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Dissimilative sulfate reduction is a major source of sulfide in sediments and 

the water column of lakes and estuaries. Resulting dissolved sulfide can be 

incorporated into organic or inorganic sulfur complexes. When present in aquatic 

systems, sulfide is the dominant ligand for many trace metals and may control metal 

bioavailability to organisms.

Laboratory tests were performed to validate the coupling of the diffusive 

gradient in thin films technique to a solid-state ion selective electrode to quantify in 

situ sulfide concentrations.  Diffusive gradient in thin films probes were deployed in 

three lakes and estuary pore water and compared with parallel sulfide measurements 

using the Cline method and potentiometry.  Differences between the recently 

validated method and the other methods were found with the former resulting in 

lower concentrations.  Laboratory experiments examined these differences, and the 

experimental results identified measurement artifacts associated with sulfide 

antioxidant buffer usage.
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Chapter 1: Introduction

Background

In aquatic environments a portion of the organic matter reaching the 

sediments is oxidized by anaerobes utilizing sulfate, the most oxidized form of sulfur, 

as an electron acceptor.   While in freshwater environments sulfate reduction is often 

limited by sulfate concentration, in marine and estuarine environments, this process 

can be the dominant carbon mineralization mechanism due to the higher sulfate 

concentrations (Nealson and Stahl 1997).  Dissimilative sulfate reduction produces 

dissolved hydrogen sulfide (H2S) as the primary product.  As H2S is a diprotic acid

the proportion of the various forms are functions of the pH.  At pH values between 6 

and 9, the pH range for most natural waters, sulfide (S2-) is the least abundant species.  

The concentration of dissolved sulfide species builds up in the pore water and can be 

incorporated into the sediments as reduced organic and inorganic sulfur complexes.

A flux of dissolved sulfide from the sediments to the overlying water column may 

also occur allowing the sulfide to be oxidized or complexed to metals in solution.  

The oxidation of dissolved sulfide is believed to be quite rapid (Millero 1986).

However when sulfide is complexed with a metal, its resistivity towards oxidation is 

enhanced.  These complexed sulfide species can persist in oxic waters for nearly 30 

days (Rozan et al. 2000).

Previous research has demonstrated that sulfide is a dominant ligand for a 

number of metals in anoxic environments and can potentially control metal speciation 

and toxicity under low oxygen environments as well (Boulegue et al. 1982; Morse et 

al. 1987; Ditoro et al. 1990; Hansen et al. 1996; Chapman et al. 1998).  When present 
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under anoxic conditions, dissolved sulfide readily reacts with reduced iron (Fe2+) to 

form various iron mineral phases.  Exchangeable iron mineral phases and dissolved 

sulfide species have been operationally defined as the acid-volatile sulfide (AVS) 

fraction of the total sulfide (Morse et al. 1987).  The remaining fraction of sulfide, 

pyrite, is considered refractory and is referred to as chromium reducible sulfur (CRS) 

because of the chromium reduction technique used for pyritic sulfide extraction 

(Fossing and Jorgensen 1989).  The AVS fraction is more labile than the pyritic 

fraction and is defined by its ability to be separated using 6 molL-1 cold HCl 

(Cornwell and Morse 1987; Allen et al. 1993).  Recently, this acid-labile fraction has 

been redefined as methylene blue reactive sulfides (MBRS), and this includes ZnS, 

CdS, MnS, and terminal polysulfides (Mylon and Benoit 2001).  Other researchers 

have made similar conclusions and have even added PbS to the acid- labile or MBRS 

fraction (Cooper and Morse 1998; Bowles et al. 2002). Furthermore, it has been 

demonstrated that metal sulfide complexes of Co, Ag, Cu, Ni, and Hg have no 

recoverable acid-labile fraction (Cooper and Morse 1998; Bowles et al. 2002).  Figure 

1 is a generalization of the sedimentary sulfur cycle and demonstrates the 

incorporation of reduced sulfide into labile and refractory minerals (Cornwell and 

Sampou 1995).  The dashed lines represent oxidative processes leading to the 

formation of other reduced intermediates of sulfur and ultimately to the formation of 

sulfate.
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Figure 1.  Generalization of the sedimentary sulfur cycle and potentially formed 
intermediate sulfur species.

Because many MBRS metal complexes have larger solubility products than 

FeS, other metals may displace Fe2+ to form these more insoluble metal sulfide 

complexes.  Equation 1 demonstrates a solubility driven displacement reaction.  

++ +→+ 2
)()()(

2
)( aqssaq FesulfidemetalFeSmetal (1)

This displacement process can be predicted by hard and soft acid-base theory.  This 

theory predicts that there is preferential formation of a B-type metal or soft acid with 

a soft base (Stumm and Morgan 1996). For example, mercury would preferentially 

bind to a soft base such as sulfide rather than chloride.  Because B-type metals form 

strong bonds with sulfide and are incorporated into the solid phase, the free metal 

ions become unavailable for uptake by organisms.  It should be noted that researchers 
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have also reported metal sulfide accumulation in invertebrates and bacteria by 

ingestion of particles and through the passive diffusive of neutral HgS across cell 

membranes, respectively (Lee et al. 2000; Benoit et al. 2001; Bianchini et al. 2002).

Metal insolubility considerations have led to proposed sediment quality 

criteria for metal bioavailability to organisms (Ankley et al. 1996). The AVS fraction 

within the sediments is important in controlling the partitioning of free metal ion 

concentrations between solid and dissolved phases and potentially lowering metal

toxicity in sediment pore waters and anoxic waters. It has been proposed that the

ratio of acid-volatile sulfides to simultaneously extracted metals (AVS/SEM) can be 

indicative of toxic effects.  If the SEM is lower than the AVS, then toxicity effects to 

organisms are not expected (Hansen et al. 1996).

Recent findings have also shown that dissolved sulfide species exist and may 

be important ligands in fully oxygenated waters (Cutter and Oatts 1987; Luther and 

Tsamakis 1989; Radfordknoery and Cutter 1993; Adams and Kramer 1999; Rozan et 

al. 1999; Rozan et al. 2000; Mylon and Benoit 2001; Bowles et al. 2003). Where 

natural organic matter (NOM) was previously considered to be the primary factor 

determining the speciation of heavy metals in oxygenated aquatic environments, low 

levels of MBRS are now thought to be able to out compete the more abundant NOM 

due to the nature of their solubility constants (Mylon and Benoit 2001).  Because 

dissolved sulfide oxidizes in oxygenated waters, it was previously believed that metal 

complexation to dissolved sulfide did not appreciably occur.  However, the rate at 

which some MBRS oxidize is much slower than the rate of oxidation for free 

bisulfide ion (Rozan et al. 2000).  Therefore, a viable fraction of labile sulfide can 
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still exist in the water column for complexation and metal replacement reactions.  The 

bioavailability of these metal sulfide complexes varies, and these complexes can 

reduce the toxicity of other metals.  For example, recent studies have demonstrated 

that zinc sulfide clusters in fully oxygenated waters appear to suppress the acute 

toxicity of Ag1+ to Daphnia magna (Bianchini and Bowles 2002; Bianchini et al. 

2002).  A correct assessment of dissolved sulfide is essential to allow for more 

accurate predictions of metal speciation in chemical equilibrium calculations, in order

that more reliable assessments of metal bioavailability and toxicity to organisms can 

be made.

Available analytical techniques

A variety of in situ and ex situ spectrophotometric, electrochemical, and 

chromatographic techniques for measuring dissolved sulfide and associated 

complexes exists in the chemical literature. In a recent review of methods available 

for sulfide analysis, it was noted that spectrophotometric methods of analysis are the

most commonly cited methods; followed in popularity by electrochemical and 

chromatographic methods (Lawrence et al. 2000).  Each method has its own set of 

advantages and disadvantages.  The three most cited methods in the literature will be 

briefly discussed.  

Spectrophotometric sulfide analysis usually involves the ex situ treatment of 

an analytical sample with a set of chemical reagents.  The classic methylene blue and 

Cline method utilize a reaction between sulfide and N,N-dimethyl-p-phenylene-

diamine that produces a blue complex (Cline 1969; APHA- AWWA-WPCF 1989).  

These methods have detection limits between 0.3 and 1.0 µmolL-1(Kuhl and Steuckart 
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2000).  Different concentration ranges of N,N-dimethyl-p-phenylene- diamine and 

ferric chloride (FeCl3·6H2O) are required for various sulfide concentrations to ensure 

proper color development.  Therefore, usage of the methylene blue technique can be

rather time consuming.  Since this is an ex situ method, it is necessary to prepare 

samples in a manner that minimizes sulfide losses through adsorption, oxidation, and 

volatilization.  The samples are normally fixed in the field and analyzed upon 

returning to the laboratory.  Dissolved organic matter (DOM) present in 

environmental samples may contribute to absorptive interferences.  This issue can be 

addressed via the coupling of methylene blue to HPLC (high-performance liquid 

chromatography) which minimizes DOM interferences and significantly lowers 

detection limits (Tang and Santschi 2000; Mylon and Benoit 2001).  Mylon claims a 

method detection limit of 0.3 nmolL-1.  An in situ methylene blue method has been 

developed which utilizes flow injection analysis (FIA) coupled to a submersible 

vehicle for sulfide concentrations around hydrothermal vents (Johnson et al. 1986; 

Sakamotoarnold et al. 1986).  This technique has a detection limit of 0.1 µmolL-1, but 

it is not very practical for most environmental sample analyses.  Gas chromatographic 

techniques for low levels of sulfide have also been developed (Cutter and Oatts 1987; 

Radfordknoery and Cutter 1993).  These methods consist of gas stripping of acidified 

sulfide species from water, pre-concentration via liquid nitrogen cold trapping, and 

analysis by flame photometric or photoionization detection.  Detection limits range 

between 0.13 nmolL-1 and 0.2 pmolL-1.  These methods are effectively utilized when 

large volumes of water are available.
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Electrochemical analysis of dissolved sulfide usually is performed by 

amperometry, potentiometry, or voltammetry (Kuhl and Steuckart 2000), with the

latter two techniques being the most commonly employed.  A typical potentiometric 

sulfide measurement is made using a silver and sulfide solid-state ion selective 

electrode (ISE) and a reference electrode (Berner 1963; Thermo-Electron 2003).  

Potentiometric measurements can be in situ or ex situ, but most are performed ex situ.  

The sulfide ISE measures only the sulfide ion (S2-) and has a detection limit of 0.1 

µmolL-1, but some metal ions present in environmental samples can significantly 

interfere with sulfide ISE measurements, especially metals which have solubility 

products lower than that of Ag2S (Kuhl and Steuckart 2000; Thermo-Electron 2003).

Sulfide antioxidant buffer (SAOB) is added to lessen the effects of metal 

interferences through the presence of ethylenediaminetetraacetic acid (EDTA).  

Sulfide antioxidant buffer also buffers the environmental sample at an elevated pH to 

prevent sulfide losses through volatilization.  Sulfide antioxidant buffer usage is now 

common practice in the ex situ measurement of environmental dissolved sulfide 

(Baumann 1974; Lawrence et al. 2000; Thermo-Electron 2003). Voltammetric 

methods have been used to measure dissolved sulfide species in surface and 

interstitial waters (Luther and Tsamakis 1989; Luther et al. 1999).  However under 

environmental conditions, the fouling of an electrode by colloidal, inorganic, and 

organic materials changes the surface of the electrode and results in altered oxidation 

and reduction potentials on the surface of the electrode (Kuhl and Steuckart 2000).  

Problematic electrode fouling and the ambiguity of sulfide peaks within scans can be 
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potential drawbacks for the in situ use of these types of probes (Ciglenecki and 

Cosovic 1996; AlFarawati and vandenBerg 1997).  

Recently the technique of diffusive gradients in thin films (DGT) has been 

developed to measure in situ concentrations of dissolved sulfide (Teasdale et al. 

1999). In general, in situ measurements are either produced by taking continuous 

electrochemical measurements or periodic electrochemical scans.  DGT differs from 

typical in situ electrode measurements by means of performing a continuous in situ 

fractionation of a chemical species, such as dissolved sulfide, over an extended time 

period, and the chemical analysis of the DGT probe is performed in the laboratory 

rather than the field. The result is a time integrated concentration of sulfide or other 

species of interest. DGT probes specific for sulfide have been analyzed by computer-

imaging densitometry (CID) and methylene blue methods (Teasdale et al. 1999; 

Devries and Wang 2003; Motelica-Heino et al. 2003). Densitometry is performed by 

image analysis software using a gray scale comparison of standards and samples.  

Using densitometry, a detection limit of 0.26 µmolL-1 was estimated for a 24 hour 

DGT deployment using a 0.08 cm diffusive thickness (Teasdale et al. 1999).  In 

theory, the detection limit of an in situ DGT probe can be lowered by using longer 

deployment times and thinner diffusive layers (Zhang and Davison 1995).  Methylene 

blue has also been coupled to a purge and trap technique, similar to that employed for 

AVS extractions, for analysis of sulfide in DGT probes (Teasdale et al. 1999).  

Basic DGT theory

The diffusive gradients in thin films (DGT) technique was developed in the 

mid 1990’s (Davison and Zhang 1994).  DGT probes are in situ analytical sensors for 
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use in speciation, multi-element, and pre-concentration studies of labile ions (Zhang 

and Davison 1995).  DGT probes have been successfully deployed in fresh and 

marine waters, sediments, and soils (Harper et al. 2000; Twiss and Moffett 2002; 

Degryse et al. 2003; Dunn et al. 2003; Gimpel et al. 2003).  The probes perform an in 

situ fractionation of chemical species by means of a semi-permeable membrane, and 

this separation of chemical species is a kinetically based process rather than an 

equilibrium process (Davison et al. 2000).  During their deployment in solutions or 

natural waters, DGT probes continually accumulate ions.  The mass of ions collected 

is proportional to the concentration of the ions in the bulk solution.  Analysis of the 

fractionated sample is completed in the laboratory by an appropriate analytical 

method.   

The DGT probe is a relatively simple and inexpensive device, consisting of 

three well-characterized layers (Figure 2).  The filter membrane, hydrated 

polyacrylamide diffusive gel, and the binding gel are sandwiched into a plastic holder 

that contains a sampling window with a known exposure area.  A thin diffusive 

boundary layer (DBL), of thickness δ, exists between the bulk solution and the filter 

membrane.  Solutes readily pass through the overlying DBL, filter membrane, and 

polyacrylamide diffusive layer by way of molecular diffusion (Zhang and Davison 

1995).  The filter membrane acts as only an extension to the diffusive layer and 

protects the gel (Davison and Zhang 1994; Davison et al. 1994; Davison et al. 2000).  

A fully hydrated polyacrylamide diffusive gel is composed of 95% water.  Diffusion 

coefficients of ionic species through a properly conditioned polyacrylamide gel are 
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therefore similar to those found in water (Davison et al. 1994; Zhang and Davison 

1999).  

0.45 µm
Filter membrane

(cellulose nitrate or 
polysulfone)

Hydrated polyacrylamide diffusive gel 
(0.4 – 0.8 mm thick)

Polyacrylamide binding 
gel

Figure 2.  Schematic of the three layered system within a typical DGT probe.

The polyacrylamide binding gel contains a resin or ligand on its surface that 

selectively immobilizes a target ionic species by means of a large formation constant.  

Within a few minutes of deployment, a near steady state linear concentration gradient 

is established between the solution of interest and the binding gel (Figure 3) (Davison 

et al. 2000).  In Figure 3, x represents the thickness of the diffusive layer, δ represents 

the DBL, C is the concentration of the species of interest within the bulk solution, and 

C’ is the concentration of the species of interest at the surface of the binding gel.  

The DGT probe’s establishment of this steady state condition allows for the 

measurement of an in situ concentration.  Ion fluxes through the diffusive layer, as 
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determined by Fickian diffusion in one dimension, can be calculated by eq 2 where D

is the diffusion coefficient (cm2s-1). It is important that diffusion coefficients be 

temperature corrected using the Stokes-Einstein equation (Li and Gregory 1974; 

Zhang and Davison 1995).  Because of the existence of a steady state condition, eq 2 

simplifies to eq 3.
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Figure 3.  Schematic of a concentration gradient through the diffusive layer of a DGT 
probe in a solution with an ion concentration of C.
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Equation 3 implies that the flux doesn’t change with time, and that there is no 

depletion of the ion of interest.  In other words, the flux into the diffusive gel is equal 

to the flux out of the diffusive gel.  The solution to eq 3 is simply the equation of a 

line.  This solution is depicted by the dashed line in figure 3, and its slope is the 

concentration gradient.  Using this concentration gradient, the flux (J) can be 

calculated from eq 4, where C is the concentration (molL-1) in the solution, C’ is the 

concentration (molL-1) at the interface of the binding and diffusive layers, x is the 

thickness of diffusive layer (cm), and δ (cm) is the DBL thickness.  Alternatively, 

flux can be written as eq 5, where M is defined as the mass of material (mol), A is the 

area of the diffusive gel (cm2), and t is the time (s).  By equating and rearranging eqs 

4 and 5, the concentration of the ion of interest within the bulk solution can be 

determined from eq 6 which includes two assumptions.  The first assumption is that 

because of the rapid equilibrium of the species of interest with the binding agent, and 

a large formation or equilibrium constant between the resin in the binding gel and 

species of interest, C’ is effectively zero.  Also the DBL thickness (δ) is usually much 

smaller than that of the diffusive gel (x) and thus is assumed to be negligible 

assuming well mixed solutions or waters (Zhang and Davison 1995).  The mass of 

material (M) is found using eq 7 where Canal is the analytical concentration (molL-1) 

as determined by appropriate means, V is the elution volume (L), and f is the elution 

efficiency.  The elution efficiency is a measure of how easily the ion of interest can 

be retrieved from the binding gel; therefore, it is a measure of recovery. The elution 

efficiency value may range between 70 and 100% and should be determined for each 

specific ion and elution method (Davison et al. 2000).
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Under field conditions where low solution flow may be an issue (i.e., δ is not 

negligible), the simultaneous deployment of two or more DGT probes with varying 

diffusive layer thickness allows for the calculation of C and δ regardless of mixing 

and flow.  The construction of a plot of 1/M versus x will result in a line with a slope 

of 1/DCtA and an intercept of δ/DCtA (Zhang and Davison 1995; Davison et al. 

2000), and then C and δ can be calculated from eq 8.  This approach can also be used 

to correct for biofouling.  Biofouling can be viewed as an extension to the DBL of the 

DGT probe.  If assumed that biofouling equally modifies the surface of two DGT 

probes with differing diffusive thickness, eq 9 can be used to calculate the solution 

concentration (Zhang et al. 1998).
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Merits of DGT

The use of DGT probes presents a number of advantages which are valuable 

to the capture and analysis of dissolved sulfide.  First of all, DGT devices are an in 

situ technique which captures time-integrated concentrations for chemical or 

biological processes that are occurring. This is an important consideration for the 

measurement of a constituent that is produced in situ and is relatively reactive, when 

regarding the activities of benthic fauna within the sediments or microbial activities 

around oxyclines.  Benthic infaunal activities and sample handling can contribute to 

variability when using traditional pore water sampling and analysis.  For example, 

many organisms create channels which allow nutrients and oxygen to penetrate 

potentially anoxic areas resulting in the creation of microenvironments, and improper 

sample handling (i.e., sulfidic sediments sampled under an oxic environment) can 

influence changes in chemical speciation.  This could result in the tested pore water 

differing greatly from it original characteristics (Chapman et al. 2002).

Another advantage of the usage of DGT probes is that speciation can be 

preserved through the design of the probe, using ligands (with large equilibrium 

constants) that bind very strongly to specific ions.  For example, in the case of sulfide 

as a target analyte, finely powdered high purity AgI is used as the binding agent.  

Equation 10 shows the reaction of the AgI(s) with migrating sulfide to form Ag2S(s)

(log Ksp = -49). This metal sulfide remains insoluble and unreactive towards any 

oxygen it may encounter upon probe retrieval.  Thus the speciation is preserved, and 

there is no worry of sample loss due to oxidation.

−+− ++→+ )()()(2)()( 22 aqaqsaqs IHSAgHSAgI (10)
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Perhaps the greatest advantage in using DGT is that it is a kinetically based 

process rather than an equilibrium process.  Other in situ methods (i.e., peepers and 

DET) rely on the reestablishment of equilibrium (Davison et al. 2000). Because the 

dissolved sulfide ligands are in rapid equilibrium with the binding gel and the rate of 

water exchange for Ag+ is rapid, the overall rate of Ag2S complexation is fast.  The 

exchange of water is usually the rate limiting step in complex formation.  The 

estimated rate constant of water exchange for Ag+ is between log k-w = 8 and 10 (s-1).

This value was estimated based on the assumption that the rate of water exchange is a 

function of the ratio of cation charge to ionic radius, and this value compares 

favorably to that of Cu2+ (log k-w = 9) which has a similar electron configuration

(Morel and Hering 1993).  Thus the target species is irreversibly removed from the 

solution resulting in a continual linear concentration gradient.    

The use of longer DGT probe deployment times and thinner diffusive layers 

also enables the user to a pre-concentrate the species of interest and to lower detection 

limits (DL).  In theory, a sample may be collected for weeks as long as the binding 

capacity of the resin does not become saturated with the ligand or cation of interest

(Davison et al. 2000).  DGT devices can be used in aqueous environments with a 

large range of pH values as long as the binding agent effectively performs within that 

pH range (Zhang and Davison 1995; Zhang and Davison 1999; Gimpel et al. 2001).  

As previously stated, the use of DGT probes enables correction for biofouling, which 

is a significant problem with the use of traditional in situ electrodes (Zhang et al. 

1998; Davison et al. 2000).  Table 1 summarizes several common methods used in 
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determining dissolved sulfide.  Overall, one should carefully choose a technique that 

is appropriate for their particular application.
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Table 1.  Observations on common analytical methods for sulfide analysis.

Analytical Method S(-II) Detection 
Limit (Reference)

Observations

Methylene blue-
spectrophotometric

0.3 – 1.0 µmolL-1 
(Kuhl and Steuckart 
2000)

ex situ method; reagent concentrations 
change over sulfide gradient; absorptive 
interferences from DOM; pre-
concentration capabilities 

Methylene blue-
HPLC

0.3 nmolL-1 (Mylon
and Benoit 2001)

ex situ method; reagent concentrations 
change over sulfide gradient; no 
interferences from DOM

Gas chromatography 
and cryogenic 
trapping 

<<0.13 nmolL-1 
(Cutter and Oatts 
1987; 
Radfordknoery and 
Cutter 1993)

ex situ method; pre-concentration 
capabilities; requires large sample sizes

SAOB/ISE 0.1 µmolL-1

(Thermo-Electron 
2003)

ex situ method; dynamic linear range; 
interferences from Hg2+ and CN-

Voltammetric 0.01 µmolL-1 (Kuhl 
and Steuckart 2000)

in situ or ex situ method; biofouling 
issues; unresolved sulfide peaks

DGT-CID 0.26 µmolL-1 

(Teasdale et al. 
1999)

in situ method; inexpensive; limited 
dynamic range; pre-concentration 
capabilities

DGT-methylene blue no data in situ method; reagent concentrations 
change over sulfide gradient; pre-
concentration capabilities

DGT-ISE 0.104 µmolL-1 (this 
study)

in situ method; dynamic linear range; 
pre-concentration capabilities
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Statement of research and primary hypothesis

Given the problems associated with other measurement techniques and with 

the current methods of quantifying sulfide by DGT, this study was undertaken to 

address the feasibility of using the DGT approach and an ISE to measure the sulfide 

captured by DGT devices.  In addition, the study was designed to investigate whether 

the DGT devices measured true dissolved sulfide levels or whether there were 

measurement artifacts associated with the technique.  Some of the current analytical 

techniques for sulfide produce concentrations that are understood to be closer to the 

total sulfide concentration.  The primary hypothesis of this research is that DGT 

probes provide a more accurate assessment of the concentration of dissolved 

uncomplexed sulfide than other methods currently in use.  The use of DGT dissolved 

sulfide data will therefore allow for more accurate predictions of metal speciation in 

chemical equilibrium calculations.

Thesis structure

This manuscript consists of four chapters and will discuss the development of 

an analytical technique and its use under field and laboratory conditions.  The 

appendix will contain field data that will not be discussed in this manuscript.  Finally, 

it is common in the literature for the notation of sulfide and its associated forms (i.e., 

H2S, HS-, S2-, [S(-II)]t, and S(-II)) to vary and perhaps be somewhat misleading.  In 

order to be consistent in this document, I will use S(-II)measured to represent the 

measured amount or concentration of sulfur with a valence of (-II) and [S(-II)]t to 

represent the total amount or concentration of sulfur with a valence of (-II).  It should 

be understood that S(-II)measured does not necessarily have to be equal to [S(-II)].
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Chapter 2: DGT methodology and validation:  Laboratory 
studies

Materials and procedures

Probe assembly

AgI binding and diffusive gels were prepared in accordance, but with minor 

changes to methods previously described (Zhang and Davison 1995; Teasdale et al. 

1999).  AgI binding gels were prepared from a stock solution of polyacrylamide 

which was composed of 15% by volume acrylamide (Roche Diagnostics) and 0.3% 

by volume agarose-based cross linker (APA) (DGT Research Ltd., UK).  The stock 

solution was then placed on ice.  AgI (Alfa Aesar) was ground by mortar and pestle, 

and 0.6 g of finely ground AgI was added to a 6 mL aliquot of the polyacrylamide 

stock solution in a clean 50 mL centrifuge tube.  AgI (Ksp= 8.51 x 10-17) is insoluble 

in the binding gel. This solution was vigorously mixed using a Mini Vortexer (VWR) 

until a dispersed suspension was achieved.  The 50 mL centrifuge tube was then 

placed on ice, and 42 µL of freshly prepared 10% by weight ammonium persulfate 

(Fisher) and 15 µL of 99% N,N,N’,N’,-tetramethylethylenediame (TEMED, Sigma) 

were added to the suspension of AgI and polyacrylamide stock.  Ammonium 

persulfate is the initiator of polymerization and TEMED acts as the catalyst for 

polymerization.  This mixture was inverted once and carefully pipetted into a mold.  

If the formation of air bubbles was noticed during transfer, the mold was carefully 

tilted to allow for their release.  Polymerization of the solution occurs in less than 2 

minutes.  Chilling the stock solution was found to slow the polymerization process 

and allow for complete filling of the mold.  The mold consisted of two offset sheets 
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of glass (15 cm x 7.5 cm) with a 0.37 mm thick plastic spacer inserted between them.  

The two glass sheets were typically offset by a few millimeters.  This mold assembly 

was held together using binder clips.  The mold was completely wrapped with 

aluminum foil in order to exclude light and was then placed underneath a heat lamp 

for 60 minutes.  The height of the lamp was adjusted in order to produce a 

temperature of 45 °C.    The AgI binding gel was carefully removed and placed into 

Milli-Q water (18MΩ, Millipore Corp.) for 24 hours in order to hydrate and rinse the 

gel.  The binding gels were then transferred to a freshly prepared 0.01 molL-1 NaNO3

(Fisher) solution for storage prior to probe assembly.  All hydrated binding gels were 

between 0.37 and 0.4 mm thick.  Binding gel thickness was measured under a 

microscope.

Diffusive gels of various thicknesses were produced using 10 mL of the stock 

solution, 70 µL of 10% by weight ammonium persulfate, and 25 µL of 99% TEMED.  

The gels were cast and allowed to set in the same manner as described above.  

Diffusive gels of 0.4 and 0.8 mm thickness were also commercially obtained (DGT 

Research Ltd., UK).  The diffusive gels were hydrated and rinsed with Milli-Q water.  

They were also stored in a 0.01 molL-1 NaNO3 solution prior to probe assembly.  

A piston design DGT sampling probe was used for all solution laboratory and 

field studies.  A piston assembly with a 2 cm diameter sample window and 

appropriate 2.5 cm diameter gel cutter were commercially obtained (DGT Research 

Ltd., UK).  Complete details and schematic of the piston are previously described 

(Zhang and Davison 1995).  Gels were handled and cut on a clean electrophoresis gel 

handling sheet (Diversified Biotech). DGT sampling probes were carefully assembled 
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to prevent air bubbles from becoming trapped between the layers of polyacrylamide 

gel.  It is important that the resin or ligand imbedded within the binding gel be facing 

upward.  Care was taken to ensure that the full depth of the piston assembly was filled 

by polyacrylamide gel.  If not, the solution of interest may leak around the diffusive 

layer and react with the binding gel.  The total depth of the piston assembly was 

approximately 1.34 mm.  If a 0.4 mm diffusive layer was used, a similar 

polyacrylamide gel spacer was placed underneath the binding gel to allow for a 

secure fit within the piston assembly.  No filter membranes were used in this 

laboratory study.  All fully assembled probes were stored in a 0.01 molL-1 

deoxygenated NaNO3 solution inside an anaerobic (nitrogen filled) vinyl chamber 

glove box (Coy Laboratory Products).  Probes remained within the glove box at least 

one week before use in laboratory or field studies because it was believed that the 

plastic pistons may slowly bleed oxygen.  Fresh, 0.01 molL-1 deoxygenated NaNO3

was added daily.

Elution of sulfide from binding gel

Liberation of the sulfide bound to the AgI binding gel was obtained by a 

modified version of the acid-volatile sulfide (AVS) purge and trap extraction method

(Cornwell and Morse 1987; Brouwer and Murphy 1995). The AgI sample gel was 

rinsed with Milli-Q water, patted dry with a clean tissue, and placed into a 100 mL 

three neck round bottom flask (Pyrex).  The two side necks were fitted with silicone 

stoppers (Cole-Parmer) that had Teflon ports through their centers.  One port 

delivered a continual flow (~100 mL/min) of high purity nitrogen gas to the round 

bottom flask. A disposable oxygen scrubber (Agilent) was placed in line to remove 
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any residual oxygen that could promote oxidation and therefore result in the loss of 

sulfide.  The other port was fitted with a female Luer lock to 2 way valve (Cole-

Parmer) through which 10 mL of 12 molL-1 deoxygenated HCl (J.T. Baker) was 

delivered by a plastic syringe (Henke-Sass, Wolf GMBH). Acid deoxygenation was 

performed by purging with high purity nitrogen gas for at least an hour. Prior to the 

addition of acid, nitrogen was allowed to flow over the gel sample for 5 minutes to 

ensure that oxygen had been purged from the reaction vessel.  The round bottom 

flasks were heated at 65 °C for two hours. The nitrogen and evolved hydrogen 

sulfide gas (H2S) departed the distillation apparatus through the top of the condenser 

by way of a Teflon line and was trapped in 25 mL SAOB (Brouwer and Murphy 

1995; Thermo-Electron 2003).  The condensers atop each round bottom flask 

prevented HCl vapor from entering into the traps.

Analysis of sulfide in traps following elution

Analyses of sulfide traps were performed using a solid state ion selective 

electrode (ISE) and a reference electrode (Thermo Electron Corporation).  A six point 

calibration curve was made daily from a stock solution.  The saturated sulfide stock 

solution was prepared by washing a crystal of Na2S·9H2O (Sigma) with deionized 

water, drying it with a tissue, and dissolving it in a few milliliters of deoxygenated, 

deionized water.  A new sulfide stock solution was produced every month.  This stock 

solution was stored under nitrogen in a glove box.  Production of secondary standards 

and the standardization of stock solution by means of lead (Pb) titration were 

performed daily.  A 0.1 molL-1 Pb(ClO4)2 standard was used as the titrant (Thermo 
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Electron Corporation).  The titration end point was the point of greatest slope on the 

titration curve.

Method assessment

Laboratory testing conditions

All testing of dissolved sulfide uptake onto the AgI DGT probes was 

performed under a nitrogen environment at 25 °C.  Once again, the use of the 

nitrogen glove box minimizes sulfide losses via oxidation.  Test solutions were placed 

into 500 mL amber volatile organic compound (VOC) sampling containers (VWR).  

The use of these containers helped to minimize the loss of sulfide through 

volatilization.  The pH was kept near 7.0 in order to mimic the pH of most natural 

waters.  An orbital shaker table (Cole-Parmer) set at 85 rpm was used to create proper 

mixing conditions.  At low flows, the formation of a diffusive boundary layer can 

affect the mass transport of the ion of interest (Gimpel et al. 2001).  All test solutions 

were prepared from aliquots of a standardized Na2S solution.  

Sulfide elution efficiency

Elution tests were performed to ensure that the quantitative recovery of sulfide 

from the binding gels was adequate.  Bare AgI binding gels, without a diffusive layer 

or piston assembly, were placed into VOC sampling containers with known quantities 

of dissolved sulfide for 12 hours.   The results can be seen in Figure 4.  The percent of 

dissolved sulfide recovered from the gels as detected by ISE compares favorably to 

data obtained by a similar purge and trap procedure which is followed by the classic 
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methylene blue method (see data in Figure 4).  Even at nanomole levels of dissolved 

sulfide, an 81 ± 12% recovery was still obtainable.
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Figure 4.  Elution efficiency of sulfide from AgI binding gel as determined by ISE.  
*Data are from Teasdale et al., 1999 as determined by methylene blue.

Validity of DGT equations

The validity of the standard equation (eq 6) for DGT probes can be tested by 

measuring the mass or amount of analyte collected over time and with respect to 

varying diffusive thicknesses (Zhang and Davison 1995).  These experiments were 

conducted using fully loaded DGT probes deployed in an 18 ± 1 µmolL-1 solution of 

dissolved sulfide under the previously mentioned laboratory conditions.  Over a 24 

hour time period, sulfide accumulation was linear with an R2 value of 0.95 (Figure 5).  
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Figure 5.  Measured sulfide accumulation on DGT probes over 24 hours as 
determined by DGT-ISE.

A second validity test was performed by varying the diffusive gel thickness.  

Duplicate DGT probes with 0.52, 0.67, and 0.83 mm thick diffusive layers were 

deployed in a 17 ± 1 µmolL-1 solution of dissolved sulfide for 6 hours.  The actual 

mass accumulated is in good agreement with the theoretical mass.  The mass as a 

function of the reciprocal of diffusive thickness has an R2 value of 0.88 (Figure 6).  

The dashed line represents the theoretical amount of sulfide which should be detected 

from the 17 ± 1 µmolL-1 solution of dissolved sulfide over the same deployment time.  

These results also agree with those of a previous study which utilized the 

densitometric analysis of dissolved sulfide over varying diffusive gel thickness

(Teasdale et al. 1999).
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Figure 6.  Total sulfide accumulation over varying diffusive gel thickness as 
determined by DGT-ISE.

Testing over pH gradient

A test of the accumulation of dissolved sulfide by DGT probes over a pH 

gradient was conducted by adjusting the pH of three solutions containing 25 ± 1 

µmolL-1 dissolved sulfide.  These solutions were prepared in VOC containers under a 

nitrogen environment to minimize volatilization and oxidative loses.  The pH = 4 and 

pH = 12 solutions were adjusted by the drop wise addition of concentrated HCl and 

NaOH solutions respectively.  The pH = 7.4 solution was made with a phosphate 

buffer (Sigma).  Complexation of dissolved sulfide to any anion within this buffer 

solution should not appreciably occur.  Duplicate DGT probes with diffusive 

thickness of 0.83 mm were deployed in the three solutions for 5 hours.  The results 
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can be seen in Figure 7.  The pH =4 solution results in the lowest percent of total 

sulfide detected by a DGT device at 76 ± 8%.  At this pH the loss is mostly likely due 

to the volatilization of dissolved hydrogen sulfide (H2S) from solution into the 

container headspace.  A calculation of the H2S concentration in the headspace of the 

container reveals that approximately 39% of the bulk solution could be lost to 

volatilization.  Regardless of the losses due to volatilization, these results still 

demonstrate that H2S easily diffuses into the DGT probe and reacts with the binding 

agent.
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Figure 7.  Percent of total sulfide measured by DGT-ISE at various pH values.
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Comments and recommendations

The present study demonstrates that sulfide can be quantitatively measured by 

coupling DGT probes with an ISE.  Furthermore, all performance tests compare 

favorably with previous results which were generated by DGT probes coupled to 

methylene blue and densitometric measurements.  The dynamic linear range of the 

ISE (< 106 µmolL-1) enables sample analysis over extreme concentration ranges

(Thermo-Electron 2003).  This is a substantially larger range than other quantification 

processes.  Image intensity for field samples can exceed the upper limits of the 

calibration curve for those DGT measurements made by densitometry (Teasdale et al. 

1999; Devries and Wang 2003).  This is due to black saturation of the gray scale.  The 

relative simplicity of the ISE measurement also has an advantage over the traditional 

and potentially time consuming methylene blue technique.  The classic methylene 

blue analysis calls for specific reagent concentrations over different dissolved sulfide 

concentration ranges (Cline 1969).  Also methylene blue doesn’t offer the dynamic 

range of an ISE measurement because methylene blue solutions will depart from 

Beer’s Law at higher sulfide concentrations.
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Chapter 3: Field measurements of dissolved sulfide and 
laboratory investigations of potential measurement artifacts

Introduction

The method development data from Chapter 2 suggested that DGT coupled to 

a silver and sulfide solid-state ISE (DGT-ISE) accurately assess the dissolved sulfide 

(H2S, HS-, and S2-) concentration of simple, well mixed solutions manufactured 

exclusively from Na2S·9H2O.  Yet the reality in many natural environments is that 

sulfide exists not exclusively as the diprotic acid but as many different species due to 

its affinity for metals and organic material (Ciglenecki and Cosovic 1996; Stumm and 

Morgan 1996).  Because sulfide speciation can influence the bioavailability of trace 

metals to organisms, there has been a desire to develop methods that allow for the 

recognition of truly dissolved sulfide and dissolved complexes of sulfide.  

A logical step in examining chemical speciation methods is to make

comparative measurements between available techniques.  If a systematic bias in the 

concentration appears between two different techniques, then it is likely that the 

techniques are detecting different pools or species.  It is not likely that one speciation 

method can detect all individual species.  In fact, it has been demonstrated in the 

literature that not all sulfide techniques provide the same quantitative answer.  For 

example, methylene blue detects some labile or reactive metal sulfide complexes but 

not thiols (Adams and Kramer 1999; Tang and Santschi 2000; Mylon and Benoit 

2001; Bowles et al. 2002). The intention of the following comparison of methods 

(i.e., DGT-ISE versus SAOB/ISE and/or methylene blue) was to determine if 

differences in measured sulfide concentrations in natural waters exist between 
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techniques.  As differences between the methods were detected, laboratory studies 

were designed to identify the pools associated by each method and the associated 

mechanisms.

Recent literature regarding sulfide analysis by DGT suggests that this method 

may detect a different fraction of dissolved sulfide than what is found with a peeper 

utilizing a 0.2 µm membrane (Devries and Wang 2003).  They used CID to analyze 

their field samples, and the exact magnitude of the differences between their methods 

cannot be accurately determined because the sulfide concentration as estimated by 

DGT-CID had exceeded the upper limit of their gray scale calibration standards

(Devries and Wang 2003).  However, they concluded that their estimated sulfide 

concentrations most likely differed due to a localized depletion of sulfide in the 

sediment pore waters surrounding the DGT probe.  Another study, not utilizing

simultaneous parallel methods to determine sulfide concentrations, offered similar 

explanations for differences between DGT estimated sulfide concentrations and 

colorimetric determined sulfide concentrations estimated from previous years 

(Teasdale et al. 1999), and the temporal difference makes a direct comparison more 

difficult.  The analyte depletion explanation has been suggested and discussed in 

detail by other studies which have examined non-steady state DGT measurements in 

pore waters (Harper et al. 1998; Davison et al. 2000; Harper et al. 2000; Ernstberger 

et al. 2002; Degryse et al. 2003). Analyte depletion in the area immediately 

surrounding a DGT sediment probe and the resulting flux changes are real 

phenomena and make elucidation of any concentration differences between parallel 

methods much more complicated.  Because DGT measurements in sediments are 
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potentially influenced by localized depletion events and sediment heterogeneity, all 

sulfide comparisons in this study were performed within the open waters of lakes or 

in well mixed solutions in an effort to eliminate this effect.  

The nature of the entities in the “dissolved fractions” of sulfide is one aspect 

of current techniques that needs to be addressed.  The standard operational cutoff for 

dissolved substances is conventionally 0.45 µm whereas the pore size for typical 

polyacrylamide diffusive layers, manufactured with an agarose-based cross linker 

(APA), within DGT probes are on the order of 2-5 nm (Zhang and Davison 1995).

Theoretical calculations of the size of metal sulfide complexes, such as (ZnS)x

clusters, suggest they should readily pass through a 0.45 µm filter (Luther et al. 

1999).  It has be suggested, however, that the diffusion of these metal sulfide 

complexes through a DGT probe diffusive layer would be strongly hindered due to 

the smaller pore sizes of the gels (Zhang and Davison 1995; Teasdale et al. 1999; 

Devries and Wang 2003).  Thus, techniques that measure reactive sulfides and 

dissolved sulfide following conventional filtration, such as methylene blue, would 

result in higher concentrations being measured.  In another study, different size 

fractions of dissolved sulfide have been documented using 10 kDa centrifugal filters 

and standard 0.45 µm polyethersulfone filters (Adams and Kramer 1999).  Using 

methylene blue, Adams and Kramer found nmolL-1 concentrations of sulfide in the 

≤10 kDa fraction of the wastewater effluent from a water treatment plant and further 

down stream of the treatment plant suggesting that this technique quantified relatively 

stable reactive sulfide species (i.e., MBRS).  
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During this research, size exclusion was used as the method for species 

separation, and concentrations of sulfide in lake and extracted pore water were

determined by filtration through a 0.45 µm filter followed by analysis by SAOB/ISE 

and/or methylene blue.  These methods were compared to estimated dissolved sulfide 

concentrations by DGT-ISE.  The results of the field comparisons show significant 

differences among the various techniques. In addition to artifacts produced by 

filtration relative to truly “dissolved fractions”, chemical reagents (i.e., SAOB) used 

in specific techniques may react differently with various forms of sulfide.  Therefore, 

a series of controlled laboratory experiments were performed in order to distinguish 

potential causes for the systematic differences between DGT-ISE and discrete 

sampling measurements for dissolved sulfide.

In order to discern some of the field study differences, laboratory experiments 

focused on the effects of the buffering reagent SAOB on dissolved material 

containing forms of reduced sulfur as well as on the size fractions of dissolved sulfide 

complexes and the potential for release of dissolved sulfide from these compounds. It 

is estimated that sulfur in natural organic matter (NOM) can occur at levels as low as 

0.1% to a few percent (Smith et al. 2002).  It has been estimated that nearly 50% of 

the sulfur associated with some aquatic NOM is in a reduced oxidative state, such as 

sulfhydryl or disulfide groups (Xia et al. 1999).  Sulfide antioxidant buffer (SAOB) 

contains sodium hydroxide (NaOH), ethylenediaminetetraacetic acid (EDTA), and 

ascorbic acid (Thermo-Electron 2003).  The individual reagents that constitute the 

SAOB reagent have chemical properties which may potentially alter dissolved species 

within a conventionally filtered sample of natural water over time.  For example,
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SAOB buffering solutions have high pH’s (≥ 12), and dissolved organic molecules 

that contain reduced sulfur, in the forms of sulfhydryl groups and disulfides, may 

easily hydrolyze therefore resulting in the release of free sulfide ions.  It is known that 

treating organic molecules with a strong base is a common way to selectively cleave 

molecules (i.e., hydrolysis of glycerides) (Morrison and Boyd 1987).  Equation 11

represents such a proposed alkaline hydrolysis reaction.  The leaving group (i.e., 

sulfhydryl) in the equation is represented by SH-, and NaOH represents the source for

a strong nucleophilic reagent. 

−+→+ SHRCOOHNaOHRCOSH (11)

Finally, the presence of excessive EDTA may also facilitate the release sulfide, which 

can be associated with metal sulfide complexes, through competitive binding with 

metal cations and thereby allowing the liberated dissolved sulfide to be detected by 

the ISE.  Equation 12 is a proposed mechanism in which sulfide is liberated.  A 

derived stability constant for the proposed reaction is log K = 7.4.  

−−−+ +→++ HSZnEDTAEDTAHZnS 24 (12)

It is therefore hypothesized that the release of sulfide generated by SAOB reactions, 

as represented in eqs 11 and 12, would be detected by the ISE.

Given this discussion, it was hypothesized that DGT-ISE measures only truly 

dissolved sulfide complexes and that the SAOB/ISE technique measures dissolved 

sulfide plus some fraction of the sulfide in metal sulfide complexes and thiol 

containing substances.  Finally, the premise put forward concerning the methylene 

blue method, that it detects H2S(aq), dissociated H2S(aq) species, and reactive metal 

sulfides but not thiols, is hypothesized to be correct.  The following sections of this 
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chapter will give an overview of the field sampling sites and laboratory experiments, 

discuss the methods for sulfide analysis used at each field location and in each 

laboratory experiment, and report and discuss the results from each location and the

laboratory experiments.  

Field study sites

Sulfide data obtained by DGT was compared to data taken by more traditional 

ex situ techniques, such as methylene blue or ISE, at sites within three lakes (Lariat, 

Pavin, and 658) and also interstitial water from the Patuxent River estuary.  Lake 

Lariat (38°36’N, 76°44’W) is a man-made recreational reservoir (1.88 x 106 m3) 

located in eastern Maryland (Sveinsdottir 2002).  It reaches an approximate maximum 

depth of 7 m.  Pavin Lake (45°55’N, 2°54’E), a meromictic crater lake, is located in 

the Mont-Dore range of central France.  It reaches a maximum depth of 92 m and 

exhibits a permanent chemocline at 60 m. The bottom waters are permanently anoxic.  

Because of its unique hydrologic and geochemical features, abundant literature exists 

discussing its water chemistry (Cossa and Mason 1994; Michard et al. 1994; Viollier 

et al. 1995).  Lake 658 is located on the Canadian Shield at the Experiment Lakes 

Area (ELA) in northwestern Ontario (49°40’N, 93°44’W).  It is a dimictic lake with a 

maximum depth of 14 m, and its anoxic hypolimnion is usually established by late 

summer (Ogrinc et al. 2003).  This lake and its watershed are currently being studied 

in a whole ecosystem mercury (Hg) loading experiment (METAALICUS Project).  

Lastly, pore water was collected from Mackall Cove, which is located in St. Leonards 

Creek on the Patuxent River estuary.
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Laboratory studies

For this set of experiments, ZnS clusters and sodium thioglycolate were 

chosen as representative compounds for a dissolved metal sulfide complex and an 

organic reduced sulfur compound.  Zinc sulfide was chosen because a simple method 

for its synthesis exists (Bowles et al. 2002) and strong evidence of its existence in a 

cluster form exists (Luther et al. 1999).  Also zinc exists in one relatively stable 

oxidation state (+2) in the environment thus making it easier to handle. Iron sulfide 

complexes naturally dominate over zinc or other metal sulfide complexes in the 

environment because iron typically exists in higher concentrations.  Numerous phases 

of iron sulfide with varying degrees of stoichiometry have made this large pool of 

reduced iron sulfur complexes difficult to characterize (Morse et al. 1987; Davison et 

al. 1999).  However, while the experiments performed here used ZnS clusters, it is 

probable that the results are applicable to FexSy solid phases and other metal sulfides.  

Thioglycolate, which is easily dissolved and readily available as >95% purity, was 

chosen to represent a small molecular weight organic compound. Thioglycolate is 

known to oxidize over time to dithiodiglycolate (Cook and Steel 1959). However, the 

oxidation to dithiodiglycolate is simply the result of two sulfhydryl groups forming a 

disulfide bond, and compounds with disulfide linkages also represent a portion of the 

total reduced sulfur content in organics. Therefore thioglycolate oxidation should not 

pose a significant problem in the experiments with SAOB. However, as a precaution, 

the prepared thioglycolate stock solutions were monitored by a back titration with a 

potassium iodate solution to assess whether appreciable amounts of degradation 

occurred upon aging in oxygenated environments (Steel 1958).  These laboratory
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experiments were setup to evaluate whether SAOB has the capability to hydrolyze the 

carbon to sulfur bond in a thiol like compound and as a result, facilitate the release of 

sulfide from metal sulfide complexes.

Methods

Pavin Lake, France

Sampling in Pavin Lake occurred in November of 2002.  The production of 

polyacrylamide diffusive and AgI binding gels and their assembly into DGT piston 

probes are described in detail in Chapter 2.  Thirteen DGT piston probes with 

diffusive layers of 0.56 mm were assembled for deployment in the lake.  The probes 

were conditioned in an anaerobic glove box for 5 days using deoxygenated 0.01 

molL-1 NaNO3.  Probes were transferred to the field station in a vacuum sample saver 

(VWR).  Individual probes were placed inside of clean plastic bags filled with  0.01 

molL-1 deoxygenated NaNO3.  These bags were then packed into the vacuum 

container, and the headspace of the vacuum container was filled with additional 

deoxygenated NaNO3.  Filling the headspace of these containers with degassed 

solution allows them to remain oxygen free for several hours.  All probe packaging 

was carried out inside the anaerobic glove box to ensure minimal contact with 

oxygen.  Upon arrival to the field station, fresh deoxygenated degassed NaNO3 was 

again added.  Because in situ sulfide concentrations are being measured, it is essential 

that the probes remain deoxygenated before deployment.  

Twelve DGT probes were deployed in the water column, in close proximity to 

the chemocline, at nine depths by attaching the probe to a weighted line using 

monofilament fishing line. Duplicate probes were deployed at three of the nine 
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depths.  One probe was held in the 0.01 molL-1 NaNO3 storage solution for a blank 

measurement.  Sample probes were deployed in the water column for 46.5 hours at a 

temperature of 6°C.  Upon retrieval to the lake surface, the probes were removed 

from the line and were immediately rinsed with deionized water and placed into clean 

plastic bags.  Once back in the laboratory, the probes were disassembled and the 

binding gels, including the blank binding gel, were placed into clean plastic bags for 

storage until sulfide elution and analysis.  The elution and analysis procedure of 

sulfide from the binding gels was performed according to the procedures discussed 

for DGT-ISE in Chapter 2.  The calibration curve for sulfide standards was linear (R2

= 0.99).  The blank gel mass was 2.7 nmol [(S-II)]measured and this was subtracted from 

the analytical samples eluted from the binding gels.  Distillation recoveries, as 

determined by a known sulfide spike, were 85%.  

Lake Lariat, Calvert County, Maryland

Sampling in Lake Lariat occurred in September of 2003.  The production of 

polyacrylamide diffusive and AgI binding gels and their assembly into DGT piston 

probes is described in detail in Chapter 2.  Twelve DGT piston probes were 

assembled for deployment in the water column of the lake.  Four probes were fitted 

with diffusive layers of 0.8 mm thickness and the remaining eight probes were fitted 

with 0.4 mm diffusive layers.  In addition, four of the twelve probes were covered 

with cellulose nitrate filter membranes (i.e., two probes outfitted with 0.4 mm and 

two probes outfitted with 0.8 mm diffusive layers).  This was done to evaluate 

whether the filter membrane truly behaved as an extension to the diffusive layer

(Davison and Zhang 1994; Davison et al. 2000).  All probes were conditioned inside 
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an anaerobic glove box for 10 days prior to deployment with a 0.01 molL-1 solution of 

deoxygenated NaNO3.  Probes were transferred to the field site in a vacuum sample 

saver.  Individual probes were placed inside of clean plastic bags filled with a 0.01 

molL-1 deoxygenated NaNO3 solution.  These bags were then packed into the vacuum 

sample saver, and the headspace of the sample saver was filled with additional 

deoxygenated NaNO3.  Filling the headspace of these containers with degassed 

solution allows them to remain oxygen free for several hours.  All probe packaging 

was carried out inside the anaerobic glove box to ensure minimal contact with 

oxygen.

The DGT probes were secured within two identically designed frames for 

deployment in the bottom water.  This was done in order to maintain similar sampling 

orientations within the water column over the length of the deployment, and this 

framework ensured that all the DGT probes were secured at equal distances from the 

lake bottom.  Each frame was constructed from two (12 cm x 30 x cm x 0.2 cm) 

sheets of acrylic and could hold six probes.  The DGT probes were placed face first 

into the frame.  Holes (3.2 cm diameter) in each frame were cut using a hole saw.  

The back sheet was placed against the undersides of the probes and secured to the 

front sheet by nylon screws.  Each frame was secured vertically to a platform which 

was lowered to the lake bottom at an approximate depth of 9 m.  On the bottom, the 

DGT probes rested 20 cm above the sediment and water interface.  An appropriate 

length of 3/8” OD polypropylene tubing was attached to the platform at equal depth 

to the DGT probes in order for bottom water to be pumped to the surface for total 

dissolved sulfide analysis by ISE.   A 90° elbow was fastened to the end of the tubing 
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to allow for bottom water in the same plane as the DGT probes to be sampled.  A 

subsurface buoy was used to keep the line and tubing taut, and a small surface marker 

was attached to mark the location of the platform.  The platform was deployed for 48 

hours.

On the day of DGT probe retrieval, bottom water samples were pumped to the 

surface using a battery powered peristaltic pump.  Pumped bottom water was 

discarded for 5 minutes prior to actual sample collection.  Samples were filtered 

through a 0.05 µm Fiberflo cartridge (Minntech Corp.), 0.2 µm polysulfone Acrodisc 

(Pall Gelman), or a 0.45 µm polysulfone Acrodisc (Pall Gelman) filter membrane.  

For 0.2 µm and 0.45 µm filtered samples, water was collected in clean, disposable 10 

mL syringes (Henke-Sass, Wolf GMBH) and a 5 mL sample aliquot was filtered and 

placed into 5 mL of freshly prepared SAOB.  A new syringe and filter were utilized 

for each sample.  The 0.05 µm filter cartridge was rinsed with bottom water for 5 

minutes prior to the collection of bottom water into a new 10 mL syringe.  The 

cartridge was flushed to ensure that any residual oxygen present would be flushed 

out.  A 5 mL aliquot from the syringe was also placed into 5 mL of SAOB.  After the 

discrete bottom water samples were collected, the platform was pulled to the lake 

surface and the probes were removed and immediately rinsed with deionized water 

and placed into clean plastic bags.  It was noted that the bottom water temperature 

was 11 °C.  Upon return to the laboratory, all DGT probes were disassembled, and 

the binding layers were placed in clean plastic bags.  One DGT probe was damaged 

during deployment or retrieval process and was disregarded.  All 0.45, 0.2, and 0.05 

µm filtered water samples were analyzed by SAOB/ISE upon return to CBL.  This 
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was approximately four hours after sampling.  Elution and analysis of sulfide from 

the binding gels were performed according to the DGT-ISE procedures discussed in 

Chapter 2.  The calibration curve constructed from freshly prepared sulfide standards 

was linear (R2 = 0.99).  The blank gel was found to be below detection limit of the 

ISE.  Distillation recoveries as determined by a spike were 110%.  The calibration 

curves for the quantification of the filtered bottom water samples were also linear (R2

= 0.99).

Lake 658, ELA  

In situ sampling for sulfide in Lake 658 occurred in September of 2003.  

Twelve DGT piston probes were assembled for deployment in the hypolimnion of the 

lake.  The production of polyacrylamide diffusive and AgI binding gels and their 

assembly into DGT piston probes was described in detail in Chapter 2.  Six of the 

assembled probes had diffusive layers of 0.4 mm and the remaining six had 0.8 mm 

diffusive layers.  Probes were transferred from the Chesapeake Biological Lab (CBL) 

to the ELA field station in a vacuum sample saver.  Immediately upon arrival, the 

probes were placed inside an anaerobic glove bag into a bath of freshly deoxygenated 

NaNO3.  This bath was gently stirred with a Teflon stir bar for 5 days prior to field 

deployment.  The 0.01 molL-1 NaNO3 conditioning solution was exchanged with a 

freshly deoxygenated NaNO3 solution two days prior to deployment.  On the day of 

deployment, probes were once again transferred to the field site by a vacuum sample 

saver.

One DGT probe of each thickness was deployed at one of five heights above 

the sediment water interface.  The extra probes remained in the NaNO3 conditioning 
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solution and were used as blanks.  The use of two diffusive layers permits the 

calculation of sulfide concentrations and DBL thickness irrespective of flow.  The 

probes were attached to an acrylic panel at 5, 10, 20, 40 and 80 cm intervals above the 

sediment surface.  This panel was attached by diver to the frame of an existing 

platform on the lake bottom which housed the Close Interval Sampling (CIS) system.  

This panel was also designed to be retrieved by a surface line at the end of the 

deployment period. The CIS was developed by Dr. Chris Babiarz of the University of 

Wisconsin and will be described in greater detail in a future publication (Babiarez 

2004).  In brief, the CIS system consists of a network of sampling tubes and pumps 

used to sample the water column over small distances.  It is a useful tool for 

examining redox chemistry over chemoclines.  The acrylic panel housing the DGT 

probes was designed in order for the DGT probe deployment heights to match the 

existing heights of the CIS sampling ports.  Total DGT probe deployment time was 

75 hours.  Discrete sulfide samples were taken just prior to DGT probe deployment 

and retrieval.  The discrete sampling was performed using CIS, and 5 mL aliquots 

were placed into SAOB for analysis by ISE.  Analysis by SAOB/ISE was performed 

approximately five hours after sampling.  The bottom water temperature was 4°C.  

The elution and DGT-ISE analysis procedure of sulfide from the binding gels was 

performed according to the procedures discussed in Chapter 2.  A linear (R2 = 0.99) 

calibration curve was constructed from sulfide standards.  Blank gels were found to 

be below the detection limit of the ISE.  Distillation recoveries, as determined by a 

sulfide spike, were between 85 and 105%.  The calibration curves for discrete 

sampling of profundal water were linear (R2 = 0.99).
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Laboratory study pore water from Mackall Cove, Maryland

Bulk sediments from Mackall Cove, located within the Patuxent River estuary 

in Maryland, were collected in August of 2003 and brought back to CBL.  Fresh 10 

µm filtered bay water was added to the existing overlying water, and the sediment 

was allowed to sit for four weeks.  The overlying water was siphoned off and the bulk 

sediment was placed in an anaerobic glove box where it was homogenized by mixing 

with a clean plastic spatula.  During this study we were not concerned with the actual 

vertical profiles of dissolved sulfide.  Our primary interest was obtaining a 

homogeneous pore water sample that could be sampled by various techniques.  

Approximately 350 g of homogenized sediment was weighed into 250 mL Teflon 

centrifuge bottles.  The pore water was extracted by centrifugation at 3000 rpm for 30 

minutes.  The centrifuge bottles were then returned to the glove bag where the pore 

water was collected and filtered through 0.45 µm cellulose nitrate Nalgene disposable 

filter units (Nalge Nunc International).  All filtered pore water was collected in a 1 L 

acid cleaned borosilicate glass container and mixed by shaking for five minutes.  At 

this point, it was assumed that the filtered pore water was homogenous in nature.  A 

volume of 300 mL of pore water was then placed into two 500 mL VOC containers.  

After allowing the pore water to equilibrate in the VOC containers for 30 

minutes, 5 mL grab samples for sulfide by methylene blue and SAOB/ISE analysis 

were collected from each container prior to DGT probe deployment.  Analysis by 

SAOB/ISE was performed one hour later.  It was assumed that most of the adsorptive 

losses of sulfide to the container walls would occur during the 30 minutes prior to 

DGT deployment.  The methylene blue samples were fixed by the addition of the 



43

sample aliquot to the mixed diamine reagents (MDR).  Stock solutions for the MDR 

were prepared according to the Cline method for reactive sulfides in the 3-40 µmolL-1 

range (Cline 1969).  In brief, 0.5 g of N,N-dimethyl-p-phenylene-diamine (Sigma) 

and 0.75 g of FeCl3·H2O (J.T. Baker) were dissolved in 125 mL of 50% by volume 

HCl (J.T. Baker).  Methylene blue stock solutions were stored under darkness in a 

refrigerator for up to a month.  In addition, several 5 mL samples were collected and 

added to 5 mL of a 5% by weight zinc acetate.  These samples were centrifuged for 

15 minutes at 1000 rpm.  The supernatant was decanted off, and 5 mL of deionized 

water and the MDR were added to the remaining precipitate.  Standards for 

methylene blue analysis were prepared from aliquots of the primary solution and were 

diluted to 60 mL with deoxygenated, deionized water.  Standards and samples were 

allowed to set for 30 minutes to allow for proper color development.  The absorbance 

of the methylene blue samples and standards was measured at 670 nm using a 96 well 

plate cuvette with a 1 cm path length on a SPECTRAmax PLUS384 microplate 

spectrophotometer (Molecular Devices).    

Two DGT probes utilizing 0.4 mm and 0.8 mm diffusive layers were added to 

each VOC container.  No filter membranes were used with these probes.  The 

solutions were mixed inside the glove box on an orbital shaker table at 85 rpm.  The

temperature inside the glove box was 25 °C.  After 4 hours the DGT probes were 

removed from the pore water solution, rinsed with deionized water, and disassembled.  

Binding layers were placed in clean plastic bags until elution and analysis.  Elution 

and analysis of sulfide were performed according to the DGT-ISE procedures 

discussed in Chapter 2.  The calibration curve for sulfide standards was linear (R2 = 
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0.99).  The blank gel mass was 0.2 nmol [(S-II)]measured and this was subtracted from 

the sample gels.  Distillation recoveries as determined by a spike were 83%.  The 

calibration curves for discrete sampling of pore water were linear (R2 = 0.99).  The 

calibration curve for sulfide standards using methylene blue was linear (R2 = 0.97).  

All methylene blue sulfide samples were blank corrected.

Zinc sulfide clusters laboratory experiment

Evidence for the existence of soluble ZnS clusters as intermediates during 

zinc sulfide mineral formation has been recently demonstrated (Luther et al. 1999).  

In this study, using zinc and sulfide reactants not exceeding 15 µmolL-1, the authors

proposed ZnS, Zn3S3, and Zn4S6
4- as potential soluble intermediate species and 

provided electrochemical and UV-VIS spectroscopic data for their existence.  The 

synthesis of zinc sulfide clusters for use in laboratory toxicological studies has also 

been described (Bowles et al. 2002).  Briefly, on two separate occasions, 

approximately 2.7 µmol of zinc nitrate (Zn(NO3)2·6H2O) and 2.5 µmol Na2S·9H2O 

were added to deionized, deoxygenated water under a nitrogen environment to give a 

final ZnS cluster concentration of approximately 10 µmolL-1.  Acid cleaned 

borosilicate glassware was used in all ZnS cluster preparations.  The prepared 

solutions of ZnS clusters were allowed to age in the presence of air for 2 days.  For 

clarification, the individual experiments will be referred to as ZnS I and ZnS II.  In 

their study, Bowles et al. (2002) allowed their ZnS clusters to age for a minimum of 3 

days because their toxicological studies mandated that no unreacted sulfide ligands 

remained in solution.  Free bisulfide and sulfide may serve as potential ligands for 

free metal ions and lead to incorrect conclusions for their toxicological studies.  Final 
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synthesized ZnS cluster concentrations for ZnS I and ZnS II were approximately 10

and 11 µmolL-1ZnS.   During ZnS I, 300 mL of the aged ZnS solution was placed into 

a VOC container inside the nitrogen filled glove box for the duration of each 

experiment.  During ZnS II, 300 mL aliquots of the aged ZnS cluster solution were 

dispensed into three VOC containers.  In each experiment, the containers and 

solutions were allowed to equilibrate for 15 minutes.  It was assumed that 

equilibration between the ZnS solution and container occurred within this time span.  

Sample aliquots (5mL) from the 10 and 11 µmolL-1 solutions were removed 

for analysis by conventional methylene blue (Cline 1969) and SAOB/ISE prior to the 

addition of DGT probes.  Samples were fixed for sulfide analysis by the addition of 

the mixed diamine reagent (MDR) or SAOB respectively.  Sample analysis by 

SAOB/ISE was performed two hours later.  Samples for analysis by 

spectrophotometry sat for approximately 30 minutes to allow for proper color 

development, and the methylene blue measurements were once again taken at 670 nm 

using a 96 well plate cuvette with a 1 cm path length on a SPECTRAmax PLUS384

microplate spectrophotometer.  DGT probes were deployed in duplicate with each 

probe having a different thickness of diffusive layer.  A total of eight DGT probes 

were deployed into the ZnS cluster solutions, two DGT probes into the 10 µmolL-1 

solution for ZnS I and six DGT probes (two per VOC container) into the 11 µmolL-1 

solution for ZnS II.  The probes were deployed for 4 hours at 85 rpm on an orbital 

shaker table.  Probes were then removed, rinsed with deionized water, and 

disassembled.  Binding gels were stored in clean plastics bags until elution by purge 

and trap.  Sulfide elution and subsequent DGT-ISE analysis are described in detail in 
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Chapter 2.  The temperature within the glove box was 25°C.  The ISE calibration 

curves generated for ZnS I and ZnS II were linear (R2 = 0.99).  The methylene blue 

calibration curves for ZnS I and ZnS II were also linear (R2 = 0.99).  All methylene 

blue samples absorbance values were blank corrected.

Thioglycolate laboratory experiment

As previously stated, the primary reasoning behind this experiment was to 

determine the effects that a highly alkaline solution, such as SAOB, has on an organic 

compound containing a thiol group, and whether free sulfide was released as a result.  

A secondary objective was to monitor the effects of the MDR on thioglycolate.  The 

literature states that thiols should not react with the MDR (Adams and Kramer 1999; 

Tang and Santschi 2000; Mylon and Benoit 2001).  On two separate occasions an 

experiment testing the effects of SAOB on thioglycolate was performed using several 

thioglycolate solution concentrations.  For clarification, the individual experiments 

will be referred to as Thiol I and Thiol II.  Thioglycolate stock solutions were made 

from 99% sodium thioglycolate salt (Sigma), and stock solutions of 13 (Thiol I) and 

19 (Thiol II) mmolL-1 were prepared.  Working solutions were made from each stock 

as needed.  Thiol I experiment consisted of the addition of numerous 5 mL aliquots of 

a 382 µmolL-1 thioglycolate working solution to 5 mL of SAOB.  These solutions 

were monitored at 0, 3, and 24 hour time points.  Thiol II experiment was similar 

except a 1000 µmolL-1 thioglycolate working solution was prepared and the sample 

aliquots were monitored at 0, 3, 18, and 24 hour time points.  Dissolved sulfide at 

each time point was measured by SAOB/ISE.  Because of the potential for 

thioglycolate degradation by reactions other than those catalyzed by added chemical 
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agents (i.e., oxidation by O2), a diluted sample made from the 13 mmolL-1 stock 

solution was monitored by iodimetry at the completion of the 24 hour experiment.  

The recovery was determined to be 99%.  Furthermore, all thioglycolate stock 

solutions and analytical solutions were stored inside a nitrogen filled glove box as 

precautionary measures to reduce losses due to oxidation.  

An additional experiment involving individual solutions of thioglycolate and 

Na2S and their subsequent mixture was also performed.  For clarification, this 

experiment will be referred to as Thiol III.  In Thiol III, three working solutions were 

prepared from concentrated stock solutions, 84 µmolL-1 thioglycolate, 176 µmolL-1 

Na2S, and a mixture of 84 µmolL-1 thioglycolate and 176 µmolL-1 Na2S, respectively.  

The individual solutions and the mixture of thioglycolate and Na2S were analyzed by 

methylene blue.  For experiments Thiol I-III, the SAOB/ISE calibration curve for 

known sulfide standards was linear (R2 = 0.99).  A new calibration curve was created 

at every time point in order to avoid problems associated with drift.  The calibration 

standards were stored inside the nitrogen filled glove box between time points in 

order to reduce losses due to oxidation.  All methylene blue samples absorbance 

values were blank corrected.  The methylene blue calibration curve for sulfide 

standards was linear (R2 = 0.99).

Results and discussion

Pavin Lake, France

Estimated in situ sulfide concentrations by DGT-ISE probe ranged from 8.3 

nmolL-1 to 6.7 µmolL-1over a 7 m span near the lake’s chemocline.  Estimated in situ 

sulfide concentrations from all depths are shown in Table 2.  The largest sulfide peak 
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as estimated by DGT-ISE occurred at a depth of 64 m.  Historically, filtered sulfide 

concentrations within the lake peak between 62.5 and 67.5 m depth with maximum 

concentrations around 20 µmolL-1(Michard et al. 1994; Viollier et al. 1995).  Because 

the sulfide profile by DGT-ISE did not span the entire lake, a complete method 

comparison of the profile is not possible.  Only a few of the DGT depths were in 

close proximity to the depths of the historical data.  However, it appears that the 

historical ex situ concentrations of sulfide by methylene blue are roughly 2-4 times 

larger than the in situ concentrations by DGT-ISE at corresponding depths.  

Dissolved iron data suggests that amorphous iron sulfides may be present and 

dominate sulfide speciation. It has been suggested that the restrictive nature of DGT 

diffusive gel does not permit dissolved solids (i.e., colloidal material) from reaching 

the binding gel (Zhang and Davison 1995; Zhang and Davison 2001).  It has also 

been suggested that metal sulfides may not cross the diffusive layer (Devries and 

Wang 2003), and the diffusion coefficients of colloidal metal sulfides (i.e., FeS) may 

be sufficiently small and will not contribute a significant fraction to the overall total 

sulfide measurement (Teasdale et al. 1999).  But because of significant temporal 

differences in the measurements by the two differing methods, reasons for the 

inconsistencies in concentration can only be speculative.
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Table 2.  Historical [(S-II)]t by methylene blue and estimated [(S-II)] by DGT-ISE
near chemocline in Pavin Lake, France.

Sample 
depth
(m)

Concentration of 
DGT-ISE

 [(S-II)]measured

This study
(µmolL-1)

Sample 
depth
(m)

Concentration of 
filtered [(S-II)]t

Michard et al.
(µmolL-1)

Concentration of 
filtered [(S-II)]t

Viollier et al.
(µmolL-1)

57.0 0.02 55.0 - -
57.5 0.02 ± 0.01 57.5 - -
58.0 0.01 60.0 0.6 5.0
58.5 0.04 62.5 13.6 27.3
59.0 0.44 65.0 14.2 22.4
59.5 0.74 70.0 14.5 21.6
60.0 1.57 ± 0.35 75.0 15.2 20.2
61.0 4.01 80.0 14.2 -
64.0 6.70 ± 0.37 85.0 12.7 20.8

Lake Lariat, Calvert County, Maryland

The average in situ sulfide concentration by DGT-ISE in the bottom water 

was 1.46 ± 0.46 µmolL-1 (n=11).  The average ex situ sulfide concentration for 

filtered bottom water as determined by SAOB/ISE was 3.91 ± 0.37 µmolL-1 (n=12).  

A single factor ANOVA reveals that the measured concentrations of sulfide by DGT 

and ISE are significantly different (p<0.05).  The ex situ SAOB/ISE measurements 

are approximately 2-4 times larger than those concentrations obtained by DGT-ISE.  

The average sulfide concentration in unfiltered bottom water as determined by 

SAOB/ISE was 12.43 ± 0.45 (n=4).  Unfiltered lake water was analyzed for 

measurable sulfide concentrations in order to examine the extent to which sulfide may 

be released from solid phases.  The large difference between filtered and unfiltered 

water suggests that significant amounts of sulfide associated with solids and dissolved 

solids is extractable into SAOB.  Therefore colloidal material derived from the 

disaggregation of larger solids may significantly contribute to the total filterable 
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sulfide concentrations measured by methylene blue or SAOB/ISE.  Measured sulfide 

concentrations for all filtered bottom water samples and those estimated by DGT-ISE 

can be found in Figure 8.  The three size classes of filter show no apparent differences 

in the concentration of measured sulfide.  However, the lower estimated sulfide 

concentrations as determined by DGT suggest that colloidal sulfides, in sufficient 

amounts, may be present and easily pass through conventional 0.45 µm filters.  The 

small pore sizes characteristic of a diffusive gel may restrict materials containing 

significant amounts of sulfide in the form of metal colloids or perhaps sulfide 

incorporated into large organic molecules as thiol groups.  

Finally, this lake is a bottom release lake, and the associated bottom water 

flows most likely negate any sulfide concentration differences originating from DBL 

effects.   Nonetheless, utilizing eq 8 and plotting the reciprocal of the measured mass 

of sulfide versus the diffusive layer thickness for eleven DGT probes, results in an 

estimated sulfide concentration of 1.76 µmolL-1and an estimated DBL of 154 µm

(Figure 9). A DBL of this thickness may cause approximately a 16 to 39% bias in the 

measured flux of sulfide to the binding gel and a similar uncertainty in the estimated 

bulk solution concentration. However, this graphically extrapolated sulfide 

concentration as determined by considering any DBL effects is also in good 

agreement with the mean sulfide concentration (1.46 ± 0.46 µmolL-1 ) of the eleven 

individual DGT-ISE measurements shown in Figure 8.  
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Lake 658, ELA

Profiles of the estimated sulfide concentration by DGT-ISE and filtered 

samples by SAOB/ISE are in Figure 10.  Filtered sulfide concentrations are an 

average of those measured by SAOB/ISE on the days of DGT probe deployment and 

retrieval.  The error bars represent one standard deviation from the mean for each 

measurement.  The DGT-ISE sulfide concentrations at all heights from the sediment 

interface, excluding the 20 cm height, were calculated using 0.4 and 0.8 mm diffusive 

gels.  The sulfide concentration at the 20 cm height was only calculated from one 

DGT probe containing a 0.8 mm diffusive gel.  The duplicate probe from the 20 cm 

height was lost during the distillation process, perhaps the result of either a bad trap 

or too high of N2 flow.  The sulfide concentrations represented by the dashed line in 

Figure 10 were calculated incorporating a DBL thickness of 270 µm.  It was believed 

that the 40 and 80 cm heights were not influenced by a DBL effect. The DBL 

thickness of 270 µm was produced by utilizing eq 9 and replicate probe 

measurements taken with probes containing two differing diffusive layer thicknesses 

near the sediment and water interface (at the 5 and 10 cm heights).  Not incorporating 

a DBL thickness of 270 µm into the individual sulfide estimates using eq 6 would 

produce a 33 to 60% error in the estimated sulfide concentration depending on the 

existing diffusive layer thickness.  The thinner diffusive layer is affected to a greater 

degree.  However in this situation, the extrapolated DBL was based upon only two 

data points (i.e., a DGT probe containing 0.4 and 0.8 mm diffusive gel at each 

sampling height), and the actual numerical values and final DBL influences are 

questionable.  Two DGT probes containing different diffusive thicknesses may be 
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used to calculate a DBL, but the use of three or more DGT measurements with 

differing diffusive layers is more appropriate for DBL calculations (Zhang et al. 

1998).  The large error bars at 40 and 80 cm heights may reflect an additional DGT 

probe problem.  One possible explanation for the variability in DGT-ISE sulfide 

concentrations at the 40 and 80 cm heights may be insufficient deoxygenation of the 

probes or the presence of a gas bubble between the diffusive and binding layers.

However, all of DGT probes were deoxygenated for 5 days.  The formation and 

trapping of a gas bubble between layers during deoxygenation is a more realistic 

scenario.  A gas bubble would effectively interfere with the diffusion of a dissolved 

species through the DGT probe.  Theoretically, the reduced ability of a dissolved 

species to pass through a diffusive layer would result in a lower estimated 

concentration.
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Figure 10.  Sulfide profiles estimated by DGT-ISE and SAOB/ISE for the profundal 
of Lake 658.
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Laboratory study using pore water from Mackall Cove, Maryland

The average sulfide concentrations as measured by DGT-ISE for containers 1 

and 2 were 1.21 ± 0.32 (n=2) and 1.16 ± 0.27 (n=2) µmolL-1 respectively.  Because 

the results from the validation studies in Chapter 2 suggest that solutions stirred at 85 

rpm on an orbital shaker table were well mixed (i.e., negligible DBL), a DBL 

thickness was not calculated for this experiment.  Filtered sulfide concentrations by 

methylene blue and SAOB/ISE analysis can be seen in Figure 11.  The error bars

represent one standard deviation from the mean.  Filtered sulfide concentrations 

determined by methylene blue both with and without pre-concentrating by zinc 

acetate are nearly six times as large as those determined by DGT-ISE.  This could be 

interpreted as metal sulfides being the dominant pool of sulfide in the extracted pore 

water.  However, filtered sulfide concentrations as determined by SAOB/ISE are not 

different than those determined by DGT-ISE as found in the previous studies.  A 

plausible explanation is that very little unbound free sulfide existed within the pore 

water (values were lower than found in previous studies), and the majority of the 

sulfide was present as dissolved solids, such as colloidal metal sulfides, which could 

not diffusive through the polyacrylamide layer.  Kinetically, the metal sulfide and 

MDR complexation is relatively quick (i.e., minutes), and perhaps the rate at which 

SAOB reacts with the metal sulfide complexes is much slower (i.e., hours).  In this 

instance, analysis of the SAOB preserved samples occurred about one hour after 

collection.  In the other studies, the time between collection and analysis was 

somewhat longer (i.e., four to five hours later).  The metal sulfide complexes within 

the extracted pore water may be coated with a layer of NOM which may slow the 
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release of sulfide by SAOB.  Re-analysis of the pore waters by SAOB/ISE at various 

times up to 24 hours after sampling indicated that sulfide had been released from 

colloids or dissolved metal sulfides which passed through the filter (Figure 12).  This 

substantiates the claim of slower kinetics for release of sulfide from complexes in the 

presence of SAOB.  Error bars represent one standard deviation from the mean.  

Statistical analysis by ANOVA shows that differences in sulfide concentration 

between the initial sampling and 24 hour sampling is significant (p<0.5).  This 

suggests that the chemical composition of SAOB may have the ability to extract 

sulfide from dissolved metal sulfide complexes or perhaps organic sulfides found in 

natural waters, as hypothesized in eqs 11 and 12, thus allowing it to be detected by 

the ISE.  A chemical speciation model for dissolved ZnS clusters supports the claim 

of released dissolved sulfide from dissolved metal sulfide complexes.  The speciation 

model will be discussed in the following section.   
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ZnS clusters laboratory experiment

The results from ZnS I experiment (10 µmolL-1 synthesized ZnS clusters)

confirmed that methylene blue analysis accurately estimates the concentration of the 

synthesized ZnS as 9.86 ± 1.10 µmolL-1 (n = 8), as expected.  Analysis by 

SAOB/ISE, which is not supposed to detect metal sulfides, yielded 3.61 ± 0.37 

µmolL-1 (n = 8).  This is approximately 30% of the synthesized cluster concentration 

(Figure 13).  Measured synthesized ZnS concentrations as estimated by DGT-ISE 

were 0.041 ± 0.058 µmolL-1 (n = 2).  Results from the ZnS II experiment (11 µmolL-1 

synthesized ZnS clusters) also demonstrate the ability of the SAOB/ISE to detect a 

fraction of the synthesized metal sulfide clusters.  Methylene blue analysis reveals a 

synthesized metal sulfide concentration of 10.63 ± 1.10 µmolL-1 (n = 7).  Analysis by 

SAOB/ISE yields a dissolved sulfide concentration of approximately 4.82 ± 0.41 

µmolL-1 (n = 6).  The concentration of synthesized ZnS as measured by SAOB/ISE is 

nearly half of that determined by methylene blue analysis (Figure 14).  Synthesized 

ZnS concentrations as estimated for DGT-ISE for ZnS II are 0.11 ± 0.14 µmolL-1 (n = 

6).  The results from ZnS I and ZnS II suggest that dissolved ZnS species and 

potentially other dissolved metal sulfide complexes are not stable in SAOB.  
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Figure 13.  Concentrations of synthesized 10.0 µmolL-1ZnS solution (experiment ZnS 
I) as detected by SAOB/ISE, methylene blue, and DGT-ISE.
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59

Chemical speciation calculations using MINEQL+ (Version 4.5, 

Environmental Research Software), performed under conditions similar to those 

found in SAOB (i.e., pH ≥ 12 and 0.2 molL-1 EDTA), support the idea that the 

excessive EDTA is able to competitively bind the zinc from the clusters.  The 

resulting break up of the dissolved ZnS clusters and the formation of various zinc and 

EDTA complexes increases the dissolved sulfide concentration.  The calculated 

dissolved sulfide concentrations from the model are nearly equal to those of the initial 

ZnS clusters.  This means that nearly 100% of the dissolved ZnS clusters dissociated.  

The results of this chemical equilibrium model support the hypothesis that the 

chemical properties of SAOB can liberate sulfide from metal sulfide complexes 

which in turn can be detected by an ISE.  

Our working hypothesis states that only simple dissolved inorganic sulfide 

complexes are measured by DGT-ISE.  It is possible that labile metal sulfide 

complexes or clusters could react with the AgI binding layer if they are able to pass 

through the diffuse layer.  Most metal sulfide complexes classified as MBRS should 

react with the binding layer.  The DGT-ISE estimations from experiments ZnS I and 

ZnS II, using the synthesized clusters, were 0.04 and 0.11 µmolL-1 respectively.  This 

demonstrates that negligible amounts of the synthesized ZnS clusters, which are 

classified as MBRS, reacted with the AgI binding gel and suggests that size exclusion 

of these compounds due to the small gel pore size is the most feasible explanation for 

their lack of detection.  However, this experiment should be revisited.  Bowles et al. 

(2002) found that filtering their synthesized ZnS cluster resulted in some losses due to 

adsorption and not size exclusion.  In future experiments, they were able to overcome 
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the adsorptive losses by manufacturing their metal sulfide clusters in solutions of 

NOM (Bowles et al. 2003).  Others have also found that coating metal sulfides with 

an organic agent is an effective way of terminating the polymerization or passivating 

the reactive surface of a metal sulfide cluster (Herron et al. 1990; Kortan et al. 1990).  

Therefore, it cannot be completely concluded that size exclusion is the only

mechanism behind the lower DGT-ISE estimates for ZnS I and ZnS II, and that 

adsorption may also play an important role. Nonetheless, these results are similar to a 

recent DGT and dissolved metal sulfide uptake study.  Using DGT sediment probes 

outfitted with a combination of AgI and chelex binding layers, Motelica-Heino et al. 

(2003) demonstrated that dissolved metal sulfides were negligible.  They proposed 

that if a dissolved metal sulfide species reacts with the AgI binding gel, it must be 

considered labile, and it should react with the chelex binding gel and be included as a 

fraction of the total metals estimated by DGT.   Their DGT estimated metal 

concentrations in their chelex binding gel were much lower than their DGT estimated 

sulfide concentrations therefore suggesting metal sulfide complexes were negligible.

Thioglycolate laboratory experiment

Measurable sulfide concentrations in sample aliquots (5 mL) taken from each 

thioglycolate working solution in experiments Thiol I and II increased by factors of 5 

and 50 in detected sulfide concentration after 24 hours as compared to the initial 

solution concentration (Figure 15).  Over the 24 hour time period, nearly 10% of the 

original thioglycolate solution is converted into a detectable product.  A titration of 

diluted samples from the original thioglycolate stock solution reveals that no 

significant amount of non-SAOB related degradation had occurred (Figure 16). This 
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demonstrates that the SAOB reagent must be assisting or catalyzing the degradation 

of thioglycolate into products detectable by the ISE.
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Figure 15.  SAOB/ISE concentrations of sulfide derived from the hydrolysis of 
thioglycolate over 24 hours.
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Figure 16. Percent recovery of thioglycolate working solutions over 24 hours by 
means of an iodimetric titration.

Results of the Thiol III experiment show that thiols, or thioglycolate in our 

case, are not detected by methylene blue.  This is in agreement with previous studies 

(Adams and Kramer 1999; Tang and Santschi 2000; Mylon and Benoit 2001).  Figure 

17 shows no significant difference between the sulfide concentration as detected by 

methylene blue for the Na2S solution and the solution mixture of Na2S and 

thioglycolate.  Measured sulfide concentrations for Na2S, 161 ±1 µmolL-1 (n = 5), and 

the Na2S and thioglycolate mixture, 159 ± 3 µmolL-1 (n = 4), are lower than the initial 

working solution concentration of 176 µmolL-1, but the small losses are most likely 

attributed to oxidation and adsorption.



63

0

20

40

60

80

100

120

140

160

180

Na2S Na2S & thiol mix thiol

sample

[(
S-

II
)] m

ea
su

re
d
(µm

ol
L

-1
)

Figure 17. Thiol III experimental results demonstrating that thiols are not a fraction 
of the measurable sulfide as detected by methylene blue.

Summary of field and experimental results

The methylene blue method measured larger sulfide concentrations than 

DGT-ISE for Pavin Lake water and Mackall Cove pore water.  Methylene blue 

analysis also detected synthesized ZnS clusters but did not detect a thiol containing 

compound, supporting the results of other researchers.  Sulfide concentrations 

measured by SAOB/ISE were greater than those measured by DGT-ISE in Lake 

Lariat bottom water, L658 bottom water, and synthesized ZnS clusters.  Using 

SAOB/ISE, it was determined that sulfide concentrations in Mackall Cove pore water 

samples and a thiol containing solution increased with time.  The thiol hydrolysis 

reaction was kinetically slower than the competitive binding reaction involving 

EDTA and the ZnS clusters. 
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Conclusion

Estimated sulfide concentrations as determined by DGT-ISE for all study 

lakes were consistently lower than 0.45 µm filtered samples determined by either 

SAOB/ISE or methylene blue.  This strongly suggests that filtered samples analyzed 

by SAOB/ISE and ethylene blue may overestimate dissolved sulfide concentration

and should be in some situations referred to as total sulfide.  Only the extracted pore 

water experiment results showed agreement between SAOB/ISE and DGT-ISE. It 

was suspected that the sulfide speciation in this sediment from Mackall Cove was 

dominated by metal sulfide complexes due to the lack of new sources of nutrients and 

sulfate.  The sediment was stored in buckets for a few weeks with no significant flow 

(i.e., no driving force for pumping or exchange of DOC and sulfate).  Yet after 24 

hours of storage in SAOB, the sulfide concentrations of these samples increased, by 

nearly 90%, demonstrating that the highly alkaline nature of SAOB and the presence 

of excess EDTA have an effect on metal and organic sulfides.  The initial agreement 

between the measured sulfide concentrations by SAOB/ISE and DGT-ISE in Mackall 

Cove pore water, followed by a significant difference in measured sulfide 

concentrations after 24 hours, suggests that NOM coatings may play a role in slowing 

down the rate of reaction between metal sulfides and organic sulfides present and the 

SAOB reagent.

The laboratory results generated from the interactions of a synthesized metal 

sulfide complex, a thiol, and the SAOB buffering agent also imply there is a release 

of sulfide which is detected by ISE from both inorganic and organic molecules 

containing reduced sulfur.  Again, this apparent liberation of dissolved sulfide 
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becomes greater with time.  The reaction rate between the synthesized ZnS clusters 

and the SAOB is faster than that of the metal sulfide complexes in the Mackall Cove 

pore water and SAOB.  These reaction rates may differ due to the lack of a NOM 

coating on the synthesized ZnS clusters.  The metal sulfides within the extracted pore 

water were most likely associated with NOM present within the pore water.  The field 

and laboratory findings suggest that ethylenediaminetetraacetic acid (0.2 molL-1) in 

SAOB is able to outcompete and displace the sulfide ligands from metal sulfide 

complexes due to its high concentration, and SAOB is able to break sulfur and carbon 

bonds present in thiols resulting in free sulfide which is then detected by the ISE.  

The use of highly alkaline solutions is also a common method of initiating hydrolysis 

reactions (Morrison and Boyd 1987).  Chemical speciation calculations performed 

under conditions similar to those found in SAOB support the proposed idea of metal 

sulfide complexes and EDTA interacting via a competitive ligand exchange reaction.  

This suggests that analysis of environmental samples for concentrations of 

uncomplexed or free sulfide by means of SAOB/ISE should be conducted promptly 

after collection.  In many instances, the immediate analysis of environmental samples 

may not occur because of transport time and results will be interpreted as being 

higher in concentration.  There were also significant differences between measured 

sulfide concentrations by methylene blue and SAOB/ISE for samples collected from 

the synthesized ZnS cluster experiments and the Mackall Cove pore water.  Measured 

sulfide concentrations by methylene blue were nearly 3-6 times greater.  This may be 

due to the rate of reaction between the MDR and metal sulfide complexes being 

greater than that of SAOB and metal sulfide complexes.  It should be noted that the 
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components of the MDR are also dissolved in 6 molL-1HCL, and this acidic medium 

promotes the release of sulfide from certain complexes (i.e., similar to defined AVS 

fraction).  Overall, the laboratory and field results support the idea that the DGT-ISE 

estimation of dissolved sulfide may be a closer reflection of the uncomplexed or free 

sulfide concentration.
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Chapter 4:  Conclusions and recommendations

The first objective of this thesis was to determine the feasibility of using an 

ISE to measure the sulfide captured by a DGT device.  The successful coupling of 

ISE to DGT has been demonstrated through a series of validation tests which were 

addressed in detail in Chapter 2.  This successful demonstration provides an 

alternative means, by which sulfide captured by DGT probes, can be analyzed.  This 

coupling of an ISE to DGT has advantages over DGT-CID and DGT-methylene blue 

analysis.  Drawbacks to these other methods include: (1) the potential to exceed CID

gray scale standards and (2) the time consuming nature of methylene blue analysis.  

The dynamic linear range of the potentiometric method is useful in environments and 

situations where sulfide production is high, yet the ability of DGT to pre-concentrate 

sulfide gives the analyst the necessary sensitivity to work in environments of low 

sulfide concentration (nmolL-1).  The detection limit (DL = 3 x SD) from this study is 

0.104 µmolL-1 (n = 18) for a 24 hour deployment period and can be significantly 

lowered by extending the deployment time or utilizing a thinner diffusive layer.

The second objective of this thesis was to distinguish between different pools

of sulfide species in the environment.  The abovementioned validation studies were 

conducted under controlled conditions which included well mixed solutions derived 

solely from Na2S.  However, in natural environments, dissolved sulfide is present and 

may be incorporated into many dissolved organic and inorganic complexes.  The 

filtration of natural waters using 0.45 µm filters can result in the passage of DOC and 

colloids into analytical samples.  Thus if the analytical method used is capable of 

measuring the resulting sulfide complexes, the dissolved sulfide concentration will be 
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overestimated.  Because DGT probes utilize diffusive layers containing small pore 

sizes (2-5 nm), it was hypothesized that DGT probes provide a measure of 

uncomplexed sulfide and perhaps a more accurate assessment of the concentration of 

truly dissolved inorganic sulfide.  Differences in sulfide concentrations measured by 

DGT-ISE and other methods, where conventional 0.45 µm filtration precedes the 

analytical measurement, existed in samples from field sites located in Pavin Lake, 

Lake 658, Lake Lariat, and the Patuxent River estuary.  Sulfide concentrations as 

determined by SAOB/ISE and methylene blue were 2-4 times larger than those 

determined by DGT-ISE.  This suggests that DGT probes are able to effectively 

exclude many larger dissolved compounds (i.e., metal sulfides, organic sulfides, and 

metal sulfide associated with DOM) whereas conventional 0.45 µm filtration may 

contribute to overestimates in the concentration of dissolved sulfide measured by 

other means.  Laboratory experiments using synthesized ZnS clusters (10 and 11 

µmolL-1) demonstrated that the clusters did not significantly diffuse through the 

diffusive layer.  However, this experiment should be revisited in order to decipher 

whether the apparent lack of diffusion was due to size or to significant adsorption 

effects.  This experiment should be repeated with the synthesis of the ZnS cluster 

taking place in a solution of DOM or some other terminating group.  Some literature 

suggests that the addition of organic groups assists in terminating the polymerization 

process of metal sulfide cluster growth and lessens the reactive or sticky nature of the 

clusters.  However, the bulkiness of the resulting organic and metal sulfide complex 

may hinder its passage through a diffusive layer.  
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During the investigation of size fractions of measurable sulfide in extracted 

pore water, it was discovered that measurement artifacts for the SAOB/ISE method 

exist.  In Chapter 3, two proposed mechanisms were discussed, and tests were 

conducted in laboratory experiments using the synthesized ZnS clusters and 

thioglycolate as model sulfide complexes.  Sulfide antioxidant buffer (SAOB), due to 

its highly alkaline nature, is able to catalyze hydrolysis reactions which results in the 

release of sulfide which was bound to other materials (i.e., thiol groups) and is then 

detectable by the ISE.  The presence of excessive EDTA in SAOB also “catalyzes” a 

competitive ligand exchange reaction between EDTA and metal sulfides present.  

This was demonstrated for field and laboratory samples in Chapter 3 and predicted by 

the chemical equilibrium modeling program MINEQL+.  Depending on the time 

between preservation by SAOB and analysis by ISE, the measured sulfide 

concentrations may significantly increase.  The laboratory data in Chapter 3 suggests 

rapid rates of reaction for each proposed mechanism, and the increases in measured 

sulfide from initial preservation to 24 hours are (p<0.5) significant.  These artifacts 

are believed to occur when conventionally filtered water samples are placed into 

SAOB.  There is no reason to believe these artifacts exist when distilled sulfide is 

trapped into SAOB as is the case of AVS and DGT extractions.  When sulfide is 

liberated from the AgI binding gel, it is completely present as H2S gas due to the 

acidic nature of the distillation. Figure 18 summarizes some commonly used methods 

for sulfide analysis and potential forms of sulfide which these methods may detect.
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Figure 18.   Commonly used techniques for sulfide analysis and potentially detected 
sulfide species.  Various sulfide species are in gray ovals and the potential techniques 
to detect these species are in adjacent gray boxes.

Over the course of the method development and field deployment stages of 

DGT-ISE, a number of suggestions have been identified and are recommended for 

future DGT usage.  When dealing with redox sensitive species, proper deoxygenation 

is a necessary step in to obtain an accurate DGT concentration.  It is recommended 

that the fully assembled DGT probes be deoxygenated for a minimum of one week.  It 

is believed that oxygen slowly bleeds out of the plastic pistons used to house the 

polyacrylamide gels.  Gas bubbles within the DGT probe effectively interfere with 

the diffusion of a dissolved species through the DGT probe.  It is necessary to inspect 

and release any gas bubbles that may have developed during the deoxygenation 

period. The use of multiple or “duplicate” DGT probes in the field is necessary.  First 
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of all, the use of two or more DGT devices allows one to determine if and to what 

extent (magnitude) a DBL occurs.   However from a practical point, things can and 

will go wrong (i.e., tearing a diffusive layer during deployment) with the DGT 

probes, and thus relying on only two or three probes for duplicate measures or DBL 

characterization can be problematic.  Therefore, it is suggested that three to five 

differing diffusive layer thicknesses be used in order to calculate a more reliable DBL 

thickness and the bulk solution concentration.  Finally, it is recommended that 

diffusive layers of less than 0.4 mm thickness not be used in field deployments.  

Calculated DBL thicknesses on the order of 100 µm and larger begin to have 

significant effects on the thinner diffusive layers.  

Lastly, it is recommended when collecting sulfide samples by DGT that a 

secondary sulfide measurement by another method is taken in parallel.  The 

comparative measurements may yield valuable information concerning sulfide 

speciation (i.e., inorganic versus organic complexes).  The results from the field 

deployments in Pavin Lake, Lake Lariat, and L658, where differences existed 

between DGT and conventional filtration, suggest a large fraction (nearly 50%) of the 

dissolved sulfide ligands may be associated or incorporated with other materials such 

as colloids or DOC.  The association of sulfide to other materials may have a 

profound influence on the bioavailability of metals and metal sulfide complexes to 

organisms.  Future studies might examine whether potential relationships exist in 

aqueous systems between DGT measured sulfide concentration and toxicological 

measurements.  
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Appendix A

Table A 1.  Sulfide fluxes and estimated concentrations by DGT-ISE at three littoral 
sites (G1, G2, and G3) located in L658 ELA, NW Ontario during June 2002.

Sediment Probe
ID and location

Depth 
(cm)

Flux 
(µmol·cm-2s-1)

[(S-II)]measured

(µmolL-1)
D(G1) 1 4.0 x 10-9 0.013
D(G1) -1 7.5 x 10-9 0.025
D(G1) -3 2.1 x 10-8 0.071
D(G1) -5 3.6 x 10-9 0.012
D(G1) -7 4.8 x 10-9 0.016
D(G1) -10 1.5 x 10-9 0.005
F(G1) 1 3.6 x 10-9 0.012
F(G1) -1 4.8 x 10-9 0.016
F(G1) -3 1.4 x 10-9 0.005
F(G1) -5 1.4 x 10-9 0.005
F(G1) -7 7.4 x 10-10 0.002
F(G1) -10 1.9 x 10-10 0.001
C(G2) 1 5.1 x 10-8 0.22
C(G2) -1 9.9 x 10-8 0.43
C(G2) -3 9.9 x 10-8 0.43
C(G2) -5 7.1 x 10-8 0.31
C(G2) -7 1.2 x 10-8 0.054
C(G2) -10 8.3 x 10-9 0.036
E(G2) 1 1.1 x 10-8 0.049
E(G2) -1 6.1 x 10-8 0.26
E(G2) -3 4.7 x 10-8 0.20
E(G2) -5 2.2 x 10-8 0.096
E(G2) -7 7.3 x 10-9 0.032
E(G2) -10 2.9 x 10-9 0.013
B(G3) 1 3.6 x 10-8 0.12
B(G3) -1 4.9 x 10-8 0.17
B(G3) -3 2.8 x 10-8 0.096
B(G3) -5 9.9 x 10-9 0.033
B(G3) -7 5.8 x 10-9 0.020
B(G3) -10 3.3 x 10-9 0.011
G(G3) 1 1.6 x 10-8 0.054
G(G3) -1 9.0 x 10-9 0.030
G(G3) -3 9.0 x 10-9 0.030
G(G3) -5 5.2 x 10-9 0.018
G(G3) -7 4.6 x 10-9 0.015
G(G3) -10 2.3 x 10-9 0.008

Notes:
G1 site is located in 4 m of water.
G2 site is located in 1 m or less of water.
G3 site is located in 2 m of water.
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Table A 2.  Sulfide fluxes and estimated concentrations by DGT-ISE at a littoral site 
(G2) located in L658 ELA, NW Ontario during August 2002.

Sediment
Probe ID

Depth 
(cm)

Flux 
(µmol·cm-2s-1)

[(S-II)]measured

(µmolL-1)
G 1 2.4 x 10-9 0.011
G -1 4.2 x 10-9 0.018
G -3 5.4 x 10-9 0.023
G -5 3.9 x 10-9 0.017
G -7 2.7 x 10-9 0.011
G -9 4.8 x 10-9 0.021
G -11 5.3 x 10-9 0.023
F 1 5.5 x 10-10 0.002
F -1 9.4 x 10-9 0.041
F -3 1.1 x 10-7 0.461
F -5 3.8 x 10-8 0.165
F -7 9.9 x 10-9 0.043
F -9 6.6 x 10-9 0.029
F -11 5.5 x 10-9 0.024
D 1 8.8 x 10-9 0.038
D -1 7.3 x 10-9 0.032
D -3 7.3 x 10-9 0.032
D -5 7.3 x 10-9 0.032
D -7 4.2 x 10-9 0.018
D -9 4.9 x 10-9 0.021
D -11 9.2 x 10-10 0.004
E 1 4.3 x 10-9 0.018
E -1 1.3 x 10-10 0.001
E -3 7.1 x 10-10 0.003
E -5 9.2 x 10-10 0.004
E -7 3.7 x 10-9 0.016
E -9 3.4 x 10-9 0.015
E -11 3.2 x 10-9 0.014
B 1 6.4 x 10-9 0.028
B -1 9.0 x 10-9 0.039
B -3 4.2 x 10-9 0.018
B -5 6.4 x 10-9 0.028
B -7 5.9 x 10-9 0.025
B -9 9.0 x 10-9 0.039
B -11 8.6 x 10-9 0.037
C 1 7.3 x 10-9 0.032
C -1 8.6 x 10-9 0.037
C -3 8.6 x 10-9 0.037
C -5 1.7 x 10-8 0.073
C -7 6.1 x 10-9 0.027
C -9 2.5 x 10-9 0.011
C -11 6.7 x 10-9 0.029
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Table A 3.  Sulfide fluxes and estimated concentrations by DGT-ISE at a wetland site 
located in L658 ELA, NW Ontario during August 2002.

Probe
location

Depth in peat
(cm)

Flux 
(µmol·cm-2s-1)

[(S-II)]measured

(µmolL-1)
WF-2 * -10 6.8 x 10-8 0.29

WF-2 duplicate* -10 1.6 x 10-8 0.069
WF-2 * -20 7.3 x 10-8 0.32

WF-2 duplicate* -20 1.7 x 10-7 0.74
Mid # -10 2.2 x 10-8 0.092

Mid duplicate# -10 9.2 x 10-8 0.40
Mid # -20 4.8 x 10-9 0.021

Mid duplicate# -20 5.3 x 10-9 0.023
A-2 ! -10 1.3 x 10-8 0.055

A-2 duplicate ! -10 2.7 x 10-8 0.12
A-2 ! -20 6.0 x 10-8 0.26

A-2 duplicate ! -20 9.8 x 10-8 0.42

*front of wetland 
#2 m behind wetland front
!along front of board walk
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Table A 4.  Sulfide fluxes and estimated concentrations by DGT-ISE at a littoral site 
(G2) located in L658 ELA, NW Ontario during July 2003.

Sediment
Probe ID

Depth 
(cm)

Flux 
(µmol·cm-2s-1)

[(S-II)]measured

(µmolL-1)
1 1 4.7 x 10-9 0.030
1 -1 1.3 x 10-8 0.080
1 -3 2.9 x 10-8 0.18
1 -5 1.4 x 10-9 0.009
1 -7 6.6 x 10-10 0.004
1 -10 6.5 x 10-10 0.004
2 1 5.6 x 10-9 0.021
2 -1 4.4 x 10-9 0.016
2 -3 4.8 x 10-9 0.017
2 -5 6.6 x 10-9 0.024
2 -7 4.1 x 10-9 0.015
2 -10 2.4 x 10-9 0.009
3 1 5.6 x 10-9 0.036
3 -1 1.4 x 10-8 0.087
3 -3 3.6 x 10-9 0.023
3 -5 1.8 x 10-9 0.011
3 -7 3.1 x 10-9 0.020
3 -10 7.1 x 10-10 0.005
4 1 9.7 x 10-9 0.035
4 -1 8.3 x 10-9 0.030
4 -3 8.9 x 10-9 0.033
4 -5 7.6 x 10-9 0.028
4 -7 6.0 x 10-9 0.022
4 -10 5.4 x 10-9 0.020
5 1 1.9 x 10-9 0.007
5 -1 3.5 x 10-9 0.013
5 -3 6.4 x 10-9 0.023
5 -5 2.0 x 10-9 0.007
5 -7 1.9 x 10-9 0.007
5 -10 No detect No detect
6 1 5.8 x 10-9 0.037
6 -1 6.3 x 10-9 0.040
6 -3 5.8 x 10-9 0.037
6 -5 2.0 x 10-9 0.012
6 -7 6.1 x 10-10 0.004
6 -10 1.3 x 10-10 0.001
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