
ABSTRACT

Title of Document: HIGH-PERFORMANCE  DRAM  SYSTEM  DESIGN  CONSTRAINTS  AND 
CONSIDERATIONS
Joseph G. Gross, Master of Science, 2010

Thesis  Directed  By:   Dr.  Bruce  L.  Jacob,  Assistant  Professor,  Department  of  Electrical  and  Computer 
Engineering

The effects of a realistic memory system have not received much attention in recent decades. Often,  

the memory controller and DRAMs are modeled as a fixed-latency or random-latency system, which leads to 

simulations that are less accurate. As more cores are added to each die and CPU clock rates continue to  

outpace memory access times, the gap will only grow wider and simulation results will be less accurate.

This thesis proposes to look at the way a memory controller and DRAM system work and attempt to 

model them accurately in a simulator. It will use a simulated Alpha 21264 processor in conjunction with a  

full  system simulator  and  memory system simulator.  Various  SPEC06  benchmarks  are  used  to  look  at 

runtimes. The process of mapping a memory location to a physical location, the algorithm for choosing the 

ordering of commands to be sent to the DRAMs and the method of managing the row buffers are examined 

in detail. We find that the choice in these algorithms and policies can affect application runtime by up to 

200% or more. It is also shown that energy use can vary by up to 300% by changing changing the address  

mapping policy. These results show that it is important to look at all the available policies to optimize the 

memory system for the type of workload that a machine will be running. No single policy is best for every 

application, so it is important to understand the interaction of the application and the memory system to 

improve performance and reduce the energy consumed.



Advisory Committee:
Professor Bruce L. Jacob, Chair
Professor Donald Yeung
Professor Gang Qu

HIGH-PERFORMANCE DRAM SYSTEM DESIGN CONSTRAINTS AND 
CONSIDERATIONS

by

Joseph Gross

Thesis submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of
Master of Science

2010



© Copyright
Joseph Gross

2010



Table of Contents
Chapter 1 Introduction.....................................................................................................................1

1.1 The Problem in Detail...........................................................................................................2
1.2 Contributions and Work........................................................................................................2

Chapter 2 DRAM Devices...............................................................................................................5
2.1 Introduction...........................................................................................................................5
2.2 Device Organization..............................................................................................................5

2.2.1 DRAM Devices in Greater Detail.................................................................................9
2.2.2 A Row Access in a DRAM Device..............................................................................11

2.3 Mode Registers....................................................................................................................14
2.3.1 Burst Length................................................................................................................15
2.3.2 Burst Type....................................................................................................................16
2.3.3 Write Recovery,  CAS Latency and Additive Latency................................................16
2.3.4 Auto Self Refresh and Self Refresh Temperature .......................................................18

Chapter 3 Memory System Organization......................................................................................19
3.1 Typical Memory System Organization................................................................................19
3.2 Naming Conventions...........................................................................................................20

3.2.1 Channel........................................................................................................................21
3.2.2 Rank.............................................................................................................................22
3.2.3 Bank.............................................................................................................................24
3.2.4 Row and Column.........................................................................................................25

3.3 Memory Modules................................................................................................................26
3.3.1 SIMM..........................................................................................................................27
3.3.2 DIMM and SODIMM..................................................................................................28
3.3.3 ECC DIMM.................................................................................................................29
3.3.4 Registered DIMM........................................................................................................29
3.3.5 FB-DIMM....................................................................................................................30
3.3.6 SPD chip......................................................................................................................31

Chapter 4 DRAM Protocol and Timing.........................................................................................33
4.1 DRAM Commands: An Overview......................................................................................33

4.1.1 DRAM Command Illustrations Explained..................................................................34
4.1.2 Row Access Command................................................................................................36
4.1.3 Column Read Command.............................................................................................37
4.1.4 Column Write Command.............................................................................................38
4.1.5 Precharge Command...................................................................................................39
4.1.6 Row Refresh Command..............................................................................................40

4.2 Read Cycle..........................................................................................................................42
4.2.1 Read Cycle with Read-and-Precharge.........................................................................43
4.2.2 Posted CAS..................................................................................................................45

4.3 Command Interactions........................................................................................................46
4.3.1 Consecutive Reads To Different Rows In A Bank.......................................................47
4.3.2 Consecutive Reads To Different Rows In A Bank, Worst Case..................................48

ii



4.3.3 Reads to Different Banks (Bank Conflict)..................................................................49
4.3.4 Consecutive Reads to an Open Row...........................................................................51
4.3.5 Consecutive Reads to Open Rows within a Rank.......................................................52
4.3.6 Reads to Different Ranks.............................................................................................53
4.3.7 Write to Write, Different Ranks with Open Banks......................................................54
4.3.8 Write to Precharge.......................................................................................................55
4.3.9 Write to Write with Bank Conflict...............................................................................56
4.3.10 Read to Write, No Conflict, Different Ranks............................................................57
4.3.11 Read to Write with Bank Conflict.............................................................................58
4.3.12 Write to Read in the Same Rank................................................................................59
4.3.13 Write to Read in Different Ranks..............................................................................59
4.3.14 Write to Read with Bank Conflict, Same Bank.........................................................60
4.3.15 Write to Read with Bank Conflict, Same Rank.........................................................61
4.3.16 Column Read-and-Precharge Timing........................................................................62
4.3.17 Column Write-and-Precharge Timing.......................................................................63

4.4 Power and Performance Constraints...................................................................................64
4.4.1 Four Bank Activation Window....................................................................................65
4.4.2 Row-to-Row Activation Delay....................................................................................66
4.4.3 2T Command Timing..................................................................................................68

Chapter 5 Power Modeling ...........................................................................................................69
5.1 Overview.............................................................................................................................69
5.2 Background Power..............................................................................................................70

5.2.1 All Banks Precharged..................................................................................................71
5.2.2 One or More Bank Activated.......................................................................................72

5.3 Event Power........................................................................................................................72
5.3.1 Activate Power.............................................................................................................73
5.3.2 Read Power..................................................................................................................75
5.3.3 Write Power ................................................................................................................76
5.3.4 Termination Power......................................................................................................77
5.3.5 Refresh Power.............................................................................................................78

5.4 Derating Power For Specific Systems.................................................................................79
Chapter 6 Experimental Setup.......................................................................................................80

6.1 Simulator Setup...................................................................................................................80
6.1.1 Multithreaded Workloads and Thread Synchronization..............................................83
6.1.2 Simulator Data Movement..........................................................................................83

6.2 Transaction Queue...............................................................................................................85
6.2.1 Refresh Queue.............................................................................................................88

6.3 Per-Bank Command Queues...............................................................................................89
6.4 Row Buffer Management Policies......................................................................................91

6.4.1 Close Page...................................................................................................................92
6.4.2 Open Page....................................................................................................................93
6.4.3 Close Page Aggressive................................................................................................94
6.4.4 Open Page Aggressive.................................................................................................94
6.4.5 Row Buffer Management Policy and Its Effects on Power.........................................95

iii



6.5 Address Mapping Policies...................................................................................................97
6.6 Command Ordering Algorithms........................................................................................100

6.6.1 Timing Requirements................................................................................................101
6.6.2 Timing Requirements – Channel...............................................................................102
6.6.3 Timing Requirements – Rank....................................................................................102
6.6.4 Timing Constraints – Bank........................................................................................103
6.6.5 Command Ordering Algorithm: Strict.......................................................................104
6.6.6 Command Ordering Algorithm: Bank/Rank Round Robin.......................................106
6.6.7 Command Ordering Algorithm: First Available........................................................108
6.6.8 Command Ordering Algorithm: Command Pair Rank Hop......................................109

6.7 Random Address Simulation Mode...................................................................................112
6.8 Simulation Setup: DRAMsimII and M5...........................................................................113

6.8.1 Benchmarks...............................................................................................................115
6.8.2 Methodology..............................................................................................................116

Chapter 7 Results.........................................................................................................................118
7.1 Power Results....................................................................................................................136
7.2 Detailed Power Comparison – LBM.................................................................................141
7.3 Command Ordering Algorithm Performance....................................................................143

7.3.1 Saturation Mode........................................................................................................144
Chapter 8 Contributions and Related Work.................................................................................153

8.1 Summary and Contributions.............................................................................................153
8.2 Related Works...................................................................................................................156

Chapter 9 Conclusions and future work......................................................................................159
9.1 A Word on Multithreading.................................................................................................160
9.2 Future Work.......................................................................................................................161

Chapter 10 Bibliography..............................................................................................................163

iv



CHAPTER 1 INTRODUCTION

Over the past forty years, the performance of computer systems has steadily increased. The transistor 

count of integrated circuits has approximately doubled every 18 to 24 months, as predicted by the so-called  

“Moore's Law”. Increased transistor counts have contributed to the doubling of system performance as well  

as increased operating frequencies of those components. Until recently, it was possible to improve the speed  

of a single processor either through process technology or more efficient design. Designers are finding it very 

difficult to improve single-threaded performance now, because processor speeds are growing faster than the 

memory elements upon which they depend.

Recently there has been a trend toward having more cores on the same die in an attempt to increase 

performance by having more processors available to perform calculations[Jacob 07]. To keep up with these 

faster, more numerous processors, much larger and faster caches have been added to keep more of the data  

closer to the processors. Even though L3 caches may now be larger than 8MB, the problem still remains that 

at some point the processors will have to wait tens to hundreds of cycles for main memory. As working sets  

become  larger,  the  growing  performance  disparity  between  processing  elements  and  memory elements 

becomes  more  pronounced.  Main  memory is  not  a  commonly or  accurately modeled  aspect  of  system 

simulation, so it is important to simulate this correctly as memory latency comes to dominate execution 

times.

In this thesis we explore the interactions of processors and memory, the arrangement of the memory 

system,  with the aim of  optimizing performance and reducing power usage.  This is  done by accurately 

modeling a real DDRx (Double Data Rate, generation 1, 2, 3, ...) DRAM (dynamic random access memory)  

system and looking to see what features and optimizations affect the execution time of various benchmarks  

as well as power dissipation for the same simulation runs.

1



1.1 The Problem in Detail

As computer systems become faster and more complex, the need to simulate the interaction of all the 

components in a real system becomes important. There are more processors in a system than ever before,  

running faster and interacting with the memory subsystem in a more complex way. While processors are  

often well-studied in full-system simulators, the simulation detail tends to become less detailed past the L2 or  

L3  cache.  Often,  simulators  will  model  DRAM  as  fixed-latency or  random latency.  As  systems  grow 

increasingly dependent on the speed at which they can move data around, losing simulation fidelity for main  

memory can greatly affect simulation results and lead to unrealistic simulated behaviors. As the number of  

cores in a system increases, the problem will only get worse.

Much of the problem lies in the fact that access times for DRAMs are non-deterministic and non-

uniform. If a request is made at some time, it is possible to anticipate when that request will be returned  

based on how many and of what type of requests are before it in the memory controller queues [Jacob 03]. 

These,  in  addition  to   the  timing  parameters  and  configuration  of  the  DRAM  system  would  yield  a  

predictable  but  variable  value.  However,  because  the  memory  system  implements  priority  queues,  a  

subsequent request may preempt an older request and increase the latency of the original request. 

Added  to  this  is  the  fact  that  many  memory  controllers  are  not  well  documented.  Many 

manufacturers will  never describe how the memory system is laid out nor what  policies are being used 

internally, so it becomes difficult to model what a memory controller should look like, much less how the  

DRAMs should behave when controlled by one.

1.2 Contributions and Work

This work attempts to explore the design space of a DDR1/2/3 memory controller. It also seeks to  

establish  a  good  framework  from which  to  develop,  test  and  simulate  future  optimizations  to  memory 

controllers. Specifically, the contributions of this work are as follows:

2



• We create an architectural model by which a memory controller can be accurately simulated, cycle  

by cycle. The simulator is extensible and configurable so features may be changed or added without  

needing to affect the rest of the system. 

• A system is developed by which minimum distances required between commands are calculated. At  

the time a command is issued to a DRAM, the minimum time to wait for various other types of 

commands  is  known.  Many of  the  scheduling  algorithms must  know which  commands  will  be 

available to execute first, so this calculation methodology allows a simple lookup to take the place of 

the calculations usually required to determine minimum command spacing.

• Power models are added which calculate the main sources of power usage in DRAMs accurately. 

The  timing  of  commands,  their  spacing  as  well  as  their  location  is  considered  and  a  detailed 

breakdown of how the power was dissipated is reported on demand. The data is reported periodically 

so that power usage vs. time may be analyzed and different algorithms can be evaluated as to their  

performance and power usage simultaneously.

• Several models are developed for mapping physical addresses to memory system locations. Several 

other models are adapted and compared as well to look at their effects on performance and power  

usage.

• Several models are created to choose from existing commands and order them. These command 

ordering algorithms are adapted and compared for power and performance to see what their effects 

are.

• The standard close page and open page row buffer management policies are modified and optimized 

to take better advantage of open rows and reduce memory controller resource utilization. They are 

then compared against their original versions and compared for power and performance effects.

3



• Processing scripts to quickly and accurately generate web-ready reports of  simulation runs were 

developed. These enable the user to simply generate web pages and graphics necessary to analyze, in  

great detail, the effects modifications have had on the system.

• Detailed statistics are gathered to help show the effectiveness of address mapping policies on the  

distribution of requests to channels, ranks and banks, showing graphically how well distributed 

the requests are.

• Simulation and analysis of the results of a number of benchmarks from the SPEC2006 benchmark 

suite. Simulation attempts every combination of address mapping policy, row buffer management 

policy and command ordering algorithm.

4



CHAPTER 2 DRAM DEVICES

2.1 Introduction

In order to better appreciate the workings of a DRAM system, one must be familiar with the circuits  

that make them work and why they are organized in this way. Most other types of memory, like SRAM  

(static random access memory), will retain their values as long as the circuit is powered. DRAM, however, 

must be periodically restored in order to maintain the values in the cells due to the charge in the capacitors  

leaking through the substrate. A strong understanding of how the underlying circuits of a DRAM device will  

make it clearer how the devices work and what design constraints are present for memory systems.

This  chapter  will  look  at  the  basic  cells  that  make  up  DRAMs,  the  sense  amplifiers  and  their 

interaction with the cells, the control logic, mode registers and some examples of optimizations made to 

solve certain efficiencies.

2.2 Device Organization

The following figure shows the organization and internal structures of a typical DRAM device. The  

DRAM array may have several configurations depending on the capacity of the device. Usually the DRAM 

array has  an aspect  ratio  close  to  1:1,  although it  is  not  uncommon to find  a  device  with a  4:1  ratio. 

Frequently, devices will be described by their row count (e.g. 32,768), column count (e.g. 512), the column 

width (e.g. 4, 8 or 16) and the number of banks (e.g. 8). Alternately, the device may be described as having a 

certain capacity (e.g. 256MB) and width (e.g. x4, x8). This capacity is simply the rows * columns * column 

width * banks. The RAS (row address strobe) pin is used to tell the device that there is a valid row address 

on the ADDR pins (e.g. 15 pins for a family of devices with up to 32,768 rows). The ADDR pins also include 

the BA (bank address) pins to select which bank the row will be chosen from. In Figure 2.1, the banks are  

5



shown as the stack of eight squares. Each of these banks has its own set of sense amps and therefore can be 

operated independently from the others. 

Once the RAS pin is asserted, then the values in that row are read into the sense amps for that bank 

and it begins to restore the read values to the capacitors in that row. Once the values from the row are in the  

sense amps, the column address is placed on the ADDR pins and the CAS (column address strobe) pin is 

asserted. The number of columns is usually going to be far fewer than the number of rows, usually in the  

128-512 range. Once the data is moved into the output registers, the device begins to stream out the data.  

Older devices will send the values in the requested location, while DDRx devices will send that value and  

subsequent values, thus sending more data per transaction. An optimization was created, called Fast Page  

Mode (FPM) DRAM, which allows multiple reads and writes to be performed after a single row activation.  

This is achieved by continuing to hold RAS low while issuing reads or writes. Not only is there no overhead  

for reactivating the row, there is no need to retransmit the row address repeatedly.

6

Figure 2.1: The organization of a typical DRAM device

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

CKE

CLK

CS#

WE#

CAS#

RAS#

ADDR

Control Logic

Command 
Decoder

Mode Register

Refresh Counter DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

I/O Gating
Write Drivers
Read Latch

Address 
Register

Row 
Address 
Select

Column 
Select

Column 
counter

Bank 
Controller

Data I/O 
Gating

DATA

Input Data 
Register

Output Data 
Register



The CLK pin provides the clock to the device as a reference to synchronize the timing. Older DRAM  

devices were not synchronous, so the device would give a result as soon as it could. Adding a synchronous 

interface to DRAM, thus making SDRAM, now ensures that events in the chip and timing requirements are  

all defined in terms of cycles. Additionally, the timings of the SDRAM devices can be synchronized to match 

that of other system components.

The mode registers, which will be explained in more detail later, are to setup certain timings in the  

chip and to set behaviors like how many bits would be sent during a read burst, how often to refresh all the  

rows and what sort of delay to give read commands that are issued back-to-back with activate commands.  

These registers work with the control logic to define what timings should be used when controlling the sense 

amps as well.

The refresh counter maintains a counter that goes through all the rows in the banks. When a refresh 

command is issued or when the device is  in self-refresh mode, this counter chooses which row will  be  

refreshed at that time. Because each DRAM device keeps track of which row should be refreshed in turn, the  

memory controller does not need to keep track of this. Additionally, refresh commands do not need to send 

the row address with each refresh command. This saves having to store and transmit data to the device with 

each refresh command (refresh commands are quite common, approximately every 64ms). This counter is  

also used by the device when it is in self-refresh mode. Self-refresh mode is a way for the memory controller  

to effectively put the DRAMs into a sleep state but not lose the data. Because the cells will lose their values  

unless read from fairly often, the memory controller would need to continue to issue refresh commands as  

long as  the  system is  running.  Once  in  self-refresh  mode,  the  DRAMs will  do  this  automatically.  The 

downside is that the device must be brought out of self-refresh mode before any activate, read or write  

commands can be issued.

Because the DRAM devices are meant to be used in conjunction with many others simultaneously,  

there may be hundreds of traces on a printed circuit board dedicated to the memory system. Designers have  

come up with many ideas to reduce the pin count of the devices as much as possible over the years. The row 

7



and column addresses are multiplexed on the ADDR pins and row and column accesses are done separately.  

Although a  read now is likely to  require  two commands,  the  pin count  for  the  address  bus  is  reduced 

significantly. The data bus is also bidirectional. Because reads and writes will not happen at the same time,  

the data bus is bidirectional. The data bus is the single largest use of traces in a memory system, so using the  

data bus bidirectionally greatly reduces the pin count and required real estate for the memory system.

Another evolution to the structure added the Read Latch between the sense amps and the output pins. 

Because the value is now buffered, the CAS pin can be de-asserted and a new transaction may begin while  

the previous data is being read. This optimization was known as Extended Data Out (EDO) DRAM and can  

improve performance by 15% [Cuppu 2001].

A further refinement was the addition of a burst counter in Burst EDO DRAM (BEDO DRAM). This 

was an innovation which was the basis a common feature in DDRx DRAM, burst reads/writes. The burst  

counter was initially set to zero on a read command and incremented by one after each subsequent assertion 

of the CAS pin. The counter value was added to the column address so that the CPU could read many blocks  

in a row merely by toggling the CAS value. This cut down on the time required to get to the next value and 

removed the need to send column addresses between reads, reducing cycle latencies by as much as 30% 

[Prince 2000].

8

Figure 2.2: The 1T1C Storage Cell

bitline

wordline



There are other improvements that have been made that will be explained later in this paper. The  

remainder  of  this  chapter  will  describe  DRAM  devices  in  greater  detail  and  show  typical  system 

organizations.

2.2.1 DRAM Devices in Greater Detail
Shown below is the most basic element of the DRAM array contained in each DRAM device. It  

consists of one capacitor and one transistor and is therefore commonly known as the 1T1C cell. The first  

DRAMs were created by Dr. Robert Dennard and built by IBM in 1966. This design, using capacitors for  

storage, was awarded patent 3,387,286 in 1968. In the following years, designs became available, including 

the Intel 1102 and 1103, which were very successful. Later, the Mostek MK4096 and 4116 followed, with the 

latter being a 16K chip and was very popular. The stored value of the capacitor is allowed to connect to the  

sense amps when its wordline is asserted. When a row is selected, it simultaneously chooses many wordlines 

to allow access to the many cells that make up a row. Depending whether the capacitor is mostly charged or  

mostly empty, it will make an effect on the bitline's value and allow a high or low charge to be amplified and 

sensed.

Because of the basic physical effects of having capacitors in integrated circuits, the charge stored in  

the capacitor will leak out into the substrate rather quickly, represented by the ground symbol in the diagram.  

Charge may leak through the access transistor or through the material surrounding the capacitor. If a cell is  

charged to VDD, meaning that it represents a 1, there is a limited time before the value is reduced to the point 

where it can no longer be sensed definitively as either a 1 or a 0. To counteract this problem, DRAM systems 

have implemented refresh schemes for quite a long time. As mentioned previously, refreshing the rows must 

happen fairly often by sensing the values in the cells and either restoring the charge (or lack thereof). Due to 

process variation,  some cells  will  retain charge much longer than others. However, the duration a value  

remains valid in a cell varies with age and temperature, so it would be very difficult to tune a system to  

refresh at a rate specific to that device. Therefore, manufacturers specify a maximum refresh interval (tREFI) 

for the rows that, if not exceeded, should guarantee that the values remain valid in all situations. Often, the 

9



value of tREFI is 64ms/#rows for normal situations and 32ms/#rows for high temperature situations, as the  

leakage rate of the cells is directly proportional to temperature.

The sensing circuit is a key part of the sense amplifiers. It consists of two NMOS and two PMOS 

transistors. The idea is that when the bitlines are charged to VDD/2 and a capacitor is then connected to one or 

the  other  of  these,  the  capacitor's  VDD or  0  value  will  slightly alter  the  charge  on  the  line.  This  slight 

alteration will cause either the NMOS or PMOS circuit to begin to conduct for VDD or 0, respectively. The 

SAN node is set to 0 and the SAP node is set to VDD, so the other bitline will see increased or decreased 

voltage. The two rails are eventually driven to opposite voltages and thus the small amount of charge stored 

in the capacitor is amplified to VDD and 0 on the bitlines.

There is  also the voltage equalization circuit,  shown in  Figure  2.4,  used to  precharge the sense 

amplifiers' bitlines.

When the EQ line is taken to VDD, the three NMOS transistors are opened and this allows the 

bitlines to both be set to VDD. The other transistor ensures that they are precharged more quickly since they 

will have opposite charges and need to be set to the halfway point between them. This significance of this 

portion of the sense amplifier circuit is explained in the next section.

10

Figure 2.3: The sense circuit

bitline

_____
bitline

SAPSAN



2.2.2 A Row Access in a DRAM Device
In order to access a row in a DRAM, the row must first be opened. Then reads or writes may be  

performed and finally the sense amplifiers should be precharged. The precharge may happen at the end of the 

sequence  or  the  beginning,  but  it  must  be  done  when  leaving  one  open  row  to  go  activate  another. 

Additionally, there need not be any reads or writes before a row is closed. There may also be a virtually 

unlimited number of reads and writes to the same row before it is closed (precharged). For the following 

diagrams, VDD/2+ and VDD/2- represent values just above and below VDD/2, respectively.

Figure 2.5 shows the first  stage of a row access.  The equalization signal  is not  asserted,  so the 

positive and negative bitlines are effectively floating. The wordline is then activated to allow the capacitor's  

charge to influence the upper bitline. In this example, the capacitor was set to VDD, so the bitline voltage 

increases.

Because the upper bitline voltage increased, the gate voltage of the NMOS transistor in the sense 

circuit  was further opened, thus beginning to short the lower bitline to ground, taking its voltage to just  

below VDD. Had there been no stored charge in the capacitor, the upper bitline would have been a slightly 

lower voltage and the lower bitline therefore would be a slightly higher voltage.

11

Figure 2.4: Voltage equalization circuit
EQ

bitline

_____
bitline

VD D / 2



After a short time, the upper bitline is driven to VDD while the lower bitline is driven to 0V. The 

lower NMOS transistor is completely on at this point, while the lower PMOS transistor is completely off.  

Because the lower  bitline  is  at  0V,  the  upper  NMOS transistor  is  completely off  and the upper  PMOS 

transistor  is  completely on.  Thus,  the  capacitor  influenced the charge in  the  upper  bitline.  This  in  turn  

changed the lower  bitline.  Then this  fed back  to  the  upper  bitline  and eventually drove the  bitlines  to 

opposite values correctly representing the value stored in the capacitor.

Once  the  value  is  sensed  and the  bitlines  have  settled,  a  read  on  any of  the  columns  may be  

performed. This is accomplished by activating the chip select (CS) pin, which will connect the amplified 

value to the output of the DRAM device. There is the additional constraint of restoring the value from the  

capacitor to its original state. Because it was connected to a much later capacitance, the bitlines, its value 

12

Figure 2.5: The beginning of a row access

SAPSAN

Vc c / 2

WECS

output

_____
output

input

____
input

EQ

_____
bitline

voltage EQ circuitsense circuit

bitline

GND VDD/2- VDD/2 VDD/2+ VDD

Figure 2.6: At the end of the sense portion of a row activation

Vcc / 2

WECS

output

_____
output

input

____
input

EQ

_____
bitline

voltage EQ circuitsense circuit

bitline

SAPSAN

GND VDD/2- VDD/2 VDD/2+ VDD

Figure 2.7: The restore and read portion a row activation

Vcc / 2

WE

input

____
input

EQ

_____
bitline

SAPSAN CS

voltage EQ circuitsense circuit

bitline
output

_____
output

GND VDD/2- VDD/2 VDD/2+ VDD



dropped to near VDD/2. Likewise, if the capacitor had been at 0, its value would also be affected. By keeping 

the wordline open and maintaining this voltage on the bitlines for a minimum period of time, the original  

value can be restored. If this timing is not observed, the value may not be fully restored in the capacitor,  

leading to an undetectable value next time it is activated. The timing parameter tRAS specifies the minimum 

time that must pass before the activated row is sensed and the values are returned to the cells. Once tRAS has 

elapsed, then it is safe to assume that the values from the cells have been sensed and restored, so the row can  

be closed with a precharge operation. Most of the time a row will be opened for the purpose of reading from 

or writing to it. Because only the values on the bitlines must be stable for this to occur, the timing parameter  

tRCD is defined to tell the system at what point after an activate a read or write may be performed.

While a row is open, it may also be written to. The wordline is kept open, as is the CS. Additionally,  

the write enable (WE) pin is asserted, which activates the transistor that controls access of the write buffer to 

the bitline. In Figure 2.8, the upper bitline was at VDD, but the write buffer driver forced it to 0V. The other 

write buffer forced the lower bitline to VDD so that the open row now contains the opposite value as before. 

At the same time, since the wordline remained open, the voltage in the capacitor was set to 0V, thus updating  

its stored value. Writing the value and charging the bitlines and the capacitor takes an extra amount of time 

after the restore is finished, typically given as tWR in data sheets. After tWR has passed, then the bitlines and 

capacitor are certain to be updated and the row may be precharged without leaving the storage cells in an  

ambiguous state.

13

Figure 2.8: A write to an active row

Vcc / 2

WE

input

____
input

EQSAPSAN CS

voltage EQ circuitsense circuit

bitline
output

_____
output

_____
bitline

GND VDD/2- VDD/2 VDD/2+ VDD



A final or first step in the activation process is the precharge. It is first or last because it must happen  

between row activations, so it is a matter of perspective as to whether it is first or last. As shown in Figure

2.9, the CS, WE and wordline controls are all de-asserted. The equalization (EQ) control is active. Just as 

mentioned for Figure 2.4, this sets the bitlines to VDD/2, putting them in a metastable condition so that when a 

wordline is activated, the small perturbation caused by the charge or lack thereof from the capacitor will be  

sensed and amplified to a usable value. To ensure that the bitlines are fully precharged, the row precharge  

time (tRP) must be followed. Once tRP has passed, the bitlines will be equal, set to VDD/2 and ready for another 

row activation.

2.3 Mode Registers

The mode registers control the behavior of the DRAM devices. Values in the mode registers are 

updated by sending a mode register set (MRS) command during initialization. The values remain until they 

are reset, the chip is reset via the RESET pin or the device is power cycled. When issuing MRS commands, 

one  timing  parameter  that  must  be  obeyed  is  tMRS,  which  defines  the  minimum interval  between MRS 

commands. Additionally, the memory controller must wait tMOD for changes made to the registers are set and 

the behavior of the device is altered.

14

Figure 2.9: Precharging a row in preparation for a row activation

SAPSAN

Vc c / 2

WECS

output

_____
output

input

____
input

EQ

_____
bitline

voltage EQ circuitsense circuit

bitline

GND VDD/2- VDD/2 VDD/2+ VDD



2.3.1 Burst Length

One value that may be set in DDRx DRAMs is the burst length. The burst length defines how many 

columns are sent or received when a read or write is executed, respectively.  For example, in a DDR2/3 

SDRAM, bits n:2 are used to determine the block and the remaining bits are ignored when the burst length is 

4. Similarly, bits n:3 are used to choose the block when the burst length is set to 8. Figure 2.10 shows the 

result of setting burst length to 8. The bits not used to select the block are used to select the starting byte 

within the block. When the starting byte is not set to 0, then the device will send the bytes, starting with the  

requested byte and wrap around when it reaches the end of the block (e.g. bits 2:0 → 3, byte order → 3, 4, 5, 

6, 7, 0, 1, 2). The same applies for writes as well, the bytes may be written sequentially within a block,  

starting at any specified location. In DDR3, a burst length of 8 is typical and a burst length of 4 is known as  

'burst chop.' This is because it is effectively chopping off the end of the burst. DDR3 also adds the additional 

feature of having a mode that allows the memory controller to dynamically select the burst length on each 

read or write command, so it can invoke a burst chop only when needed. This can be useful for times when 

longer or shorter bursts are needed. For example, when the memory controller is filling a request for a L2  

cache, it may need to fill a 64-byte block. Because the data bus width is 64 bits wide, a burst of 8 will satisfy 

this request with one read command. However, if another device like a network makes a read request for 32  

bytes, the memory controller can request a burst of 4 and not have to throw away the additional 4 bytes that 

were fetched but not needed. Additionally, this leaves 4 cycles open on the data bus that would otherwise  

15

Figure 2.10: tCAS and tBurst, two mode register parameters, affect timing and behavior

clock

READ

Bank/
sense 
amp

command NOP NOP NOP
tCAS

data

Data read

I/O Gating

Data

NOP

tBurst, BL=8

NOP

Data Data Data Data Data Data Data

Data read

I/O Gating



have been used. These cycles can be used to now read/write data from/to other DRAMs, rather than waiting 

for the burst of 8 to complete.

2.3.2 Burst Type
The burst type defines in what order the bytes within the selected block are read or written. The first  

byte will always be the one that is by address pins 2:0 or 3:0, but the following bytes may vary in order. If set  

to sequential mode, the bytes will be sent in the order as described previously, wrapping around if the initial  

byte is not at the beginning of the block. Interleaved mode, however, sends the bytes in a much different  

order. This is often done to reorder transmission errors. Error correcting schemes often expect that the errors  

in a transmitted group occur in a mostly uniformly distributed fashion, so if the errors occur in a large burst,  

the error correcting scheme may not be able to recover.

The other option for transmitting data is interleaved. Interleaving sends an entire block of 4 before 

sending the other block of 4, rather than treating the two blocks of 4 as one large block (as is done for  

sequential reads). Interleaving is essentially sending the entire upper or lower block before sending the other  

block, thus changing the byte transmission order. For DDRx memory, if the burst type is set to interleaved 

and the burst length is 4, the bytes will be sent in the order that wraps within the upper or lower 4 bytes (e.g.  

3 → 3, 0, 1, 2 or 5 → 5, 6, 7, 4). If, however, the burst length is changed to 8, then the bytes will be sent with 

the upper or lower 4 bytes first, depending where the requested first byte is located. Then the other set of 4 

will be sent, beginning with the same byte of the block as before (e.g. 3 → 3, 0, 1, 2, 7, 4, 5, 6 or 4 → 4, 5, 6, 

7, 0, 1, 2, 3).

2.3.3 Write Recovery,  CAS Latency and Additive Latency
The CAS latency and write recovery times may be programmed into the mode registers of a DRAM 

device. These values are helpful to help the device automatically carry out automated command sequences 

without  losing data in the process.  Although these values could be hard-coded into the DRAM devices  

themselves, rather than programmable registers, this would be problematic for DRAM device manufacturers.  

16



Manufacturers can fabricate DRAM devices that are all intended to work using the most aggressive timing  

parameters. When imperfections in the fabrication process require some of the devices to be run at slower  

speeds,  the only change that  is  needed is  to  program the mode registers  differently.  Additionally,  some  

systems will want to use the devices at speeds slower than the rated maximum for increased reliability. This  

is easily done by simply programming the timing parameters differently at initialization.

The write recovery time specifies how long after a write has finished on the data bus that the input 

drivers, shown in Figure 2.8, must wait until the new values are fully written into the cells. Disconnecting the 

input drivers sooner than this could lead to capacitor values that are not recognizable as valid values when  

sensed the next time. This timing parameter is described in greater detail in a later section. 

Although the memory controller can wait for this value, the DRAM device has complex commands 

that will group two or more commands into one command for the convenience of the memory controller. In  

this case, the “write and precharge” command. Once the write has finished, a precharge is automatically 

issued by the DRAM device itself. Therefore it must know what it's own write recovery time is in order to 

delay the precharge to a point where the written bytes will be successfully stored before that row is close and 

the sense amplifiers are precharged in preparation for another row activation.

It is similar reasoning for the programmability of CAS latency, which is the delay between when a  

column read command is issued and the availability of the first bit of data on the data bus. If the data is not 

fully finished being sensed and the I/O drivers are not ready to transmit the correct data, then the system can 

read incorrect values from the DRAMs. The DRAM devices cannot know what speed grade they function 

correctly in, so the mode registers allow the memory controller to choose how long to wait for the data to be  

correctly read out of the cells.

Additive latency is a delay given to each read or write command once it is sent to the DRAM device. 

The point  of  this  is  to allow the memory controller  to simplify its  operation and reduce the amount of  

bookkeeping it must do. Once a row activation is issued, a column read or write may be sent immediately  

after. 

17



2.3.4 Auto Self Refresh and Self Refresh Temperature 
Self refresh  is a mode of operation whereby the DRAM devices' CKE is set low and the clock to 

them is disabled. Then the device will continue to issue refresh commands automatically until it is returned  

to an active state again. This is a low power mode that will maintain the data in the devices for long periods  

of time without external intervention.

The  Self  Refresh  Temperature  (SRT)  mode  register  is  used  to  tell  the  DRAM  devices  what 

temperature they are expected to be operating in and what auto refresh rate they should use. When this is set,  

the internal self refresh rate is doubled. This is to counteract the effects of high temperature on the devices.  

Because the leakage current in the capacitors tends to grow greatly as the device exceeds 85 ºC, the rows 

must be refreshed at a greater rate to ensure that their values do not drop to unrecognizable levels.

Auto  Self  Refresh  (ASR)  is  a  feature  that  is  new  for  DDR3  devices.  If  enabled,  this  can  

automatically switch the self refresh rate from 1x to 2x if the temperature exceeds 85ºC, ensuring that there is 

minimal chance for data loss when the temperature fluctuates in self refresh mode.

18



CHAPTER 3 MEMORY SYSTEM ORGANIZATION

This chapter will take a look at the topology of common DDRx memory systems and explain how 

memory locations are addressed. Although single DRAM devices have been looked at before, only a few 

types  of  systems  use  single  or  few  devices.  Most  systems  group  the  devices  into  large  groups  and 

communicate with many at a time. The naming conventions presented in this chapter are important for later  

analysis of the performance characteristics of various configurations.

3.1 Typical Memory System Organization

The size of individual DRAM devices has been much too small to act as main memory for a very 

long  time.  Certain  types  of  systems,  like  graphics  accelerators  and  embedded  systems,  have  different  

requirements and can function with just one or a handful of DRAMs connected to the memory controller.  

Most servers and workstations, however, need to have far more memory than this to function effectively.  

Overall system memory size has grown at roughly the same rate as DRAM device size, so there is a need to 

interconnect the devices to attain memory systems that are large enough to run modern workloads.

This chapter will look at at some different memory system organizations and attempt to explain why 

such setups exist and what the limiting factors for those configurations are. In Figure 3.1, the memory system 

is organized as a group of DRAMs connected directly to a memory controller that can address any of the 

devices individually. The data bus may be shared amongst the devices or there may be multiple buses to 

allow concurrent reading and writing. There may be multiple memory controllers working simultaneously on 

different groups of DRAMs to fill requests for the CPUs, network cards, or I/O controllers more quickly.

19



The organization of DRAM devices into a memory system can have a great impact on performance 

and power. The latencies under heavy load are greatly affected, as well as the maximum and sustainable 

bandwidth. As more devices are added to a system, the connection to those devices becomes more important 

as well as the rate at which they operate. DDR3 devices may operate at 1600MHz and beyond. Packages  

rated at 1600MHz have to send and receive data at 1600MT/s (mega transfers per second). At these rates it 

becomes difficult to create printed circuit boards (PCBs) that can transmit this data consistently. Therefore, it  

is important to design the memory system so that the design requirements are not so great as to make system 

implementations prohibitively expensive or difficult. 

3.2 Naming Conventions

It is therefore important to understand memory system design in greater detail. It is also important to 

know the nomenclature for this field so as to better understand the organizations and optimizations explained 

in the Experimental Setup and Results sections. Because the terms for the various parts of a memory system 

are unlike any other part of a computer system, a thorough look at the terms and organizations is key to 

seeing what is important in memory system design.

20

Figure 3.1: A simple memory system organization

Memory 
Controller

DRAM Array DRAM Array DRAM Array

DRAM Array DRAM Array DRAM Array

DRAM Array DRAM Array DRAM Array

Address bus

Data bus

Command bus



3.2.1 Channel

Two different channel configurations are shown in Figure 3.2, one that connects directly to a DRAM 

device and one that connects to two different devices and treats them as one effective device. Each channel is  

controlled by a single memory controller, but there may be multiple controllers running channels in a system.  

In a typical workstation  in 2009, it is quite common to have two channels. To achieve the 128-bit bus in the  

second example, two 64-bit memory modules are ganged together. These have separate data buses to allow 

simultaneous reads or writes, but share address and command buses. This is commonly known as a “dual  

channel” configuration. Some memory controllers, such as those on AMD CPUs (e.g. Athlon 64, Opteron, 

Phenom,  Sempron)  and  many  Intel  system controllers  (e.g.  940,  945,  975,  875)  support  dual  channel  

configuration. Some of these are configurable so that the memory modules may be treated as a single 128-bit 

channel  or  two  64-bit  channels.  The  advantage  of  having  one  128-bit  channel  is  that  there  are  fewer 

commands to issue to store and retrieve data and the amount of data retrieved per read is doubled. 

Using dual  channel  mode may not  improve performance if  the majority of the bytes  from each 

transfer are not used. For example, if only one byte is used per read, then 15 bytes were moved that did not 

need to be. If the read was to satisfy a L2 miss from the CPU, 128 bits were moved into the cache. If this  

evicted one or more useful cachelines, which must then be written and reread later, performance will go 

21

Figure 3.2: Two possible ways to configure a channel

Memory 
Controller

DRAM Array

64
Memory 

Controller
DRAM Array

128

DRAM Array

64

64



down. Power usage will also go up due to increased data movement as each read or write consumes a certain 

amount of power.

3.2.2 Rank

Looking at a DDR3 spec sheet [reference here], one of the first things listed is the fact that the part is  

available in x4, x8 and x16 variants. This refers to how many data pins or bits are sent at each interval during  

tBurst. So the x8 part would have 8 data pins and addressing 8 devices simultaneously would give an effective 

channel width of 64 bits. Figure 3.3 shows how multiple DRAM devices can be combined to create a single,  

larger channel. All of the DRAMs are given the same address and control signals, so they act in concert when  

responding to commands. These groups are known as "ranks." It would be more logical, however, to refer to 

these groups as “banks,” except that that bank is a term already reserved for the internal arrays within the  

DRAM devices. Since “bank” was taken, “rank” was chosen instead to attempt to avoid any confusion.

All ranks have common control, address and data buses. Because every device in every rank has 

every valid address, without some kind of arbitration mechanism, all the devices would fight for access to the 

data bus and the system would not work. To solve this problem, the memory controller has an additional  

control signal, the chip select (CS), to activate only the rank that it intends to address. The memory controller 

can then send commands at appropriate times to avoid having any contention for the data bus.

22

Figure 3.3: Controlling several DRAMs at a time to create a 64-bit channel

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

SDRAM Device

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder
DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps
Row 

Latch/
Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

SDRAM Device

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder

Row 
Latch/

Decoder
DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

C
ol

um
n

C
ol

um
n

8
8

64



Figure 3.4 Shows one channel of a typical memory system. The channel has four ranks and four 

DRAM devices  per  rank.  In  a real  system,  this  would appear  to  be two DIMMs (dual  in-line  memory 

module). Each DIMM has two ranks because the front and back are electrically separated, so each side is a  

rank with its own CS signal.

Many modern systems are limited to 4 or possibly 8 ranks (2 or 4 DIMMS) per channel due to the  

fact that each device that is sitting on the shared buses tends to degrade the signal with reflections and  

capacitive effects.  To mitigate this problem, DDR2 and DDR3 have added on-die termination (ODT) to  

attempt to perform impedance matching and reduce the reflections that degrade the signal. ODT is a resistor  

23

Figure 3.4: An illustration of how 4 ranks are grouped into a channel

Memory 
Controller

DIMM 0/front

Channel 0

DIMM 0/back DIMM 1/front DIMM 1/back

Memory 
Controller 0

Rank 0 Rank 1 Rank 2 Rank 3

D
IM

M
 0

D
IM

M
 1



network that is located on each chip and is activated every time there is a read or write to another DIMM on  

the channel. So one rank from each not-in-use DIMM must turn on ODT to improve reads and writes.

3.2.3 Bank

Although the term “bank” has been an overloaded word over the years, especially when referring to 

the memory hierarchy, in this case, a bank refers to the 2D array of capacitors and their associated sense  

amplifiers located within a DRAM device. Often, devices have 2, 4, 8 or 16 banks. The illustration in Figure

3.5 shows a single rank with 4 DRAM devices, each of which has 4 banks. Banks are independent from one  

another due to the fact that they can be simultaneously reading from or writing to a row or sense amplifier.  

One bank may be opening a row and sensing the data from it while another row is accepting data and writing  

it to the sense amplifiers and capacitors. The sense amplifiers, or “row buffers,” store an active row for that  

bank, as described earlier in this paper. They, however, share their control, address and data buses, so the 

memory controller may send commands to only one bank at a time, limiting their independence. Arbitrating 

between banks and scheduling commands is a critical issue for both power and performance, as will  be  

discussed in the Experimental Setup and Results sections.

24

Figure 3.5: A single rank the the location of banks in relation to the rank

D
IM

M
 0

/A

Bank 3

Bank 0



3.2.4 Row and Column
A row is a group of storage cells that are activated together when a row activation command is sent 

to the DRAM device. The active rows are buffered in sense amplifiers, where they can be read from or  

written to. In most typical DDRx systems where devices are arranged into ranks, a row refers to the open row 

spanning across all the devices that comprise that rank. Figure 3.3 illustrates this well. There is a row open in 

each of the 8 devices, but those are all combined to act as a row. This is because the devices in a rank are all 

addressed via the same signals and their data buses are combined.

Rows are also commonly referred to as “pages.” So when a row is activated, a page from main 

memory is opened. Typically these are several kilobytes in size. Within each row are many columns, or  

groups within a row as wide as the data bus. Depending what the burst length of the devices is set to, a  

DDRx device will send multiple columns per read request. In Figure 3.3, the columns that are being selected 

for a read or write are shown as connected to the data bus, meaning that any of the columns are eligible to be 

accessed at any point.

This arrangement was made to attempt to give an advantage to accesses with spatial and temporal  

locality. If two accesses occur at nearly the same time and are mapped to the same row, the access will be  

quicker. Specifically, it will only take tCAS (the time it takes to move those values through the I/O gating and 

onto the bus) to read an additional value from a row already in the buffers. If the row must be close and  

another must be opened, then in addition to tCAS, it will take tRP (to precharge the sense amplifiers) and tRCD 

(the time to open the row and sense the values). Mapping requests that are likely to occur within a short time 

of  one  another  to  similar  locations  will  give great  performance  benefits.  Also,  because there  are  fewer 

commands sent and there are fewer precharge and sense operations, less power is dissipated. So finding ways 

to schedule requests to  reuse open rows as  many times as possible  before switching is  a key factor  to  

consider when designing a memory controller.

25



3.3 Memory Modules

For several  reasons,  memory is  often sold in  packages containing many DRAM devices.  Some 

architectures, like embedded devices and graphics cards, come with the DRAM devices soldered to the same  

circuit board as the processor. In the case of the embedded system, like a cellular phone or a portable music 

and video player, the device likely has one specific purpose that it will always be used for. It is unlikely to  

need memory upgrades for additional capacity or performance, so the added cost of sockets and add-on  

modules is unnecessary. It is also very likely that an embedded device is built to a specific price point, so 

reducing the number of required components and system complexity is of great importance. There is also the  

fact that these devices are meant to be portable, so they must be small, so having additional, expandable  

modules and sockets for them would likely make the device too large.

Likewise, a graphics card cannot incur the additional overheads of having memory modules for all 

the same reasons as an embedded device. However, graphics cards also have the additional constraint that  

they need higher performance DRAMs and are willing to sacrifice the flexibility of modularity to attain it.  

Adding an extra circuit  board and the socket adds length to the address, control and data traces. It also  

reduces the signal quality because the socket is a worse connection than just a wire and it adds capacitance.  

When a DRAM device is sitting very close to a GPU (graphics processing unit), then these limitations are  

removed and the command and data buses can be run at significantly higher speeds with greater reliability.  

The  connection  is  shorter  and  avoids  many of  the  problems  associated  with  longer  trace  lengths  like  

capacitive coupling and crosstalk.

For servers, workstations and laptops, however, the requirements are different. A single model of 

server or workstation may have a dozen different memory configurations available. Some may ship with no  

memory installed at all, so the user will have the option of vendor, capacity, quantity and speed grade. So  

users of servers, workstations and laptops need to be able to purchase their own memory, replace memory if  

it fails, upgrade when needed and be able to ensure that what they buy will work in the system they already 

have.

26



3.3.1 SIMM
Beginning  in  the  late  1980s  through  the  mid  to  late  1990s,  the  single  in-line  memory module 

(SIMM) was the prevalent type of DRAM memory module. The distinction of being “single” and “in-line” is 

important because although there are contacts on both the front and back of the board, all of the contacts are 

connected to the contact directly on the other side of the board. Looking closely at Figure 3.6, one can see 

that each gold contact on the bottom of the board has a hole in it. That hole is plated with gold as well and  

makes an electrical connection to the pin on the other side.

Prior to SIMMs, system boards could be upgraded by plugging dual  in-line pin (DIP) packaged 

DRAMs directly into the board. However, because there could be numerous DRAMs on a board, it could be  

difficult  to locate and replace a  faulty DRAM. Also,  insertion and removal  of these chips  was difficult  

because the pins were fairly small and fragile and likely to bend. The SIMM addressed these problems by 

being easy to install and allowed faster diagnosis of bad DRAMs.

There were two variants of the SIMM, the 30-pin version and later the 72-pin version. The 30-pin 

version had an 8-bit or 9-bit data bus, depending whether it had a parity line or not. Systems often required 4  

identical 30-pin SIMMs to be installed at a time to make an effective data bus width of 32-bits. The 72-pin 

version had a 32-bit or 36-bit data bus, depending whether the SIMM had parity enabled or not. The parity 

version had one parity bit per 8 data bits. SIMMs usually had EDO or Fast Page Mode DRAMs on them as  

they predate synchronous DRAMs.

27

Figure 3.6: A 72-pin single in-line memory module © Micron Technology, Inc.



3.3.2 DIMM and SODIMM
Dual  in-line  memory  modules  (DIMMs)  and  small-outline  dual  in-line  memory  modules 

(SODIMMs) are the most common memory modules available today. DIMMs are most commonly found in 

servers and workstations, while SODIMMs are used almost exclusively in laptops and other portable devices. 

DIMMs improve upon the concept of the SIMM by implementing separate electrical contacts on each side of  

the circuit  board.  This gives designers the opportunity to have one rank on each side of the board and 

increase overall system memory capacity. This also allows the signal routing to be placed more closely than 

before and have close proximity for power and ground signals.  Both of these help to reduce noise and 

improve signal integrity.

Figure 3.7 shows a 184-pin DDR DIMM. This side has half of the DRAMs and the other side has the 

other  half.  Because  there  are  two,  electrically  separate  sides  to  this  DIMM,  they  may  be  addressed 

individually as ranks. There is also the option to make a single-sided DIMM, with DRAMs on only one side 

and none on the other. In single data rate (SDR), DDR2 and DDR3 DIMMs, there are various numbers of 

pins. SDR had 168 pins and DDR2 and DDR3 have 240 pins. Although the pin counts for the various types  

of DIMMs differ, the width of the boards is the same. To prevent users from attempting to insert the wrong 

type of memory into a system board and possibly damaging the system, there is a notch in the bottom of the  

DIMM. For each type of memory, this notch is in a different position, so if someone is attempting to insert  

one type into the wrong system board, it will be physically impossible to insert it.

28

Figure 3.7: DDR333 SDRAM DIMM, 256MB with ECC source: micron.com



3.3.3 ECC DIMM
The device pictured in  Figure 3.7 is a 333MHz DDR1 DIMM with error checking and correcting 

(ECC). Because the data bus must be 64-bits for this type of module, each of the DRAM devices must be a  

x8 part. However, there are actually 9 devices on this DIMM and this is because the last one serves to store 

the correction bits that will help to fix single-bit errors and detect double-bit errors. The memory controller  

uses these extra bits  to store the bits of a Hamming code throughout the bits. In this way, if the bits are 

scattered across all of the DRAMs, any device failure will affect at most one chip.  If the bits are positioned  

like this, the contents of memory can be reconstructed even without an entire chip. This scheme is often 

known as chipkill. In some more advanced server systems, once a chip has failed, a spare, previously unused 

chip can be activated to replace the damaged chip and operation can continue.

3.3.4 Registered DIMM
In large servers that  handle  many simultaneous requests,  it  is  important  to have plenty of  main 

memory. Often in server environments, the available capacity of memory is the most important factor, so the  

registered DIMM is often used there. As figure Figure 3.8 shows, the data bus is connected to the memory 

controller, which is like a typical memory system, but the address and control buses are buffered through a  

registered latch.

The purpose of this is to reduce the loading effects on the bus by requiring the memory controller to 

drive  only one  device  at  a  time,  the  register.  Since  the  memory controller  now sees  only  one  device 

connected to the address and control buses, the capacitive effects from the longer traces are reduced. The  

portion of the address/control bus that is on the system board can be optimized to take advantage of the  

reduced loading and have more devices attached to the channel. On a typical system board, there are often 2  

DIMMs per channel, but on a board that supports registered DIMMs, 4 or 8 DIMMs is common.

This does not come without a price, however. Because the signals must be registered and then passed  

along, accesses will take an extra cycle before the data can be sent or received. This is often considered a  

29



small penalty in exchange for the ability to put more DIMMs onto a channel and have increased signal  

integrity to connected DIMMs.

3.3.5 FB-DIMM
The fully-buffered DIMM, or FB-DIMM is part of an alternate memory system that is meant to 

increase the performance, reliability and capacity of a memory system [Ganesh 07]. DIMMs in this type of 

memory configuration have the standard DDRx DRAM devices on the DIMMs, but also have an advanced  

memory buffer (AMB). The AMB's purpose, similar to that of the registered DIMM, is to buffer the signals  

and improve signal integrity. Instead of only buffering command and address signals, the AMB buffers all  

signals, including data. 

30

Figure 3.8: Memory controller connected to two registered DIMMs

DIMM 1

Re
gi

st
er

DIMM 0

Memory Controller

Data Bus

Address/Control Bus 

Re
gi

st
er



The data transmitted between the memory controller and the AMBs is sent in a serialized format. The 

AMB deserializes the commands and data intended for the DRAMs and sends the data in parallel, just as a  

traditional memory controller would. When data is returned from the DRAMs, the data is serialized by the 

AMB and transmitted back to the memory controller.

The interface to the FB-DIMMs is relatively narrow, with two unidirectional  buses.  One,  called 

“southbound,”  is  from  the  memory  controller  to  the  AMBs  and  is  14  lanes  wide.  The  other,  called 

“northbound,” goes from the AMBs to the memory controller and is 10 lanes wide. The reason that they are  

referred to as “lanes” is that they are not fixed in what they can do. These lanes must be 12x as fast as the  

basic memory clock, so if the underlying DDR3 DRAMs are running at 400MHz, the FB-DIMM channels 

will need to run at 4.8GHz. If one or more of the lanes are detected as malfunctioning, it will be disabled and 

the other lanes used instead, giving greater reliability. The system can suffer a loss of several bitlanes without 

losing the ability to transmit data by reducing the number of bits dedicated to cyclic redundancy check 

(CRC) in each transmission[Ganesh 07-2]. So as lanes become unavailable, the error detection ability is 

reduced, but performance is not degraded.

When a write occurs, the data is transferred to the FB-DIMMs more slowly than it is written to the 

DRAM devices. So the AMBs must buffer this data and delay until they can send the data burst continuously. 

The AMB also contains features more commonly associated with more complex controllers like temperature 

sensors, so it resides somewhere between being a register and a full-fledged controller. It is important to  

thermally control the AMBs, as the high-speed I/O drivers tend to consume a lot of power and may heat up 

the AMB to an unacceptable level during high load levels.

3.3.6 SPD chip
When looking at the upper right part of the board shown in Figure 3.7, one may notice a small, 8-pin 

IC that seems unrelated to the rest of the circuit. This is actually the serial presence detect (SPD) chip and it  

stores configuration information about the DRAM devices that are on this DIMM as well as the timings that  

31



it supports. Because DRAMs do not have any ability to store their own capabilities and it would take a while 

to experimentally determine what timings and capacities are available in the DIMMs, the SPD

Once  a  system is  turned  on,  it  begins  by performing a  power-on  self-test  (POST).  During  this 

procedure, the DIMM slots are polled, via the System Management Bus (SMBus), to determine the amount 

of memory present as well as the timings available. Some systems will choose to set timings at the speeds of 

the slowest module, others will account for the timings of the separate DIMMs individually. Many systems 

will allow the user to specify timings explicitly to override the values in the SPD. Each SPD will contain  

three timing sets, one for the fastest available clock rate and two for progressively slower clock rates. Table

3.1 shows a few of the parameters read from an actual SPD.

Parameter Value
Maximum module speed 800 MHz

Fundamental Memory Type DDR2

Size 2048 MB

Banks, Rows, Columns, Bits 8, 16384, 1024, 72

Ranks 2

Module Type Unbuffered DIMM

Interface Voltage 1.8V

Supported CAS Latencies 3T, 4T, 5T

tRP 12.50 ns

tRCD 12.50 ns

tRAS 45 ns

tWR 15 ns

tRC 57.5 ns

tRTP 7.5 ns

Manufacturer Kingston

Manufacturing Date 2008, week 33

Serial Number 0xA6CCD088

Table 3.1: Several of the values contained in an actual SPD

32



CHAPTER 4 DRAM PROTOCOL AND TIMING

To fully understand the complexities of a memory system, one must see the timing and interactions 

of memory commands. Previous chapters briefly look at memory timings for a few simple commands. These 

will be revisited in greater detail and then examined in greater detail when several commands are grouped 

together. 

The  timing  and  structure  of  the  memory  access  protocol  plays  a  key  role  in  the  latency and 

bandwidth of a memory system. The memory access protocol is defined by the available commands at a  

given time and the timings that must be followed to ensure that data is read, written and preserved properly.  

Within these rules are opportunities to more efficiently move data or use power, but the protocol must be 

followed.

Chapter  4   will  examine  the  memory access  protocol  in  greater  detail.  It  will  focus  on  DDRx 

memory systems as this is the type of memory that is simulated in the results section and is quite commonly 

found in servers and workstations. Although there are additional memory variants which offer additional 

features like write buffers and limited row activations, this chapter will focus on DDRx commands so as to 

cover as many common memory systems as  possible.  This  will  allow analysis  to be generic enough to 

resemble most common memory systems available today, but accurate enough to accurately represent what a 

real world memory system is doing in some detail.

4.1 DRAM Commands: An Overview

This chapter will examine in detail how commands are issued, what the restrictions are and what is  

necessary to  achieve good performance  when issuing  multiple  commands  in  a  short  span  of  time.  The  

memory controller  often has  many pending requests  that  could be sent  potentially all  in  sequence to  a 

specific DRAM location. The controller cannot do this, however, because there are many timing restraints,  

33



some of which have been discussed briefly in Chapter 2 . In many cases, if the minimum timings are not met, 

the transmitted or received data will possibly be corrupt or the data stored in the DRAMs will be corrupted.

Many of the timings are mostly based on resource usage. If the output drivers are in use for a period  

of time, then any command which would cause these drivers to be needed must wait. However, because the 

DRAMs use resources after some delay, the delay caused by the DRAMs themselves must be accounted for.  

For example, the data bus, a shared resource, is not used until tCAS from the time the command is sent, but is 

then in use for tBurst. So the memory controller must keep in mind that from tCAS to tCAS + tBurst, the data bus is 

in use and any command that would requires the data bus in this space of time must delay until the bus is  

free[Jacob 03].

Some commands are limited not by resource contention but rather by power constraints. These few 

commands are limited by how often a particular bank or banks can be activated. This helps to ensure that the 

current through the device is kept below some threshold and the device will dissipate less power as a result.

4.1.1 DRAM Command Illustrations Explained

To describe commands in a generic and uniform way, the command or commands will be presented 

on a timing diagram like that of Figure 4.1. Each command takes tCMD to be sent to the DRAMs. This will  

not change from command to command, so it is only shown once. Because the command and address bus, 

labeled as “command” for simplicity,  is in use for tCMD,  no other commands may be sent until  this first 

command is finished being transmitted[Cuppu 99].

34

Figure 4.1: : The basic format used to describe DRAM commands

clock

CMD

Bank/sense amp

command NOP CMD NOP NOP

tCMD

data

NOP

Bank Bank

data

NOP

tParam

NOP

Device I/O I/O Gating I/O Gating

time



At the top of the diagram is the is the clock. This clock is used to keep the DRAMs in time with the  

memory controller. The clock in a DDRx system is actually a differential clock, meaning that the clock and 

its inverse are transmitted to improve signaling characteristics. However, for the sake of simplicity, only the  

positive clock is shown in these timing diagrams.

Typically timing parameters are measured from the end of the command to the end of whatever 

sequence is being performed. This is because the command is registered on the clock edge and the action can  

start at this point. It also allows a uniform way to measure timing parameters. So if some minimum spacing 

is tParam, then the memory controller must measure at least tParam from the beginning of that command to the 

beginning of the next command or from the beginning of the first command to the beginning of the second 

command. Because tCMD is fixed, it does not matter where the measurement is from as long as it is consistent. 

Figure 4.1 shows that tParam is the limiting factor that delays the second command. The measurement is taken 

from the start of the first command to the start of the second command.

This chapter will examine commands and their timing requirements, when certain parts of the device 

are in use, when to expect data back from a read, and when to send data for a write.  Then on to more 

complex commands, commands that are actually multiple commands at once and depend on mode registers  

for  proper  functionality.  Finally,  timing  between  multiple  commands  is  studied,  as  good  performance 

depends greatly on the ability to pipeline commands efficiently.

35



4.1.2 Row Access Command
A typical row access command is illustrated in Figure 4.2. As previously described, this command 

tells the wordlines for a particular row to charge and allow the sense amplifiers to read the values from an 

entire row of cells. Then the values are restored into the cells and the row activation is complete. Note that  

Figure 4.2 shows only one DRAM device. In a real system, multiple DRAMs in a rank would be addressed at 

the same time with the same timing constraints.

There are two important timing parameters associated with a row activate command (RAS, named 

because the Row Activate Strobe signal is asserted on the command bus), tRCD and tRAS. From the time the 

RAS command is received, tRCD must elapse before the sense amplifiers have recorded the values correctly. 

The memory controller must wait tRCD before performing any operations that depend on having an open row 

or else the data will not be valid. Although the data is successfully sensed after tRCD, the operation does not 

complete until the data is restored to the cells. The time it takes for sensing and restoration is called tRAS. tRAS 

is a significant parameter because it must have elapsed before the sense amplifiers can be precharged and 

another row opened.

36

Figure 4.2: Timing and data movement of a row activation command

clock
ACT

Bank/sense amp

command NOP NOP NOP NOP

tRCD

data

NOP

Row sense

Row 
Latc

h/
Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

SDRAM Device

Row 
Latc
h/

Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc
h/

Deco
der

R
ow

 L
at

ch
/

D
ec

od
er DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

Ban
ks

 0.
.8

NOPNOP

Column 
Select

Column 
counter

tRAS

time

Row restore



4.1.3 Column Read Command

Another very common command, the column read or CAS (Column Access Strobe, after the signal 

that signals that a read command should commence) moves a section of the data in the sense amplifiers and 

moves it to the output buffers. The requested column must be decoded and selected. After this, the data is  

moved to a series of registers that will be serialized for output. These steps take t CAS and is programmable via 

the mode registers, usually 5-10 cycles. Although this can be programmed, setting the value too small will  

result in data that is not fully transferred to the I/O gating and thus corrupt data may be read.

From there, it is sent across the data bus in portions. The bus width per DRAM device is usually 4, 8  

or 16. This is denoted as x4, x8 or x16 as described earlier. The burst length that has been programmed into 

the device's mode registers controls how many pieces of data are sent.  Figure 4.3 shows a read command 

with a burst of 8, the longest allowable burst in DDR1/2/3. Instead of describing the data burst in terms of 

cycles and clock rates, it is simply defined as tBurst. 

37

Figure 4.3: A column read command with a burst length of 8

clock
Read

Bank/sense amp

command NOP NOP NOP NOP

tCAS

Device I/O

NOP

Bank access

Row 
Latc

h/
Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

SDRAM Device

Row 
Latc
h/

Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc
h/

Deco
der

R
ow

 L
at

ch
/

D
ec

od
er DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

Ban
ks

 0.
.8

NOPNOP

Column 
Select

Column 
counter

tBurst

time

I/O gating

data data data data data data data data data



4.1.4 Column Write Command

As shown in Figure 4.4, a column write is quite similar to a column read except that the stages are 

reversed,  the  data  arriving  first  and  the  bank  access  happening  last.  One  important  parameter  is  tCWD 

(sometimes known as tCWL). tCWD describes the delay that the memory controller must insert between when 

the write command and when the data. The value of tCWD is protocol dependent and has varied with each 

generation of SDRAM. The values of tCWD are listed in the table below. 

Memory Type tCWD

SDRAM 0 cycles

DDR SDRAM 1 cycle

DDR2 SDRAM tCAS – 1 cycle

DDR3 SDRAM programmable
When using SDRAM, the data and command may be sent at the same time without problem. DDR 

requires 1 cycle and DDR2 requires 1 cycle less than tCAS, because tCAS is programmable. DDR3 is a bit 

different in that tCWD is somewhat independently programmable. This means that tCWD may have specific 

allowed values per tCAS setting. For example, in a Micron 1Gb x4 DDR3 SDRAM, tCWD may be set to 5 ns 

38

Figure 4.4: A typical write command in a DDRx DRAM

clock
Write

Bank/sense amp

command NOP NOP NOP NOP

tCWD

Device I/O

NOP

Bank access

Row 
Latc
h/

Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

SDRAM Device

Row 
Latc
h/

Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc
h/

Deco
der

R
ow

 L
at

ch
/

D
ec

od
er DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

Ban
ks

 0.
.8

NOPNOP

Column 
Select

Column 
counter

tBurst

time

I/O gating

data data data data data data data data data

tWR



when tCAS is set to 6 ns, but tCWD must be 6ns when tCAS is 7 or 8 ns. The memory controller must be careful to 

take note of which tCWD settings are available for a given tCAS setting to avoid violating timing constraints 

when using DDR3 SDRAM.

The final new parameter is tWR, which is the time it takes for the data to be propagated to the cells  

after  it  has  been  received  by the  DRAM device.  This  restricts  what  activity may happen  to  the  sense 

amplifiers as subsequent operations that must use them must wait to avoid corrupting the data that is being  

stored in the cells.

4.1.5 Precharge Command

The precharge command, which charges the sense amps as described previously, is the counterpart 

the activate command. Whenever a row is opened and the memory controller needs  to read or write to  

another  row,  a  precharge  command  must  first  be  issued  to  prepare  the  sense  amps  for  another  sense 

operation.

39

Figure 4.5: A precharge command preceded and followed by row activations

clock
ACT

Bank/sense amp

command NOP Pre NOP ACT

tRAS

Device I/O

NOP

Row precharge

Row 
Latc

h/
Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

SDRAM Device

Row 
Latc
h/

Deco
der

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc
h/

Deco
der

R
ow

 L
at

ch
/

D
ec

od
er DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps
Ban

ks
 0.

.8

ACTNOP

Column 
Select

Column 
counter

time

data

tRP

tRC



Figure 4.5 shows a row being activated, then precharged, then activated again to open another row.  

This diagram also shows the minimum available timing that these commands can be issued in. For the first  

row to be sensed and restored before the precharge, the precharge command must hold off for tRAS. After tRAS, 

the data is restored and a precharge command won't destroy any data. From the time the precharge is issued, 

the memory controller then must wait tRP before activating another row. This gives the voltage equalization 

circuit  time to charge the bitlines in preparation for sensing another row. The sum of these two timing  

parameters is tRC, (row cycle) which is an important parameter for a memory system. 

Because tRC defines the minimum time that different rows can be opened, it is a fundamental limit on 

how quickly the data from different rows can be accessed. Thus it becomes important to either reuse rows as  

many times as possible to spread this cost over several reads and writes or to close rows as quickly as  

possible to be ready to open other rows. In modern systems with many running processes across several  

processors, the likelihood of finding multiple requests to reuse the same row is declining. Because different 

processes have ever-increasing data sets, the ability of a row to hold the good amount of that data set is  

reduced. There are several approaches to try to hide or reduce the impact of the row cycle time, some of  

which are discussed in the experimental setup and results sections.

4.1.6 Row Refresh Command
Because the values in DRAM cells are stored using a large array of capacitors, the system is subject  

to the same effects of other capacitors. This includes leakage over time, so the values in the cells leak into the  

substrate and become unrecognizable. In order to counteract this effect, the values must be read and restored  

periodically. This is the “dynamic” aspect in Dynamic Random Access Memory: the values will be lost if  

they are not restored from time to time. As the fabrication process varies from cell to cell, the leakage rates  

vary as well. This means that some cells can hold their values for a relatively long period of time while  

others must be refreshed more often. In order to ensure that the values are not lost in any of the cells, DRAM  

manufacturers  specify a  minimum interval  that  all  the  rows  must  be  refreshed  within.  They specify a 

minimum value,  tREFI,  that  specifies  the  minimum average periodic  refresh interval.  This  value is  often 

40



specified for two temperature ranges, up to and above 85ºC. 64ms is often the interval below 85ºC, while 

32ms is specified for higher temperatures (within the functional range of the DRAM).

A refresh command is quite similar to an activate command followed by a precharge command, but 

with the exception that it performs this sequence for all the banks in a rank. DDRx DRAMs have an internal  

counter that chooses the row that will be refreshed, so the memory controller does not need to keep track of  

which row each rank it should refresh, it needs only to send the refresh command and wait.

Figure 4.6 shows the stages of the refresh command, which are just like an activate immediately 

followed by a precharge. Ordinarily, this would finish in tRC, just as an activate and precharge would, but a 

refresh takes longer due to the greater number of banks involved. Because there may be 8 or 16 banks  

precharged,  the  DRAM  has  used  a  relatively large  amount  of  current.  Although  it  may seem that  the 

resources of the DRAM are free after tRC has elapsed, this is not the case. In order to ensure that this does not 

happen so often as to cause problems by drawing too much current,  the parameter tRFC is  introduced to 

41

Figure 4.6: The stages of a refresh command

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc
h/

Deco
der

SDRAM Device

Row 
Latc

h/
Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc
h/

Deco
der

Row 
Latc

h/
Deco
der

R
ow

 L
at

ch
/

D
ec

od
er DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

DRAM Array

Sense Amps

Ban
ks

 0.
.8

Column 
Select

Column 
counter

ACT NOP NOP NOP NOP

tRAS

NOP

All bank row sense

NOPNOP

tRC

time

All bank row restore All bank precharge

tRP

tRFC

clock

Bank/sense amp

command

data



prevent refresh commands from being issued too frequently. This parameter states that from when a refresh  

command is issued, another refresh or activation may not be issued to this rank until at least t RFC has elapsed. 

tRFC is always at least as long as tRC, but is usually much longer. In a typical DDR3 DRAM, the minimum 

value of tRFC is 110ns, while tRC is only 52.5ns.

The memory controller must calculate when it should issue refresh commands in order to meet all 

timing requirements. They may not be issued faster than tRFC, but not less often than it would take to issue N 

per tREFI, where N is the number of rows. So if tREFI is 64ms and there are 8192 rows, refresh commands 

should  be  issued  approximately every 7.8µs.  If  a  memory controller  waits  too  long to  issue  a  refresh 

command, it runs the risk of losing data. At the same time, a refresh command typically precludes the use of  

a rank for over a hundred cycles, causing all pending commands to that rank to stall. Additionally, all banks 

in a rank must  be precharged so that  they will  be able to sense the data in the first  part  of  the refresh 

command, so the memory controller must spend many cycles preparing the rank and waiting for the refresh 

to finish, all the while not hurting performance.

Because refresh commands can become a performance bottleneck to heavily-loaded systems, some 

memory controllers use alternative schemes to achieve the same effect. A memory controller can keep track 

of which row should be refreshed and send the activate and precharge commands individually so that the 

entire rank is  not  taken offline.  This  increases traffic  on the command bus and adds complexity to the 

memory controller design, but it reduces the loading effect that normal refresh commands can have.

4.2 Read Cycle

A read cycle, at least in the context of a close-page system, consists of opening a row, reading or  

writing to it and then closing it. This is shown in Figure 4.7 as an activate command to open the row, a read 

command with a burst length of 4 to acquire data and a precharge command to close the row. This shows the  

case where only a single read is performed before closing the row. However, as it is possible and highly 

desirable to perform as many reads and/or writes to an open row as possible, this scenario is shown later.

42



Just as before, the activate command tells the precharged sense amplifiers to activate the wordlines 

and drive the bitlines to sense the data. Once the data is sensed, after tRCD, the read may proceed. The values 

in the bank are read and sent to the I/O gating even while the values are still being restored to the cells.

Once the read command is sent, the data goes to the output registers and is ready to stream back to  

the  memory controller.  After  tCAS,  the  data  begins  to  be  sent  and  is  done  after  tBurst.  By this  time,  the 

restoration of data back to the DRAM cells is nearly done and once tRAS has finished, the data is secure and 

the sense amplifiers may begin to precharge again. A final row activate, which begins another read cycle,  

follows tRP afterward. The minimum time from an activate to a precharge is shown as tRAS and the sum of tRAS 

and tRP is tRC, the minimum row cycle time.

This scenario is common for applications that do not have a lot of locality in their address values. 

This means that the locations are not similar enough in location to be mapped to the same row, so each read 

or write is very likely to be translated to a different row, thus necessitating switching of rows and only a  

single use of an open row. It is much more efficient to reuse an open row for at least a few reads or writes,  

both for power and performance reasons.

4.2.1 Read Cycle with Read-and-Precharge
There are more complex commands available to a memory controller to automate some of the more 

common tasks. The read (or write) and precharge command combines the read and precharge commands into  

43

Figure 4.7: A read cycle in a close-page system

clock
ACT

Bank/sense amp

command Read NOP NOP NOP

tRCD

I/O gating

Pre

Row sense

NOPNOP

time

Bank access Row restore

I/O Gating

datadata data data data

NOP

tCAS tBurst

tRAS

tRC

ACT

Bank precharge

tRP



one and reduces what was two commands into one. Because this command removes the need to have two  

separate commands sent to the DRAMs, the command bus is now free to send other commands at the time 

when there was previously a precharge command being sent.

In  Figure 4.8, a read cycle is described that uses a read and precharge command instead of two 

separate commands. The minimum spacing between the read and precharge command (issued internally) is  

tRTP + tBurst – tCCD. Not only does this reduce the command bus bandwidth, it also reduces the complexity of the 

memory controller. If every read or write operation is followed by a precharge, as is used in a close-page 

memory system, then the memory controller does not need to keep track of when a precharge command 

should be issued. The DRAMs themselves know internally when a precharge should be issued and will not  

violate timing constraints imposed by the activate or read commands issued immediately before. In fact, the 

memory controller does not need to keep track of the precharge at all, so it takes fewer resources to keep  

track of what is going on in a given rank.

This  sort  of  optimization  is  useful  for  embedded systems,  where  the  power  requirements  for  a  

memory controller are limited, so the complexity must be limited as well. If every read or write can be  

translated into exactly two commands, the activate and the read or write and precharge, then it becomes very 

simple to provide a basic functional interface to the DRAMs. High-performance memory systems can also  

take advantage of this. On systems with very little locality, such as those running many processes at a time 

44

Figure 4.8: A read cycle using a read and precharge command

tRTP

clock
ACT

Bank/sense amp

command R+P NOP NOP NOP

tRCD

I/O gating

PreNOPNOP

time

Bank access Bank access

I/O Gating
data

NOP

tCAS tBurst

tRAS

tRC

ACT

Bank precharge

tRP

Row sense

I/O Gating

data data data data data data data data

tCCD

issued internally



like a processing node, it is advantageous to assume each row will not be reused and simply close it. By  

combining these commands, the memory controller can now finish with a transaction quickly and have more 

available command bus bandwidth for other operations.

4.2.2 Posted CAS
Another optimization for DDR2/3 DRAMs was the inclusion of additive latency, AL or tAL, to allow 

posted CAS commands. What this means is that a read or write command can be sent to a DRAM before it is 

able to be executed, as per timing specifications. The DRAM device will hold this command and delay it a  

specified amount of time, tAL,  and then execute it as though it had just received it. This can be used for  

regular read and write commands or for read and write-and-precharge as well. 

The value of tAL may be programmed using the mode registers. In a DDR3 device, tAL may only be 

programmed relative to tCAS (tCL). This allows the memory controller to choose between tCAS – 1 and tCAS – 2, 

depending which is desired.  This allows the memory controller to decide whether it wants to send the read  

or write immediately after the activate or to wait a cycle first. A DDR2 device, however, allows arbitrary  

values to be set, so the memory controller may choose any value, up to tCAS.

It is important to have posted CAS available because it simplifies memory controller design. A very 

simple controller in an embedded system may simply translate each read or write into an activate and a read-

and-precharge or write-and-precharge. The commands may be sent one after the other and the controller need 

45

Figure 4.9: A posted CAS+Precharge command

clock
ACT

Bank/sense amp

command Read NOP NOP NOP

tRCD

I/O gating

PreNOPR+P

time

Bank access Row restore

I/O Gating

datadata data data data

NOP

tCAS tBurst

tRAS

tRC

ACT

Bank precharge

tRP

issued internally

tAL

Row sense



not  keep  track  of  when  to  send  the  read  or  precharge  commands,  as  long  as  the  mode  registers  are  

programmed correctly. In much the same way, a server has more flexibility in scheduling requests by being 

able to issue the reads and writes sooner and then move on to service another request. The posted CAS 

command is commonly used to simplify designs and better group row and column commands.

4.3 Command Interactions

Of  key importance  in  achieving  high  performance  memory systems  is  correctly  scheduling  the 

commands so as to reduce their latencies. In order to efficiently schedule commands, it is important to know 

what the implications are for a given command ordering. This section will  look at a series of command  

combinations and the relevant timing parameters that they must meet to ensure correct operation. It will  

discuss how close page and open page row buffer management policies play a role in choosing commands  

and what timings must be observed for them.

An open page row buffer management policy takes advantage of the fact that once a row has been 

opened, the timing penalty for additional reads and writes is reduced until the row is closed. Thus, an open  

page policy attempts  to  perform reads and writes from an open row and leaves the row open with the  

expectation that it is likely that another access to the same row will be forthcoming and its latency will be  

relatively shorter.  This is a fairly likely scenario in an embedded system or workstation where there are 

relatively few processes. Because it is likely that there are only a few processes running, their data is likely 

all  grouped in the same segment of memory and the workload will  exhibit  a high degree of spatial and 

temporal locality. With many requests reading and writing to similar memory locations, it becomes relatively 

likely that there will be multiple memory requests to the same row and there will be a good amount of row 

reuse.

The downside to an open page policy is that the memory controller must keep track of open rows and 

know to close a row and open a new row when a request to a different row come along. This incurs an 

additional latency penalty to precharge the row, plus the requisite activation and read delays. In systems that 

46



do not expect much row reuse may use a close page row buffer management policy. Unlike an open page  

policy, the basic close page policy assumes no row reuse so it automatically closes a row after the first read 

or write to reduce the timing penalty for switching rows.

This section, however, will examine mostly open page based command interactions as there are more  

possible interactions than for a close page system by far.

4.3.1 Consecutive Reads To Different Rows In A Bank
DRAM devices hold an active row in their sense amplifiers until a precharge command is issued,  

which is helpful for a memory controller that would like to perform multiple combinations of reads and  

writes on that particular row. Because a read or write transaction to the memory controller is finished with 

the read or write in the corresponding command sequence is completed, being able to complete the read or 

write without having to perform a precharge or row activation is quite advantageous. In fact, because the 

latency is reduced for an open row hit, the penalty for a row miss is increased. Instead of merely activating  

the row, a full row cycle time penalty is incurred.

Figure 4.10 shows the timing of two consecutive read commands to different rows within a bank. 

This is the better case because the row restore has already happened. The system must wait for t Burst, which 

the bank access takes to move the necessary bits to the I/O drivers, then for the sense amplifiers to precharge 

and then  for  the  row-to-column delay.  This  therefore  means  that  if  there  is  a  bank conflict,  when two  

47

Figure 4.10: Timing of a read to a read command on a different row with rows already restored
tBurst + tRP + tRCD

clock
Read

Bank/sense amp

command Read NOP NOP Pre

tRCDI/O gating

NOP NOPNOP

time

Bank access

datadata data data data

ACT

tCAS tBurst

NOP

Bank precharge

tRP

Row sense Bank access

data datadata data

I/O Gating

tBurst



consecutive reads go to different banks, the minimum available spacing between the issuance of the read 

commands would be tBurst + tRP + tRCD. Note that in DDR2 systems, the burst of 8 is actually 2 bursts of 4, so 

once the first burst is done then the precharge may proceed. This means that when using a DDR2 system, the 

minimum spacing caused by the bank access portion is reduced to tBurst / 2.

On the other hand, if, following the row activation, the row sense has completed but the row restore  

has not, then the minimum spacing for two read commands will be greater.

4.3.2 Consecutive Reads To Different Rows In A Bank, Worst Case
If the row restore has not finished by the time the sense amps are no longer needed to stream data to 

the output buffers, the precharge command must wait. 

Because the row activation occurs very shortly before the first read, tRAS must elapse before the row 

can be precharged again.  Figure 4.11 differs from Figure 4.10 because its activation was assumed to have 

happened long enough before the first read so that the row sense and restore had already passed, whereas  

Figure 4.11 has a closely-grouped activation and read sequence. Thus, in the worst case the reads are spaced 

by tRAS + tRP, rather than tRP + tRCD + tBurst.

When the scheduler in a memory controller has only a few commands and both are going to the same 

bank, Figure 4.11 will often be the timing scenario. However, if the memory controller has more commands 

to choose from, it will be able to send activates to several rows and then return to send read commands to  

those same rows. If it is done right, some banks can be sending data while others are performing data sense 

48

Figure 4.11: Consecutive reads that are delayed by waiting for data restoration to finish
tRAS + tRP

clock
NOP

Bank/sense amp

command Read NOP NOP NOP

tRAS

I/O gating

Pre NOPRead

time

datadata data data data

NOP

tCAS tBurst

ACT

tRP

Row sense Bank access

datadata data data

I/O Gating

Data sense

NOPACT

Bank access + data restore Bank precharge



and restore. This ability to intelligently overlap operations can improve performance greatly and will  be  

explored in some detail in the experimental setup section.

4.3.3 Reads to Different Banks (Bank Conflict)
When the memory controller has two consecutive reads that must go to different banks, the first bank  

may not have a conflict requiring a precharge before the activate and read commands, but the second might.  

When this happens, the memory controller can issue the read request to the first bank immediately, but must  

then precharge and activate the second bank before finally reading from it. When this happens, the memory 

controller has only a few options as to how it can optimize the scheduling of the commands.

In Figure 4.12, the memory controller first sends the command to read from bank A and receives the 

data  after tCAS. Then the memory controller moves onto the read in bank B. Because this bank has its own set  

of sense amplifiers, it can begin to precharge them in preparation for a row activation. This step is necessary  

because there is a conflict between the last read or write to this bank. If the previous read or write had been  

to the same row, the read to bank B would have been delayed only to avoid contention on the data bus.

Because of the bank conflict on bank B, the second read request must be delayed tCMD + tRP + tRCD 

after the first. The timing parameter tCMD is the minimum spacing allowed between two commands as the 

command bus can receive a command only every tCMD. After this, the read command must wait for bank B to 

precharge (tRP) and then sense the new row (tRCD). Note that in Figure 4.12, the timing between the commands 

is measured from the start of a command to the start of a following command. This differs from the time that  

49

Figure 4.12: Consecutive reads to different banks without reordering and a conflict on the second  
bank

tRP

clock
NOP

Bank/sense amp A

command NOP NOP ACT NOP

I/O gating

Read NOP

time

datadata data data

NOP

tRCD

NOP

data datadata data

I/O Gating

Bank access

PreRead

Bank access + data restoreBank prechargeBank/sense amp B Row sense

I/O Gating

data datadata data datadata data datadata

tCMD



the resources inside the DRAMs are actually in use but is equivalent. Measuring from the end of commands  

is the same as measuring from the beginning of commands, except that measuring from the end of commands 

will coincide with the beginning of when a particular resource is in use in the DRAM.

If the memory controller is a more complex design and is able to reorder the commands, the spacing 

between the read commands can be decreased. Because there is no contention for the sense amplifiers, each  

bank has its own, the command and data buses are the shared resources that must be considered.

By reordering the precharge to the second bank before the read to the first bank, the second bank can  

precharge while the first is moving data out of the sense amplifiers and into the output buffers. With these 

two commands switched around, the time between the two read commands is reduced to tRP - tCMD + tRCD. This 

is 2 * tCMD shorter than before and improves the efficiency of the system. This reordering causes the initial 

byte from the DRAM to be received tCMD later than before. However, the initial byte from the second read is 

received tCMD earlier, so the average latency is the same.

The major benefit to this rearrangement is that the two data bursts are now closer in time on the data 

bus. This means that the average utilization of the data bus is increased and efficiency is improved. Ideally,  

the data bus would be in use at all times and memory system would be at its theoretical maximum. However,  

the reality is that scheduling concerns cause gaps in use of the data bus that limit its efficiency. Being able to  

move data bursts closer together still helps. If these two read commands are closer together, so are their data  

50

Figure 4.13: Consecutive reads to different banks, bank conflict and command reordering
tCMD

tRCDtRP

clock
NOP

Bank/sense amp A

command NOP ACT NOP Read

I/O gating

NOP NOP

time

datadata data data

NOP NOP

datadata datadata

I/O Gating

Bank access

ReadPre

Bank access + data restoreBank prechargeBank/sense amp B Row sense

I/O Gating

data data data datadata data datadatadata



bursts and therefore they tend to occupy the bus for fewer cycles, leaving more cycles available for other  

read or write commands.

4.3.4 Consecutive Reads to an Open Row

When the memory controller is able to schedule to reads back-to-back, the data bus can be utilized  

fully. As shown in Figure 4.14, the delay between the two read commands is only tBurst. No new row need be 

opened, nor does any sense amplifier need to be precharged, simply read the rows as often as possible. Even  

though this is unlikely, most access patterns will not have more than just a few consecutive reads to an open  

row, it cannot continue indefinitely. Because the rows must eventually be refreshed to maintain data integrity,  

there is a limit as to how long one row can be opened.

There is also the matter whether to wait tBurst or tCCD before issuing the second read command. In 

DDR2 memory, for example, the burst length can be 8 beats, while the internal burst length is 4. In order to 

send 8 bytes of data, there are two bursts, so simply waiting for the first internal burst to finish would not be 

enough to finish the burst of 8. So if the burst length is longer than the internal burst length (tCCD), then the 

memory controller must wait for the entire burst to finish.

On the other hand, if the internal burst is 8 beats, as it is in DDR3 memory, then it is possible for the 

internal burst to be longer than the actual burst. This is known as burst chop. If the mode registers are set to 

send a burst of 4 or the read command asks for only 4 byte of memory, then the DRAMs send only 4 bytes.  

51

Figure 4.14: A read following a read to the same open row

max(tCCD,tBurst)

tBurst

clock
NOP

Bank/sense amp

command NOP NOP NOP Read

I/O gating

NOP NOP

time

datadata data data

NOP NOP

data data data data

I/O Gating

Bank access

ReadNOP

data data data data data data data datadata

tBurst

I/O Gating

Bank access



However, the internal burst continues for the full 8 beats, so the memory controller would have to wait for 

this to finish before issuing any more read commands.

4.3.5 Consecutive Reads to Open Rows within a Rank

Very similar to two reads within a row is two reads in two open rows. As seen in Figure 4.15, the 

same timing constraints apply. Because the same I/O gating is used, the consecutive data bursts can be sent  

without any delay between them. Again, the data bus is the only shared resource that must not be used by 

more than one command at a time. Had these been writes, a similar timing constraint would be imposed.  

Because  the  memory  controller  was  talking  to  one  rank  at  a  time,  the  minimum  spacing  would  be  

max(tCCD,tBurst). As shown later, when there are multiple ranks sending data consecutively, the spacing of the 

data burst cannot be as efficient.

52

Figure 4.15: A read following a read to open banks within a rank

max(tCCD,tBurst)

tBurst

clock
NOP

Bank/sense amp A

command NOP NOP NOP Read

I/O gating

NOP NOP

time

datadata data data

NOP NOP

data data data data

I/O Gating

Bank access

ReadNOP

data data data data data data data datadata

tBurst

I/O Gating

Bank accessBank/sense amp B



4.3.6 Reads to Different Ranks

When different banks are active and not constrained by timing requirements, as in Figure 4.15, the 

requests may be scheduled in such a way as to pipeline the requests and keep the data bus in use perpetually.  

This is, however, not true for reads that alternate between ranks. When the memory controller tells one rank 

to send data and then another to do the same, there must be some period of down time on the data bus to  

allow the new rank to synchronize before sending the data. This is illustrated in Figure 4.16 by the parameter 

tRTRS, short for Rank To Rank Switching time. This often refers to the data strobe synchronization time and 

will vary based on the design of the memory system more than any internal aspect of the DRAMs. In this 

example, the memory controller must delay the second read by one cycle in order to allow rank A to release 

the data strobe and bus and allow rank B to take over. Although this is shown as one cycle, different system 

implementations will vary depending on implementation.

On older or slower memory systems, because the data bus runs at slower speeds, the value of tRTRS 

may be zero. If the ranks can successfully switch from one rank to the next in a very short time, tRTRS is not 

needed. However, in all DDRx systems, all of the ranks use the same data strobe to signal that a byte of data  

has been transferred. Because one rank must release this line, go into the high impedance state and another  

rank must leave high impedance and begin to drive the data strobe, the value tRTRS cannot be zero.

53

Figure 4.16: Consecutive reads to different ranks with open rows

tBurst + tRTRS

tBurst

clock
NOP

Bank/sense amp, rank A

command NOP NOP NOP NOP

I/O gating, rank A

Read NOP

time

datadata data data

NOP NOP

data data data data

I/O Gating

Bank access

ReadNOP

Bank/sense amp, rank B

data data data data data data data datadata

tRTRS

I/O Gating

Bank access

I/O gating, rank B

tBurst



4.3.7 Write to Write, Different Ranks with Open Banks

The difficulty in scheduling read requests to different ranks arises because different devices must 

connect to the data bus without overlap. Thus, when one rank is done sending data, it must disconnect from 

the bus and then allow the next rank to connect. However, with writes this should not be a problem. Because 

the memory controller is the only device sending data, it can theoretically be the only device that connects to  

the bus, so there is no time allocated for connecting and disconnecting.

Indeed, this is the case for SDRAM and DDR SDRAM. The memory controller can schedule write  

requests back-to-back without any problems. In the case of DDR2/3 SDRAM, this no longer holds true.  

Because data rates continue to increase with each successive generation, DDR2/3 are significantly faster and  

data integrity over the data bus has become more difficult to achieve. The multi-drop bus architecture makes 

each device connected to the bus significant as far as signaling quality goes. In attempt to improve the signal  

quality,  each DRAM device has an internal, programmable resistor network that is connected to the bus  

whenever other ranks are receiving writes or sending reads. This provides better characteristics than simply 

putting each set of I/O gating into a high impedance state. It is known as “on-die termination” (ODT) and 

reduces reflections and improves signal quality on the data bus. As a consequence, the memory controller 

must wait for the ODT to turn off for the next rank and turn on for the previous rank. In DDR2 DRAMs,  

turning on takes 2 cycles and turning off takes 2.5 cycles.

The net  result  is  that consecutive writes in DDR2/3 systems must  have a gap between them, as 

shown in Figure 4.17. The timing parameter, tOST (on-die termination switching time), represents the time that 

54

Figure 4.17: Consecutive writes to different ranks must wait for on-die termination to setup

tCWD

tBurst + tOST

tCWD

clock
NOP

Bank/sense amp, rank A

command NOP NOP NOP NOP

I/O gating, rank A

Write NOP

time

data

NOP NOP

I/O Gating

Data restore

Write

Bank/sense amp, rank B

I/O GatingI/O gating, rank B

data data data data data data datadata data data data data data data data data

Data restore

tOST



it takes all ranks that are not being written to to enable their ODT and the time for the destination rank to  

disable ODT. The same is true for reads, every rank not sending data should enable ODT to improve the 

signal quality of the data being sent from the DRAM. A system designer should keep this in mind when  

deciding how long to delay reads and writes in a DDR2/3 system. Reads are limited by tOST and tRTRS. Most of 

the time, however, tRTRS will be longer than tOST, so a system designer can limit reads to tBurst + tRTRS and writes 

to tBurst + tOST.

4.3.8 Write to Precharge
Figure 4.18 shows a write command followed by a precharge command. The timing is quite similar  

to the read to precharge timing in that there is a delay after the command is issued, in this case it is tCWD. Then 

there is a data burst, tBurst and finally there is tWR. This parameter, the write recovery time, determines how 

long after a data burst is received that the row may be precharged. If it is precharged too soon then the values 

that were sent to the DRAM may be wiped out by the precharging before they are able to be written to the 

cells. The timing parameter tWR ensures that the data is restored to the cells, but this is longer than when a 

read command follows a write command. When there is a subsequent read command, then it must only wait  

for the data to be correctly read and stored by the sense amplifiers. If the data is not yet restored to the cells  

then it does not matter, because the read command is only concerned with the values in the sense amplifiers  

and will not affect any data being restored to the storage cells.

55

Figure 4.18: A write followed by a precharge
tCWD tWRtBurst

tCWD + tBurst + tWR

clock
NOP

Bank/sense amp A

command NOP NOP NOP NOP

I/O gating

Pre NOP

time

data

NOP NOPNOPWrite

Bank/sense amp B

data data data data data data data data

I/O Gating

Data restore Bank precharge



4.3.9 Write to Write with Bank Conflict

When two writes follow one another to the same bank, but are on different rows, the delay is similar  

to consecutive reads to a bank with a bank conflict. As shown in Figure 4.19, the precharge must respect tWR, 

so the bank cannot be precharged until the data is stored back into the cells. Additionally, not shown in 

Figure 4.19 is the fact that the precharge must also respect tRAS in addition to tCWD + tBurst + tWR. It may happen 

that tRAS is longer than the others and the precharge command will be delayed. In this example, it is assumed 

that tRAS has already been satisfied and it need not be considered. Therefore, the minimum distance between  

writes must be the column write delay, the burst time, the write recovery time, the precharge to activate time 

and the row-to-column delay. This is shown as tCWD + tBurst + tWR + tRP + tRCD.

If the writes are to separate ranks, assuming again that tRAS has been satisfied, then the precharge to 

the second rank may proceed as soon as the command bus is available. From there, the precharge must finish 

and the new row is opened. This is quite similar to having just a bank conflict and having to switch rows to  

be able to write to a new row. Because the data burst is shorter than the precharge and data sense times, the 

data bus is never in demand by both at the same time. Therefore, the memory controller must wait tCMD + tRP 

56

Figure 4.19: Consecutive writes to different banks with a bank conflict

tCWD + tBurst + tWR + tRP + tRCD

tWR

clock
Write

Bank/sense amp

command NOP NOP NOP Pre

I/O gating

NOP NOP

time

data

ACT NOP

I/O Gating

Data restore

NOPWrite

tBurst

Bank precharge

data data data data data data datadata data data data data data data data data

Data sense

I/O Gating

Data restore

tCWD tRP tRCD

Figure 4.20: Consecutive writes to different ranks with a bank conflict
tRP tRCD

tCWD

tCMD + tRP + tRCD

tCWD

clock
NOP

Bank/sense amp, rank A

command Pre NOP NOP ACT

I/O gating, rank A

NOP NOP

time

data

Write NOP

I/O Gating

Data restore

Write

Bank/sense amp, rank B

tWR

I/O Gating

Bank precharge

I/O gating, rank B

data data data data data data datadata data data data data data data data data

Data sense Data restore



+ tRCD before  issuing the next write command. This is just tCMD longer than a regular bank conflict while 

waiting for the command bus to become free.

4.3.10 Read to Write, No Conflict, Different Ranks

The situation of a write request following a read request is similar to consecutive writes, as shown in  

Figure 4.17. Because the commands are going to different ranks, there is no concern about the I/O gating,  

sense amplifiers  or  internal  data  movement.  The only restrictions  are  on the command and data  buses.  

Because the DRAMs are sending data on the data bus for the read and the memory controller is sending the 

data for the write, the data bursts must be separated by tRTRS. This allows the devices to properly synchronize 

and be set for the upcoming transfer. The memory controller can, however, take advantage of the fact that 

there is a delay before sending data on a write, tCWD. Although the memory controller must not send data until 

tCAS + tBurst + tRTRS, the write command may be sent slightly before this. So the best case timing, assuming 

open banks, is tCAS + tBurst + tRTRS – tCWD. In a DDR system, tRTRS and tCWD are both 1 cycle, so the timing is 

effectively tCAS + tBurst. Likewise, in a SDRAM system, tRTRS and tCWD are both 0, so the effective timing is also 

tCAS + tBurst. 

57

Figure 4.21: A write request following a read request to open banks

tCAS + tBurst + tRTRS - tCWD

tCWD

clock
NOP

Bank/sense amp A

command NOP NOP NOP Write

I/O gating

NOP NOP

time

data

NOP NOP

I/O Gating

Bank read

NOPRead

Bank/sense amp B

tBurst

data data data data data data datadata data data data data data data data data

I/O Gating

Data restore

tCAS tRTRS



4.3.11 Read to Write with Bank Conflict

In Figure 4.22, a write following a read is shown. Because the row that the write request must go to 

is  not  already open,  there is  a bank conflict  and the correct  row must  be opened before the write may 

proceed.  Because  these  two commands  are  to  different  banks,  they have  different  sense  amps  and  the  

precharge may begin immediately after the read command is issued. From this point, it is a matter of waiting  

for the precharge to complete and the data to be sensed before sending the write command, waiting tCWD and 

sending the data.

Note that this is the best-case scenario. If  tRAS has not already elapsed in the bank requiring the 

precharge, the memory controller must first wait for the  tRAS period to pass and then begin the precharge. 

However, because in the example  tRAS has already elapsed, the percharge can begin immediately and the 

minimum scheduling distance between the read and the write is  tCMD +  tRP +  tRCD. This delay time can be 

further reduced if the memory controller supports command interleaving, the ability to overlap constituent  

commands that comprise a transaction. If this is possible, then it is reasonable to begin the precharge before 

the read command to begin to prepare the second row earlier. This will delay the read command by tCMD, but 

will also move the write command up by tCMD. This will move the read and write data bursts closer together 

in time which is an improvement in data bus utilization. If data bursts can be moved closer together, then the  

overall utilization of the data bus can be increased over time. This will lead to a net increase in effective data 

bus bandwidth.

58

Figure 4.22: A write following a read with a bank conflict
tCMD tRCDtRP

tCMD + tRP + tRCD

tCWD

clock
NOP

Bank/sense amp A

command NOP ACT NOP NOP

I/O gating

Write NOP

time

data

NOP NOP

I/O Gating

Bank read

PreRead

Bank/sense amp B

data data data data data data datadata data data data data data data data data

I/O Gating

Data restoreBank precharge Data sense



4.3.12 Write to Read in the Same Rank

In Figure 4.23, a read following a write is illustrated. Both commands are to the same rank, so the  

I/O drivers are shared, but the requests are to different, but open, banks. This is different from the case of 

consecutive reads or consecutive writes because the direction of the data movement differs.  Because the 

write happens first, the data bus is first utilized, then the I/O drivers and lastly the data is restored to the  

DRAM cells. In the read command, the data is loaded into the I/O drivers and then sent over the data bus.  

The common element here is the I/O drivers. The fact that these drivers cannot be in use for two different  

operations simultaneously creates the delay that is shown in Figure 4.23.

Beginning with the write command, the data burst must wait for tCWD and then tBurst. After this, a new 

timing parameter, twtr, is introduced. This is the write to read timing, or the time from the end of a data burst 

until a read may be performed. It is similar to tWR in the fact that it measures from the end of the data burst, 

but tWR is the time until the data restore finishes and twtr is the time until the I/O drivers are free again. This 

means that the minimum write-to-read timing for open rows within a rank is tCWD + tBurst + twtr.

4.3.13 Write to Read in Different Ranks
In a slightly different case from that depicted in Figure 4.23, Figure 4.24 shows the case of a read 

following a write to different banks. In this case, the I/O gating is completely separate, as are the banks, so 

there is no concern about their utilization. The rows that must be accessed are already open, so there is no  

need  to  precharge  and  activate  the  row.  The  only shared  resources  are  the  data  and  command  buses.  

59

Figure 4.23: A read following a write to the same rank, different, open banks
tCWD tWTRtBurst

tCWD + tBurst + tWTR

clock
NOP

Bank/sense amp A

command NOP NOP NOP NOP

I/O gating

Read NOP

time

data

NOP NOPNOPWrite

Bank/sense amp B

data data data data data data datadatadata data data data data data data data

I/O Gating

Data restore

I/O Gating

Bank access



Therefore, the memory controller may issue the write, wait tCWD, send the data burst, wait tRTRS for the second 

rank to take control of the bus and expect to receive valid data at this point.

The spacing between these commands is tCWD + tBurst + tRTRS - tCAS. The reason tCAS is a negative value 

in this expression is that the rank-to-rank switching time can be overlapped with the delay waiting for the 

data from the second rank. So the read command may be issued before tRTRS is elapsed, possibly even before 

tBurst has finished. Because the data bus is the limited resource, the read command may lead the earliest  

available utilization by tCAS.

For example, in a DDR2 SDRAM memory system, tCWD is tCAS – 1 cycle, and tRTRS is one cycle. So 

tCWD +  tRTRS –  tCAS cancels  to  zero.  Therefore,  the  minimum scheduling  distance  is  tBurst,  which  makes 

scheduling of these types of commands easier for a DDR2 memory controller.

4.3.14 Write to Read with Bank Conflict, Same Bank
As shown in Figure 4.25, the minimum scheduling distance between a read following a write to the 

same bank but different rows is quite lengthy. This example assumes that this is the best case scenario, where 

tRAS has already passed and is not a consideration. If tRAS has not yet passed by the time the precharge should 

be activated, then the memory controller must wait to issue this command. 

60

Figure 4.24: A read following a write in different ranks

tCWD + tBurst + tRTRS - tCAS

tCWD

clock
NOP

Bank/sense amp, rank A

command NOP NOP NOP NOP

I/O gating, rank A

Read NOP

time

data

NOP NOP

I/O Gating

Write

Bank/sense amp, rank B

tRTRS

I/O Gating

Bank access

I/O gating, rank B

tBurst

data data data data data data datadata data data data data data data data data

tBurst

tCAS

Bank access



First the memory controller must wait to send the data, send the data and wait for the data to be  

successfully  written  back  to  the  DRAMs  before  sending  the  precharge  command.  Then  the  precharge 

command must fully precharge the sense amplifiers before reading a new row. After this it must wait for the 

row-to-column delay to pass and then send the read command. After tCAS has elapsed the data from the read 

will begin to return. The net delay from all of these processes is tCWD + tBurst + tWR + tRP + tRCD.

4.3.15 Write to Read with Bank Conflict, Same Rank
In Figure 4.26, a read request follows a write request to different banks within the same rank. This  

example also assumes that  tRAS has already passed so there is no need to delay for it. The timing is quite 

similar to a simple bank conflict: the memory controller must wait for the the sense amplifiers to precharge 

and the row to be sensed before finally issuing the read command. An additional delay is added because the 

separate banks must share a common data bus, so the precharge command must wait tCMD to be issued. The 

overall spacing of the commands is therefore  tCMD +  tRP +  tRCD. As with previous examples, by issuing the 

61

Figure 4.26: A write followed by a read to a different bank with a bank conflict
tRCDtRP

tCMD + tRP + tRCD

tCMD

clock
NOP

Bank/sense amp A

command Pre NOP NOP ACT

I/O gating

NOP NOP

time

data

Read NOP

I/O Gating

Write

Bank/sense amp B

I/O Gating

Data restore

data data data data data data datadata data data data data data data data data

Bank access

Bank precharge Data sense

Figure 4.25: A read following a write to the same bank with a bank conflict

tCWD tWRtBurst

tCWD + tBurst + tWR + tRP + tRCD

clock
NOPcommand NOP NOP NOP NOP

I/O gating

Pre Read

time

data

NOP ACTNOPWrite

Bank/sense amp

data data data data data data data data

I/O Gating

Data restore Bank precharge

I/O Gating

data data data data data data data data

tRP

Data sense Bank access/data restore

tRCD



precharge before the write command, the memory controller will delay the read command by tCMD, but will 

also begin the process of switching the row for the read by tCMD as well, and will reduce the spacing of the 

bursts on the data bus and achieve greater data bus utilization.

This illustration makes several assumptions that should be checked by a memory controller as well. 

First, it assumes that tCWD + tBurst + tWR is less than tCMD + tRP + tRCD. If this is not true then the I/O driver will 

become in use by two commands at once and likely to cause an error. Therefore, the minimum spacing must 

be the larger of  tCMD +  tRP +  tRCD and tCWD +  tBurst +  tWR in order to ensure that the I/O drivers are not a 

bottleneck.

4.3.16 Column Read-and-Precharge Timing

A nice feature of modern DRAM devices is the ability to send complex commands that reduce the  

load on the command bus and reduce the number of timing parameters that a memory controller must keep 

track of. One of the most common such commands is the read-and-precharge command, which, along with  

additive latency,  can reduce the memory controller  interaction to a minimum. As shown in  Figure 4.27, 

immediately after activating the row, the memory controller then issues a read-and-precharge command.  

Although tRCD has not yet been satisfied, the DRAM has been programmed such that tCMD + tAL = tRCD. The 

62

Figure 4.27: A read cycle using a read-and-precharge command with posted CAS enabled

tRTP

clock
ACT

Bank/sense amp

command Read NOP NOP Pre

tRCD

I/O gating

NOPNOPR+P

time

Bank access

I/O Gating
data

ACT

tCAS tBurst

tRAS

tRC

NOP

tRP

tAL

Row sense

tAL + tRTP + (tBurst – tCCD)

is 0 when tBurst = tCCDNeeded for posted CAS

data data data data

issued internally

Bank precharge



DRAM  internally  queues  up  this  read-and-precharge  command  to  be  issued  later.  Once  the  read-and-

precharge command is internally issued, the precharge command is queued as well. 

This precharge command will wait until tRAS is satisfied, automatically, as this is a feature of DDR2/3 

devices. This means that the memory controller must also keep track of tRAS timing in order to know exactly 

when the DRAM device actually sends the precharge command internally.

4.3.17 Column Write-and-Precharge Timing

Much like  Figure  4.27,  a  write-and-precharge  command  immediately following an  activation  is 

described in  Figure 4.28. This again utilizes additive latency to internally delay the write command. The 

DRAM will also make sure to respect  tRAS when issuing the precharge command internally. Usually tRAS is 

defined to have enough time for the write to conclude, so the DRAM does not have to wait longer anyway.  

This means that activates followed immediately by writes will never run into timing problems due to  tRAS. 

This fact is often why DRAM devices are said to be write cycle limited. This means that the value of tRAS is 

determined by how quickly the device can physically conclude an activate followed by a write.

Although it is easier on the memory controller to not have to keep the commands queued and to keep 

track of the activate to read and read to precharge timings, the memory controller must still know when the 

read and precharge are issued internally. This is because these commands still use the on-chip resources at  

the same time and the memory controller must not cause the DRAM to use resources that it does not have  

63

Figure 4.28: A write cycle using a write-and-precharge command with posted CAS enabled

clock
ACT

Bank/sense amp

command Write NOP NOP NOP

tRCD

I/O gating

PreNOPW+P

time

Bank access

I/O Gating
data

NOP

tCWD tBurst

tRAS

tRCD - tAL

NOP

Bank precharge

issued internally

tAL

Row sense

tAL + tWR + tBurst + tCWD

tWR

data data data data



available at that time. When later commands need to be issued, the memory controller must know when the 

precharge and reads happened in order to properly add delays.

4.4 Power and Performance Constraints

In addition to timing constraints that guarantee that certain elements of a DRAM device cannot be in 

use at the same time by different commands and finish correctly, there are timing constraints that attempt to  

limit the power dissipated by the devices and provide better signaling to each device. The following sections 

will  provide a brief  look at  these constraints and attempt to explain why they were created.  The power 

dissipation discussion will be somewhat brief as the following sections will look at power dissipation models 

in greater detail.

The main reason to impose timing constraints that limit how much a DRAM device is able to do in a  

certain time period is to limit the power that the device consumes. Power usage has become more important  

in a system's design than before. Because of the massive scale on which computers are deployed, trading a 

small amount of performance for power savings is often acceptable[Micron 07]. Although processors are 

often thought of as the greatest  power draw in a system,  servers with many gigabytes of memory may 

actually use more power to keep data in memory than to process it. Hard disk drives, network interface cards,  

routers and many other components of modern computer systems are all working to quantify and reduce their  

power usage, so it comes as no surprise that DRAM manufacturers have defined timing parameters that,  

when followed, will significantly reduce the total power dissipated by this subsystem.

The problem is becoming more pronounced as datarates continue to rise. As transmission frequencies 

increase, the I/O drivers must work at greater speeds, increasing power usage proportionally to the square of 

the operating frequency. DRAMs have more banks now than ever before, so there are more opportunities to 

overlap operations across several banks simultaneously. As seen in Figure 4.29, the current drawn by a single 

bank activating and precharging is quite significant. If several banks were to activate at once, the current 

profile would look like the summation of their respective current profiles.  This can lead to a very large  

64



instantaneous power draw and, if sustained, may begin heating the chip beyond acceptable limits. In order to 

help avoid this heating problem and help reduce the power consumption of DRAM devices, several new 

timing constraints have been introduced to try to limit how much power is being drawn at any one time.

4.4.1 Four Bank Activation Window
Defining the setup of a DRAM device is, from a manufacturer's perspective, a balancing act. If the  

number of banks is increased, the control logic becomes more complicated and the critical path becomes  

longer, thus decreasing the rate at which a DRAM can operate. Larger rows require larger sense amplifiers 

and thus will draw more power for each row activation. Not only this, but it takes longer to sense and restore  

the data, increasing latency for reads and increasing tRAS and tRP. However, these parameters make it possible 

to make larger DRAM devices, which consumers demand. 

If a manufacturer decides to make an 8 bank device, it will take twice the current if all the banks are 

activated one after the next. The system will have to be designed to provide enough current to maintain  

steady voltage rails at this sort of current draw and the DRAMs will have to dissipate twice the heat of a 4-

bank device. Because a row activation is among the largest uses of power and banks may overlap activations  

to multiply the value, manufacturers have targeted these commands for limitation[Micron 10]. They have 

defined a timing parameter, tFAW, which establishes a window of time during which there can be no more than 

four activations to a device[Wang 05-2]. This effectively limits the maximum rate at which activates and, 

possibly, reads and writes can be issued to a rank. Although the memory controller may be able to reuse the 

65

Figure 4.29: The current profile for a bank due to activates and precharges

clock
ACT

Bank/sense amp

command NOP Pre NOP ACT

I/O gating

NOP

Row sense

NOPNOP

time

Row restore

data

NOP NOP

Bank precharge Row sense Row restore

current (IDD0)



row for many reads and writes, the activations are what consume the most power, so tFAW forces the memory 

controller to spread these over a greater amount of time.

Figure 4.30 shows that the activates may be spread over time but may not exceed four in this moving  

window. Because the last activate occurs at the end of the time window, it is possible to issue another activate 

immediately after. However, a memory controller must keep in mind that once all activates to a rank have  

been used up, it may have to wait for tFAW to expire before issuing any more activations to this rank.

tFAW was introduced with DDR2 memory, but continues with DDR3 and will likely exist for some 

time. As each generation increases the row size in an effort to expand the capacity of DRAMs, the current  

profile (IDD0, activation current) will increase, likely causing tFAW to become longer. In a Micron 1Gb DDR2 

SDRAM, tFAW is defined to be 37.5ns. For a similar Micron 1Gb DDR3 SDRAM, tFAW is increased to 40ns (or 

50ns for x16 parts). The value of tFAW is likely increased in an effort to reduce power from one generation to 

the next. Making larger rows would surely have increased tFAW by even more than this.

4.4.2 Row-to-Row Activation Delay
Much like tFAW, the timing parameter tRRD is intended to limit the instantaneous current draw of the 

DRAM  devices  and  keep  power  dissipation  under  control.  This  parameter  practically  limits  the  total  

available bandwidth by limiting how often an activate to any rank may be given. 

66

Figure 4.30: tFAW and the corresponding current profile, activates may be to any bank in a rank

clock
ACTcommand NOP NOP ACT NOP NOPACTNOP

time

ACT NOP

current (IDD0)

tFAW



Assuming there are only a handful of reads and writes waiting for each row to be activated, in order 

to do useful work, the memory controller must activate many rows. The memory controller would also want 

to scatter  those across as many banks as possible to utilize as much of the chip as possible in parallel.  

However, the  tRRD limit restricts how often activates can be sent, so the memory controller cannot simply 

open a new row every few cycles. The problem becomes more apparent as the number of banks increases.  

With more banks available, it is likely that a memory controller with numerous requests could spread those 

commands across many banks and achieve very high performance. However, many banks means that some 

banks will sit idle while waiting for an opportunity to activate another row once tRRD has elapsed. As shown 

in Figure 4.31, the memory controller has many requests to send but must wait in order to not violate tRRD. 

The current profile remains fairly low, however. If more banks were activated one after the next then the 

currents would add and the total power would grow proportionally to how many banks were doing a data  

sense and restore. 

With tRRD limiting how often the banks can be activated, the current from the last activate has gone  

down from the previous activate already. In a Mircon 1Gb DDR3 DRAM, the value of tRRD is 6ns for the x4 

and x8 parts, but increases to 7.5ns for the x16 parts. This is because the rows are larger, draw more current  

and take longer to finish the data sense. So tRRD must be increased to make certain that there is no more 

overlap in the current spike in a x16 part than there is in a x4 part. Otherwise the x16 parts would draw more  

power than their x4 and x8 counterparts.

67

Figure 4.31: Two of the activate commands are limited by tRRD and cannot be executed closer in  
time

clock
ACTcommand NOP NOP ACT NOP ACTACTNOP

time

NOP NOP

current (IDD0)

tRRD tRRD



It is also interesting to note that the values of tRRD (and tFAW) are specified in nanoseconds rather than 

cycles. This is because the clock rates for each may change, but the data sense operations are not tied to a  

clock and will take the same amount of time regardless. Because decreasing the clock period will not reduce  

the sense time, it only makes sense to specify these values in ns.

4.4.3 2T Command Timing
In systems with a  large number  of  ranks with unbuffered DIMMs,  ensuring correct  delivery of 

commands becomes more difficult. Each additional device connected to the buses adds capacitance that can 

degrade the quality of high-speed signals. The effect is that commands and addresses take longer to fully 

propagate to all the devices. If a device reads a command and the value is still changing, it may not recognize  

a read command properly or may not  receive the correct address to read from. One undesirable way to 

alleviate this problem is to reduce the the address bus clock speed.

Another solution available in nearly every commercially available DDRx memory controller is 2T 

command timing. When 2T command timing is enabled, the memory controller will hold the values on the  

command and address buses for 2 * tck (cycles) rather than the usual 1. This gives the signals time to stabilize 

before they are sampled by the DRAM devices and reduces the number of signaling errors. Although this 

method improves signal integrity, it also means that the command and address bus bandwidth is halved. It is  

often desirable to attempt to run the system using 1T before resorting to 2T timing.

Fortunately, as the burst length has become longer, starting at 1 and now up to 8, the relative impact  

of 2T commands has become proportionally less. If a data burst can occur approximately every 2 cycles due 

to the 2T command timing, then there is a fundamental limit on how often a burst can happen. However,  

since the bursts are long compared to the addressing, 4 * tck (8 beats) by default in DDR3, this becomes less 

of an issue. Assuming there can be a data burst every 4 cycles, if the address bus is limited to 2 commands  

per 4 cycles, then the address bus can keep pace with the data bus and there will  not be a performance 

decrease by using 2T timing.

68



CHAPTER 5 POWER MODELING 

5.1 Overview

An increasingly important characteristic of any product is its resource usage. This is because the  

resources required to maintain and run a device or product have become relatively scarce and therefore more  

expensive than in the past. For example, with the price of fuel increasing by a factor of 3 or more in the past 

decade, cars are now evaluated on how much fuel they consume to transport the occupants a certain distance.  

Consumers are willing to pay more for a vehicle that is more efficient in hopes that it will save them money 

on fuel and maintenance over the life of the car. Also, major appliances are now rated by how much they will 

cost to run over the course of a year of regular use. They even give numbers based on gas versus electric  

heating in some cases. Cost of ownership is becoming a very important factor in the decision of whether to  

buy one product versus another.

Because resources are becoming more expensive and actually operating a device may comprise the  

majority of its cost,  many companies who use lots of compute nodes are looking to build more energy-

efficient solutions. Google Inc., a provider of many different Internet services, has studied the problem of  

power management in their numerous datacenters[Fan 07]. They looked at how power usage is divided up 

amongst the different components within a system and how the workloads and components affect how much  

is used by the system as a whole. It was noted that varied workloads will produce different power usage,  

even though components are usually specified in terms of one number, the peak power usage.

One  interesting  point  that  this  paper  made  was  that  many workloads do not  run  while  entirely 

utilizing any of the major subsystems in the server, they are tolerant of lower performance and do not drive  

the system at its full potential. Because of this, there are many times that the systems sit partially occupied or  

idle. When a system is designed to give great power performance at full utilization, but is less efficient in  

69



terms of operations per watt at reduced speed, then the system is not ideal and could still be improved. They 

argue that designers must consider power usage for a wide range of applications and activity levels. If one 

system uses 70W at peak usage but drops to only 55W when idle versus a system at 95W peak and 25W idle, 

the system with the lower idle power may be preferred in situations where it is not expected to be constantly 

in use. Also, because many applications are written to run on multiple systems simultaneously, their power 

usage may be determined by how the systems are able to interact with one another. If an application does one 

part of the work on one machine and processes the data output from that machine on another node, it may be 

best  to  have a  system optimized  for  high  utilization doing  the  processing  and a  more  efficient,  slower  

machine doing the post-processing and data serving. These should be situations tested and run by system 

designers when simulating designs to ensure that new products are optimized for the situation that they will  

be used in, whether it is always idle, always in use or somewhere in between.

In a computer system, DRAM can be a major user of power, adding a good amount to the overall 

power used, depending on the quantity of DRAM installed, its specifications and the usage patterns. In order 

to help model the power usage, Micron Technology, Inc. has provided a guideline on how to estimate power  

usage of a memory system[Micron 07]. Understanding how leaving a bank open longer than necessary to 

improve performance may impact power usage is important to a system designer as they make decisions  

about how to manage the DRAM banks. One interesting piece to note is that if even a single bank is open in 

a rank, the entire rank is open. So the power draw from a rank with all the banks open is the same as a rank 

with a single rank open. 

5.2 Background Power

The power dissipated by the DRAMs is divided up into two categories, background power and event 

power. Background power is dissipated at all times. There are several types of background power and which 

value is being dissipated depends on the state that the DRAMs are in. So, at all times there will be some sort  

70



of background power being used, but always only one type. Because the voltage on the DRAM may be 

varied somewhat from system to system, only the current is specified for this type of power.

At any moment, a DRAM device may have a bank open within it or not. When one or more banks 

are open, the rank is considered to be active. When a precharge command is issued and all the banks are in  

the precharge state, the rank is considered to be in precharge state. In addition to affecting the state of the 

banks, the memory controller has access to the clock enable (CKE) pin on each of the DRAMs, which, when  

disabled,  puts  all  the  DRAMs into a  lower  power  state  with  inputs.  Using  CKE effectively allows the 

memory controller to put the DRAMs into a low power state at virtually any time as long as the inputs are 

not needed. In order to leave this low power state, the CKE pin is deasserted and after a time the inputs will  

be available for commands and data once again. Because the time to leave the low power state is nonzero,  

the memory controller  must  be careful  to take the right  DRAMs out  of  the low power state soon after  

receiving a request in order to not have this exit time add to the transaction latency. The DRAMs may be 

configured in two different ways, known as “fast exit” and “slow exit.” The functional difference is how 

soon after  CKE is  deasserted the inputs  are again available.  If  “fast  exit” is  chosen,  the inputs will  be 

available sooner and the memory controller will be able to make a request to the DRAMs in less time than a  

“slow exit.” The drawback to “fast exit,” and likely the reason that there are two different exit modes is that  

the value of IDD2P is increased when the mode register is set for “fast exit.” IDD2P is the current drawn by a 

DRAM device while all  banks are precharged and the clock is  disabled;  this  is  the lowest  power state.  

Because IDD2P is higher, the minimum power that a DRAM may dissipate is increased and the power floor is  

raised on this system. In portable devices where memory is less of a bottleneck and performance is not the 

primary  target  for  the  system,  the  extra  latency of  a  “slow  exit”  would  be  tolerated.  However,  when 

performance is paramount, “fast exit” and the additional power it brings must be chosen and power must be 

5.2.1 All Banks Precharged
When all of the banks in a device are precharged but the clock enable is asserted, the device is in  

precharged, standby mode. While the device is in this state, it draws IDD2N, the average current while in this 

71



state. As long as all the banks remain precharged, the CKE determines how much power is being dissipated. 

When it goes from high to low, the current profile changes from IDD2N to IDD2P. So a good approximation for 

the power used while in these two states would be VDD * IDD2P for precharged, power down or VDD * IDD2N if 

it is precharged and in standby mode with CKE asserted.

5.2.2 One or More Bank Activated
If  any of  the  banks  are  activated  and  hold  a  row in  the  sense  amplifiers,  the  entire  device  is 

considered to be activated. At this point the memory controller may read or write to the open row. Being in  

this state consumes more power, so it is advantageous for the memory controller to keep the banks open as  

long as necessary and then close them to reduce power consumption. If the bank is active and the CKE is  

asserted, the device can receive commands and send or receive data. During this time, the device draws 

IDD3N, so the power would be VDD * IDD3N. If CKE is deasserted, thus disabling commands, the current is 

IDD3P. The power would then be VDD * IDD3P. This state is often used when the memory controller expects 

another command soon and it is faster to go into the power down state with banks open than to close the  

banks and possibly go into the power down state.

5.3 Event Power

Event power refers to the power drawn by the DRAM devices which is in addition to the background 

power and is associated with a command being issued. When an activate command is sent,  sensing and 

amplifying the values stored in the DRAMs costs a certain amount of power, but is only incurred for the  

duration of that command. Likewise, when a read occurs, the power dissipated by the I/O buffers and the 

terminating resistors on the other ranks is incurred only while that read is being sent.

72



5.3.1 Activate Power
In order to read or write data, the bits must be sensed and read into the sense amps via an activate  

command. The row decoder and sense amplifiers consume the majority of the power during an activate. 

Although the majority of the current is used at the beginning of the activate, the value I DD0 is specified for 

the  entire  activation,  from the  activation  to  the  precharge  (assuming tRC),  as  an  average  of  the  current 

consumed.

It  is important to note that this value is specified only if every activate to precharge time takes 

exactly tRC. Because there are many banks available for the memory controller to use, it is very unlikely that  

it would happen that each activate would wait until all other rows are precharged before activating a new 

row. Because of this, power calculations must be adjusted to take into account increased utilization and the  

corresponding power increase that comes with it.

Figure 5.1 shows the various different currents described previously. IDD0 is shown as the blue line 

that is the average of the current over time. This value only holds true if the RAS to RAS timing is exactly  

equivalent to tRC. If the activate commands come more frequently, the current spikes will happen more and 

more often, so the average current will be greater. The power due to activation commands at regular intervals 

is given by the formula:

73

Figure 5.1: Current profile for a DRAM device with CKE asserted

clock
ACT

command
NOP Pre NOP ACT NOPNOPNOP

time

NOP NOP

current (IDD0)

Activation current
IDD3N

IDD2NPrecharge 
current

IDD0



This formula attempts to account for the power contribution of the activate without including any of 

the  background power  components.  Because IDD0  includes  row decode,  sense,  restore  and background 

power, it is necessary to subtract away the background power to have an accurate sense of what power the 

activation is adding beyond just background power. For the duration of tRAS, the bank is in activated standby 

mode, so it consumes IDD3N. For the remainder of the row cycle, tRC – tRAS, the bank is in precharged standby 

mode, so it consumes IDD2N. Because the two states must take up the entire time of tRC (tRC + (tRC – tRAS) => 

tRC), this sum is divided by tRC to give the power due to only the activation. Then it is multipled by voltage to 

give power consumed for this operation.

Most systems will not be able to space all their activates at exactly tRC, so  Formula 5.1 must be 

adjusted to incorporate the actual rate at which rows were activated. Because several banks are available, the  

memory controller may be able to schedule activations to many channels in a row, resulting in an average 

row-to-row activation rate smaller than tRC. Instead of scaling every activate and precharge cycle, it is often 

more convenient to calculate the average activation rate, tRRDsch. This value is then used in the calculation tRC / 

tRRDsch to give an appropriate scale factor for Formula 5.1. If tRRDsch is larger than tRC, then the average rate of 

activation was slower then expected, so power is being dissipated more slowly. Therefore, as tRRDsch becomes 

larger, the power dissipated decreases. If tRRDsch is exactly the same as tRC,  then the scale factor is 1 and 

Formula 5.1 accurately describes the power usage of this system. However, if tRRDsch is shorter than tRC, then 

this means that the memory controller was able to concurrently use several banks of the device and was able 

to average activations more frequently than tRC. As expected, in this case the scale factor becomes greater 

than 1 and the power dissipated is expected to be larger. If two banks within a device are being activated at  

tRC, then the activations are happening at a rate of 2 * tRC. In this case, the scale factor would be 2 and the 

activation power would be twice what Formula 5.1 predicts.

74

Formula 5.1:  Activate power
 I DD 0−

I DD 3N∗tRASI DD 2N∗tRC−tRAS
t RC ∗V DD



5.3.2 Read Power
Reads  are  represented by the current  value IDD4W. As  seen  in  Figure  5.2,  the  current  from the 

different consecutive reads can sum to give a greater current than is possible with a single read. The power  

for a read, excluding the background power while in active standby mode is:

 The value IDD4W represents the I/O drivers sending data continuously as well as background power, 

IDD3N must be subtracted to give only power due to a read. Because the measurement IDD4W assumes that 

data is being sent for all active cycles, the value given by Formula 5.2 must be scaled according to how many 

of the cycles were used for data transmission. So if there was one burst of 8 in 32 cycles, the data bus would  

be utilized for 25% of the time and Formula 5.2 would be scaled by .25.

75

Formula 5.2: Read Power
 I DD 4R−I DD 3N∗V DD



5.3.3 Write Power 
Writes proceed in almost  exactly the same way as reads,  with a current  profile that  looks quite 

similar to that of Figure 5.2, except with write commands instead of read commands. When multiple writes 

occur consecutively, the overlap also produces a larger overall current similar to what is noted as “second 

read.” In order to calculate the power due to only the write and not any background power, the following  

formula should be used:

This removes the active standby current that is part of IDD4W and gives power due only to the write 

itself. In much the same way as a read, this power value assumes that the write data will be sent continuously 

over the time being calculated. In order to adjust, the power must be scaled by only the portion of time that  

was actually used for the data burst. For example, if the write was just a single burst of 8 and it was during a 

period of 32 cycles, the scale factor would be 0.25 and only 0.25 * Formula 5.3 would be used.

76

Figure 5.2: Read current for two consecutive reads to the same bank

clock
ACT

command
Read NOP NOP NOP PreReadNOP

time

NOP NOP

current

Activation current First read Second read

Formula 5.3: Write Power
 I DD 4W− I DD3N∗V DD



5.3.4 Termination Power

As described previously, DRAM devices have on-chip resistor networks that they connect to the bus  

in various situations. When a DRAM or rank is not in use, they add an impedance to the bus to improve  

signal transmission characteristics. These additional impedances also dissipate power and must be calculated 

when considering DRAM power.  So,  in  addition  to  dissipating  power  when driving  the bus,  either  the 

memory controller or a DRAM also dissipates power in the resistor networks of adjacent DRAMs.

Unlike the other types of power, termination power increases as the number of devices on the bus  

increases, even though most of the devices are not in use. The values of the internal resistor networks may be 

chosen using the mode registers in the DRAMs, so it is possible to vary the power from setup to setup.  

Although this method will calculate the power using only DC analysis of the resistor networks, it provides an 

approximation that is usually good enough to get a good idea of what power will be dissipated.

In  Figure 5.3, there are several impedances named RON. Each DRAM has a value of RON for their 

output drivers because this is the output impedance and is due simply to how the circuit is made. The 15 Ω 

resistors represent the resistance inherent in the circuit, whether in the leads from the ICs or the traces on the  

77

Figure 5.3: DDR3 DRAM Termination Scheme

Controller

DRAM 2DRAM 1

RON

RTTPD

RTTPU

VDD

RON

RTTPD

RTTPU

VDD

RON

RTTPD

RTTPU

VDD

15Ω 15Ω



circuit  board. Systems with especially thin or long traces will  have values higher than 15Ω, but for the  

purpose of this example, the value 15Ω will be used.

When a DRAM is not involved in either reading or writing data on the bus, it will often set its  

resistor network to smaller values. For example, RTTPU and RTTPD will be set to 60Ω each, so the effective 

resistance of the DRAM is 30Ω[Micron 07].

5.3.5 Refresh Power
Periodically, a refresh command is sent to all the DRAMs in a rank in order to maintain the integrity 

of  the  data.  The  current  associated with a  refresh operation is  reported in  datasheets  as  IDD5.  IDD5  is  a 

measurement of the average current when refresh commands are sent at exactly the minimum specified value 

of tRFC. Because the DRAMs must be in active standby mode while doing a refresh, IDD5 also includes IDD3N 

as a component. In order to account for only the power associated with the refresh operation, IDD3N must be 

removed. Power due to a refresh, Pds(REF), is shown in Formula 5.4.

As seen in Formula 5.4, calculating the power attributed to the refresh operation is straightforward.  

Because it is very unlikely that a system designer would have reason to issue refresh commands at this rate, 

this power must be derated to reflect the actual rate at which they are being issued. DRAMs can typically  

hold values for milliseconds before any data corruption occurs, so it is best to issue refresh commands no 

more  often  than  necessary  to  increase  DRAM  availability  and  reduce  power  consumption.  DRAM 

availability is increased due to the fact that other commands will not have to wait for a refresh command to  

finish before issuing, nor will they have to wait for enough time to elapse before executing, as a refreshes  

make other commands wait. When refresh commands are issued over the recommended refresh interval, tREFI, 

then the power dissipated is calculated as follows:

78

Formula 5.4: Refresh power
 I DD 5−I DD 3N ∗V DD



5.4 Derating Power For Specific Systems

To adjust the theoretical power used to a more realistic value for a real system, the power must be 

derated. All of the previous calculations consider that one is running the system at the specified voltage and 

specified frequency. If the system is run at any other value, then this change must be accounted for explicitly.

DRAMs  give  a  maximum operating  voltage  and  this  is  what  the  IDD parameters  are  specified 

according to. Voltage typically scales as the square of the ratio of the nominal operating voltage versus the 

maximum voltage. All the different types of power are dependent on the voltage scaling, so it should be used  

to scale every type of power named previously. In order to adjust for whatever voltage is actually being used, 

the following formula should be used:

Likewise, frequency must be accounted for as well. Frequency only affects the background power  

and read and write power. Refresh power and activate power are not dependent on frequency. However, if the  

system is  set  to  slow exit  from precharge  powerdown,  then  because  the  DLL is  not  enabled,  it  is  not 

dependent on frequency. During fast exit, frequency scaling would still apply. Frequency is scaled as follows:

79

P systype=P schtype∗
V DDused 

V DD maximum


2

P systype =P schtype ∗
f used

f spec




CHAPTER 6 EXPERIMENTAL SETUP

In order to test the experimental setup and accurately determine which changes, if any, affect the  

performance of the system, a cycle-accurate DRAM simulator is needed. To accomplish this, DRAMsimII 

was designed to incorporate a framework for testing various algorithms and heuristics within a memory 

controller. The goal of the simulator was to give a level of accuracy that would show how not only how the 

behavior or reordering transactions and commands affect overall system performance, but also what effect  

the timing parameters have on power and performance.

6.1 Simulator Setup

DRAMsimII was built on the lessons learned from DRAMsim [Wang 05] and was rebuilt from the 

ground up to achieve greater flexibility improved simulation performance. The first improvement was to 

switch  from per-cycle  simulation  to  event-driven  simulation.  In  a  components  like  the  cache  or  CPU 

pipeline, where some activity happens on nearly every cycle, it is convenient to simulate every cycle without 

checking to see if there is actually something to do first. However, when it comes to subsystems like the 

memory, it may actually be quite a lot of cycles between things happening, so simulating every cycle often 

ends up with the simulator wasting a lot of time doing nothing. To remedy this, event-driven models allow 

the various components to essentially accurately predict when the next operation will happen and schedule  

this. The simulator then keeps track of all the events for the different systems and goes and does work for  

them only when there is some work to be done. This improves simulator performance by only doing work 

when it is necessary, at the cost of keeping track of different events in a queue. The downside to event-driven 

simulation is that components that do work on the majority of available cycles tend to incur significant  

overhead to queue and schedule operations.

80



The memory system, however, does not do work on nearly every cycle, so it is compatible with the 

event-driven model. In fact, the underlying workings of a DRAM system are very similar to how an event-

driven model works. For example, when the memory controller sends a CAS command to the DRAMs, it 

will expect a response to begin in tCMD + tAL + tCAS. The data burst will finish at exactly tCMD + tAL + tCAS + tBurst. 

This means that the simulator can schedule events for the beginning and end of a data burst at these two  

times and not worry about the cycles before and in-between. The hardware would maintain counters to keep 

track of when the data was coming back, but the simulator can abstract this away. Likewise, if commands are 

sent using 2T command timing, this can be expressed as a longer interval that the command bus is not  

available. 

cIn order to enforce timing parameters, the next command is scheduled whenever all other relevant  

timing parameters have expired. In the case of Figure 6.1, there are several other ACT, CAS, CASW and Pre 

commands preceeding the CAS command at  the top of the diagram and the timing parameters must  be  

respected. So DRAMsimII simply looks at all  of the other timing parameters and determines which one 

prohibits the execution of the CAS the longest and uses this time to schedule the CAS command. As long as 

all  the commands and data movement is restricted by minimum timings, the memory controller will  not 

violate timing constraints and the simulated events would emulate what a real memory controller could do.

81

Figure 6.1: How timing parameters are enforced in an event-driven model

Time

PRE

CASW

ACTACTACT

CAS

CASW
CASW

Other rank

CAS

tBurst

tAL

tRTRS tCAS

tRCD

lengthtCWD

tBursttCWD

When to 
execute?

PRE



Values are tracked and calculated as events happen. So in addition to events which correspond to 

things that happen at certain times, the channels, ranks and banks store information about the minimal times  

at which events can happen. These values are used to prevent events from happening at times that would 

create timing problems for the DRAMs. Additionally, some of these parameters are there to simulate critical 

path timing or data bus utilization. For example, to emulate the time that the internal logic would take to 

decode  and  organize  the  appropriate  commands  for  a  particular  transaction,  there  is  a  parameter  that 

determines how much delay there must be from the time a transaction is received until it can be decoded.  

Although there may be room to decode the transaction immediately and store its constituent commands, it  

must still wait for this time to elapse. Likewise, each channel has a parameter that corresponds to how long it  

takes to transmit a command to the DRAMs, depending whether it is 1T or 2T timing. No other commands 

may be issued to other ranks, regardless of other timings, until this time has elapsed. Even though the fact  

that the bus is in use is expressed as a timing, it creates a uniform mechanism to enforce data transmission 

and timing restrictions.

As commands are executed or transactions decoded, internal values are updated to keep track of  

when the next commands may be issued. This time is a minimum value that each type of command must wait 

for to avoid violating any timing constraints. Because many commands are evaluated before one is chosen, it 

is much more efficient to keep track of when the next type of command may be executed than it is to keep  

track of when the last command of that type was executed and then apply all the timing rules. Also, only the  

relevant rules must be applied at the time of the command's issue. For example, a RAS command would 

trigger the rank to update the earliest time when another RAS command could be issued. It would be the  

maximum of  tRRD from now or tFAW from the oldest time in the four activation window. Then, when the 

command ordering algorithm evaluates a RAS command to see if is eligible to be executed right away, it  

needs only to check the current time is greater than the earliest activate time in the respective channel, rank 

and bank.

82



6.1.1 Multithreaded Workloads and Thread Synchronization
When  requests  are  sent  from the  CPU through  the  bus  to  DRAMsimII,  they are  converted  to 

transactions  and returned.  However,  there  are  a  certain  class  of  requests  that  are  intended to  facilitate  

ordering between threads and must be handled in an atomic manner. To allow thread synchronization, the 

ISA supports LLSC (load-link/store-conditional). This allows the threads to load a value from memory and 

have it protected until it is written back by that same thread. If another thread has modified this value then 

the store will fail. These requests should not be allowed to be reordered so that the program can run correctly,  

hence these requests are handled as they arrive. The locking portion is stored separately from the rest of  

memory and allows the requests to be responded to immediately. This means that these sorts of requests can 

be handled atomically and will ensure correct program operation.

6.1.2 Simulator Data Movement
As can be seen from Error: Reference source not found, DRAMsimII is essentially a large group of 

queues and algorithms where transactions and commands move through in the process of being completed 

and returned to the system component from which they came. Various heuristics for choosing the order in 

which transactions and commands are moved around can greatly affect  the performance of the memory 

system. If the transaction queue cannot handle the rate at which new transactions are added from different  

sources, it will have to turn away requests and will create stalls in the CPU or network interface that is  

sending the transactions. Because every queue depends upon the queues before it to supply it with data and 

the queues after it  to accept data, the choice in heuristics to manage the queues is especially important.  

Various policies must work together to improve the movement of data through the memory controller or 

performance will be reduced.

83

Formula 6.1: Refresh power when 
scheduled at tREFI

t RFC MIN 
tREFI

∗PDS REF 



Likewise,  to  improve  power  usage,  the  policies  must  work in  such a  way as  to  work with the  

DRAMs to reduce power  usage.  If  the  DRAMs are left  with rows active most  of  the time but  are  not 

servicing column requests,  then the DRAMs are using more power then they could be. In an embedded 

system, where power is more important than performance, if the requests are not very numerous and they are 

well-distributed across several ranks, then these ranks are using power to stay active when they could easily  

be precharged with only one rank active.  The following sections  will  look at  some of  the policies  and  

heuristics that make up the memory controller and how they can impact performance.

84

Figure 6.2: Data layout of DRAMsimII showing movement of transactions and commands

CPU/
Network 1

CPU/
Network 2

CPU/
Network 3

CPU/
Network n

DRAMSim
Channel n

Channel 1

BIU

Transaction queue

Refresh queue
Command 
generator /
scheduler

Rank 1
Bank n

Command 
queue

Bank 2

Command 
queue

Bank 1

Command 
queue

Rank 2
Bank n

Command 
queue

Bank 2

Command 
queue

Bank 1

Command 
queue

Rank n
Bank n

Command 
queue

Bank 2

Command 
queue

Bank 1

Command 
queue

ƒ ( row buffer 
management policy, 
auto precharge, 
transaction type, 
transaction priority, 
addr mapping policy, 
etc.)

ƒ ( Transaction 
ordering algorithm, 

timing parameters,)

ƒ ( Refresh policy, 
age limit, timing 

parameters, etc.)

Decode 
delay



6.2 Transaction Queue

The transaction queue is the first queue that a read or write request will enter when it is sent to the  

memory controller. The queue can be implemented as either a true queue, where requests are removed once  

they are converted to commands and placed in the command queues or as a series of holding registers that 

hold the transactions until  they are finished, similar to MSHRs. DRAMsimII implements the transaction 

queue as the former, removing transactions once there is sufficient space to decode them into a series or one 

or more commands. The queue serves as the queue for all transactions in this memory system, regardless 

which channel they are bound for. Transactions cannot be routed to the channels until their addresses are 

decoded into locations,  so when a transaction is  instantly assigned a slot  in  the  transaction queue,  it  is  

assumed that there was not time to determine which channel it will go to.

As  the  requests  are  placed  into  the  transaction  queue,  there  are  two  different  ways  that  the 

transactions may be inserted:  as a first-in-first-out or as RIFF. FIFO is as it  sounds,  simply placing the  

request at the end of the queue. This is the simplest approach, takes less logic to implement and is likely the 

fastest when implemented at a circuit level. RIFF stands for read and instruction fetch first, so reads and  

fetches are prioritized over writes and go to the front of the queue. It is almost like there are two queues in 

one, the reads at the front and the writes behind the reads. All types of reads have the same priority, so a fetch  

may arrive after a read, but will go to the end of the reads. RIFF is more complex to implement because it  

must check against RAW (read-after-write) and WAR (write-after-read) hazards. Write-after-write hazards  

are prevented by the fact that writes are inserted in-order with respect to other writes. Because each insertion  

must be checked against each existing item in the queue, using the RIFF policy will be slower and require 

more logic  to  implement.  However,  the  benefit  is  that  reads  are  prioritized and program execution can 

happen  faster.  Because  the  processors  do  not  wait  on  writes,  but  do  wait  on  reads  and  especially  on 

instruction fetches, the memory controller should make an effort to prioritize these requests to help improve 

program performance. 

85



As shown in Figure 6.3, when an instruction fetch is the next transaction to be inserted in the queue,  

then it will go immediately after the other reads and all writes. If it should conflict with a write already in the  

queue, then it would be placed immediately after the write that it conflicts with.

One additional improvement that may be possible is the prioritization of all instruction fetches over 

reads and writes.  Because a processor frequently must  stall  a  thread in the case of an instruction miss,  

execution of the application depends directly on the latency of the instruction fetches. So if the instruction  

fetches do not need to wait on the other reads then processor stalls can be better avoided.

The more information that can be passed with each request, the better the memory controller can use 

this information to prioritize the data. If a context ID is provided with each request, the memory controller 

can be sure to prioritize the request appropriately to ensure a certain quality of service for that context ID.  

This will ensure a certain fairness between different threads competing for memory bandwidth and not allow 

certain threads to saturate the memory system and cause other threads to incur great delays in performing  

86

Figure 6.3: An instruction fetch is inserted into the transaction queue via RIFF

Incoming Transaction 
Queue

WRITE

WRITE

WRITE

WRITE

READ

WRITE

WRITE

WRITE

FETCH

READ

READ

FETCH

FETCH

RIFF

FETCH

Incoming Transaction 
Queue

WRITE

WRITE

WRITE

WRITE

WRITE

READ

FETCH

WRITE

WRITE

FETCH

READ

READ

FETCH

FETCH



memory  reads  or  writes.  Additionally,  if  the  memory  controller  knows  that  some  of  the  requests  are 

prefetches, it can reduce the priority of these to be lower than that of regular requests that the processor is  

actively waiting on. If the memory controller is using read and write requests to predict addresses to prefetch  

on its own, then it can ignore prefetch requests from the CPU cache and more accurately predict what to  

prefetch. Essentially, as more metadata is passed to the memory controller with each request, the better it can 

decide how to handle the request and what data to collect from it. 

When enough time has elapsed to simulate the translation from a transaction to several commands,  

the transactions can be removed from the transaction queue. In a manner similar to that of the issue window 

in a  CPU,  the requests  in the transaction queue can be removed out-of-order if  sufficient  resources are 

available.

Figure 6.4 shows that several transactions can be removed if there is room for them in the command 

queues. The decode window can be set to a value smaller than the size of the queue to better simulate what 

actual hardware would be capable of. If the decode window is set to 1, then the queue will be able to remove  

only the first transaction each cycle.

The advantage to this is that the command queues can be filled more quickly and the requests can be 

finished sooner. If there is one transaction at the head of the queue that is waiting for a heavily utilized bank,  

then the rest of the transactions must sit and wait. If one bank is consistently heavily utilized, many other  

threads will be virtually starved while waiting for the requests to that particular bank to clear the transaction  

queue. With the decode window, this can be prevented and overall throughput to the memory system can be 

improved.

87



6.2.1 Refresh Queue
The refresh queue is quite similar to the transaction queue, but holds transactions periodically to 

attempt to send refresh commands to the ranks often enough to not violate tREFI. When the memory controller 

is deciding which to choose from, the transaction queue or the refresh queue, it considers the age of the  

transaction in each. If they are similar in age, then the transaction from the transaction queue is chosen.  

However,  if  the  transaction  queue  is  empty then  refresh queue is  chosen.  If  the  refresh  queue  holds  a  

command that is relatively old then it is prioritized and chosen instead of the normal transactions. This is  

because the controller does not want to go too long between refresh commands and potentially corrupt data 

in the DRAMs.

When refresh transactions are decoded into commands, they are broken into as many commands as  

there are banks in a rank. This is to ensure that all the banks are closed when the refresh command happens 

as is required by the DRAM state machine. In the case of an open page row buffer management policy, the  

88

Figure 6.4: An illustration of how transactions can be removed from the transaction queue when  
they are ready and have available command queues

Incoming Transaction 
Queue

READ

READ

FETCH

READ

READ

FETCH

READ

WRITE

FETCH

READ

WRITE

WRITE

FETCH

Decode 
Window

Incoming Transaction 
Queue

READ

READ

FETCH

READ

READ

READ

WRITE
Decode 
Window

READ

FETCH

WRITE

FETCH

WRITE

FETCH

Incoming Transaction 
Queue

FETCH

READ

WRITE

READ

READ

READ

READ

Decode 
Window



refresh commands are all preceded by a precharge command to close out any row. When the front of every 

queue contains a refresh command, it is guaranteed that each bank is closed and the refresh command may be  

issued, so the refresh commands are dequeued from every per-bank queue at the same time and issued as one  

command.

There also exists the option to send refresh commands as a row activate followed immediately by a  

precharge. This allows for a more fine-grained control of the refreshes, but does not make use of the internal 

refresh counter in the DRAMs. The advantage of this scheme is that the banks will not sit idle while waiting  

for the other banks to finish any operations and then issue the refresh command. The banks will be refreshed  

individually.  However,  the per bank caches  will  have two additional  commands each when a  refresh is  

issued, which will increase their utilization and potentially impact performance. Also, the memory controller  

will need to keep track of which row in each bank should be refreshed next. With refresh commands, the  

DRAM keeps track of the next bank to be refreshed, but now the memory controller will  need to have  

enough counters to handle as many banks as the memory system can be populated with.

6.3 Per-Bank Command Queues

In order to determine what bank commands should go to, they are decoded from transactions into  

commands. During this process, a particular bank is chosen, depending on the address. In order to alleviate  

some of the pressure on the incoming transaction queue, a queue for each bank is made. There is one queue 

per bank, so when it comes to choosing a command to execute next, the command selection algorithm can  

pick a queue and know that all commands in it correspond to one bank.

The depth of these queues can be adjusted to any depth the user wants. As the queues become longer, 

the better they are able to accommodate new commands. If the per-bank queues can hold more commands,  

then the transaction queue is better able to decode commands and clear itself out, so the memory controller  

will have a less full transaction queue and will have to turn away fewer commands. This means that the  

89



CPUs can send away a memory request and wait for it to return, rather than having to stall to wait to send the  

request.

The downside to a deeper queue is that the overall complexity of the memory controller rises as it  

becomes longer. Because commands may be inserted in the middle or any other point of the queue, there  

must  be  hardware  to  compare  every existing  command already in  the  queue.  Row buffer  management  

policies like open page attempt to reuse open rows, so they group commands that are going to the same row. 

This means that each command must search the queue to see if a row is already open and then insert it  

behind the other commands going to that particular row. The queue can be implemented as a simple FIFO if 

a basic row buffer management policy like close page is used. In this case, commands are always inserted at 

the end of the queue, so the hardware to compare all of the commands becomes unnecessary.

6.4 Row Buffer Management Policies

The row buffer management policy describes how the memory controller manipulates the rows in a  

bank. It describes the strategy of how the memory controller is going to address the banks and in what state it 

will leave them. There are two basic policies: open page and close page. Since a row is often called a page,  

these are fairly descriptive names. The open page policy will close out an open row, activate a new row and  

perform a read or write, thus leaving the new row open. Likewise, the close page policy will open a row,  

perform a read or write and then close it when it is finished.

To choose between the two policies, one must consider the characteristics of the address stream and 

what  sort  of locality it  has,  spatially and temporally[Alakarhu 02]. Close page tends to assume that  the 

addresses will be unlikely to be similar enough to map requests to the same row and therefore preemptively 

closes it  out.  This assumption is  likely to be true in a heavily multithreaded environment,  like a server  

running many virtual machines. Because their address spaces are completely separate, their requests will  

likely not map to many of the same rows, so closing out a row immediately after completing the read or write  

90



will save time when the next request comes along. If the row stayed open, a precharge would first have to be  

issued, incurring a tRP penalty before the activate could be performed.

Open page assumes the opposite. If the address stream has many requests to similar locations, such  

as a workstation or a compute node running simulations would, then it is likely that the requests would 

exhibit spatial and temporal locality. Because open page leaves rows open, if requests continue to map to  

open rows, then the memory controller needs only issue reads and writes and does not pay a time penalty for  

closing  and  opening  the  same  rows  again  and  again.  Additionally,  open  page  attempts  to  reorder  the 

commands as they are placed in the per-bank queues to increase the amount of row reuse. Because addresses  

that map to different rows are guaranteed to be different physical addresses, there will not be data reordering  

errors. Data reordering errors, sometimes referred to as data hazards in the context of a CPU, occur when 

reads and writes to the same address are reordered and the resulting state is different from what it would have  

been if there was no reordering. For example, if a read is placed before a write to the same address, then the  

read will take the value in memory before that write has happened, even though it should have taken the 

value of the write. Likewise, if there are two write commands and they are switched in the order they are  

performed, then the memory will be left with the value of the earlier request because the latter request was  

switched and performed first.

To avoid this problem, when attempting to add a command to the middle of the queue, the queue is  

scanned from the back to the front. When a match to the same row is found, the new command is inserted  

immediately after the read or write command that matched. This strategy ensures that there the ordering of  

commands to the same row will be preserved and there will not be any data reordering errors.

There are several row buffer management policies available and, together with the address mapping 

policy and the command ordering algorithm, they determine much of how quickly a transaction will finish in 

the memory system.

91



6.4.1 Close Page
Close page is the simplest of the row buffer policies to implement and the simplest conceptually. The 

row is closed out once the commands are issued. In Figure 6.5, close page is shown at the top of the list as a 

RAS command followed by a CAS+Pre. If the DRAMs do not support auto-precharge, then separate CAS 

and precharge commands are issued. This policy does not support reordering, so there is no need to scan the 

entire queue before inserting the commands. It is therefore a very simple policy to implement, so there will  

be less hardware required to implement it and less power used by the memory controller when using it.

When a transaction is decoded into its constituent commands, it checks to see if there are enough 

slots in the per-bank queues to hold two commands. If the queue is too full,  then the transaction is not  

92

Figure 6.5: A comparison of how the various row buffer management policies work for a read  
transaction

Row Buffer Management Policy

Open Page

Close Page

Rank 1
Rank 0

RASCASW+PRASCAS+P

RASCAS+P

RASCAS+P

RASCAS+PRAS

RASCAS+P

RASCASW+PRASCAS+P

RASCAS+P

RASCASW+P

Read
Transaction

PreRASCAS
or

CAS

CAS

Pre

Close Page Aggressive

RASCAS+P

RAS

CAS

CAS+P

Bank 0

Open Page Aggressive

CAS

CAS+P

PreRAS

or
PreRASCAS

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

RASCAS+P

Address 
Mapping Policy

or



decoded until there is more room available. This would likely be a good policy for an embedded device,  

netbook or typical desktop system. 

6.4.2 Open Page
Open page is essentially the reverse of close page, as it keeps the rows open until another command  

reuses the row or a new row is needed and it then closes the current row and opens another. Two variations of  

open page are available. 

The simpler of the two looks at the end of the queue and determines if the read or write at the end of  

the queue will be using the same row as the new queue. If it is, then the memory controller simply inserts the  

command at the end of the queue and the row is used twice. If the queue is empty, the memory controller  

looks at which row is currently open. If the correct row is already open, then it simply inserts the read or  

write command into the empty queue and the open row will be reused. Should neither match the row of the  

new command, a precharge, RAS, CAS is inserted into the end of the queue. This scheme requires only a  

comparison of the open row and the last command in the row, making it reasonably simple to implement and 

will give better performance than close page if it is able to reuse the rows. Otherwise, performance will be  

worse as new commands will incur a penalty of the time it costs to precharge the row.

The other option for open page is to use all the same comparisons as the previous scheme, but also to 

scan through the queue to look for other instances where a command is going to use the same row. Then, the 

command is inserted after the commands already using the row. This creates row reuse where there would 

not be with the simpler scheme. However, there must now be the facility to insert commands into the queue 

at arbitrary points, so the queue is no longer strictly FIFO. Additionally, now a comparison of the row of each 

of the commands must be done, making the search more complex. 

Also, there must be a counter with each command in the queue to determine how long it has been 

waiting. If this counter exceeds a certain number, no other commands are allowed to go in front of it. This  

prevents  starvation  of  commands.  Because  a  read  command  may be  pulling  the  next  instruction  from 

93



memory that  a certain thread needs before it  can proceed,  it  important to limit  the amount of time any  

transaction and its commands can wait. Otherwise, another thread may come along and have commands that 

reuse the same row over and over and cause the first thread to wait indefinitely long.

6.4.3 Close Page Aggressive
Close page aggressive is a hybrid policy designed to combine some of the benefits of both close and 

open page. When the memory controller is done with the row, it is closed, either by using CAS with auto-

precharge or just a precharge command. Rather than simply inserting the new command at the back of the 

per-bank queue,  the  memory controller  scans the  queue from back to  front,  looking for  other  CAS(W)  

commands that are using the same row. Just like with open page, there are counters to prevent starvation of  

old commands and the queues will no longer be strictly FIFO.

This policy assumes that there will be a small amount of row reuse. It looks to reuse rows as they are  

opened, but still closes them afterward, assuming that it is unlikely that a command will arrive that will reuse 

an open row much after the row is opened. This should yield many of the benefits of open page's row reuse, 

but without suffering the penalty of having to close out a row before opening a new one.

6.4.4 Open Page Aggressive
This policy is similar to open page, but has several more complex optimizations. Ordinarily in open 

page, the precharge is a discrete command. This is done to give other commands as long of a chance as  

possible to reuse the row before it is closed. The same is true for open page aggressive, except that when the  

queue becomes more than some amount full, it will compress these commands into a CAS(W)+Pre. This 

reduces the number of commands on the command bus and frees up the row sooner for new commands to 

open new rows. No matter whether the command was going to be inserted into the middle of the queue or as 

a new RAS, CAS(W), Pre sequence, the commands are condensed to make more room for new commands. 

This  keeps  the  per-bank command queues  from filling  as  quickly,  so  more  transactions  can  have  their  

94



commands in the queues at a time. It reduces the degree to which the per-bank queues become backlogged 

when the memory system is saturated.

Additionally, this policy assumes that when the queues are getting full that it is more important to 

finish up with one row and move on to the next than it is to try to find open rows and reuse them. So this 

policy behaves much more like regular open page under light loading but changes to become more like close 

page aggressive under heavy loading. At the same time, the benefits to keeping a row open when the per-

bank command queues are empty is still realized.

6.4.5 Row Buffer Management Policy and Its Effects on Power
In addition to affecting the performance of the system, the row buffer management policy can also 

affect the power consumed by the DRAMs in a system. As described in the previous chapter on power, the 

amount of power consumed is dependent on which state the memory system is in. Policies that tend to leave 

all the banks open will remain in at least active-powerdown mode, using approximately 5x the background 

power of the precharged mode. If the memory controller is less aggressive about turning off CKE, then the 

DRAMs will likely be in active-standby mode much of the time, which is 6x as much background power. If  

there are not enough requests to justify being in this high-power state, then the power is simply being wasted.

Likewise, it is important to reduce the number of activates to reduce the activation power as well. If  

there are many opportunities to reuse a row, but the row buffer management policy is set to close page then 

the same rows will end up being closed and reactivated again and again. So not only will the rows be open  

nearly as often as with open page, thus consuming active-standby background power, but they will also have 

quite a lot of activation power used as well.

If the memory controller is an embedded device and is using one of the aggressive algorithms and 

constantly searching to try to improve performance, the memory controller itself will use more power. Many 

embedded devices  only stream data  from memory,  thus  limiting severely the  amount  of  row reuse that 

occurs. In this case, even though the DRAMs won't use as much power, the memory controller will be over-

95



engineered for the job it must do and will deplete the batteries on the device. So it is important to know when 

it is overkill to add too much complexity to the memory controller.

It  is  also  important  to  know what  sort  of  workload  will  be  running.  If  there  are  only desktop  

applications running, the power and performance benefits of a row reuse rate of 50% may be outweighed by 

the fact that the request rate is very low, so background power will dominate the power usage. At the same  

time, a very busy server will be receiving requests from many different address spaces, giving a low row 

reuse rate, but, when coupled with a close page policy, will end up activating rows very frequently. In this  

case, open page and close page will yield similar results. However, the server may have periods of high 

usage and times when the request rate drops very low, but row reuse increases. When this happens, the open 

page policy will use more power than the close page. Knowing what the intended workload is and what the 

design criteria are will help to choose between these policies.

6.5 Address Mapping Policies

One of the simplest but most important aspects of the memory controller is the address mapping  

policy. When a transaction enters the memory controller's transaction queue, it is a read or write to a specific 

address, often a 32- or 64-bit number. This address is unique, if a CPU writes to a specific address then it will  

expect to read back the same value at a later time. Should another CPU ask for the same address then it will  

expect to see the same value. If CPU0 writes to an address and CPU1 writes to it immediately after, the 

memory controller  should enforce this  partial  ordering of  memory requests.  However,  the  way that  the 

memory controller ensures that these conditions are met is left up to the controller. As long as every address  

is distinct and no values alias to one another then the system functions as expected.

In order to determine where in the DRAMs a particular request should go, the memory controller  

employs an address mapping policy. This policy dictates how a physical address, which is the value that 

processors, network interfaces, serial ATA controllers use to refer to memory locations, is mapped onto the  

channels,  ranks,  banks,  rows  and columns.  Often the CPU will  request  a  value at  a particular  memory 

96



location.  Because  the minimum granularity in  a  DDR3 memory system is  64  bytes,  often  the memory 

controller will prioritize that byte and return it first and then send the other 63 bytes. The same holds true for  

other  DDR variants:  the minimum granularity is  greater  than 1 byte,  so the processor should expect  to  

receive more. Often the memory controller is setup to return data in chunks that match the size of the CPU 

cache block so that the CPU can deal with data a cache block at a time and not worry about data in a  

granularity other than that.

Because the low order bytes usually imply the critical byte or bytes to send first, the remainder of the 

physical address is available for the memory controller to use. Of course, there are some locations that the  

memory controller would never see due to memory mapped I/O, but it is assumed that memory holes are 

above the physical memory space for the purpose of this discussion. There are many ways to partition these 

remaining bits into ranks, banks, etc.

Essentially, the address mapping policy takes these remaining bits and divides them up into segments  

that  map  to  physical  locations.  As  shown in  Figure  6.6,  there  are  a  number  of  ways  to  divide up this 

remaining number. Each block represents the chunk that will be taken to determine the physical location.  

None of the blocks tell how many bits are used because this is dependent on the installed amount of memory. 

If there are 2 channels, each having 4 ranks, each with 16 banks, 1024 rows and 32768 columns, then there 

will be 1 bit, 2 bits, 4 bits,  10 bits, and 15 bits, respectively. The order is then determined by the policy.In 

some policies, such as the SDRAM Base policy, there are “column low” and “column high” blocks. These 

represent the fact that the bits for the column are taken from two separate places, the low-order bits coming  

from the low-order bits of the address and the high-order bits coming from higher-order bits in the address.  

In the case of the Intel 845G chipset's policy, there is no block for channel. That is because this memory 

controller only supported one channel of memory,  so there was no need to decode the channel from the 

address.

Designing a policy properly requires some a priori knowledge about what the data stream will look 

like. Once it is known which address bits will tend to give a good distribution, one can plan what sort of  

97



address mapping policy would work well. For example, it is common for the low order address bits to change 

quite  often from request  to request  as  one thread often has  a  chunk of memory that  it  iterates  through 

sequentially. Knowing this, one could put the column bits at the low-order end of the map and attempt to 

increase the potential for row reuse. If the row is mapped to higher-order bits, then the requests will often  

map to different columns within a row. This will allow the memory controller to use different columns within 

a row.

98

Figure 6.6: Various address mapping policies available for use in the simulator

Burger Base (BBM)

SDRAM High Performance (OPBAS)

SDRAM Base (SDBAS)

Intel 845G (845G)

SDRAM Close Page (CPBAS)

SDRAM Close Page Low Locality (LOLOC)

SDRAM Close Page High Locality (HILOC)

row bank rank column channel Byte addr

row rank bank Column high channel Byte addrColumn low

rank row bank Column high channel Byte addrColumn low

rank row bank column Byte addr

row Column high rank bank channel Byte addrColumn low

Column high row Column low bank rank Byte addrchannel

rank bank channel Column high row Byte addrColumn low



Another  strategy  is  to  assign  the  channel  to  the  low-order  portion  of  the  map  to  improve  

concurrency. If the requests can be assigned to different channels, they can be completed in parallel and not 

have added latency by waiting for other requests to complete. The SDRAM High Performance policy does 

just that. If the low-order bits are mapped to the column and the row is mapped to some of the highest-order 

bits, then they will reuse the row and not incur precharge and activate penalties. The channel bits are right  

after just a few of the column bits, so the channels will all be used quite frequently. So the strategy is to use 

as few rows as possible, as many channels as possible and return the requests more quickly.

The Low and High Locality policies were designed specifically to compare against the other policies  

as they make different assumptions about the request stream. Low Locality attempts to distribute the requests 

to as many channels and ranks as possible, improving concurrency. From there, it assumes that there will be  

requests from several memory spaces, so the column is assigned to the high-order bits to attempt to exploit  

entropy in the high-order bits. Essentially it assumes that there are requests that appear in clusters, but each  

of the clusters of requests are widely distributed from one another.

The High Locality policy is another original, which attempts to move the row down to see if there is 

more locality in the low and upper middle bits. There are many more possibilities available. As long as all 

parts of the physical system are available through the address mapping policy, then it will work. How well it  

works really depends on how well it meshes with the address stream and the other policies in the system.

If  the row buffer  management  policy is  set  to close page,  then an address mapping policy that  

accurately creates opportunities for row reuse is not a good policy. Close page will not exploit row reuse, so 

by mapping the requests to fewer rows will yield no performance benefits. At the same time, if the policy 

does not map the requests to enough different parts of the memory system then the requests will start to get  

backlogged as they wait to use certain resources. If the address mapping policy does not work well with the 

address stream and maps all requests to one channel and one rank, then the performance of the system will  

suffer.

99



Lastly, in systems that are designed to be low-power, one must be very careful about how the address 

mapping  policy  is  designed.  A policy  that  uses  all  resources  in  a  balanced  fashion  will  give  good 

performance both in terms of bandwidth and latency, but will suffer higher power usage. Even if only one 

bank is perpetually open in a rank and it cycles through the banks in such a way as to maximize performance,  

the memory controller will be unable to power down that rank. As long as one bank is open, the whole rank 

is in active mode and will consume far more power than if it was precharged. So a policy that fairly uses  

resources in response to demand will do better. For example, in an embedded system the request rate is likely 

to be fairly low, needing only a small amount of bandwidth and be very latency-tolerant.  If the address  

mapping policy is likely to use only one channel and one rank at a time as it slowly streams through a large  

chunk of memory,  then this policy would be best.  The memory controller can disable CKE to the other 

channels and ranks until they are needed and use only a small amount of power, but still deliver reasonable 

performance.

It  is  important  to consider all  aspects of  the system being designed in order to ensure adequate 

performance with minimal power usage. A small improvement in row reuse may lead to all rows being left  

open much longer and more power being used. Knowledge of the address stream is useful as well. Programs 

often  go  through memory in  small,  sequential  chunks,  so  the  low-order  bits  are  often  used  to  map  to 

resources that reduce latency and improve concurrency.

6.6 Command Ordering Algorithms

Once the transactions have entered the transaction queue and been decoded into a channel, rank and 

bank by the address mapping policy and inserted into the per-bank queue by the row buffer management 

policy, it is then time to choose commands to execute. Each channel is completely independent, so they may 

issue commands at the same time. All ranks are independent, so except for the rank switching time, they may 

issue commands whenever the address bus is open. Banks are somewhat independent,  but must  observe 

several restrictions, like the four activation window. A good command ordering algorithm will be able to 

100



keep all of these factors in mind when choosing which command to execute to effectively utilize all available  

resources.

There are at least a couple strategies to choosing commands. The first is to look at all  available 

commands  and  choose  one  that  has  all  resources  available  and  can  be  executed  immediately  without  

violating any timing requirements[Rixner 04]. The memory controller will need to track all ongoing activities 

in all banks to know what restrictions due to timing requirements there are. It will also have to consider many 

commands at a time and choose from among them.

The other strategy is to follow a prescribed pattern of going through the banks. If the bank you are  

searching for has an command, then choose it. If not, then search the other banks. When a command has 

been selected, the memory controller needs only to wait until the timing requirements are met and then issue  

the command. Before getting into the details of the command ordering algorithms, it is appropriate to look at 

how timing requirements are kept and how a memory controller can efficiently determine when a command 

is able to be executed.

6.6.1 Timing Requirements
All of the different command selection algorithms require the memory controller to keep track of  

what DRAM resources are in use and when they will be free. Some algorithms only require that the selected  

resource be free and then issue the command at this time. Others want to know which resources are free right 

now so that they can choose commands that can be issued immediately and if not immediately, then when.  

This is not only for the purpose of sending commands that will not violate timing constraints, but also to  

choose  commands  that  can  better  utilize  DRAM  resources  and  improve  performance.  If  the  data  bus 

utilization goes up, then the system bandwidth will be closer to the theoretical maximum. So, in order to  

maximize the resource utilization of the channels, the memory controller must know when resources will be 

free so it can know when to issue commands to the DRAMs.

101



6.6.2 Timing Requirements – Channel
The timing restrictions for sending commands to a particular channel are very simple. Because the 

timing requirements imposed by the rank and bank cover most resources, such as sense amp availability and 

bus utilization, the memory controller needs only keep track of the command and address bus. To do this, the  

controller must remember only how many cycles have elapsed since the last command was sent to any rank 

and wait before sending another command. If 1T style addressing is used, then the address bus will be open 

for a new command every tck,  usually on the rising edge of the clock. When 2T addressing is used, the 

controller will need to wait 2 * tck before issuing another command. Likewise for 3T and beyond.

6.6.3 Timing Requirements – Rank
To ensure that the resources in a rank are not utilized too quickly, the memory controller must keep 

track of more parameters for a rank than for a channel. These parameters restrict the timing of commands 

between banks in a rank and between ranks. So essentially, these parameters protect the resources of the  

buses shared by the different ranks as well as between banks within a rank. The parameters are summarized  

in the table below.

Previous Next Which Ranks Time Constraint
Activate Activate Each time(previous activate) + tRRD

Activate Activate Each time(previous activate) + tFAW

Read Read Either time(previous read) + max(tBurst, tCCD)

Write Write Each time(previous write) + max(tBurst, tCCD)

Read Write Either time(previous read) + tCAS + tBurst + tRTRS – tCWD

Read Read Different time(previous read) + tBurst + tRTRS

Write Write Different time(previous write) + tBurst + tOST 

Write Read Either time(previous write) + tCWD + tBurst + tRTRS + tCAS

Refresh Refresh Each time(previous refresh) + tRFC

Precharge Refresh Each time(previous precharge) + tRP

Table 6.1: Timing requirements for within a rank and between different ranks
The timing requirements are derived from the timing requirements in previous sections. The column 

entitled “Which Ranks” refers to which ranks are being considered. When this column says “Each,” then it  

102



means that  this  is  a requirement for any bank within a rank,  but  does not  hold for  separate  ranks.  For  

example, an activate may not follow another activate sooner than would violate tFAW.  However, this is a 

constraint for each rank, so separate ranks are not constrained by the four-activation window. When the 

column says  “Either,”  as  the  read-to-read timing does,  this  means  that  this  is  a  requirement  for  all  the 

different ranks and constrains them all collectively. So, for read-to-read timing, no command may be issued 

sooner than max(tBurst, tCCD) to avoid having two ranks fighting to send data on the bus at the same time. 

Finally, when this column has the entry of “Different,” then this means that this constraint applies only to  

other ranks. The read-to-write and write-to-read timings refer to the time it takes for one rank to give up 

control of the bus and another rank to take control (tRTRS) or the time it takes to switch the ODT from one 

rank to another (tOST). When timing constraints are affected by different ranks, every rank is affected. So  

when rank 0 receives a command, not only are the counters for rank 0 updated, but so are the counters in  

ranks 1..n. This means that the ranks are not strictly independent and the memory controller logic must  

account for this explicitly to ensure that the data bus can be used correctly by the different ranks.

In the current implementation, each rank's information has a set of event time logs. These keep track  

of the most recent time a read happened on this rank, a write happened on another rank, etc. In this way,  

when the memory controller looks to see when a command can be issued, it needs only identify situation and 

use the framework of Figure 6.1 and see what is the greatest time amongst all the constraints. This is then the 

earliest time that a command can be executed with respect to the rank constraints.

6.6.4 Timing Constraints – Bank
Aside from rank and channel constraints, the memory controller must consider the individual banks 

as well.  Many of the constraints imposed on a bank are fundamental limits of the DRAM device. Although 

resources like the data bus must be shared between the banks, these are already accounted for in the inter- 

and intra-rank constraints. The following chart illustrates the constraints that the banks must follow to ensure  

proper operation:

103



Previous Next Which Banks Time Constraint
Activate Activate Same time(previous activate) + tRC 

Precharge Activate Same time(previous precharge) + tRP

Refresh Activate Same time(previous refresh) + tRFC

Activate Read Same time(previous activate) + tRCD – tAL

Activate Write Same time(previous activate) + tRCD – tAL

Activate Precharge Same time(previous activate) + tRAS

Read Precharge Same time(previous read) + tAL  + tRTP + tBurst – tCCD

Write Precharge Same time(previous write) + tAL + tCWD + tBurst + tWR

Table 6.2: The time constraints for commands to a given bank
One  thing  to  note  is  that  these  constraints  do  ensure  that  the  data  bus  has  only  one  device  

transmitting on it at a time. That is done by the rank timing constraints, but could also be done by the bank  

timing constraints.  These constraints have been discussed at length in previous sections, but are grouped  

together here to show what the memory controller must keep track of for every bank.

In its present form, the memory controller is just a simulation, so it can allocate structures when it  

starts.  Real  hardware,  however,  would  need  to  account  for  variable  configurations.  If  the  channels  are  

populated with 4 DIMMs, each having 4 ranks and 16 banks per rank, then the memory controller would  

need to have enough slots to track all of these banks. Alternatively, the memory controller could use shared  

storage and assign the memory as it detects what is installed in the channels. Then, for every command it  

evaluates as it looks at the per-bank command queues, it can simply look at the channel, rank and bank 

constraints and see if the counters have reached zero, indicating that a command can be allocated.

6.6.5 Command Ordering Algorithm: Strict
The strict algorithm attempts to make the memory system behave as a FIFO. So requests that arrive 

and are decoded first are executed and returned first. Because the requests are subdivided into the per-bank  

queues and divided into one or more commands, the system must track the requests in order to know which 

came first.

104



If the row buffer management policy is close page, then ordering of the requests to maintain FIFO 

order is simple. Simply tag each request with either an event number or the time it came in. Then look at the  

head of each queue and choose the lowest event number or time. In a real system, this could be accomplished 

by having a counter tracking how long a request has been in the queue and choosing the oldest command.

However, all of the other row buffer management policies will reorder the requests as they enter the 

per-bank queues, so it is important to tag all the requests appropriately. In this case, the strict algorithm will  

go and find the oldest command from the head of each queue. As a result, activates and reads or writes will  

tend to be grouped together since they were inserted at the same time. If the DRAMs allow it, using additive  

latency would be a wise choice. Additive latency would allow a CAS to follow immediately after a RAS and 

minimize the amount of time that the memory controller spends on a particular bank. If there is no ability to  

use a posted CAS command, then the controller will wait to issue the CAS command and may skip several 

opportunities to send commands to other banks. Thus, the amount of overlapping between the banks will be 

reduced.

The primary benefit of this scheme is its simplicity. The per-bank queues can be implemented as a 

single  queue so that the algorithm does not need to actually search through several queues. Instead, the row 

buffer  management  policy can insert  all  new commands into a  single,  unified queue and the command 

ordering algorithm can choose the head of a single queue. A great drawback to this algorithm is the fact that  

there is no reordering to account for resource usage. Some commands could be issued to available ranks or  

banks while other commands complete, but if they arrived after commands intended for heavily utilized  

banks then they must wait. A lightly loaded memory system would likely benefit from this algorithm. If there 

are  never  more  than  just  a  few outstanding transactions  at  any given  time,  then it  it  unlikely that  any 

commands will have to wait long for other commands to finish.

105



6.6.6 Command Ordering Algorithm: Bank/Rank Round Robin
Two algorithms, rank round robin and bank round robin are actually quite similar, so they will be  

discussed together. As the name would suggest, each of these algorithms go through the available ranks and  

banks in a round robin fashion. They look first at the next rank or bank that numerically follows the rank or  

bank that a command was last issued to. 

So if the policy is rank round robin and the last command was issued to rank 6, then rank 7 will be 

searched first. If there are 8 ranks and nothing was found in rank 7, then rank 0 will be searched next, up to  

rank 5. Rank 6 will be searched, but not until after every other rank has been searched to attempt to prioritize  

every other  rank  above  the  previously chosen  rank.  In  each  of  these  ranks,  the  bank  that  was  chosen  

previously  is  searched  first.  When  every  rank  has  been  searched  for  a  command  that  can  be  issue 

immediately, then the bank number is increased by 1 and the all of the ranks are again searched. Once the  

search has looked through every rank and every bank, then the search returns to the location where the last  

command was chosen from. If no command is available to be issued immediately, then the search is repeated 

to find any command at all. As long as one of the per-bank queues has a command, then the first one found 

will be chosen to be executed.

Although this command won't be able to be executed immediately, this command represents the next 

command that will be chosen, so the simulator can determine when the next event would occur and move to  

this event time. If there are no available commands and all  of  the per-bank queues are empty,  then the 

algorithm does not return a command and the simulator can know that there are no pending commands in this 

channel.

Bank  round  robin  works  in  much  the  same  way.  Instead  of  iterating  through  every rank  on  a  

particular bank, it does the reverse. It attempts to use a given rank as long as possible and switches banks 

each time in an attempt to choose a command from the same rank. If there are many available commands  

then this algorithm will tend to group commands to a given rank.

106



One interesting features of these algorithms is that they treat activate and affiliated reads or writes as  

a single command. So if an activate is chosen, the read or write that follows it will be chosen by the next  

selection.  Likewise, as long as there are groups of reads or writes, the round robin algorithms will continue 

to select from that rank and bank. This is intended to exploit open row buffers. If a row is opened, the row-

to-column delay is often short, or zero in the case of additive latency, so the row is opened no longer than is 

necessary and the CAS command begins as soon as possible. This grouping also has benefits for power when  

using close page as the row is closed out sooner and less power is used. Without this grouping, there might 

be a large gap between the RAS and the CAS commands while the algorithm goes and chooses commands  

from every other bank before returning to the one where the RAS was originally. In the worst case, the banks  

will all be activated at nearly the same time and then all requested to send data at nearly the same time. By 

grouping the activates and the reads or writes, the accesses can be staggered and there will be less contention 

for the data bus.

One option available to either algorithm is known as read/write sweeping. This enables the system to 

preferentially choose reads or writes and continue to choose the same type until there are no more available. 

If reads or writes are chosen in long series, the system will tend to issue groups of reads or writes before  

switching to the other. The point of this is to improve utilization of the data bus. If many banks are available  

to send data, the delays associated with changing senders, such as tRTRS and tOST, can be avoided. 

Bank and rank round robin algorithms are fairly complex to implement. Logic must be added to  

identify RAS and CAS pairs, keep track of whether a read or write sweep is in progress and which rank and 

bank was most recently searched. One or more banks must be searched, giving priority to banks earlier in the 

search. Despite implementation difficulties, rank and bank round robin have significant advantages in terms 

or performance that make them better choices than strict ordering for a high-performance memory system.

107



6.6.7 Command Ordering Algorithm: First Available
The First Available algorithms attempt to choose the command that can execute the soonest. Each 

variant goes through each per-bank queue and calculates, using timing requirements, when this command 

may next execute. This task is complicated by the fact that there are often several commands that can be  

executed immediately. To attempt to solve this, there are three different secondary criteria that define the 

three variants of First Available.

In an attempt to help keep the latency of commands to a minimum, the age of the command can be 

considered as the secondary criterion. The idea is that if two commands can both be executed now, the older 

of the two commands probably should be executed sooner so that the average wait time for requests is  

reduced. If two commands are of equivalent age, then the one with the lower rank and bank ID is chosen.

Another option for a secondary criterion is  to choose reads and instruction fetches first  (RIFF).  

Because a CPU or other device does not stall for a write, there is no need to prioritize them. However, since 

CPUs do wait on reads and especially on instruction fetches, each cycle saved in the memory controller can 

lead to a reduction in execution time. Thus, prioritizing reads when choosing which commands should be 

executed next is a good strategy.

Finally, choosing the command from the fullest queue as a secondary criteria can help to reduce 

congestion and improve performance. If requests tend to be mapped to certain banks more than others due to 

irregular access patterns, some per-bank queues can fill faster than others. If the queues are full, then the 

transaction queue will be unable to decode transactions into the queues and eventually the backlog will stall 

the  CPU.  Prioritizing  the  fullest  queues  will  help  to  alleviate  congestion  and  prevent  any backlogs  in 

overused banks. If two queues have a command that can be executed immediately and are equally full, then 

the queue with the lower rank and bank ID is chosen. This might be improved by making the selection 

random or by adding a third criterion, but in the current implementation.

All three variations on the first available algorithm attempt to keep the banks as busy as possible and 

improve performance. They all want to find commands that are ready to be issued and send them as soon as  

108



possible, optimizing locally. Being able to always consider all commands improves parallelism by executing 

commands as soon as possible, rather than following a pattern. The drawback to this policy is that even 

though it is locally optimal, it may not be globally optimal. The secondary selection criteria may choose 

commands  in  one  particular  rank  repeatedly and  leave  another  rank  idle  for  a  time.  For  example,  the 

algorithm may choose commands until tFAW is hit and then have to move on to another rank. However, if the 

algorithm had alternated selection between the ranks, it may have been able to avoid hitting t FAW and would 

not have had to leave one rank idle until the activation window had passed.

6.6.8 Command Ordering Algorithm: Command Pair Rank Hop
The command pair rank hopping algorithm is loosely based on rank or bank hopping as it follows a  

prescribed pattern. It is a patented algorithm, developed by Wang and Jacob  [Jacob 09], to easily allow a 

memory controller to schedule commands to achieve high bandwidth and low latency.

The column accesses are scheduled sequentially, while the row accesses go to alternating ranks. So 

the algorithm will attempt to send bank accesses to each of the available banks in sequence, from rank 0,  

bank 0 to rank n, bank m. The row activates will increase sequentially as well, although cycling through the  

other ranks before returning to the original rank, next  bank. The column access commands are grouped 

according to the same rank to attempt to get the maximum amount of transfers from a rank before incurring 

the tRTRS penalty for switching to another rank. In fact, while it is going through all the banks within a rank,  

the bandwidth will be as good as the theoretical maximum. The benefit is that if there are commands for  

every rank and bank, then this algorithm can schedule commands in a similar fashion to rank or bank round 

robin, with row and column access pairs.

By sequentially activating the ranks in a round robin fashion, the algorithm attempts to avoid any 

stalls due to tRRD. If there are four ranks, it will be at least every eighth command that performs an activate on 

any rank, assuming there are commands for every rank. For example, in a Micron DDR3-1066 DRAM, the  

tRRD value is at least 4 * tck or 7.5ns. The clock period is 1.875ns, so even with 1T timing and only 2 ranks, a 

109



second ACT command could not be sent sooner than 7.5ns later than the first. So there is no issue with 

waiting for tRRD when using command pair rank hopping.

Another feature of command pair rank hopping is that it switches the starting rank after each sweep 

through all the banks in a rank. Specifically, it issues an activate to the same rank as the previous activate.  

The reason for this is that because the reads are switching from one rank to another, the time penalty of t RTRS 

will be incurred. If the controller must wait for tRTRS no matter what, then it is alright to wait for tRRD, as it will 

likely wait longer on tRTRS than on the remainder of tRRD. So the sequence for the bank of each RAS command 

remains the same, the first rank changes to vary the rank activation pattern slightly. An example pattern is  

shown in the table below for 4 ranks and 8 banks.

This scheduling policy works well because it makes it much more likely that the first  command  

chosen can be executed immediately. This means that there is little waiting for resources to become free and  

latency and bandwidth are improved. Command pair rank hopping also requires fewer resources to choose  

the next command. Because there is a prescribed sequence to follow, determined as the memory controller  

detects the memory configuration, the next command is easily chosen. Only when there are empty queues  

does the algorithm have to skip over a slot and evaluate more than one command. Additionally, the minimum 

time to execute a command needs to be computed possibly only once and need not be compared with other 

commands. This makes implementation much easier than with the first available policies.

110



RAS Rank, Bank CAS Rank, Bank
0 4 0 0

1 0 0 1

2 5 0 2

3 1 0 3

0 6 0 4

1 2 0 5

2 7 0 6

3 3 0 7

3 4 1 0

0 0 1 1

1 5 1 2

2 1 1 3

3 6 1 4

0 2 1 5

1 7 1 6

2 3 1 7

2 4 2 0

3 0 2 1

0 5 2 2

1 1 2 3

2 6 2 4

3 2 2 5

0 7 2 6

1 3 2 7

1 4 3 0

2 0 3 1

3 5 3 2

0 1 3 3

1 6 3 4

2 2 3 5

3 7 3 6

0 3 3 7

Table 6.3: Command Pair Rank Hop Sequence for 4 ranks, 8 banks

111



6.7 Random Address Simulation Mode

DRAMsimII can run in random address generation mode. If the goal is to see how various policies 

react to a given stream, the simulator may randomly generate its own transactions. The simulator will treat  

this as a request that arrives from a CPU or other device and respond to it.

The benefit  of  this  is  that  simulations  proceed much faster  than they would with a full  system 

attached. There is also no need to maintain the binaries or the system files required to run an operating  

system. Since only the memory system is simulated, there are far more requests processed per unit time,  

meaning that one can look at how the memory system responds to this level of loading. If one is trying to  

build an address mapping policy that scatters requests across more ranks and banks, then this is a faster way 

to determine if a new policy is better.

The downside to this type of simulation is that there is no feedback to the CPU, so the requests will  

come at a given time no matter how fast the memory system runs. In a real system, a faster memory system  

would return requests to the CPU sooner, thus allowing the CPU to send out new requests sooner as well. So  

there  is  no  concept  of  execution  time  when  using  only a  memory system.  Even  if  all  the  queues  are 

completely full, there is no processor to stall. There is no feedback to limit the rate that requests are sent to  

the memory system, so there are limited insights to be gained from running with only simulated addresses.

This mode can show the interaction of address mapping policies and command ordering algorithms  

quickly. However, because the address are random and lack the locality a real address stream would have, 

this mode does not simulate single-threaded or workstation applications well.

The  requests  may be  grouped according  to  certain  probabilistic  models  like  Gaussian,  Poisson, 

Normal and uniform. The simulator also specifies an average interarrival cycle time, which determines the  

average amount of time that elapses before another request comes along.  If this  is  set to zero,  then the  

memory system will likely have its queues filled very quickly to emulate saturation from the CPUs.

112



6.8 Simulation Setup: DRAMsimII and M5

In order to accurately simulate the performance impact that DRAMsimII would have on a given 

system,  it  was  incorporated  into  the  M5  framework.  M5  is  a  full  system simulator  developed  at  the  

University of Michigan that accurately models Alpha, SPARC, MIPS and x86 ISAs[Binkert 06]. It provides a 

framework to create simulation and system objects independently and then connect them using ports, similar  

to real hardware. The simulator is event-driven, so the DRAMsimII module had to define and schedule 

events related to the memory system. Although M5 supports SMT/CMP and multi-system configurations, 

they were not simulated and will be saved for future work.

M5 has two different setups, known as syscall-emulation (SE) mode and full-system mode (FS). 

When running in SE mode, the system calls are handled by the simulator itself. So when the executable asks 

the operating system to perform a read to a certain location, the simulator handles this request and performs 

the read, returning the data to the application's memory after a certain period of time. However, in full-

system mode,  when  a  read  is  requested,  the  operating  system validates  permissions  and  translates  the 

physical location of the read before sending a request to the simulated hard drive. After a period of time, the  

request is returned to the operating system which copies it to the application's memory space. So in SE mode,  

there is no operating system, several components are not simulated and the application is the only application 

running  on  the  system  at  that  time.  SE  mode  therefore  runs  much  faster  and  provides  a  reasonable  

approximation of how an application would behave, given a particular system configuration. However, in 

order to see how the operating system affects the execution of a given application, one must run in FS mode.  

FS mode adds in paging, process scheduling, realistic hard drive latencies, memory spaces and all the other  

features  that  an operating system provides.  Also,  because there  are memory spaces  for the application's 

process,  the  addresses  requested by the process  will  be  in  a  much different  range than  with SE mode. 

Because FS mode is more accurate than SE mode, it is used to test various configurations in this study. The 

fact that FS mode has address spaces is especially important when studying address mapping policies, as  

having all memory requests for an application starting at 0 does not make for a very realistic stream.

113



Aside from allowing FS and SE mode, M5 has two modes of operation: atomic and timing. When the 

simulator is running in atomic mode, whether in FS or SE mode, every component behaves functionally is it 

would normally, but without any timing information. So requests from the CPU for data in the L1 cache are  

returned immediately, just as requests to main memory. The point of atomic mode is to allow a functional  

simulation without  waiting for  timing requirements.  This  allows  a  simulated program to run faster,  but  

without any behaviors caused by having delays in the system. Often this mode is used to skip through a 

segment of operation where the behavior is not intended to be studied. For this study, the operating system 

bootup and benchmark preparation are run in atomic mode because it is only the benchmark behavior that we 

are interested in.

Because M5 allows for most configurations of CPU caches, a L1 data and L1 instruction cache were 

used as well as a combined L2 cache. The L2 cache used a prefetcher to help make the system behave as 

much like a modern, real system as possible. Although M5 supports other ISAs and other CPUs, currently 

Alpha is the most reliable and developed model, so an Alpha Tsunami (21264) out-of-order CPU was used.  

Although this CPU does not exactly correspond to a modern x86 processor, it is similar enough to correctly 

emulate the memory stream that would be produced. The Alpha processor was set to a faster speed than any 

x86 processor runs at to minimize any effect the CPU would have on program execution. If the CPU is 

running very fast and the L1/L2 caches are also quite fast, the runtime will be less sensitive to the latency 

they contribute  and more  sensitive  to  the  latency from the DRAMs.  Additionally,  when comparing one 

simulation result to another, the processor will be the same in either case, so any difference in runtime will be  

due to memory latency. So long as one simulation setup is relatively better than another, so should be the 

equivalent setup on real hardware. Although the hard drive is modeled with some accuracy,  none of the  

benchmarks require virtual memory and none of them print to the disk, so any effects the hard drive might  

have on runtime are minimal. Below are some of the specifications of the simulated system:

114



Parameter Value
Processor Speed 6GHz

ISA Alpha

L1 I-Cache 64kB, 2-way, 64B block, 500ps latency, GHB prefetcher

L1 D-Cache 64kB, 2-way, 64B block, 500ps latency, GHB prefetcher

L2 Unified Cache 8MB, 16-way, 64B block, 6ns latency, 22 MSHRs

CPU ↔ DRAM Bridge 2.6GHz, 5ns delay

IDE Controller 2 disks, system and swap

Table 6.4: Common system setup for all simulations

6.8.1 Benchmarks
To test the changes that policies and algorithms can have on a system, a variety of benchmarks from 

the SPEC CPU2006 (SPEC06) benchmark suite. SPEC06 was chosen because it is a standard benchmark 

suite  used  widely throughout  the  industry.  It  has  benchmarks  chosen  to  work  the  core  of  the  system,  

specifically the CPU and the memory subsystem. Additionally, SPEC06 contains stripped-down versions of 

many  actual  applications,  so  high  scores  in  SPEC06  benchmarks  will  likely  lead  to  good  real-world  

performance as well.

The first benchmark is 401.bzip2. This is a modified version of the popular bzip2 utility, written by 

Julian  Seward.  Normally,  bzip2  will  take  the  input  file,  read  it,  compress  it  and  write  the  resulting 

compressed stream to another file. This version, however, will only compress and decompress the file in 

memory. No output is written so that only the CPU and memory are tested. 401.bzip2 has several different 

files that it can use for different workloads, including image files, program binaries and an tar archive of  

another program's  source code.  There is  also a workload that  includes the concatenation of all  of  these 

workloads and this  was the one used to  run the benchmark.  This  provides  a  mix of  highly and barely  

compressible files for the application to work on.

Next is 429.mcf, which is used to schedule mass transportation vehicles out of a single depot. The 

core of this application is solving a minimum-cost flow problem using linear algebra. A network simplex  

implementation is used, which involves pointer and integer arithmetic. There are test, training and reference  

115



data sets available. For the following results, the test  data set was used to reduce the amount of time spent  

simulating while still creating a realistic run.

445.gobmk simulates artificial intelligence playing the game of Go. 

458.sjeng is based on Sjeng 11.2, a program that plays chess and several variants. 

462.libquantum simulates a library that can simulate a quantum computer. 

483.xalancbmk  is  an  XSLT  processor  that  transforms  XML  documents  into  HTML  or  XML 

documents. 

433.milc is a chromodynamics simulator developed by the MIMD Lattice Corporation (MILC).

459.GemsFDTD is a computational electromagnetics simulator.

470.lbm uses the Lattice Boltzmann Method to simulate incompressible fluids in 3D. 

Finally,  a  benchmark  called  stream  is  used  to  evaluate  the  raw  bandwidth  of  each  simulated  

system[McCalpin 95].

6.8.2 Methodology
In order to ensure that the memory controller was providing results that were at least realistic, the 

times of each command sent to the DRAMs was recorded as well as the destination. So there was an event  

log of every command to every channel, rank, bank row and column. Using these logs, a Verilog simulation 

was setup using the same timing parameters and configuration as the DRAMsimII setup. A specific speed  

grade, the SG125E bin, was chosen and both simulations were set to identical values.

The DRAM models were provided by Micron and included IBIS, HSpice and Verilog models. The 

examples  included  a  trace  file  for  a  memory  controller  communicating  with  several  DRAMs  directly.  

Because they provided a DIMM module, the correct signals were attached to the DIMM. These included the 

chip select and clock enable as well as some address signals to ensure that the DRAMs behaved as a rank  

116



rather than individual devices. Once this was setup, the trace file generated by running the DRAMsimII  

simulation was played back for the Verilog simulation.

The devices modeled by the Verilog modules checked to ensure that the bus was never fought for and 

that  no  timing  constraints  were  violated.  Some  aspects  that  are  abstracted  away from the  DRAMsimII  

simulations  had  to  be  added.  These  included  setting  up  of  the  mode  registers  and  performing  clock  

calibration. However, once this was added and the traces were run, the Verilog modules reported no timing  

violations or incorrect addressing.

This gives a strong measure of confidence that DRAMsimII gives realistic results. The goal was to 

show that the simulation was not doing anything that was not possible in a real system, such as violating  

timing constraints. It does not prove that the simulation runs as well as commercial memory controllers, but 

it shows that it is playing by the same rules. In the worst case it is possible that DRAMsimII performs worse 

than other memory controllers and thus never violates any timing constraints. However, it is much more 

likely that the timing models in DRAMsimII are accurate and the constraints enforced on these simulations 

are realistic.

117



CHAPTER 7 RESULTS

To test the effectiveness of the various policies on a system, the results were run in two phases. The  

first was to look at the address mapping policies and the row buffer management policies while holding the 

command ordering algorithm constant.  The second considered only two address mapping policies while  

testing all of the command ordering algorithms. In this way, the effects of the command ordering algorithm 

can be considered independently, while the address mapping policy and row buffer management policy can 

be considered together or independently,  depending how they are analyzed.  Several  different  metrics of  

performance  are  considered,  including  execution  time  and energy used.  These  are  important  metrics  to 

consider because they can be directly interpreted to compare different setups. In addition to these, several  

other metrics are considered: average IPC, open row reuse rate, average active-standby power and average  

transaction latency. Although these are somewhat indirect metrics, they can be used to determine how well a 

given algorithm is working and why a given setup performs better than another.

We  will  begin  by  first  looking  at  a  comparison  of  address  mapping  policies  and  row  buffer 

management  policies.  Between  these  two policies,  the  commands  and locations  of  the  transactions  are 

determined, so this is why they are studied together. If an address mapping policy easily translates spatial and 

temporal locality in the transaction stream into locations on the same row but the row buffer management  

policy is not able to reuse the open row, then the two policies do not work effectively together.

The close page policy will never have the chance to reuse rows, but close page aggressive can reuse 

rows if there is enough temporal locality. Open page and open page aggressive are able to reuse rows if there  

is enough spatial locality.

118



119

Figure 7.1: The open row reuse rate as compared against various address mapping policies with  
either 2 or 4 ranks. Each grouping has 4 different row buffer management policies represented.



Bzip2, as shown in Figure 7.1, has reuse rates ranging from just over 1% all the way up to nearly 

80%. Low locality, high locality and close page baseline optimized do not map the requests well and succeed  

in allowing the row buffer management policies to reuse open rows less than 10% of the time. Because close 

page baseline optimized moves the lower portion of the row ID to the lower order bits of the address, it tends 

to spread similar requests further apart, while close page baseline keeps these same requests mapped to the  

same row. 

SDRAM baseline and SDRAM high performance tend to achieve very good performance, likely due 

to the fact that the column information is contained in the low order bits. If the program iterates through  

addresses in order, it will change the low order bits much more frequently than the higher order bits. These  

bits determine the colum for the SDRAM baseline and SDRAM high performance. So the channel, rank,  

bank and row will change infrequently while the column will continue to change. SDRAM high performance  

likely had more row reuse due to the fact that the row used the highest order bits from the address, while  

SDRAM baseline used those bits to determine the rank. Since a program sequentially streaming through data 

arrays will change lower order bits more often, the row was changed more often for SDRAM baseline, while 

the rank was changed more often for SDRAM high performance, meaning that the row changed less often, 

allowing for more reuse.

Because the accesses were spaced far enough apart in time, the requests that would have hit in an  

open  page  system did  not  hit  in  the  close  page  aggressive  system.  The  effect  of  closing  out  the  row 

immediately after the access is clearly seen in the calculix benchmark. Only about 5% of the requests in  

SDRAM baseline and SDRAM high performance were able to be reused. 

MCF fares significantly worse than other benchmarks for all address mapping policies. In the best  

case, just over 30% of the accesses are able to reuse an open row. Because MCF is a scheduling algorithm to  

attempt to find optimal routes for mass transportation, it does not iterate through data regularly. Instead, it  

tends to follow pointers and walk through graphs to optimize the routes. This makes the access pattern  

unpredictable and erratic. Therefore, the access pattern could jump to any point in memory at any time as  

120



pointers are followed, so it is unlikely that any address mapping policy would perform well with respect to 

reuse rates for MCF. 

Xalancbmk has good reuse rates for open page and open page aggressive when using close page  

baseline, SDRAM baseline or SDRAM high performance, like the other benchmarks. However, close page 

aggressive has reuse rates approaching 20%. Because xalan parses text and searches for expressions and  

transforms a document according to a specific set of rules, it often goes over the same data several times.  

Because it is parsing a large document, it often has to go to memory to read and write very similar values and  

thus the rows are able to be reused.

Looking closer, in  Figure 7.2, we can see that the majority of the row reuse happens in the early 

stages of the program's execution, when the files are being read and parsed. Later in the program, when the  

rules  are  being applied and the transformations are  happening,  the  reuse rate  drops to  very low levels.  

Because so many of the requests occurred early in the execution of the program and the reuse rate was high,  

the average reuse rate was 0.23. However, a longer run of this program would likely fare no better than the  

121

Figure 7.2: Row reuse rate vs. time for xalancbmk using close page baseline address mapping  
policy and close page aggressive row buffer management policy. Note that the hit rate is very low 
except for the very beginning of the run.



other row buffer management policies as the startup portion would remain the same length of time but the 

processing section, with its low reuse rates, would begin to dominate and drive down the average reuse rate.

On the other hand, if only the row buffer management policy is switched from close page aggressive 

to open page in order to exploit temporal locality for a greater time, we can see that the row reuse rate  

increases greatly in Figure 7.3. Although the average reuse rate is over 35%, this is because the initial portion 

of the program has many accesses and a reuse rate near 100%. Although the reuse rate varies from 5% to 

40%, the average is much higher than for the close page policies, which will help to reduce average latencies  

and improve overall system performance.

One thing to note is that if the request stream has a lot of spatial locality and the address mapping  

policy can help to improve the row reuse rate.  If  the row buffer  management policy is  close page,  the  

requests must show up in a much shorter time span to be able to reuse rows, while open page policies tend to 

allow much more time to reuse the rows. However, because processors are becoming faster at a greater rate  

than DRAMs, the requests will appear to be closer. Also, as processors incorporate more parallelism, whether  

by vector instructions or more parallel cores and threads, the requests with spatial locality will arrive closer  

in time and allow close page aggressive a better chance to reuse rows. So even though close page aggressive  

never had anywhere near the reuse rates of the open page policies, future systems may allow it a better  

chance to approach the open page reuse rates. 

Also  of  interest  is  how well  the  address  mapping  policy maps  transactions  to  their  respective 

channel, rank, bank and row. If the row buffer management policy is an open page or close page aggressive 

policy, then it is advantageous to map requests with spatial locality to adjacent columns within a row so that 

the system can read or write that value without cycling out the current row and activating another. However,  

if too many requests are mapped to the same row, then there might be longer delays while waiting to get to  

the front of the per-bank queue than if the system had simply opened a new row to satisfy the request. It  

reduces latencies to reuse a row, but if there are always a dozen requests in the queue then the row reuse will  

be of no benefit. However, some address mapping policies will tend to scatter requests almost uniformly 

122



across the available banks and rows and not allow any potential row reuse. Although this means that there  

will be a minimal amount of waiting in the queue, each request must wait to open a row in the best case or 

precharge and open a row in the worst case.

A good address mapping policy has elements of each. It will maintain spatial locality of the stream 

by mapping requests to the same rows but also tend to distribute the requests across the whole memory 

system to exploit  parallelism in the  memory system.  The reuse rate  does  not  tell  the whole story,  as a 

program requiring very high bandwidth may be sitting idle most of the time while the same few rows are 

reused and the requests sit in queues waiting for these queues.

In Figure 7.4, the address distribution for a run of lbm using the SDRAM baseline address mapping 

policy is shown. Both use the open page row buffer management policy, so they should both have a good 

opportunity for row reuse. The only difference is the address mapping policy. Looking only at row reuse 

rates, the SDRAM baseline policy would seem better as it had a 34% reuse rate while the close page baseline 

policy,  Figure 7.5, was only 25%. However, the average transaction latency for SDRAM baseline was 58  

cycles while the close page baseline policy was 46 cycles. This translates to a reduction in runtime of 18%.  

123

Figure 7.3: Row reuse rate for the same setup as in Figure 7.2, but with the row buffer management  
policy changed to open page



The  difference  between  the  two is  easily shown by comparing  the  address  distributions.  The  SDRAM 

baseline policy achieves better reuse rates by preferentially mapping requests to rank 0, while close page  

baseline tends to distribute the requests across all ranks equally. It also distributes the requests across the  

banks fairly equally as well, while SDRAM baseline tends to vary the distribution somewhat with time. 

Furthermore,  we  can  look at  a  histogram of  the  latencies  of  the  transactions  and clearly see  a  

difference. Figure 7.6 clearly shows what the latency distribution of SDRAM baseline was while Figure 7.7 

shows the distribution and latency of close page baseline. The x-axis represents the latency of the transaction,  

while the y-axis shows how many transactions had that latency. So Figure 7.6 shows that many transactions 

were returned in just over 25ns, while close page baseline shows that less than half as many transactions  

were returned in that time. However, each graph shows a range from 0 to 12x the standard deviation beyond 

the median latency, so SDRAM baseline had a deviation of almost twice that of close page baseline. Even 

though fewer requests were able to be made into row reuses, the increased availability of banks and ranks 

allowed the transactions to be returned soon after that.

124

Figure 7.4: The address distribution ratio for all channels, ranks and banks of the lbm benchmark  
using the SDRAM baseline address mapping policy.



The latencies for the close page baseline policy drop off sooner than SDRAM baseline, but has far  

more requests in the sub-50ns range. Especially notable is the number of requests after the 34ns peak for 

close page. The SDRAM baseline graph has very few requests that took between 34ns and 40ns, while close 

125

Figure 7.5: The address distribution ratio for all channels, ranks and banks of the lbm benchmark  
using the close page baseline address mapping policy.

Figure 7.6: A histogram of the transaction latencies of lbm, using an address mapping policy of  
SDRAM baseline and an open page row buffer management policy



page baseline has several times with nearly a million requests. This is a good indication that requests either  

hit in an open row immediately and took only a few cycles to be returned or they waited in a queue for other 

requests to complete and then were returned. Close page baseline, on the other hand, had more requests that  

did not hit in an open row but were able to precharge and activate a new row without delay.

So when considering benchmarks like lbm, which have high bandwidth requirements, it's best to 

have an address mapping policy that distributes the requests across all the banks. If the address mapping 

policy is unable to group requests with similar requests, then there are few opportunities for row reuse and  

close  page row buffer  management  policies  are  better  because  they anticipate  this.  Because close  page 

policies close the pages just after they are needed, the subsequent requests do not need to wait for a row 

precharge to happen, they can simply activate a row and read or write from/to it. 

Other benchmarks that are more CPU-bound, like mcf, can use fewer bytes per second since they 

spend more of their time doing calculations and less time waiting for transactions to return from memory.  

However, when benchmarks of this type do have read requests, it is important that the requests are returned  

126

Figure 7.7: A histogram of the transaction latencies of lbm, using an address mapping policy of  
close page baseline and an open page row buffer management policy



quickly because  it  is  more  likely that  the  overall  execution  time  depends  on  the  transaction  latencies.  

Essentially, it is important for the memory controller to return the requests that are part of the critical path of  

the program's execution sooner. 

When comparing Figure 7.8 and Figure 7.1, one will notice that when the address mapping policy 

enabled the row buffer  policy to  reuse  rows  more  frequently,  the  open page-based policies  have lower 

average latencies. When the opportunities for row reuse are less abundant, then the close page policies are  

better. In xalancbmk, which has a very high row reuse rate for address mapping policies of SDRAM baseline 

and SDRAM high performance, the close page policy has a much higher latency than the others due to its  

inability to reuse open rows and exploit the latency savings. Close page aggressive, however, is able to reuse 

rows where close page is not and as a result has an average latency that is nearly as good as either of the  

open page policies. The same is true for the stream benchmark. Although close page aggressive has only a 

limited window of time in which to insert a request into the per bank queue, there is enough temporal locality  

in the stream benchmark to reuse the rows about 10% of the time. Although this is far less than the open page  

policies,  which achieve over 70% with SDRAM baseline or SDRAM high performance,  it  is enough to 

reduce the average latency by nearly 10ns; which is nearly as good as the open page policies.

If the chosen setup has relatively low row reuse rates, as close page baseline, close page baseline opt, 

low and high locality do,  then the close page row buffer  policies achieved lower latencies.  Usually the  

difference in latencies is not great, maybe 7ns, despite the reuse rate of 20-30%. This suggests that there is a 

break-even point between reusing rows and having rows precharged in anticipation of another row being 

opened. As seen in Figure 7.9, the bandwidth roughly correlates with the latency of each configuration. In 

configurations where the row reuse rate was lower, the open page policies performed worse, while the close  

page policies were better.

Overall, configurations that had lower latencies had higher average bandwidths. This makes sense 

considering that the CPU was waiting on one request before sending another. Because the memory was not 

completely  saturated,  as  the  system can  handle  several  gigabytes  per  second,  the  latency dictated  the  

127



bandwidth.  The  high  locality policy had  much greater  latency than  the  others  and in  turn  much lower 

bandwidth.  This  is  not  a  fundamental  limitation  of  the  memory  system,  but  determined  by  the  CPU 

serializing some requests and the memory delaying the processor.

It  is  interesting to note the disparity in bandwidth from one benchmark to another.  While some 

benchmarks,  like  xalancbmk,  can  use  only about  300MB/s,  others,  like  stream or  lbm,  can  use  many 

gigabytes per second. Workloads vary significantly, so optimizing for bandwidth may not provide any benefit 

if the application cannot use it. 

128



129

Figure 7.8: A comparison of the average transaction latencies of several benchmarks versus the  
address mapping policies, number of ranks and row buffer management policies



130

Figure 7.9: The average bandwidth of the benchmarks according to the address mapping policy,  
number of ranks and row buffer management policy



Some  applications  are  more  sensitive  to  bandwidth  and  some  to  transaction  latency.  When 

comparing which factors contribute to lower runtimes, by looking at Figure 7.7,Figure 7.8, and Figure 7.9, 

we can begin to determine which applications require more bandwidth and which perform better with lower 

transaction latencies. Note that these figures do not include the high latency address mapping policy, as it has 

significantly worse performance than the others and would make it  harder to read the charts  due to the  

increased scale. For example, the shortest runtime for lbm was 1.62s using a close page aggressive row  

buffer management policy and the close page baseline address mapping policy. All subsequent runtimes, in 

ascending order, also feature increasing bandwidths. Looking at Figure 7.8 and Figure 7.9, one can see that 

runtimes decrease almost linearly with increases in bandwidth. However, increasing average latencies aren't 

strongly linked to increases in runtime. Clearly, lower latencies correspond to lower runtimes, but when the 

average is above 60ns, the runtime can vary significantly, so lbm responds to increasing bandwidth but less 

so to reduced latency.

GemsFDTD,  stream  and  sjeng  also  show  strong  correlation  between  bandwidth  and  runtime. 

Additionally,  none of these show strong correlation between average latency and runtime.  Each show a 

general trend of increasing runtime as the latency increases, but the correlation of runtime and bandwidth is 

much greater. So these applications are more sensitive to bandwidth than to latency. The correlation between  

latency and bandwidth means that latency and bandwidth are not necessarily independent values. If a system 

has an extremely long latency, then the bandwidth will suffer. Theoretically, as long as the system can deliver  

results at a given rate then it can sustain a given bandwidth. Realistically, if the the latency is long enough,  

the CPU will run out of things to do in parallel after a certain amount of time spent waiting and will simply 

stop until the results are returned. At this point, the CPU cannot make any more requests to memory and the 

memory system will  not  have data  to  return and the bandwidth will  drop off.  So the two are certainly  

connected, but some applications are more sensitive to one or the other.

Bzip2, mcf and calculix correlate roughly with bandwidth but also show a fairly strong correlation 

with latency. None of the benchmarks exceed 350MB/s, so they are certainly not taxing the memory system's 

131



bandwidth limits. Clearly, decreasing the latency reduces execution time, so there is less time spent waiting  

for read requests. If the memory is fast enough or the cache is large enough the application will be CPU-

bound. This means that the memory system provides latency and bandwidth sufficient to not add a significant 

amount  of  delay to  the  overall  execution  time.  If  the  limiting  factor  of  an  application's  runtime  is  the 

memory, then the system is said to be “memory bound.” For these three benchmarks, it would appear to be 

somewhere between CPU bound and memory bound. There are instances for all three benchmarks where an 

increase in bandwidth or a reduction in latency yields no or a negative improvement in runtime.

This case is even more apparent when looking at xalancbmk. Although one might notice a rough 

correlation between bandwidth or latency and runtime, there is no clear link.  It seems likely that xalancbmk 

is affected not by average bandwidth or latency, but by the latency of certain requests. If critical requests are  

returned sooner, such as non-speculative instruction fetches or reads, then the program will execute faster. In  

the case of xalancbmk, the program parses a file and applies rules from one file onto another file. Because of  

this nature, the program will be streaming data and also executing a relatively large number of instructions to  

apply the individual rules. The program will also have a lot of pointer chasing as it walks the document trees. 

Because of this, there are likely to be capacity and conflict misses for instructions. So if data and instructions  

are located on the same rows, instruction fetches will compete with data requests and be delayed. 

If row reuse is good and the requests are sporadic enough to not cause queue congestion, execution  

times will be good. If the memory system mapping policy spreads requests around evenly and uses a close  

page policy, the instruction fetches will not have to wait so long in the queue but will take longer due to the  

lack  of  open  row reuse.  The  address  mapping policy should  work  in  conjunction  with  the  row buffer 

management policy. When it is unlikely that the row buffer management policy will reuse rows, then the 

address  mapping policy should distribute  requests  so  as  to  minimize  queuing delays.  If  the  row buffer  

management policy will reuse rows, requests should go to the same rows more often, but not so often as to  

create queuing delays. SDRAM high performance seems to do this best when used with an open page row 

buffer management policy.

132



133

Figure 7.10: A comparison of several benchmarks and the total execution time of each. They are  
grouped by row buffer management policy, number of ranks and address mapping policy.



134

Figure 7.11: Several benchmarks comparing average bandwidth versus runtime. The points  
represent different configurations including number of ranks, row buffer management policy and 
address mapping policy. Some benchmarks certainly have shorter runtimes as the memory 
controller is able to provide more bandwidth, while others have less consistent behaviors.



135

Figure 7.12: Several benchmarks comparing their runtime versus average transaction latency for  
different configurations involving number of ranks, row buffer management policy and address  
mapping policy. Note that average latency is a good predictor of relative runtime for only certain  
benchmarks.



7.1 Power Results

Another thing to consider is the power and energy used to run each application to completion. Using 

energy as  a metric  captures  the  power  used by each system as  well  as  the  time it  took to  execute  the  

simulation. So, if one configuration uses far more power than the rest of the simulations, but finishes in a 

very short period of time, it could potentially use less energy. Conversely, some configurations used only a 

small amount of power but took far longer to run. For example, high locality used much less power than the 

other address mapping schemes, but it took many times longer to finish. A convenient of capturing both the 

execution time and power in one value is by showing the energy used. Energy numbers are calculated by 

calculating the average DRAM power at  each epoch and multiplying by the duration of  the  epoch and  

keeping a running total.

As shown in Figure 7.13, for a given row buffer management policy, the energy required to run 8 

ranks is nearly twice as much as to run 4 ranks. Although each simulation requires the same number of reads  

and writes to the memory system, there are twice as many DRAMs consuming energy, regardless of how  

many are being used.

The power graphs illustrated in  Figure 7.14,  Figure 7.15 and  Figure 7.16 show the breakdown of 

power vs. time in the 4 and 8 rank simulations.  Each segment is  broken down into the types of power 

described previously. The vast majority of the transactions took place at the beginning of the program and  

near the 3-second mark. Other than these two bursts, sjeng had very little traffic, so the memory system was 

idle. Even during the periods of high activity, the memory system was not very busy, as evidenced by the fact  

that there was about 2600mW of background power used by DRAMs that were idle.

Between Figure 7.14 and Figure 7.16, when going from 4 ranks to 8, power essentially doubles for 

the idle periods, as there are just twice as many devices in the idle state. However, during the busy periods,  

the power goes from about 3450mW to 5050mW, an increase of 46%. The reason for this is that the requests 

were able to be effectively spread over twice as many ranks. Because there were more ranks handling the  

136



requests, this increased parallelism allowed the ranks to finish handling the requests and go back to low-

power standby mode. The 4-rank system, however, will have one or more banks per rank open, thus making 

it difficult to get all of the banks closed and go back to standby mode.

The 4-rank system has 690mW dedicated to activate-standby mode when busy,  while the 8-rank 

system is 950mW, an per-rank average of 172mW and 119mW, respectively.  So each rank in the 8-rank 

system is shouldering less of the load, despite the fact that the overall power usage is higher. Also the 8-rank  

system was able to finish this phase of the program in a shorter period of time, indicating that the additional  

ranks reduced the bank conflicts and improved concurrency.

When comparing the power of the two close page policies in Figure 7.14 and Figure 7.16 against the 

open page aggressive policy in Figure 7.15, the difference is clear. In the effort to keep rows open, the open 

page aggressive policy keeps the rows in higher-power states at all times. This strategy yields good row reuse  

rates,  which translates  to  some of  the  best  average transaction latencies  and execution times.  However, 

keeping those rows open keeps the rows in the active state, which uses much more power. So while the close  

page policy takes slightly over 2700mW during the idle phases with 8 ranks, the open page policy takes over 

8200mW while  idle,  over  300%  greater.  Activation  power  is  reduced  slightly  as  there  are  fewer  row 

activations  when  the  rows  are  reused.  Unfortunately,  since  the  memory system is  not  heavily utilized,  

reductions the activation power are canceled out by the increased background power.

The major disadvantage of open page versus close page when comparing power comes down to the 

characteristics of the DRAM devices themselves. In this simulation, the DRAM devices were modeled after  

a Micron 2Gb part running at 800MHz. When at least one bank in the rank is active, the devices all consume 

70mA or 50mA, depending whether the device is  in standby or powerdown mode.  When all  banks are 

precharged, the devices all consume 60mA or 30mA (for fast exit), depending whether they are in standby or 

powerdown mode. Additionally, if the devices are set to slow exit, the devices will consume only 12mA.  

Because close page tends to keep the DRAM devices precharged and open page keeps the DRAM devices  

active, the power will almost always be greater for open page. Assuming the memory controller efficiently 

137



uses CKE to put the devices in a low-power state when they are idle, the open page policy still consumes 

20mA more per device. If the memory controller has the logic to use slow exit, then the disparity grows to  

38mA.

When the ranks are in active mode, the memory controller knows that a request could come along at 

any time and is preparing for a row reuse. So it is less likely that the memory controller would want to put  

the system into the powerdown state. The Micron datasheets estimate that the memory controller would keep 

the DRAMs in standby state over 90% of the time. Conversely, when all the banks are precharged, it is  

estimated that an activate could come along at any time, but there will not be any immediate use of the row  

buffers. So the memory controller does not have any need to keep the DRAMs perpetually in standby. The  

examples estimate that the DRAMs can be left in the powerdown state 99% of the time. If the memory  

controller can more aggressively use CKE when using an open page policy, then the gap will be reduced.

138



139

Figure 7.13: Various benchmarks and the impact that address mapping policy, row buffer  
management policy and number of ranks affect the energy used in the run.



140

Figure 7.14: Power vs. time for sjeng with 8 ranks across two channels, using the close page 
optimized address mapping policy, and close page aggressive row buffer policy. Note that when  
active, the power usage is less than twice, but when idle the power is nearly twice.

Figure 7.15: The same configuration as Figure 7.14, but using open page aggressive row buffer  
policy instead. Far more power is consumed while in the active-standby state.



7.2 Detailed Power Comparison – LBM

 Figure 7.17 Shows that lbm is a much more memory-intensive application than others previously 

characterized . Although it is not completely saturated, as evidenced by the amount of power used for the  

DRAMs in precharge-standby, this memory system consumes much more power. The activation power is 20-

30% of the total power, indicating that many rows are being opened because the reuse rate is not very good; 

141

Figure 7.17: A run of lbm, using 4 ranks, SDRAM high performance address mapping policy and a  
close page aggressive row buffer management policy.

Figure 7.16: The same configuration as Figure 7.14, but with half as many ranks (4). The  
background power values are halved, but the activate, read and write powers remain the same. 



5% in this case. Five time steps simulated, which show up as the periods of increased activity. This is a  

relatively short simulation, so thousands of time steps would be simulated on actual hardware. The duration 

of the time steps would be very important and would take the majority of the execution time.

Comparing the same simulations of open page aggressive and close page aggressive, one can see that 

open page aggressive uses the majority of its power for keeping the DRAMs in the active-standby state.  

Activation power is minimal, due to the fact that the row reuse rate is 95%. However, for each time step, the 

average power for the open page aggressive policy is around 11000mW, while the close page policy is only  

about 9000mW. The tradeoff is an increase in power of over 20% and a runtime reduction of 9% (from 1.62 

to 1.49). Each processing step is reduced from .19s to .18s, a decrease of less than 5%. This slight advantage 

could be useful if there are many thousands of time steps to calculate. However, the designer must know how 

important power usage is before choosing the row buffer management policy and an address mapping policy. 

For each DRAM, according to the Micron -187E speed bin, running at 1066MT/s, the active-standby uses 

80mA and precharge-standby uses 70mA. Active-powerdown uses 55mA and precharge-powerdown uses  

35mA. If slow exit is used then precharge-powerdown is a mere 12mA. Clearly, any policy that can reduce 

142

Figure 7.18: A run of lbm, using 4 ranks, SDRAM high performance address mapping policy and a  
open page aggressive row buffer management policy.



the current draw for each DRAM by 20mA (active-powerdown to precharge-powerdown,  fast exit) or 43mA 

(active-powerdown to precharge-powerdown, slow exit) will be beneficial in terms of power usage.

7.3 Command Ordering Algorithm Performance

The command ordering algorithm determines  the  order that  commands are sent  to  the  DRAMs, 

which can determine the maximum system bandwidth. A good command ordering algorithm will  choose  

commands in such a way as to overlap operations, reduce latency, especially for transactions that are critical 

to the execution of the application, avoid starvation of lower priority commands, execute refresh commands  

without interruptions and keep the per bank queues from getting full.

Figure 7.19 shows that there is no optimal algorithm for all  benchmarks and configurations. For 

bzip2, the strict ordering policy affords the highest average IPC except when using close page baseline with 

4 ranks, where it is among the worst. Bank round robin is the best for bzip2 when using close page baseline 

opt. For most benchmarks, the first available policies give the best IPC, while bank round robin are next and  

strict is worst. The order remains the same in Figure 7.20, with the first available policies exhibiting the best 

latencies. Most often, first available (age) has the lowest latencies. Choosing the oldest command helps to 

choose the longest-queued commands and return them sooner. Most of the policies have lower latencies than 

the strict policy, except command pair rank hop. Because strict is considered the baseline, this shows that  

there is improvement over the typical default implementation.

These advantages for the first available policies are evident in the execution times listed in  Figure

7.22. Close behind the first available policies is bank round robin and sometimes rank round robin. So the  

choice of command ordering algorithm involves a tradeoff. The first available policies are resource intensive  

and require the memory controller to keep track of many items, evaluating every per bank queue at every 

cycle. Bank round robin is very simple and follows a prescribed pattern, but must evaluate the banks in order.  

Increased memory controller  resource usage and complexity will  yield performance improvements,  so a  

designer must decide which is more important.

143



7.3.1 Saturation Mode
To really see the difference between the command ordering algorithms on an enterprise machine, the  

per-queue banks should be full. To accomplish this, random transactions were set to arrive every 3 cycles on  

average, fast enough to ensure the queues would quickly fill. This is quite similar to a large server with  

dozens of active processes. Consider a web server handling many clients simultaneously. Each of the many 

simultaneous requests data from a different portion of the database that backs the web server, so there are  

many unrelated transactions to and from memory at any given time. Any massively parallel data mining or  

information processing process is likely to have similar characteristics: using all of the banks all of the time  

with minimal data overlap; i.e. row reuse. In these situations, it is useful to know which command ordering  

algorithms tend to do well to maximize throughput.

Figure 7.23 shows that first available (age) and first available (RIFF) consistently outperformed all 

other algorithms. Bank round robin was quite good in most cases, but suffered when used in conjunction  

with open page or open page aggressive row buffer management policies. Rank round robin also performed  

quite well in most cases but also suffered when using either open page policy. It is likely that the additional  

latency from having to first precharge and then open a new row did not work well with the round-robin  

pattern.

Command pair rank hop was consistently good, although not as good as the best algorithms. For  

scenarios where memory controller resources are limited and all of the parameters required to implement a 

first available policy are too much, command pair rank hop will provide consistent performance for a variety 

of setups. First available (queue) lags behind the other first available policies in all configurations and this is 

likely because the queues are  consistently full.  If  the  queues are  full,  the  secondary criterion  of  queue 

utilization provides no help in deciding which queue to use. So essentially, first available (queue) tends to  

find all queues which can execute a command and then chooses randomly among them.

144



145

Figure 7.19: The average IPC for the various benchmarks when choosing different address  
mapping policies, number of ranks and command ordering algorithms.



146

Figure 7.20: The average latency for transactions for various benchmarks when choosing varying  
numbers of ranks, address mapping policy or command ordering algorithm.



147

Figure 7.21: These are the average bandwidths for the benchmarks while varying the command 
ordering algorithm, address mapping policy and number of ranks.



148

Figure 7.22: The runtimes for the various benchmarks versus the command ordering algorithm,  
address mapping policy and number of ranks.



The strict policy shows how the performance of a FIFO and actually does quite well. Often, strict  

provides 60-80% the bandwidth of the best available algorithm, so in a memory controller that is  critically  

limited for resources, the strict policy would suffice.

149

Figure 7.23: A comparison of the average bandwidth maintained using different command ordering 
algorithms along with the different row buffer management policies and different numbers of ranks  
and DIMMs.



The latency of the different configurations is inversely related to the bandwidth; setups that had 

higher bandwidth had lower latency. This follows because a system that can return requests sooner has more 

time to return more requests and thus has higher bandwidth. Again, first available (RIFF) and first available  

(age) lead the way with the lowest latencies, consistently. First available (age) is always a few cycles faster  

150

Figure 7.24: The average latency of the various command ordering algorithms as compared  
against row buffer management policies and different numbers of ranks and DIMMs.



than first available (RIFF). For some configurations, bank round robin performs quite well. The best policies 

have latencies around 100ns and bank round robin sometimes has latencies of 150-200ns. However, in some  

cases this goes up to nearly 2500ns. Surprisingly, algorithms that were perhaps 20-30% worse in terms of 

bandwidth were often 10-fold worse in terms of average latency. So even though bandwidth may suffer only 

a small amount when the command ordering algorithm is changed, the latency may increase drastically. For 

example, for a 2 DIMM, 8 rank system using close page row buffer management policy, first available (age) 

uses 7.32GB/s while rank round robin uses 6.77GB/s. This is a difference of 8%. However, rank round robin 

has an average latency of 1429ns while first available (age) is only 100ns. This is an increase of 1329%.  

There are many similar cases, showing that this trend is quite common. So comparing only the average  

bandwidth does not give an accurate description; one must look at the latency to determine the performance 

of the command ordering policy. 

Finally, we must consider that energy used when evaluating which command ordering algorithm to 

use. Figure 7.25 shows the effects of the row buffer management policies as well as the command ordering  

algorithms. Often, bank round robin and rank round robin go through all the banks before returning to close  

out  the  banks,  so  when  coupled  with  open  page  row  buffer  management  policies,  they  tend  to  use 

significantly more energy. First available (queue) sometimes uses more energy than the other first available  

algorithms. The remaining algorithms have similar performance, with only command pair rank hop lagging 

somewhat behind. This means that again first available (age) and first available (RIFF) are often the best, so 

the power required to track these statistics may be offset by the power they save and the performance gains  

they bring.

Close page and open page are closer in energy use when used in saturation mode. The open page 

policies use only about 40% more energy in saturation mode and they do not even benefit from row reuse 

(random access patterns mean row reuse is less than .1%).

When saturated with requests, a close page policy is very similar to an open page policy. Open page  

aggressive will  even begin to  use  CAS+P commands,  so both appear  to  be a  CAS+Pre and ACT with 

151



minimal time sitting unused. If the server load is very heavy and open page is able to reuse many of the rows,  

it is possible that open page policies may have similar energy use to close page.

152

Figure 7.25: Total energy for different command ordering algorithms versus row buffer  
management policy, number of ranks and number of DIMMs.



CHAPTER 8 CONTRIBUTIONS AND RELATED WORK

8.1 Summary and Contributions

The purpose of this thesis has been to attempt to understand what factors are important to understand 

while designing a high-performance memory system. Additionally, the same lessons can be applied for the 

purpose of designing a low-power, embedded memory system. Essentially, small changes in certain design  

parameters can cause large differences in application execution time and power usage, so system architects 

and memory controller designers should be aware of these factors.

DRAMsimII was designed in order to run these studies and provide a framework for evaluating 

proposed changes to the memory controller. DRAMsimII is a cycle-accurate, DDR/DDR2/DDR3/SDRAM 

simulator that  provides statistics about  its  resource usage and also emulates the  timings a real  memory 

controller  could  have.  It  was  designed  to  be  flexible  and easy to  adapt.  The  various  policies  are  well  

delineated, so adding a new policy was a fairly simple process. The designer needed only to write a new  

algorithm and modify the code a little. The DRAM protocol is abstracted from the algorithms to a degree, so 

it is less complicated to add a new policy. Additionally, all policies and algorithms are separate to the degree  

that they can be interchanged without affecting correct operation of the memory controller. This allowed the  

comparison  of  every combination  of  policies.  These  combinations  showed  that  some  address  mapping 

policies worked very poorly with some application streams. They also showed that close page baseline and  

close page baseline opt generally worked better with close page policies and SDRAM baseline and SDRAM 

high performance worked better with open page row buffer management policies. They showed that in many 

cases, close page policies used less energy than open page policies. However, when the memory system was 

running at maximum capacity, the two policies had similar energy use.

153



Several of the policies are new, including low locality, high locality,  and close page baseline opt.  

Low locality was meant to work with a close page row buffer policy and take advantage of entropy in the 

low order bits of the address by spreading the requests to the channel, rank, bank as the entropy moved to the  

higher order bits. High locality was exactly the opposite. It assumed that there would be entropy in the high 

order bits and attempt to spread the requests to ranks, banks, channels from high to low. This was intended to 

work well with applications that had very large address spaces and spread the requests to these requests 

seemingly randomly.  Although none of the applications tested took advantage of this policy,  it  may still  

prove to be effective in larger applications. Finally, close page baseline optimized is a new policy intended to  

improve upon the close page baseline policy. By splitting the bits for the row into two parts and drawing half  

of them from the lower portion of the address, a more even distribution was achieved. Instead of distributing 

requests to separate ranks, they would be first given different rows and then different ranks, thus improving 

row reuse over close page baseline.

Several of the address mapping policies already existed and provided a sense for how to adjust and 

optimize  novel  policies  to  improve  row reuse or  channel/rank/bank distribution.  Most  were part  of  the  

original DRAMsim. Additionally, DRAMsimII includes the concept of a DIMM. Although this plays no part  

in addressing of individual DRAMs, this concept allows a user to specify the number of channels, DIMMs  

and ranks per DIMM for simplicity. This is a more realistic representation than simply having a channel with 

a certain number of ranks attached to it.

The close page and open page policies have been around for a long time and both are widely used.  

The close page aggressive and open page aggressive policies are based on the original policies, but have  

optimizations to attempt to exploit a few tendencies. Close page aggressive was created to allow a close page 

scheme but allow some row reuse when it was convenient. Open page aggressive was meant to attempt to 

make  open page look more like  close  page when the chances  for  row reuse were more limited due to 

increasing congestion. Each of the “aggressive” policies have elements taken from the other and tend to  

154



outperform the policies from which they are derived. In fact, close page aggressive is able to achieve 10% 

row reuse on some benchmarks.

The first available (age) policy existed previously and was complemented by adding first available  

(RIFF) and first  available (queue).  Because using age as a  secondary criterion worked well  at  times,  it  

seemed logical to think that other criteria would also also work well, so choosing reads preferentially tends to 

return requests sooner. Likewise, choosing from the fullest queue tends to make more room in the queues and 

reduce queuing delays  due to  the  per  bank queues being  full.  Command pair  rank hop was  previously 

implemented statically as a 2 rank,  8 bank pattern,  but  was extended to be a generic algorithm for the  

purpose of these simulations. Now command pair rank hop will work on any system configuration. The  

simulations  show  that  some  command  ordering  algorithms  work  better  than  others  when  it  comes  to 

maximizing bandwidth. But for a system that does not need so much bandwidth or extremely low latency 

requests, it is better to use a simpler command ordering algorithm.

These studies also show that choosing the right address mapping policy and row buffer management 

policy can improve row reuse from 0% to over 80%, depending on the benchmark. They also show that there 

are limited returns on row reuse. Even though row reuse may be 75% or more, execution time is reduced by 

only a fraction. This shows that simply improving row reuse may not be the best goal to have.

DRAMsimII also provides a model to calculate availability for banks as command are executed. 

Previous versions looked at the history of past events to calculate when those resources would again be 

available.  In  contrast,  DRAMsimII  calculates  the  time  when resources  will  be  available  when an event  

happens and then does a lookup to determine when an event can occur. This is useful because when the first 

available policies are being used, there are about 8000 times as many lookups as executed events. So it is  

much more efficient to simply do a lookup frequently than to calculate when resources are available.

Reordering of transactions at several levels has been described before[Rixner 00][Hur 04], but this 

work includes the first example of a decode window for transactions. This arose from the fact that certain 

transactions  were being decoded to just  a  few banks,  so those banks were becoming full  very quickly.  

155



Therefore, more transactions arrived but could not be enqueued in the transaction queue and the system 

appeared to be full even though most of the per bank queues were empty. In an effort to fix this problem, the  

decode window was devised to allow more transactions to be decoded at once. There is still a mandatory 

delay in the transaction queue before they can be decoded to simulate propagation delays that would exist in 

a real system.

Many previous studies use trace files to estimate what sort of speedup they would achieve when  

running in an actual system. However, this presents some timing inaccuracies. Requests may appear closer in 

time from a trace file than they would in a real system because they do not have to be returned to the  

requester first. So a read followed by a write would not appear together in a real system because the write  

would depend on the read being returned. This simulation uses M5 as a full system simulator and ensure that 

the simulations are as accurate as possible. Although speed is sacrificed by simulating the other components,  

the result is more accurate.

Finally,  to  track the effectiveness  of  an address  mapping policy on a  particular  benchmark,  the 

simulator tracks the distribution of latencies and requests on a per-bank basis. Then there is a post-processing  

script that will evaluate the logs and show a graph of what the distribution looked like. These graphs allow 

the user to immediately see if a given address mapping policy is using all available channels, ranks or banks 

for a given benchmark or whether the distribution is uneven. Being able to quickly, visually determine the 

effectiveness of a policy is important when designing a system. There are several other scripts available that  

generate graphs and many of the graphs in this paper were generated by those scripts and the statistics  

tracking package in DRAMsimII.

8.2 Related Works

Other  groups  have  looked  at  memory controllers  and  the  effects  of  realistic  DRAM simulation 

before, but often with less detail or not in the context of a modern processor. Some looked at older variants of 

DRAM, often older than SDRAM, which would produce significantly different results.

156



Zhang, Fang et al. studied the Impulse Memory Controller  [Zhang 01], which focuses on how to 

improve locality by remapping the memory requests as they arrive. So if a program tends to have an erratic 

access pattern that would normally span many rows, the OS can define a simple algorithm to allow the 

memory controller to map the requests in such a way as to achieve better locality. They used a significantly  

older  simulator,  RSIM  [Pai  97],  modeling  a  MIPS  processor  and  simulated  various  image  processing 

applications. They do not, however, use modern DRAMs or processors and they also do not adjust the row  

buffer policies or command ordering algorithm. This allows a secondary address mapping policy beyond the 

initial one that is build in to the memory controller.

Fan, Ellis et al. look at adjusting memory controller policies to improve power management  [Fan

 01].  They estimate  DRAM idle  time  by using  trace-driven  simulations  of  some  common  workstation 

applications. This study only estimates idle time by using trace-driven simulation, while this thesis measures  

idle time using an entire simulated system to ensure much greater accuracy. Also, the paper uses RDRAM 

and measures only background power as determined by the state is in. This thesis uses more modern DDR3 

DRAM and measures not only background power but power from various commands as well.

Hur and Lin propose a memory controller  that schedules requests based on its recent read/write  

history[Hur 04]. They simulate this controller in the context of an IBM Power5 processor. They also simulate 

actual DRAM commands and look at the length of the history as a variable in choosing whether to choose a  

read or write next. It is not known what address mapping policy or row buffer management policy was used,  

but their command ordering algorithm estimated the latency of the available commands to decide which 

commands  were  likely to  execute  soonest.  From these,  they used  the  recent  read/write  ratio  to  choose  

between available commands. The delay is estimated by keeping track of the read-to-write and write-to-read 

turnaround latencies.

Zhang et al. use a permutation-based interleaving scheme to attempt to increase row reuse[Zhang

00]. They model an address mapping scheme for a system with one channel and one rank. Although they 

recognize that there are close page and open page row buffer management schemes, they use the open page  

157



scheme for all of their tests. They propose to use a portion of the physical address and XOR it with another  

portion to generate a bank index that will hopefully yield greater row reuse. Several key memory timing 

parameters are modeled and a variety of SPEC95 benchmarks are simulated to look at the row reuse rates.

Aggarwal et al. create a DRAM controller that works with the processors' cache coherency policy to 

decide whether or not a request is likely to come from another CPU's cache[Aggarwal 08]. If it is likely, then 

a speculative read is not performed. It then waits to see if, in fact, the other processor was able to supply the 

data requested by the snoop. If it was not, then the memory controller performs the operation and returns the  

data after a longer latency. If it detects a snoop that is not likely to be returned by another CPU, the request is  

speculatively performed and the result conditionally used. DRAM latency is modeled as a constant value 

with basic delays due to contention. They report up to 21% reduction in DRAM energy usage by reducing 

accesses.

Rixner et  al.  have proposed and done studies  on memory access  scheduling,  looking to reorder 

memory accesses in order to efficiently schedule memory accesses and improve bandwidth[Rixner 00]. They 

look at FIFO and prioritized policies to choose the ordering of memory accesses. They also introduce the 

idea  of  per-bank  queues  to  accommodate  commands  for  the  various  banks.  Their  policies  and arbiters 

reschedule  DRAM  commands  to  improve  performance  of  several  benchmarks.  By  using  first-ready 

scheduling,  an  average  bandwidth  improvement  of  about  25%  is  observed.  Application  bandwidth  is 

improved by 85-93% over in-order scheduling.

Zhang and McKee looked at using a DRAM prefetcher with DRDRAM to reorder requests, improve 

row reuse and increase performance[McKee 00]. Many relevant DRAM timing parameters are modeled in a 

memory controller attached to a SimpleScalar CPU. They model one channel with eight individual devices.  

Various benchmarks are analyzed and their access patterns described in order to determine what  sort  of 

prefetcher  would  be  most  effective.  They  also  show  that  reordering  of  memory  accesses  provides  a  

performance benefit in all cases.

158



CHAPTER 9 CONCLUSIONS AND FUTURE WORK

Many simulation models over the years have simplified the memory subsystem to the point of losing 

accuracy. They assume a constant latency or a random latency in hopes of having a reasonably accurate  

result. However, for large applications that put lots of pressure on the memory system, these inaccuracies are  

multiplied many times to the point  where the entire simulation,  as shown by these simulations.  In fact,  

simply changing internal policies can affect runtime by up to 66% for good policies and by over 12000% for 

poor policies.

We have shown that not only is it important to choose good policies for the memory controller, but 

also to make sure that these policies work well together and with the applications that will be run on this 

system. Choosing an open page row buffer management policy for a workload with little locality will have 

worse performance and higher power usage than a close page policy. If the wrong address mapping policy is 

chosen, then the rows may not get much reuse and any advantage of an open page policy is nullified.

The close page policies were often comparable to the open page policies in terms of execution times, 

but often yielded better power numbers. Open page policies, when coupled with the right address mapping 

policies, often had the best execution times and latencies. 

Command ordering algorithms determined what  sort  of  sustained bandwidth  and latencies  were 

possible. Choosing a more sophisticated first available (age or RIFF) often gave the best bandwidth and 

latency numbers for any configuration and workload. However, they are far more complex than simpler  

policies like bank round robin, which require less-complex implementations. The row buffer management 

policy also determined whether a command ordering algorithm could perform well. Although bank round 

robin did well when combined with close page policies, it was significantly worse with open page policies.

159



Not only did the memory system affect overall system performance, but overall power usage as well.  

Accurately simulating a system's memory system will give more accurate results and choosing appropriate 

memory controller  policies  and algorithms can help to  further  improve performance.  Understanding the 

interactions of the application, CPU and memory subsystem will help to make better choices when choosing 

or designing a system.

9.1 A Word on Multithreading

All of the simulations were run using only a single threaded benchmark application. Although each 

of these was run in a Linux operating system with many threads, there was predominantly one thread running  

at a time. This gave that single thread most of the time on the CPU and most of the access to the memory 

system. Because it was the only thread accessing the memory system for most  of the time, most of the  

requests had very fast access to the DRAMs, the queues were shorter and requests were generally returned 

sooner than they would otherwise be. In a multithreaded benchmark, it is likely that the requests will be  

returned after longer delays. The requests will compete for the same resources and keep the memory system 

busier, thus having to wait longer than before. However, it is possible that there will be something of a  

synergistic interaction between the threads. One thread may open a row before another thread asks for it and  

the second thread will benefit by not having to wait to open the row. The caches in other CPUs may also  

contain data needed by a thread, so the CPUs can source the data from their caches rather than going to  

memory. In fact, some threads may perform an ad hoc prefetch of data for other threads and then supply it  

through snoop requests,  improving performance.  This will  alleviate some of the burden on the memory 

system, if the caches in the other CPUs running the other threads can supply the data often. 

When this synergistic relationship fails to work well, there will be behavior akin to cache thrashing. 

When a single thread is running, a row may stay open for quite a while to accommodate all the requests, but  

with multiple threads, subsequent requests may close the rows and destroy the locality of the single thread.  

160



The more cores are running threads, the greater the risk that the threads will interrupt the row locality of the  

other threads, but of course it depends on the application behavior and the address mapping policy.

The odds of row reuse go down if there are multiple simultaneous copies of a program running as 

separate  threads.  Because they have completely separate  memory spaces,  the  chance of  finding locality 

between  different  processes  relies  on  supplying  fetches  to  common libraries  or  memory addresses  that  

happen to map to adjacent columns despite being from different processes.

Finally, if the single threaded version of a benchmark is mostly CPU-bound, then there may be little 

change in performance when switching to a multithreaded or multiprocess version as the memory system is  

not saturated. The additional load of those threads may not be sufficient to hurt the performance of the other  

threads.

One  way to  deal  with  the  burden  of  additional  threads  would  be  through  a  quality-of-service  

monitoring/scheduling policy. It could ensure that some threads could not saturate the memory system while  

leaving other threads with a long wait. Threads waiting for many requests would have the lowest priority 

when waiting for access to the DRAMs, while threads not using as much bandwidth would jump to the front  

of the queues. This assumes that threads with few requests place higher priority on these requests because  

they are often part of the critical path of its execution. Likely these are for instruction misses or for loop  

variable indices. So giving them higher priority will allow them to run unimpeded while the heavy requesters 

will continue to wait, but will not really notice the impact of the other threads in the system. By prioritizing 

in this way, each thread should have a fair chance to get to the memory system in a reasonable time.

9.2 Future Work

In the future, it would be good to attempt to use an adaptive algorithm to look at which address 

mapping policies are optimal. Being able to look at the execution time of an application versus several  

different mapping policies and then choose and adapt the best would yield better policies.

161



It would also be interesting to explore a system that could dynamically switch between row buffer  

management policies based on load. When the system is lightly loaded, a close page policy would be best for 

its relatively better power usage. When the system detects that the request rate reaches a certain threshold, it 

could switch to an open page policy to begin to exploit row reuse better and have power usage roughly 

equivalent to a close page system, especially when heavily-loaded such as when connected to many CPUs.

When a row has been open for a while but has not been , it would be good to implement a policy that  

would automatically close the row to save power. This might help to bridge the gap between close page's  

power and open page's performance and row reuse. The ability to tune the time that it takes for the system to  

decide that a row is unused and close it would allow the system to improve row reuse rates for rows that are  

often hit just after they are closed or close rows quickly when they are rarely reused.

Lastly, it would be good to have a hierarchical memory system that could send requests to sub-

memory controllers and retrieve the results when they are done to improve concurrency. This would reduce 

the data bus as  a bottleneck and help to  improve the capacity of a  system.  If  there  are  2 channels  per  

controller and 4 ranks per channel, then each additional sub-controller could handle this and increase the  

capacity of the system by that amount.

162



CHAPTER 10 BIBLIOGRAPHY

[Jacob 07] Memory Systems: Cache, DRAM, Disk. Bruce Jacob, Spencer W. Ng, and David T. 

Wang ISBN  978-0123797513. Morgan Kaufmann, September 2007.

[Jacob 03] Bruce Jacob. "A Case for Studying DRAM Issues at The System Level." IEEE 

Micro, vol. 23, no. 4, July/August 2003.

[Cuppu 2001] Vinodh Cuppu and Bruce Jacob, "Concurrency, latency, or system overhead: Which 

has the largest impact on uniprocessor DRAM-system performance?." In Proc.  

28th International Symposium on Computer Architecture (ISCA 2001), June 2001, 

pp. 62-71.

[Prince 2000] High Performance Memories: New Architecture DRAMs and SRAMs - Evolution 

and Function. B. Prince ISBN  978-0471986102. John Wiley & Sons, August 1999.

[Ganesh 07] Brinda Ganesh, Aamer Jaleel, David Wang and Bruce Jacob, "Fully-Buffered 

DIMM Memory Architectures: Understanding Mechanisms, Overheads and 

Scaling." In Proceedings of the 13th International Symposium on High 

Performance Computer Architecture, February 2007, pp. 109-120.

[Ganesh 07-2] Brinda Ganesh. (2007). Understanding and Optimizing High-Speed Serial  

Memory-System Protocols (Doctoral dissertation). University of Maryland, College 

Park, MD.

[Cuppu 99] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge, "A Performance 

Comparison of Contemporary DRAM Architectures." In Proc. 26th International  

Symposium on Computer Architecture (ISCA 1999), May 1999, pp. 222-233.

[Micron 07] Micron Technology, Inc..(2007, August). Calculating Memory System Power for  

DDR3 (Publication No. 09005aef829559ff). Retrieved from Micron Technology, 

Inc. Online: 

http://download.micron.com/pdf/technotes/ddr3/TN41_01DDR3%20Power.pdf

163



[Micron 10] Micron Technology, Inc..(2010, April). DDR3 SDRAM (Publication No. 

09005aef826aaadc). Retrieved from Micron Technology, Inc. Online: 

http://micron.com/document_download/?documentId=424

[Wang 05-2] David Wang. (2005). Modern DRAM Memory Systems: Performance Analysis and 

a High Performance, Power-Constrained DRAM-Scheduling Algorithm (Doctoral 

dissertation). University of Maryland, College Park, MD.

[Fan 07] Xiaobo Fan, Wolf-Dietrich Weber, Luiz Andre Barroso, "Power Provisioning for a 

Warehouse-sized Computer." In Proceedings of the ACM International Symposium 

on Computer Architecture, June 2007, pp. 13-23.

[Wang 05] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie Baynes, Aamer 

Jaleel, and Bruce Jacob. "DRAMsim: A Memory-System Simulator." SIGARCH 

Computer Architecture News, vol. 33, no. 4, September 2005.

[Alakarhu 02] Juha Alakarhu, "A Comparison of Precharge Policies with Modern DRAM 

Architectures." In Proceedings of the 9th International Conference on Eletronics,  

Circuits and Systems, September 2002, pp. 823-826.

[Rixner 04] Scott Rixner, "Memory Controller Optimizations for Web Servers." In IEEE/ACM 

International Symposium on Microarchitecture (MICRO), December 2004, pp. .

[Jacob 09] Bruce Jacob and David Wang. "System and Method for Performing Multi-Rank 

Command Scheduling in DDR SDRAM Memory Systems." U.S. Patent 7,543,102, 

filed April 17, 2006 and issued June 2, 2009

[Binkert 06] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi 

and Steven K. Reinhardt. "The M5 Simulator: Modeling Networked Systems." 

IEEE Micro, vol. vol. 26, no. 4, July/August 2006.

[McCalpin 95] John D. McCalpin. "Memory Bandwidth and Machine Balance in Current High 

Performance Computers." IEEE Computer Society Technical Committee on  

Computer Architecture (TCCA) Newsletter, vol. 1, no. 1, December 1995.

[Zhang 01] Lixin Zhang, Zhen Fang, Mike Parker, Binu K. Mathew, Lambert Schaelicke, John 

B. Carter, Wilson C. Hsieh and Sally A. McKee. "The Impulse Memory 

Controller." , vol. 50, no. 11, November 2001.

164



[Pai 97] Vijay S. Pai, Parthasarathy Ranganathan and Sarita V. Adve, "RSIM: An Execution-

Driven Simulator for ILP-Based Shared-Memory Multiprocessors and 

Uniprocessors." In Proceedings of the Third Workshop on Computer Architecture  

Education, February 1997, pp. 1-5.

[Fan  01] Xiaobo Fan, Carla S. Ellis and Alvin R. Lebeck, "Memory Controller Policies for 

DRAM Power Management." In ISPLED '01, August 2001, pp. 129-134.

[Hur 04] Ibrahim Hur and Calvin Lin, "Adaptive History-Based Memory Schedulers." In 

37th International Symposium on Microarchitecture. December 2004.

[Zhang 00] Zhao Zhang, "Permutation-based Page Interleaving Scheme to Reduce Row-buffer 

Conflicts and Exploit Data Locality." In Proceedings of the 33rd Annual  

International Symposium on Microarchitecture, December 2000, pp. 32-41.

[Aggarwal 08] Nidhi Aggarwal, Jason F. Cantin, Mikko H. Lipasti, James E. Smith, "Power 

Efficient DRAM Speculation." In Proceedings of the 14th International  

Symposium on High-Performance Computer Architecture (HPCA-08), February 

2008, pp. 317-328.

[Rixner 00] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, J.D. Owens, "Memory Access 

Scheduling." In International Symposium on Computer Architecture (ISCA). June 

2000.

[McKee 00] C. Zhang, S.A. McKee, "Hardware-Only Stream Prefetching and Dynamic Access 

Ordering." In Proc. 14th International Conference on Supercomputing (ICS'00), 

May 2000, pp. 167-175.

165


	Chapter 1  Introduction
	1.1  The Problem in Detail
	1.2  Contributions and Work

	Chapter 2  DRAM Devices
	2.1  Introduction
	2.2  Device Organization
	2.2.1  DRAM Devices in Greater Detail
	2.2.2  A Row Access in a DRAM Device

	2.3  Mode Registers
	2.3.1  Burst Length
	2.3.2  Burst Type
	2.3.3  Write Recovery,  CAS Latency and Additive Latency
	2.3.4  Auto Self Refresh and Self Refresh Temperature 


	Chapter 3  Memory System Organization
	3.1  Typical Memory System Organization
	3.2  Naming Conventions
	3.2.1  Channel
	3.2.2  Rank
	3.2.3  Bank
	3.2.4  Row and Column

	3.3  Memory Modules
	3.3.1  SIMM
	3.3.2  DIMM and SODIMM
	3.3.3  ECC DIMM
	3.3.4  Registered DIMM
	3.3.5  FB-DIMM
	3.3.6  SPD chip


	Chapter 4  DRAM Protocol and Timing
	4.1  DRAM Commands: An Overview
	4.1.1  DRAM Command Illustrations Explained
	4.1.2  Row Access Command
	4.1.3  Column Read Command
	4.1.4  Column Write Command
	4.1.5  Precharge Command
	4.1.6  Row Refresh Command

	4.2  Read Cycle
	4.2.1  Read Cycle with Read-and-Precharge
	4.2.2  Posted CAS

	4.3  Command Interactions
	4.3.1  Consecutive Reads To Different Rows In A Bank
	4.3.2  Consecutive Reads To Different Rows In A Bank, Worst Case
	4.3.3  Reads to Different Banks (Bank Conflict)
	4.3.4  Consecutive Reads to an Open Row
	4.3.5  Consecutive Reads to Open Rows within a Rank
	4.3.6  Reads to Different Ranks
	4.3.7  Write to Write, Different Ranks with Open Banks
	4.3.8  Write to Precharge
	4.3.9  Write to Write with Bank Conflict
	4.3.10  Read to Write, No Conflict, Different Ranks
	4.3.11  Read to Write with Bank Conflict
	4.3.12  Write to Read in the Same Rank
	4.3.13  Write to Read in Different Ranks
	4.3.14  Write to Read with Bank Conflict, Same Bank
	4.3.15  Write to Read with Bank Conflict, Same Rank
	4.3.16  Column Read-and-Precharge Timing
	4.3.17  Column Write-and-Precharge Timing

	4.4  Power and Performance Constraints
	4.4.1  Four Bank Activation Window
	4.4.2  Row-to-Row Activation Delay
	4.4.3  2T Command Timing


	Chapter 5  Power Modeling 
	5.1  Overview
	5.2  Background Power
	5.2.1  All Banks Precharged
	5.2.2  One or More Bank Activated

	5.3  Event Power
	5.3.1  Activate Power
	5.3.2  Read Power
	5.3.3  Write Power 
	5.3.4  Termination Power
	5.3.5  Refresh Power

	5.4  Derating Power For Specific Systems

	Chapter 6  Experimental Setup
	6.1  Simulator Setup
	6.1.1  Multithreaded Workloads and Thread Synchronization
	6.1.2  Simulator Data Movement

	6.2  Transaction Queue
	6.2.1  Refresh Queue

	6.3  Per-Bank Command Queues
	6.4  Row Buffer Management Policies
	6.4.1  Close Page
	6.4.2  Open Page
	6.4.3  Close Page Aggressive
	6.4.4  Open Page Aggressive
	6.4.5  Row Buffer Management Policy and Its Effects on Power

	6.5  Address Mapping Policies
	6.6  Command Ordering Algorithms
	6.6.1  Timing Requirements
	6.6.2  Timing Requirements – Channel
	6.6.3  Timing Requirements – Rank
	6.6.4  Timing Constraints – Bank
	6.6.5  Command Ordering Algorithm: Strict
	6.6.6  Command Ordering Algorithm: Bank/Rank Round Robin
	6.6.7  Command Ordering Algorithm: First Available
	6.6.8  Command Ordering Algorithm: Command Pair Rank Hop

	6.7  Random Address Simulation Mode
	6.8  Simulation Setup: DRAMsimII and M5
	6.8.1  Benchmarks
	6.8.2  Methodology


	Chapter 7  Results
	7.1  Power Results
	7.2  Detailed Power Comparison – LBM
	7.3  Command Ordering Algorithm Performance
	7.3.1  Saturation Mode


	Chapter 8  Contributions and Related Work
	8.1  Summary and Contributions
	8.2  Related Works

	Chapter 9  Conclusions and future work
	9.1  A Word on Multithreading
	9.2  Future Work

	Chapter 10  Bibliography

