding problem, the goal is to find the

labels of a set of vertices that form an ENTRANCE–EXIT path. However, this problem is equivalent

to the one we defined in Definition 5 in terms of their query complexity: an ENTRANCE–EXIT path

forms a connected subgraph of Gn containing the ENTRANCE and the EXIT; any known connected

subgraph of Gn containing the ENTRANCE and the EXIT will contain an ENTRANCE–EXIT path,

which can be extracted without making any queries.

Before we move on, we precisely define our notion of efficiency and the notation we will

use for that.

Definition 6 (Efficiency). We say that a quantum (respectively classical) query algorithm is efficient

for the Welded Tree EXIT-finding problem (respectively Welded Tree path-finding problem) if its quantum

(respectively classical) query complexity is polynomial in n. In later Definitions and analysis, we will use

p(n) to denote any polynomial parametrized by n.

2.2 Genuine and rooted algorithms

In this section, we precisely define the aforementioned notion of genuine, rooted quantum

query algorithms. Intuitively, an algorithm is genuine if it only allows for “meaningful” operations,

and it is rooted if it remains “connected to the ENTRANCE” throughout its course. We begin by

describing our setup and recalling the definition of the Welded Tree Oracle.

Definition 7 (Vertex register and vertex space). A vertex register is a 2n-qubit register that stores a

vertex label. We consider quantum states that have exactly p(n) vertex registers, and refer to the 2np(n)-

qubit space consisting of all the vertex registers as the vertex space.
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Any computational basis state in the vertex space stores p(n) vertex labels, which might

correspond to a subgraph of G. During its execution, a quantum algorithm may want to store

information that may not directly indicate the label of a vertex of G. For this purpose, we define

the notion of the workspace.

Definition 8 (Workspace and workspace register). A workspace register is a single-qubit register

that can store arbitrary ancillary states. We allow for arbitrarily many workspace registers, and refer to

the space consisting of all workspace registers as the workspace.

In the following definition, we precisely describe the set of gates that any quantum query

algorithm for finding an ENTRANCE–EXIT path could employ for querying, and manipulating

the known, vertex labels in a meaningful way (i.e. without using the information stored in these

labels).

Definition 9 (Genuine circuit). We say that a quantum circuit C is genuine if it is built from the

following unitary gates.

1. Controlled-oracle query gates Oc for c ∈ C where the control qubit is in the workspace, and Oc acts

on the jth and kth vertex registers for some distinct j, k ∈ [p(n)] := {1, . . . , p(n)} as

Oc :
∣∣vj
〉
|vk⟩ 7→

∣∣vj
〉∣∣vk ⊕ ηc(vj)

〉
(2.2)

where ηc is defined in Definition 3.

Furthermore, in a genuine circuit, Oc can only be applied if vk = 02n or vk = ηc(vj) for every vj, vk

pair appearing in those respective registers in the superposition.

2. Controlled-eiθT rotations for any θ ∈ [0, 2π) where the control qubit is in the workspace and the

Hamiltonian T is defined, similarly to [1], to act on the jth and kth vertex registers for some distinct
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j, k ∈ [p(n)] as

T :
∣∣vj
〉
|vk⟩ 7→ |vk⟩

∣∣vj
〉
. (2.3)

We let ∧(A) denote a controlled-A gate, so that ∧(eiθT) denotes the controlled-eiθT gate.

3. Equality check gates E, which act on the jth and kth vertex registers for some distinct j, k ∈ [p(n)],

and on the ath workspace register for some workspace index a, as

E :
∣∣vj
〉
|vk⟩|wa⟩ 7→

∣∣vj
〉
|vk⟩

∣∣wa ⊕ δ[vj = vk]
〉

(2.4)

where δ[P] is 1 if P is true and 0 if P is false.

4. NOEDGE check gates N, which act on the jth vertex register for some j ∈ [p(n)], and on the ath

workspace register for some workspace index a, as

N :
∣∣vj
〉
|wa⟩ 7→

∣∣vj
〉∣∣wa ⊕ δ[vj = NOEDGE]

〉
. (2.5)

5. ZERO check gates Z, which act on the jth vertex register for some j ∈ [p(n)], and on the ath

workspace register for some workspace index a, as

Z :
∣∣vj
〉
|wa⟩ 7→

∣∣vj
〉∣∣wa ⊕ δ[vj = 02n]

〉
. (2.6)

6. Arbitrary two-qubit gates (or, equivalently, arbitrary unitary transformations) restricted to the

workspace register.

We would like to point out that we can efficiently check that whether the target register of

an oracle query ∧(Oc) with the control vertex register storing
∣∣vj
〉

contains 02n or ηc(vj). Indeed,

we can replace each oracle query gate Oc with the circuit shown in Figure 2.2 (where the whole

13



∣∣vj
〉

Oc Oc Oc
|vk⟩ ×

E

× ×

E

×∣∣02n〉 ×
Z

× ×
Z

×

|0⟩ •

|1⟩ • •

Figure 2.2: Circuit diagram for checking if vk = 02n or vk = ηc(vj). The top three registers (i.e.
those initialized with

∣∣vj
〉
, |vk⟩ and

∣∣02n〉 respectively) are vertex registers and the bottom two
registers (i.e. those initialized with |0⟩ and |1⟩ respectively) are workspace registers.

circuit is being controlled on the control register of Oc in the workspace) that has a constant

number of gates from Definition 9. Notice that the swap gates are only used so that all the

wires that a certain gate act on are adjacent. Moreover, the last workspace register allows for

applying uncontrolled-Oc gates. In this circuit, the center oracle gate Oc is only applied on the

registers storing
∣∣vj
〉

and |vk⟩ if the first workspace register stores a 1, which happens only when

vk = 02n or vk = ηc(vj) by the definitions of the ZERO check gate Z and the equality check gate

E. Since we are promised that the target register of any oracle gate satisfies part 1 of Definition 9,

replacing each controlled-oracle gate in any given genuine circuit C with the gadget described

by Figure 2.2 will not impact the output state of C and only result in a constant overhead on the

size of the circuit. Therefore, without loss of generality, we can assume that the given genuine

circuit checks the condition in part 1 of Definition 9 as in Figure 2.2 for each controlled-oracle

gate.

We now define the notion of genuine algorithms using Definition 9. Let O = {Oc : c ∈

C} denote a particular randomly selected Welded Tree Oracle, and let A(O) denote a quantum

algorithm that makes quantum queries to O.

Definition 10 (Genuine algorithm). We call a quantum query algorithm A genuine if, for the given

Welded Tree Oracle O, A acts on the vertex space and the workspace as follows.
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1. A(O) begins with an initial state

|ψinitial⟩ = |ENTRANCE⟩ ⊗
(∣∣02n〉)⊗(p(n)−1) ⊗ |0⟩workspace. (2.7)

2. Then, it applies a p(n)-gate genuine circuit C (as in Definition 9) on |ψinitial⟩ to get the state |ψA⟩.

3. Finally, it measures all the vertex registers of |ψA⟩ in the computational basis and outputs the

corresponding vertex labels.

Intuitively, a state in the vertex space is rooted if it corresponds to a set of labels of vertices

from VG of the Welded Tree G described by the given oracle O (or the NOEDGE label) that form a

connected subgraph containing the ENTRANCE (neglecting the NOEDGE label, if present). Formally,

consider the following definition.

Definition 11 (Rooted state). We say that a computational basis state |ψ⟩ in the vertex space is rooted

if for any vertex label v stored in any of the registers of |ψ⟩,

1. v ∈ VG ∪ {02n, NOEDGE}, and

2. if v /∈ {02n, ENTRANCE}, then there exist r vertex registers storing vertex labels vj1 , . . . , vjr such

that vj1 = ENTRANCE, vjr = v, and for each k ∈ [r− 1], ηc(vjk) = vjk+1 for some c ∈ C.

Figure 2.3 shows examples of rooted and non-rooted states.

Finally, we define the notion of a rooted algorithm, which is based on Definition 11.

Definition 12 (Rooted algorithm). A quantum query algorithm A is rooted if, for the given Welded

Tree Oracle O, at each intermediate step of A(O), every computational basis state in the support of the

vertex space of the quantum state maintained by A is rooted.

Non-rooted behavior can be useful for exploring the Welded Tree Graph. In particular,

the algorithm of [1] for finding the EXIT is not rooted, since it only maintains a single vertex (in
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entrance

010110 101000

101001 110100 101010

101111

(a) Subgraph of Figure 2.1 corresponding to the state
|ENTRANCE⟩, |010110⟩, |101000⟩, |101001⟩, |101010⟩,
|101111⟩, |110100⟩.

entrance

101000

101001 110100 101010

101111

(b) Subgraph of Figure 2.1 corresponding to the state
|ENTRANCE⟩, |000000⟩, |101000⟩, |101001⟩, |101010⟩,
|101111⟩, |110100⟩.

Figure 2.3: Examples of rooted and non-rooted states.

superposition). However, a path-finding algorithm must store information about many vertices,

and the value of detaching from the ENTRANCE is unclear since it must ultimately reattach.

Note that the snake walk [11] is initially rooted, the most natural way for it to find a path

from ENTRANCE to EXIT is arguable to do so while remaining rooted, though the algorithm may

become non-rooted if it is run for long enough.

Earlier in this section, we argued that it is possible to construct a genuine circuit that

verifies that the condition given in part 1 of Definition 9 is always satisfied with a constant

overhead in the size of the given circuit. Now, we will make a similar argument to demonstrate

that given a quantum query algorithm, one can efficiently modify it to ensure that the state

it maintains is always rooted. We do this because of technical reasons that will be evident in

Sections 3.4 and 3.5.

In particular, we assert that given a genuine, rooted algorithm associated with a circuit

C, one can efficiently construct a modified genuine, rooted algorithm associated with a circuit

C′ such that each gate G in C is replaced by a sequence of gates in C′ that make sure that G is

only applied if the resulting state after applying G would have been rooted with a polynomial

overhead in circuit size and no impact on the resulting state. Recall from our earlier argument
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that (controlled) oracle gates are the only genuine gates that can alter the contents of vertex

registers. This means that we only need to replace G with this sequence of gates if G is an oracle

gate. We now describe a rooted algorithm that accomplishes this task and argue how it can be

implemented by a genuine circuit.

First, note that at the beginning of the circuit C, one can copy the label of the ENTRANCE

(which is stored in the first register of |ψinitial⟩) to an ancilla vertex register that is not meant to be

used by any of the gates that follow. This step can be implemented by a genuine algorithm

by querying a valid neighbor of the ENTRANCE and then computing the ENTRANCE in this

special ancilla vertex register before uncomputing this neighbor of the ENTRANCE. Similalrly,

we can uncompute the contents of the special ancilla vertex register at the end of our algorithm.

Thus, we can make sure that the ENTRANCE label is always stored in a vertex register of any

computational basis state in the support of our state at any step.

Given p(n) vertex registers, by a standard breadth-first search procedure starting at the

ENTRANCE, one can check whether the subgraph G of G induced by the vertex labels stored

in these registers is connected. At each step of this breadth-first search, we determine which

vertex registers store the neighbors of a particular vertex v. This can be done by looping over

each vertex register, checking whether it stores a neighbor of v and storing the outcome in a

workspace register. Therefore, the task of checking the connectivity of G is reduced to the task of

checking whether two input vertex registers stores labels of vertices that are neighbors in G and

computing it in a workspace register.

We describe a genuine circuit for it as shown in Figure 2.4. The swap gates and the

workspace register initialized to |1⟩ have the same role as in Figure 2.2. Given vertex labels

vj and vk, we first compute each of the 3 neighbors (according to ηc) of vj in 3 different ancilla

vertex registers. Then, we check whether any of these vertices are equal to vk using equality
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check gates E, and compute the output in an ancilla workspace regsiter. By the end of this

circuit, this workspace register will store 1 iff vj and vk are neighbors. Once we have used this

workspace qubit for applying a controlled oracle gate, we uncompute the contents of this qubit

by applying the circuit in Figure 2.4 backwards.

Now that we have outlined a procedure of checking rooted-ness, we describe the sequence

of gates such that replacing a controlled oracle query gate Oc by this sequence ensures that each

computational basis state in the support of any intermediate step of any algorithm is rooted. We

first compute the output of Oc in an ancilla vertex register. Then, we determine whether Oc is

meant to uncompute the contents of a particular vertex register. We check this using an equality

check gate applied on the above ancilla vertex register and the target register of Oc. If Oc is not

meant to uncompute, we know that applying it cannot result in a non-rooted state. In the case

that it is an uncomputation, we check that the state corresponding to the collection of vertex

registers not including the target register of Oc is rooted by the procedure we sketched above.

We then apply Oc controlled on the output of this check and uncompute all the information

we computed in ancilla vertex and workspace registers. It is easy to see that this sequence of

gates never results in a non-rooted state and does not alter the output state of a genuine, rooted

algorithm. Hence, without loss of generality, we can assume that any given genuine, rooted

algorithm will have embedded this self-checking rooted-ness preservation mechanism.

2.3 Continuous-time quantum walk algorithms

The definition of a continuous-time quantum walk is inspired by the definition of continuous-

time random walk and the Schrödinger equation. More precisely, we have the following.

Definition 13. Let G = (V, E) be a graph. Let H be a Hermitian matrix. The continuous-time

quantum walk algorithm for matrix H is described as follows. The state |ψ(t)⟩ of the evolution of this
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∣∣vj
〉

Or Ob Og
|vk⟩ × × × ×∣∣02n〉 × ×∣∣02n〉 ×

E

×

E

×

E
∣∣02n〉 ×

|0⟩

|1⟩ • • •

Figure 2.4: Circuit diagram for computing if vj = ηc(vk) for some c ∈ C. The top five registers
are vertex registers and the bottom two registers are workspace registers. For compactness, we
have truncated the names of the oracles Ored, Oblue and Ogreen to Or, Ob and Og respectively.

walk at time t is given by the solution of the Schrödinger equation

i
d
dt
|ψ(t)⟩ = H|ψ(t)⟩ (2.8)

The matrix H describing a continuous-time quantum walk is often referred to as a Hamiltonian

as it often describes the evolution dynamics of a physical process. The closed form solution of

the state of a continuous-time quantum walk at time t is well-understood.

Lemma 14. The closed form solution of the state |ψ(t)⟩ is e−itH |ψ(0)⟩.

Proof. Since H is Hermitian, it admits a spectral decomposition. That is, we can write

H = ∑
i

λi|λi⟩⟨λi| (2.9)

where λi and |λi⟩ denotes the ith eigenvalue and eigenvector respectively with the vectors in

{λi}i form an orthonormal basis.

Since

He−itH = ∑
i

λie−itλ|λi⟩⟨λi| = i
d
dt

e−itH, (2.10)
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we have

H|ψ(t)⟩ = He−itH |ψ(0)⟩ = i
d
dt

e−itH |ψ(0)⟩ = i
d
dt
|ψ(t)⟩ (2.11)

It can also be easily verified that e−itH is a unitary operator for any Hermitian matrix H.

Lemma 14 implies that it is sufficient to perform the evolution e−itH in order to implement the

quantum walk for the Hamiltonian H as a circuit.

Next, we allude to a continuous-time quantum walk algorithm each for the Welded Tree

EXIT-finding and path-finding problems.

2.3.1 Quantum walk for Welded Tree EXIT-finding

Childs et al. [1] introduced the problem of Welded Tree EXIT-finding to demonstrate

the first exponential speed-up provided by algorithms based on quantum walks. Here, we

briefly describe the Hamiltonian they used and the implementation of the corresponding unitary

evolution. First, consider the following definition.

Definition 15 (Adjacency matrix). Given a graph G = (V, E), the adjacency matrix A of G is defined

as the |V| × |V| matrix as follows. For any j, k ∈ |V|, Aj,k is 1 if {j, k} ∈ E and 0 otherwise.

The adjacency matrix A of Gn acts on the jth register in the vertex space as

A
∣∣vj
〉
7→ δ[v ∈ VG] ∑

c∈C:Ic(vj)=1

∣∣ηc(vj)
〉

(2.12)

where Ic(vj) is as defined in Definition 3.

Clearly, A is a Hermitian matrix. The quantum walk algorithm of [1] is based on the

unitary evolution eiθA corresponding to A. Now, we briefly explain the implementation of eiθA

using the gates described in Definition 9.
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For each c ∈ C, consider the Hamiltonian Sc defined to act on the jth and kth registers in

the vertex space as

Sc
∣∣vj
〉
|vk⟩ 7→


|vk⟩

∣∣vj
〉

vj ∈ VG ∧ Ic(vj) = 1

0 otherwise

(2.13)

Observe that Sc is not a unitary. However, we will only need to apply eiθSc for some θ ∈

[0, 2π) with vj ∈ VG. Recall that for v ∈ VG and c ∈ C, Ic(v) = 0 iff ηc(v) = NOEDGE. The unitary

evolution eiθSc can be implemented (as shown in Figure 2.5) by computing ηc(vj) in an ancilla

vertex register RV by applying Oc on
∣∣vj
〉

and RV , then computing δ[η(vj) = NOEDGE] in an

ancilla workspace register RW by applying NOEDGE-check gate on RV and RW , then applying eiθT

controlled on RW , and finally uncomputing the contents of RW and RV in order. In this circuit,

the swap gates and the last workspace register has the same role that they had in Figure 2.2.

Notice that

∑
c∈C

Oc ◦ Sc ◦Oc
∣∣vj
〉∣∣02n〉 = ∑

c∈C
Oc ◦ Sc

∣∣vj
〉∣∣ηc(vj)

〉
(2.14)

= δ[vj ∈ VG] ∑
c∈C:Ic(vj)=1

Oc
∣∣ηc(vj)

〉∣∣vj
〉

(2.15)

= δ[vj ∈ VG] ∑
c∈C:Ic(vj)=1

∣∣ηc(vj)
〉∣∣vj ⊕ ηc(ηc(vj))

〉
(2.16)

= δ[vj ∈ VG] ∑
c∈C:Ic(vj)=1

∣∣ηc(vj)
〉∣∣02n〉 (2.17)

= A
∣∣vj
〉∣∣02n〉 (2.18)

where the penultimate step follow since ηc(ηc(vj)) = vj as vj ∈ VG and Ic(vj) = 0.

This means that A (extended to act on one ancilla register along with one vertex register)

can be written as a linear combination of the Hamiltonians Oc ◦ Sc ◦Oc for c ∈ C. That is, we can
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∣∣vj
〉

Oc eiθT Oc
|vk⟩ × × × ×∣∣02n〉 × ×

N N
× ×

|0⟩ •

|1⟩ • •

Figure 2.5: Circuit diagram for eiθSc using genuine gates.

write the evolution operator eiθA as e∑c∈C Oc◦Sc◦Oc . Using known methods, one can approximate

this operator with error polynomial in θ and the largest norm of the commutator of Oc ◦ Sc ◦Oc

and Oc′ ◦ Sc ◦Oc′ for c, c′ ∈ C.

Now, we provide some intuition as to why the quantum walk algorithm for the Hamiltonian

A works. Before that, we look at an elementary yet useful definition.

Definition 16 (Column and level). Let T be a binary tree of height n. We say that a vertex of T is in

column j if its distance from the root of T is j, and an edge in T is at level j if it connects a vertex in

column j− 1 to a vertex in column j. We extend this notion to the Welded Tree Graphs. Precisely, a vertex

of a Welded Tree Graph G is in column j if its distance from the ENTRANCE is j, and an edge in G is at

level j if it connects a vertex in column j− 1 to a vertex in column j.

In particular, the EXIT is in column 2n + 1 and the edges connecting the leaves of the left

and the right binary trees are at level n + 1. Note that the number of vertices in column j ∈

[2n + 1] ∪ {0} are

νj =


2j j ≤ n

22n−j+1 otherwise

(2.19)
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while the number of edges at level j ∈ [2n + 1] are

µj =


2j j ≤ n + 1

22n−j+2 otherwise

(2.20)

Let us define |col(j)⟩ to be a uniform superposition over all vertices in column j of Gn.

Precisely,

|col(j)⟩ = 1
√

νj
∑

v:v in column j
|v⟩ (2.21)

Note that for any j, k ∈ [2n− 1]∪ {0}with |j− k| > 1, it must be that ⟨col(j)|A|col(k)⟩ = 0

since no vertex in column j is joined by an edge to any vertex in column k. For any j ∈ [2n]∪ {0},

we have

⟨col(j)|A|col(j + 1)⟩ =
µj+1√

νj
√

νj+1
=


2 j = n

√
2 otherwise

(2.22)

Similarly, for any j ∈ [2n− 1], we have

⟨col(j)|A|col(j− 1)⟩ =
µj√

νj
√

νj−1
=


2 j = n + 1

√
2 otherwise

(2.23)

It follows that the subspace span |col(j) : j ∈ [2n− 1] ∪ {0}⟩ is invariant under A. Moreover,

we can view A as the adjacency matrix of a weighted path graph whose vertices correspond to

states in |col(j)⟩. As the weights are almost uniform, one can expect the quantum walk using

A as its Hamiltonian beginning at |col(0)⟩ = |ENTRANCE⟩ to have inverse polynomial (possibly

inverse linear) amplitude on the state |col(j)⟩ for each j ∈ [2n− 1] after polynomially (possible
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linearly) many steps.

2.3.2 Quantum snake walk for Welded Tree path-finding

In this subsection, we mention some key ideas about the quantum snake walk algorithm

due to Rosmanis [11]. We begin by describing an expansion of the Welded Tree Graph that the

Rosmanis’ quantum snake walk algorithm will run on.

Definition 17 (Expanded Welded Tree Graph). Let G be any Welded Tree Graph and r be an integer

greater than 0. The Expanded Welded Tree Graph G(r) associated with G and r is constructed by making

2r copies of G and connecting them such that the ENTRANCE vertex of each of these copies is a leaf of a

binary tree TENTRANCE of height r and the EXIT vertex of each of these copies is a leaf of a separate binary

tree TEXIT of height r. Let VG(r) denote the set of vertices of G(r).

Observe that the root of TENTRANCE is distance 2n + 2r + 1 away from the root of TEXIT.

We now describe the formalism needed to define the Welded Tree Snake Graph, whose vertices

correspond to paths in the Welded Tree Graph.

Definition 18 (Snakes). Let G be any Welded Tree Graph, and r and m be integers greater than 0.

A snake of length m in G(r) is a tuple (v1, . . . , vm+1) of m + 1 vertices such that vi ∈ VG(r) for each

i ∈ [m + 1] and there is an edge between vi and vi+1 in G(r) for each i ∈ [m]. The vertices vm+1 and

v1 are called the head and the tail of the snake (vi, . . . , vm+1). Let VSm,r(G) denote the set of all snakes of

length m in G(r).

Equivalently, a snake of length m in G(r) can be described as the collection of an initial

vertex and a sequence of m edges such that the first edge in this sequence is incident on the

initial vertex and each consecutive edge share a vertex that they are incident on. Note that it is

possible to have vi = vj for i ̸= j.
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Definition 19 (Movement of snakes). Let G be any Welded Tree Graph, and r and m be integers greater

than 0. Let (v1, . . . , vm+1) be any length m snake in G(r). Let v be any neighbor of vm+1 in G(r) and

let u be any neighbor of v1 in G(r). Then, we say that the snake (v1, . . . , vm+1) moves forward to the

snake (v2, . . . , vm+1, v). Similarly, we say that the snake (v1, . . . , vm+1) moves backward to the snake

(u, v1, . . . , vm).

Observe that a snake v⃗ = (v1, . . . , vm+1) moves forward to the snake u⃗ = (u1, . . . , um+1) iff

u⃗ moves backward to the snake v⃗. The following definition describes a graph whose vertices are

labeled by paths in the Expanded Welded Tree Graph of Definition 17.

Definition 20 (Welded Tree Snake Graph). Let G be any Welded Tree Graph, and r and m be integers

greater than 0. The Welded Tree Snake Graph Sm,r(G) is the graph with vertex set VSm,r(G) whose edges

defined as follows. For any snakes v⃗ = (v1, . . . , vm+1) and u⃗ = (u1, . . . , um+1) in G(r), there is an edge

of length 1 between v⃗ and u⃗ if either v⃗ moves forward to u⃗ or u⃗ moves forward to v⃗ but not both, and there

is an edge of length 2 between v⃗ and u⃗ if v⃗ moves forward to u⃗ and u⃗ moves forward to v⃗. We say that

the vertex corresponding to the snake v⃗ = (v1, . . . , vm+1) ∈ VSm,r(G) is marked if there are j, k ∈ [m + 1]

such that vj = ENTRANCE and vk = EXIT.

In order for Sm,r(G) to have any marked vertex, m must be at least 2n + 1. Any marked

vertex of Sm,r(G) will correspond to a snake that contains an ENTRANCE–EXIT path so the goal

now is to find a marked vertex of Sm,r(G). For this purpose, it is sufficient to find a vertex of

Sm,r(G), which corresponds to a snake that contains a vertex each from TENTRANCE and TEXIT.

Continuous-time quantum snake walk, which is defined next, provides an algorithm for finding

such a vertex.

Definition 21 (Quantum snake walk). Let G be any Welded Tree Graph, and r and m be integers greater

than 0. The continuous-time quantum snake walk on G(r) with Hamiltonian H and initial state |ψ(0)⟩ is
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defined as the quantum walk on the graph Sm,r(G) with Hamiltonian H and initial state |ψ(0)⟩.

Rosmanis [11] describes a quantum snake walk algorithm for finding a marked vertex in

Sm,r(G). We provide an overview of this algorithm as follows.

Algorithm 1: Rosmanis quantum snake walk algorithm for the Welded Tree path-

finding problem

1 Pick any m, r polynomial in n with m ≥ 2n + 1.

2 Prepare an initial state |ψ(0)⟩. 1

3 Run the quantum snake walk on G(r) with the Hamiltonian being the adjacency matrix of

G(r) and initial state |ψ(0)⟩ for some polynomial (in n) number of steps.

4 Measure the final state of this walk to obtain a snake s of length m.

5 if s contains a vertex each from TENTRANCE and TEXIT then

6 return s

7 else

8 Go back to Line 2

Note that this algorithm only terminates once a snake has been found that contains a vertex

labeled ENTRANCE and a vertex labeled EXIT. Such a snake would contain an ENTRANCE–

EXIT path by Definitions 17 and 18 in the Expanded Welded Tree graph. Therefore, Line 1 is

correct. However, the query complexity of this algorithm is not clear. In fact, no bounds on this

complexity were shown in [11] and it is still unknown.

1Expressing this state would require more machinery, which we believe is a digression for our purpose of
communicating the intuition of this algorithm so we omit it.
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Chapter 3: Classical simulation of genuine, rooted algorithms

We begin this chapter by describing the notion of transcript states in Section 3.1 that

emulate the state of the given genuine, rooted algorithm. Then, we define a mapping that sends

states in the address space to states in the vertex space in Section 3.2. In Section 3.3, we state

our classical simulation algorithm of genuine, rooted algorithms. Then, we define states that

would help us in our analysis of this algorithm in Section 3.4. We show in Section 3.5 that the

‘good’ part of the quantum state of a genuine, rooted algorithm is related, via the mapping

L defined in Definition 32, to the ‘good’ part of the state of our simulation algorithm at each

intermediate step. Finally, we establish in Section 3.6 that any genuine, rooted algorithm cannot

find an ENTRANCE–EXIT path (or a cycle) with more than exponentially small probability using

the result of Chapter 4.

3.1 Transcript states

With each genuine quantum query algorithm A(O) that makes p(n) oracle queries to

the oracle O of the input welded tree G, we associate a quantum state |ϕA⟩, which we call the

transcript state of A(O). As we will see in Definition 28, instead of storing the label of a vertex

v, any register of any computational basis state of the transcript state |ϕA⟩ will store a path from

the ENTRANCE to v. We will formally refer to this path as the ‘address’ of v, which is defined

next.

Definition 22 (Vertex addresses). We say that a tuple t of colors from C is an address of a vertex
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v of G if v is reached by starting at the ENTRANCE and following the edge colors listed in t. For

completeness, we assign special names ZEROADDRESS, NOEDGEADDRESS, and INVALIDADDRESS to

denote the addresses of vertex labels 02n, NOEDGE, and INVALID, respectively. We denote the empty tuple

by the special name EMPTYADDRESS. Let SpecialAddresses := {ZEROADDRESS, EMPTYADDRESS,

NOEDGEADDRESS, INVALIDADDRESS}. We define

ADDRESSES := SpecialAddresses∪
⋃

i∈[p(n)]
C×i (3.1)

where C×i denotes the set of all i-tuples of colors from C.

Note that a given vertex can have many different associated addresses. Indeed, two addresses

that differ by an even-length palindrome of colors are associated to the same vertex. Even greater

multiplicity of addresses can occur because of the cycles in G. We define the notion of the address

tree to deal with the former issue, and we delay consideration of the latter issue. To define the

address tree, we need to know the color c∗ that does not appear at the ENTRANCE.

Definition 23 (The bad color at the entrance). Let c∗ ∈ C be the unique color such that there is no

edge of color c∗ incident to the ENTRANCE in G.

Definition 24 (Address tree). The address tree T (see Figure 3.1) is a binary tree of depth p(n) with

3 additional vertices.1 Its vertices and edges are labeled by addresses and colors, respectively, as follows.

The 3 additional vertices are labeled by each address in SpecialAddresses \ {EMPTYADDRESS}. The root

of T is labeled by EMPTYADDRESS. It is joined to the vertex labeled NOEDGEADDRESS by a directed edge

of color c∗, and to 2 other vertices, each by an undirected edge of a distinct color from C \ {c∗}. For each

color c ∈ C, the vertices labeled ZEROADDRESS and NOEDGEADDRESS have a directed edge colored c to

the vertex labeled INVALIDADDRESS. The vertex labeled INVALIDADDRESS also has 3 self-loop edges,

1The address tree is not technically a tree, but we still refer to it as such because it contains no non-trivial cycles.
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empty

r b noedge zero

r,g r,b b,g b,r invalid

r,g,b r,g,r r,b,g r,b,r b,g,r b,g,b b,r,g b,r,b

Figure 3.1: Address tree T of depth 3 corresponding to the graph in Figure 2.1. For the sake of
brevity, we have removed the suffix ADDRESS for all the addresses in SpecialAddresses and the
tuple brackets for all the addresses not in SpecialAddresses. Notice that, for each vertex, there
is an edge (either directed or undirected) of each color outgoing from each vertex in T.

each of a distinct color from C. Every other vertex in t is joined to 3 other vertices, each by an undirected

edge of a distinct color from C. Every vertex t of T whose label is not in SpecialAddresses is labeled by the

sequence of colors that specifies the (shortest) path from EMPTYADDRESS to t in T. For any vertex t of T,

let λc(t) be the vertex that is joined to t by an edge of color c in T.

The following simple observations about the address tree T may be instructive.

• Since the 3-coloring of T is a valid coloring, no vertex label of T will ever contain an even-

length palindrome.

• Beginning at the vertex labeled EMPTYADDRESS and traversing any sequence of colors in

T will lead us to some vertex of T. Therefore, in the definition of the transcript state

(Definition 28), and hence in the algorithm analyzed in Sections 3.3 to 3.6, the addresses

that we consider are valid labels of vertices in T, by construction.

• The color c∗ can be computed with 2 queries to the oracle O. Therefore, the entire address

tree can be computed with only 2 queries to O.

Intuitively, the transcript state |ϕA⟩ is the state that results from running the algorithm A
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on the address tree T. If A does not explore cycles in the welded tree G to a significant extent,

then |ϕA⟩ should be a good approximation of the state |ψA⟩ produced by running A on G, as in

Definition 10. We show, in Sections 3.3 to 3.6, that this is indeed the case for any genuine, rooted

quantum algorithm A.

Now we define a mapping B that turns addresses into strings, and another mapping Binv

that turns strings into addresses, such that Binv is the inverse of B on the range of B. We will later

note that the registers that we consider can never contain any string that is no in the range of the

B mapping. Therefore, it is sufficient to define Binv over the range of B. Nevertheless, we will

define Binv over {0, 1}2p(n) for the sake of completeness.

Definition 25 (B mapping). Let VT denote the set of labels of vertices of the address tree T. Let S

be a subset of {0, 1}2p(n) of size |VT | containing 02p(n). Let EMPTYSTRING, NOEDGESTRING, and

INVALIDSTRING be any fixed distinct strings in S \ {02p(n)}. Then B : VT → S is a bijection mapping

ZEROADDRESS to 02p(n), EMPTYADDRESS to EMPTYSTRING, NOEDGEADDRESS to NOEDGESTRING,

and INVALIDADDRESS to INVALIDSTRING. We define the function Binv : {0, 1}2p(n) → VT as

Binv(s) :=


B−1(s) s ∈ S

INVALIDADDRESS otherwise.

(3.2)

We will now define analogs of the spaces we defined in Definitions 7 and 8 that our

transcript state (Definition 28) will lie in and our classical simulation algorithm (Algorithm 3)

will act on.

Definition 26 (Address register and address space). An address register is a 2p(n)-qubit register

storing bit strings that are the image, under the map B, of the address of some vertex label in the address

tree T. We consider quantum states that have exactly p(n) address registers, and refer to the 2p(n)2-qubit
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space of all the address registers as the address space.

Definition 27 (Address workspace and address workspace register). An address workspace

register is a single-qubit register that stores arbitrary ancillary states. We allow for arbitrarily many

address workspace registers, and refer to the space consisting of all address workspace registers as the

address workspace.

Notice the similarity between the definitions of workspace and address workspace. Indeed,

we will later notice that the projection of |ψA⟩ on the workspace is the same as the projection of

|ψA⟩ on the address workspace in the subspace not containing the EXIT or a cycle. We are now

ready to state the definition of the transcript state associated with the quantum state |ψ⟩A.

Definition 28 (Transcript state). Consider a p(n)-query genuine, rooted quantum algorithm A. Given

a circuit C that acts on the vertex space and the workspace, let C̃ be the quantum circuit that acts on the

address space and the address workspace, obtained by the following procedure.2

1. Determine c∗ using two queries to the oracle O.

2. Replace each vertex register with an address register and each workspace register with an address

workspace register. Replace the initial state used the genuine algorithm (recall Definition 10) with

the new initial state

|ϕinitial⟩ := |EMPTYSTRING⟩ ⊗
(∣∣∣02p(n)

〉)⊗(p(n)−1)
⊗ |0⟩addressworkspace. (3.3)

In parts 3 and 8 below, we describe gates that act on the address space analogously to how the gates

in Definition 9 act on the vertex space. For any vertex v ∈ VG, we write sv ∈ {0, 1}2p(n) to denote

the contents of the address register corresponding to the vertex register storing v. The transcript

2Notice that the time complexity of this procedure is linear in the size of the circuit C.
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state is produced by the unitary operation that results by replacing each vertex-space gate in the

quantum algorithm A with the corresponding address-space gate defined below.

3. Replace any controlled-oracle gate in C (controlled on workspace register a and acting on vertex

registers j and k) with controlled-Õc (controlled on address workspace register a and acting on

address registers j and k), where

Õc :
∣∣sj
〉
|sk⟩ 7→

∣∣sj
〉∣∣sk ⊕ B(λc(Binv(sj)))

〉
. (3.4)

4. Replace any controlled-eiθT gate in C (controlled on workspace register a and acting on vertex

registers j and k) with a controlled-eiθT̃ gate (controlled on address workspace register a and acting

on address registers j and k), where

T̃ :
∣∣sj
〉
|sk⟩ 7→ |sk⟩

∣∣sj
〉
. (3.5)

5. Replace any equality check gate E in C (controlled on vertex registers j and k and acting on

workspace register a) with Ẽ (controlled on address registers j and k and acting on address workspace

register a), where

Ẽ :
∣∣sj
〉
|sk⟩|wa⟩ 7→

∣∣sj
〉
|sk⟩
∣∣wa ⊕ δ[sj = sk]

〉
. (3.6)

6. Replace any NOEDGE-check gate N in C (controlled on vertex register j and acting on workspace

register a) with Ñ (controlled on address register j and acting on address workspace register a),

where

Ñ :
∣∣sj
〉
|wa⟩ 7→

∣∣sj
〉∣∣wa ⊕ δ[sj = NOEDGESTRING]

〉
. (3.7)

7. Replace any ZERO-check gate Z in C (controlled on vertex register j and acting on workspace register
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a) with Z̃ (controlled on address register j and acting on address workspace register a), where

Z̃ :
∣∣sj
〉
|wa⟩ 7→

∣∣sj
〉∣∣∣wa ⊕ δ[sj = 02p(n)]

〉
. (3.8)

8. Leave gates acting on the workspace unchanged.

The transcript state |ϕA⟩ is obtained by applying the circuit C̃ to the string EMPTYSTRING =

B(EMPTYADDRESS), together with p(n)− 1 ancilla address registers storing 02n = B(ZEROADDRESS).

In other words,

|ϕA⟩ := C̃|ϕinitial⟩. (3.9)

Notice that whereas C updates the vertex registers by making many oracle queries to O,

the circuit C̃ only makes two queries to O.

Recall from section 2.2 that we assumed that the given genuine circuit C will have built-in

gadgets described by Figure 2.2 that verifies the condition asserted in part 1 of Definition 9. Since

we construct C̃ from C by a gate-by-gate process, we apply an oracle gate Õc if the target register

in the workspace of the gates Z̃ and Ẽ just before the gate ∧(Õc) (as in Figure 2.2) is in the state

|1⟩. Therefore, by the definition of the Z̃ and Ẽ gates, the oracle gate ∧(Õc) acting on address

registers storing
∣∣sj
〉

and |sk⟩ is only applied when sk = 02p(n) or sk = B(λc(Binv(sj)) (and the

control qubit of ∧(Õc) in the address workspace in the state |1⟩). Notice that all the other gates in

Definition 28 either does not alter the address registers at all or shuffles their positions without

changing the address strings stored. It follows that no gate from Definition 28 will introduce

address labels that are not in the range of the B mapping defined in Definition 25. Since |ϕinitial⟩

does not store any address labels not in the range of B, applying any circuit C composed of the
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gates from Definition 28 to |ϕinitial⟩ will not result in a state that stores any address labels not in

the range of B.

3.2 Mapping addresses to vertices

In this section, we define an efficiently computable function L′ that takes an address t as

input and outputs the corresponding vertex label v, and observe some relationships of addresses

and the vertices they map to under L′. For t ∈ {ZEROADDRESS, INVALIDADDRESS}, this function

simply outputs the corresponding vertex label. Otherwise, the image of t under L′ is obtained

by performing a sequence of oracle calls to determine the vertices reached by following edges

of the colors specified by t, and outputting the vertex label reached at the end of that sequence.

More precisely, L′(t) is computed as follows.

Algorithm 2: Classical Query Algorithm for Computing L′(t)
Input: An address t

Output: A vertex label v

1 if t = ZEROADDRESS then

2 return 02n

3 if t = INVALIDADDRESS then

4 return INVALID

5 v← ENTRANCE;

6 for i = 1 . . . |t| do

7 v← ηt[i](v);

8 return v;

Here |t| denotes the length of the address t (the number of colors in its color sequence),

and t[i] denotes the ith color. We now consider immediate implications of the definition of the

mapping L′ in Line 2, beginning from the following Lemma, which states that any address of
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ENTRANCE that is not the EMPTYADDRESS encodes a cycle in G.

Lemma 29. Let t ̸= EMPTYADDRESS be such that L′(t) = ENTRANCE. Then traversing the edge colors

listed in t beginning from the ENTRANCE yields a cycle in G.

Proof. Since L′(t) = ENTRANCE and t ̸= EMPTYADDRESS, we know that t /∈ SpecialAddresses.

Therefore, t can be written as a sequence of edge colors. As we noted earlier, this sequence of

colors does not contain any even-length palindrome. This means beginning at the ENTRANCE

in G and following the edge colors listed in t does not involve any backtracking. Moreover,

as L′(t) = ENTRANCE, traversing this sequence of colors results in reaching the ENTRANCE.

Therefore, this sequence in G starting and ending at ENTRANCE forms a cycle.

We can generalize Lemma 29 to show that any two distinct addresses of any vertex label

in VG ∪ SpecialVertices together encodes the address of the EXIT or a cycle in G as follows.

Lemma 30. Let t and t′ be addresses with t ̸= t′ and L′(t) = L′(t′). If L′(t) = L′(t′) ̸∈ SpecialVertices,

then beginning from the ENTRANCE in G and following the edge colors listed in t in order and then

following the edge colors listed in t′ in reverse order forms a path that contains a non-trivial cycle in G.

Otherwise, there is a τ ∈ {t, t′} such that beginning from the ENTRANCE in G and following the edge

colors listed in τ will result in either reaching the EXIT or forming a path that contains a cycle in G.

Proof. Let v = L′(t) = L′(t′). We consider six cases:

1. v = 02n. Note that, by Line 2, τ = ZEROADDRESS is the only address τ such that L′(τ) =

02n. Therefore, t = t′ = ZEROADDRESS so this case is not possible.

2. v = ENTRANCE. Since t ̸= t′, either t ̸= EMPTYADDRESS or t′ ̸= EMPTYADDRESS. In either

case, the result follows from Lemma 29.

35



3. v = EXIT. Then for both τ ∈ {t, t′}, beginning from the ENTRANCE in G and following the

edge colors listed in τ will result in reaching the EXIT.

4. v = NOEDGE. Since t ̸= t′, either t ̸= NOEDGEADDRESS or t′ ̸= NOEDGEADDRESS. Without

loss of generality, let t ̸= NOEDGEADDRESS. This means that t /∈ SpecialAddresses so it can

be written as a non-empty sequence (c1, . . . , c|t|) of colors. Let τ be the address specified by

the color sequence (c1, . . . , c|t|−1). By Line 2, ηc|t|(L′(τ)) = L′(t) = v. Since v = NOEDGE,

we have L′(τ) ∈ {ENTRANCE, EXIT} by Definition 3. If L′(τ) = EXIT, then following the

edge colors in τ, and hence in t, results in reaching the EXIT, so we are done. It remains

to consider L′(τ) = ENTRANCE. It must be that τ ̸= EMPTYSTRING; otherwise, t would

be NOEDGEADDRESS. Thus, by Lemma 29, following the edge colors in τ, and hence in t,

beginning from the ENTRANCE forms cycle in G.

5. v = INVALID. Since t ̸= t′, either t ̸= INVALIDADDRESS or t′ ̸= INVALIDADDRESS. Without

loss of generality, let t ̸= INVALIDADDRESS. Then t /∈ SpecialAddresses, so it can be

written as a non-empty sequence (c1, . . . , c|t|) of colors. Let τ be the address specified by

the color sequence (c1, . . . , c|t|−1). By Line 2, ηc|t|(L′(τ)) = L′(t) = v. Since v = NOEDGE,

we have L′(τ) ∈ {02n, NOEDGE, INVALID} by Definition 3. By Line 2, L′(τ) = 02n only

when τ = ZEROADDRESS. But we know that τ ̸= ZEROADDRESS, so we cannot have

L′(τ) = 02n. If L′(τ) = NOEDGE, then the desired result follows from part 4 of Lemma 30.

If L′(τ) = INVALID, then we let t = τ and can apply the same argument recursively. We

conclude that following the edge colors in τ, and hence in t, beginning from the ENTRANCE

forms a non-trivial cycle in G.

6. v ̸∈ SpecialVertices. This means that t, t′ /∈ SpecialAddresses, so we can write t =

(c1, . . . , c|t|) and t′ = (c′1, . . . , c′|t′|) as non-empty sequences of colors. Let τ be the address
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specified by the color sequence (c1, . . . , c|t|, c′|t′|, . . . c′1) formed by concatenating the sequence

t with the sequence t′ in reverse order. Since v is a valid vertex of G, following this sequence

in G beginning with ENTRANCE will result in reaching the ENTRANCE (via v). That is,

L′(τ) = ENTRANCE. Moreover, as t and t′ are vertex labels in the address tree T, following

the sequence given by τ in T beginning with the vertex labeled EMPTYADDRESS will not

result in EMPTYADDRESS; otherwise, t = t′. Our desired result follows by Lemma 29.

Since these cases cover all possible v, the result follows.

The following Lemma is critical for the proof of many results that lead up to Lemma 53.

Informally, it states that in the case that any address t does not encode an ENTRANCE–EXIT path

or a cycle in G, then the c-neighbor of the vertex corresponding to t in G is the same as the vertex

corresponding to the c-neighbor of t in T.

Lemma 31. Let v be any vertex label, let t be an address of v, and let c ∈ C. Furthermore, if t /∈

SpecialAddresses, suppose that following the edge colors given by t starting at the ENTRANCE does not

result in reaching the EXIT or finding a cycle in G. Then L′(λc(t)) = ηc(v).

Proof. As t is the address of v, we know that L′(t) = v by Definition 22 and Line 2. It remains to

show that L′(λc(t)) = ηc(L′(t)).

First, suppose t ∈ SpecialAddresses. Then we have four cases:

1. t = ZEROADDRESS. Then

L′(λc(ZEROADDRESS)) = L′(INVALIDADDRESS) = INVALID (3.10)

= ηc(02n) = ηcL′(ZEROADDRESS) (3.11)

where the first step follows from Definition 24, the second and fourth steps follow from
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Line 2, and the third step follows from Definition 3.

2. t = EMPTYSTRING. Then

L′(λc(EMPTYSTRING)) = L′((c)) = ηc(ENTRANCE) = ηcL′(EMPTYSTRING) (3.12)

where the first step follows from Definition 24, the second and fourth steps follow from

Line 2, and the third step follows from Definition 3.

3. t = NOEDGEADDRESS. This case follows by an argument analogous to part 1.

4. t = INVALIDADDRESS. This case also follows by an argument analogous to part 1.

Therefore, assuming t ∈ SpecialAddresses, L′(λc(t)) = INVALID = ηc(L′(t)).

Now, suppose t ̸∈ SpecialAddresses. This means we can write t as a sequence (c1, . . . , c|t|)

of colors.

We claim that v is a label of a degree-3 vertex of G. For the sake of contradiction, assume

that v ∈ SpecialVertices. In that case, Lemma 30 implies that beginning from the ENTRANCE in G

and following the edge colors listed in t will result in either reaching the EXIT or forming a path

that contains a cycle in G, which directly contradicts the hypotheses of the lemma.
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Since v is a degree-3 vertex of G, we have ηc(ηc(v)) = v by Definition 9. Therefore,

L′(λc(t)) = L′(λc((c1, . . . , c|t|))) (3.13)

=


L′((c1, . . . , c|t|−1)) c = c|t|

L′((c1, . . . , c|t|, c)) otherwise

(3.14)

=


(ηc|t|−1 ◦ · · · ◦ ηc1)(v) c = c|t|

(ηc ◦ ηc|t| ◦ · · · ◦ ηc1)(v) otherwise

(3.15)

= (ηc ◦ ηc|t| ◦ · · · ◦ ηc1)(v) (3.16)

= ηc(L′((c1, . . . , c|t|)) (3.17)

= ηc(L′(t)) (3.18)

where the second step follows form Definition 24, the third and fifth from Line 2, and the fourth

from an observation made above.

3.3 The classical algorithm

Our goal for this section is to describe our classical algorithm (Algorithm 3) for simulating

genuine quantum algorithms. First, we state some definitions that would help us in this goal,

beginning with a map that is based on the function L′ we discussed in Section 3.2.

Definition 32. For any m ∈ [p(n)], the mapping L :
(
{0, 1}2p(n)

)⊗m
→
(
{0, 1}2n)⊗m sends m address

strings to m vertex labels as L := (L′Binv)⊗m.

When considering the map L applied to a quantum state |χ⟩ on both the workspace and

the address space, we use the shorthand L|χ⟩ to denote the state (Iworkspace ⊗ Lvertex)|χ⟩, with

the map acting as the identity on the workspace register and as L on the vertex register. For the
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description of Algorithm 3 and its analysis, we need to consider individual gates and consecutive

sequences of gates of the genuine circuit C defined in Definition 10. For this purpose, we consider

the following definition.

Definition 33. For any i ∈ [p(n)], let Ci denote the ith gate of the circuit C in Definition 10. For any

i, j ∈ [p(n)] ∪ {0} with i < j, Let Ci,j be the subsequence of gates from the circuit C starting with the

(i + 1)st gate and ending with the jth gate. That is, Ci,j = Cj · · ·Ci+1. Similarly, using the circuit C̃

constructed in Definition 28, we define the C̃i and C̃i,j for each i, j ∈ [p(n)] ∪ {0} with i < j.

Note that Ci,i = I and Ci−1,i = Ci (respectively C̃i,i = I and C̃i−1,i = C̃i) for all i ∈ [p(n)].

We use the gates Ci,j from Definition 33 in the next definition.

Definition 34. For each i ∈ [p(n)]∪ {0}, let
∣∣∣ϕ(i)

A

〉
be the transcript state for the quantum algorithm A

consisting of the first i gates of C̃. Equivalently,

∣∣∣ϕ(i)
A

〉
:= C̃0,i|ϕinitial⟩. (3.19)

Similarly, let
∣∣∣ψ(i)

A

〉
denote the state of the quantum algorithm A consisting of the first i gates of C.

Equivalently,

∣∣∣ψ(i)
A

〉
:= C0,i|ψinitial⟩. (3.20)

The state
∣∣∣ϕ(p(n))

A

〉
= |ϕA⟩ is the transcript state corresponding to the quantum state

∣∣∣ψ(p(n))
A

〉
=

|ψA⟩ in Definition 10. Consider the following classical query algorithm for finding a path from

the ENTRANCE to the EXIT.
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Algorithm 3: Classical query algorithm C(A(O))

1 for i ∈ [p(n)] do

2 Given the circuit diagram C0,i, compute the transcript state
∣∣∣ϕ(i)

A

〉
as per Definition 28.

3 Sample a computational basis state
∣∣∣ϕ(i)

〉
in the address space at random with

probability
∥∥∥〈ϕ(i)

∣∣∣ϕ(i)
A

〉∥∥∥2
.

4 Compute the computational basis state L
∣∣∣ϕ(i)

〉
in the vertex space.

5 Output the labels of the vertices in L
∣∣∣ϕ(i)

〉
.

Note that when A is genuine and rooted, the output of Algorithm 3 must be a connected

subgraph of G containing the ENTRANCE. Therefore, if the output of Algorithm 3 contains the

EXIT, it must also contain an ENTRANCE-to-EXIT path. In the remainder of this chapter, we show

that the output of Algorithm 3 contains the EXIT (or a cycle) with exponentially small probability.

3.4 The good, the bad, and the ugly

In this section, we define states
∣∣∣ψ(i)

good

〉
,
∣∣∣ψ(i)

bad

〉
, and

∣∣∣ψ(i)
allbad

〉
, which are components of the

state
∣∣∣ψ(i)

A

〉
. Intuitively,

∣∣∣ψ(i)
good

〉
represents the portion of the state of the algorithm after i steps

that has never encountered the EXIT or a near-cycle at any point in its history,
∣∣∣ψ(i)

bad

〉
represents

the portion of the state of the algorithm after i steps that just encountered the EXIT or a near-cycle

at the ith step, and
∣∣∣ψ(i)

allbad

〉
combines the portions of the state of the algorithm after i steps that

encountered the EXIT or a near-cycle at some point in its history. To formally define these states,

we introduce the notion of good and bad states, which we define as follows.

Definition 35. We say that a computational basis state |ϕ⟩ in the address space is ϕ-bad if the subgraph

corresponding to L|ϕ⟩ contains the EXIT or is at most one edge away from containing a cycle. A computational

basis state |ϕ⟩ in the address space is ϕ-good if it is not ϕ-bad. That is, L|ϕ⟩ does not contain the EXIT

and is more than one edge away from containing a cycle.
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Similarly, a computational basis state |ψ⟩ in the vertex space is ψ-bad if the subgraph corresponding

to |ψ⟩ contains the EXIT or is at most one edge away from containing a cycle and is ψ-good if it is not

ψ-bad.

These good and bad states span the good and bad subspaces, respectively.

Definition 36. We define the ϕ-BAD subspace as

ϕ-BAD := span{|ϕ⟩ : |ϕ⟩ is a ϕ-bad state}. (3.21)

The ϕ-GOOD subspace is

ϕ-GOOD := span
{
|ϕ⟩ : ∀

∣∣ϕ′〉 ∈ ϕ-BAD,
〈
ϕ′
∣∣ϕ〉 = 0

}
= span{|ϕ⟩ : |ϕ⟩ is a ϕ-good state}. (3.22)

Let Πϕ
bad and Πϕ

good denote the projectors onto ϕ-BAD and ϕ-GOOD, respectively.

The subspaces ψ-BAD and ψ-GOOD, and the projectors Πψ
bad and Πψ

good, are defined analogously.

Notice that Πϕ
badΠϕ

good = Πϕ
goodΠϕ

bad = 0 and Πϕ
bad + Πϕ

good = I. Similarly, Πψ
badΠψ

good =

Πψ
goodΠψ

bad = 0 and Πψ
bad + Πψ

good = I. We now define the states
∣∣∣ψ(i)

good

〉
,
∣∣∣ψ(i)

bad

〉
and

∣∣∣ψ(i)
allbad

〉
that we mentioned in the beginning of this section.

Definition 37. We define

∣∣∣ϕ(i)
good

〉
:= Πϕ

good

(∣∣∣ϕ(i)
A

〉
− Ci

∣∣∣ϕ(i−1)
allbad

〉)
,

∣∣∣ϕ(i)
bad

〉
:= Πϕ

bad

(∣∣∣ϕ(i)
A

〉
− Ci

∣∣∣ϕ(i−1)
allbad

〉)
(3.23)

where ∣∣∣ϕ(i)
allbad

〉
:=

i

∑
j=1

Cj,i

∣∣∣ϕ(j)
bad

〉
. (3.24)

Moreover, let
∣∣ϕgood

〉
:=
∣∣∣ϕ(p(n))

good

〉
, and |ϕallbad⟩ :=

∣∣∣ϕ(p(n))
allbad

〉
. For each i ∈ [p(n)], we define
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∣∣∣ψ(i)
good

〉
,
∣∣∣ψ(i)

bad

〉
,
∣∣∣ψ(i)

allbad

〉
,
∣∣ψgood

〉
and |ψallbad⟩ analogously.

We now observe some properties that can be deduced from Definitions 36 and 37 that

may not be immediately obvious from these definitions. We will use many of these properties

throughout the rest of our analysis.

Lemma 38. Let i ∈ [p(n)] ∪ {0}. Then

1. Πϕ
bad

∣∣∣ϕ(i)
bad

〉
=
∣∣∣ϕ(i)

bad

〉
and Πϕ

good

∣∣∣ϕ(i)
good

〉
=
∣∣∣ϕ(i)

good

〉
,

2. Πψ
bad

∣∣∣ψ(i)
bad

〉
=
∣∣∣ψ(i)

bad

〉
and Πψ

good

∣∣∣ψ(i)
good

〉
=
∣∣∣ψ(i)

good

〉
,

3.
∣∣∣ϕ(i)

good

〉
has disjoint support from

∣∣∣ϕ(i)
bad

〉
,

4.
∣∣∣ψ(i)

good

〉
has disjoint support from

∣∣∣ψ(i)
bad

〉
,

5.
∣∣∣ϕ(i)

good

〉
=
∣∣∣ϕ(i)

A

〉
−
∣∣∣ϕ(i)

allbad

〉
,

6.
∣∣∣ψ(i)

good

〉
=
∣∣∣ψ(i)

A

〉
−
∣∣∣ψ(i)

allbad

〉
,

7. C̃i

∣∣∣ϕ(i−1)
good

〉
=
∣∣∣ϕ(i)

good

〉
+
∣∣∣ϕ(i)

bad

〉
,

8. Ci

∣∣∣ψ(i−1)
good

〉
=
∣∣∣ψ(i)

good

〉
+
∣∣∣ψ(i)

bad

〉
,

9. Πϕ
bad

∣∣∣ϕ(i)
A

〉
=
∣∣∣ϕ(i)

bad

〉
+ Πϕ

badCi

∣∣∣ϕ(i−1)
allbad

〉
,

10. Πψ
bad

∣∣∣ψ(i)
A

〉
=
∣∣∣ψ(i)

bad

〉
+ Πψ

badCi

∣∣∣ψ(i−1)
allbad

〉
,

11. Πϕ
good

∣∣∣ϕ(i)
A

〉
=
∣∣∣ϕ(i)

good

〉
+ Πϕ

goodCi

∣∣∣ϕ(i−1)
allbad

〉
, and

12. Πψ
good

∣∣∣ψ(i)
A

〉
=
∣∣∣ψ(i)

good

〉
+ Πψ

goodCi

∣∣∣ψ(i−1)
allbad

〉
.

Proof. All the statements are trivially true for i = 0 by Definitions 36 and 37. We show each of

them separately for all i ∈ [p(n)] assuming that they are true for i− 1.
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1. Note that any computational basis state in the support of
∣∣∣ϕ(i)

bad

〉
is ϕ-bad and any computational

basis state in the support of
∣∣∣ϕ(i)

good

〉
is ϕ-good by Definition 37. The desired statement

follows from Definition 36.

2. Similar to the proof of part 1.

3. Since Πϕ
bad and Πϕ

good are orthogonal projectors, this follows from part 1.

4. Similar to the proof of part 3.

5. Note that

∣∣∣ϕ(i)
good

〉
= Πϕ

good

(∣∣∣ϕ(i)
A

〉
− Ci

∣∣∣ϕ(i−1)
allbad

〉)
(3.25)

= (I −Πϕ
bad)

(∣∣∣ϕ(i)
A

〉
− Ci

∣∣∣ϕ(i−1)
allbad

〉)
(3.26)

=
∣∣∣ϕ(i)

A

〉
− Ci

∣∣∣ϕ(i−1)
allbad

〉
−
∣∣∣ϕ(i)

bad

〉
(3.27)

=
∣∣∣ϕ(i)

A

〉
−
∣∣∣ϕ(i)

allbad

〉
(3.28)

where we used Definition 37 in all steps except for the second one, where we used Definition 36.

6. Similar to the proof of part 5.

7. Note that

C̃i

∣∣∣ϕ(i−1)
good

〉
= C̃i

(∣∣∣ϕ(i−1)
A

〉
−
∣∣∣ϕ(i−1)

allbad

〉)
(3.29)

=
∣∣∣ϕ(i)

A

〉
− C̃i

∣∣∣ϕ(i−1)
allbad

〉
(3.30)

=
∣∣∣ϕ(i)

good

〉
+
∣∣∣ϕ(i)

allbad

〉
− C̃i

∣∣∣ϕ(i−1)
allbad

〉
(3.31)

=
∣∣∣ϕ(i)

good

〉
+
∣∣∣ϕ(i)

bad

〉
(3.32)

where we used part 5 in steps 1 and 3, and Definition 37 in step 4.
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8. Similar to the proof of part 7.

9. Note that

Πϕ
bad

∣∣∣ϕ(i)
A

〉
= Πϕ

bad

(∣∣∣ϕ(i)
good

〉
+
∣∣∣ϕ(i)

allbad

〉)
(3.33)

= Πϕ
bad

∣∣∣ϕ(i)
allbad

〉
(3.34)

= Πϕ
bad

(∣∣∣ϕ(i)
bad

〉
+ C̃i

∣∣∣ϕ(i−1)
allbad

〉)
(3.35)

=
∣∣∣ϕ(i)

bad

〉
+ Πϕ

badC̃i

∣∣∣ϕ(i−1)
allbad

〉
(3.36)

where we used part 5 in step 1, part 1 in steps 2 and 4, and Definition 37 in step 3.

10. Similar to the proof of part 9.

11. Note that

Πψ
good

∣∣∣ϕ(i)
A

〉
= Πϕ

good

(∣∣∣ϕ(i)
good

〉
+
∣∣∣ϕ(i)

allbad

〉)
(3.37)

=
∣∣∣ϕ(i)

good

〉
+ Πϕ

good

∣∣∣ϕ(i)
allbad

〉
(3.38)

=
∣∣∣ϕ(i)

good

〉
+ Πϕ

good

(∣∣∣ϕ(i)
bad

〉
+ C̃i

∣∣∣ϕ(i−1)
allbad

〉)
(3.39)

=
∣∣∣ϕ(i)

good

〉
+ Πϕ

goodC̃i

∣∣∣ϕ(i−1)
allbad

〉
(3.40)

where we used part 5 in step 1, part 1 in steps 2 and 4, and Definition 37 in step 3.

12. Similar to the proof of part 11.

We argued at the end of Section 2.2 that, without loss of generality, any consecutive sequence

of gates in the circuit corresponding to the given genuine, rooted algorithm will map a rooted

state to a rooted state. Notice that
∣∣∣ψ0

good

〉
= |ψinitial⟩ and

∣∣∣ψ(0)
bad

〉
= 0. That is,

∣∣∣ψ0
good

〉
and∣∣ψ0

bad

〉
are rooted states by eq. (2.7). Thus, since Ci

∣∣∣ψ(i−1)
good

〉
=
∣∣∣ψ(i)

good

〉
+
∣∣∣ψ(i)

bad

〉
by part 8 of
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Lemma 38, any computational basis state in the support of
∣∣∣ψ(i)

good

〉
+
∣∣∣ψ(i)

bad

〉
will be rooted for

each i ∈ [p(n)]. But, by part 4 of Lemma 38,
∣∣∣ψ(i)

good

〉
has disjoint support from

∣∣∣ψ(i)
bad

〉
so any

computational basis state in the support of
∣∣∣ψ(i)

good

〉
or in the support of

∣∣∣ψ(i)
bad

〉
will be rooted for

each i ∈ [p(n)]. We will use this deduction in Section 3.5.

Based on the intuitive description of
∣∣∣ψ(i)

good

〉
and

∣∣∣ψ(i)
bad

〉
that we provided earlier, it is

anticipated that the size of the portion of the state
∣∣∣ψ(i)

A

〉
that never encountered the EXIT or an

almost cycle at any point in its history and the size of the respective portions of the state
∣∣∣ψ(i)

A

〉
that encountered the EXIT or a cycle at the ith or earlier steps to sum to the size of

∣∣∣ψ(i)
A

〉
. The

following Lemma formalizes this intuition.

Lemma 39. Let i ∈ [p(n)] ∪ {0}. Then
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥2
+ ∑j∈[i]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥2
= 1.

Proof. We prove this claim by induction on i. The base case is trivial as
∥∥∥∣∣∣ψ(0)

good

〉∥∥∥ = 1 and∥∥∥∣∣∣ψ(0)
bad

〉∥∥∥ = 0. Now, suppose that the claim is true for some i with i + 1 ∈ [p(n)]. Note that

∥∥∥∣∣∣ψ(i)
good

〉∥∥∥2
=
∥∥∥Ci

∣∣∣ψ(i)
good

〉∥∥∥2
(3.41)

=
∥∥∥∣∣∣ψ(i+1)

good

〉
+
∣∣∣ψ(i+1)

bad

〉∥∥∥2
(3.42)

=
∥∥∥∣∣∣ψ(i+1)

good

〉∥∥∥2
+
∥∥∥∣∣∣ψ(i+1)

bad

〉∥∥∥2
(3.43)

where we use the fact that the unitary Ci preserves the norm in the first step, and parts 4 and 8

of Lemma 38 in the second and third steps, respectively.
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Therefore,

∥∥∥∣∣∣ψ(i+1)
good

〉∥∥∥2
+ ∑

j∈[i+1]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥2
=
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥2
−
∥∥∥∣∣∣ψ(i+1)

bad

〉∥∥∥2
+ ∑

j∈[i+1]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥2
(3.44)

=
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥2
+ ∑

j∈[i]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥2
(3.45)

= 1 (3.46)

where the last step follows by the induction hypothesis.

3.5 Faithful simulation of the good part

As any subtree of G without the EXIT vertex can be embedded in T, one might expect that

the size of the portion of the state
∣∣∣ψ(i)

A

〉
that never encountered the EXIT or an almost cycle at any

point in its history is the same as the size of the portion of the state
∣∣∣ϕ(i)

A

〉
that never encountered

the EXIT or an almost cycle at any point in its history. We aim to formally argue this statement

via a sequence of Lemmas that culminate in Lemma 54. We will restrict our attention to the good

parts of the states
∣∣∣ψ(i)

A

〉
and

∣∣∣ϕ(i)
A

〉
in this section, beginning with a useful decomposition of∣∣∣ϕ(i)

good

〉
.

Definition 40. We define an indexed expansion of
∣∣∣ϕ(i)

good

〉
in the computational basis, as follows. Write∣∣∣ϕ(i)

good

〉
= ∑p,q α

(i)
p,q

∣∣∣q(i)〉∣∣∣ϕ(i)
p

〉
, where each

∣∣∣ϕ(i)
p

〉
denotes a computational basis state in the vertex

register, each
∣∣∣q(i)〉 specifies a computational basis state in the workspace register, and each α

(i)
p,q is an

amplitude. Define P
(i)
goodA

to be the set of all indices p appearing in the expansion of
∣∣∣ϕ(i)

good

〉
with any

corresponding non-zero amplitude α
(i)
p,q.

We define computational basis states
∣∣∣ψ(i)

p

〉
from

∣∣∣ϕ(i)
p

〉
and hence, from

∣∣∣ϕ(i)
A

〉
rather than∣∣∣ψ(i)

A

〉
, which would be analogous to Definition 37.
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Definition 41. For i ∈ [p(n)] ∪ {0} and p ∈ P
(i)
goodA

, let
∣∣∣ψ(i)

p

〉
:= L

∣∣∣ϕ(i)
p

〉
.

Notice that it is not immediate by definition that
∣∣∣ψ(i)

p

〉
is in the support of the part of the

state
∣∣∣ψ(i)

A

〉
that is in the vertex space. However, by the end of this section, we will show that

indeed this is the case.

For each i ∈ [p(n)] ∪ {0} and p ∈ P
(i)
goodA

, the state
∣∣∣ϕ(i)

p

〉
is a computational basis state in

the address space, so we can write it as

∣∣∣ϕ(i)
p

〉
=

⊗
j∈[p(n)]

∣∣sj
〉

(3.47)

for some strings sj ∈ {0, 1}2p(n).

Similarly, for each i ∈ [p(n)]∪ {0} and p ∈ P
(i)
goodA

, the state
∣∣∣ψ(i)

p

〉
is a computational basis

state in the vertex space, so we can write it as

∣∣∣ψ(i)
p

〉
=

⊗
j∈[p(n)]

∣∣vj
〉

(3.48)

for some vertex labels vj ∈ {0, 1}2n.

By the above notation and Definition 41, we have that for each j ∈ [p(n)],

L(sj) = vj (3.49)

Note that
∣∣sj
〉

and
∣∣vj
〉

also depend on p and i. However, as p and i will be clear from

context, we keep this dependence implicit to simplify notation.

In the same vein, for each i ∈ [p(n)] ∪ {0} and workspace index q, the state
∣∣∣q(i)〉 is a
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computational basis states in the vertex space so we can write it as

∣∣∣q(i)〉 =
⊗

j∈[p(n)]

∣∣wj
〉
. (3.50)

Again we suppress the dependence on q and i for simplicity.

Analogous to the notion of rooted state defined in Definition 11, we define the notion of

address rooted state as follows. Informally, a state in the address space is address rooted if it

contains a string that encodes an address, then it also contains the string that encodes its parent

in T.

Definition 42 (Address rooted state). We say that a computational basis state |ϕ⟩ in the address space

is address rooted if for any string s stored in any of the registers of |ϕ⟩, whenever the vertex Binv(s) ∈ VT

has a parent t, there exists a register of |ϕ⟩ that stores the string B(t).

Now, we will formally show that the notion of address rooted for states in the address

space is analogous to the notion of rooted for states in the vertex space.

Lemma 43. Let i ∈ [p(n)] ∪ {0}, and p ∈ P
(i)
goodA

. If
∣∣∣ψ(i)

p

〉
is rooted, then

∣∣∣ϕ(i)
p

〉
is address rooted.

Proof. We prove the lemma by induction on i. By eq. (3.3), any register of the state
∣∣∣ϕ(0)

p

〉
either stores EMPTYSTRING or 02p(n). We know, by Definition 24, that Binv(EMPTYSTRING) =

EMPTYADDRESS and Binv(02p(n)) = ZEROADDRESS have no parents in the address tree T. Hence,

vacuously,
∣∣∣ϕ(0)

p

〉
is address rooted.

Suppose, as the induction hypothesis, that the statement of the lemma is true for i− 1 for

some i ≥ 1. Now, we show it holds for i.

If C̃i is not a controlled-oracle gate or C̃i is a controlled-oracle gate with the control workspace

qubit in the |0⟩ state, by Definition 28, either the positions of address registers of
∣∣ϕp
〉

change

(and the positions of vertex registers of
∣∣ψp
〉

change accordingly) or the contents of these address
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(and vertex) registers do not change at all. In either case, by the induction hypothesis, the lemma

follows.

Now, consider the case when C̃i = ∧(Õc) for some c ∈ C and the corresponding control

qubit in the workspace is in the |0⟩ state. Any address register of
∣∣∣ϕ(i−1)

p′

〉
that is not the target

register of Õc remain unchanged after Õc is applied. This means that the corresponding vertex

register of
∣∣∣ψ(i−1)

p′

〉
remain unchanged after LÕc is applied. Thus, in order to argue that

∣∣∣ϕ(i)
p

〉
is address rooted as in Definition 42, it is sufficient to show that for the string s is stored in the

target register of Õc in
∣∣∣ϕ(i)

p

〉
, if Binv(s) has a parent t in T, then B(t) is stored in some register of∣∣∣ϕ(i)

p

〉
, and if the target register of Õc in

∣∣∣ϕ(i−1)
p′

〉
stores some string s(i−1), then for any string s′

stored in some register of
∣∣∣ϕ(i−1)

p′

〉
, Binv(s(i−1)) cannot be the parent of Binv(s′).

Let j ∈ [p(n)] be the index of the target register of
∣∣∣ϕ(i)

p

〉
. Recall from our convention

in eqs. (3.47) and (3.48) that the jth registers of
∣∣∣ϕ(i)

p

〉
and

∣∣∣ψ(i)
p

〉
store the states

∣∣sj
〉

and
∣∣vj
〉

respectively. Moreover, let
∣∣∣s(i−1)

j

〉
and

∣∣∣v(i−1)
j

〉
denote the states of the jth registers of Õ†

c

∣∣∣ϕ(i)
p

〉
and LÕ†

c

∣∣∣ϕ(i)
p

〉
respectively. Note that

∣∣∣s(i−1)
j

〉
is the state of jth register of

∣∣∣ϕ(i−1)
p′

〉
for some

p′ ∈ P
(i−1)
goodA

.

Let k be such that the kth register, storing |sk⟩, of
∣∣∣ϕ(i−1)

p′

〉
is the control address register for

the gate Oc applied on
∣∣∣ϕ(i−1)

p′

〉
. Let |vk⟩ denote the state of the kth vertex register of

∣∣∣ψ(i−1)
p′

〉
.

From eq. (3.49), we know that L(sk) = vk and L(s(i−1)
j ) = v(i−1)

j . Let tk = Binv(sk) and t(i−1)
j =

Binv(s(i−1)
j ). Then, L′(tk) = vk and L′(t(i−1)

j ) = v(i−1)
j . This means that tk and t(i−1)

j are respective

addresses of vk and v(i−1)
j by Line 2. As per our discussion in Section 3.1, we have two cases.

1. s(i−1)
j = 02p(n). This means that sj = s(i−1)

j ⊕ BλcBinv(sk) = BλcBinv(sk).

Notice that t(i−1)
j = Binv(s(i−1)

j ) = ZEROADDRESS cannot be the parent of any vertex in T

except for INVALIDADDRESS. But
∣∣∣ϕ(i)

p

〉
cannot contain B(INVALIDADDRESS) = INVALIDSTRING

as otherwise,
∣∣∣ψ(i)

p

〉
would contain INVALID and so, will not be rooted by Definition 11,
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contradicting the statement of the Lemma.

On the other hand, if tj = Binv(sj) = λcBinv(sk) has a parent in T, then it will be either

Binv(sk) or the grand parent of Binv(sk). In the former case, the parent of tj is stored in

the kth register of
∣∣∣ϕ(i)

p

〉
. In the latter case, tj is the parent of Binv(sk). By the induction

hypothesis, B(tj) = sj is stored in some register of
∣∣∣ϕ(i−1)

p′

〉
. Let tℓ be the parent of tj. Then,

again by the induction hypothesis,
∣∣∣ϕ(i−1)

p′

〉
stores B(tℓ) in its ℓth register for some ℓ ̸= j.

Since Õc only alters the content of its target register (i.e. jth register), the content of the ℓth

register remain unchanged. It follows that
∣∣∣ϕ(i)

p

〉
stores B(tℓ) in its ℓth register. Therefore,

in this case,
∣∣∣ϕ(i−1)

p′

〉
remains address rooted after Õc has been applied. That is,

∣∣∣ϕ(i)
p

〉
is

address rooted.

2. s(i−1)
j = BλcBinv(sk). This means that sj = s(i−1)

j ⊕ BλcBinv(sk) = 02p(n).

Since sj = 02p(n), tj = Binv(sj) = ZEROADDRESS does not have a parent in T by Definition 24.

On the flip side, suppose that there is an ℓ ∈ [p(n)] such that Binv(s(i−1)
j ) is the parent

of Binv(sℓ) where sℓ is the string stored in the ℓth register of
∣∣∣ϕ(i−1)

p′

〉
. Now consider the

subgraphs Gϕp′ and Gϕp of G induced by vertices in
∣∣∣ψ(i−1)

p′

〉
and

∣∣∣ψ(i)
p

〉
. Since p′ ∈ P

(i−1)
goodA

,

we know that Gϕp′ cannot contain cycles. By the induction hypothesis,
∣∣∣ϕ(i−1)

p′

〉
is address

rooted. Thus,
∣∣∣ψ(i−1)

p′

〉
is rooted so Gϕp′ is connected. Therefore, Gϕp′ is a subtree of G.

We know, from eq. (3.49), that the vertex label vℓ stored in the ℓth register of
∣∣∣ψ(i−1)

p′

〉
is

L(sℓ). Thus, by above, v(i−1)
j is the parent of vℓ in Gϕp′ . That is, vℓ is connected to the

ENTRANCE only through v(i−1)
j in Gϕp′ . Recall that

∣∣∣ψ(i−1)
p′

〉
and

∣∣∣ψ(i)
p

〉
only differ on the

jth register. This means that, as vj = 02n, Gϕp is Gϕp′ with v(i−1)
j (and the edges incident

to it) removed. As a consequence, we have that vℓ is not connected to the ENTRANCE in

Gϕp . But
∣∣∣ψ(i)

p

〉
is rooted so this is not possible. It follows that

∣∣∣ϕ(i)
p

〉
satisfies the sufficient
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conditions of being address rooted stated above.

As a consequence of Lemma 43, we show that the mapping L, defined in Definition 32, is

a bijection from the set of address rooted states in
∣∣∣ϕ(i)

good

〉
to the set of rooted states in

∣∣∣ϕ(i)
good

〉
in

the following Lemma.

Lemma 44. Let i ∈ [p(n)] and p, p′ ∈ P
(i)
goodA

. Suppose that
∣∣∣ψ(i)

p

〉
=
∣∣∣ψ(i)

p′

〉
and

∣∣∣ψ(i)
p

〉
is rooted. Then∣∣∣ϕ(i)

p

〉
=
∣∣∣ϕ(i)

p′

〉
.

Proof. Suppose, towards contradiction, that
∣∣∣ψ(i)

p

〉
=
∣∣∣ψ(i)

p′

〉
but

∣∣∣ϕ(i)
p

〉
̸=
∣∣∣ϕ(i)

p′

〉
. This means that

there is an index j ∈ [p(n)] such that the string sj stored in the jth register of
∣∣∣ϕ(i)

p

〉
is not equal to

the string s′j stored in the jth register of
∣∣∣ϕ(i)

p′

〉
, and yet the vertex label vj stored in the jth register

of
∣∣∣ψ(i)

p

〉
is equal to the vertex label v′j stored in the jth register of

∣∣∣ψ(i)
p′

〉
. Consider the addresses

tj = Binv(sj) and t′j = Binv(s′j). We know that L′(tj) = L′(t′j) = vj from eq. (3.49).

By our discussion in section 3.1, we have sj and sk in the range of B. Recall, from Definition 25,

that B is a bijection and Binv = B−1 on the range of B. Therefore, tj ̸= t′j. Moreover, this means

that we can write sj = B(tj) and s′j = B(t′j).

We know, from Lemma 43, that
∣∣∣ϕ(i)

p

〉
and

∣∣∣ϕ(i)
p′

〉
are address rooted as

∣∣∣ψ(i)
p

〉
and

∣∣∣ψ(i)
p′

〉
are

rooted. This means that for any ancestor τ of tj in T, B(τ) is stored in one of the registers of
∣∣∣ϕ(i)

p

〉
.

Therefore, there is a path from the vertex labeled EMPTYADDRESS and tj in T such that
∣∣∣ϕ(i)

p

〉
contains B(τ) for all vertices τ in this path. Let τ0 = EMPTYADDRESS, . . . , τγ = tj denote this path

where γ denotes the length of this path. By Definition 41,
∣∣∣ψ(i)

p

〉
contains the vertex label L′(τi)

for each i ∈ [γ]. Similarly, we can deduce that there is a path τ′0 = EMPTYADDRESS, . . . , τ′γ′ = t′j

in T, with γ′ denoting the length of this path, such that
∣∣∣ψ(i)

p′

〉
=
∣∣∣ψ(i)

p

〉
contains the vertex label

L′(τ′i ) for each i ∈ [γ′]. Since tj ̸= t′j and vj = v′j, it follows that
∣∣∣ψ(i)

p

〉
contains two distinct

paths from L′(EMPTYADDRESS) = ENTRANCE to L′(tj) = L′(t′j) = vj in G. Hence,
∣∣∣ψ(i)

p

〉
contains
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a cycle. But this is not possible since p ∈ P
(i)
goodA

. Therefore,
∣∣∣ϕ(i)

p

〉
̸=
∣∣∣ϕ(i)

p′

〉
=⇒

∣∣∣ψ(i)
p

〉
̸=∣∣∣ψ(i)

p′

〉
.

The following Lemma states that there is a bijective correspondence between the contents

of the vertex registers of
∣∣∣ψ(i)

good

〉
and the address registers of

∣∣∣ϕ(i)
good

〉
.

Lemma 45. Let i ∈ [p(n)] ∪ {0}, j, k ∈ [p(n)], p ∈ P
(i)
goodA

and c ∈ C. Let
∣∣vj
〉

and |vk⟩ be the states

stored in the jth and kth registers of
∣∣∣ψ(i)

p

〉
respectively as in eq. (3.48). Similarly, let

∣∣sj
〉

and |sk⟩ be the

states stored in the jth and kth registers of
∣∣∣ϕ(i)

p

〉
respectively as in eq. (3.47). Then

1. vj = 02n ⇐⇒ sj = 02p(n),

2. vj = NOEDGE ⇐⇒ sj = NOEDGESTRING,

3. vj = INVALID ⇐⇒ sj = INVALIDSTRING,

4. vj = vk ⇐⇒ sj = sk, and

5. vj = ηc(vk) ⇐⇒ sj = BλcBinv(sk).

Proof. We show each statement separately as follows.

1. First, suppose that vj = 02n. By eq. (3.49), we know that L(sj) = 02n. Let tj = Binv(sj).

Then, L′(tj) = 02n. It can be observed from Line 2 that tj = ZEROADDRESS as only in that

case L′(tj) = 02n. Thus, by Definition 25, it must be that sj = 02p(n) as it is the only value of

sj for which Binv(sj) = ZEROADDRESS.

Now, suppose that sj = 02p(n). Then,

vj = L(sj) = L′Binv(02p(n)) = L′(ZEROADDRESS) = 02n (3.51)
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where the first step follows from Lemma 30, the third follows from Definition 25, and the

fourth from Line 2.

2. First, suppose that vj = NOEDGE. By eq. (3.49), we know that L(sj) = NOEDGE. Let

tj = Binv(sj). Then, L′(tj) = NOEDGE. We claim that tj = NOEDGEADDRESS. Indeed,

if tj ̸= NOEDGE, then, as L′(NOEDGEADDRESS) = L′(tj) = NOEDGE, we would have

found the EXIT or a cycle in G by Lemma 30. But that is not possible since p ∈ P
(i)
goodA

so tj = NOEDGEADDRESS. It follows that sj = NOEDGESTRING since it is the only possible

assignment of sj such that Binv(sj) = NOEDGEADDRESS by Definition 25.

Now, suppose that sj = NOEDGE. Then,

vj = L(sj) = L′Binv(NOEDGESTRING) = L′(NOEDGEADDRESS) = NOEDGE (3.52)

where the first step follows from Lemma 30, the third follows from Definition 25 and the

fourth from Line 2.

3. First, suppose that vj = INVALID. By eq. (3.49), we know that L(sj) = INVALID. Let

tj = Binv(sj). Then, L′(tj) = INVALID. We claim that tj = INVALIDADDRESS. Indeed,

if tj ̸= INVALIDADDRESS, then, as L′(INVALIDADDRESS) = L′(tj) = NOEDGE, we would

have found the EXIT or a cycle in G by Lemma 30. But that is not possible since p ∈ P
(i)
goodA

so tj = INVALIDADDRESS. Recall from section 3.1 that sj is in the range of the B mapping in

Definition 25. It follows that sj = NOEDGESTRING since it is the only possible assignment

of sj in the range of B with Binv(sj) = INVALIDADDRESS.

Now, suppose that sj = INVALID. Then,

vj = L(sj) = L′Binv(INVALIDSTRING) = L′(INVALIDADDRESS) = INVALID (3.53)

54



where the first step follows from Lemma 30, the third follows from Definition 25 and the

fourth from Line 2.

4. First, suppose that vj = vk. From eq. (3.49), we can deduce that L(sj) = L(sk). Let

tj = Binv(sj) and tk = Binv(sk). Then, L′(tj) = L′(tk). If tj ̸= tk, then, by Lemma 30,

the concatenation of the paths specified by the sequence of colors tj and tk forms a cycle,

which contradicts p ∈ P
(i)
goodA

. This means that tj = tk. Recall from section 3.1 that sj and

sk in the range of B. Recall, from Definition 25, that B is a bijection and Binv = B−1 on the

range of B. Therefore, sj = sk.

Now suppose that sj = sk. Thus, L(sj) = L(sk). By eq. (3.49), we know that L(sj) = vj and

L(sk) = vk. Therefore, vj = vk.

5. First, suppose that vj = ηc(vk). From eq. (3.49), we have vj = L(sj) and vk = L(sk). Let

tj = Binv(sj) and tk = Binv(sk). Then, vj = L′(tj) and vk = L′(tk), which means that

tj and tk are addresses of the vertices vj and vk respectively. By Lemma 31, it follows

that ηc(vk) = L′λc(tk). Altogether, we have L′(tj) = L′λc(tk). If tj ̸= λc(tk), then, by

Lemma 30, the concatenation of the paths specified by the sequence of colors tj and λc(tk)

forms a cycle, which contradicts p ∈ P
(i)
goodA

. This means that tj = λc(tk). It follows that

BBinv(sj) = B(tj) = Bλc(tk). Recall that sj is in the range of B from section 3.1. Since B is a

bijection and Binv = B−1 on the range of B, it follows that BBinv(sj) = sj.

Now suppose that sj = BλcBinv(sk). Thus, L(sj) = LBλcBinv(sk) = LBλc(tk). By eq. (3.49)

we have vj = LBλc(tk). Note that λcBinv(sk) = λc(tk) is in the domain of B since Binv

maps any string to the domain of B and λc preserves the domain of B by Definitions 24

and 25. Therefore, as B is a bijection and Binv = B−1 on the range of B, LBλc(tk) = L′λc(tk).

Since tk is an address of vk, we have L′λc(tk) = ηc(vk) by Lemma 31. Altogether, we
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have LBλc(tk) = ηc(vk). By the deductions we made above, we can conclude that vj =

ηc(vk).

The next Lemma forms a key ingredient of Lemma 53, where we essentially show that the

mapping L and the gate Ci commute: applying L followed by Ci is equivalent to applying C̃i

followed by L.

Lemma 46. Let i ∈ [p(n)], p ∈ P
(i)
goodA

and q be any workspace index. Then, LC̃i

∣∣∣q(i−1)
〉∣∣∣ϕ(i−1)

p

〉
=

Ci

∣∣∣q(i−1)
〉∣∣∣ψ(i−1)

p

〉
.

Proof. We prove the statement of the Lemma for each of the possible gates in our gate set defined

in Definition 9. For any quantum state |χ⟩ =
⊗

j
∣∣χj
〉
, and any indices j1, . . . , jr, let |χ⟩j1,...,jr :=∣∣χj1

〉
⊗ · · · ⊗

∣∣χjr
〉
.

1. Ci = ∧(Oc) for some c ∈ C. Let x, y ∈ [p(n)] denote the vertex register indices that

Oc acts on, and let a denote the workspace register index of the control qubit. Recall,

from eqs. (3.47) and (3.48), that vx and sx denotes the contents of the xth vertex register of∣∣∣ψ(i−1)
p

〉
and the xth address register of

∣∣∣ϕ(i−1)
p

〉
respectively. Note that tx = Binv(sx) is an

address of vx as L′(tx) = vx by eq. (3.49). Then,

LBλcBinv(sx) = L′BBinvλc(tx) = L′λc(tx) = ηc(vx) (3.54)

where the first equality follows from Definition 32, the second follows from the bijectivity

of B in Definition 25, and the third follows from Lemma 31.

Note that |sx⟩ and
∣∣sy
〉

denote the states of the control and target registers of the oracle

gate Õc. We argued in section 3.1 that ∧(Õc) is controlled on an address workspace register

which is 1 only if sy = 02p(n) or sy = Bλc∗Binv(sx), which is based on an assumption we

made without loss of generality in section 2.2.
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L∧(Õc)
∣∣∣ϕ(i−1)

p

〉
x,y

∣∣∣q(i−1)
〉

a
= L∧(Õc)|sx⟩

∣∣sy
〉
|wa⟩ (3.55)

= L


|sx⟩

∣∣sy ⊕ BλcBinv(sx)
〉
|wa⟩ wa = 1

|sx⟩
∣∣sy
〉
|wa⟩ otherwise

(3.56)

= L



|sx⟩
∣∣BλcBinv(sx)

〉
|wa⟩ sy = 02p(n) & wa = 1

|sx⟩
∣∣∣02p(n)

〉
|wa⟩ sy = Bλc∗Binv(sx) & wa = 1

|sx⟩
∣∣sy
〉
|wa⟩ otherwise

(3.57)

=



|vx⟩|ηc(vx)⟩|wa⟩ vy = 02n & wa = 1

|vx⟩
∣∣02n〉|wa⟩ vy = ηc(vx) & wa = 1

|vx⟩
∣∣vy
〉
|wa⟩ otherwise

(3.58)

= |vx⟩
∣∣vy ⊕ wa · ηc(vx)

〉
|wa⟩ (3.59)

= ∧(Oc)|vx⟩
∣∣vy
〉
|wa⟩ (3.60)

= ∧(Oc)
∣∣∣ψ(i−1)

p

〉
x,y

∣∣∣q(i−1)
〉

a
(3.61)

where the second from Definition 28; the third from an observation made above; the fourth

from eq. (3.49), parts 1 and 5 of Lemma 45, and eq. (3.54); and the sixth from Definition 9.

2. Ci = ∧(eiθT) for some θ ∈ [0, 2π). Let x, y ∈ [p(n)] denote the vertex register indices that
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eiθT acts on, and let a denote the workspace register index of the control qubit. Then

L∧(eiθT̃)
∣∣∣ϕ(i−1)

p

〉
x,y

∣∣∣q(i−1)
〉

a
= L∧(eiθT̃)|sx⟩

∣∣sy
〉
|wa⟩ (3.62)

= L


cos θ|sx⟩

∣∣sy
〉
|wa⟩+ i sin θ

∣∣sy
〉
|sx⟩|wa⟩ wa = 1

|sx⟩
∣∣sy
〉
|wa⟩ otherwise

(3.63)

=


cos θ|vx⟩

∣∣vy
〉
|wa⟩+ i sin θ

∣∣vy
〉
|vx⟩|wa⟩ wa = 1

|vx⟩
∣∣vy
〉
|wa⟩ otherwise

(3.64)

= ∧(eiθT)|vx⟩
∣∣vy
〉
|wa⟩ (3.65)

= ∧(eiθT)
∣∣∣ψ(i−1)

p

〉
x,y

∣∣∣q(i−1)
〉

a
(3.66)

where the second from Definition 28, the third from eq. (3.49), and the fourth from Definition 9.

3. Ci = E. Let x, y ∈ [p(n)] denote the vertex register indices and a denote the workspace

register index that E acts on. Then,

LẼ
∣∣∣ϕ(i−1)

p

〉
x,y

∣∣∣q(i−1)
〉

a
= LẼ|sx⟩

∣∣sy
〉
|wa⟩ (3.67)

= L
(
|sx⟩

∣∣sy
〉)∣∣wa ⊕ δ[sx = sy]

〉
(3.68)

= |vx⟩
∣∣vy
〉∣∣wa ⊕ δ[vx = vy]

〉
(3.69)

= E|vx⟩
∣∣vy
〉
|wa⟩ (3.70)

= E
∣∣∣ψ(i−1)

p

〉
x,y

∣∣∣q(i−1)
〉

a
(3.71)
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where the second from Definition 28, the third from eq. (3.49) and part 4 of Lemma 45, and

the fourth from Definition 9.

4. Ci = N. Let x ∈ [p(n)] denote the vertex register index and a denote the workspace register

index that N acts on. Then,

LÑ
∣∣∣ϕ(i−1)

p

〉
x

∣∣∣q(i−1)
〉∣∣∣

a
= LÑ|sx⟩|wa⟩ (3.72)

= L(|sx⟩)|wa ⊕ δ[sx = NOEDGESTRING]⟩ (3.73)

= |vx⟩|wa ⊕ δ[vx = NOEDGE]⟩ (3.74)

= N|vx⟩|wa⟩ (3.75)

= N
∣∣∣ψ(i−1)

p

〉
x

∣∣∣q(i−1)
〉

a
(3.76)

where the second from Definition 28, the third from eq. (3.49) and part 2 of Lemma 45, and

the fourth from Definition 9.

5. Ci = Z. Let x ∈ [p(n)] denote the vertex register index and a denote the workspace register

index that N acts on. Then,

LZ̃
∣∣∣ϕ(i−1)

p

〉
x

∣∣∣q(i−1)
〉∣∣∣

a
= LÑ|sx⟩|wa⟩ (3.77)

= L(|sx⟩)
∣∣∣wa ⊕ δ[sx = 02p(n)]

〉
(3.78)

= |vx⟩
∣∣wa ⊕ δ[vx = 02n]

〉
(3.79)

= Z|vx⟩|wa⟩ (3.80)

= Z
∣∣∣ψ(i−1)

p

〉
x

∣∣∣q(i−1)
〉

a
(3.81)

where the second from Definition 28, the third from eq. (3.49) and part 1 of Lemma 45, and

59



the fourth from Definition 9.

6. Ci is a gate on the workspace register. Since L acts on the address space, L and Ci commute.

Moreover, Ci = C̃i as we do not replace the gates acting on the workspace register in

Definition 28. Thus,

LC̃i

∣∣∣ϕ(i−1)
p

〉∣∣∣q(i−1)
〉
= C̃iL

∣∣∣ϕ(i−1)
p

〉∣∣∣q(i−1)
〉
= Ci

∣∣∣ψ(i−1)
p

〉∣∣∣q(i−1)
〉

. (3.82)

Notice that the non-oracle gates in Definition 9 does not produce any ‘new information’

about vertex labels. Based on this intuition, one might expect that the portion of
∣∣∣ψ(i−1)

A

〉
(respectively∣∣∣ϕ(i−1)

A

〉
) that has never encountered the EXIT or a cycle will not encounter the EXIT or a cycle on

the application of Ci (respectively C̃i) at the ith step. We formalize this expectation as follows.

Lemma 47. Let i ∈ [p(n)] and suppose that Ci is a genuine non-oracle gate. Then

1.
∣∣∣ϕ(i)

good

〉
= C̃i

∣∣∣ϕ(i−1)
good

〉
and

2.
∣∣∣ψ(i)

good

〉
= Ci

∣∣∣ψ(i−1)
good

〉
.

Proof. We show part 1 using part 7 of Lemma 38. Part 2 follows by an analogous argument that

instead uses part 8 of Lemma 38.

Notice that in Definition 9, the only gates that alter the vertex space are Oc gates or eiθT

gates. But the eiθT gates only swaps contents of the vertex register (without computing a new

vertex label in a vertex register). In other words, genuine non-oracle gates does not introduce

new vertex labels. This means that, as is the case with
∣∣∣ϕ(i−1)

good

〉
, the subgraph corresponding to

any computational basis state in the support of C̃i

∣∣∣ϕ(i)
good

〉
will not contain the EXIT and will be
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more than one edge away from containing a cycle. That is,
∣∣∣ϕ(i)

bad

〉
= 0. Therefore, by part 7 of

Lemma 38, we have Ci

∣∣∣ϕ(i−1)
good

〉
=
∣∣∣ϕ(i)

good

〉
+
∣∣∣ϕ(i)

bad

〉
=
∣∣∣ϕ(i)

good

〉
.

For the analysis of oracle gates, we now define a subset of P(i−1)
goodA

which contains indices

corresponding to computational basis states in the address space that does not contain the EXIT or

a cycle even after the application of an oracle gate at the ith step. Inspired by the decomposition

in Definition 40, we then define the components
∣∣∣ϕ(i−1)

great

〉
and

∣∣∣ψ(i−1)
great

〉
of
∣∣∣ϕ(i−1)

A

〉
and

∣∣∣ψ(i−1)
A

〉
respectively.

Definition 48. Let i ∈ [p(n)]. Suppose that Ci = ∧(Oc) for some c ∈ C. Then, define

P
(i−1)
greatA

:=
{

p ∈ P
(i−1)
goodA

: ∃p′ ∈ P
(i)
goodA

such that C̃i

∣∣∣ϕ(i−1)
p

〉
=
∣∣∣ϕ(i)

p′

〉}
. (3.83)

Also, let

∣∣∣ϕ(i−1)
great

〉
:= ∑

p∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉∣∣∣ϕ(i−1)

p

〉
,

∣∣∣ψ(i−1)
great

〉
:= ∑

p∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉∣∣∣ψ(i−1)

p

〉
.

(3.84)

In the following Lemma, we show that the L mapping preserves the relationship between

computational basis states in the support of
∣∣∣ϕ(i−1)

good

〉
and

∣∣∣ϕ(i)
good

〉
: applying the oracle gate to a

computational basis state in the support of
∣∣∣ϕ(i−1)

good

〉
will result in a computational basis state in

the support of
∣∣∣ϕ(i)

good

〉
exactly when applying the oracle gate to a computational basis state in

the support of L
∣∣∣ϕ(i−1)

good

〉
results in a computational basis state in the support of L

∣∣∣ϕ(i)
good

〉
.

Lemma 49. Let i ∈ [p(n)], p ∈ P
(i−1)
goodA

and p′ ∈ P
(i)
goodA

. Suppose that Ci = ∧(Oc) for some c ∈ C and

L
∣∣∣ϕ(i−1)

good

〉
=
∣∣∣ψ(i−1)

good

〉
. Then, C̃i

∣∣∣ϕ(i−1)
p

〉
=
∣∣∣ϕ(i)

p′

〉
iff Ci

∣∣∣ψ(i−1)
p

〉
=
∣∣∣ψ(i)

p′

〉
.

61



Proof. First, suppose that C̃i

∣∣∣ϕ(i−1)
p

〉
=
∣∣∣ϕ(i)

p′

〉
. Then

Ci

∣∣∣ψ(i−1)
p

〉
= LC̃i

∣∣∣ϕ(i−1)
p

〉
= L

∣∣∣ϕ(i)
p′

〉
=
∣∣∣ψ(i)

p′

〉
(3.85)

where we used part 1 of Lemma 46 in the first step, the assumption made above in the second,

and Definition 41 in the last step.

Now, suppose that Ci

∣∣∣ψ(i−1)
p

〉
=
∣∣∣ψ(i)

p′

〉
. By the statement of the Lemma, we have that

C̃i = Õc, which means that C̃i is a permutation of the computational basis states. Thus, since∣∣∣ϕ(i−1)
p

〉
is in the support of

∣∣∣ϕ(i−1)
good

〉
, we will have C̃i

∣∣∣ϕ(i−1)
p

〉
in the support of C̃i

∣∣∣ϕ(i−1)
good

〉
. From

part 7 of Lemma 38, we know that C̃i

∣∣∣ϕ(i−1)
good

〉
=
∣∣∣ϕ(i)

good

〉
+
∣∣∣ϕ(i)

bad

〉
. But since p′ ∈ P

(i)
goodA

and

C̃i

∣∣∣ϕ(i−1)
p

〉
=
∣∣∣ϕ(i)

p′

〉
, it is not possible for the computational basis state C̃i

∣∣∣ϕ(i−1)
p

〉
to be ϕ-bad.

In other words, Πϕ
badC̃i

∣∣∣ϕ(i−1)
p

〉
= 0. Recall that Πϕ

bad

∣∣∣ϕ(i)
bad

〉
=
∣∣∣ϕ(i)

bad

〉
from part 1 of Lemma 38.

Thus, C̃i

∣∣∣ϕ(i−1)
p

〉
cannot be in the support of

∣∣∣ϕ(i)
bad

〉
, which means that C̃i

∣∣∣ϕ(i−1)
p

〉
is in the support

of
∣∣∣ϕ(i)

good

〉
. This means that there is a p′′ ∈ P

(i)
goodA

such that
∣∣∣ϕ(i)

p′′

〉
= C̃i

∣∣∣ϕ(i−1)
p

〉
. Thus,

∣∣∣ψ(i)
p′′

〉
=

LC̃i

∣∣∣ϕ(i−1)
p

〉
.

By a similar argument to the one we made just above and the assumption that L
∣∣∣ϕ(i−1)

good

〉
=∣∣∣ψ(i−1)

good

〉
, we can see that Ci

∣∣∣ψ(i−1)
p

〉
is in the support of

∣∣∣ψ(i)
good

〉
. Therefore, Ci

∣∣∣ψ(i−1)
p

〉
is a rooted

state by our discussion following Lemma 38. By Lemma 46, we can deduce that LC̃i

∣∣∣ϕ(i−1)
p

〉
=

Ci

∣∣∣ψ(i−1)
p

〉
, which implies that

∣∣∣ψ(i)
p′′

〉
= Ci

∣∣∣ψ(i−1)
p

〉
. Since

∣∣∣ψ(i)
p′

〉
= Ci

∣∣∣ψ(i−1)
p

〉
=
∣∣∣ψ(i)

p′′

〉
and

Ci

∣∣∣ψ(i−1)
p

〉
is rooted, we get that

∣∣∣ϕ(i)
p′

〉
=
∣∣∣ϕ(i)

p′′

〉
from Lemma 44. Hence,

∣∣∣ϕ(i)
p′

〉
= C̃i

∣∣∣ϕ(i−1)
p

〉
.

Lemma 49 and Definition 48 gives rise to an alternative definition of P(i−1)
greatA

, which is given

by the following corollary.
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Corollary 50. Let i ∈ p[n]. Suppose that Ci = ∧(Oc) for some c ∈ C and L
∣∣∣ϕ(i−1)

good

〉
=
∣∣∣ψ(i−1)

good

〉
. Then,

P
(i−1)
greatA

=
{

p ∈ P
(i−1)
goodA

: ∃p′ ∈ P
(i)
goodA

such that Ci

∣∣∣ψ(i−1)
p

〉
=
∣∣∣ψ(i)

p′

〉}
. (3.86)

The next Lemma provides two equivalent conditions for membership in P
(i−1)
greatA

: for any

index p ∈ P
(i−1)
goodA

, we have p ∈ P
(i−1)
greatA

exactly when the oracle gate at the ith step applied to

the computational basis state in the address space (respectively vertex space) associated with p

results in a computational basis state in the support of
∣∣∣ϕ(i)

good

〉(
respectively

∣∣∣ψ(i)
good

〉)
.

Lemma 51. Let i ∈ [p(n)], p ∈ P
(i−1)
goodA

. Suppose that Ci = ∧(Oc) for some c ∈ C and L
∣∣∣ϕ(i−1)

good

〉
=∣∣∣ψ(i−1)

good

〉
. Then

1. p ∈ P
(i−1)
greatA

iff
〈

ϕ
(i−1)
p

∣∣∣C̃i

∣∣∣ϕ(i)
good

〉
̸= 0 and

2. p ∈ P
(i−1)
greatA

iff
〈

ψ
(i−1)
p

∣∣∣Ci

∣∣∣ψ(i)
good

〉
̸= 0.

Proof. We prove part 1 using Definitions 40 and 48. Part 2 follows by an analogous argument that,

instead, uses the alternative definition of P(i−1)
greatA

in Corollary 50, and the assumption L
∣∣∣ϕ(i−1)

good

〉
=∣∣∣ψ(i−1)

good

〉
along with Definition 40.

First, suppose that p ∈ P
(i−1)
greatA

. Then, by Definition 48, there is some p′ ∈ P
(i)
goodA

such that

C̃i

∣∣∣ϕ(i−1)
p

〉
=
∣∣∣ϕ(i)

p′

〉
. It follows that

〈
ϕ
(i−1)
p

∣∣∣C̃i

∣∣∣ϕ(i)
good

〉
=
〈

ϕ
(i)
p′

∣∣∣ϕ(i)
good

〉
. Since p′ ∈ P

(i)
goodA

, we can

deduce that
〈

ϕ
(i)
p′

∣∣∣ϕ(i)
good

〉
̸= 0 by Definition 40.

Conversely, suppose that p ̸∈ P
(i−1)
greatA

. Then, by Definition 48, C̃i

∣∣∣ϕ(i−1)
p

〉
̸=
∣∣∣ϕ(i)

p′

〉
for all

p′ ∈ P
(i)
goodA

. Since
∣∣∣ϕ(i)

p′

〉
and C̃i

∣∣∣ϕ(i−1)
p

〉
are computational basis states (in the vertex space), it

means that
〈

ϕ
(i−1)
p

∣∣∣C̃i

∣∣∣ϕ(i)
p′

〉
= 0 for all p′ ∈ P

(i)
goodA

. By Definition 40, we know that
∣∣∣ϕ(i)

good

〉
is

supported only on states in
{∣∣∣ϕ(i)

p′

〉
: p′ ∈ P

(i)
goodA

}
. It follows that

〈
ϕ
(i−1)
p

∣∣∣C̃i

∣∣∣ϕ(i)
good

〉
= 0.

By the definition of P(i−1)
greatA

, there seems to be a bijective correspondence between elements
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of P(i−1)
greatA

and P
(i)
goodA

. We make this precise by showing that the application of the oracle gate

at the ith step to the state
∣∣∣ϕ(i−1)

great

〉(
respectively

∣∣∣ψ(i−1)
great

〉)
, defined in Definition 48, results in the

state
∣∣∣ϕ(i)

good

〉(
respectively

∣∣∣ψ(i)
good

〉)
using Lemma 51.

Lemma 52. Let i ∈ [p(n)] and c ∈ C. Suppose that Ci = ∧(Oc) for some c ∈ C and L
∣∣∣ϕ(i−1)

good

〉
=∣∣∣ψ(i−1)

good

〉
. Then

1.
∣∣∣ϕ(i)

good

〉
= C̃i

∣∣∣ϕ(i−1)
great

〉
and

2.
∣∣∣ψ(i)

good

〉
= Ci

∣∣∣ψ(i−1)
great

〉
.

Proof. We show part 1 using part 7 of Lemma 38, part 1 of Lemma 51, and Definition 40. Part 2

follows by an analogous argument that, instead, uses part 8 of Lemma 38, part 2 of Lemma 51,

and the assumption L
∣∣∣ϕ(i−1)

good

〉
=
∣∣∣ψ(i−1)

good

〉
along with Definition 40.

Expanding C̃i

∣∣∣ϕ(i−1)
good

〉
using Definitions 40 and 48 results in

C̃i

∣∣∣ϕ(i−1)
good

〉
= ∑

p∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉

C̃i

∣∣∣ϕ(i−1)
p

〉
+ ∑

p∈P(i−1)
goodA

p ̸∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉

C̃i

∣∣∣ϕ(i−1)
p

〉
. (3.87)

Combining it with part 7 of Lemma 38, we get

∣∣∣ϕ(i)
good

〉
+
∣∣∣ϕ(i)

bad

〉
= ∑

p∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉

C̃i

∣∣∣ϕ(i−1)
p

〉
+ ∑

p∈P(i−1)
goodA

p ̸∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉

C̃i

∣∣∣ϕ(i−1)
p

〉
.

(3.88)

Let p ∈ P
(i−1)
greatA

. Then, by part 1 of Lemma 51,
〈

ϕ
(i)
good

∣∣∣C̃i

∣∣∣ϕ(i−1)
p

〉
̸= 0. Recall from part 1

of Lemma 38 that
∣∣∣ϕ(i)

good

〉
and

∣∣∣ϕ(i)
bad

〉
have disjoint support. Since C̃i

∣∣∣ϕ(i−1)
p

〉
is a computational

basis state, this means that
〈

ϕ
(i)
bad

∣∣∣C̃i

∣∣∣ϕ(i−1)
p

〉
= 0. Now, let p′ ∈ P

(i−1)
goodA

. Then, as
∣∣∣ϕ(i−1)

p

〉
and∣∣∣ϕ(i−1)

p′

〉
are computational basis states,

〈
ϕ
(i−1)
p′

∣∣∣C̃†
i C̃i

∣∣∣ϕ(i−1)
p

〉
=
〈

ϕ
(i−1)
p′

∣∣∣ϕ(i−1)
p

〉
is 1 when p = p′
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and 0 otherwise. Therefore, we can deduce from eq. (3.88), that

〈
ϕ
(i−1)
p

∣∣∣C̃†
i

∣∣∣ϕ(i)
good

〉
= ∑

q
α
(i−1)
p,q

∣∣∣q(i−1)
〉

. (3.89)

For any p ̸∈ P
(i−1)
greatA

,
〈

ϕ
(i−1)
p

∣∣∣C̃†
i

∣∣∣ϕ(i)
good

〉
= 0 by part 1 of Lemma 51. Combining it with

eq. (3.89), we can conclude that

∣∣∣ϕ(i)
good

〉
= ∑

p∈P(i−1)
greatA

∑
q

α
(i−1)
p,q

∣∣∣q(i−1)
〉

C̃i

∣∣∣ϕ(i−1)
p

〉
= C̃i

∣∣∣ϕ(i−1)
good

〉
, (3.90)

where the last equality follows by Definition 48.

Much of the above analysis in this section will help us establish the following Lemma,

which states that the states
∣∣∣ϕ(i)

good

〉
and

∣∣∣ψ(i)
good

〉
are related by the mapping L. Intuitively, the

oracle Õ based on the address tree T can faithfully simulate (modulo mapping L) the portion of

the state
∣∣∣ψ(i)

A

〉
of the algorithm A that does not encounter the EXIT or a cycle.

Lemma 53. For all i ∈ [p(n)] ∪ {0}, L
∣∣∣ϕ(i)

good

〉
=
∣∣∣ψ(i)

good

〉
.

Proof. We prove this Lemma by induction on i.

For i = 0, note that

∣∣∣ϕ(0)
good

〉
=
∣∣∣ϕ(0)

A

〉
−
∣∣∣ϕ(0)

allbad

〉
=
∣∣∣ϕ(0)

A

〉
= |EMPTYSTRING⟩ ⊗

∣∣∣02p(n)
〉⊗(p(n)−1)

⊗ |0⟩workspace (3.91)

where the first equality follows from part 5 of Lemma 38, the second equality follows from

Definition 37, and the last equality follows from Definition 28. Similarly,

∣∣∣ψ(0)
good

〉
=
∣∣∣ψ(0)

A

〉
−
∣∣∣ψ(0)

allbad

〉
=
∣∣∣ψ(0)

A

〉
= |ENTRANCE⟩ ⊗

∣∣02n〉⊗(p(n)−1) ⊗ |0⟩workspace (3.92)
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where the first equality follows from part 6 of Lemma 38, the second equality follows from

Definition 37, and the last equality follows from Definition 9. The statement of the lemma

for i = 0 follows by noticing that L(EMPTYSTRING) = ENTRANCE and L(02n) = 02p(n) from

eq. (3.49), respectively.

Now, assume that L
∣∣∣ϕ(i−1)

good

〉
=
∣∣∣ψ(i−1)

good

〉
for some i ∈ [p(n)]. Then, we have two cases

depending on Ci:

1. Ci is a genuine non-oracle gate. Then

L
∣∣∣ϕ(i)

good

〉
= LC̃i

∣∣∣ϕ(i−1)
good

〉
(3.93)

= ∑
p∈P(i−1)

goodA

∑
q

α
(i−1)
p,q LC̃i

∣∣∣q(i−1)
〉∣∣∣ϕ(i−1)

p

〉
(3.94)

= ∑
p∈P(i−1)

goodA

∑
q

α
(i−1)
p,q Ci

∣∣∣q(i−1)
〉∣∣∣ψ(i−1)

p

〉
(3.95)

= Ci

∣∣∣ψ(i−1)
good

〉
(3.96)

=
∣∣∣ψ(i)

good

〉
(3.97)

where the first and last steps follow from parts 1 and 2 of Lemma 47, respectively; the

second follows from Definition 40; the third follows from Lemma 46; and the fourth follows

from the induction hypothesis.
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2. Ci = ∧(Oc) for some c ∈ C. Then

L
∣∣∣ϕ(i)

good

〉
= LC̃i

∣∣∣ϕ(i−1)
great

〉
(3.98)

= ∑
p∈P(i−1)

greatA

∑
q

α
(i−1)
p,q LC̃i

∣∣∣q(i−1)
〉∣∣∣ϕ(i−1)

p

〉
(3.99)

= ∑
p∈P(i−1)

greatA

∑
q

α
(i−1)
p,q Ci

∣∣∣q(i−1)
〉∣∣∣ψ(i−1)

p

〉
(3.100)

= Ci

∣∣∣ψ(i−1)
great

〉
(3.101)

=
∣∣∣ψ(i)

good

〉
(3.102)

where the first step follows from part 1 of Lemma 52, the second and fourth follow from

Definition 48, the third follows from Lemma 46, and the last follows from the induction

hypothesis and part 2 of Lemma 52.

Finally, we can now show the following relationship between the norms of
∣∣∣ϕ(i)

good

〉
and∣∣∣ψ(i)

good

〉
, which will be very useful in bounding the probability of success of Algorithm A in

Section 3.6.

Lemma 54. Let i ∈ [p(n)] ∪ {0}. Then,
∥∥∥∣∣∣ϕ(i)

good

〉∥∥∥ =
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥.

Proof. It is clear, by Definition 40, that for p, p′ ∈ P
(i)
goodA

, if p ̸= p′, then
∣∣∣ϕ(i)

p

〉
̸=
∣∣∣ϕ(i)

p′

〉
.

Since
∣∣∣ϕ(i)

p

〉
and

∣∣∣ϕ(i)
p′

〉
are computational basis states, this means that

〈
ϕ
(i)
p

∣∣∣ϕ(i)
p′

〉
= 0 whenever

p ̸= p′. Notice that
∣∣∣ψ(i)

p

〉
and

∣∣∣ψ(i)
p′

〉
are in the support of

∣∣∣ψ(i)
good

〉
by Lemma 53. Recall

from the discussion in Section 3.4 that any state in the support of
∣∣∣ψ(i)

good

〉
is rooted. Thus,

the contrapositive of Lemma 44 implies that
∣∣∣ψ(i)

p

〉
̸=
∣∣∣ψ(i)

p′

〉
, which essentially means that〈

ψ
(i)
p

∣∣∣ψ(i)
p′

〉
= 0 since

∣∣∣ψ(i)
p

〉
and

∣∣∣ψ(i)
p′

〉
are computational basis states. Combining these observations
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with Lemma 53, we get

∥∥∥∣∣∣ψ(i)
good

〉∥∥∥ =
∥∥∥L
∣∣∣ϕ(i)

good

〉∥∥∥ (3.103)

=

∥∥∥∥∥∥∥ ∑
p∈P(i)

goodA

∑
q

α
(i)
p,q

∣∣∣q(i)〉∣∣∣ψ(i)
p

〉∥∥∥∥∥∥∥ (3.104)

= ∑
p∈P(i)

goodA

∑
q

∣∣∣α(i)
p,q

∣∣∣2 (3.105)

=

∥∥∥∥∥∥∥ ∑
p∈P(i)

goodA

∑
q

α
(i)
p,q

∣∣∣q(i)〉∣∣∣ϕ(i)
p

〉∥∥∥∥∥∥∥ (3.106)

=
∥∥∥∣∣∣ϕ(i)

good

〉∥∥∥ (3.107)

as claimed.

3.6 The state is mostly good

By the end of this section, we will conclude that it is hard for any rooted genuine quantum

algorithm to find the EXIT (and hence, an ENTRANCE–EXIT path). We will achieve this goal

by bounding the mass of the quantum state |ψA⟩ associated with any arbitrarily chosen rooted

genuine quantum algorithm A that lies in the ψ-BAD subspace. We will proceed by first using

the result of Chapter 4 to bound the mass of the quantum state
∣∣∣ϕ(i)

A

〉
that lies in the ϕ-BAD

subspace.

Lemma 55. Let i ∈ [p(n)] ∪ {0}. Then
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥2
≤ 4p(n)4 · 2−n/3.

Proof. By Definition 36, each computational basis state in Πϕ
bad

∣∣∣ϕ(i)
A

〉
is a ϕ-bad state. Therefore,

the ith step of the classical Algorithm 3 outputs a computational basis state
∣∣∣ψ(i)

〉
corresponding

to a subgraph of G that contains the EXIT or is at most one edge away from containing a cycle

using at most i ≤ p(n) queries with probability
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥2
. In the case

∣∣∣ψ(i)
〉

does not contain
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a cycle, we can run a depth-first search of length 1 on the subgraph corresponding to
∣∣∣ψ(i)

〉
using at most i additional queries. Hence, we have found the EXIT or a cycle using at most

2i ≤ 2p(n) classical queries with probability
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥2
. Noting that Algorithm 3 has the

form of the classical query algorithms considered by Theorem 79, we see that
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥2
≤

4p(n)4 · 2−n/3.

From the result of Lemma 55, one might intuitively conjecture that the size of the portion

of the state
∣∣∣ϕ(i)

A

〉
after i steps that encountered the EXIT or an almost cycle at some point in its

history is small. Indeed, this is the case as we show in the Lemma that follows where we make

non-trivial use of our definitions from Section 3.4.

Lemma 56. For all i ∈ [p(n)] ∪ {0},
∥∥∥∣∣∣ϕ(i)

allbad

〉∥∥∥ ≤ 2ip(n)2 · 2−n/6.

Proof. We prove the lemma by induction on i. The base case (i = 0) is easy to observe as∥∥∥∣∣∣ϕ(0)
allbad

〉∥∥∥ = 0. Now, pick any i ∈ [p(n)] and suppose that the lemma is true for i− 1. That is,∥∥∥∣∣∣ϕ(i−1)
allbad

〉∥∥∥ ≤ 2(i− 1)p(n)2 · 2−n/6. Then, by Definitions 36 and 37 and part 9 of Lemma 38,

∣∣∣ϕ(i)
allbad

〉
=
∣∣∣ϕ(i)

bad

〉
+ Ci

∣∣∣ϕ(i−1)
allbad

〉
(3.108)

=
∣∣∣ϕ(i)

bad

〉
+ Πϕ

badCi

∣∣∣ϕ(i−1)
allbad

〉
+ Πϕ

goodCi

∣∣∣ϕ(i−1)
allbad

〉
(3.109)

= Πϕ
bad

∣∣∣ϕ(i)
A

〉
+ Πϕ

goodCi

∣∣∣ϕ(i−1)
allbad

〉
, (3.110)
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so we have

∥∥∥∣∣∣ϕ(i)
allbad

〉∥∥∥ =
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉
+ Πϕ

goodCi

∣∣∣ϕ(i−1)
allbad

〉∥∥∥ (3.111)

≤
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥+ ∥∥∥Πϕ
goodCi

∣∣∣ϕ(i−1)
allbad

〉∥∥∥ (3.112)

≤
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥+ ∥∥∥∣∣∣ϕ(i−1)
allbad

〉∥∥∥ (3.113)

=
2ip(n)2

2n/6 (3.114)

where the second step follows by the triangle inequality, the third by the fact that applying a

unitary Ci and the projector Πϕ
good cannot increase the norm of any vector, and the fourth by

Lemma 55 and the induction hypothesis.

The bound on the size of the portion of the state
∣∣∣ϕ(i)

A

〉
after i steps that never encountered

the EXIT or an almost cycle directly follows from Lemma 56 as shown by the following corollary.

Corollary 57. Let i ∈ [p(n)]. Then
∥∥∥∣∣∣ϕ(i)

good

〉∥∥∥ ≥ 1− 2ip(n)2 · 2−n/6.

Proof. Observe that

∥∥∥∣∣∣ϕ(i)
good

〉∥∥∥ =
∥∥∥∣∣∣ϕ(i)

A

〉
−
∣∣∣ϕ(i)

allbad

〉∥∥∥ ≥ ∥∥∥∣∣∣ϕ(i)
A

〉∥∥∥− ∥∥∥∣∣∣ϕ(i)
allbad

〉∥∥∥ ≥ 1− 2ip(n)2

2n/6 (3.115)

where the equality follows by Definition 37, the first inequality is an application of the triangle

inequality, and the second inequality follows by Lemma 56 and the fact that
∣∣∣ϕ(i)

A

〉
is a quantum

state.

In the next Lemma, we bound the mass on the size of the portion of the state
∣∣∣ψ(i)

A

〉
after i

steps that encountered the EXIT or an almost cycle at some point in its history. This is a crucial

Lemma for our result in this section where we invoke Lemma 54 to deduce a statement about
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the quantum state of the genuine algorithm A using the statements that we know about the state

of our classical simulation of A.

Lemma 58. Let i ∈ [p(n)]. Then,
∥∥∥∣∣∣ψ(i)

allbad

〉∥∥∥2
≤ 4i2 p(n)2 · 2−n/6.

Proof. Observe that

∥∥∥∣∣∣ψ(i)
allbad

〉∥∥∥ =

∥∥∥∥∥∥∑
j∈[i]

Cj,i

∣∣∣ψ(j)
bad

〉∥∥∥∥∥∥ (3.116)

≤ ∑
j∈[i]

∥∥∥Cj,i

∣∣∣ψ(j)
bad

〉∥∥∥ (3.117)

= ∑
j∈[i]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥ (3.118)

where the first step follows by Definition 37, the second by triangle inequality, and the third by

the fact that the unitary Cj,i preserves norms.

Thus, we have

∥∥∥∣∣∣ψ(i)
allbad

〉∥∥∥2
≤

∑
j∈[i]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥
2

(3.119)

≤ ∑
j∈[i]

i
∥∥∥∣∣∣ψ(j)

bad

〉∥∥∥2
(3.120)

= i
(

1−
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥2
)

(3.121)

= i
(

1−
∥∥∥∣∣∣ϕ(i)

good

〉∥∥∥2
)

(3.122)

≤ i

(
1−

(
1− 2ip(n)2

2n/6

)2
)

(3.123)

≤ 4i2 p(n)2

2n/6 (3.124)

where the two equalities follow by Lemmas 39 and 54, respectively, and the next-to-last inequality

follows by Corollary 57.
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We are now ready to describe and state our main theorem, which formally proves the

hardness of finding an ENTRANCE–EXIT path for genuine, rooted quantum query algorithms.

Theorem 59. Any genuine, rooted quantum query algorithm for the path-finding problem cannot find a

path from ENTRANCE to EXIT with more than exponentially small probability.

Proof. Since we let A be any arbitrary genuine, rooted quantum algorithm, it is sufficient to

show that A cannot find a path from ENTRANCE to EXIT with more than exponentially small

probability. Note that, by Definition 35, any computational basis state |ψ⟩ that corresponds to a

subgraph that stores an ENTRANCE to EXIT path must be ψ-bad. That is, such a |ψ⟩ must be in

the support of Πψ
bad|ψA⟩ from Definition 36. Recall from Definition 10 that the genuine algorithm

A measures the state |ψA⟩ and output the resulting set of vertices. Thus, the probability that the

genuine, rooted quantum query algorithm A finds an ENTRANCE to EXIT path is at most

∥∥∥Πψ
bad|ψA⟩

∥∥∥2
=
∥∥∥Πψ

bad

∣∣∣ψ(p(n)
A

〉∥∥∥2
(3.125)

=
∥∥∥Πψ

bad

∣∣∣ψ(p(n)
good

〉
+ Πψ

bad

∣∣∣ψ(p(n)
allbad

〉∥∥∥2
(3.126)

=
∥∥∥Πψ

bad

∣∣∣ψ(p(n)
allbad

〉∥∥∥2
(3.127)

≤
∥∥∥Πψ

good

∣∣∣ψ(p(n)
allbad

〉∥∥∥2
+
∥∥∥Πψ

bad

∣∣∣ψ(p(n)
allbad

〉∥∥∥2
(3.128)

=
∥∥∥Πψ

good

∣∣∣ψ(p(n)
allbad

〉
+ Πψ

bad

∣∣∣ψ(p(n)
allbad

〉∥∥∥2
(3.129)

=
∥∥∥∣∣∣ψ(p(n)

allbad

〉∥∥∥2
(3.130)

≤ 4p(n)4

2n/6 (3.131)

where we used Definition 37 in the first step, part 6 of Lemma 38 in the second, part 2 of

Lemma 38 in the third, Definition 36 in the fifth and the sixth steps, and Lemma 58 in the last.
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Chapter 4: Classical hardness for 3-color oracle

In this chapter, we analyze the classical query complexity of finding the EXIT or a cycle

in a randomly chosen 3-colored Welded Tree Graph of size n. More precisely, we show that the

probability of finding the EXIT or a cycle for a natural class of classical algorithms is exponentially

small (Theorem 79) even for a Welded Tree Graph whose vertices are permuted according to

the distribution Dn specified in Definition 66 below. Informally, Dn gives rise to the uniform

distribution on Welded Tree Graphs over the set that is constructed by fixing a 3-colored Welded

Tree Graph G and randomizing the vertices of the WELD cycle (defined in Definition 64) making

sure that the resulting graphs are valid 3-colored Welded Tree Graphs.

The key ingredient of our analysis is Lemma 74 (see also Corollary 75), which informally

says that for a Welded Tree Graph sampled according to the aforementioned distribution, it

is exponentially unlikely for a certain natural class of classical algorithms (i) to get ‘close’ to

the ENTRANCE or the EXIT starting on any vertex in the WELD cycle without backtracking, or

(ii) to encounter two WELD vertices that are connected by multiple ‘short’ paths. Note that

statement (i) implies that it is hard for any such classical algorithm to find the EXIT whereas

statement (ii) has a similar implication for finding a cycle. An astute reader might notice the

resemblance of Lemma 74 with Lemma 8 of [1]. Indeed, this Lemma proved that it is hard for

any classical algorithm with access to a colorless Welded Tree Oracle to satisfy either statements

(i) and (ii) mentioned above. However, the argument of [1] is different than ours in two major

ways: our prove is by induction; we use randomness of the WELD cycle to argue the unlikeliness

73



of statement (i) while they use hardness of guessing multiple coin tosses.

We begin by defining the notation that we will use to refer to color sequences that will

specify paths in binary trees (and the Welded Tree).

Definition 60. Let T be a binary tree of height n, which is edge-colored using the 3 colors in C. Let v be

any leaf of T, j ∈ [n], and u be the ancestor of v in T that is distance j away from v. We define tj
v to be the

length-j sequence of colors from v to u.

The following Lemma formalizes the observation that the color of edges at any level of a

binary tree are almost-uniformly distributed among the possible 3 colors.

Lemma 61. Let T be a binary tree of height n, which is edge-colored using the 3 colors in C. Let c∗ ∈ C

denote the unique color such that there is no c∗-colored edge incident to the root of T. For each c ∈ C and

i ∈ [n], let γ(c, i) denote the number of c-colored edges at level i. Then

γ(c, i) =


⌊
2i/3

⌋
i is odd and c = c∗ or i is even and c ̸= c∗

⌈
2i/3

⌉
otherwise.

(4.1)

Proof. We prove this Lemma by induction on i. An edge is at level 1 in T iff it is incident to the

root of T. The base case of the Lemma directly follows.

Assume that this Lemma is true for some i ∈ [n− 1]. Suppose that i is odd. Note that, for

any c ∈ C, any vertex in column i is connected to a vertex in column i + 1 with a c-colored edge

if and only if it is connected to a vertex in column i− 1 with a c′-colored edge for c ̸= c′. Then,
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the number of c-colored edges at level i + 1 are

γ(c, i + 1) = ∑
c′∈C
c′ ̸=c

γ(c′, i) (4.2)

=


2
⌈
2i/3

⌉
c = c∗

⌈
2i/3

⌉
+
⌊
2i/3

⌋
otherwise

(4.3)

=


⌈
2i+1/3

⌉
c = c∗

⌊
2i+1/3

⌋
otherwise.

(4.4)

The analysis for even i is very similar.

Lemma 61 directly imply the following corollary, which informally states that the number

of paths from a particular level n− j to the leaves of a binary tree are almost-uniformly distributed

among all possible color sequences of length j that does not contain an even-length palindrome.

Corollary 62. Let T be a binary tree of height n, which is edge-colored using the 3 colors in C. Let j ∈ [n]

and fix a length j sequence of colors t ∈ Cj that does not contain an even-length palindrome. Then, the

number of leaves v of T satisfying tj
v = t is at most

⌈
2n−j+1/3

⌉
.

Proof. Let c ∈ C be the last color appearing in the sequence t. Note that any ancestor of a leaf v of

T that is distance j away from v must be in column n− j of T. For each vertex u in column n− j

with some edge at level n− j + 1 incident to u being c-colored, there is exactly one leaf v such

that v is a descendant of u and tj
v = t. By Lemma 61, there are at most

⌈
2n−j+1/3

⌉
c-colored edges

at level n− j + 1. Therefore, there are at most
⌈
2n−j+1/3

⌉
c leaves of T satisfying tj

v = t.

Consider the following consequence of Lemma 61, which is an interesting observation

about valid 3-colorings of Welded Tree Graphs even though it is not essential for the argument
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of this chapter. However, it implies that Figure 2.1 is not an example with loss of generality.

Lemma 63. For any valid 3-coloring of G, c∗ is the unique color with no edge incident to the EXIT.

Proof. Without loss of generality, assume that n is odd. Recall that c∗ referred to the unique color

with no edge incident to the ENTRANCE. By Lemma 61, the number of edges of color c∗ in G at

level n are ⌊2n⌋/3. This means that the number of non-c∗ edges at level n are 2n − ⌊2n⌋/3 =

2⌈2n⌉/3. Note that there is a bijection between the non-c∗ edges at level n and c∗ edges at level

n + 1. Therefore, there must be 2⌈2n⌉/3 edges of color c∗ at level n + 1.

Now, suppose that there is a c∗ edge incident to the EXIT. Thus, by Lemma 61, the number

of edges of color c∗ in G at level n + 2 must be ⌈2n⌉/3. It follows, by a similar argument as in the

above paragraph, that the number of c∗ edges at level n + 1 are 2n − ⌈2n⌉/3 = ⌈2n⌉/3 + ⌊2n⌋/3.

But this contradicts an above assertion. Hence, c∗ is the unique color with no edge incident to

the EXIT.

Consider the following induced subgraphs of G.

Definition 64. Define TL, TR, and WELD to be the induced subgraphs of G on vertices in columns

{0, . . . , n}, columns {n + 1, . . . , 2n + 1}, and columns {n, n + 1} of G, respectively.

Informally, TL and TR are induced subgraphs of G on vertices in the left and right binary

trees of G, respectively, while WELD is the induced subgraph of G on the leaves of the left and

right binary trees of G. Note that TL and TR are height-n subtrees of G rooted at ENTRANCE and

EXIT, respectively. Furthermore, the vertices of TL and TR provide a bipartition of the vertices of

G, and the edges of TL, TR, and WELD provide a tripartition of the edges of G. Now, we categorize

the vertices of WELD depending on whether it is a vertex of TL or TR and the color of edge that

it is joined with to a non-WELD vertex.
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Definition 65. For any leaf v of the tree TL and c ∈ C, if the color of the edge connecting v with TL in G

is c, then we say that v is a c-left vertex. Similarly, we define the notion of a c-right vertex for each c ∈ C.

As an example, the vertices colored lavender and plum in Figure 4.1(a) are red-left vertices.

Next, we define permutations that map valid 3-colored Welded Tree Graphs to valid 3-colored

Welded Tree Graphs as we show in Lemma 67. Note that Definition 65 partitions the vertices of

WELD into 6 parts. The following definition is crucial for the description of the distribution of

Welded Tree Graphs that is classically ‘hard’.

Definition 66 (Color-preserving permutations). For any permutation σ of the vertices of G, let Gσ

denote the graph obtained by applying σ to the vertices of G: there is an edge of color c ∈ C in G

joining vertices u and v if and only if there is an edge of color c in Gσ joining vertices σ(u) and σ(v). A

permutation σ of the vertices of G is a color-preserving permutation if

1. for any vertex v of G that is not a vertex of WELD, σ(v) = v, and

2. for any vertex v of WELD, σ(v) is a vertex of WELD, and for any c ∈ C, if v is c-left (respectively

c-right), then σ(v) is c-left (respectively c-right).

For any color-preserving permutation σ, let Tσ
L (respectively WELDσ, Tσ

R) denote the graph obtained by

applying σ restricted to the vertices of TL (respectively WELD, TR) to the vertices of TL (respectively

WELD, TR). Define Dn to be the uniform distribution over all color-preserving permutations σ.

Figure 4.1 illustrates an example of a color-preserving permutation. Note that the non-

WELD vertices remain invariant under σ. Therefore, WELDσ is the induced subgraph of Gσ on

vertices in columns {n, n + 1} of Gσ.

For each c ∈ C, by Lemma 61, we have at least ⌊2n/3⌋ c-left and at least ⌊2n/3⌋ c-right

vertices in G. Hence, there are at least (⌊2n/3⌋!)6 color-preserving permutations.
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entrance exit

(a) G

entrance exit

(b) Gσ

Figure 4.1: Example of a color-preserving permutation σ for the graph G in Figure 2.1. The
permutation σ is the identity permutation except that it maps the vertex colored lavender to the
vertex colored plum. Note that the resulting graph Gσ is a valid 3-colored Welded Tree Graph.

We now verify that the graphs obtained by applying color-preserving permutations on G

are valid 3-colored Welded Tree Graphs.

Lemma 67. Let σ be a color-preserving permutation. Then Gσ is a valid 3-colored Welded Tree Graph.

Proof. We first argue that Gσ is a valid Welded Tree Graph. Recall that the vertices of G that

are not in the WELD remain invariant under σ. Thus, it remains to show that WELDσ is a cycle

alternating between the vertices in the columns n and n+ 1 of Gσ. Since G is a Welded Tree Graph,

WELD is a cycle on vertices denoted by v1, . . . , v2n+1 such that vi is joined to vi+1 mod 2n+1 and

vi−1 mod 2n+1 for each i ∈ [2n+1]. Therefore, for each i ∈ [2n+1], σ(vi) is joined to σ(vi+1 mod 2n+1)

and σ(vi−1 mod 2n+1). It follows that WELDσ is a cycle on vertices σ(v1), . . . , σ(v2n+1).

Now, we claim that Gσ admits a valid 3-coloring. Let v be any vertex of WELD. Without

loss of generality, assume that v is red-left. Then, as G is a valid 3-colored graph and v has degree
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3, v is joined to a vertex vr of TL with a red edge and two vertices vg and vb of WELD with a green

and a blue edge respectively. Since σ is color-preserving, σ(v) is joined to vr with a red edge

and to σ(vg) and σ(vb) of WELDσ with a green and a blue edge respectively. On the other hand,

non-WELD vertices of G are unchanged by σ. Our desired claim follows.

Recall that Definition 3 defined the classical oracle function ησ
c for each c ∈ C associated

with Gσ for the identity permutation σ. The following definition generalizes it by specifying

the classical oracle function ησ
c for each c ∈ C associated with Gσ for any color-preserving

permutation σ.

Definition 68. Let VG, Ic, and Nc for each c ∈ C, NOEDGE, and INVALID be defined as in Definitions 1

and 3. For any color-preserving permutation σ, let Nσ
c (v) := σ(Nc(σ−1(v)). Then, let

ησ
c (v) :=



Nσ
c (v) v ∈ VG and Ic(v) = 1

NOEDGE v ∈ VG and Ic(v) = 0

INVALID v /∈ VG,

(4.5)

Let ησ := {ησ
c : c ∈ C} be the oracle corresponding to the color-preserving permutation σ.

For any color-preserving permutation σ, as ENTRANCE and EXIT remain invariant under σ,

for any v ∈ VG and c ∈ C with Ic(v) = 1, we have Nσ
c (v) ∈ VG. Next, we consider 22n/3 disjoint

subtress of TL (respectively TR), each of which contains (as leaves) 2n/3 consecutive leaves of TL

(respectively TR).

Definition 69. Let σ be any color-preserving permutation. Fix an ordering of the vertices of Tσ
L (respectively

Tσ
R) in column 2n/3. For any i ∈ [22n/3], let Tσ

Li
(respectively Tσ

Ri
) denote the subtree of Tσ

L (respectively

Tσ
R) that is a binary tree of height n/3 rooted at the ith vertex in column 2n/3 of Tσ

L (respectively Tσ
R).

Moreover, let Tσ := {Tσ
Li

, Tσ
Ri

: i ∈ [22n/3]}.
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Observe that all the non-leaf vertices of Tσ
L and Tσ

R are invariant under the choice of σ.

We now define the notion of path-embedding in Gσ for a sequence of colors t, which informally

refers to the path resulting from beginning at the ENTRANCE and following the edge colors given

by t in order.

Definition 70 (Path-embedding). Let σ be any color-preserving permutation. Let ℓ ∈ [p(n)] and

t ∈ Cℓ. That is, t = (c1, . . . , cℓ) for some c1, . . . , cℓ ∈ C. Then, define the path-embedding of t under

the oracle ησ, denoted by ησ(t), to be a length-ℓ tuple of vertex labels as follows. The jth element of ησ(t)

is

ησ(t)j =


ησ

c1
(ENTRANCE) j = 1

ησ
cj
(ησ(t)j−1) otherwise.

(4.6)

We say that the path-embedding ησ(t) encounters a vertex v if ησ(t)j = v for some j ∈ [ℓ] and ησ(t)

encounters an edge joining vertices v and u if ησ(t)j = v and ησ(t)j+1 = u (or the other way around)

for some j ∈ [ℓ− 1]. Moreover, ησ(t) encounters a cycle in Gσ if it encounters a sequence of vertices

and edges that forms a cycle in Gσ and encounters a tree from Tσ if it encounters a leaf of this tree.

Figure 4.2 demonstrates an example of a path in T and the corresponding path-embedding

in G. One can interpret ησ(t) as a tuple of vertex labels of length ℓ obtained by starting at the

ENTRANCE, and following the edge colors listed in t. We will only restrict our attention to the

color sequences that does not contain even-length palindromes. For such a sequence t, the path-

embedding ησ(t) encounters a cycle exactly when it encounters a vertex twice.

Now, we will describe the notation that we will use for each time a certain path-embedding

crosses the WELD to refer to the tree from Tσ that it goes to and the WELD edge that it goes

through.

Definition 71. Let σ be any color-preserving permutation and t be any sequence of colors that does not
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empty b bg bgb

bgbrbgbrbbgbrbg

bgbrbgr bgbrbgrg bgbrbgrgr

(a) The path in T given by t

entrance 101000 110100

010100110101111001

001110 010101 001010 exit

(b) The path-embedding ησ(t) of t in G

Figure 4.2: Example of a path-embedding for the graph G in Figure 2.1 and the identity
permutation σ.

contain even-length palindromes. We use Tσ
t,i ∈ Tσ to denote the ith subtree and eσ

t,i to denote the ith edge

of WELD encountered by the path-embedding ησ(t).1 We refer to the event of the path-embedding ησ(t)

encountering the ith edge of WELD as the ith WELD-crossing. Furthermore, let ℓσ(t) denote the number

of subtrees encountered by the path-embedding ησ(t).

Note that the number of edges of WELD encountered by the path-embedding ησ(t) is

ℓσ(t) − 1. For each i ∈ [ℓσ(t) − 1], the edge eσ
t,i joins a vertex in Tσ

t,i to a vertex in Tσ
t,i+1. Next,

we define ℓσ(t) prefixes of t that are relevant for our analysis. Intuitively, for i ∈ [ℓσ(t)− 1], the

sequence of colors preσ
i (t) refers to the prefix of t such that if we begin from the ENTRANCE and

follow the edge colors given by preσ
i (t), we will end up on the vertex reached by the ith edge of

WELD encountered by ησ(t).

Definition 72. Let σ be any color-preserving permutation and t be any sequence of colors that does not

contain even-length palindromes. Let preσ
ℓσ(t)(t) = t. For each i ∈ [ℓσ(t)− 1], let preσ

i (t) denote the

smallest prefix of t such that the path-embedding ησ(preσ
i (t)) encounters the ith WELD-crossing.

Notice that preσ
i (t) is a sequence that begins with the color of an edge incident to ENTRANCE

and ends with the color of the edge eσ
t,i. The following definition formalizes statements (i) and

(ii) that we intuitively alluded to in the beginning of this chapter.

1It is possible for ησ(t) to encounter NOEDGE or INVALID. However, once that happens, ησ(t) cannot further
encounter any subtree from Tσ.
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Definition 73. Let σ be any color-preserving permutation and t be any sequence of colors that does not

contain even-length palindromes. We say that t has small displacement if after the 1st WELD-crossing,

the path-embedding ησ(t) does not encounter any vertex that is distance at least n/3 away from the closest

vertex of WELD, and t is non-colliding if there is an edge e joining some leaf of Tσ
t,i with some leaf of Tσ

t,j

for any i, j ∈ [ℓσ(t)], then e must be eσ
t,k for some k ∈ [ℓσ(t)− 1]. We say that t is desirable if t has small

displacement and t is non-colliding. We also say that t has large displacement if it does not has small

displacement, t is colliding if it is not non-colliding, and t is undesirable if it is not desirable.

It is easy to observe that for any any sequence t of colors that does not contain even-length

palindromes, beginning from the ENTRANCE and following the sequence of colors given by t will

not result in reaching the EXIT if t has small displacement, and in going through a cycle if t is non-

colliding. The following Lemma is pivotal to our argument in this chapter where we essentially

prove that any prefix of any fixed sequence of colors t is unlikely to have large displacement or

be colliding (as defined in Definition 73).

Lemma 74. Let ℓ ∈ [p(n)] and t ∈ Cℓ such that t does not contain even-length palindromes. Let the

permutation σ be chosen according to the distribution Dn. Then, for all i ∈ [ℓσ(t)], prei(t) is desirable

with probability at least 1− 4i22−n/3 over the choice of σ.

Proof. We prove the desired statement by induction on i. For the base case, note that preσ
1 (t) does

not encounter any edges in any tree in Tσ other than the one it first reaches. Therefore, preσ
1 (t)

is desirable with certainty.

As the induction hypothesis, assume that preσ
i (t) is desirable with probability at least 1−

2i22−n/3 for some i ∈ [ℓσ(t)− 1]. Actually, we assume that preσ
i (t) and ησ(preσ

i (t)) are known

(and fixed), and preσ
i (t) has small displacement and is non-colliding with certainty. We union

bound the probability of that not happening later.

By our assumption, preσ
i (t) does not depend on σ so we denote it by prei(t) for simplicity.
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By the definition of being non-colliding in Definition 73, we can note that Tσ
t,i+1 ̸= Tσ

t,j for any

j ∈ [i]; otherwise, since Tσ
t,i+1 and Tσ

t,i are connected via the edge eσ
t,i, prei(t) would not be non-

colliding.

Consider the set ∆i(t) = {ρ : ηρ(preρ
i (t)) = ησ(prei(t)) and Tρ

t,i+1 ̸= Tσ
t,j ∀j ∈ [i]}. We

know, from above, that σ ∈ ∆i(t). Moreover, any ρ ∈ ∆i(t) is consistent with the induction

hypothesis. Since σ is drawn from Dn, it follows that, conditioned on the induction hypothesis,

σ is any permutation in ∆i(t) with uniform probability.

For any permutation ρ and j ∈ [ℓρ(t)], let vρ
j be the vertex reached by the jth WELD-

crossing with respect to the path-embedding ηρ(t). Without loss of generality, assume that vσ
i+1

is a red-right vertex.2 Let u ̸= vσ
i+1 be any red-right leaf of a tree T in Tσ such that T ̸= Tσ

t,j

for all j ∈ [i]. Let ρ be the color-preserving permutation that is the composition with σ of the

permutation that maps u to vσ
i+1 (and vice versa) and is identity otherwise. Since the path-

embeddings ησ(t) and ηρ(t) does not encounter vertices vσ
i+1 and u before the ith WELD-crossing,

we have ησ(preρ
i (t)) = ηρ(prei(t)). Furthermore, as vσ

i+1 and u are not leaves of any tree in

{Tσ
t,j : j ∈ [i]}, we can observe that Tρ

t,j = Tσ
t,j for all j ∈ [i]. Therefore, u is a leaf of a tree T ∈ Tρ

such that T ̸= Tσ
t,j for all j ∈ [i]. Hence, ρ ∈ ∆i(t). It follows that for any red-right vertex u that is

not a leaf of any tree in {Tσ
t,j : j ∈ [i]}, the number of permutations ρ such that vρ

i+1 = u are the

same.

Let preσ
<i+1(t) denote the sequence resulting from removing the last color from preσ

i+1(t).

Note that, since the path-embedding ησ(preσ
<i+1(t)) does not encounter any edge of WELD after

the ith WELD-crossing and the non-WELD edges remain invariant under σ, preσ
<i+1(t) does not

depend on σ so we write it as pre<i+1(t). Now, let subi(t) denote the largest suffix of pre<i+1(t)

such that the path-embedding ησ(subi(t)) does not encounter the edge eσ
t,i (if it exists). This

2The same argument follows for any c-right or c-left vertex for any c ∈ C.
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means that subi(t) is a sequence that begins with the color of the edge encountered by the path-

embedding ησ(t) just after the ith WELD-crossing and ends with the last color of t if i = ℓσ(t)− 1

and with the color of the edge encountered by the path-embedding ησ(t) just before the (i + 1)st

WELD-crossing otherwise. Let ℓi(t) denote the length of subi(t).

Observe that the vertex vσ
i does not depend on σ since we know the path-embedding

ησ(prei(t)). Let sucσ
i (t) be the sequence of n/3 colors beginning from vi and reaching a vertex

in the column 2n/3 of TL (if vi is a leaf in TL) or TR (if vi is a leaf in TR). Note that, unlike subi(t),

sucσ
i (t) depends on the choice of σ as it is possible for two distinct red-right vertices, for instance,

to have distinct color sequences that lead to their respective ancestor in the column 2n/3 of TR.

Let subi(t, n/3) denote the prefix of length n/3 of subi(t). The sequence subi(t, n/3) does

not exist if |prei+1(t)| < |prei(t)| + n/3. But in that case, we know that subi(t), and hence

prei+1(t), only encounter vertices that are distance less than n/3 away from vi so prei+1(t) has

small displacement. Therefore, we assume that subi(t, n/3) exists. Note that, by the induction

hypothesis, in order to show that preσ
i (t) does has large displacement, we only need to show that

the sequence subi(t) beginning from vi does not encounter any vertex that is distance at least n/3

away from vi. In other words, the probability that preσ
i+1(t) does not has large displacement is

bounded by the probability, over σ, of sucσ
i (t) = subi(t, n/3), which we compute as follows.

We established above that σ can be any uniformly random permutation in ∆i(t). Thus, the

probability of vσ
i+1 = u is the same for all red-right vertices u that are not leaves of any tree in

{Tσ
t,j : j ∈ [i]}. It means that the required probability is upper-bounded by the ratio of the number

of red-right vertices that satisfy sucσ
i (t) = subi(t, n/3) and the number of those consistent with

the induction hypothesis. By Corollary 62, the number of red-right leaves satisfying sucσ
i (t) =

subi(t, n/3) are at most 22n/3+1/3 + 1. On the other hand, by Lemma 61, the total number of

red-right vertices that are not leaves of any tree in {Tσ
t,j : j ∈ [i]} are at least 2n/3− 1− i · 2n/3 as
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any tree in this set has 2n/3 leaves. Therefore, assuming that preσ
i (t) is desirable, the probability

Pσ[Ei+1(large displacement)] of preσ
i+1(t) having large displacement is

Pσ[Ei+1(large displacement)] ≤ Pσ[sucσ
i (t) = subi(t, n/3)] ≤ 22n/3+1/3 + 1

2n/3− 1− i · 2n/3 ≤
4

2n/3 (4.7)

where the last inequality follows since there can be at most p(n) WELD-crossings so i < ℓσ(t) ≤

ℓ ≤ p(n).

In order to bound the probability of preσ
i+1(t) being non-colliding, by the assumption we

made for the induction hypothesis, it remains to bound the probability of the tree Tσ
t,i+1 not

having an edge with any of the trees in {Tσ
t,j : j ∈ [i]} other than the edge eσ

t,i. Pick any leaf u of

any of the trees in {Tσ
t,j : j ∈ [i]}. Let w be any neighbor of u that is a vertex of WELDσ. Without

loss of generality, assume that u is green-left and w is red-right. If the edge joining u with w

appears in the path-embedding ησ(prei+1(t)), then either this edge is eσ
t,i or w is not a leaf of

Tσ
t,i+1 as we established above that Tσ

t,i+1 ̸= Tσ
t,j for any j ∈ [i]. Thus, we suppose that it does not

appear in ησ(prei+1(t)). Analogous to an argument we made above, the probability of w = u′ is

the same for all red-right vertices u′ that are not leaves of any tree in {Tσ
t,j : j ∈ [i]}. This means

that the probability of w being a leaf of Tσ
t,i+1 is bounded by the ratio of the number of red-right

vertices in Tσ
t,i+1 and the number of those not leaves of any tree in {Tσ

t,j : j ∈ [i]}. By Lemma 61,

the former quantity is at most 2n/3/3 + 1 and the latter quantity is at least 2n/3− 1− i · 2n/3 as

all trees in {Tσ
t,j : j ∈ [i]} have 2n/3 leaves. Recall that each of the i · 2n/3 vertices that are leaves of

any tree in {Tσ
t,j : j ∈ [i]} has 2 neighbours in WELDσ. Hence, assuming that preσ

i (t) is desirable,

the probability Pσ[Ei+1(colliding)] of preσ
i+1(t) being colliding is

Pσ[Ei+1(colliding)] ≤ 2i · 2n/3 · (2n/3/3 + 1)
2n/3− 1− i · 2n/3 ≤ 4i

2n/3 (4.8)
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by the union bound.

For each j ∈ [ℓσ(t)], let Pσ[Ej(desirable)] denote the probability of preσ
j (t) being desirable.

Notice that preσ
i+1(t) can only be desirable if preσ

i (t) is desirable or preσ
i+1(t) has large displacement

or preσ
i+1(t) is colliding. Hence, we have

Pσ[Ei+1(desirable)] ≤ Pσ[Ei(desirable)] + Pσ[Ei+1(large displacement)]

+ Pσ[Ei+1(colliding)] (4.9)

≤ 4i2

2n/3 +
4

2n/3 +
4i

2n/3 ≤
4(i + 1)2

2n/3 (4.10)

where we used eqs. (4.7) and (4.8) for the second inequality. The lemma follows.

The statement of the next Corollary will be sufficient for proving the classical hardness

result of Theorem 79 even though it is a weaker statement about a special case of Lemma 74.

Concretely, we show that for a fixed sequence of colors and a uniformly random color-preserving

permutation σ, it is improbable for the corresponding path-embedding to contain the EXIT or a

path that forms a cycle in Gσ.

Corollary 75. Let ℓ ∈ [p(n)] and t ∈ Cℓ such that t does not contain even-length palindromes. Let the

permutation σ be chosen according to the distribution Dn. Then, the probability that the path-embedding

ησ(t) encounters the EXIT or a cycle in Gσ is at most 4p(n)2 · 2−n/3.

Proof. Note that, by Definition 73, if ησ(t) encounters the EXIT, then t has large displacement and

if ησ(t) encounters a cycle in Gσ, then t is colliding. That is, t is undesirable if it encounters the

EXIT or a cycle in Gσ. Since ℓσ
t ≤ ℓ ≤ p(n), t is undesirable with probability at most 4(ℓσ

t )
22−n/3 ≤

4p(n)22−n/3 over the choice of σ by Lemma 74.

We can extend the result of Corollary 75 about polynomial-size sequences of colors to
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polynomial-size subtrees of the address tree T (see Definition 24). For this purpose, we define

the notion of subtree-embedding of subtrees of T. Intuitively, the subtree-embedding of a tree T

describes the subgraph of Gσ obtained by querying the oracle ησ according to the sequences of

colors given by the vertex labels of T.

Definition 76 (Subtree-embedding). Let σ be any color-preserving permutation. Let ℓ ∈ [p(n)]

and t ∈ Cℓ. Let T be a subtree of the address tree T of size p(n) that contains the vertex labeled

EMPTYADDRESS but does not the contain vertices having labels in SpecialAddresses\ {EMPTYADDRESS}.

For any vertex of T labeled by t ̸= EMPTYADDRESS, let c|t| denote the last color appearing in the sequence

t and pre(t) denote the color sequence formed by removing the last color from t. Define the subtree-

embedding of T under the oracle ησ, denoted by ησ(T), to be a tree isomorphic to T whose vertex labels

are in VG and specified as follows. The vertex of ησ(T) corresponding to the vertex of T labeled by t is

ησ(T)t :=


ENTRANCE t = EMPTYADDRESS

ησ
c|t|(η

σ(T)pre(t)) otherwise.

(4.11)

We say that the subtree-embedding ησ(T) encounters the EXIT if it contains a vertex labeled EXIT and

ησ(T) encounters a cycle if it contains two vertices having the same label.

Figure 4.3 illustrates an example of a subtree of T and the corresponding subtree-embedding

in G. For any tree T specified in Definition 76, the root of T will always be EMPTYADDRESS so

the root of ησ(T) will always be ENTRANCE. The subtree-embedding ησ(T) of a tree T will

correspond to the subgraph of Gσ that contain vertices which can be reached by following the

addresses given by vertex labels of T in Gσ beginning at the ENTRANCE.

Next, we will show that for a fixed sub-tree of T and a randomly chosen color-preserving

permutation σ, it is not possible, except for exponentially small probability, for the corresponding
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(a) The subtree T of T

entrance

010110 101000

011101 101001 110100 101010

101111 111001 010100

100100 110101 110101 100100

(b) The subtree-embedding ησ(T) of T in G

Figure 4.3: Example of a subtree-embedding for the graph G in Figure 2.1 and the identity
permutation σ.

subtree-embedding to contain the EXIT or a path that forms a cycle in Gσ.

Lemma 77. Let T be a subtree of the address tree T of size p(n) that contains the vertex labeled EMPTYADDRESS

but does not contain vertices having labels in SpecialAddresses\ {EMPTYADDRESS}. Let the permutation

σ be chosen according to the distribution Dn. Then, the probability that the subtree-embedding ησ(T)

encounters the EXIT or a cycle is at most 4p(n)42−n/3.

Proof. Suppose that the subtree-embedding ησ(T) contains a vertex v labeled EXIT. Let t denote

the label of the vertex of T corresponding to v. Then, the path-embedding ησ(t) encounters the

EXIT. Therefore, since T has at most p(n) vertices, the probability of ησ(T) encountering the EXIT

is at most p(n) · 4p(n)22−n/3 = 4p(n)32−n/3 by Corollary 75.

Now, suppose that the subtree-embedding ησ(T) encounters a cycle. That is, it contains

two vertices v1 and v2 having the same label. Without loss of generality, assume that the respective

parents u1 and u2 of v1 and v2 in T (if they exist) does not have the same labels; otherwise, re-label

v1 as u1 and v2 as u2. Let t1 and t2 be the labels of the vertices of T corresponding to v1 and v2

respectively. Let t1,2 denote the sequence resulting from the concatenation of t1 with the reverse

of t2. By our above assumption, no color can appear consecutively in t1,2 so t1,2 does not contain

an even-length palindrome. Thus, starting from the ENTRANCE and following the sequence of
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colors given by t1,2 in Gσ will result in reaching back the ENTRANCE without backtracking. This

means that the path-embedding ησ(t1,2) encounters a cycle in Gσ. Therefore, since there are at

most
(

p(n)
2

)
pairs of vertices of T, the probability of ησ(T) encountering a cycle is at most(

p(n)
2

)
· 4p(n)22−n/3 ≤ 2p(n)42−n/3 by Corollary 75.

We obtain the desired result by union bounding over the probabilities specified above.

We now establish that for any uniformly random permutation σ and any classical algorithm

that samples from the subtrees of T, we cannot hope to find the EXIT or a cycle in G with more

than exponentially small probability.

Lemma 78. Let the permutation σ be chosen according to the distribution Dn. Let S be the set of subtrees

of the address tree T of size p(n) that contains the vertex labeled EMPTYADDRESS but does not the contain

vertices having labels in SpecialAddresses \ {EMPTYADDRESS}.3 Let Aclassical be a classical query

algorithm that samples a tree T from S and computes the subtree-embedding ησ(T). Then, the probability

that Aclassical finds the EXIT or a cycle in G is at most 4p(n)42−n/3.

Proof. The algorithm Aclassical finds the EXIT if the subtree-embedding ησ(T) contains it. On the

other hand, since ησ(T) corresponds to a connected subgraph of Gσ, Aclassical finds a cycle in Gσ

if there are two vertices in the tree ησ(T) that have the same label. Therefore, this Lemma is a

direct consequence of Lemma 77 and convexity.

We conclude this chapter with our main result about the existence of a distribution for

which it is hard for a natural class of classical algorithms to find the EXIT or a cycle in the Welded

Tree Graph sampled according to this distribution.

Theorem 79. Let S be the set of subtrees of the address tree T of size p(n) that contains the vertex labeled

EMPTYADDRESS but does not the contain vertices having labels in SpecialAddresses\ {EMPTYADDRESS}.
3Recall that T can be computed using 2 queries to the classical oracle ησ.
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Then, there exists a distribution Dn over size n 3-colored Welded Tree Graphs such that for any classical

query algorithm Aclassical that samples a tree T from S and computes the associated subtree-embedding in

G′, the probability that Aclassical finds the EXIT or a cycle in G′ is at most 4p(n)42−n/3 where G′ is the

Welded Tree Graph sampled from Dn.

Proof. Consider the distribution Dn specified by the following sampling process: choose σ according

to the distribution Dn, and output Gσ. From Lemma 78, we know that Dn satisfies the requirement

of this theorem.
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Chapter 5: Closing remarks

We will finish by summarizing this thesis, discuss some interpretative implications and

some relevant open questions.

5.1 Conclusion

In this work, we have shown that any quantum algorithm that is comprised of the gate

set given in Definition 9 and whose state is always a superposition of computational basis states

corresponding to a connected subgraph of the input Welded Tree (more precisely defined as

Rooted algorithms in Definition 12) cannot find the EXIT (or a path to the EXIT) using polynomially

many queries with more than inverse exponential probability. Even though we do not rule out

the existence of efficient path-finding quantum algorithms, it would be hard to imagine any such

algorithm to critically use information stored in vertex labels, or to ‘forget’ the ENTRANCE and

later compute a path to the ENTRANCE along with computing a path to the EXIT. Our strategy is

to classically approximately simulate any such quantum algorithm in Chapter 3 and show that

any classical algorithm of a certain type that includes our simulation algorithm cannot find the

EXIT or a cycle (with respect to 3-color Welded Tree Oracle) in Chapter 4. In particular, we show

that this classical simulation (stated in Algorithm 3) exactly simulates the portion of the state of

the given genuine rooted quantum algorithm that does not find the EXIT or go through a cycle

in Section 3.5, and the portion of the state of the given algorithm that encounters the EXIT or a

cycle is small in Section 3.6.
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5.2 Implications

We conjecture that no efficient quantum query algorithm can find an ENTRANCE-to-EXIT

path in a Welded Tree graph, which we proved for a natural class of quantum algorithms. If this

conjecture is true, it will manifest some novel computational implications of quantum mechanics

and strengthen our understanding of quantum computing as being qualitatively different from

its classical counterpart. We shed light on some of these as follows.

1. In Chapter 1, we referred to the the simultaneous existence of an efficient EXIT-finding

quantum algorithm and the non-existence of any path-finding genuine, rooted quantum

algorithm as the computational analog of the multi-slit experiment. In the multi-slit experiment,

when a particle is released from a source, it goes through many branches of superposition

to hit a particular point on the screen but does not maintain any particular course of its

journey. If we start placing detectors in this experiment, we destroy useful superpositions,

which will result in the particle not being able to reach its destination on the screen. Analogously,

the quantum algorithm of [1] for EXIT-finding traverses exponentially many ENTRANCE-

to-EXIT paths without remembering a particular such path. But if we enforce this genuine

quantum algorithm to be rooted, it cannot even reach the EXIT. Even though many results

in quantum computing reflect the nature of quantum mechanics, this phenomena of quantum

mechanics has never been as explicitly demonstrated earlier.

2. Usually, classical computers can search a certificate of a decision problem by computing

polynomially many instances of this decision problem. But for quantum computers, it may

not be the case. If quantum computers can efficiently search for a certificate, it might help

classical machines verify the behaviour of untrusted quantum devices efficiently. Classically,

it not possible to find the EXIT without traversing through an ENTRANCE–EXIT path. Therefore,
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if our above conjecture is true, it would demonstrate that solving a decision problem and

searching for a certificate of it’s decision are qualitatively different problems for quantum

computers. It would also mean that, for certain decision problems, quantum computers

can efficiently only determine information that cannot be used by classical computers to

efficiently verify a solution.

5.3 Open questions

Even though the result in this thesis makes partial progress towards resolving an open

problem, many questions of interest still remain open. We highlight some of them as follows.

1. The most immediate open question is whether it is possible to generalize our results to

show quantum hardness of Welded Tree path-finding problem (see Definition 5) for all

efficient quantum query algorithms.

Is it possible to do away with the assumption of genuine-ness (Definition 10)? We believe

that the assumption of being genuine is more natural and would be easier to remove as a

non-genuine algorithm would involve gates that might use the information about vertex

labels in a critical way, which are chosen randomly and independently from the structure

of the given Welded Tree Graph. Therefore, we expect a non-genuine algorithm to be

(approximately) simulated by a genuine algorithm.

On the other hand, can we remove the assumption of rooted-ness (Definition 12)? Even

though one might expect an algorithm for path-finding to remember its path to the ENTRANCE,

it is not clear whether an algorithm can ‘forget’ the path to the ENTRANCE before re-

computing it. It would be very intriguing to investigate whether there is an efficient

algorithm that temporarily detaches from the ENTRANCE during its course, or this possibility

could be ruled out.
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2. In Chapter 4 (specifically, Theorem 79), we showed that for the 3-color Welded Tree Oracle,

any classical algorithm sampling from any distribution of polynomial-size subtrees of the

address tree (see Definition 24) and querying according to the addresses given by the labels

of vertices of the sampled tree cannot find the EXIT or a cycle efficiently. Note that it is

certainly possible for a classical algorithm to not behave in this particular way. We did not

require proving hardness of EXIT-finding for the class of all classical query algorithms with

respect to the 3-color Welded Tree Oracle since the special case of this statement that we

showed is sufficient for our purposes (i.e. to show Lemma 55). However, we conjecture

that such an assertion would be true and proving it would be of independent interest.

3. Can quantum computers output enough information that can be used by classical machines

to efficiently verify their behaviour? Quantum Prover Interactive Protocol (QPIP) informally

refers to the complexity class with a BQP prover and a BPP verifier. It is not known

whether BQP is contained in QPIP with one round. If there is no efficient quantum query

algorithm for path-finding, then is it possible to construct a variant of the Welded Tree

problem that shows a relativized separation between BQP and one round QPIP?

Consider the graph that is formed by taking two copies of a Welded Tree Graph (with a

different ENTRANCE and EXIT label for each copy) and joining the ENTRANCE of one with

the ENTRANCE of the other and the EXIT of one with the EXIT of the other. Given oracle

access to this graph and labels of the ENTRANCE of one of the copies and the EXIT of both

the copies (without revealing their identity), our problem requires determining which EXIT

label corresponds to the given ENTRANCE label. Using the algorithm of [1], it is easy to

see that this problem is contained in BQP. However, if finding an ENTRANCE–EXIT is hard

in this graph and all the positive certificates encode some ENTRANCE–EXIT path, then this

problem might not admit a one round QPIP protocol.
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[5] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm
for computing the unit group of an arbitrary degree number field. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pages 293–302, 2014. doi: 10.1145/2591796.
2591860.

[6] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996. doi: 10.
1126/science.273.5278.1073.

[7] Matthew Coudron and Sanketh Menda. Computations with greater quantum depth are
strictly more powerful (relative to an oracle). In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, June 22-26, 2020, Chicago, IL, USA, page 889–901, New
York, NY, USA, 2020. Association for Computing Machinery. doi: 10.1145/3357713.3384269.

[8] Richard Cleve and John Watrous. Fast parallel circuits for the quantum Fourier transform.
In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science, pages 526–536,
2000. doi: 10.1109/SFCS.2000.892140.

[9] Nai-Hui Chia, Kai-Min Chung, and Ching-Yi Lai. On the need for large quantum depth. In
Proceedings of the 52nd Annual ACM Symposium on Theory of Computing, page 902–915, 2020.
doi: https://doi.org/10.1145/3357713.3384291.

[10] Scott Aaronson. Open problems related to quantum query complexity. ACM Transactions
on Quantum Computing, 2(4), 2021. doi: 10.1145/3488559.

95



[11] Ansis Rosmanis. Quantum snake walk on graphs. Physical Review A, 83(2):022304, 2011.
doi: 10.1103/PhysRevA.83.022304.

[12] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483,
1997. doi: 10.1137/S0097539796298637.

96


	Foreword
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Welded tree problem and genuine rooted algorithms
	Welded tree problem
	Genuine and rooted algorithms
	Continuous-time quantum walk algorithms
	Quantum walk for Welded Tree EXIT-finding
	Quantum snake walk for Welded Tree path-finding


	Classical simulation of genuine, rooted algorithms
	Transcript states
	Mapping addresses to vertices
	The classical algorithm
	The good, the bad, and the ugly
	Faithful simulation of the good part
	The state is mostly good

	Classical hardness for 3-color oracle
	Closing remarks
	Conclusion
	Implications
	Open questions


