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This thesis is devoted to problems in error-correcting codes motivated by data in-

tegrity problems arising in large-scale distributed storage systems. We study properties

and constructions of Maximum Distance Separable (MDS) codes, which are widely used

in storage applications since they provide the maximum failure tolerance for a given

amount of storage overhead.

Among the parameters of the code that are important for storage applications are:

the amount of data transferred in the system during node repair (the repair bandwidth),

which characterizes the network usage, and the volume of accessed data, which corre-

sponds to the number of disk I/O operations. Therefore, recent research on MDS codes

for distributed storage has focused on codes that can minimize these two quantities. A

lower bound on the repair bandwidth of a code, called the cut-set bound, was proved by

Dimakis et al. in 2010, and codes that attain this bound are said to have the optimal re-

pair property. Explicit optimal-repair low-rate (rate ≤ 1/2) MDS codes were constructed

by Rashmi et al. in 2011. At the same time, large-scale distributed systems such as the



Google File System and Hadoop Distributed File System, employ high-rate (rate > 1/2)

MDS codes due to the need of reducing storage overhead. Until recently, except for some

particular cases, no general explicit constructions of high-rate optimal-repair MDS codes

were known.

In this thesis, we present the first explicit constructions of optimal-repair MDS

codes, thereby providing a solution to the general construction problem of such codes

for the high-rate regime.

More specifically, we construct explicit MDS codes that can repair any number of

failed nodes from any number of helper nodes with the smallest possible amount of down-

loaded/accessed data. For the particular case of repairing a single node failure, we further

present an explicit family of MDS codes that minimize the amount of accessed data dur-

ing the repair. This family of codes has an additional favorable property that the node size

(the amount of information stored in the node) is also the smallest possible. Reducing the

node size directly translates into reducing the complexity of storage systems.

While most studies on MDS codes with optimal repair bandwidth focus on array

codes, the repair problem of widely used scalar codes such as Reed-Solomon codes has

also recently attracted attention of researchers. It has been an open problem whether

scalar linear MDS codes can achieve the cut-set bound. In this thesis, we answer this

question in the affirmative by giving explicit constructions of Reed-Solomon codes that

can be repaired at the cut-set bound. We also prove a lower bound on the node size of

optimally repairable scalar MDS codes, showing that the node size of our RS codes is

close to the best possible for scalar linear codes.

Finally, we extend the concept of repair bandwidth from erasure correction to error



correction, which forms a new problem in coding theory. We prove a bound on the amount

of downloaded information for this problem and present explicit code families that attain

this bound for a wide range of parameters.
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Main notation and acronyms

Notation Meaning
[n] the set {1, 2, . . . , n}, n ∈ N

(n, k, l) array code array code of code length n and dimension k,
each codeword coordinate is a vector of length l

r r := n− k is the number of parity nodes of the code
l the sub-packetization value of the code
F the subset of failed nodes
R the subset of helper nodes

GRSF (n, k,Ω, v) (n, k) Generalized Reed-Solomon code
with evaluation points Ω = {ω1, ω2, . . . , ωn} ⊆ F

{(v1f(ω1), . . . , vnf(ωn)) ∈ F n : f ∈ F [x], deg f ≤ k − 1} ,
v = (v1, . . . , vn) ∈ (F ∗)n

RSF (n, k,Ω) (n, k) Reed-Solomon code over field F with evaluation points Ω

C⊥ the dual code of the code C
trFqm/Fq trace function trFqm/Fq(β) = β + βq + βq

2
+ · · ·+ βq

m−1

MDS codes Maximum distance separable codes
MSR codes Minimum-storage regenerating codes

LRC Locally recoverable code
RS code Reed-Solomon code
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Chapter 1: Introduction

Distributed storage systems, such as those run by Google [18] and Facebook [14], find
numerous applications ranging from social networks to file and video sharing. Currently
deployed systems are formed of thousands of individual drives (nodes), and drive failures
occur on a daily basis. A common approach to enhancing reliability of the data against
frequent drive failures is to introduce redundancy in order to recover the unavailable con-
tents. Many existing systems adopt a straightforward solution, storing multiple copies of
the data [14, 18]. An obvious drawback of replicating the contents on multiple storage
nodes is large storage overhead, which becomes unsustainable with the exponential in-
crease of the volume of the information in large-scale storage systems. For this reason,
companies utilizing or providing distributed storage solutions have increasingly turned
to erasure (error) correcting coding for the efficient data recovery. The tradeoff between
failure tolerance and storage overhead is an important measure of the performance of the
system. In terms of code design, this amounts to constructing high-rate codes with large
distance, which has been extensively studied.

At the same time, distributed storage systems introduce additional requirements for
the code design. Measurements performed in real-world distributed storage systems show
that single node failures occur far more frequently than failures of multiple nodes [41,
Section 6.6]. This fact together with the distributed nature of the system present new
challenges in the code design that are related to the repair efficiency of a single node fail-
ure or of a small number of failed nodes. Two important performance metrics of efficient
repair that have emerged are the locality and repair bandwidth: locality is the number of
nodes accessed during the repair procedure, and bandwidth is the amount of data commu-
nicated between the nodes. Efficient operation of the system often amounts to minimizing
one of these two quantities; therefore, recent research on coding for distributed storage
has focused on codes with either small bandwidth or small locality. Theoretical stud-
ies of codes with small locality, called locally recoverable codes (LRCs), were initiated
by Gopalan et al. [19]. Bounds and several constructions of optimal LRCs are given in
particular in the following works: [36, 57, 59, 60]. Codes with small repair bandwidth,
introduced by Dimakis et al. [12], are also called regenerating codes. Regenerating codes
form the central topic of this thesis, and we will say more about them later.

Decoding tasks with communication constraints

Node failures in distributed storage correspond to erasures of codeword coordinates, and
most coding schemes for distributed storage are designed for erasure correction. At the
same time, error correction (global decoding) is also a central focus of coding theory,
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PPPPPPPPPMetric
Task Repair single

(several) erasure(s)
Global decoding
(error correction)

Bandwidth Regenerating codes Fractional decoding
Locality Locally Recoverable Codes (LRC) LDPC codes

Table 1.1: Communication-constrained coding problems

especially for codes designed for data transmission. For such codes, small locality can
also result in significant reduction of the (global) decoding complexity. In particular,
codes in the well-known class of Low Density Parity Check (LDPC) codes [17] possess
small locality of codeword coordinates which supports efficient and nearly optimal de-
coding algorithms. In this thesis we introduce the “fractional decoding” problem, which,
we believe, is a new problem in coding theory. In this problem, we aim to design codes
that minimize the bandwidth during the global decoding procedure in distributed systems.
Equivalently, for a given bandwidth, we want to design optimal codes that maximize the
number of correctable errors. Table 1.1 summarizes our discussion of various kinds of
repair problems under communication constraints.

Throughout this thesis we adopt the point of view of codes that stems from dis-
tributed storage applications. In particular, in accordance with current literature, we use
the terminology motivated by such applications however unusual it may feel in the gen-
eral coding-theoretic context. In this vein, code’s coordinates are called nodes, correcting
erasures is referred to as repairing (or recovering) failed nodes, and the process of obtain-
ing information stored at some other nodes of the codeword for the repair of the failed
node(s) is described as “downloading data from the helper nodes”. As usual in distributed
storage applications, we assume that a code of length n formed of k information coordi-
nates and r = n − k parity coordinates is spread across n different nodes of the storage
cluster. Each node of the cluster stores a coordinate of the code.

Referring to Table 1.1, in this thesis, we focus on the bandwidth problems. Today’s
large-scale distributed storage systems tend to use Maximum Distance Separable (MDS)
codes since they provide the maximum failure tolerance for a given amount of storage
overhead. Suppose that an (n, k) MDS code with k information nodes and r = n − k
parity nodes is used to encode data in a distributed storage system. Suppose further that
the repair task of failed nodes is performed over some finite field F which we call the base
field. The data stored in each node is viewed as a vector over F . The dimension l of this
vector over F is called sub-packetization, and it plays a key role in our considerations.
Since sub-packetization measures the size of each node, which in practice cannot be too
large, we would like this parameter to be as small as possible.

Optimal-repair MDS codes

The following simple but important result of [8, 12] forms the starting point of our con-
structions.

Proposition 1.1. Suppose that the data is encoded with an MDS code C. Suppose that h
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out of the n nodes are inaccessible and d surviving (helper) nodes are used to recover the
lost data. The minimum amount of information downloaded from all the helper nodes, or
the repair bandwidth, satisfies the following inequality which forms a necessary condition
for successful recovery:

Repair bandwidth ≥ hdl

d+ h− k
symbols of F . (1.1)

If this lower bound is achieved for the repair of any h erased nodes from any d helper
nodes, we say that the MDS code has the (h, d)-optimal repair property. We note that
MDS codes with optimal repair bandwidth are also called minimum storage regenerating
(MSR) codes in the literature [12], and we will use this term below alongside the more
mainstream nomenclature.

MDS codes with optimal access

Storage applications further entail the following specialization of the coding tasks. The
data downloaded in the repair process can form some functions such as linear combina-
tions of the data stored in the helper nodes. Therefore, it may happen that we access a
large portion of the data on the helper nodes, perform some transformation whose range is
more limited, and download its outcome whose volume may still satisfy the bound on the
repair bandwidth (1.1). This leads us to isolate a subclass of optimal-repair MDS codes
for which the amount of information accessed in the helper nodes equals the amount of
information downloaded for the repair task. We say that an (n, k) MDS code has the
(h, d)-optimal access property if the repair of any h erased nodes using any d helper
nodes can be accomplished by accessing the amount of data that meets the lower bound
(1.1).

Repairing Reed-Solomon codes

Most studies of MDS codes with optimal repair bandwidth in the literature are concerned
with a particular subclass of codes known as MDS array codes [4], also called vector
codes because every node is a vector over the base field. Vector codes provide more
flexibility in the code design compared with scalar linear codes. At the same time, it
is of interest to study limitations of the repair bandwidth of scalar codes such as Reed-
Solomon (RS) codes, which are widely used in applications including distributed storage
systems. Following this line of thought, Guruswami and Wootters [26] initiated the study
of repair bandwidth of RS codes and other linear scalar codes. They characterized linear
repair schemes of such codes and showed that RS codes can be repaired using a smaller
bandwidth than under the trivial approach.

1.1 Overview of the thesis
A summary of the contents of individual chapters is as follows.

Chapter 2: In this chapter, we formally introduce the basic concepts used in this thesis
and give an overview of related works in the literature.

3



Chapter 3: ( [77]) While constructions of optimal-repair codes of low rate (R := k/n <
1/2) have been found early on [42], explicit codes with optimal repair bandwidth
for the practically important high-rate case were unknown. In this chapter, we
present several explicit constructions of MDS array codes with optimal repair band-
width for any k and n [77]. In particular, we resolve the most basic question of
constructing such codes for the repair of a single failed node, or (1, n− 1)-optimal
repair MDS codes. Extending this result, for any r and n, we present explicit
constructions of codes with the (h, d)-optimal repair property for all h ≤ r and
k ≤ d ≤ n − h simultaneously. The encoding, decoding, repair of failed nodes,
and update procedures of these codes all have low complexity. Moreover, the codes
that we construct are resilient toward errors during the repair process, i.e., they can
correct erroneous information provided by the helper nodes, and their repair band-
width meets the corresponding lower-bound extension of (1.1) given in (3.2) below.
One of the code families presented in this chapter, in addition to the above, affords
the optimal access property.

Chapter 4: ( [78]) Some of the code families presented in Chapter 3 support the optimal
access property. At the same time, according to [62], for (1, n− 1)-optimal-access
MDS codes, a necessary condition for the sub-packetization value l is l ≥ r(k−1)/r,
and the constructions of Chapter 3 fall short of attaining or approaching this bound.
Here we construct an explicit family of (1, n− 1)-optimal-access MDS codes with
l = rdn/re, which differs from the lower bound by at most a factor of r2. These
codes can be constructed over any finite field F as long as |F | ≥ n + r, and afford
low-complexity encoding and decoding procedures.

We also define a version of the repair problem that bridges the context of regenerat-
ing codes and LRCs, which we call group repair with optimal access. In this vari-
ation, we assume that the set of n = sm nodes is partitioned into m repair groups
of size s, and require that the amount of accessed data for repair is the smallest
possible whenever the d = s+ k− 1 helper nodes include all the other s− 1 nodes
from the same group as the failed node. We construct an explicit family of codes
with the group optimal access property. These codes exist over any field F of size
|F | ≥ n, and also afford low-complexity encoding and decoding procedures [78].

Chapter 5: ( [64], [75]) Paper [26] and the follow-up papers stopped short of constructing
RS codes (or any scalar MDS codes) that meet the lower bound (1.1) with equality,
which has been an open problem in coding theory. Taking up this problem, for any
n, k and k ≤ d ≤ n− 1, we construct an (n, k) RS code with sub-packetization l =
exp((1 + o(1))n log n) that has (1, d)-optimal repair property [64]. We also prove
an almost matching lower bound on l, showing that the super-exponential scaling
is both necessary and sufficient for achieving the lower bound (1.1) using linear
repair schemes. More precisely, we prove that for scalar MDS codes (including
the RS codes) with optimal repair property, the sub-packetization l must satisfy
l ≥ exp((1 + o(1))k log k).

While sub-packetization scaling slower than this is not possible for optimally re-
pairable RS codes, it is possible to approximate this goal by allowing slightly
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greater repair bandwidth in exchange for much smaller sub-packetization. Along
these lines, for any n and r, we construct an (n, k = n − r) RS code with sub-
packetization l = rn that asymptotically achieves (1.1) for the repair of any single
failed node from all the other n− 1 surviving nodes [75].

Chapter 6: ( [63]) Coding-theoretic considerations in the literature, including the works
discussed above, have accounted for three of the four possibilities in Table 1.1.
In this chapter we target the fourth remaining possibility, introducing a “fractional
decoding” problem, which extends the concept of repair bandwidth to the error
correction setting. We derive an upper bound on the number of correctable errors
under a given amount of information downloaded during the decoding process. We
also present explicit code constructions that achieve this bound.

Research work not included in this thesis
While working toward my PhD degree at the University of Maryland, I also worked on
problems other than those included in this thesis, specifically on discrete distribution
estimation under locally differential privacy and on polar codes.

For the private estimation problem, we gave a new privatization scheme that out-
performs the existing schemes in the literature [79, 80]. In these works we also proved a
lower bound on the minimax estimation loss which showed that our scheme is order op-
timal. In a later work [76], we proved a more refined lower bound on estimation loss that
enabled us to strengthen the order optimality claim by showing that the scheme of [79,80]
is in fact asymptotically optimal.

My research on polar codes includes constructing polar coding schemes for dis-
tributed hierarchical source coding [73] and universal source coding [72]. In [74] we also
proposed new polar coding schemes using dynamic kernels that account for improved
performance of the codes. Finally, in [23], we resolved the main question related to the
construction of polar codes for alphabets other than binary. The latter case has been
analyzed in [39], but their technique did not extend to nonbinary code alphabets. We
proposed a new method that enabled us to estimate the capacity loss due to the construc-
tion algorithm, and subsequently to estimate the overall complexity of constructing polar
codes.
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Chapter 2: Preliminaries and Related Work

In this chapter, we begin with introducing the main notation and general background ma-
terial used throughout this thesis. We then provide a high-level review of the related
literature. More detailed discussion of related works is provided in the subsequent chap-
ters.

2.1 Notation and definitions

An (n, k, l) MDS array code has k information nodes and r = n− k parity nodes in each
codeword with the property that any k out of n nodes can recover the codeword. Every
node is a column vector in F l, where F is some finite field, reflecting the fact that the
system views a large data block stored in one node as one coordinate of the codeword.
The parameter l is called sub-packetization.

Definition 2.1 (Repair bandwidth). Given an (n, k, l) MDS array code C and two disjoint
subsets F,R ⊆ [n] such that |F| ≤ r and |R| ≥ k, we define N(C,F,R) as the smallest
number of symbols1 of F one needs to download from the helper nodes {Ci, i ∈ R} in
order to recover the erased nodes {Ci, i ∈ F}. The (h, d)-repair bandwidth of the code C
equals

max
F⊆[n],|F|=h

R⊆[n]\F,|R|=d

N(C,F,R).

where [n] := {1, 2, . . . , n}.

Definition 2.2 (Cut-set bound [8, 12]). Let C be an (n, k, l) MDS array code. For any
two disjoint subsets F,R ⊆ [n] such that |F| ≤ r and |R| ≥ k, we have the following
inequality:

N(C,F,R) ≥ |F||R|l
|F|+ |R| − k

. (2.1)

If (2.1) is achieved, we say that C can optimally repair nodes {Ci, i ∈ F} using nodes
{Ci, i ∈ R}.

Definition 2.3 (Optimal repair/access). If the (h, d)-repair bandwidth of C is hdl
h+d−k ,meet-

ing the lower bound in (2.1), we say that C has (h, d)-optimal repair property. We further
say that the code has the d-optimal repair property if h = 1, omitting the reference to h,
and say that the code has the optimal repair property if h = 1 and d = n− 1.

1these symbols can be some functions of the contents of the nodes {Ci, i ∈ R}.
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Similarly, we say that an (n, k, l) MDS array code C has (h, d)-optimal access
property if the repair of any h erased nodes using any d helper nodes can be accomplished
by accessing the amount of data that meets the lower bound in (2.1). If h = 1 and
d = n− 1, We simply say that the code has the optimal access property.

In this thesis we need to use Generalized Reed-Solomon (GRS) codes. Let us recall
the definition of GRS codes and dual codes.

Definition 2.4. LetF be a finite field. A Generalized Reed-Solomon code GRSF (n, k,Ω, v)
⊆ F n of dimension k over F with evaluation points Ω = {ω1, ω2, . . . , ωn} ⊆ F is the set
of vectors

{(v1f(ω1), . . . , vnf(ωn)) ∈ F n : f ∈ F [x], deg f ≤ k − 1}

where v = (v1, . . . , vn) ∈ (F ∗)n are some nonzero elements. If v = (1, . . . , 1), then the
GRS code is called a Reed-Solomon code and is denoted as RSF (n, k,Ω). (If the symbol
field F is clear from the context or not important, we sometimes omit it in the subscript.)

Definition 2.5 (Dual code). The dual code of a linear code C ⊆ F n is the linear subspace
of F n defined by

C⊥ =
{
x = (x1, . . . , xn) ∈ F n

∣∣ n∑
i=1

xici = 0 ∀c = (c1, . . . cn) ∈ C
}
.

It is well known [35, p.304] that

(RSF (n, k,Ω))⊥ = GRSF (n, n− k,Ω, v), (2.2)

where vi =
∏

j 6=i(ωi − ωj)−1, i = 1, . . . , n. (The dual of an RS code is a GRS code.)

2.2 General code construction of MSR array codes
In Chapter 3-4, we will construct various families of MDS array codes with optimal re-
pair/access property. All the constructions in these two chapters are defined within the fol-
lowing general framework. Let C ∈ F ln be an (n, k, l) array code with nodesCi ∈ F l, i =
1, . . . , n, where each Ci is a column vector with coordinates Ci = (ci,0, ci,1, . . . , ci,l−1)T .
Throughout the next two chapters we consider codes defined by the following r parity-
check equations:

C = {(C1, C2, . . . , Cn) :
n∑
i=1

At,iCi = 0, t = 0, 1, . . . , r − 1}, (2.3)

where At,i, 0 ≤ t ≤ r−1, 1 ≤ i ≤ n are l× l matrices over F . The specific code families
in Chapter 3-4 are obtained by choosing different forms of these matrices.
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2.3 Related literature
In this section, we provide a brief overview of earlier works on regenerating codes and
related coding problems.

Regenerating codes
Among the works on coding for distributed storage, papers on regenerating codes are most
closely related to this thesis. Regenerating codes were introduced by Dimakis et al. [12]
with the aim of optimizing the amount of data downloaded during the repair procedure.
In particular, the authors of [12] derived a trade-off relation between storage capacity
per node and the optimal repair bandwidth, and they also showed the existence of codes
achieving this trade-off. Two end points of this trade-off curve have special meaning. The
point that corresponds to the minimum storage overhead is called the Minimum Storage
Regenerating (MSR) point and opposite corner of the curve is called the Minimum Band-
width Regenerating (MBR) point. As we mentioned before, MSR codes are MDS codes
with optimal repair bandwidth, and they are of particular interest because MDS codes
also optimize the tradeoff between failure tolerance and storage overhead.

It is worth mentioning that the results in [12] are derived under the so-called func-
tional repair model, in which one does not need to recover the exact contents stored on
the failed nodes. Later on, most research, including this thesis, has focused on a stronger
requirement called exact repair, wherein we need to recover the exact contents during
the repair procedure. Both MSR and MBR points are achievable under the exact repair
requirement for any given parameters: see [42] for MBR constructions and low rate MSR
constructions; see [77] (also Chapter 3 of this thesis) for high-rate MSR constructions.
At the same time, the intermediate points of the trade-off curve derived in [12] are not
achievable for exact repair [53, 65]. A number of subsequent papers presented code con-
structions and tighter lower bounds for intermediate points [15, 16, 20, 40, 50].

Below we only consider the exact repair problem. A large part of this thesis is
devoted to the construction of MSR codes and bounds on sub-packetization of scalar
linear MSR codes. Other relevant papers devoted to the existence as well as explicit
constructions of MSR codes include [6, 7, 37, 54, 58, 61]. In the following table we list
papers that contain state-of-the-art results on MSR codes and some related problems of
importance to us. (In the “Contributions” column we only list the relevant results. Some
of the cited papers also contain other results, which were surpassed by later works.)
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Papers Contributions
Rashmi et al.,
2011 [42]

gave explicit constructions of low-rate (rate ≤ 1/2) MSR codes with optimal sub-
packetization value

Ye and Barg,
2017 [77]
(Chapter 3 of
this thesis)

This is the first paper to give explicit constructions of high-rate (rate > 1/2) MSR
codes with more than 3 parities. This is also the only paper that contains explicit
constructions of universal MDS codes with the (h, d)-optimal repair property for all
possible values of h and d simultaneously

Ye and Barg,
2017 [78]
(Chapter 4 of
this thesis)

gave explicit constructions of MDS codes with optimal access property and nearly
optimal sub-packetization l = rdn/re. This is the best known explicit construction of
optimal-access MDS codes

Sasidharan et
al., 2016 [51];
Li et al., 2017
[33]

independently gave explicit constructions of optimal-access MDS codes whose pa-
rameters (sub-packetization and field size) are exactly the same as the codes presented
in [78]. Constructions in both papers are very similar to the constructions in [78].
Both papers [51] and [33] appeared after the initial release of [78]

Wang et al.,
2016 [68]

gave an existence proof of MSR codes with sub-packetization l = rdn/(r+1)e, which
is the best known achievable sub-packetization value of MSR codes. For the case
r = 2, [68] gave an explicit construction of MSR codes with the best known sub-
packetization value l = 2dn/3e

Raviv et al.,
2017 [44]

For the case r = 3, gave an explicit construction of MDS codes with sub-packetization
l = rk/4 that can optimally repair any single systematic node. This construction can
be transformed into an MSR code with sub-packetization l = rdn/4e. This is the best
known sub-packetization value of explicit MSR codes for the case r = 3

Tamo et al.,
2014 [62]

showed that for an MDS code with the optimal access property, the sub-packetization
satisfies the lower bound l ≥ r(k−1)/r

Goparaju et
al., 2014 [22]

showed that the sub-packetization of an MSR code satisfies the lower bound l ≥
2
√

k/(2r−1), indicating that for a fixed r, the growth rate of l is super-polynomial in n
Guruswami
and Rawat,
2017 [24];
Rawat et al.,
2017 [48]

constructed MDS codes with nearly optimal repair bandwidth whose sub-
packetization level l is independent of n for a fixed r

Sasidharan et
al., 2017 [52]

For the case r|k and 2|r, gave an explicit construction of MSR code with d = n −
(r/2 + 1) and l = 1

2r
n/r. This is the best known explicit construction (in terms of l)

for this particular choice of parameters n, k and d

We remark that the (non-explicit) codes presented in [68] can only optimally repair
systematic nodes, and the sub-packetization value of their construction is l = rk/(r+1).
Applying a simple transformation, one can obtain the (non-explicit) MSR codes listed in
the table.

Improving repair bandwidth of well-known codes
The repair problem applies to any code family, and the ideas developed in the study of
regenerating codes proved useful in analyzing the repair bandwidth of Reed-Solomon
(RS) codes. Apart from theoretical interest, the problem of repairing RS codes has strong
connections to applications because, for instance, Facebook uses the (14, 10) RS code to
protect data on its storage clusters. The first paper to study repair of RS codes was [26].
This paper not only initiated this line of research, but also characterized essentially all
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possible linear repair schemes of scalar codes. Subsequently, [10,11,64,75] extended this
line of work. We address the question of repairing RS codes in Chapter 5 of this thesis.

Finally we note that binary MDS array codes such as EVEN-ODD and RDP codes
[3, 9] are widely used in storage systems, and the repair problem of these codes was
studied in [66, 71].

Communication efficient secret sharing
Secret sharing is one of the basic cryptographic primitives that enters a large number of
secure data storage or exchange protocols. One of the standard constructions of secret
sharing schemes, due to Shamir [55] essentially makes use of Reed-Solomon codes (or
MDS codes in a broad sense). Therefore, the idea of regenerating codes can naturally
be used to construct communication-efficient (low-bandwidth) secret sharing schemes
[2, 29, 30]. Although we do not investigate the secret sharing problem in this thesis,
we believe the ideas and techniques that we introduce might be useful for constructing
communication-efficient secret sharing schemes.

Regenerating codes with security constraints
Several works considered regenerating codes with adversaries [28,38,43,45]. One of the
most common adversarial settings for the repair problem assumes that a certain limited
amount of helper nodes are compromised, and provide incorrect information for the repair
task. Papers [38] and [43] considered the error resilience capability in the repair process
of a single node failure, and we will use this concept in Chapter 3.
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Chapter 3: Explicit constructions of high-rate MSR codes
for all parameters

In this chapter, we study high-rate MSR codes. Until recently, explicit constructions of
such codes in the literature were only available for the cases of at most 3 parity nodes.
Moreover, the only case analyzed in previous research was optimal repair of a single node
failure by accessing all the surviving nodes.

In this chapter, we resolve the construction problem of explicit high-rate MSR
codes. The results that we present constitute the first and the only known constructions
of such codes for general parameters in the literature. As our first result, we present an
explicit construction of (1, n−1)-optimal repair MDS codes, thereby addressing the most
basic case of MSR codes. Extending this result, for any r and n, we present two explicit
constructions of MDS array codes with the (h, d)-optimal repair property for all h ≤ r
and k ≤ d ≤ n − h simultaneously. Codes in the first family can be constructed over
any base field F as long as |F | ≥ sn, where s = lcm(1, 2, . . . , r). The encoding, decod-
ing, repair of failed nodes, and update procedures of these codes all have low complexity.
Codes in the second family have the optimal access property and can be constructed over
any base field F as long as |F | ≥ n + 1. Moreover, both code families have the optimal
error resilience capability when repairing failed nodes. We also construct several other
related families of MDS codes with the optimal repair property.

The results presented in this chapter were published in [77].

3.1 Introduction
The main objective of this chapter is to construct MDS codes with the optimal repair/access
property. Recall from Chapter 2 that an (n, k, l) MDS array code over the field F has the
(h, d)-optimal repair/access property if the repair of any h erased nodes using any d helper
nodes can be accomplished by downloading/accessing hdl

h+d−k symbols of F ; see (2.1).
Developing the above setting, we also consider an adversarial variant of the repair

problem, which assumes that a certain limited amount of helper nodes are compromised,
and provide incorrect information for the repair task. In [38, 43], the authors introduced
the error resilience capability in the repair process of a single node failure. We generalize
this concept to the problem of repairing multiple node failures. Given an (n, k, l) MDS
array code C, a nonnegative integer t, and two disjoint subsets F,R ⊆ [n] such that
|F| ≤ r and |R| ≥ k + 2t, define N(C,F,R, t) as the smallest number of symbols of F
one needs to download from nodes {Ci, i ∈ R} such that the erased nodes {Ci, i ∈ F} can
be recovered from these symbols as long as the number of erroneous nodes in {Ci, i ∈ R}
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is no larger than t. It is shown in [38, 43] that for any (n, k, l) MDS array code C,

N(C,F,R, t) ≥ |F||R|l
|F|+ |R| − 2t− k

, (3.1)

where t is a nonnegative integer and F,R ⊆ [n] are disjoint subsets such that |F| = 1 and
|R| ≥ k + 2t. The method in [38, 43] can be straightforwardly generalized to show that
(3.1) also holds for any F such that |F| ≤ r. We arrive at the following definition.

Definition 3.1. We say that an (n, k, l) MDS array code C has the universally error-
resilient (UER) (h, d)-optimal repair property if

N(C,F,R, t) =
h(d+ 2t)l

h+ d− k
(3.2)

for any nonnegative integer t and any two disjoint subsets F,R ⊆ [n] such that |F| = h
and |R| = d + 2t. When h = 1, we omit it from the notation. We define the UER (h, d)-
optimal access property in a similar way.

For k ≤ (n + 1)/2 (the low rate regime), MDS array codes with d-optimal repair
property were constructed in [42, 54, 58, 70], and MDS array codes with the UER d-
optimal repair property were constructed in [43]. For arbitrary code rate, [8] proved that
there exists a family of codes for which the bound (2.1) is asymptotically achieved when
l → ∞. For finite l and k > (n + 1)/2 (the high-rate regime) papers [6, 7, 37, 61, 68]
showed that for large enough base field F there exist MDS array codes that can optimally
repair any single systematic node failure using all the surviving nodes, and [67] showed
the same for all rather than only systematic nodes.

Among the very recent additions to the literature, [47] showed existence of MDS
array codes with d-optimal repair property for any single value of d in the range k ≤ d ≤
n − 1. Paper [21] showed existence of MDS array codes that can optimally repair any
single systematic node failure by accessing any subset of the surviving nodes as long as
the number of accessed nodes is no less than k. Finally [69] showed existence of MDS
array codes which can optimally repair any h systematic node failures using all the n− h
surviving nodes for any single value of h in the range 1 ≤ h ≤ r (some special cases for
h = 2 and 3 are discussed in [46]). These papers essentially rely on existential lemmas in
large finite fields, e.g., the Schwartz-Zippel lemma or Combinatorial Nullstellensatz. At
the same time, all the known explicit constructions in the high-rate regime are obtained
only for the case of at most 3 parity nodes, and are further limited to repairing h = 1
failed node by accessing all the n− 1 surviving nodes; see [37, 44, 61, 67, 68].

Remark 3.1. After the release of the results of this chapter (as arXiv:1604.00454, see
[77]), papers [33,51,52,78] proposed several explicit constructions of (1, n−1)-optimal
repair MDS codes with smaller sub-packetization for general values of n and r. At the
same time, there papers did not consider the general case of arbitrary h and d.
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3.1.1 Overview of the chapter
In this chapter, given any n and k, we present several explicit constructions of (n, k, l)
MDS array codes. Our constructions are grouped around two main code families. Codes
in the first family have the UER (h, d)-optimal repair property for all h ≤ r and k ≤ d ≤
n− h simultaneously, and the encoding, decoding, repair and update procedures of these
codes all have low complexity. Codes in the second family have the UER (h, d)-optimal
access property for all h ≤ r and k ≤ d ≤ n− h simultaneously, and can be constructed
over any base field F as long as |F | ≥ n+ 1.

This chapter is organized as follows. In Sections 3.3-3.6 we present the first code
family and its variants. Sections 3.7-3.10 are devoted to the second family and related
results. Finally, in Sect. 3.11 we present a new class of MDS array codes with optimal
repair and smaller l than the other constructions. In the next few paragraphs we give a
more detailed overview of our results.

In Section 3.3, we present our first construction of (n, k, l = rn) MDS array codes
with the optimal repair property using any field F of size |F | ≥ rn. The encoding, decod-
ing, and repair of a single failed node involve only simple operations with r × r matrices
over F , and thus have low complexity. An additional property of the proposed codes is
optimal update, i.e., the need to change only the minimum possible number of coordinates
in the parity nodes if one coordinate in systematic node is updated. In our construction
we rely on a (non-systematic) parity-check representation of the codes as opposed to the
systematic generator form used in most earlier works. This representation does not distin-
guish between systematic nodes and parity nodes, and leads naturally to the optimal repair
of all nodes. The parity-check form combined with the block Vandermonde structure [68]
and the idea of using r-ary expansions [6, 61] makes the explicit construction for larger
number of parity nodes possible. Note that exponentially large l is necessary for optimal
repair bandwidth: Indeed, according to a result of [22], l ≥ 2

√
k/(2r−1) is necessary for

any code with the optimal repair property. It is further shown in [62] that l ≥ r(k−1)/r for
any code with the optimal access property.

In Section 3.4, we extend the construction of Section 3.3 to obtain (n, k, l) MDS
array codes with the UER d-optimal repair property for any positive integers n, k, d, l
such that k ≤ d < n, l = (d+ 1− k)n using any field F of size |F | ≥ (d+ 1− k)n. We
first observe that we only need to know a 1/(d+ 1− k) fraction of data stored in each of
the surviving nodes Cj, j 6= i in order to recover the erased node Ci. We then use a novel
method to prove that these data form an (n − 1, d, l/(d + 1 − k)) MDS array code, and
thus establish the UER d-optimal repair property.

In Section 3.5, we present another extension, constructing MDS codes with d-
optimal repair property for several values of d simultaneously. Moreover, we show that
(n, k, rn) MDS array codes constructed in Section 3.3 will automatically have the d-
optimal repair property for all d such that (d + 1 − k)|(n − k). In Section 3.6 we fur-
ther extend our construction to obtain (n, k, l) MDS array codes with the UER (h, d)-
optimal repair property for all h ≤ r and k ≤ d ≤ n − h simultaneously, where
l = sn, s = lcm(1, 2, . . . , r). These codes also have the optimal update property. More-
over, the encoding, decoding, and repair procedures only require operations with matrices
of size not greater than n× n.
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In Section 3.7 we develop the idea of using permutation matrices [6, 61] to obtain
an explicit family of (n, n− r, rn−1) MDS array codes with the optimal access property,
which can be constructed over any base field F such that |F | ≥ n + 1. In Sections 3.8-
3.10, we combine the ideas in Section 3.7 and in Sections 3.4-3.6 to obtain an explicit
family of (n, k, l) MDS array codes with the UER (h, d)-optimal access property for all
h ≤ r and k ≤ d ≤ n − h simultaneously, where l = sn, s = lcm(1, 2, . . . , r). These
codes can be constructed over any base field F as long as |F | ≥ n+ 1.

In Section 3.11 we introduce a new class of MDS array codes, Generalized Reed-
Solomon Array Codes, and use their properties to extend the construction of Section 3.7
to obtain MDS array codes with the d-optimal repair property for several values of d
simultaneously. These codes also only require the underlying field size |F | ≥ n + 1 as
well as a smaller l compared to the other code families in this chapter.

3.2 General code construction

Given positive integers r and n, define an (n, k = n−r, l) array code C by setting in (2.3)

At,i = Ati, 0 ≤ t ≤ r − 1, 1 ≤ i ≤ n, (3.3)

where A1, A2, . . . , An are some l × l matrices. (We use the convention A0 = I.) The
specific code families in Section 3.3-3.11 are obtained by choosing different forms of the
matrices A1, A2, . . . , An.

3.3 Construction of MDS array codes with optimal re-
pair property

3.3.1 Code construction
Construction 3.1. Let F be a finite field of size |F | ≥ rn, and let l = rn. Let {λi,j : i ∈
[n], j = 0, 1, . . . , r − 1} be rn distinct elements in F. Consider the code family given by
(2.3)-(3.3), where we take

Ai =
l−1∑
a=0

λi,aieae
T
a , i = 1, . . . , n.

Here {ea : a = 0, 1, . . . , l − 1} is the standard basis of F l over F, and ai is the i-th digit
from the right in the representation of a in the r-ary form, a = (an, an−1, . . . , a1).

Each Ai is a diagonal matrix, where the diagonal entry in the a-th row is λi,ai .
Using this observation, we can write out the parity-check equations (2.3) coordinatewise.
Let ci,a denote the a-th coordinate of the column vector Ci for all a = 0, . . . , l − 1, i.e.,
Ci = (ci,0, ci,1, . . . , ci,l−1)T . We have

n∑
i=1

λti,aici,a = 0 (3.4)
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for all t = 0, . . . , r − 1 and a = 0, . . . , l − 1.

Theorem 3.1. Codes given by Construction 3.1 attain optimal repair bandwidth for re-
pairing any single failed node.

Proof. For u = 0, 1, . . . , r−1, let a(i, u) := (an, . . . , ai+1, u, ai−1, . . . , a1).We will show
that for any i ∈ [n] and a = 0, 1, . . . , l−1, the coordinates {ci,a(i,0), ci,a(i,1), . . . , ci,a(i,r−1)}
in Ci are functions of the following set of n− 1 elements of F :

µ
(a)
j,i :=

r−1∑
u=0

cj,a(i,u), j ∈ [n]\{i}. (3.5)

In other words, each surviving node only needs to transmit one scalar in F to recover r
coordinates in the failed node. Indeed, let us fix some u. Replacing a with a(i, u) in (3.4),
we obtain

λti,uci,a(i,u) +
∑
j 6=i

λtj,ajcj,a(i,u) = 0. (3.6)

Summing (3.6) over u = 0, 1, . . . , r− 1 and then writing the result in matrix form, we get
1 1 . . . 1

λi,0 λi,1 . . . λi,r−1

...
...

...
...

λr−1
i,0 λr−1

i,1 . . . λr−1
i,r−1



ci,a(i,0)

ci,a(i,1)

...
ci,a(i,r−1)

 = −


∑

j 6=i µ
(a)
j,i∑

j 6=i λj,ajµ
(a)
j,i

...∑
j 6=i λ

r−1
j,aj

µ
(a)
j,i

 . (3.7)

By construction λi,0, . . . , λi,r−1 are distinct, so we can solve this system for {ci,a(i,0), ci,a(i,1),
. . . , ci,a(i,r−1)} given the set of elements in (3.5).

To explain how this argument supports the overall repair of the node Ci, observe
that we can partition the l coordinates of Ci into rn−1 disjoint groups of size r each,
where the row indices of the coordinates within the same group differ only in the i-th
digit of their r-ary expansions. In other words, each group in the partition can be written
as {ci,a(i,0), ci,a(i,1), . . . , ci,a(i,r−1)} for some a ∈ {0, 1, . . . , l − 1}. As shown above, the
coordinates in each group can be repaired by downloading one element of the field F
from each of the n− 1 surviving nodes. Therefore, overall the node Ci can be repaired by
downloading rn−1 elements of F from each surviving node, achieving the optimal repair
bandwidth of (n− 1)(l/r), cf. (2.1).

The repair procedure of a single node has low complexity: indeed, according to
(3.7), it can be accomplished by operations with r × r matrices (rather than much larger
l × l matrices).

Theorem 3.2. The code C given by Construction 3.1 is MDS.

Proof. We write out the parity-check equations (2.3) coordinatewise. For all a = 0, 1, . . . ,
l − 1, we have 

1 1 . . . 1

λ1,a1 λ2,a2 . . . λn,an
...

...
...

...
λr−1

1,a1
λr−1

2,a2
. . . λr−1

n,an



c1,a

c2,a

...
cn,a

 = 0 (3.8)
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Clearly every r columns of the parity-check matrix in (3.8) have rank r, so any k out of
n elements in the set {c1,a, c2,a, . . . , cn,a} can recover the whole set. Since this holds for
all a = 0, 1, . . . , l − 1, we conclude that any k nodes of a codeword in C can recover the
whole codeword.

Remark 3.2. (Relation of Construction 1 to Reed-Solomon codes) The codewords of the
code C given by Construction 3.1 can be written as l × n matrices, where the columns
correspond to the nodes. Eq. (3.8) implies that for each a ∈ {0, 1, . . . , l − 1}, the row
indexed by a = (an, . . . , a1) of this matrix is encoded as a Reed-Solomon code with the
evaluation points λ1,a1 , λ2,a2 , . . . , λn,an independently of other rows (this corresponds to
the diagonal structure of the parity-check matrices Ai). Therefore, the MDS property of
the array code C is inherited immediately from the MDS property of RS codes. By choos-
ing the evaluation points of each row using the r-ary expansion idea, we also achieve the
optimal repair bandwidth.

3.3.2 Complexity of encoding, decoding, and updates
The code given by Construction 3.1 can be efficiently transformed into systematic form.
Without loss of generality we assume that the first k nodes are systematic (information)
nodes. By (3.8), for all a = 0, 1, . . . , l − 1, we have

1 1 . . . 1

λk+1,ak+1
λk+2,ak+2

. . . λk+r,ak+r
...

...
...

...
λr−1
k+1,ak+1

λr−1
k+2,ak+2

. . . λr−1
k+r,ak+r



ck+1,a

ck+2,a

...
ck+r,a



=−


1 1 . . . 1

λ1,a1 λ2,a2 . . . λk,ak
...

...
...

...
λr−1

1,a1
λr−1

2,a2
. . . λr−1

k,ak



c1,a

c2,a

...
ck,a

 .
(3.9)

Consequently, in the encoding process we do not need to invert an rl× rl matrix, instead,
we only need to invert r×rmatrices l times, gaining a factor of l2 in complexity. Similarly,
in the decoding process, if some r nodes are erased, then in order to recover them, we only
need to invert r × r matrices l times.

Another useful parameter of codes is update complexity [4]. On account of the
MDS property, in order to update the value of a stored element ci,a in an information
node, one needs to update at least one coordinate in every parity node [62]. From (3.9)
it is easy to see that for any i ∈ [k] and a = 0, . . . , l − 1, to update ci,a, we only need to
update ck+1,a, . . . , ck+r,a. Thus Construction 3.1 gives an optimal update code.
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3.4 Explicit MDS array codes with the UER d-optimal
repair property

The general construction in (2.3)-(3.3) can also be used to construct an (n, k = n − r, l)
MDS array code C with the UER d-optimal repair property, k ≤ d ≤ n− 1.

Construction 3.2. Let F be a finite field of size |F | ≥ sn, where s = d + 1 − k. Let
{λi,j}i∈[n],j=0,1,...,s−1 be sn distinct elements in F. Consider the code family given by (2.3)-
(3.3), where l = sn and

Ai =
l−1∑
a=0

λi,aieae
T
a , i = 1, . . . , n.

Here {ea : a = 0, 1, . . . , l − 1} is the standard basis of F l over F and ai is the i-th digit
from the right in the representation of a in the s-ary form, a = (an, an−1, . . . , a1).

Define a(i, u) and ci,a in the same way as in Sect. 3.3.

Theorem 3.3. The code C given by Construction 3.2 is an MDS code.

Proof. Same as the proof of Theorem 3.2.

By the same arguments as in the previous section, C also has low-complexity en-
coding, decoding, and the optimal update property.

Let us show that the code C has the UER d-optimal repair property. First recall a
simple property of GRS codes.

Remark 3.3. The minimum distance of the code GRS(n, k,Ω, v) is n− k + 1. Note that
the projection of the GRS code on any subset of coordinates Ω′ ⊂ Ω, |Ω′| ≥ k, is itself a
GRS code. In particular, its distance equals |Ω′| − k + 1.

Theorem 3.4. The code C given by Construction 3.2 has the UER d-optimal repair prop-
erty.

Proof. Without loss of generality, we consider the case of repairing C1. Let

µ
(a)
j,1 :=

s−1∑
u=0

cj,a(1,u), j ∈ {2, 3, . . . , n}. (3.10)

Using arguments similar to those that lead to (3.7), we obtain
1 1 . . . 1

λ1,0 λ1,1 . . . λ1,s−1

λ2
1,0 λ2

1,1 . . . λ2
1,s−1

...
...

...
...

λr−1
1,0 λr−1

1,1 . . . λr−1
1,s−1




c1,a(1,0)

c1,a(1,1)

...
c1,a(1,s−1)

 = −


1 1 . . . 1

λ2,a2 λ3,a3 . . . λn,an
λ2

2,a2
λ2

3,a3
. . . λ2

n,an
...

...
...

...
λr−1

2,a2
λr−1

3,a3
. . . λr−1

n,an




µ

(a)
2,1

µ
(a)
3,1
...

µ
(a)
n,1

 .
(3.11)
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Define polynomials p0(x) =
∏s−1

u=0(x − λ1,u), and pi(x) = xip0(x) for i = 0, 1, . . . , r −
s − 1. We have proved the case of d = n − 1 in the previous section, so here we only
consider the case when d < n− 1, and so r− s− 1 ≥ 0. Since the degree of pi(x) is less
than r for all i = 0, 1, . . . , r − s− 1, we can write

pi(x) =
r−1∑
j=0

pi,jx
j.

Define the (r − s)× r matrix

P =


p0,0 p0,1 . . . p0,r−1

p1,0 p1,1 . . . p1,r−1

...
...

...
...

pr−s−1,0 pr−s−1,1 . . . pr−s−1,r−1

 .
Since

P


1 1 . . . 1

λ1,0 λ1,1 . . . λ1,s−1

λ2
1,0 λ2

1,1 . . . λ2
1,s−1

...
...

...
...

λr−1
1,0 λr−1

1,1 . . . λr−1
1,s−1



=


p0(λ1,0) p0(λ1,1) . . . p0(λ1,s−1)

p1(λ1,0) p1(λ1,1) . . . p1(λ1,s−1)
...

...
...

...
pr−s−1(λ1,0) pr−s−1(λ1,1) . . . pr−s−1(λ1,s−1)

 = 0,

together with (3.11), we have

P


1 1 . . . 1

λ2,a2 λ3,a3 . . . λn,an
λ2

2,a2
λ2

3,a3
. . . λ2

n,an
...

...
...

...
λr−1

2,a2
λr−1

3,a3
. . . λr−1

n,an




µ

(a)
2,1

µ
(a)
3,1
...

µ
(a)
n,1

 = 0. (3.12)

Note that

P


1 1 . . . 1

λ2,a2 λ3,a3 . . . λn,an
λ2

2,a2
λ2

3,a3
. . . λ2

n,an
...

...
...

...
λr−1

2,a2
λr−1

3,a3
. . . λr−1

n,an

 =


p0(λ2,a2) p0(λ3,a3) . . . p0(λn,an)

p1(λ2,a2) p1(λ3,a3) . . . p1(λn,an)
...

...
...

...
pr−s−1(λ2,a2) pr−s−1(λ3,a3) . . . pr−s−1(λn,an)


18



=


p0(λ2,a2) p0(λ3,a3) . . . p0(λn,an)

p0(λ2,a2)λ2,a2 p0(λ3,a3)λ3,a3 . . . p0(λn,an)λn,an
...

...
...

...
p0(λ2,a2)λ

r−s−1
2,a2

p0(λ3,a3)λ
r−s−1
3,a3

. . . p0(λn,an)λr−s−1
n,an

 .

Moreover, p0(λ2,a2), p0(λ3,a3), . . . , p0(λn,an) are all nonzero. Thus (µ
(a)
2,1, µ

(a)
3,1, . . . , µ

(a)
n,1)

forms a Generalized Reed-Solomon code of length n− 1 and dimension d. According to
Remark 3.3, given a nonnegative integer t such that d + 2t < n, any d + 2t out of n − 1

elements in {µ(a)
2,1, µ

(a)
3,1, . . . , µ

(a)
n,1} suffice to recover the whole set as long as the number of

erroneous elements in the d + 2t elements is not greater than t. Moreover, (3.11) implies
that {c1,a(1,0), c1,a(1,1), . . . , c1,a(1,s−1)} can be determined by {µ(a)

2,1, µ
(a)
3,1, . . . , µ

(a)
n,1}. Conse-

quently, we can recover C1 by accessing any d+ 2t surviving nodes and downloading the
total of (d + 2t)l/s symbols of F from these nodes as long as the number of erroneous
nodes among the helper nodes is not greater than t. This completes the proof.

3.5 MDS array codes with the UER d-optimal repair prop-
erty for several values of d simultaneously

In the previous two sections, we constructed MDS array codes with the UER d-optimal
repair property for a single value of d. In this section we give a simple extension of
the previous constructions to make the code have the UER d-optimal repair property for
several values of d simultaneously. Let n, k,m, d1, d2, . . . , dm be any positive integers
such that k ≤ d1, . . . , dm < n. We will show that by replacing s in Construction 3.2 with
the value

s = lcm(d1 + 1− k, d2 + 1− k, . . . , dm + 1− k)

we obtain an (n, k, l = sn) MDS array code C with the UER di-optimal repair property
for all i = 1, . . . ,m simultaneously.

By Theorem 3.3, C is an MDS array code. In the next theorem we establish results
about the repair properties of the code C.

Theorem 3.5. The code C has the UER di-optimal repair property for any i ∈ [m].

Proof. Let si = di + 1 − k. Similarly to the proof of Theorem 3.4, we only prove the
case of repairing C1. Since si|s, we can partition the set {0, 1, . . . , s−1} into s/si subsets
I1, I2, . . . , Is/si , such that |Ij| = si for any j ∈ [s/si], where [s/si] = {1, 2, . . . , s/si}.
Following the proof of Theorem 3.4, we can show that for any j ∈ [s/si], a ∈ {0, 1, . . . , l−
1}, any nonnegative integer t such that di + 2t < n, and any R ⊆ {2, 3, . . . , n} of
size |R| = di + 2t, we can recover {c1,a(1,u) : u ∈ Ij} by acquiring the set of values
{
∑

u∈Ij cv,a(1,u) : v ∈ R} as long as the number of erroneous nodes in {Ci : i ∈ R} is
not greater than t. Therefore, we can recover C1 by accessing any di + 2t surviving nodes
and downloading the total of (di + 2t)l/si symbols of F from these nodes as long as the
number of erroneous nodes in the helper nodes is not greater than t. This completes the
proof.
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Corollary 3.6. The (n, k, (n − k)n) MDS array code given by Construction 3.1 has the
UER d-optimal repair property if (d+ 1− k)|(n− k).

Example 3.1. A (k + 4, k, 4k+4) MDS array code given by Construction 3.1 will auto-
matically have the UER (k + 1)-optimal repair property. A (k + 6, k, 6k+6) MDS array
code given by Construction 3.1 has both the UER (k+1)-optimal repair property and the
UER (k + 2)-optimal repair property.

3.6 Explicit MDS array codes with the UER (h, d)-optimal
repair property for all h ≤ r and k ≤ d ≤ n − h si-
multaneously

Given integers n and r, we construct a family of (n, k = n− r, l) MDS array codes with
the UER (h, d)-optimal repair property for all h ≤ r and k ≤ d ≤ n− h simultaneously.

Construction 3.3. Let F be a finite field of size |F | ≥ sn, where s = lcm(1, 2, . . . , r). Let
{λi,j}i∈[n],j=0,1,...,s−1 be sn distinct elements in F. Let l = sn. Consider the code family
given by (2.3)-(3.3), where the matrices Ai are given by

Ai =
l−1∑
a=0

λi,aieae
T
a , i = 1, . . . , n. (3.13)

Here {ea : a = 0, 1, . . . , l − 1} is the standard basis of F l over F and ai is defined in
Construction 3.2.

Note that the difference between this construction and Construction 3.2 is in the
choice of s. Define a(i, u) and ci,a in the same way as in Sect. 3.3.

Clearly, the code C given by Construction 3.3 is an MDS array code.

Theorem 3.7. The code C given by Construction 3.3 has the UER (h, d)-optimal repair
property for any h ≤ r and k ≤ d ≤ n− h.

Proof. By Theorem 3.5, C has the UER d-optimal repair property for any k ≤ d ≤
n − 1. Now we show how to optimally repair h erasures. Without loss of general-
ity, suppose that nodes CF = {C1, C2, . . . , Ch} are erased and we access nodes CR =
{Ch+1, Ch+2, . . . , Ch+d+2t} to recover CF. Moreover, suppose that there are at most t
erroneous nodes in CR.

To show the claim about the repair property of C, we present a scheme that repairs
the codes C1, C2, . . . , Ch one by one. More specifically, we first use CR to repair C1,
then use CR ∪ C1 to repair C2, then use CR ∪ C1 ∪ C2 to repair C3, . . . , and finally use
CR ∪ C1 ∪ C2 ∪ · · · ∪ Ch−1 to repair Ch. Let si = i+ d− k.

When repairing Ci, we partition the set {0, 1, . . . , s− 1} into s/si subsets I(i)
1 , I(i)

2 ,

. . . , I(i)
s/si

, where I(i)
j = {(j − 1)si, (j − 1)si + 1, . . . , (j − 1)si + si − 1} for j ∈
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[s/si]. By the proof of Theorem 3.4, in order to recover Ci it suffices to know the val-
ues {

∑
u∈I(i)j

cv,a(i,u) : ai = 0, j ∈ [s/si], v ∈ R ∪ [i − 1]}. Since we have already
recovered C1, . . . , Ci−1, to recover Ci we only need to download the set of values{ ∑

u∈I(i)j

cv,a(i,u) : ai = 0, j ∈ [s/si], v ∈ R
}

from CR. Thus, in order to recover CF, it suffices to know the values of elements in the
set

Λh =
h⋃
i=1

{ ∑
u∈I(i)j

cv,a(i,u) : ai = 0, j ∈ [s/si], v ∈ R
}
.

In order to determine the values of these elements, we only need to download a spanning
set for Λh over F from CR.

Define Ωi,v = {
∑

u∈I(i)j
cv,a(i,u) : ai = 0, j ∈ [s/si]} for i ∈ [h], v ∈ R and

Λ1,v = Ω1,v,Λi,v = Λi−1,v ∪ Ωi,v for i = 2, 3, . . . , h, v ∈ R. Given a ∈ {0, 1, . . . , l − 1}
and i ∈ [n], define the set Ψ(a, i) = {w : w ∈ [i − 1], sw|aw}. For i = 2, 3, . . . , h, q =
0, . . . , i− 1 define

Γi,v,q =
{ ∑
u∈I(i)j

cv,a(i,u) : ai = 0, |Ψ(a, i)| = q, j ∈ [s/si]
}
.

Let B1,v = Ω1,v, Bi,v = Bi−1,v ∪ Γi,v,0, i = 2, 3, . . . , h. We use induction on i to show
that Λi,v ⊆ span(Bi,v) for every i ∈ [h] and v ∈ R. Clearly this claim holds for i = 1.
Now suppose that it holds for i = m and consider the case i = m + 1. By the induction
hypothesis, Λm,v ⊆ span(Bm,v), so it suffices to prove that

Λm,v ∪ Ωm+1,v ⊆ span(Λm,v ∪ Γm+1,v,0).

Note that Ωm+1,v =
⋃m
q=0 Γm+1,v,q. Thus we only need to prove that Γm+1,v,q ⊆ span(Λm,v∪

Γm+1,v,0) for all q = 0, 1, . . . ,m. We prove this claim by induction on q. This claim triv-
ially holds for q = 0. Now suppose that it holds for some q ≥ 1 and consider the case
q + 1. Given any a satisfying that am+1 = 0 and Ψ(a,m + 1), |Ψ(a,m + 1)| = q + 1,
suppose that w ∈ Ψ(a,m+ 1), namely, sw|aw, then |Ψ(a(w, aw + u),m+ 1)| = q for all
u ∈ [sw − 1]. By the induction hypothesis,∑

u2∈I(m+1)
j

cv,a(w,m+1,aw+u1,u2) ∈ span(Λm,v ∪ Γm+1,v,0)

for all u1 ∈ [sw − 1] and j ∈ [s/sm+1], where a(i1, i2, u1, u2) is obtained from a by
replacing ai1 with u1 and ai2 with u2. Therefore,

sw−1∑
u1=1

∑
u2∈I(m+1)

j

cv,a(w,m+1,aw+u1,u2) ∈ span (Λm,v ∪ Γm+1,v,0). (3.14)
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Note that
sw−1∑
u1=0

cv,a(w,m+1,aw+u1,u2) ∈ Ωw,v ⊆ Λm,v

for any u2 ∈ {0, 1, . . . , s− 1}. As a result,

sw−1∑
u1=0

∑
u2∈I(m+1)

j

cv,a(w,m+1,aw+u1,u2) ∈ span(Λm,v). (3.15)

Subtracting (3.14) from (3.15), we obtain∑
u∈I(m+1)

j

cv,a(m+1,u) ∈ span(Λm,v ∪ Γm+1,v,0)

for any j ∈ [s/sm+1]. This establishes the induction step of the second induction and
proves that Ωm+1,v ⊆ span(Λm,v ∪ Γm+1,v,0). Therefore, Λm+1,v ⊆ span(Bm+1,v) for any
v ∈ R, and this completes the proof of the first induction.

Since Λh =
⋃
v∈R Λh,v and Λh,v ⊆ span(Bh,v) for every v ∈ R, to recover CF we

only need to download
⋃
v∈RBh,v from CR.

Finally, we find the size of the set Bh,v for some fixed v ∈ R. Since Bi,v = Bi−1,v ∪
Γi,v,0, we have |Bi,v| ≤ |Bi−1,v| + |Γi,v,0|. We will prove that |Bi,v| ≤ il

si
by induction on

i. By definition |B1,v| = |Ω1,v| = l
s1
. Suppose that the claim holds for i = m and consider

the case i = m+ 1. It is easy to see that

|Γm+1,v,0| =
s1 − 1

s1

s2 − 1

s2

· · · sm − 1

sm

l

sm+1

=
d− k

d+ 1− k
d+ 1− k
d+ 2− k

· · · d+m− 1− k
d+m− k

l

d+m+ 1− k

=
d− k

d+m− k
l

d+m+ 1− k
.

By the induction hypothesis,

|Bm+1,v| ≤ |Bm,v|+ |Γm+1,v,0|

≤ ml

d+m− k
+

d− k
d+m− k

l

d+m+ 1− k

=
(m+ 1)l

d+m+ 1− k
=

(m+ 1)l

sm+1

.

This establishes the induction step and proves that |Bh,v| ≤ hl
d+h−k for any v ∈ R. We

obtain ∣∣∣ ⋃
v∈R

Bh,v

∣∣∣ ≤ hl|R|
d+ h− k

=
h(d+ 2t)l

d+ h− k
.

The proof is complete.
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Since we set A1, A2, . . . , An to be diagonal matrices in Construction 3.3, the en-
coding and repair processes involve only operations with r × r matrices over F, and the
code C given by Construction 3.3 also has the optimal update property. Moreover, by the
proof of Theorem 3.4 and Theorem 3.7, we can see that the repair process only requires
operations with matrices of size no larger than n× n.

3.7 Optimal-repair MDS array codes with optimal access
property over small fields

In this section we construct an explicit family of MDS array codes with optimal access
property. As above, we rely on the general construction (2.3)-(3.3) to construct an (n, k =
n− r, l = rn−1) array code. However in this section we take An to be the identity matrix
and take A1, . . . , An−1 to be permutation matrices rather than diagonal matrices. This
choice is beneficial in two ways: first, we are able to reduce the field size from rn in
earlier construction to any field F of size |F | ≥ n + 1, while also obtaining the optimal
access property.

Construction 3.4. Let F be a finite field of size |F | ≥ n + 1 and let γ be its primitive
element. Let l = rn−1. Consider the code family given by (2.3)-(3.3), where the matrices
A1, A2, . . . , An are given by

Ai =
l−1∑
a=0

λi,aieae
T
a(i,ai⊕1), i = 1, 2, ..., n− 1,

An = I,

where ⊕ denotes addition modulo r, λi,0 = γi for all i ∈ [n − 1] and λi,u = 1 for
all i ∈ [n − 1] and all u ∈ {1, 2, . . . , r − 1}. Here {ea : a = 0, 1, . . . , l − 1} is the
standard basis of F l over F, ai is the i-th digit from the right in the representation of
a = (an−1, an−2, . . . , a1) in the r-ary form, and a(i, u) is defined in the same way as in
Sect. 3.3.

Remark 3.4. Since
∏r−1

u=0 λi,u = γi, we have

r−1∏
u=0

λi,u 6=
r−1∏
u=0

λj,u for any i, j ∈ [n− 1], i 6= j.

r−1∏
u=0

λi,u 6= 1 for any i ∈ [n− 1].

(3.16)

It will be clear from the proofs below that the values of {λi,u : i ∈ [n], u = 0, 1, . . . , r−1}
in Construction 3.4 can be assigned arbitrarily as long as (3.16) is satisfied.

Clearly, for t = 0, 1, . . . , r − 1 and i ∈ [n− 1], we have

Ati =
l−1∑
a=0

βi,ai,teae
T
a(i,ai⊕t),
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where βi,u,0 = 1 and βi,u,t =
∏u⊕(t−1)

v=u λi,v for t = 1, . . . , r − 1 and u = 0, 1, . . . , r − 1.

Theorem 3.8. The code C given by Construction 3.4 has the optimal access property.

Proof. Let us write out the parity-check equations (2.3) coordinatewise:

cn,a +
n−1∑
i=1

βi,ai,tci,a(i,ai⊕t) = 0 for all t = 0, 1, . . . , r − 1 and a = 0, . . . , l − 1, (3.17)

where ci,a is defined in Sect. 3.3. First suppose we want to repair Ci for some i ∈ [n− 1].
We will show that we only need to access the values in the set {cj,a : ai = 0} from Cj for
every j 6= i. Indeed, by (3.17), we have

βi,ai,tci,a(i,ai⊕t) = −cn,a −
∑
j 6=i,n

βj,aj ,tcj,a(j,aj⊕t). (3.18)

From (3.18) we see that the values {ci,a : ai = t} can be determined by {cj,a : j 6= i, ai =
0}. Since (3.18) holds for every t = 0, 1, . . . , r− 1, we see that for i ∈ [n− 1], Ci can be
determined by the values {cj,a : j 6= i, ai = 0}.

Now consider the case when the failed node is Cn. By (3.17), we know that the
values in the set {cn,a : a1 ⊕ a2 ⊕ · · · ⊕ an−1 = r 	 t} can be determined by {cj,a :
j 6= n, a1 ⊕ a2 ⊕ · · · ⊕ an−1 = 0}, where 	 denotes subtraction modulo r. Since (3.17)
holds for every t = 0, 1, . . . , r− 1, we conclude that Cn can be determined by {cj,a : j 6=
n, a1 ⊕ a2 ⊕ · · · ⊕ an−1 = 0}. This completes the proof.

Our next task is to establish the MDS property of C. The code C is MDS if and only
if every r × r block submatrix of

I I . . . I

A1 A2 . . . An
...

...
...

...
Ar−1

1 Ar−1
2 . . . Ar−1

n


is invertible. A criterion for this is given in the following lemma.

Lemma 3.9 (Block Vandermonde matrix). Let B1, . . . , Br be l × l matrices such that
BiBj = BjBi for all i, j ∈ [r]. The matrix

Mr =


I I . . . I

B1 B2 . . . Br

...
...

...
...

Br−1
1 Br−1

2 . . . Br−1
r


is invertible if and only if Bi −Bj is invertible for all i 6= j.
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Proof. Suppose that Bi−Bj is invertible for any i, j ∈ [r], i 6= j. Clearly the claim holds
for r = 2. Now suppose that it holds for r = s. Consider the matrix

Ms+1 =


I I . . . I

B1 B2 . . . Bs+1

...
...

...
...

Bs
1 Bs

2 . . . Bs
s+1

 .
For i = s, s − 1, . . . , 1, multiply the i-th “row” on the left by B1 and subtract from the
(i+1)-th row. Note that these operations do not change the rank of Ms+1 since they leave
its row space unchanged. Next, subtract the first column from all the other columns (this
clears the first row without changing the column space and hence the rank of Ms+1) to
obtain

M ′
s+1 =


I 0 . . . 0

0 B2 −B1 . . . Bs+1 −B1

...
...

...
...

0 (B2 −B1)Bs−1
2 . . . (Bs+1 −B1)Bs−1

s+1



=


I 0 . . . 0

0 B2 −B1 . . . Bs+1 −B1

...
...

...
...

0 Bs−1
2 (B2 −B1) . . . Bs−1

s+1(Bs+1 −B1)


(here we relied on the commuting condition BiBj = BjBi). Since the matrices Bi −
B1, i = 2, . . . , s + 1 are invertible, we can multiply the i-th column on the right by
(Bi −B1)−1 without changing the rank. We conclude that the matrix

M
′′

s+1 =


I 0 . . . 0

0 I . . . I
...

...
...

...
0 Bs−1

2 . . . Bs−1
s+1


has the same rank as Ms+1. By the induction hypothesis M ′′

s+1 is invertible, and so is
Ms+1. This completes the induction step.

Conversely, suppose that Mr is invertible. For r = 2 this implies that the matrix
B1 − B2 is invertible. Now assume that the claim holds for r = s and consider the case
r = s + 1. Since Ms+1 is invertible, M ′

s+1 is also invertible. Assume that Bi − B1 is
singular for some i ∈ {2, 3, . . . , s+ 1}, then

0

Bi −B1

...
Bs−1
i (Bi −B1)

 =


0

I
...

Bs−1
i

 (Bi −B1)
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contains linearly dependent columns, and thus M ′
s+1 is singular, contradiction. Thus

Bi − B1 is invertible for any i 6= 1. Consequently M ′′
s+1 is invertible. By the induction

assumption we conclude that Bi −Bj is invertible for any i, j ∈ [s+ 1], i 6= j.

Theorem 3.10. The code C given by Construction 3.4 is an MDS array code.

Proof. On account of Lemma 3.9, the claim will follow if we prove that for any i 6=
j, AiAj = AjAi and that the matrices Ai − Aj are invertible. The matrix An = I, so we
need to verify that for any i, j ∈ [n− 1], i 6= j,

AiAj = AjAi =
l−1∑
a=0

λi,aiλj,ajeae
T
a(i,j,ai⊕1,aj⊕1),

where a(i, j, u, v) is obtained from a by replacing ai with u and aj with v. This establishes
the commuting part.

Now suppose thatAix = Ajx for some i, j ∈ [n−1], i 6= j and some vector x ∈ F l.

Let x =
∑l−1

a=0 xaea, where xa ∈ F. Then

Aix =
l−1∑
a=0

λi,aixa(i,ai⊕1)ea,

Ajx =
l−1∑
a=0

λj,ajxa(j,aj⊕1)ea.

Therefore,
λi,aixa(i,ai⊕1) = λj,ajxa(j,aj⊕1) (3.19)

for every a = 0, 1, . . . , l− 1. Since λi,u 6= 0 for all i ∈ [n− 1] and all u = 0, 1, . . . , r− 1,
we can write (3.19) as

xa =
λj,aj
λi,ai	1

xa(i,j,ai	1,aj⊕1). (3.20)

Repeating this step, we obtain

xa =
λj,aj
λi,ai	1

xa(i,j,ai	1,aj⊕1)

=
λj,aj
λi,ai	1

λj,aj⊕1

λi,ai	2

xa(i,j,ai	2,aj⊕2)

= · · · =
λj,aj
λi,ai	1

λj,aj⊕1

λi,ai	2

. . .
λj,aj⊕(r−1)

λi,ai	r
xa(i,j,ai	r,aj⊕r)

=

∏r−1
u=0 λj,u∏r−1
u=0 λi,u

xa

for every a = 0, 1, . . . , l − 1. By (3.16), xa = 0 for all a = 0, . . . , l − 1. Thus (Ai −
Aj)x = 0 implies that x = 0. We conclude that the matrices Ai−Aj are invertible for all
i, j ∈ [n− 1], i 6= j.
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Now suppose that Aix = Anx = x for some i ∈ [n − 1] and some vector x ∈ F l.
Then we have

λi,aixa(i,ai⊕1) = xa. (3.21)

Thus

xa = λi,aixa(i,ai⊕1) = λi,aiλi,ai⊕1xa(i,ai⊕2)

= · · · = λi,aiλi,ai⊕1 · · ·λi,ai⊕(r−1)xa(i,ai⊕r)

=
( r−1∏
u=0

λi,u
)
xa.

By (3.16), xa = 0 for all a = 0, . . . , l − 1. So x = 0 and ker(Ai − An) = 0, or, in other
words the matrix Ai − An is invertible for all i ∈ [n− 1]. This completes the proof.

3.7.1 Complexity of encoding and decoding
The encoding and decoding procedures solve the same problem, namely, determining the
values of r nodes from the known values of k nodes. Without loss of generality, suppose
that we want to determine Ck+1, . . . , Ck+r from C1, C2, . . . , Ck. Note that (3.17) contains
rl equations and we have rl unknown elements here. Since the code is MDS, the unknown
values are uniquely determined.

Now let us show that instead of inverting an rl × rl matrix, we only need to invert
matrices of size rr+1×rr+1. Observe that, given any b1, b2, . . . , bk ∈ {0, 1, . . . , r−1}, the
rr+1 unknown elements {ci,a : i = k+ 1, k+ 2, . . . , k+ r, a1 = b1, a2 = b2, . . . , ak = bk}
appear in exactly rr+1 equations in (3.17), and these rr+1 equations only contain these
rr+1 unknown elements. For this reason, we can find these rr+1 unknown elements by
inverting an rr+1 × rr+1 matrix.

3.8 Explicit MDS array codes with the UER d-optimal
access property

Construction 3.5. Let F be a finite field of size |F | ≥ n + 1 and let γ be a primitive
element in F. Let s = d+k−1 and l = sn. Consider the code given by (2.3)-(3.3), where
the matrices A1, A2, . . . , An are given by

Ai =
l−1∑
a=0

λi,aieae
T
a(i,ai⊕1), i = 1, . . . , n,

where ⊕ denotes addition modulo s, λi,0 = γi for all i ∈ [n] and λi,u = 1 for all i ∈ [n]
and all u ∈ [s− 1]. Here {ea : a = 0, 1, . . . , l − 1} is the standard basis of F l over F, ai
is the i-th digit from the right in the representation of a = (an, an−1, . . . , a1) in the s-ary
form, and a(i, u) is defined in the same way as in Sect. 3.3.

Theorem 3.11. The code C given by Construction 3.5 is an MDS array code.
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Proof. Paralleling the proof of Theorem 3.10, we can show that for any i 6= j, AiAj =
AjAi and that the matrix Ai − Aj is invertible. Thus C is an MDS array code.

Theorem 3.12. The code C given by Construction 3.5 has the UER d-optimal access
property.

Proof. Suppose we want to repairCi.By an argument similar to the proof of Theorem 3.8,
we only need to know the values {cj,a : ai = 0} fromCj for every j 6= i.Define a function
g : {0, 1, . . . , l/s−1} → {0, 1, . . . , l−1} as g(a) = (an−1, an−2, . . . , ai, 0, ai−1, ai−2, . . . ,
a1), where a is an element in {0, 1, . . . , l/s − 1} with the s-ary expansion (0, an−1,

an−2, . . . , a1).Define the column vectorC(i)
j ∈ F l/s asC(i)

j = (cj,g(0), cj,g(1), . . . , cj,g(l/s−1))
T

for all j 6= i. In order to prove the theorem, we only need to prove that (C
(i)
1 , C

(i)
2 , . . . , C

(i)
i−1,

C
(i)
i+1, C

(i)
i+2, . . . , C

(i)
n ) forms an (n− 1, d, sn−1) MDS array code.

Notice that Asj =
∑l−1

a=0(
∏s−1

u=0 λj,u)eae
T
a(j,aj⊕s) = γjI for all j ∈ [n]. Note also that

n∑
j=1

Amj Cj = 0,
n∑
j=1

Am+s
j Cj = 0

for all m = 0, 1, . . . , r − s− 1. Multiplying the first equation by γi and then subtracting
it from the second one, we obtain∑

j 6=i

(γj − γi)Amj Cj = 0, m = 0, 1, . . . , r − s− 1. (3.22)

Let e(l/s)
0 , e

(l/s)
1 , . . . , e

(l/s)
l/s−1 be the standard basis vectors of F l/s over F. Define l/s × l/s

matrix

Bj =

l/s−1∑
a=0

λj,aje
(l/s)
a (e

(l/s)
a(j,aj⊕1))

T for j ∈ [i− 1],

Bj =

l/s−1∑
a=0

λj+1,aje
(l/s)
a (e

(l/s)
a(j,aj⊕1))

T for i ≤ j < n.

It is easy to see that (3.22) implies

i−1∑
j=1

(γj − γi)Bm
j C

(i)
j +

n−1∑
j=i

(γj+1 − γi)Bm
j C

(i)
j+1 = 0

for all m = 0, 1, . . . , r − s− 1.

As in the proof of Theorem 3.10, we can show that for any j1, j2 ∈ [n − 1], j1 6= j2,
Bj1Bj2 = Bj2Bj1 and that the matrixBj1−Bj2 is invertible. Moreover, r−s = n−1−d.
Thus 

I I . . . I

B1 B2 . . . Bn−1

...
...

...
...

Br−s−1
1 Br−s−1

2 . . . Br−s−1
n−1


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is a parity-check matrix of an (n − 1, d, sn−1) MDS array code. Multiplying each block
column with a nonzero constant does not change the MDS property. As a result, the set of
vectors (C

(i)
1 , C

(i)
2 , . . . , C

(i)
i−1, C

(i)
i+1, C

(i)
i+2, . . . , C

(i)
n ) forms an (n − 1, d, sn−1) MDS array

code. Therefore, if we access any d+2t out of n−1 vectors in the set (C
(i)
1 , C

(i)
2 , . . . , C

(i)
i−1,

C
(i)
i+1, C

(i)
i+2, . . . , C

(i)
n ), we will be able to recover the whole set and further recover Ci as

long as the number of erroneous nodes among the helper nodes is not greater than t. This
completes the proof.

3.9 An MDS array code family with the UER d-optimal
access property for several values of d simultaneously

In this section we present a simple extension of the code family in Construction 3.5 which
gives MDS array codes with the UER d-optimal access property for several values of d
simultaneously. More specifically, given any positive integers n, k,m, d1, d2, . . . , dm such
that k ≤ d1, . . . , dm < n, we will show that by replacing s in Construction 3.5 with the
value

s = lcm(d1 + 1− k, d2 + 1− k, . . . , dm + 1− k)

we obtain an (n, k, l = sn) MDS array code C with the UER di-optimal access property
for all i = 1, . . . ,m simultaneously.

On account of Theorem 3.10, we already know that C is an MDS array code. It
remains to show that it has the UER di-optimal access property for any i ∈ [m].

Theorem 3.13. The code C has the UER di-optimal access property for any i ∈ [m].

Proof. Given any i ∈ [m], we show that C has the UER di-optimal access property. Let
si = di + 1− k.

Without loss of generality, we only consider the case of repairing Cn. By an argu-
ment similar to the proof of Theorem 3.8, we only need to know the values {cj,a : an =
0, si, 2si, . . . , (s/si − 1)si} from Cj for every j ∈ [n− 1]. Define a function

g : {0, 1, . . . , l/si − 1} → {0, 1, . . . , l − 1}
a 7→ (sian, an−1, an−2, . . . , a1),

where a is an element in {0, 1, . . . , l/si−1}with s-ary expansion (an, an−1, an−2, . . . , a1).

Define the column vector C(n)
j ∈ F l/si as C(n)

j = (cj,g(0), cj,g(1), . . . , cj,g(l/si−1))
T for all

j ∈ [n− 1]. As mentioned above, {C(n)
j : j ∈ [n− 1]} contains the information we need

to recover Cn. Let us prove that (C
(n)
1 , C

(n)
2 , . . . , C

(n)
n−1) forms an (n − 1, d, l/si) MDS

array code.
Observe that

n∑
j=1

Amj Cj = 0,
n∑
j=1

Am+si
j Cj = 0
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for all m = 0, 1, . . . , r− si − 1. Multiplying the first equation on the left by Asin and then
subtracting it from the second one, we obtain

n−1∑
j=1

(Asij − Asin )Amj Cj = 0, m = 0, 1, . . . , r − si − 1. (3.23)

Let e(l/si)
0 , e

(l/si)
1 , . . . , e

(l/si)
l/si−1 be the standard basis vectors of F l/si over F. Define l/si ×

l/si matrices

Bj =

l/si−1∑
a=0

λj,aje
(l/si)
a (e

(l/si)
a(j,aj⊕1))

T for j ∈ [n− 1],

Bn =

l/si−1∑
a=0

( sian+si−1∏
q=sian

λn,q

)
e(l/si)
a (e

(l/si)
a(n,(sian⊕si)/si))

T .

It is easy to see that (3.23) implies the equality

n−1∑
j=1

(Bsi
j −Bn)Bm

j C
(n)
j = 0, m = 0, 1, . . . , r − si − 1.

Now suppose that Bsi
j x = Bnx for some j ∈ [n − 1] and some vector x ∈ F l/si . Let

x =
∑l/si−1

a=0 xae
(l/si)
a , where xa ∈ F. Then

Bsi
j x =

l/si−1∑
a=0

( aj⊕(si−1)∏
q=aj

λj,q

)
xa(j,aj⊕si)e

(l/si)
a ,

Bnx =

l/si−1∑
a=0

( sian+si−1∏
q=sian

λn,q

)
xa(n,(sian⊕si)/si)e

(l/si)
a .

Therefore,

( aj⊕(si−1)∏
q=aj

λj,q

)
xa(j,aj⊕si) =

( sian+si−1∏
q=sian

λn,q

)
xa(n,(sian⊕si)/si) (3.24)

for every a = 0, 1, . . . , l/si − 1. Let us rewrite (3.24) as

xa =

∏sian+si−1
q=sian

λn,q∏aj	1
q=aj	si λj,q

xa(j,n,aj	si,(sian⊕si)/si).

Repeating this step, we obtain

xa =

∏sian⊕(s−1)
q=sian

λn,q∏aj	1
q=aj	s λj,q

xa(j,n,aj	s,(sian⊕s)/si)
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=

∏s−1
u=0 λn,u∏s−1
u=0 λj,u

xa

=
γn

γj
xa

for every a = 0, 1, . . . , l − 1. Since γj 6= γn for any j ∈ [n − 1], we have xa = 0 for all
a = 0, . . . , l− 1. Thus (Bsi

j −Bn)x = 0 implies that x = 0. We conclude that the matrix
Bsi
j −Bn is invertible for all j ∈ [n− 1].

Following the proof of Theorem 3.10, we can show that
I I . . . I

B1 B2 . . . Bn−1

...
...

...
...

Br−si−1
1 Br−si−1

2 . . . Br−si−1
n−1


is the parity-check matrix of an (n − 1, di, l/si) MDS array code. Multiplying each
block column with an invertible matrix does not change the MDS property. As a re-
sult, (C

(n)
1 , C

(n)
2 , . . . , C

(n)
n−1) forms an (n − 1, di, l/si) MDS array code. Therefore, if we

access any di + 2t out of n− 1 vectors in the set (C
(n)
1 , C

(n)
2 , . . . , C

(n)
n−1), we will be able

to recover the whole set and further recover Cn as long as the number of erroneous nodes
among the helper nodes is not greater than t. This completes the proof.

3.10 Explicit MDS array codes with the UER (h, d)-optimal
access property for all h ≤ r and k ≤ d ≤ n − h si-
multaneously

Given integers n and r, we construct a family of (n, k = n− r, l) MDS array codes with
the UER (h, d)-optimal access property for all h ≤ r and k ≤ d ≤ n− h simultaneously.

Construction 3.6. Let F be a finite field of size |F | ≥ n + 1 and let γ be its primitive
element. Let s = lcm(1, 2, . . . , r) and l = sn. Consider the code family given by (2.3)-
(3.3), where the matrices Ai are given by

Ai =
l−1∑
a=0

λi,aieae
T
a(i,ai⊕1), i = 1, . . . , n,

where ⊕ denotes addition modulo s, λi,0 = γi for all i ∈ [n] and λi,u = 1 for all i ∈ [n]
and all u ∈ [s− 1]. Here {ea : a = 0, 1, . . . , l − 1} is the standard basis of F l over F, ai
is the i-th digit from the right in the representation of a = (an, an−1, . . . , a1) in the s-ary
form, and a(i, u) is defined in the same way as in Sect. 3.3.

Note that the difference between this construction and Construction 3.5 is in the
choice of s.

Clearly, the code C given by Construction 3.6 is an MDS array code.
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Theorem 3.14. The code C given by Construction 3.6 has the UER (h, d)-optimal access
property for all h ≤ r and k ≤ d ≤ n− h simultaneously.

Proof. By Theorem 3.13, C has the UER d-optimal access property for any k ≤ d ≤
n − 1. Now we show how to optimally repair h erasures. Without loss of general-
ity, suppose that nodes CF = {C1, C2, . . . , Ch} are erased and we access nodes CR =
{Ch+1, Ch+2, . . . , Ch+d+2t} to recover CF. Moreover, suppose that there are at most t
erroneous nodes in CR.

As before, we repair C1, C2, . . . , Ch one by one. More specifically, we first use CR

to repair C1, then CR ∪ C1 to repair C2, then CR ∪ C1 ∪ C2 to repair C3, . . . , and finally
we use CR ∪ C1 ∪ C2 ∪ · · · ∪ Ch−1 to repair Ch. Let si = i + d− k. When repairing Ci,
according to the proof of Theorem 3.13, we only need to know the values {cv,a : ai =
0, si, 2si, . . . , (s/si−1)si, v ∈ R

⋃
[i−1]}. Since we have already recoveredC1, . . . , Ci−1,

we need to access only the values {cv,a : ai = 0, si, 2si, . . . , (s/si − 1)si, v ∈ R} from
CR to recover Ci. Thus in order to recover CF, we need to access the set of elements
Λh =

⋃h
i=1{cv,a : ai = 0, si, 2si, . . . , (s/si − 1)si, v ∈ R}.

Consider the set

Ωj,v = {cv,a : aj = 0, sj, 2sj, . . . , (s/sj − 1)sj}

for j ∈ [h] and v ∈ R. Let Λ1,v = Ω1,v,Λj+1,v = Λj,v ∪ Ωj+1,v, j = 1, . . . , h − 1. We
prove by induction on j that |Λj,v| = jl

j+d−k . Clearly this is true for j = 1. Suppose that
the claim is true for j = m and consider the case j = m + 1. By definition, we have
|Λm+1,v| = |Λm,v| + |Ωm+1,v| − |Λm,v ∩ Ωm+1,v|. By the induction hypothesis, |Λm,v| =
ml

m+d−k . Therefore,

|Λm,v

⋂
Ωm+1,v| =

ml

m+ d− k
1

m+ 1 + d− k
.

Thus

|Λm+1,v| =
ml

m+ d− k
+

l

m+ 1 + d− k
− ml

m+ d− k
1

m+ 1 + d− k

=
(m+ 1)l

m+ 1 + d− k
.

This concludes the induction step and proves that |Λh,v| = hl
d+h−k for any v ∈ R. Thus

|Λh| = |R||Λh,v| = h(d+2t)l
d+h−k . The proof is complete.

3.11 Generalized Reed-Solomon Array codes and d-optimal
repair property

In this section we construct a family of MDS array codes with the d-optimal repair prop-
erty that requires a smaller underlying field size compared to Construction 3.2 and a
smaller l compared to both Construction 3.2 and Construction 3.5. The construction
forms an extension of Construction 3.4. As a first step, we introduce a new class of MDS
array codes.
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3.11.1 Generalized Reed-Solomon Array Codes
Definition 3.2. Let A = {A1, A2, . . . , An} be a set of l × l matrices over F such that
AiAj = AjAi for all i, j ∈ [n] and the matrices Ai − Aj are invertible for all i 6=
j. Let V = {V1, V2, . . . , Vn} be a set of l × l invertible matrices with entries in F
such that AiVj = VjAi for any i, j ∈ [n]. A Generalized Reed-Solomon array code
GRSA(n, k,A,V) is defined as the (n, k, l) array code with the generator matrix

G =


V1 V2 . . . Vn

A1V1 A2V2 . . . AnVn

A2
1V1 A2

2V2 . . . A2
nVn

...
...

...
...

Ak−1
1 V1 Ak−1

2 V2 . . . Ak−1
n Vn

 .

More specifically,

GRSA(n, k,A,V) = {(C1, C2, . . . , Cn) : [CT
1 C

T
2 . . . C

T
n ]

=[MT
1 M

T
2 . . .M

T
k ]G for some M1, . . . ,Mk ∈ F l}.

(3.25)

If V1 = V2 = · · · = Vn = I, then we call this code a Reed-Solomon array code and
denote it as RSA(n, k,A).

Lemma 3.9 implies that GRSA codes have the MDS property. We need a descrip-
tion of its dual code, which is analogous to the scalar case (Theorem 10.4 in [35, p.304]).

Theorem 3.15. Given a Generalized Reed-Solomon array code GRSA(n, k = n−r,A,V)
with A and V satisfying the conditions in Def. 3.2, there is a set W = {W1,W2, . . . ,Wn}
of l × l invertible matrices such that AiWj = WjAi for any i, j ∈ [n], and

GRSA(n, k,A,V) = {(C1, C2, . . . , Cn) : H[CT
1 C

T
2 . . . C

T
n ]T = 0}, (3.26)

where

H =


W1 W2 . . . Wn

A1W1 A2W2 . . . AnWn

A2
1W1 A2

2W2 . . . A2
nWn

...
...

...
...

Ar−1
1 W1 Ar−1

2 W2 . . . Ar−1
n Wn

 .

This theorem follows from the following lemma.

Lemma 3.16. Let A1, A2, . . . , An be l × l matrices with entries in F such that AiAj =
AjAi for all i, j ∈ [n] and the matrices Ai−Aj are invertible for all i 6= j. The following
equation holds: 

I I . . . I

A1 A2 . . . An

A2
1 A2

2 . . . A2
n

...
...

...
...

An−2
1 An−2

2 . . . An−2
n




B1

B2

...
Bn

 = 0, (3.27)
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where Bi = (
∏

j 6=i(Aj − Ai))−1, i = 1, . . . , n

Proof. Note that the theory of determinants as well as Cramer’s rule extend with no extra
effort over arbitrary commutative rings with identity [13, Sect. 11.4]. Let R be a commu-
tative ring containing I, A1, A2, . . . , An. Given a square block matrix partitioned into l× l
square submatrices in R, we view it as a square matrix with entries in R and define the
determinant accordingly. Clearly, for any i ∈ [n] and any nonnegative integer t, Ati ∈ R.
We use Cramer’s rule to solve the following equation

I I . . . I

A1 A2 . . . An−1

A2
1 A2

2 . . . A2
n−1

...
...

...
...

An−2
1 An−2

2 . . . An−2
n−1




X1

X2

...
Xn−1

 = −


I

An

A2
n

...
An−2
n


The expression for the Vandermonde determinant also holds in commutative rings, and

we can easily find thatXi = (
∏

j 6=n(Aj−An))(
∏

j 6=i(Aj−Ai))−1.Moving the right-hand
side of the equation above to the left and then multiplying on the right by Bn, we obtain
(3.27).

Proof of Theorem 3.15. Set Wi = V −1
i (
∏

j 6=i(Aj −Ai))−1. Notice the fact that if an l× l
matrixA and an l×l invertible matrixB satisfyAB = BA, thenAB−1 = B−1BAB−1 =
B−1ABB−1 = B−1A. Thus WiAj = AjWi for any i, j ∈ [n].

Denote the codes defined in (3.25) and (3.26) as C1 and C2 respectively. By (3.27),
HGT = 0. Thus C1 ⊆ C2. Since G and H both have full rank, C1 and C2 have the
same dimension kl as a vector space over F. Consequently C1 = C2. This completes the
proof.

3.11.2 A family of MDS array codes with the d-optimal repair prop-
erty

In this section we use the results about GRSA codes to construct a family of (n, k =
n− r, l) MDS array codes with the d-optimal repair property.

Construction 3.7. Let F be a finite field of size |F | ≥ n + 1 and let γ be a primitive
element in F. Let s = d + 1 − k and l = sn−1. Consider the code family given by
(2.3)-(3.3), where the matrices A1, A2, . . . , An are given by

Ai =
l−1∑
a=0

λi,aieae
T
a(i,ai⊕1), i = 1, 2, ..., n− 1,

An = I,

where ⊕ denotes addition modulo s, λi,0 = γi for all i ∈ [n − 1] and λi,u = 1 for
all i ∈ [n − 1] and all u ∈ {1, 2, . . . , s − 1}. Here {ea : a = 0, 1, . . . , l − 1} is the
standard basis of F l over F, ai is the i-th digit from the right in the representation of
a = (an−1, an−2, . . . , a1) in the s-ary form, and a(i, u) is defined in the same way as in
Sect. 3.3.
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Theorem 3.17. The code C given by Construction 3.7 is an MDS array code.

Proof. The proof parallels the proof of Theorem 3.10: we show that for any i 6= j,
AiAj = AjAi and that the matrixAi−Aj is invertible. Thus, C is an MDS array code.

Theorem 3.18. The code C given by Construction 3.7 has the d-optimal repair property.

Proof. By Theorem 3.15, C = GRSA(n, k,A,V) with A = {A1, A2, . . . , An} and V =
{V1, . . . , Vn},where Vi = (

∏
j 6=i(Aj−Ai))−1. Suppose that we want to useCi2 , Ci3 , . . . , Cid+1

to repair Ci1 . Let ∆ = {i1, i2, . . . , id+1}. Clearly (Ci1 , Ci2 , . . . , Cid+1
) is a Generalized

Reed-Solomon Array code GRSA(d+ 1, k,A∆,V∆), where A∆ = {Ai1 , Ai2 , . . . , Aid+1
}

and V∆ = {Vi1 , Vi2 , . . . , Vid+1
}. By Theorem 3.15, there is a set of l× l invertible matrices

W∆ = {W1,W2, . . . ,Wd+1} such that
I I . . . I

Ai1 Ai2 . . . Aid+1

A2
i1

A2
i2

. . . A2
id+1

...
...

...
...

As−1
i1

As−1
i2

. . . As−1
id+1




W1Ci1
W2Ci2

...
Wd+1Cid+1

 = 0, (3.28)

Using the same method as in the proof of Theorem 3.8, we can show that W1Ci1 can be
recovered by downloading a vector in F l/s from each of the nodes Ci2 , Ci3 , . . . , Cid+1

.
Since W1 is invertible, Ci1 can be recovered by the same set of vectors. This shows that
C has the d-optimal repair property.

3.11.3 Extension to d-optimal repair property for several values of d
simultaneously

Now we give a simple extension of the previous construction to make the code have d-
optimal repair property for several values of d simultaneously. More specifically, give any
positive integers n, k,m, d1, d2, . . . , dm such that k ≤ d1, . . . , dm < n, we will show that
by replacing s in Construction 3.7 with the value

s = lcm(d1 + 1− k, d2 + 1− k, . . . , dm + 1− k),

we will obtain an (n, k, l = sn−1) MDS array code C with di-optimal repair property for
all i = 1, . . . ,m simultaneously.

By the proof of Theorem 3.10, we know that C is an MDS array code. Now we
prove that C has di-optimal repair property for any i ∈ [m].

Theorem 3.19. The code C has di-optimal repair property for any i ∈ [m].

Proof. Given any i ∈ [m], we show that C has di-optimal repair property. Let si = di +
1− k. Without loss of generality, we only prove the case when we use C2, C3, . . . , Cdi+1

to repair C1. (The proof below needs some slight modifications for the case of repairing
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Cn, we omit this special case here.) Following exactly the same steps in the proof of
Theorem 3.18, we obtain

I I . . . I

A1 A2 . . . Adi+1

A2
1 A2

2 . . . A2
di+1

...
...

...
...

Asi−1
1 Asi−1

2 . . . Asi−1
di+1




W1C1

W2C2

...
Wdi+1Cdi+1

 = 0, (3.29)

where W1,W2, . . . ,Wdi+1 are some l × l invertible matrices. Let C ′i = WiCi. Let c′i,a
denote the a-th coordinate of the column vector C ′i for all a = 0, . . . , l − 1. We can write
out the parity-check equations (3.29) coordinatewise:

di+1∑
i=1

βi,ai,tc
′
i,a(i,ai⊕t) = 0

for all t = 0,1, . . . , si − 1 and a = 0, . . . , l − 1,

(3.30)

where ⊕ denotes addition modulo s, βi,u,0 = 1 and βi,u,t =
∏u⊕(t−1)

v=u λi,v for t =
1, . . . , si−1.Clearly (3.30) indicates that for any t = 0, 1, . . . , s−1, the coordinates {c′1,a :
ai = t, t⊕1, t⊕2 . . . , t⊕(si−1)} can be determined by {c′j,a : j = 2, 3, . . . , di+1, ai = t}.
Thus C ′1 can be determined by {cj,a : j = 2, 3, . . . , di + 1, ai = 0, si, 2si, 3si, . . . , s− si}.
Since si|s, we conclude that C ′1 and thus C1 itself can be recovered by downloading a
vector in F l/si from each of the nodes C2, C3, . . . , Cdi+1. This completes the proof.

Corollary 3.20. The (n, k, (n − k)n−1) MDS array code given by Construction 3.4 has
d-optimal repair property if (d+ 1− k)|(n− k).

3.12 Concluding remarks
In this chapter we resolved the previously open problem of constructing explicit high-rate
MSR codes. The intuition behind our approach to constructing explicit MSR codes is as
follows. Most earlier constructions relied on the systematic generator representation of
the codes. It is well known that the MDS property of the code leads to the requirement
that every square submatrix of the systematic generator matrix be invertible. This is a
rather stringent condition which the previous papers handled by resorting to some form
of random coding arguments. In our construction we rely on a (non-systematic) parity-
check representation of the codes. In this form, the MDS property only requires that
every r × r submatrix is invertible, which is a much easier condition to fulfill. Moreover,
since we use the block Vandermonde structure (see (2.3) and (3.3)), this condition can be
easily satisfied by setting Ai − Aj to be invertible and AiAj = AjAi for all i 6= j (see
Lemma 3.9). This simple observation leads us to the explicit constructions of MSR codes.
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Chapter 4: Explicit constructions of optimal-access MDS
codes with nearly optimal sub-packetization

In this chapter we consider codes that, in addition to the minimum possible repair band-
width, also have the optimal access property. As a reminder, this means that the data
accessed at the helper nodes is the same as the data downloaded for the purposes of
repair. We use the same notation as before, so MDS codes with (h, d)-optimal access
perform repair of h nodes by addressing d helper nodes. Optimal access is a more re-
strictive condition, and the penalty for attaining it is the increased value of minimum
possible sub-packetization l. In particular, according to [62], a necessary condition for
(1, n− 1)-optimal access is given by the bound l ≥ r(k−1)/r.

In the previous chapter, for any n and r, we presented an explicit construction of
optimal-access MDS codes with sub-packetization l = rn−1. In this chapter, we take
up the question of reducing the sub-packetization value l to make it approach the afore-
mentioned lower bound. We construct an explicit family of optimal-access codes with
l = rdn/re, which differs from the optimal value by at most a factor of r2. These codes can
be constructed over any finite field F as long as |F | ≥ rdn/re, and afford low-complexity
encoding and decoding procedures.

We also define a version of the repair problem that bridges the context of regener-
ating codes and codes with locality constraints (LRC codes), which we call group repair
with optimal access. In this variation, we assume that the set of n = sm nodes is par-
titioned into m repair groups of size s, and require that the amount of accessed data for
repair is the smallest possible whenever the d = s + k − 1 helper nodes include all the
other s− 1 nodes from the same group as the failed node. For this problem, we construct
a family of codes with the group optimal access property. These codes can be constructed
over any field F of size |F | ≥ n, and also afford low-complexity encoding and decoding
procedures.

The results of this chapter were published in [78].

4.1 Introduction

4.1.1 Optimal-access codes
The subclass of optimal-access codes is of particular interest among optimal-repair codes.
Existence and constructions of optimal-access codes were studied in several recent works.
We mention the results of [67] which established existence of optimal-access MDS array
codes with l = rk and [47, 49] which proved existence of such codes with l = rdn/re,
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although both results require a large-size finite field F. As for explicit constructions, until
recently they were known only for r = 2, 3. Namely, [67] constructed codes with l = rk

over the field F3 if r = 2 and F4 if r = 3 (independent of k). The paper [44] constructed
systematic optimal-access MDS array codes1 with l = rk/r, where k is a multiple of r.
The size of the underlying field for [44] is at least k/2 + 1 for r = 2 and 2k + 1 for
r = 3. In Chapter 3, we proposed a family of optimal-access MDS array codes with
sub-packetization l = rn−1, and this is the only explicit family of optimal-access MDS
array codes for r > 3 known in the literature.

In this work we present an explicit construction of optimal-access MDS array codes
for any r and n with sub-packetization l = rdn/re, which differs from the lower bound
by a factor of at most r2. These codes can be constructed over any finite field F as long
as |F | ≥ rdn/re, and the encoding and decoding procedures of these codes have low
complexity.

Remark 4.1. The repair problem has been studied for a relatively short time, so the
related terminology is still somewhat unsettled. For instance, [47, 49] refer to codes
with l = rdn/re as codes with polynomial sub-packetization. This implicitly assumes the
asymptotic regime of k = Rn, i.e., of codes with a fixed rate R bounded away from 1. At
the same time, arguably the case of r = o(n), for instance constant r, is more important
for the repair problem because the encoded data in storage are likely to include only
a small number of parity checks. In this regime the above value of l is an exponential
function of the block length. To cover all the possible cases, we prefer not to use the terms
polynomial or exponential to describe the growth rate of the parameter l.

Remark 4.2. As we already mentioned in Section 2.3, after the release of this chapter on
arXiv (as [78]), Sasidharan et al. [51] and later Li et al. [33] independently gave explicit
constructions of optimal-access MDS codes whose parameters (sub-packetization and
field size) are the same as the codes presented in this chapter. Moreover, constructions in
both papers are very similar to our construction.

4.1.2 Repair groups and node regeneration: Group optimal access
property

In this chapter, we also introduce a coding problem for distributed storage that bridges
codes with locality, in particular, LRCs (e.g., [36, 57, 59]) and regenerating codes. To
motivate it, consider an architecture of distributed storage under which n = sm storage
nodes are partitioned into m local groups (we assume throughout that s ≤ r). Nodes
in the same group are logically better connected (for instance, they are geographically
close to each other and thus have stable links between them), while the connectivity be-
tween nodes from different groups fluctuates smoothly over time (for instance, relying
on a slowly fading channel). When a node fails, the system seeks to perform repair by
accessing the minimum possible amount of data on a set of helper nodes. Efficient repair

1 [44] also considered relaxing systematic optimal-access to systematic optimal-repair, and gave an
explicit construction of codes for r = 3 and k a multiple of 4 with sub-packetization l = rk/(r+1) over the
field of size linear in k.
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also suggests that the helper nodes are chosen from a subset of nodes most easily reach-
able from the failed node. Since the failed node can always connect to all the nodes in
the same group as itself, an MDS array code with the (s, d = s + k − 1)-group optimal
access property can minimize the disk I/O and network traffic during the repair of any
single failed node for such systems.

This motivates the following definition.

Definition 4.1. Let C be an (n = sm, k, l) MDS array code whose nodes are partitioned
into m groups of size s each. We say that C has the (s, d = s + k − 1)-group optimal
access property if N(C, {i},Ri) = dl/s for any i and any set of helper nodes Ri of size d
that contains all the s− 1 nodes from the same group as i.

By definition, repair of the failed node in the group repair mode can be performed by
accessing the volume of data that attains the lower bound (2.1), justifying the optimality
qualifier.

In this chapter, we construct an explicit family of (n = sm, k = n − r, l = sm)
MDS array codes with the (s, d = s+ k − 1)-group optimal access property for any s,m
and r such that r ≥ s. These codes can be constructed over any finite field F as long as
|F | ≥ n, and are equipped with low-complexity encoding and decoding. Our construction
is flexible in the sense that it allows any number m of local groups and any number s ≤ r
of storage nodes in a local group.

Remark 4.3. We note that coding designs that address data regeneration based on dif-
ferent conditions at different helper nodes, based on access conditions or transient un-
availability (degraded reads or hard errors) have been considered in a number of earlier
works. For instance, in [77] we constructed codes that support repair of one or more
failed nodes by accessing any set of d helper nodes in the same encoding block. A different
line of research that establishes conditions under which helper node selection improves
the storage/bandwidth tradeoff was recently developed in [1]. Yet another link between
regenerating codes and LRC codes is the “local regeneration” problem [27, 32], where
the local repair of the code is also required to have small bandwidth.

4.1.3 Organization of the chapter
The code constructions are presented in the next section. Section 4.3 contains a proof of
the MDS property of the constructed codes, and Section 4.4 gives a proof of the group
optimal access property.

4.2 Code construction
The code constructions in this chapter are still defined by designing matrices At,i, 0 ≤
t ≤ r − 1, 1 ≤ i ≤ n in (2.3). For an l × l matrix A, let A(a, b) be the entry in the a-th
row and b-th column, 0 ≤ a, b ≤ l − 1. Below we use the convention that 00 = 1.

Construction 4.1. Let s, r and m be positive integers such that s ≤ r ≤ sm, let n =
sm, l = sm. Let F be a finite field of size |F | ≥ n, let {λi}i∈[n] be n distinct elements in
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F, and let γ ∈ F\{0, 1}. Given an integer a, 0 ≤ a ≤ l − 1, we write its s-ary expansion
as a = (am, am−1, . . . , a1).

For v ∈ [m] and 0 ≤ u ≤ s−1, define a(v, u) := (am, am−1, . . . , av+1, u, av−1, av−2,
. . . , a1). For v ∈ [m], u = 0, 1, . . . , s− 1, and t = 0, 1, . . . , r − 1, define an l × l matrix
At,(v−1)s+u+1 as follows: for 0 ≤ a, b ≤ l − 1, let

At,(v−1)s+u+1(a, b) =



λt(v−1)s+u+1 if av < u, b = a,

γλt(v−1)s+u+1 if av > u, b = a,

λt(v−1)s+w+1 if av = u, b = a(v, w)

for some w ∈ {0, 1, . . . , s− 1},
0 otherwise.

(4.1)

We construct an (n, k = n− r, l) array code defined by (2.3), where the matrices At,i are
defined in (4.1).

We will show that the code C defined by Construction 4.1 has the MDS property. In
the case of s = r it also has the optimal access property, while if s < r it has the group
optimal access property.

In Section 4.3 we give an example of the above matrices for s = r = 3 and m = 2
and show that the obtained codes have the MDS property.

In Construction 4.1 we assumed that the code length is a product of two numbers,
s and m. While this assumption leads to a simple uniform formulation of the code con-
struction, it can be easily lifted at the expense of a more detailed notation. Namely, the
following construction extends the case of s = r in Construction 4.1 to cover all possible
code length n and has essentially the same properties as the codes defined above.

Construction 4.2. Let n = rm+ r′ and l = rm+1, where r > 0,m ≥ 0 are integers and
1 ≤ r′ ≤ r−1. Let F be a finite field of size |F | ≥ r(m+1), let {λi, i = 1, . . . , r(m+1)}
be distinct elements of F, and let γ ∈ F\{0, 1}. Given an integer a between 0 and l − 1,
we write its r-ary expansion as a = (am+1, am, . . . , a1). For v ∈ {1, . . . ,m + 1} and
0 ≤ u ≤ r − 1, define a(v, u) := (am+1, am, . . . , av+1, u, av−1, av−2 . . . , a1).

For v ∈ [m], u = 0, 1, . . . , r − 1, and t = 0, 1, . . . , r − 1, define an l × l matrix
At,(v−1)r+u+1 as follows: for 0 ≤ a, b ≤ l − 1, let

At,(v−1)r+u+1(a, b) =



λt(v−1)r+u+1 if av < u, b = a,

γλt(v−1)r+u+1 if av > u, b = a,

λt(v−1)r+w+1 if av = u, b = a(v, w)

for some w ∈ {0, 1, . . . , r − 1},
0 otherwise.

(4.2)

For u = 0, 1, . . . , r′ − 1, and t = 0, 1, . . . , r − 1, define an l × l matrix At,mr+u+1 as
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follows: for 0 ≤ a, b ≤ l − 1, let

At,mr+u+1(a, b) =



λtmr+u+1 if am+1 < u, b = a,

γλtmr+u+1 if am+1 > u, b = a,

λtmr+w+1 if am+1 = u, b = a(m+ 1, w)

for some w ∈ {0, 1, . . . , r − 1},
0 otherwise.

(4.3)

We construct an (n = rm + r′, k = n− r, l = rm+1) array code defined by (2.3), where
the matrices At,i, 0 ≤ t ≤ r − 1, 1 ≤ i ≤ n are defined in (4.2)-(4.3).

4.3 The MDS property
In this section we show that the code family given by Construction 4.1 has the MDS
property. We start with an example that shows the working of the definition (2.3)-(4.1) as
well as provides intuition for the proof of the MDS property given below in this section.
While the notation in the proof makes it difficult to glean an intuitive picture, this example
serves to visualize the ideas behind the construction and the proof.

4.3.1 Example
Take s = r = 3 and m = 2 in Construction 4.1, so n = 6 and l = 9. Let us write out the
9× 9 matrices At,i, i = 1, . . . , 6. The code presented below can be realized over any field
of size |F | ≥ n = 6, so the smallest field is F7.

At,1 =



λt1 λt2 λt3 0 0 0 0 0 0

0 γλt1 0 0 0 0 0 0 0

0 0 γλt1 0 0 0 0 0 0

0 0 0 λt1 λt2 λt3 0 0 0

0 0 0 0 γλt1 0 0 0 0

0 0 0 0 0 γλt1 0 0 0

0 0 0 0 0 0 λt1 λt2 λt3
0 0 0 0 0 0 0 γλt1 0

0 0 0 0 0 0 0 0 γλt1


,
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At,2 =



λt2 0 0 0 0 0 0 0 0

λt1 λt2 λt3 0 0 0 0 0 0

0 0 γλt2 0 0 0 0 0 0

0 0 0 λt2 0 0 0 0 0

0 0 0 λt1 λt2 λt3 0 0 0

0 0 0 0 0 γλt2 0 0 0

0 0 0 0 0 0 λt2 0 0

0 0 0 0 0 0 λt1 λt2 λt3
0 0 0 0 0 0 0 0 γλt2


,

At,3 =



λt3 0 0 0 0 0 0 0 0

0 λt3 0 0 0 0 0 0 0

λt1 λt2 λt3 0 0 0 0 0 0

0 0 0 λt3 0 0 0 0 0

0 0 0 0 λt3 0 0 0 0

0 0 0 λt1 λt2 λt3 0 0 0

0 0 0 0 0 0 λt3 0 0

0 0 0 0 0 0 0 λt3 0

0 0 0 0 0 0 λt1 λt2 λt3


,

At,4 =



λt4 0 0 λt5 0 0 λt6 0 0

0 λt4 0 0 λt5 0 0 λt6 0

0 0 λt4 0 0 λt5 0 0 λt6
0 0 0 γλt4 0 0 0 0 0

0 0 0 0 γλt4 0 0 0 0

0 0 0 0 0 γλt4 0 0 0

0 0 0 0 0 0 γλt4 0 0

0 0 0 0 0 0 0 γλt4 0

0 0 0 0 0 0 0 0 γλt4


,

At,5 =



λt5 0 0 0 0 0 0 0 0

0 λt5 0 0 0 0 0 0 0

0 0 λt5 0 0 0 0 0 0

λt4 0 0 λt5 0 0 λt6 0 0

0 λt4 0 0 λt5 0 0 λt6 0

0 0 λt4 0 0 λt5 0 0 λt6
0 0 0 0 0 0 γλt5 0 0

0 0 0 0 0 0 0 γλt5 0

0 0 0 0 0 0 0 0 γλt5


,
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At,6 =



λt6 0 0 0 0 0 0 0 0

0 λt6 0 0 0 0 0 0 0

0 0 λt6 0 0 0 0 0 0

0 0 0 λt6 0 0 0 0 0

0 0 0 0 λt6 0 0 0 0

0 0 0 0 0 λt6 0 0 0

λt4 0 0 λt5 0 0 λt6 0 0

0 λt4 0 0 λt5 0 0 λt6 0

0 0 λt4 0 0 λt5 0 0 λt6


.

The MDS property states that any 3× 3 block submatrix of the 3× 6 block matrix
formed of the matrices At,i is invertible (here the blocks are l × l matrices). Below we
show this for the matrix

B =

 A0,1 A0,2 A0,5

A1,1 A1,2 A1,5

A2,1 A2,2 A2,5


Let X is a column vector in F 27 with coordinates X = (x0, x1, . . . , x26)T . Our claim will
follow if we prove that BX = 0 implies that X = 0.

We proceed as follows. For convenience of presentation, let us permute the rows of
B to obtain a matrix D = PB, where the permutation matrix (Pij)0≤i,j≤26 is given by

Pij = 1 iff i = (j − j mod 9)/9 + 3(j mod 9). (4.4)

It is clear that P has exactly one 1 in each row, so it is indeed a permutation on {0, 1, . . . , 26}
(note that multiplication by a full-rank matrix does not change the rank). We will prove
that the matrix D has a trivial null space, i.e., DX = 0 implies that X = 0. Writing out
the condition DX = 0 explicitly, we obtain a system of equations given in (4.5).

Since the coefficients λi are distinct for different i, the highlighted rows in (4.5)
imply that x2 = x8 = x11 = x17 = x20 = x26 = 0. Eliminating these variables from
(4.5), we obtain a system of equations given by (4.6).

Looking at the first three rows in (4.6), and treating x1 + x9 as a new variable, we
conclude that x0 = x1 + x9 = x18 = 0. Similarly, the second group of three rows implies
that γx1 + x9 = x10 = x19 = 0. Taking these results together and noting that γ 6= 1, we
see that x0 = x1 = x18 = x9 = x10 = x19 = 0.
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

1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

λ1 λ2 λ3 0 0 0 0 0 0 λ2 0 0 0 0 0 0 0 0 λ5 0 0 0 0 0 0 0 0

λ2
1 λ2

2 λ2
3 0 0 0 0 0 0 λ2

2 0 0 0 0 0 0 0 0 λ2
5 0 0 0 0 0 0 0 0

0 γ 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 γλ1 0 0 0 0 0 0 0 λ1 λ2 λ3 0 0 0 0 0 0 0 λ5 0 0 0 0 0 0 0

0 γλ2
1 0 0 0 0 0 0 0 λ2

1 λ
2
2 λ2

3 0 0 0 0 0 0 0 λ2
5 0 0 0 0 0 0 0

0 0 γ 0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 γλ1 0 0 0 0 0 0 0 0 γλ2 0 0 0 0 0 0 0 0 λ5 0 0 0 0 0 0

0 0 γλ2
1 0 0 0 0 0 0 0 0 γλ2

2 0 0 0 0 0 0 0 0 λ2
5 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 λ1 λ2 λ3 0 0 0 0 0 0 λ2 0 0 0 0 0 λ4 0 0 λ5 0 0 λ6 0 0

0 0 0 λ2
1 λ2

2 λ2
3 0 0 0 0 0 0 λ2

2 0 0 0 0 0 λ2
4 0 0 λ2

5 0 0 λ2
6 0 0

0 0 0 0 γ 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 γλ1 0 0 0 0 0 0 0 λ1 λ2 λ3 0 0 0 0 λ4 0 0 λ5 0 0 λ6 0

0 0 0 0 γλ2
1 0 0 0 0 0 0 0 λ2

1 λ
2
2 λ2

3 0 0 0 0 λ2
4 0 0 λ2

5 0 0 λ2
6 0

0 0 0 0 0 γ 0 0 0 0 0 0 0 0 γ 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 γλ1 0 0 0 0 0 0 0 0 γλ2 0 0 0 0 0 λ4 0 0 λ5 0 0 λ6

0 0 0 0 0 γλ2
1 0 0 0 0 0 0 0 0 γλ2

2 0 0 0 0 0 λ2
4 0 0 λ2

5 0 0 λ2
6

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 γ 0 0

0 0 0 0 0 0 λ1 λ2 λ3 0 0 0 0 0 0 λ2 0 0 0 0 0 0 0 0 γλ5 0 0

0 0 0 0 0 0 λ2
1 λ2

2 λ2
3 0 0 0 0 0 0 λ2

2 0 0 0 0 0 0 0 0 γλ2
5 0 0

0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 γ 0

0 0 0 0 0 0 0 γλ1 0 0 0 0 0 0 0 λ1 λ2 λ3 0 0 0 0 0 0 0 γλ5 0

0 0 0 0 0 0 0 γλ2
1 0 0 0 0 0 0 0 λ2

1 λ
2
2 λ2

3 0 0 0 0 0 0 0 γλ2
5 0

0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0 γ

0 0 0 0 0 0 0 0 γλ1 0 0 0 0 0 0 0 0 γλ2 0 0 0 0 0 0 0 0 γλ5

0 0 0 0 0 0 0 0 γλ2
1 0 0 0 0 0 0 0 0 γλ2

2 0 0 0 0 0 0 0 0 γλ2
5





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26



= 0.

(4.5)



1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

λ1 λ2 0 0 0 0 0 λ2 0 0 0 0 0 0 λ5 0 0 0 0 0 0

λ21 λ22 0 0 0 0 0 λ22 0 0 0 0 0 0 λ25 0 0 0 0 0 0

0 γ 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 γλ1 0 0 0 0 0 λ1 λ2 0 0 0 0 0 0 λ5 0 0 0 0 0

0 γλ21 0 0 0 0 0 λ21 λ
2
2 0 0 0 0 0 0 λ25 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0

0 0 λ1 λ2 λ3 0 0 0 0 λ2 0 0 0 0 λ4 0 λ5 0 0 λ6 0

0 0 λ21 λ22 λ23 0 0 0 0 λ22 0 0 0 0 λ24 0 λ25 0 0 λ26 0

0 0 0 γ 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1

0 0 0 γλ1 0 0 0 0 0 λ1 λ2 λ3 0 0 0 λ4 0 λ5 0 0 λ6

0 0 0 γλ21 0 0 0 0 0 λ21 λ
2
2 λ23 0 0 0 λ24 0 λ25 0 0 λ26

0 0 0 0 γ 0 0 0 0 0 0 γ 0 0 0 0 0 0 1 0 0

0 0 0 0 γλ1 0 0 0 0 0 0 γλ2 0 0 0 0 0 0 λ5 0 0

0 0 0 0 γλ21 0 0 0 0 0 0 γλ22 0 0 0 0 0 0 λ25 0 0

0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 γ 0

0 0 0 0 0 λ1 λ2 0 0 0 0 0 λ2 0 0 0 0 0 0 γλ5 0

0 0 0 0 0 λ21 λ22 0 0 0 0 0 λ22 0 0 0 0 0 0 γλ25 0

0 0 0 0 0 0 γ 0 0 0 0 0 1 1 0 0 0 0 0 0 γ

0 0 0 0 0 0 γλ1 0 0 0 0 0 λ1 λ2 0 0 0 0 0 0 γλ5

0 0 0 0 0 0 γλ21 0 0 0 0 0 λ21 λ
2
2 0 0 0 0 0 0 γλ25





x0

x1

x3

x4

x5

x6

x7

x9

x10

x12

x13

x14

x15

x16

x18

x19

x21

x22

x23

x24

x25



= 0.

(4.6)
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A similar argument used for the last 9 rows in (4.6) shows that x5 = x14 = x23 =
x6 = x7 + x15 = x24 = γx7 + x15 = x16 = x25 = 0, and so x5 = x14 = x23 = x6 =
x7 = x24 = x15 = x16 = x25 = 0. Writing out the remaining equations, we obtain the
following set of equations:

1 1 1 0 1 0

λ1 λ2 λ2 0 λ5 0

λ2
1 λ2

2 λ2
2 0 λ2

5 0

0 γ 1 1 0 1

0 γλ1 λ1 λ2 0 λ5

0 γλ2
1 λ2

1 λ2
2 0 λ2

5





x3

x4

x12

x13

x21

x22


= 0.

From this set of equations we obtain that x4 + x12 = x3 = x21 = γx4 + x12 =
x13 = x22 = 0. Thus, x3 = x4 = x21 = x12 = x13 = x22 = 0. Overall these arguments
prove that X = 0, and so B is invertible.

4.3.2 A proof of the MDS property
Let us fix s, r, and m, so n = sm and l = sm. The code C given by Construction 4.1 is an
MDS array code if for any 1 ≤ i1 < i2 < · · · < ir ≤ n, the matrix

Bs,r,m[i1, i2, . . . , ir] :=


A0,i1 A0,i2 . . . A0,ir

A1,i1 A1,i2 . . . A1,ir
...

...
...

...
Ar−1,i1 Ar−1,i2 . . . Ar−1,ir


is invertible. Below we suppress the parameters s, r,m, and i1, i2, . . . , ir from the notation
and write B to refer to this matrix. In other words, given a vector X ∈ F rl we need to
prove that

BX = 0 (4.7)

implies thatX = 0,whereX is a vector inF rl with coordinatesX = (x0, x1, . . . , xrl−1)T .
The proof essentially follows the example in Sect. 4.3.1. We begin with a preview which
also serves to introduce some notation.

In order to transform B into a matrix of the form (4.5), let us define a permutation
matrix (Pij)0≤i,j<rl by setting

Pij = 1 iff i = (j − j mod l)/l + r(j mod l); (4.8)

compare with our example in (4.4).
Define a matrix D = PB. We shall prove that

DX = 0 (4.9)

implies that X = 0. (The full notation for D should be Ds,r,m[i1, i2, . . . , ir], but we again
suppress the parameters.) For a = 0, 1, . . . , l − 1, define D(a) to be the r × rl submatrix
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of D consisting of rows ar, ar + 1, . . . , ar + r − 1. Define a column vector

Li = (1, λi, . . . , λ
r−1
i )T , i ∈ [n]. (4.10)

On account of (4.1), for every a ∈ {0, 1, . . . , l − 1}, all the nonzero columns of
D(a) belong to the set

{L1, L2, . . . , Ln, γL1, γL2, . . . , γLn}.

We proceed by defining several subsets of the set of column indices of D(a) for every
a ∈ {0, 1, . . . , l − 1}:

• Let U(a) ⊂ [n] be a subset such that i ∈ U(a) if and only if there is a nonzero column
in D(a) equal to either Li or γLi;

• Let J(a) ⊂ {0, 1, . . . , rl} be the set of indices of the nonzero columns in D(a);

• For i ∈ [n], define the set J(a)(i) ⊂ J(a) as
J(a)(i) = {j ∈ J(a) : the jth column of D(a) is either Li or γLi}.

In our example above, letD(0) be the first r = 3 rows of the matrixD = D3,3,2[1, 2, 5]
in (4.5). Then the only nonzero columns in D(0) are of type L1, L2, L3, or L5, and so
U(0) = {1, 2, 3, 5}. The indices of the nonzero columns are given by J(0) = {0, 1, 2, 9, 18},
and J(0)(1) = {0}, J(0)(2) = {1, 9}, J(0)(3) = {2}, J(0)(5) = {18}.

Clearly the sets J(a)(i) form a partition of the set J(a), so

J(a) =
⋃

i∈U(a)

J(a)(i).

According to (4.1), for every i ∈ [n], every diagonal entry of At,i is either λti
or γλti (see also the example in Sect. 4.3.1 where we explicitly write out the matrices
At,1, . . . , At,6). Therefore, for every i ∈ [n], every row of At,i contains at least one of
the elements λti and γλti. As an immediate consequence, for every i ∈ {i1, . . . , ir}, the
set of nonzero columns in the strip of r rows D(a), a = 0, 1, . . . , l − 1 contains at least
one column out of the pair (Li, γLi). This implies that {i1, i2, . . . , ir} ⊆ U(a) for all
a ∈ {0, 1, . . . , l − 1}. Our strategy of proving that (4.9) is satisfied only for X = 0 will
be to find a set of indices

S = {a : a ∈ {0, 1, . . . , l − 1}, |U(a)| = r}

(as before S = Ss,r,m[i1, i2, . . . , ir]). For every a ∈ S, all the nonzero columns of D(a)

belong to the set
{Li1 , Li2 , . . . , Lir , γLi1 , γLi2 , . . . , γLir}.

Since the columns Li1 , Li2 , . . . , Lir form a Vandermonde matrix, we conclude that the
corresponding variables or their linear combinations are 0, and therefore we can eliminate
some of the variables in (4.9). Referring to our example, this set is exactly the set of
highlighted rows in the matrix in (4.5), and thus in this case the set of strip labels equals
S = {2, 8}.
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Suppose that such a set S is found. Then the equations

D(a)X = 0, a ∈ S,

will imply that
xj = 0 for all j ∈

⋃
a∈S

J(a). (4.11)

Using (4.11), we can eliminate some of the variables in (4.9) and obtain the system

D̃X̃ = 0

(in the example this corresponds to obtaining (4.6) from (4.5)).
Let l̃ = l − |S| be the remaining count of variables xi, so that D̃ is an rl̃ × rl̃

matrix and X̃ ∈ F rl̃. We iterate the above steps and define subsets D̃(a), Ũ(a) for all
a ∈ {0, 1, . . . , l̃ − 1}. In the example the matrix D̃ is given in (4.6), and the new set S̃ of
the groups of r equations is given by S̃ = {0, 1, 4, 5, 6}. Restricting our attention to the
equations in these groups, we eliminate another subset of variables by proving that they
are necessarily equal to zero, and continue this procedure until finally all of the variables
have been shown to be zero.

A rigorous proof uses induction and is given below.

Theorem 4.1. The code C given by Construction 4.1 is an (n = sm, k = n− r, l = sm)
MDS array code.

To prove this theorem we need to show that for every choice of the indices 1 ≤ i1 <
i2 < · · · < ir ≤ n, the only X that satisfies (4.9) is the all-zero vector. This will follow
from the next two lemmas.

Lemma 4.2. For any 1 ≤ i1 < i2 < · · · < ir ≤ n,

min
a∈{0,1,...,l−1}

|U(a)[i1, i2, . . . , ir]| = r.

Proof. As mentioned above, {i1, i2, . . . , ir} ⊆ U(a) for any a ∈ {0, 1, . . . , l − 1}, so
mina |U(a)| ≥ r (we again simplify the notation by dropping the indices i1, . . . , ir).
We claim that there always exists an index a ∈ {0, 1, . . . , l − 1} such that U(a) =
{i1, i2, . . . , ir}. To see this, define the (possibly empty) set

G = {v : v ∈ [m], {(v − 1)s+ 1, (v − 1)s+ 2, . . . , vs} ⊆ {i1, i2, . . . , ir}}. (4.12)

Now choose a ∈ {0, 1, . . . , l − 1} such that

if v ∈ [m]\G then (v − 1)s+ av + 1 /∈ {i1, i2, . . . , ir}. (4.13)

To see that we can always find such an a, notice that by (4.12), for every v ∈ [m]\G, there
exists a number yv ∈ {1, 2, . . . , s} such that (v − 1)s + yv /∈ {i1, i2, . . . , ir}. In order to
satisfy (4.13), it suffices to set the v-th digit of a to be yv − 1, i.e., to set av = yv − 1.
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Next we prove that U(a) = {i1, i2, . . . , ir}, which is equivalent to the following
statement:

Claim: For any i ∈ {i1, i2, . . . , ir}, all the nonzero entries of the a-th row of At,i
belong to the set

{λti1 , λ
t
i2
, . . . , λtir , γλ

t
i1
, γλti2 , . . . , γλ

t
ir}.

Let us write i = (v − 1)s + u + 1, where v ∈ [m] and u ∈ {0, 1, . . . , s − 1}. We
consider the following two cases:

Case 1: v ∈ [m]\G
In this case (4.13) states that (v − 1)s + av + 1 /∈ {i1, i2, . . . , ir}, and therefore

(v − 1)s + av + 1 6= i (keep in mind that i ∈ {i1, i2, . . . , ir}). As a result, av 6= u.
According to (4.1), if av < u, then the a-th row of At,i contains a single nonzero entry
λti; if av > u, then the a-th row of At,i contains a single nonzero entry γλti. Both λti and
γλti belong to the set {λti1 , λ

t
i2
, . . . , λtir , γλ

t
i1
, γλti2 , . . . , γλ

t
ir}. This establishes the claim

for this case.

Case 2: v ∈ G

If av 6= u, then the claim holds by the argument in Case 1, so let av = u. The a-th
row of At,i contains s nonzero entries λt(v−1)s+1, λ

t
(v−1)s+2, . . . , λ

t
vs. By (4.12), they all

belong to {λti1 , λ
t
i2
, . . . , λtir}. This establishes the claim for this case and completes the

proof of the lemma.

Lemma 4.3. For every a ∈ {0, 1, . . . , l − 1}, xj = 0 for all j ∈ J(a).

Proof. We will argue by induction on the cardinality of the set U(a). By Lemma 4.2, to
establish the induction basis we need to prove that the lemma holds for all a such that
|U(a)| = r. Let a be one of the values that have this property. We will prove that for every
t ∈ [r], xj = 0 for all j ∈ J(a)(it).

Let us write the index it, t ∈ [r] in the form

it = (vt − 1)s+ ut + 1,

where vt ∈ [m] and 0 ≤ ut ≤ s− 1. Let us further partition [r] into three disjoint subsets
K1,K2,K3 as follows:

K1 = {t : t ∈ [r], avt = ut} ∪ {t : t ∈ [r], /∃ p ∈ [r] s.t. vp = vt and up = avt},
K2 = {t : t ∈ [r], avt > ut} ∩ {t : t ∈ [r],∃ p ∈ [r] s.t. vp = vt and up = avt},
K3 = {t : t ∈ [r], avt < ut} ∩ {t : t ∈ [r],∃ p ∈ [r] s.t. vp = vt and up = avt}.

We will prove our claim separately for each of these subsets, starting with K1. By defini-
tion (4.1), all the nonzero entries in the matrix Ah,(v−1)s+u+1 belong to the set {λh(v−1)s+1,

λh(v−1)s+2, . . . , λ
h
vs, γλ

h
(v−1)s+1, γλ

h
(v−1)s+2, . . . , γλ

h
vs}, where h = 0, 1, . . . , r − 1. More-

over, if av 6= u, then the a-th row of the matrix Ah,(v−1)s+u+1 contains only a single
nonzero entry, either λh(v−1)s+u+1 or γλh(v−1)s+u+1. On the other hand, if av = u, then the
a-th row of the matrix Ah,(v−1)s+u+1 contains s nonzero entries. In particular, if av = u,
then the only appearance of the element λh(v−1)s+u+1 in the a-th row of all the matrices
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Ah,i, i ∈ [n] is in position (a, a) of Ah,(v−1)s+u+1, i.e., on the diagonal of Ah,(v−1)s+u+1

(and γλh(v−1)s+u+1 does not appear in the a-th row of any one of the matricesAh,i, i ∈ [n]).
As an immediate consequence, if av = u, then the column L(v−1)s+u+1 appears at most
once in the matrixD(a) (it appears when (v−1)s+u+1 ∈ {i1, . . . , ir}), and γL(v−1)s+u+1

does not appear in D(a). Therefore, for each t ∈ K1, we have J(a)(it) = {(t − 1)l + a}.
The vectors Lij , j = 1, . . . , r are linearly independent, which implies that x(t−1)l+a =
0, t ∈ K1.

Moving to the case t ∈ K2, observe that J(a)(it) = {(t−1)l+a, (p−1)l+a(vt, ut)}
which implies that

γx(t−1)l+a + x(p−1)l+a(vt,ut) = 0. (4.14)

Let us consider the submatrix D(a(vt,ut)). Its nonzero columns are described as follows:

U(a(vt,ut)) = {i1, i2, . . . , ir}, J(a(vt,ut))(ip) = {(t− 1)l + a, (p− 1)l + a(vt, ut)}.

From this we see that
x(t−1)l+a + x(p−1)l+a(vt,ut) = 0. (4.15)

Since γ 6= 1, conditions (4.14) and (4.15) imply that x(t−1)l+a = x(p−1)l+a(vt,ut) = 0,
exhausting the case of t ∈ K2.

The last remaining case t ∈ K3 is very similar to K2, and we again obtain that
xj = 0 for all j ∈ J(a)(it). This concludes the proof of the induction basis.

Now suppose that the statement of the lemma holds true for all a such that |U(a)| ≤
w − 1 for some w ≥ r and let us prove it for all a such that |U(a)| = w. We again aim to
show that for every i ∈ U(a), xj = 0 for all j ∈ J(a)(i).

For i ∈ U(a)\{i1, i2, . . . , ir}, there exists a unique t ∈ [r] such that avt = ut and
1 ≤ i− (vt − 1)s ≤ s, and J(a)(i) = {(t− 1)l+ a(vt, α)}, where α = i− (vt − 1)s− 1.
Consider the matrix D(a(vt,α)). By our choice of i there is no p ∈ [r] such that vp = vt
and up = α. Therefore, U(a(vt,α)) ⊂ U(a) and i 6∈ U(a(vt,α)). This implies that |U(a(vt,α))| ≤
w − 1, so the induction hypothesis applies, and xj = 0 for all j ∈ J(a(vt,α)). Furthermore,
(t − 1)l + a(vt, α) ∈ J(a(vt,α)), and thus x(t−1)l+a(vt,α) = 0. Rephrasing this, we have
shown that for every i ∈ U(a)\{i1, i2, . . . , ir}, xj = 0 for all j ∈ J(a)(i).

We are left to consider the variables ∪t∈[r]{xj : j ∈ J(a)(it)}. To show that they
must be 0 to satisfy DX = 0, we note that the left-hand side of D(a)X = 0 reduces to a
linear combination of the linearly independent columns Lij , j = 1, . . . , r. Therefore, the
coefficients of this linear combination are all 0. This implies that for every t ∈ [r], xj = 0
for all j ∈ J(a)(it). This claim is proved in exactly the same way as the induction basis
above, so we omit the proof. This completes the induction step.

Corollary 4.4. The code C ′ given by Construction 4.2 is an (n = rm+ r′, k = n− r, l =
rm+1) MDS array code.

Proof. Consider the MDS code C of length n = r(m+ 1) given by Construction 4.1. The
code C ′ is obtained from C by discarding r − r′ coordinates, and so is also MDS.

We finish this section by a brief remark on the complexity of node repair (decod-
ing) and encoding of the constructed codes. From the coding-theoretic perspective, the
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repair problem is erasure correction, and is very similar to the encoding problem (the en-
coding is correction of r = n − k erasures from k known nodes). From the example in
Section 4.3.1 and the proof of Theorem 4.1, we immediately see that the encoding and
decoding procedures of codes given by either of Constructions 4.1 or 4.2 rely on inversion
of r × r matrices over F , and thus have low complexity.

4.4 The optimal access property
Consider the code C given by Construction 4.1. Recall that we write the i-th node as
Ci = (ci,0, ci,1, . . . , ci,l−1)T . For every i ∈ [n], define the following set of coordinates of
the i-th node:

C(v,u)
i = {ci,a : a ∈ {0, 1, . . . , l − 1}, av = u}. (4.16)

where av is the v-th digit of a.

Theorem 4.5. Consider the code C given by Construction 4.1. For any v ∈ [m] and
u ∈ {0, 1, . . . , s− 1}, the node C(v−1)s+u+1 can be recovered from the elements in the set

C(v,u) =
⋃
i∈[n]

i 6=(v−1)s+u+1

C(v,u)
i .

Proof. Fix a value of t. Let us write out the a-th row of the equation
∑n

i=1At,iCi = 0
(cf. (2.3)). We first notice that since n = sm, the equation

∑n
i=1At,iCi = 0 is equivalent

to
m∑
q=1

s−1∑
w=0

At,(q−1)s+w+1C(q−1)s+w+1 = 0.

By definition (4.1), if aq > w, then the a-th row of At,(q−1)s+w+1 contains a single
nonzero entry γλt(q−1)s+w+1 located in the a-th column; if aq < w, then the a-th row of
At,(q−1)s+w+1 contains a single nonzero entry λt(q−1)s+w+1 located in the a-th column; if
aq = w, then the a-th row of At,(q−1)s+w+1 contains s nonzero entries located in columns
a(q, 0) to a(q, s− 1). Thus, the a-th row of the equation

∑n
i=1At,iCi = 0 can be written

as follows:

∑
q∈[m]

( aq−1∑
w=0

γλt(q−1)s+w+1c(q−1)s+w+1,a +
s−1∑
w=0

λt(q−1)s+w+1c(q−1)s+aq+1,a(q,w)

+
s−1∑

w=aq+1

λt(q−1)s+w+1c(q−1)s+w+1,a

)
= 0, (4.17)

where the first sum in the parentheses corresponds to the case aq > w; the second sum
corresponds to the case aq = w; and the third sum corresponds to the case aq < w. Since
our aim is to repair the node C(v−1)s+u+1, let us break the sum on q ∈ [m] in (4.17) into
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two parts: q 6= v and q = v. We obtain the following equation:

∑
q 6=v,q∈[m]

( aq−1∑
w=0

γλt(q−1)s+w+1c(q−1)s+w+1,a +
s−1∑
w=0

λt(q−1)s+w+1c(q−1)s+aq+1,a(q,w)

+
s−1∑

w=aq+1

λt(q−1)s+w+1c(q−1)s+w+1,a

)
+
( av−1∑
w=0

γλt(v−1)s+w+1c(v−1)s+w+1,a +
s−1∑
w=0

λt(v−1)s+w+1c(v−1)s+av+1,a(v,w)

+
s−1∑

w=av+1

λt(v−1)s+w+1c(v−1)s+w+1,a

)
= 0.

(4.18)
For all t = 0, 1, . . . , r − 1 and all a satisfying av = u, all the terms in (4.18) apart from
the underlined term can be found from the elements in the set C(v,u). Indeed,

∑s−1
w=0 c(v−1)s+u+1,a(v,w)∑s−1

w=0 λ(v−1)s+w+1c(v−1)s+u+1,a(v,w)

...∑s−1
w=0 λ

r−1
(v−1)s+w+1c(v−1)s+u+1,a(v,w)



=


1 1 . . . 1

λ(v−1)s+1 λ(v−1)s+2 . . . λ(v−1)s+s

...
...

...
...

λr−1
(v−1)s+1 λr−1

(v−1)s+2 . . . λr−1
(v−1)s+s




c(v−1)s+u+1,a(v,0)

c(v−1)s+u+1,a(v,1)

...
c(v−1)s+u+1,a(v,s−1)

 .
Since r ≥ s, the coordinates in the set {c(v−1)s+u+1,a(v,w) : w = 0, 1, . . . , s − 1} can
be found from the set {

∑s−1
w=0 λ

t
(v−1)s+w+1c(v−1)s+u+1,a(v,w) : t = 0, 1, . . . , r − 1} for all

a = 0, 1, . . . , l − 1. In particular, the values in the set

{c(v−1)s+u+1,a : a = 0, 1, . . . , l − 1} = {c(v−1)s+u+1,a(v,w) : av = u,w = 0, 1, . . . , s− 1}

can be found from the values{ s−1∑
w=0

λt(v−1)s+w+1c(v−1)s+u+1,a(v,w) : av = u, t = 0, 1, . . . , r − 1
}
.

As mentioned above, the values {
∑s−1

w=0 λ
t
(v−1)s+w+1c(v−1)s+u+1,a(v,w) : av = u, t =

0, 1, . . . , r − 1} are uniquely determined by the elements in the set C(v,u). We conclude
that the entire node C(v−1)s+u+1 can be determined by the elements in C(v,u).

Theorem 4.6. Let s = r, then the code C given by Construction 4.1 has the optimal
access property.
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Proof. Since C(v,u)
i contains exactly a (1/r)th fraction of the coordinates of Ci, by Theo-

rem 4.5 we only need to access a 1/r proportion of the data stored in each of the surviving
nodes in order to repair a single node failure.

Theorem 4.7. The code C ′ given by Construction 4.2 has the optimal access property.

Proof. Using the same approach as in Theorem 4.5, we can show that for all v ∈ [m] and
u ∈ {0, 1, . . . , r − 1}, the node C(v−1)r+u+1 can be determined by the elements in the set
{ci,a : i 6= (v − 1)r + u + 1, av = u}, and that for all u ∈ {0, 1, . . . , r′ − 1}, the node
Cmr+u+1 can be determined by the elements in the set {ci,a : i 6= mr + u + 1, am+1 =
u}.

Note that upon setting s = r in Construction 4.1, we obtain optimal-access MDS
array codes with code length divisible by r, and Construction 4.2 gives optimal-access
MDS array codes with code length not divisible by r. Thus we can construct optimal-
access (n, n− r, rdn/re) MDS array codes for any n and r.

4.4.1 Group optimal access
In the second part of this section we examine the group optimal access property of the
codes considered above and prove the following result.

Theorem 4.8. The code C given by Construction 4.1 has the (s, s+ k− 1)-group optimal
access property.

This theorem will follow from Theorem 4.5 and a lemma proved below in this
section.

Let us define the following subset of indices

N(v) = [n]\{(v − 1)s+ 1, (v − 1)s+ 2, . . . , vs}, v ∈ [m].

Lemma 4.9. Consider the code C given by Construction 4.1. For every v ∈ [m] and
u ∈ {0, 1, . . . , s − 1}, and every M ⊆ N(v) with cardinality |M| = k, the values of
elements in the set ∪i∈N(v)C(v,u)

i (cf. (4.16)) are determined by the elements in the set
∪i∈MC(v,u)

i .

Before proving Lemma 4.9, let us explain how this lemma together with Theo-
rem 4.5 implies Theorem 4.8. The group optimal access property simply means that for
every v ∈ [m] and every u ∈ {0, 1, . . . , s − 1}, the node C(v−1)s+u+1 can be repaired by
connecting to {C(v−1)s+u′+1 : u′ ∈ {0, 1, . . . , s − 1} \ {u}} together with any other k
helper nodes in the set {Ci : i ∈ N(v)}, and accessing exactly (1/s)th fraction of coordi-
nates of each helper node. In Theorem 4.5, we have shown that the node C(v−1)s+u+1 can
be repaired if we know the values of all the elements in the set

⋃
i 6=(v−1)s+u+1 C

(v,u)
i from

all the surviving nodes. By definition each set C(v,u)
i contains exactly (1/s)th fraction of

the coordinates of Ci. This is where we need Lemma 4.9 which states that the values of
the elements in the set ∪i∈N(v)C(v,u)

i (cf. (4.16)) can be calculated from the elements in
the set ∪i∈MC(v,u)

i for any M ⊆ N(v) such that |M| = k. This establishes that the code C
given by Construction 4.1 has the (s, s+ k − 1)-group optimal access property.
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Proof. (of Lemma 4.9) The case s = r is trivially true, so we assume that s < r. Let us
write (2.3) in matrix form:

A0,1 A0,2 . . . A0,n

A1,1 A1,2 . . . A1,n

...
...

...
...

Ar−1,1 Ar−1,2 . . . Ar−1,n



C1

C2

...
Cn

 = 0. (4.19)

Let us permute the equations in this system using the permutation matrix defined in (4.8)
and denote the resulting matrix of coefficients byH . As before, letH(a), a = 0, 1, . . . , l−
1 be a submatrix of H formed of rows ar, ar + 1, . . . , (a + 1)r − 1. Let us write out the
equation H(a)[C1, C2, . . . , Cn]T = 0 as follows:

∑
q∈[m]\v

( aq−1∑
w=0

γc(q−1)s+w+1,aL(q−1)s+w+1

+
s−1∑
w=0

c(q−1)s+aq+1,a(q,w)L(q−1)s+w+1 +
s−1∑

w=aq+1

c(q−1)s+w+1,aL(q−1)s+w+1

)
= −

( av−1∑
w=0

γc(v−1)s+w+1,aL(v−1)s+w+1 +
s−1∑
w=0

c(v−1)s+av+1,a(v,w)L(v−1)s+w+1

+
s−1∑

w=av+1

c(v−1)s+w+1,aL(v−1)s+w+1

)
, (4.20)

where the vectors Li, i ∈ [n] are defined in (4.10) (this equation amounts to taking
columns (v − 1)s+ 1, (v − 1)s+ 2, . . . , vs to the right-hand side of (4.19)).

Define polynomials g(v)
0 (x) =

∏s
w=1(x − λ(v−1)s+w), and g(v)

j (x) = xjg
(v)
0 (x) for

j = 0, 1, . . . , r − s− 1. Since the degree of g(v)
j (x) is less than r for all j = 0, 1, . . . , r −

s− 1, we can write

g
(v)
j (x) =

r−1∑
t=0

g
(v)
j,t x

t.

Define the (r − s)× r matrix

G(v) =


g

(v)
0,0 g

(v)
0,1 . . . g

(v)
0,r−1

g
(v)
1,0 g

(v)
1,1 . . . g

(v)
1,r−1

...
...

...
...

g
(v)
r−s−1,0 g

(v)
r−s−1,1 . . . g

(v)
r−s−1,r−1

 .
We have

G(v)Li =


g

(v)
0,0 g

(v)
0,1 . . . g

(v)
0,r−1

g
(v)
1,0 g

(v)
1,1 . . . g

(v)
1,r−1

...
...

...
...

g
(v)
r−s−1,0 g

(v)
r−s−1,1 . . . g

(v)
r−s−1,r−1




1

λi
...

λr−1
i

 = L̂
(v)
i , (4.21)
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where L̂(v)
i , i ∈ [n] is given by

L̂
(v)
i =


g

(v)
0 (λi)

g
(v)
1 (λi)

...
g

(v)
r−s−1(λi)

 = g
(v)
0 (λi)


1

λi
...

λr−s−1
i

 . (4.22)

By definition, g(v)
0 (λi) = 0 for all (v − 1)s + 1 ≤ i ≤ vs, and so G(v)Li = 0 for all

(v − 1)s+ 1 ≤ i ≤ vs. Observe that every term on the right-hand-side of (4.20) contains
one column vector from the set {Li : (v − 1)s + 1 ≤ i ≤ vs}. As a result, multiplying
equation (4.20) by G(v) on the left, we obtain

∑
q 6=v,q∈[m]

( aq−1∑
w=0

γc(q−1)s+w+1,aG
(v)L(q−1)s+w+1

+
s−1∑
w=0

c(q−1)s+aq+1,a(q,w)G
(v)L(q−1)s+w+1 +

s−1∑
w=aq+1

c(q−1)s+w+1,aG
(v)L(q−1)s+w+1

)
= 0.

Using (4.21), this equation can be written as

∑
q 6=v,q∈[m]

( aq−1∑
w=0

γc(q−1)s+w+1,aL̂
(v)
(q−1)s+w+1

+
s−1∑
w=0

c(q−1)s+aq+1,a(q,w)L̂
(v)
(q−1)s+w+1 +

s−1∑
w=aq+1

c(q−1)s+w+1,aL̂
(v)
(q−1)s+w+1

)
= 0. (4.23)

In order to prove the theorem, we only need to prove that given any v ∈ [m] and u ∈
{0, 1, . . . , s − 1}, and any i1 < i2 < · · · < ir−s such that {i1, i2, . . . , ir−s} ⊆ N(v),

the values of elements in the set ∪r−st=1C
(v,u)
it

can be determined by the elements in the
set ∪i∈MC(v,u)

i , where M = N(v)\{i1, i2, . . . , ir−s}. We will prove that we can find the
elements in the set ∪r−st=1C

(v,u)
it

from ∪i∈MC(v,u)
i using equation (4.23).

For a given a = 0, 1, . . . , l − 1, denote by E(a) the set of equations in (4.23). Each
set E(a) contains r − s scalar equations. Observe that if av = u, then E(a) contains
only elements in ∪i∈N (v)C(v,u)

i . Moreover, every element in the set ∪i∈N (v)C(v,u)
i appears

at least once in the equations {E(a) : av = u}. Therefore, equations (4.23) contain (r −
s)l/s scalar equations and (r − s)l/s unknown elements, namely, the elements in the set
∪r−st=1C

(v,u)
it

.

Let us set all the elements in the set ∪i∈MC(v,u)
i to 0 in E(a) and denote by E(a)

M the
obtained set of equations. (In other words, E(a)

M are the equations obtained by eliminating
all the terms which contain elements in the set ∪i∈MC(v,u)

i in (4.23).) In order to prove the
lemma, it suffices to show that the equations {E(a)

M : av = u} imply that all the elements
in the set ∪r−st=1C

(v,u)
it

are 0.
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Recall that equation (4.9) can be viewed as the set of equations {D(a)[i1, i2, . . . , ir]X =
0 : a ∈ {0, 1, . . . , l − 1}}. Note that, once we form a vector X of the elements in the set
∪r−st=1C

(v,u)
it

, equations {E(a)
M : av = u} have almost the same form as {D(a)[i1, i2, . . . , ir]X =

0 : a ∈ {0, 1, . . . , l − 1}}. The only difference is that in the equations {E(a)
M : av = u},

the columns {L̂(v)
i : i ∈ N(v)} take place of the vectors {Li : i ∈ [n]}, and r − s takes

place of r.
Examining closely the proof of Theorem 4.1, we note that the property that any r

columns in the set {Li, i ∈ [n]} are linearly independent, suffices to show that X = 0.

Since p(v)
0 (λi) 6= 0 for any i ∈ N(v), by Definition (4.22) any r − s vectors in the set

of vectors {L̂(v)
i : i ∈ N(v)} are also linearly independent. Thus, using exactly the same

arguments as in the proof of Theorem 4.1, we can show that the equations {E(a)
M : av = u}

imply that all the elements in the set ∪r−st=1C
(v,u)
it

are 0. This completes the proof of the
theorem.

4.5 Concluding remarks
In the previous chapter we constructed optimal-access MDS codes using the block Van-
dermonde structure; see the discussion in Section 3.12. Although it enables us to satisfy
the conditions imposed by the MDS property in a straightforward way, this additional
structure limits our choices of the matrices in (2.3), and the penalty is a relatively large
sub-packetization value l = rn−1.

For this reason, in the construction presented above we do not use the block Van-
dermonde structure. Instead, we divide the rl parity equations into l groups of size r, and
each such group forms the parity equations of a GRS code. These l groups are designed
in such a way that whenever r nodes fail, one can recover them by successive decoding
of l GRS codes. This approach enables one to satisfy the conditions of the MDS property
and at the same time leads to a nearly optimal sub-packetization value.

A natural extension of the presented construction which we have not been able to
obtain so far, is to allow for general values of d between k and n − 1. A recent work
[52] presented explicit MDS codes with the (1, d)-optimal access property and small sub-
packetization value for a particular choice of d < n − 1. At the same time, for general
values of d, the best known explicit construction is still the one presented in Chapter 3 of
this thesis (see also [77]).
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Chapter 5: Optimal repair of Reed-Solomon codes: Achiev-
ing the cut-set bound

In this chapter we study the repair problem of RS codes. Previous works such as [26]
and follow-up papers [10, 11] that addressed this problem stopped short of constructing
optimal-repair RS codes, so this has remained an open problem. It is this problem that we
address and resolve in this chapter.

More specifically, given any n, k and d such that k ≤ d ≤ n− 1, we explicitly con-
struct an (n, k) RS code with sub-packetization l = exp((1 + o(1))n log n) that has the
(1, d)-optimal repair property. We also prove an almost matching lower bound on l, show-
ing that the super-exponential scaling is both necessary and sufficient for achieving the
cut-set bound (2.1) using linear repair schemes. More precisely, we prove that for scalar
MDS codes (including the RS codes) with optimal repair property, the sub-packetization
l must satisfy l ≥ exp((1 + o(1))k log k).

We also consider the problem of lowering the value of l at the expense of allowing
ourselves slightly greater repair bandwidth than the cut-set bound (2.1). Along these lines,
given any n and r, we construct an (n, k = n− r) RS code with sub-packetization l = rn

that asymptotically achieves (2.1)for the repair of any single failed node from all the other
n − 1 surviving nodes. The exponent of the sub-packetization value of this construction
is n log r. We note that in the regime of fixed r and growing n, the exponent of the sub-
packetization value of this construction is much smaller than that of the aforementioned
RS code construction.

The results presented in Sections 5.1-5.4 of this chapter were published in [64], and
the results in Section 5.5 were published in [75].

5.1 Introduction

5.1.1 Repair schemes for scalar linear MDS codes
While there has been much research into constructions and properties of MSR codes
specifically designed for the repair task, it is also of interest to study the repair bandwidth
of general families of MDS codes, for instance, RS codes. In [56], Shanmugam et al.
proposed a framework for studying the repair bandwidth of a scalar linear (n, k) MDS
code C over some finite field E (called symbol field below). The idea of [56] is to “vec-
torize” the code construction by considering C as an array code over some subfield F of
E. This approach provides a bridge between RS codes and MDS array codes, wherein
the extension degree l := [E : F ] can be viewed as the value of sub-packetization. The
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code C is viewed as an (n, k) MDS array code with sub-packetization l, and the repair
bandwidth is defined exactly in the same way as above. The cut-set bound (2.1) and the
definition of MSR codes also apply to this setup.

In this chapter we study repair of RS codes, focusing on linear repair schemes,
i.e., we assume that the repair operations are linear over the field F. Guruswami and
Wootters [26] gave a characterization for linear repair schemes of scalar linear MDS codes
based on the framework in [56]. We will use this characterization to prove one of our main
results, namely, a lower bound on the sub-packetization, so we recall it in the theorem
below. In this theorem E is the degree-l extension of the field F . Viewing E as an l-
dimensional vector space over F , we use the notation dimF (a1, a2, . . . , at) to refer to the
dimension of the subspace spanned by the set {a1, a2, . . . , at} ⊂ E over F .

We will need a result from [26] which we state in the form that is suited to our
needs.

Theorem 5.1 ( [26]). Let C ⊆ En be a scalar linear MDS code of length n. Let F be a
subfield of E such that [E : F ] = l. For a given i ∈ {1, . . . , n} the following statements
are equivalent.

(1) There is a linear repair scheme of the node ci over F such that the repair bandwidth
N(C, i, [n] \ {i}) ≤ b.

(2) There is a subset of codewords Pi ⊆ C⊥ with size |Pi| = l such that

dimF ({xi : x ∈ Pi}) = l,

and
b ≥

∑
j∈[n]\{i}

dimF ({xj : x ∈ Pi})

In order to prove that (2) implies (1) in this theorem, [26] proposed a linear repair
scheme which makes use of trace functionals. Since this chapter focuses on the repair
problem of RS codes, we recap a special case of this linear repair scheme that is designed
for RS codes.

5.1.2 The linear repair scheme of [26] for RS codes
Suppose we want to repair a code C = RSE(n, k,Λ) over the base field F ⊆ E. More
precisely, if a single codeword symbol is erased, we will recover this symbol by download
sub-symbols of the base field F from the surviving nodes. Let tr(β) = trE/F (β) :=

β + βq + βq
2

+ · · · + βq
l−1 be the trace function. In order to make the repair scheme

F -linear, [26] uses F -linear transforms Lγ : E → F given by the trace functionals
Lγ(β) = tr(γβ).

Let {ζ1, . . . , ζl} be a basis for E over F, and let {µ1, . . . , µl} be its dual (trace-
orthogonal) basis, then for all β ∈ E

β =
l∑

i=1

(tr(ζiβ)µi).
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Therefore, we can make the following observation: If {ζ1, . . . , ζl} is a basis for E over
F, then {tr(ζiβ)}li=1 uniquely determines β.

Let C⊥ be the dual code of C = RSE(n, k,Λ). Suppose that the codeword sym-
bol ci in a codeword c = (c1, . . . , cn) ∈ C is erased. We can find l codewords {c⊥j =
(c⊥j,1, . . . , c

⊥
j,n)}lj=1 in C⊥ such that {c⊥1,i, . . . , c⊥l,i} is a basis of E over F. By the observa-

tion above, knowing the values of {tr(c⊥j,ici)}lj=1 suffices to recover the erased symbol ci.
Since the trace is an F -linear transformation, we have

tr(c⊥j,ici) = −
∑
t6=i

tr(c⊥j,tct) for all j ∈ [l].

Thus knowing the values of {{tr(c⊥j,tct)}j∈[l]}t∈[n],t6=i suffices to recover ci. Let Bt be
a maximal linearly independent subset of the set {c⊥j,t}j∈[l] over F. Again due to the
F -linearity of the trace function, {tr(c⊥j,tct)}j∈[l] can be calculated from {tr(βct)}β∈Bt .
Consequently, ci can be recovered from {{tr(βct)}β∈Bt}t∈[n],t6=i. The total number of sub-
symbols inF we need to download from the surviving nodes to recover ci is

∑
t∈[n],t6=i dimF ({c⊥j,t}j∈[l]).

We conclude that to efficiently recover ci, we need to find l codewords in C⊥ that
minimize the quantity

∑
t∈[n],t6=i dimF ({c⊥j,t}j∈[l]) under the condition that {c⊥1,i, . . . , c⊥l,i}

is a basis for E over F.
As already remarked, C⊥ = GRSE(n, n−k,Λ, v) for some nonzero coefficients v =

(v1, . . . , vn) ∈ En. Choosing a codeword from C⊥ = GRSE(n, n− k,Λ, v) is equivalent
to choosing a polynomial with degree less than n− k. Suppose Λ = {α1, . . . , αn}. Since
v1, . . . , vn are nonzero constants, our task of efficiently repairing ci is reduced to finding
l polynomials {fj}j∈[l] of degree less than n− k such that the quantity∑

t∈[n],t 6=i

dimF ({fj(αt)}j∈[l]) (5.1)

is minimized under the condition that {f1(αi), . . . , fl(αi)} is a basis for E over F.

5.1.3 Related results in the literature
In addition to this general linear repair scheme for RS codes, the authors of [26] also pre-
sented a specific repair scheme for a family of RS codes and further proved that (in some
cases) the repair bandwidth of RS codes using this scheme is the smallest possible among
all linear repair schemes and all scalar linear MDS codes with the same parameters. At
the same time, the approach of [26] has some limitations. Namely, their repair scheme
applies only for small sub-packetization l = logn/r n, and the optimality claim only holds
for this specific sub-packetization value. At the same time, in order to achieve the cut-set
bound, l needs to be exponentially large in n for a fixed value of r [22], so the repair band-
width of this scheme is rather far from the bound. Subsequently, Ye and Barg [75] used
the general linear repair scheme in [26] to construct an explicit family of RS codes with
asymptotically optimal repair bandwidth: the ratio between the actual repair bandwidth
of the codes and the cut-set bound approaches 1 as the code length n goes to infinity.

In [26], there is one more restriction on the parameters of the RS codes, namely
they achieve the smallest possible repair bandwidth only if the number of parities is of
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the form r = qs, (l − s)|l. In [11], Dau and Milenkovic generalized the scheme in [26]
and extended their results to all values of s = 1, . . . , l− 1. The repair bandwidth attained
in [11] is (n − 1)(l − s) symbols of F for r ≥ qs, and is the smallest possible whenever
r is a power of q. In [10], Dau et al. extended the results of [26] to repair of multiple
erasures.

To summarize the earlier work, constructions of RS codes (or any scalar MDS
codes) that meet the cut-set bound have as yet been unknown, so the existence ques-
tion of such codes has been an open problem. In this chapter, we resolve this problem
in the affirmative, presenting such a construction. We also prove a lower bound on the
sub-packetization of scalar linear MDS codes that attain the cut-set bound with a linear
repair scheme, showing that there is a penalty for the scalar case compared to MDS array
codes.

5.1.4 Our results
(1) Explicit constructions of RS codes achieving the cut-set bound: Given any n, k

and d, k ≤ d ≤ n − 1, we construct an (n, k) RS code over the field E = Fql that
achieves the cut-set bound (2.1) when repairing any single failed node from any d
helper nodes. As above, we view RS codes over E as vector codes over the subfield
F = Fq. The main novelty in our construction is the choice of the evaluation points
for the code in such a way that the degrees of the evaluation points over F are distinct
primes. As a result, the symbol field is an extension field of F with degree no smaller
than the product of these distinct primes. For the actual repair we rely on the linear
scheme proposed in [26] (this is essentially the only possible linear repair approach).

The value of sub-packetization l of our construction equals s times the product of the
first n distinct primes in an arithmetic progression,

l = s

( n∏
i=1

pi≡1 mod s

pi

)
,

where s := d + 1 − k. This product is a well-studied function in number theory,
related to a classical arithmetic function ψ(n, s, a) (which is essentially the sum of
logarithms of the primes). The prime number theorem in arithmetic progressions (for
instance, [31, p.121]) yields asymptotic estimates for l. In particular, for fixed s and
large n, we have l = e(1+o(1))n logn.

In contrast, for the case d = n− 1 (i.e., s = r = n− k), there exist MSR array codes
that attain sub-packetization l = rdn/(r+1)e [68], which is the smallest known value
among MSR codes1. So although this distinct prime structure allows us to achieve
the cut-set bound, it makes us pay a penalty on the sub-packetization.

1 The construction of [68] achieves the cut-set bound only for repair of systematic nodes, and gives
l = rdk/(r+1)e. Using the approach of [77], it is possible to modify the construction of [68] and to obtain
an MSR code with l = rdn/(r+1)e.

59



(2) A lower bound on the sub-packetization of scalar MDS codes achieving the cut-
set bound: Surprisingly, we also show that the distinct prime structure discussed
above is necessary for any scalar linear MDS code (not just the RS codes) to achieve
the cut-set bound under linear repair. Namely, given d such that k+1 ≤ d ≤ n−1,we
prove that for any (n, k) scalar linear MSR code with (1, d)-optimal repair property,
the sub-packetization l is bounded below by l ≥

∏k−1
i=1 pi, where pi is the i-th smallest

prime. By the Prime Number Theorem [31], we obtain the lower asymptotic bound
on l of the form l ≥ e(1+o(1))k log k.

(3) Main result: In summary, we obtain the following results for the smallest possible
sub-packetization of scalar linear MDS codes, including the RS codes, whose repair
bandwidth achieves the cut-set bound.

Theorem 5.2. Let C be an (n, k = n − r) scalar linear MDS code over the field
E = Fql , and let d be an integer satisfying k + 1 ≤ d ≤ n− 1. Suppose that for any
single failed node of C and any d helper nodes there is a linear repair scheme over
Fq that uses the bandwidth dl/(d + 1 − k) symbols of Fq, i.e., it achieves the cut-set
bound (2.1). For a fixed s = d + 1 − k and n, k → ∞ the following bounds on the
smallest possible sub-packetization hold true:

e(1+o(1))k log k ≤ l ≤ e(1+o(1))n logn. (5.2)

For large s, we have l ≤ s
n∏

i:pi≡1 mod s
pi, where the product goes over the first n distinct

primes in the arithmetic progression.

Remark 5.1. The bound on l can be made more explicit even for large s, and the
answer depends on whether we accept the Generalized Riemann Hypothesis (if yes,
we can still claim the bound l ≤ exp((1 + o(1))n log n)).

(4) Discussion: Array codes and scalar codes The lower bound in (5.2) is much larger
than the sub-packetization of many known MSR array code constructions. To make
the comparison between the repair parameters of scalar codes and array codes clearer,
we summarize the tradeoff between the repair bandwidth and the sub-packetization
of some known MDS code constructions in Table 5.1. We only list the papers consid-
ering the repair of a single node from all the remaining n−1 helper nodes. Moreover,
in the table we limit ourselves to explicit code constructions, and do not list multiple
existence results that appeared in recent years.

While there is an overlap between the table in Section 2.3 and Table 5.1 below, the
latter table is compiled with the comparison of scalar and vector regenerating codes
in mind, and provides a better illustration of our current discussion.

As discussed earlier, the constructions of [11, 26] have optimal repair bandwidth
among all the RS codes with the same sub-packetization value as in these papers2. At

2Expressing the sub-packetization of the construction in [11] via n and r is difficult. The precise form
of the result in [11] is as follows: for every s < l and r ≥ qs, the authors construct repair schemes of
RS codes of length n = ql with repair bandwidth (n − 1)(l − s). Moreover, if r = qs, then the schemes
proposed in [11] achieve the smallest possible repair bandwidth for codes with these parameters.

60



Table 5.1: Tradeoff between repair bandwidth and sub-packetization (d = n− 1)

Code construction Repair bandwidth sub-packetization achieving cut-set bound
Array codes

(n, k = n− r, l)
MSR array codes for
2k ≤ (n+ 1), [42]

(n−1)l
r l = r Yes

(n, k, l)

MSR array codes
(a modification of [68])

(n−1)l
r l = rdn/(r+1)e Yes

(n, k, l) MSR
array codes [78]

(n−1)l
r l = rdn/re Yes

(n, k, l) MDS
array codes with design

parameter t ≥ 1 [24]
(1 + 1

t )
(n−1)l

r l = rt No

Scalar codes
(n, k) RS code [75]

(Section 5.5 of this chapter)
< (n+1)l

r l = rn No

(n, k) RS code [26] n− 1 l = logn/r n No

(n, k) RS code [11] (n− 1)l(1− logn r) logq n No

(n, k) RS code
(Section 5.3 of this chapter)

(n−1)l
r l ≈ nn Yes
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the same time, these values are too small for the constructions of [11, 26] to achieve
the cut-set bound. From the first three rows of the table one can clearly see that the
achievable sub-packetization values for MSR array codes are much smaller than the
lower bound for scalar linear MSR codes derived in this chapter. This is to be ex-
pected since for array codes we only require the code to be linear over the “repair
field,” i.e., F , and not the symbol field E as in the case of scalar codes.

5.1.5 Organization of the chapter
In Section 5.2, we present a simple construction of RS codes that achieve the cut-set
bound for some of the nodes. This construction is inferior to the more involved construc-
tion of Section 5.3, but simple to follow, and already contains some of the main ideas
of the later part, so we include it as a warm-up for the later results. In Section 5.3, we
present our main construction of RS codes that achieve the cut-set bound for the repair of
any single node, proving the upper estimate in (5.2). In Section 5.4, we prove the lower
bound on the sub-packetization of scalar linear MSR codes, finishing the proof of (5.2).
In Section 5.5, we construct an (n, k = n − r) RS code with sub-packetization l = rn

that asymptotically achieves (2.1)for the repair of any single failed node from all the other
n− 1 surviving nodes.

5.2 A simple construction
In this section we present a simple construction of RS codes that achieve the cut-set bound
for the repair of certain nodes. We note that any (n, k) MDS code trivially allows repair
that achieves the cut-set bound for d = k. We say that a node in an MDS code has a
nontrivial optimal repair scheme if for a given d > k it is possible to repair this node
from any d helper nodes with repair bandwidth achieving the cut-set bound. The code
family presented in this section is different from standard MSR codes in the sense that
although the repair bandwidth of our construction achieves the cut-set bound, the number
of helper nodes depends on the node being repaired.

Denote by π(t) the number of primes less than or equal to t. Let F be a finite field
and let E be the extension of F of degree t. The trace function trE/F : E → F is defined
by

trE/F (x) := x+ x|F | + x|F |
2

+ · · ·+ x|F |
t−1

.

In the next theorem we construct a special subfamily of RS codes. Our construction
enables nontrivial repair of π(r) nodes, which without loss of generality we take to be
nodes 1, 2, . . . , π(r). Let di, i = 1, 2, . . . , π(r) be the number of helper nodes used to
repair the i-th node. We will take di = pi + k − 1, where pi is the i-th smallest prime
number. The repair scheme presented below supports repair of node i by connecting to
any di helper nodes and downloading a 1

pi
-th proportion of information stored at each of

these nodes. Since pi = di − k + 1, this justifies the claim of achieving the cut-set bound
for repair of a single node.
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Theorem 5.3. Let n ≥ k be two positive integers, and let r = n − k. There exists an
(n, k) RS code over a field E such that π(r) of its coordinates admit nontrivial optimal
repair schemes.

Proof. Let m := π(r) and let q ≥ n −m be a prime power. Let E be the
(∏m

i=1 pi
)
-th

degree extension of the finite field Fq.
Let αi, i = 1, . . . ,m be an element of order pi over Fq, so that Fqpi = Fq(αi),

where Fq(αi) denotes the field obtained by adjoining αi to Fq. It is clear that E =
Fq(α1, . . . , αm). Define m subfields Fi of E by setting

Fi = Fq(αj : j 6= i),

so that E = Fi(αi) and [E : Fi] = pi, i = 1, . . . ,m. Let αm+1, . . . , αn ∈ Fq be arbitrary
n−m distinct elements of the field, and let Ω = {α1, α2, . . . , αn}.

Let C = RSE(n, k,Ω) be the RS code of dimension k with evaluation points Ω and
let C⊥ be its dual code. We claim that for i = 1, 2, . . . ,m, the i-th coordinate (node) of C
can be optimally repaired from any di helper nodes, where

di = pi + k − 1.

Let i ∈ {1, 2, . . . ,m} and let us show how to repair the ith node. Choose a subset
of helper nodesRi ⊆ [n]\{i}, |Ri| = di, and note that since pi ≤ r, we have di ≤ n− 1.
Let h(x) be the annihilator polynomial of the set {αj : j ∈ [n] \ (Ri ∪ {i})}, i.e.,

h(x) =
∏

j∈[n]\(Ri∪{i})

(x− αj). (5.3)

Since deg(h(x)) = n− k − pi, we have deg(xsh(x)) < r for all s = 0, 1, . . . , pi − 1. As
a result, for all s = 0, . . . , pi − 1, the vector

(v1α
s
1h(α1), . . . , vnα

s
nh(αn)) ∈ C⊥, (5.4)

cf. (2.2). Let c = (c1, . . . , cn) ∈ C be a codeword. By (5.4) we have
n∑
j=1

vjh(αj)α
s
jcj = 0, s = 0, . . . , pi − 1.

Let tri := trE/Fi denote the trace from E to Fi. We have
n∑
j=1

tri(vjh(αj)α
s
jcj) = 0, s = 0, . . . , pi − 1.

Equivalently, we can write

tri(vih(αi)α
s
i ci) = −

∑
j 6=i

tri(vjh(αj)α
s
jcj)

= −
∑
j∈Ri

tri(vjh(αj)α
s
jcj)

= −
∑
j∈Ri

αsj tri(vjh(αj)cj), s = 0, . . . , pi − 1,

(5.5)
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where the second equality follows from (5.3) and the third follows because αj ∈ Fi for
all j 6= i and tri is an Fi-linear map.

The information used to recover the value ci (to repair the ith node) is comprised of
the following di elements of Fi :

tri(vjh(αj)cj), j ∈ Ri.

Let us show that these elements indeed suffice. First, by (5.5), given these elements, we
can calculate the values of tri(vih(αi)α

s
i ci) for all s = 0, . . . , pi − 1. The mapping

E → F pi
i

γ 7→
(

tri
(
vih(αi)γ

)
, tri

(
vih(αi)αiγ

)
, . . . , tri

(
vih(αi)α

pi−1
i γ

))
.

is in fact a bijection, which can be realized as follows. Since the set {1, αi, . . . , αpi−1
i }

forms a basis ofE overFi and vih(αi) 6= 0, the set {vih(αi), vih(αi)αi, . . . , vih(αi)α
pi−1
i }

also forms a basis. Let {θ0, θ1, . . . , θpi−1} be the dual basis of {vih(αi), vih(αi)αi, . . . ,
vih(αi)α

pi−1
i }, i.e.,

tri(vih(αi)α
s
iθj) =

{
0, if s 6= j

1, if s = j
for all s, j ∈ {0, 1, . . . , pi − 1}.

The value ci can now be found as follows:

ci =

pi−1∑
s=0

tri(vih(αi)α
s
i ci)θs.

(this is the essence of the repair scheme proposed in [26]).
The presented arguments constitute a linear repair scheme of the node ci, i =

1, . . .m over Fi. The information downloaded from each of the helper nodes consists
of one element of Fi, or, in other words, the (1/pi)th proportion of the contents of each
node. This shows that node i admits nontrivial optimal repair. The proof is thereby com-
plete.

Example 5.1. Take q = 5, k = 3, r = 5. We have π(r) = 3 and p1 = 2, p2 = 3, p3 = 5.
Let us construct an (8, 3) RS code over the field E = F530 , where the first 3 nodes admit
nontrivial optimal repair schemes. Let α be a primitive element of E. Choose the set
Ω = {α1, . . . , α8} as follows:

α1 = α
530−1

52−1 , α2 = α
530−1

53−1 , α3 = α
530−1

55−1 , α4 = 0, α5 = 1, α6 = 2, α7 = 3, α8 = 4.

The number of helper nodes for the first 3 nodes is (d1, d2, d3) = (4, 5, 7). It is easy to
verify that for any subset A ⊆ {1, 2, 3}

F5(αi : i ∈ A) = Fm
A
, where m

A
= 5(

∏
i∈A pi).

The code C constructed in the above proof is given by C = RSE(8, 3,Ω). Let us
address the task of repairing c3 from all the remaining 7 helper nodes with repair band-
width achieving the cut-set bound. Let C⊥ = GRSE(8, 5,Ω, v), where v = (v1, . . . , v8) ∈
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(E∗)8. We download the value trE/F56
(vjcj) from each helper node cj, j 6= 3. Since

[E : F56 ] = p3, this amounts to downloading exactly a 1/p3 = (1/5)-th fraction of the
information stored at each helper node, which achieves the cut-set bound. The value of
c3 can be found from the downloaded information using the following 5 equations:

trE/F56
(αs3v3c3) = −

∑
j 6=3

trE/F56
(αsjvjcj) = −

∑
j 6=3

αsj trE/F56
(vjcj), s = 0, . . . , 4.

Indeed, the downloaded symbols suffice to recover the vector (trE/F56
(αs3v3c3), s = 0, . . . , 4),

and therefore also suffice to repair the symbol c3.

5.3 A family of RS codes achieving the cut-set bound
In this section we develop the ideas discussed above and construct RS codes achieving
the cut-set bound with nontrivial optimal repair of all nodes. More precisely, given any
positive integers k < d ≤ n−1, we explicitly construct an (n, k) RS code C achieving the
cut-set bound for the repair of any single node from any d helper nodes. In other words,
C is an (n, k) MSR code with (1, d)-optimal repair property.

Let Fp be a finite field of prime order (for simplicity we can take p = 2). Denote
s := d− k + 1 and let p1, . . . , pn be n distinct primes such that

pi ≡ 1 mod s for all i = 1, 2, . . . , n. (5.6)

According to Dirichlet’s theorem, there are infinitely many such primes. For i = 1, . . . , n,
let αi be an element of degree pi over Fp, i.e., [Fp(αi) : Fp] = pi, and define

F := Fp(α1, . . . , αn). (5.7)

Note that for any subset of indices A ⊆ [n], the field Fp({αi : i ∈ A}) is an extension of
Fp of degree

∏
i∈A pi, and in particular, F has degree

∏n
i=1 pi over Fp. Next, we define n

distinct subfields Fi of the field F and one extension field K of F.

1. For i = 1, . . . , n, define Fi = Fp({αj : j 6= i}). Note that F = Fi(αi) and
[F : Fi] = pi.

2. The field K is defined to be the degree-s extension of the field F, i.e. there exists an
element β ∈ K of degree s over F such that K = F(β). We also have [K : Fi] = spi
for all i.

We are ready to construct a family of RS codes that can be optimally repaired for
each node. The set α1, . . . , αn serves as the set of evaluation points of the code.

The following theorem is the main result of this section.

Theorem 5.4. Let k, n, d be any positive integers such that k < d < n. Let Ω =
{α1, . . . , αn}, where αi, i = 1, . . . , n is an element of degree pi over Fp and pi is the
ith smallest prime that satisfies (5.6). The code C := RSK(n, k,Ω) achieves the cut-set
bound for the repair of any single node from any d helper nodes. In other words, C is an
(n, k) MSR code with (1, d)-optimal repair property.
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Remark 5.2. The code constructions in this chapter rely on the condition of the form
αi 6∈ Fq(αj, j 6= i), i = 1, . . . , n (in this section we also require that the extension degree
[F : Fi] ≡ 1 mod s, i = 1, . . . , n). The most efficient way to accomplish this in terms of the
value of sub-packetization l is to take the extension degrees to be the smallest (distinct)
primes, and this is the underlying idea behind the code constructions presented in this
chapter.

Proof. Our repair scheme of the i-th node is performed over the field Fi. More specifi-
cally, for every i ∈ [n], we explicitly construct a vector space Si over the field Fi such
that

dimFi Si = pi, Si + Siαi + · · ·+ Siα
s−1
i = K, (5.8)

where Siα := {γα : γ ∈ Si}, and the operation + is the Minkowski sum of sets, T1 +
T2 := {γ1 +γ2 : γ1 ∈ T1, γ2 ∈ T2}. Note that the sum in (5.8) is in fact a direct sum since
the dimension of each summand is pi, and [K : Fi] = spi. We will describe a construction
of Si and prove that Si satisfies (5.8) in Lemma 5.5 later in this section. For now let us
assume that we have such vector spaces Si, i = 1, 2, . . . , n and continue the proof of the
theorem.

Suppose that we want to repair the i-th node from a subsetR ⊆ [n]\{i} of |R| = d
helper nodes. Let h(x) be the annihilator polynomial of the set {αj : j ∈ [n]\ (R∪{i})},
i.e.,

h(x) =
∏

j∈[n]\(R∪{i})

(x− αj). (5.9)

By (2.2) the dual code of C is C⊥ = GRSK(n, n − k,Ω, v) where the coefficients v =
(v1, . . . , vn) ∈ (K∗)n are nonzero. Clearly, deg(xth(x)) ≤ s− 1 + n− (d+ 1) < n− k
for all t = 0, 1, . . . , s− 1, so for any such t we have

(v1α
t
1h(α1), . . . , vnα

t
nh(αn)) ∈ C⊥. (5.10)

These s dual codewords will be used to recover the i-th coordinate. Let c = (c1, . . . , cn) ∈
C be a codeword, and let us construct a repair scheme for the coordinate (node) ci using
the values {cj : j ∈ R}. Rewrite (5.10) as follows:

n∑
j=1

vjα
t
jh(αj)cj = 0 for all t = 0, . . . , s− 1. (5.11)

Let e1, . . . , epi be an arbitrary basis of the subspace Si over the field Fi. From (5.11) we
obtain the following system of spi equations:

n∑
j=1

emvjα
t
jh(αj)cj = 0, t = 0, . . . , s− 1;m = 1, . . . , pi.
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Let tri := trK/Fi be the trace map to the subfield Fi. From the last set of equations we
have

n∑
j=1

tri(emvjα
t
jh(αj)cj) = 0 for all t = 0, . . . , s− 1 and all m = 1, . . . , pi, (5.12)

Arguing as in (5.5), let us write (5.12) in the following form: for all t = 0, . . . , s− 1 and
all m = 1, . . . , pi,

tri(emα
t
ivih(αi)ci) = −

∑
j 6=i

tri(emvjα
t
jh(αj)cj)

= −
∑
j∈R

tri(emvjα
t
jh(αj)cj)

= −
∑
j∈R

αtjh(αj) tri(emvjcj),

(5.13)

where the second equality follows from (5.9) and the third follows from the fact that the
trace mapping tri is Fi-linear, and that αj ∈ Fi for all j 6= i.

As before, to recover ci, we download the following pi symbols of Fi from each
helper node cj, j ∈ R:

tri(emvjcj) for m = 1, . . . , pi. (5.14)

These field elements suffice to recover the node ci. Indeed, according to (5.13), we can
calculate the values of tri(emα

t
ivih(αi)ci) for all t = 0, . . . , s − 1 and all m = 1, . . . , pi

from the set of elements in (5.14). By definition, e1, . . . , epi is a basis of the subspace Si
over the field Fi. According to (5.8), K = Si + Siαi + · · ·+ Siα

s−1
i . Therefore, the set

{emαti : t = 0, . . . , s− 1; m = 1, . . . , pi} forms a basis of K over Fi and so does the set
{emαtivih(αi) : t = 0, . . . , s − 1; m = 1, . . . , pi} (recall that vi · h(αi) 6= 0). Hence the
mapping

K→ F spi
i

γ 7→ (tri(emα
t
ivih(αi)γ),m = 1, . . . , pi; t = 0, . . . , s− 1).

is a bijection. This means that ci is uniquely determined by the set of values

{tri(emαtivih(αi)ci),m = 1, . . . , pi; t = 0, . . . , s− 1},

validating our repair scheme.
It is also clear that the construction meets the cut-set bound. Indeed, cj ∈ K for all

j and [K : Fi] = spi, so the amount of information required from each helper node (5.14)
is exactly (1/s)th fraction of its contents.

This completes the proof of Theorem 5.4.

In the proof above we assumed the existence of the vector space Si that satisfies
(5.8) for all i ∈ [n]. In the next lemma we construct such a space and establish its
properties.

For a vector space V over a field F and a set of vectors A = (a1, . . . , al) ⊂ V , let
SpanF (A) = {

∑l
i=1 γiai, γi ∈ F} be the span of A over F .
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Lemma 5.5. Let β be a generating element of K over F = Fp(α1, . . . , αn). Given i ∈ [n],
define the following vector spaces over Fi:

S
(1)
i = SpanFi

(
βuαu+qs

i , u = 0, 1, . . . , s− 1; q = 0, 1, . . . , pi−1
s
− 1
)

S
(2)
i = SpanFi

( s−1∑
t=0

βtαpi−1
i

)
Si = S

(1)
i + S

(2)
i .

Then
dimFi Si = pi, Si + Siαi + · · ·+ Siα

s−1
i = K.

Proof. Let K := Si +Siαi + · · ·+Siα
s−1
i . If K = K, then dimFi Si = pi easily follows.

Indeed, by definition dimFi Si ≤ pi. On the other hand, [K : Fi] = spi and K = K
together imply that dimFi Si ≥ pi.

Let us prove that K = K. Clearly K is a vector space over Fi, and K ⊆ K. Let
us show the reverse inclusion, namely that K ⊆ K. To prove this, recall that K is a
vector space of dimension s over F (see (5.7)), and the set 1, β, . . . , βs−1 forms a basis,
i.e., K = ⊕s−1

u=0β
uF. Thus, the lemma will be proved if we show that βuF ⊆ K for all

u = 0, 1, . . . , s− 1. To prove this inclusion we will use induction on u.
For the induction base, let u = 0. In this case, we have αqsi ∈ S

(1)
i for all 0 ≤ q <

pi−1
s

. Therefore αqs+ji ∈ S
(1)
i αji for all 0 ≤ q < pi−1

s
. As a result, αqs+ji ∈ K for all

0 ≤ q < pi−1
s

and all 0 ≤ j ≤ s− 1. In other words,

αti ∈ K, t = 0, 1, . . . , pi − 2. (5.15)

Next we show that also αpi−1
i ∈ K. For every t = 1, . . . , s − 1 we have 0 ≤

bpi−1−t
s
c < pi−1

s
. As a result,

βtα
t+b pi−1−t

s
cs

i ∈ S(1)
i , t = 1, . . . , s− 1.

We obtain, for each t = 1, . . . , s− 1,

βtαpi−1
i = βtα

t+b pi−1−t
s
cs

i α
pi−1−t−b pi−1−t

s
cs

i ∈ Siα
pi−1−t−b pi−1−t

s
cs

i ⊆ K.

At the same time,
s−1∑
t=0

βtαpi−1
i ∈ S(2)

i ⊆ K.

The last two statements together imply that

αpi−1
i =

s−1∑
t=0

βtαpi−1
i −

s−1∑
t=1

βtαpi−1
i ∈ K.

Combining this with (5.15), we conclude that αti ∈ K for all t = 0, 1, . . . , pi − 1. Recall
that 1, αi, . . . , α

pi−1
i is a basis of F over Fi, and that K is a vector space over Fi, so

F ⊆ K. This establishes the induction base.
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Now let us fix u ≥ 1 and let us assume that βu′F ⊆ K for all u′ < u. To prove
the induction step, we need to show that βuF ⊆ K. Mimicking the argument that led to
(5.15), we can easily show that

βuαu+t
i ∈ K, t = 0, 1, . . . , pi − 2. (5.16)

Let us show that (5.16) is also true for t = pi − 1, i.e., that βuαu+pi−1
i ∈ K. For every

1 ≤ t ≤ s− 1− u, we have 0 ≤ bpi−1−t
s
c < pi−1

s
. As a result,

βu+tα
u+t+b pi−1−t

s
cs

i ∈ S(1)
i , t = 1, . . . , s− 1− u.

Therefore, for all such t

βu+tαu+pi−1
i = βu+tα

u+t+b pi−1−t
s
cs

i α
pi−1−t−b pi−1−t

s
cs

i ∈ Siα
pi−1−t−b pi−1−t

s
cs

i ⊆ K (5.17)

By the induction hypothesis, βu′F ⊆ K for all u′ = 0, 1, . . . , u− 1. As a result,

βu
′
αu+pi−1
i ∈ K, u′ = 0, 1, . . . , u− 1. (5.18)

At the same time,

s−1∑
t=0

βtαu+pi−1
i =

( s−1∑
t=0

βtαpi−1
i

)
αui ∈ S

(2)
i αui ⊆ K. (5.19)

Combining (5.17), (5.18) and (5.19), we obtain

βuαu+pi−1
i =

s−1∑
t=0

βtαu+pi−1
i −

u−1∑
u′=0

βu
′
αu+pi−1
i −

s−1−u∑
t=1

βu+tαu+pi−1
i ∈ K.

Now on account of (5.16) we can conclude that βuαu+t
i ∈ K for all t = 0, 1, . . . , pi − 1.

Therefore, βuF ⊆ K. This establishes the induction step and completes the proof of the
lemma.

The value of sub-packetization of the constructed codes is given in the following
obvious proposition.

Proposition 5.6. The sub-packetization of our construction is l = [K : Fp] = s
∏n

i=1 pi,
where pi’s are the smallest n distinct primes satisfying (5.6).

The proof follows immediately from the fact that the repair of the i-th coordinate
is performed over the field Fi, so the repair field of our construction is ∩ni=1Fi = Fp. To
estimate the asymptotics of l for n → ∞, recall that our discussion of Dirichlet’s prime
number theorem in Sec. 5.1.4 above implies that, for fixed s, l = e(1+o(1))n logn. This
proves the upper bound in (5.2).
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5.4 A lower bound on the sub-packetization of scalar lin-
ear MSR codes

In this section we prove a lower bound on the sub-packetization value l of (n, k) scalar
linear MSR codes, which implies that l ≥ e(1+o(1))k log k. In contrast, for MSR array
codes, a much smaller sub-packetization value l = rdn/(r+1)e is achievable [68]. This
shows that limiting oneself to scalar linear codes necessarily leads to a much larger sub-
packetization, and constructing such codes in real storage systems is even less feasible
than their array code counterparts. The main result of this section is the following theo-
rem:

Theorem 5.7. Let F = Fq and E = Fql for a prime power q. Let d be an integer between
k + 1 and n − 1. Let C ⊆ En be an (n, k) scalar linear MDS code with a linear repair
scheme over F. Suppose that the repair bandwidth of the scheme achieves the cut-set
bound (2.1) with equality for the repair of any single node from any d helper nodes. Then
the sub-packetization l is at least

l ≥
k−1∏
i=1

pi

where pi is the i-th smallest prime.

As discussed above in Sec. 5.1.4, this theorem implies the asymptotic lower bound
l ≥ e(1+o(1))k log k.

In the proof of Theorem 5.7, we will need the following auxiliary lemmas.

Lemma 5.8. (Subfield criterion [34, Theorem 2.6]) Each subfield of the field Fpn is of
order pm, where m|n. For every positive divisor m of n there exists a unique subfield of
Fpn that contains pm elements.

Lemma 5.9. Let E be an extension field of Fq and let α1, . . . , αn ∈ E. Then

[Fq(α1, . . . , αn) : Fq] = lcm(d1, . . . , dn),

where di = [Fq(αi) : Fq].

Proof: Obvious.

Lemma 5.10. Let a1, a2, . . . , an ∈ Fm and b1, b2, . . . , bn ∈ Fm be two sets of vectors
over a field F , and let A and B denote their spans over F . Let ci = ai + bi, i = 1, . . . , n
then

dimF (c1, . . . , cn) ≤ dimA+ dimB. (5.20)

The lemma follows immediately from the fact that, for any two subspaces A and B
of a linear space,

dim(A+B) + dim(A ∩B) = dimA+ dimB. (5.21)

In the next lemma SF (·) refers to the row space of the matrix argument over the
field F .
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Lemma 5.11. Let E be an extension of a finite field F of degree l. Let A = (ai,j) be an
m× n matrix over E. Then

dim(SF (A)) ≤
n∑
j=1

dimF (a1,j, a2,j, . . . , am,j). (5.22)

Moreover, if (5.22) holds with equality, then for every J ⊆ [n],

dim(SF (AJ )) =
∑
j∈J

dimF (a1,j, a2,j, . . . , am,j) (5.23)

where AJ is the restriction of A to the columns with indices in J .

Proof. Inequality (5.22) is an immediate consequence of Lemma 5.10. Indeed, suppose
that n = 2 and view the ith row of A as the sum of two 2-dimensional vectors over E,
namely (ai,1|0) and (0|ai,2), i = 1, . . . ,m; then (5.22) is the same as (5.20). The extension
to n > 2 follows by straightforward induction.

Now let us prove the second part of the claim. Suppose that

dim(SF (A)) =
n∑
j=1

dimF (a1,j, a2,j, . . . , am,j).

Then for every J ⊆ [n],∑
j∈J

dimF (a1,j, a2,j, . . . , am,j) +
∑
j∈J c

dimF (a1,j, a2,j, . . . , am,j)

= dim(SF (A)) ≤ dim(SF (AJ )) + dim(SF (AJ c)).

But according to (5.22),

dim(SF (AJ )) ≤
∑
j∈J

dimF (a1,j, a2,j, . . . , am,j),

dim(SF (AJ c)) ≤
∑
j∈J c

dimF (a1,j, a2,j, . . . , am,j).

Therefore
dim(SF (AJ )) =

∑
j∈J

dimF (a1,j, a2,j, . . . , am,j).

This completes the proof of the lemma.

Now we are ready to prove Theorem 5.7.

Proof of Theorem 5.7: Let C be an (n, k) MSR code with (1, d)-optimal repair
property. By puncturing the code C to any d+ 1 coordinates, we obtain a (d+ 1, k) MSR
code with (1, d)-optimal repair property. Therefore without loss of generality below we
assume that d = n− 1.
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Let H = [M |Ir] be the parity-check matrix of the code C over E, written in sys-
tematic form, where M is an r × k matrix and Ir is the r × r identity matrix. Let hij be
the entry of H in position (i, j). Since C is an MDS code, every square submatrix of M
is invertible. In particular, every entry of M is nonzero, so without loss of generality we
may assume that h1,j = 1, j = 1, 2, . . . , k. Since d ≥ k + 1, we also have n ≥ k + 2, and
therefore H contains at least two rows.

The theorem will follow from the following claim.

Claim 5.1. For j = 1, . . . , k − 1 define αj :=
h2,j
h2,k

. Then for every j = 1, . . . , k − 1,

αj /∈ Fq
({
αi : i ∈ {1, 2, . . . , k − 1} \ {j}

})
. (5.24)

In other words, αj is not generated by the remaining αi’s over Fq.

We first show that this claim indeed implies the theorem. Let di = [Fq(αi) : Fq] be
the degree of the field extension generated by αi. We prove by contradiction that for all
j = 1, 2, . . . , k− 1, dj does not divide lcm(di : i ∈ {1, 2, . . . , k− 1} \ {j}). Suppose the
contrary, i.e., that there is a j such that dj| lcm(di : i ∈ {1, 2, . . . , k−1}\{j}).According
to Lemma 5.9,

[Fq
({
αi : i ∈ {1, 2, . . . , k − 1} \ {j}

})
: Fq] = lcm(di : i ∈ {1, 2, . . . , k − 1} \ {j}).

Then by Lemma 5.8, there is a subfield

Fj ⊆ Fq
({
αi : i ∈ {1, 2, . . . , k − 1} \ {j}

})
(5.25)

such that [Fj : Fq] = dj . Notice that E = Fql contains all αu, u = 1, 2, . . . , k − 1. So
both Fj and Fq(αj) are subfields of E, and they have the same order qdj . Consequently,
Fq(αj) = Fj . Then from (5.25) we conclude that αj ∈ Fq

({
αi : i ∈ {1, 2, . . . , k − 1} \

{j}
})
, which contradicts (5.24). Thus, our assumption is wrong, and dj 6 | lcm(di : i ∈

{1, 2, . . . , k − 1} \ {j}). As an immediate corollary,

l = [E : Fq] ≥ [Fq({αi : i = 1, . . . , k − 1}) : Fq] = lcm(d1, . . . , dk−1) ≥
k−1∏
i=1

pi.

Thus we have shown that Claim 5.1 indeed implies the theorem. Now let us prove the
claim.

Proof of the Claim 5.1: Consider the repair of the j-th node of the code C for some
j ∈ {1, 2, . . . , k−1}. Since C can be viewed as an (n, k, n−1, l) MSR code with a linear
repair scheme over Fq, node cj can be repaired by downloading (n − 1)l/r symbols of
Fq from all the remaining nodes {ci : i ∈ [n] \ {j}}, where r = n − k. Therefore by
Theorem 5.1, there exist l codewords

(ct,1, ct,2, . . . , ct,n) ∈ C⊥, t = 1, 2, . . . , l

such that

dimFq(c1,j, c2,j, . . . , cl,j) = l, and (5.26)
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∑
i 6=j

dimFq(c1,i, c2,i, . . . , cl,i) =
(n− 1)l

r
. (5.27)

Since H is a generator matrix of C⊥, for each t = 1, 2, . . . , l there is a column vector
bt ∈ Er such that (ct,1, ct,2, . . . , ct,n) = bTt H . We define an l×r matrix B over the field E
asB = [b1b2 . . . bl]

T . We claim that the Fq-rank of the row space ofB is l. Indeed, assume
the contrary, then there exists a nonzero vector w ∈ Flq such that wB = 0. Therefore,

wBH = w


c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

...
...

...
...

cl,1 cl,2 . . . cl,n

 = 0.

This implies that w(c1,j, c2,j, . . . , cl,j)
T = 0, contradicting (5.26). Thus we conclude that

B has l linearly independent rows over Fq.
Now we want to show that there exists an l × l invertible matrix A over Fq such

that the matrix AB is an r× r block-diagonal matrix Diag(a1, . . . , ar), where each block
ai is formed of a column vector of length l

r
. In other words, by performing elemen-

tary row operations over Fq, B can be transformed into an r × r block-diagonal matrix
Diag(a1, . . . , ar). Indeed, for i ∈ [n], let hi be the i-th column of the matrixH , and define

ti = dimFq(Bhi) = dimFq(c1,i, c2,i, . . . , cl,i).

By (5.27), we have
n∑
i 6=j

ti =
(n− 1)l

r
. (5.28)

Since H generates an (n, r) MDS code, for any subset of indices J ⊆ [n] of size
|J | = r, the matrix HJ is of full rank. Therefore, the l × r matrix BHJ satisfies the
conditions

l = dim(SFq(B)) = dim(SFq(BHJ )) ≤
∑
i∈J

dimFq(Bhi), (5.29)

where the last inequality follows from Lemma 5.11. Summing both sides of (5.29) over
all subsets J ⊆ [n]\{j} of size |J | = r, we obtain that

l

(
n− 1

r

)
≤

∑
J⊆[n]\{j}
|J |=r

∑
i∈J

dimFq(Bhi)

=

(
n− 2

r − 1

)∑
i 6=j

ti

(5.28)
=

(
n− 2

r − 1

)
(n− 1)l

r

= l

(
n− 1

r

)
,

(5.30)
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This implies that the inequality above is in fact an equality, and therefore, on account of
(5.29) for every subset J ⊆ [n]\{j}, |J | = r we have

l =
∑
i∈J

dimFq(Bhi) =
∑
i∈J

ti. (5.31)

From (5.31) we obtain that for all i ∈ [n] \ {j}

dimFq(Bhi) = ti = l/r. (5.32)

Moreover, since (5.29) holds with equality, we can use the second part of Lemma 5.11 to
claim that, for J ⊆ [n]\{j} of size |J | ≤ r,

dim(SFq(BHJ )) =
∑
i∈J

dimFq(Bhi) =
|J |l
r
. (5.33)

Let us take J to be a subset of {k+ 1, k+ 2, . . . , n}. Since the last r columns of H form
an identity matrix, (5.33) becomes

dim(SFq(BJ )) =
|J |l
r

for all J ⊆ [r] with size |J | ≤ r. (5.34)

Now we are ready to prove that by performing elementary row operations over
Fq, B can be transformed into an r × r block diagonal matrix Diag(a1, . . . , ar), where
each block ai is a single column vector of length l

r
. We proceed by induction. More

specifically, we prove that for i = 1, 2, . . . , r, we can use elementary row operations over
Fq to transform the first i columns of B into the following form:

a1 0 . . . 0

0 a2 . . . 0
...

...
...

...
0 0 . . . ai

0 0 . . . 0

 ,

where each 0 in the last row of the above matrix is a column vector of length l(1− i
r
).

Let i = 1. According to (5.34), each column of B has dimension l/r over Fq. Thus
the induction base holds trivially. Now assume that there is an l × l invertible matrix A
over Fq such that

AB[i−1] =


a1 0 . . . 0

0 a2 . . . 0
...

...
...

...
0 0 . . . ai−1

0 0 . . . 0

 ,

where each 0 in the last row of this matrix is a column vector of length l(1− i−1
r

). Let us
write the i-th column of AB as (v1, v2, . . . , vl)

T . Since each column of B has dimension
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l/r over Fq, (v1, v2, . . . , vl)
T also has dimension l/r over Fq. Since the last l(1 − i−1

r
)

rows of the matrix AB[i−1] are all zero, we can easily deduce that

dim(SFq(AB[i])) ≤
i− 1

r
l + dimFq(v(i−1)l/r+1, v(i−1)l/r+2, . . . , vl).

By (5.34), dim(SFq(AB[i])) = dim(SFq(B[i])) = il
r
. As a result,

dimFq(v(i−1)l/r+1, v(i−1)l/r+2, . . . , vl) ≥ l/r = dimFq(v1, v2, . . . , vl).

In other words, (v(i−1)l/r+1, v(i−1)l/r+2, . . . , vl) contains a basis of the set (v1, v2, . . . , vl)
over Fq. This implies that we can use elementary row operations on the matrix AB to
eliminate all the nonzero entries vm for m ≤ (i − 1)l/r, and thus obtain the desired
block-diagonal structure for the first i columns. This establishes the induction step.

We conclude that there exists an l × l invertible matrix A over Fq such that AB =
Diag(a1, . . . , ar), where each block ai is a single column vector of length l

r
. For u ∈ [r],

let Au be the vector space spanned by the entries of au over Fq. According to (5.32), for
all i ∈ [n] \ {j}

dimFq(ABhi) = dimFq(Bhi) = l/r.

Since

dimFq(ABhi) = dimFq(Diag(a1, . . . , ar)hi)

= dimFq(A1h1,i + · · ·+ Arhr,i), i = 1, 2, . . . , n,

for all i ∈ [n] \ {j} we have

dimFq(A1h1,i + · · ·+ Arhr,i) = l/r.

Since each column of B has dimension l/r over Fq, Au also has dimension l/r over Fq
for every u ∈ [r]. Recall that hu,i 6= 0 for all u ∈ [r] and all i ∈ [k]. Thus

dimFq(Auhu,i) = l/r = dimFq(A1h1,i + · · ·+ Arhr,i)

for all u = 1, . . . , r and i ∈ [k] \ {j}. Therefore,

A1h1,i = A2h2,i = · · · = Arhr,i and all i ∈ [k] \ {j}.

Since h1,i = 1 for all i = 1, 2, . . . , k, we have

A2h2,i = A1 for all i ∈ [k] \ {j}. (5.35)

Equivalently,
A2αi = A2 for all i ∈ {1, 2, . . . , k − 1} \ {j}.

By definition A2 is a vector space over Fq, so

A2γ = A2 for all γ ∈ Fq({αi : i ∈ {1, 2, . . . , k − 1} \ {j}}). (5.36)
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On the other hand,

dimFq(A1h1,j + · · ·+ Arhr,j) = dimFq(Diag(a1, . . . , ar)hj) = dimFq(ABhj)

= dimFq(Bhj) = dimFq{c1,j, c2,j, . . . , cl,j} = l,
(5.37)

while
dimFq(Auhu,j) = l/r, u = 1, 2, . . . , r. (5.38)

Equations (5.37) and (5.38) together imply that the vector spacesA1h1,j, A2h2,j, . . . , Arhr,j
are pairwise disjoint. In particular, A1∩A2h2,j = {0}. On account of (5.35), we therefore
have A2h2,k ∩ A2h2,j = {0}. This implies that A2αj 6= A2. By (5.36), we conclude that
αj /∈ Fq({αi : i ∈ {1, 2, . . . , k − 1} \ {j}}). This completes the proof of the claim.

5.5 A family of Reed-Solomon Codes with asymptotically
optimal repair bandwidth

In this section we couple the linear repair scheme of [26] (see Section 5.1.2 for a recap)
with the r-ary expansion idea of [6, 61] to construct a family of RS codes with asymptot-
ically optimal repair bandwidth.

Given any n and k, we will specify a symbol field E, which is a degree l finite
field extension over some finite field F, and a set of evaluation points Λ, and view the
RSE(n, k,Λ) codes as (n, k, l) array codes over F. We will show that they have repair
bandwidth bounded above by l(n+1)

n−k over the base field F. Since the optimal repair band-
width for an (n, k, l) MDS array code is l(n−1)

n−k , we conclude that when n→∞, the ratio
between the actual and the optimal repair bandwidth approaches 1 (the corresponding
quantity of the construction in [26] is about 1.5).

5.5.1 The choice of symbol field and evaluation points
Here we explain how to find a symbol field E and a set of evaluation points Λ such that
the corresponding RS code has nearly optimal repair bandwidth.

Suppose that n and k are arbitrary fixed numbers. Let F be a finite field and let
h(x) ∈ F [x] be a degree l irreducible polynomial over F, where l = rn, r = n− k. Let β
be a root of h(x) and set the symbol field to be E = F (β), i.e., the field generated by β
over F. Clearly {1, β, β2, . . . , βl−1} is a basis for E over F. Choose the set of evaluation
points to be Λ = {βr0 , βr1 , . . . , βrn−1}.

Theorem 5.12. The repair bandwidth of the code RSE(n, k,Λ) over F is less than l n+1
n−k .

Proof. We need to show that for every i ∈ [n],we can find polynomials fi,j with deg(fi,j) <

r, j = 1, . . . , l such that fi,1(βr
i−1

), . . . , fi,l(β
ri−1

) form a basis for E over F and∑
0≤t<n,t6=i−1

dimF ({fi,j(βr
t

)}j∈[l]) <
l(n+ 1)

n− k
.

76



For a = 0, 1, . . . , l − 1, write its r-ary expansion as a = (an, an−1, . . . , a1), where ai is
the i-th digit from the right. Define the set of l polynomials {fi,j}j∈[l] = {βaxs : ai =
0, s = 0, 1, . . . , r − 1}.

It is easy to verify that

{fi,j(βr
i−1

) : j ∈ [l]} = {1, β, β2, . . . , βl−1}

(as sets), so the elements {fi,j(βr
i−1

)}j∈[l] form a basis for E over F. When t < i− 1, we
have

{fi,j(βr
t

)}j∈[l] = {βa : ai = 0}
⋃( r−2⋃

u=0

{βa : ai = 1, ai−1 = · · · = at+2 = 0, at+1 = u}
)
.

Thus dimF ({fi,j(βr
t
)}j∈[l]) ≤ l

r
+ (r − 1) l

ri−t
if t < i− 1. When t > i− 1, we have

{fi,j(βr
t

)}j∈[l] = {βa : ai = 0}
⋃( r−2⋃

u=0

{βl+a : an = · · · = at+2 = 0, at+1 = u, ai = 0}
)
.

Thus dimF ({fi,j(βr
t
)}j∈[l]) ≤ l

r
+ (r − 1) l

rn−t+1 for t > i − 1. An upper bound on the
sum of the dimensions is given by:∑

0≤t<n,t6=i−1

dimF ({fi,j(βr
t

)}j∈[l])

≤ (n− 1)
l

r
+ (r − 1)

i−2∑
t=0

l

ri−t
+ (r − 1)

n−1∑
t=i

l

rn−t+1

= l
(n− 1

r
+
ri−1 − 1

ri
+
rn−i − 1

rn−i+1

)
< l

n+ 1

n− k
.

The proof is complete.

5.6 Concluding remarks

In this chapter, we constructed optimal-repair RS code with sub-packetization l = exp((1+
o(1))n log n). We also proved an almost matching lower bound on l, showing that the
super-exponential scaling is both necessary and sufficient for achieving the cut-set bound
(2.1) using linear repair schemes. Finally, we constructed an (n, k = n− r) RS code with
sub-packetization l = rn (much smaller than the first construction) that asymptotically
achieves (2.1) for the repair of any single failed node from all the other n − 1 surviving
nodes.

A possible future direction of research is to study the optimal trade-off between the
repair bandwidth of scalar codes and the sub-packetization value. From the results in this
chapter we know that if we allow ourselves l = rn, then the bandwidth can approach
(2.1). It is therefore of interest to study the best achievable repair bandwidth of RS codes
with smaller sub-packetization.
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Chapter 6: Fractional decoding: Error correction from
partial information

In this chapter we consider error correction by MDS codes based on a part of the received
codeword. Our problem is motivated by applications in distributed storage. While effi-
ciently correcting erasures by MDS storage codes (the “repair problem”) has been widely
studied in recent literature, the problem of correcting errors in a similar setting seems to
represent a new question in coding theory.

Suppose that k data symbols are encoded using an (n, k) MDS code, and some of
the codeword coordinates are located on faulty storage nodes that introduce errors. We
want to recover the original data from the corrupted codeword under the constraint that
the decoder can download only an α proportion of the codeword (fractional decoding).
For any (n, k) code we show that the number of correctable errors under this constraint
is bounded above by b(n − k/α)/2c. We also present two families of MDS array codes
which achieve this bound with equality under a simple decoding procedure. The decoder
downloads an α proportion of each of the codeword’s coordinates, and provides a much
larger decoding radius compared to the naive approach of reading some αn coordinates
of the codeword. One of the code families is formed of Reed-Solomon (RS) codes with
well-chosen evaluation points, while the other is based on folded RS codes.

Finally, we show that folded RS codes also have the optimal list decoding radius
under the fractional decoding constraint.

The results presented in this chapter appear in [63].

6.1 Introduction
In this chapter we extend the setting of erasure correction from partial information to
the problem of error correction. In a distributed system, we usually face a limitation on
the disk input/output operations as well as on the amount of information transmitted for
the purpose of decoding (decoding bandwidth). Under no limitations on the decoding
bandwidth, it is possible to recover the information from any b(d− 1)/2c errors, where d
is the distance of the code. Assuming that the system permits the decoder to utilize only
an α < 1 proportion of the whole codeword, we face the natural question of how many
errors we can guarantee to correct in this setup. In other words, how much do we give up
in terms of error-correcting capability by limiting the decoding bandwidth?

Informal description of the problem. Let C be a code of length n and dimension k
over a field F. Let y = c+e be equal to a codeword c plus an error vector e ∈ F n. Suppose
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that the decoder attempts to recover the data encoded in c based on a part of the vector
y. More specifically, suppose that the input to the decoder is formed as some functions
fi of the symbols yi, i = 1, . . . , n, each defined on an individual coordinate, and suppose
that the total number of field symbols available to the decoder is αn, α ≤ 1. Clearly we
should take α ≥ k/n because the codeword encodes k data symbols, and even without
errors to recover the data the decoder needs at least as many input symbols. If α = 1, we
return to the standard decoding problem, so our goal is to study error correction for α in
the range k

n
≤ α < 1.

We call the number of errors correctable from an α proportion of the codeword the
α-decoding radius, and denote it by rα(n, k). Our first result, proved in Section 6.2, is an
upper bound on rα(n, k). Then in Sections 6.3 and 6.4 we present two code constructions
that achieve this upper bound with equality. The code families that we consider belong
to the class of array codes, and therefore we phrase our definitions and results in terms
of such codes. At the same time, the general problem of fractional decoding as well as
the upper bound on the α-decoding radius in Theorem 6.2 apply to all codes, and do not
depend on the specific setting considered below.

An (n, k, l) array code C is formed of l × n matrices C = (C1, . . . , Cn) ∈ (F l)n,
where F is a finite field. Each column Ci of the matrix is a codeword coordinate, and
the parameter l that determines the dimension of the column vector Ci is called sub-
packetization. We may also consider C as a code over the alphabet F l, and then one
error amounts to an incorrect column Ci. Accordingly, correcting up to t errors means
correcting any combination of errors E = (E1, E2, . . . , En) ∈ (F l)n of Hamming weight
w(E) := |{i : Ei 6= 0}| ≤ t, where the received codeword is the matrix C + E =
(Ci + Ei, i = 1, . . . , n).

Definition 6.1 (α-decoding radius). Let C be an (n, k, l) array code over the field F . We
say that C corrects up to t errors by downloading αnl symbols of F if there exist functions

fi : F l → Fαil, i = 1, . . . , n and g : F (
∑n
i=1 αi)l → F nl (6.1)

such that
∑n

i=1 αi ≤ nα and for any codeword C ∈ C and any errorE ∈ (F l)n, w(E) ≤ t

g(f1(C1 + E1), f2(C2 + E2), . . . , fn(Cn + En)) = (C1, C2, . . . , Cn). (6.2)

For α ≥ k/n, we define the α-decoding radius of C as the maximum number of errors
that C can correct by downloading αnl symbols of F, and denote it as rα(C).

Finally, define the α-decoding radius rα(n, k) as follows:

rα(n, k) = max
C∈Mn,k

rα(C),

whereMn,k is the set of all (n, k) codes.

Remark 6.1. Note that the part of the codeword that we access may be larger than αn,
and we only require that the decoding function g uses no more than αnl symbols of
F . The motivation comes from distributed storage where what matters is the amount
of information transmitted over the network. In the context of regenerating codes and
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erasure correction, this quantity is usually called the repair bandwidth. If the portion
of the codeword accessed for the repair purposes is the same as the minimum possible
repair bandwidth, then the codes are referred to as optimal-access regenerating codes
(see [67, 78]). In this chapter we resort to the same language for the problem of error
correction.

For any code C we have r1(C) ≤ b(n − k)/2c, with equality if C is an MDS code.
Thus, r1(n, k) = b(n − k)/2c. We also have the following obvious lower bound on
rα(n, k).

Lemma 6.1. For any k ≤ n and k/n ≤ α ≤ 1

rα(n, k) ≥ b(αn− k)/2c. (6.3)

To see this, take an (n, k) MDS code and pick αn coordinates to form a punctured
code C. The punctured code C is an MDS code of length αn and dimension k, so (6.3)
follows by definition.

In this chapter we show that

rα(n, k) = b(n− k/α)/2c (6.4)

for any n, k and α and we give two families of explicit constructions of MDS codes
together with decoding schemes for which the optimal value in (6.4) is achieved. The
optimal α-decoding radius in (6.4) improves upon the lower bound (6.3) obtained from
the naive decoding strategy by a factor of 1/α (see Fig. 1 which shows rα(n, k)/n vs α).

Figure 6.1: Normalized α-decoding radius: Trivial bound (6.3) and improved bound (6.4)
for codes of rate R = 0.4.

The underlying idea behind our code constructions is as follows. Let ε be the pro-
portion of erroneous coordinates in the codeword. The naive decoding procedure suggests
to choose some αn coordinates and decode based on their entire contents. However, in
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the worst case the number of errors in the chosen coordinates can be as large as εn, and
we will have only (α − ε)n error-free coordinates in the chosen subset. At the same
time, by symmetrizing the decoding procedure and reading exactly an α proportion of
each coordinate’s contents, we can increase the proportion of error-free downloaded con-
tents regardless of the location of the erroneous coordinates and improve the chances for
successful decoding.

One code family that we construct is formed of Reed-Solomon (RS) codes with
carefully chosen evaluation points, and the other one is based on Folded RS codes of
Guruswami and Rudra [25].

In Sect. 6.4 we also introduce the notion of α-list decoding capacity, and show that
Folded Reed-Solomon codes can achieve the α-list decoding capacity.

6.2 Upper bound on the α-decoding radius
In this section we prove the following result.

Theorem 6.2.
rα(n, k) ≤ b(n− k/α)/2c. (6.5)

Proof. We need to show that if an (n, k, l) code C over the field F can correct up to
t errors by downloading αnl symbols of F (see Def. 6.1), then t ≤ b(n − k/α)/2c.
By assumption, for any codeword C = (C1, . . . , Cn) ∈ C and any error vector E =
(E1, E2, . . . , En) of weight≤ t there exist n+ 1 functions fi : F l → Fαil, i = 1, 2, . . . , n
and g : F (

∑n
i=1 αi)l → F nl that satisfy (6.1)-(6.2).

We claim that
∑

i∈I αi ≥ k for any set I ⊆ {1, 2, . . . , n}with cardinality |I| = n−
2t.Assume toward a contradiction that there is a set I0 ⊆ {1, 2, . . . , n}, |I0| = n−2t such
that

∑
i∈I0 αi < k. Without loss of generality, assume that I0 = {1, 2, . . . , n−2t}. Let us

partition the set {1, 2, . . . , n}\I0 into two disjoint sets J1 and J2 such that |J1| = |J2| =
t. Since the dimension of C is k, there are a total of |F |kl codewords. At the same time,
the vector (fi(Ci), i = 1, . . . , n− 2t) takes at most

∏
i∈I0 |F |

αil = |F |(
∑
i=I0

αi)l < |F |kl

different values, so there exist two distinct codeword Ĉ and C̃ for which these vectors
coincide:

(f1(Ĉ1), f2(Ĉ2), . . . , fn−2t(Ĉn−2t)) = (f1(C̃1), f2(C̃2), . . . , fn−2t(C̃n−2t)). (6.6)

Define error vectors Ê and Ẽ by setting

Êi =

{
C̃i − Ĉi if i ∈ J1

0 if i /∈ J1

, Ẽi =

{
Ĉi − C̃i if i ∈ J2

0 if i /∈ J2

. (6.7)

Clearly, the weight of both Ê and Ẽ is at most t. By (6.2), we have

g(f1(Ĉ1 + Ê1), f2(Ĉ2 + Ê2), . . . , fn(Ĉn + Ên)) = Ĉ

g(f1(C̃1 + Ẽ1), f2(C̃2 + Ẽ2), . . . , fn(C̃n + Ẽn)) = C̃
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According to (6.6)-(6.7), fj(Ĉ + Ê) = fj(C̃ + Ẽ), j = 1, 2, . . . , n. As a result, Ĉ = C̃,
in contradiction to our assumption. We conclude that

∑
i∈I αi ≥ k for any set I ⊆

{1, 2, . . . , n} of size |I| = n− 2t.
Let I be an (n − 2t)-subset of {1, . . . , n} such that the quantity

∑
i∈I αi is the

smallest among all (n − 2t)-subsets. By the above argument the average proportion of
information transmitted from a coordinate in the set I is at least k/(n− 2t). On the other
hand, by definition, the average proportion transmitted from all the coordinates is at most
α, which is at least k/(n − 2t) because of the property the set I satisfies. Hence we get
k/(n− 2t) ≤ α, and this concludes the proof.

6.3 A Reed-Solomon code construction
In this section we construct an evaluation point set Ω such that the corresponding RS code
achieves the optimal α-decoding radius (6.4). Let F = GF (ql) be an l-degree extension
of B = GF (q) and let

trF/B(β) = β + βq + βq
2

+ · · ·+ βq
l−1

.

be the trace function. Let ζ0, ζ1, . . . , ζl−1 be a basis of F over B and let ν0, ν1, . . . , νl−1

be the trace-dual basis (i.e., trF/B(νiζj) = δij for all i, j). Then every element β ∈ F can
be calculated from its l projections {trF/B(ζiβ)}l−1

i=0 on B as follows:

β =
l−1∑
i=0

trF/B(ζiβ)νi.

Let α = m/l < 1, where m and l are positive integers. Let q ≥ n be the cardinality
of the alphabet B and suppose that m|k. We show that an (n, k) RS code RSF (n, k,Ω) ⊆
F n with all the evaluation points Ω = {ω1, ω2, . . . , ωn} ⊆ B has the optimal α-decoding
radius.

To link our construction with the definitions made earlier, we view each codeword
coordinate as a vector of dimension l over B. Thus RSF (n, k,Ω) can be viewed as an
(n, k, l) MDS array code over the base field B. Our decoding scheme will be based on
downloading m symbols of B from each of the codeword coordinates.

Before proceeding we need to introduce some notation. We write the encoding
polynomial as

h(x) = ak−1x
k−1 + ak−2x

k−2 + · · ·+ a0,

then the i-th coordinate of the codeword is1

ci = h(ωi) = ak−1ω
k−1
i + ak−2ω

k−2
i + · · ·+ a0. (6.8)

1For the time being we view the codeword coordinates as scalars in F rather than vectors over B, and
use lowercase ci instead of Ci in Def. 6.1 to denote them.

82



For j = 0, 1, . . . , l − 1, we further define

hj(x) =
k−1∑
i=0

trF/B(ζjai)x
i.

Since the coefficients of {hj(x)}l−1
j=0 contain all the projections of the coefficients of h(x)

on the elements of the basis ζj, j = 0, . . . , l−1, the coefficients of h(x) can be calculated
from the coefficients of {hj(x)}l−1

j=0. In other words, to recover the codeword, we only
need to recover the l polynomials hj(x).

Let A0, A1, . . . , Am−1 ⊆ B be m pairwise disjoint subsets of the field B, each of
size k/m. For j = 0, 1, . . . ,m− 1, define the annihilator polynomial of the set Aj to be

pj(x) =
∏
ω∈Aj

(x− ω).

The m symbols we download from the i-th coordinate are

d
(j)
i = trF/B(ζl−m+jci)(pj(ωi))

l−m +
l−m−1∑
u=0

trF/B(ζuci)(pj(ωi))
u, j = 0, 1, . . . ,m− 1.

(6.9)
Clearly, d(j)

i ∈ B for all j = 0, 1, . . . ,m− 1. Substituting (6.8) into (6.9) and noting that
ωi ∈ B, we see that d(j)

i = gj(ωi), j = 0, 1, . . . ,m− 1, where

gj(x) = hl−m+j(x)(pj(x))l−m +
l−m−1∑
u=0

hu(x)(pj(x))u.

Since deg(pj) = k/m, we have deg(gj) < lk/m. Thus for every j = 0, 1, . . . ,m− 1,

(d
(j)
1 , d

(j)
2 , . . . , d(j)

n ) ∈ RSB(n, lk/m,Ω).

As a result, we can recover all the coefficients of polynomials {gj(x)}m−1
j=0 as long as there

are no more than b(n−lk/m)/2c errors in the original codeword (c1, c2, . . . , cn).Now we
only need to show that given polynomials {gj(x)}m−1

j=0 , we can recover the polynomials
{hj(x)}l−1

j=0. To see this, we notice that for j = 0, 1, . . . ,m− 1,

gj(ω) = h0(ω) for all ω ∈ Aj.

Consequently, we know the evaluations of h0(x) at all the points in ∪m−1
j=0 Aj. There are k

distinct points in the set ∪m−1
j=0 Aj and the degree of h0(x) is less than k, so we can recover

h0(x). From h0(x) and {gj(x)}m−1
j=0 , we can calculate the polynomials

g
(1)
j (x) =

gj(x)− h0(x)

pj(x)

= hl−m+j(x)(pj(x))l−m−1 +
l−m−1∑
u=1

hu(x)(pj(x))u−1, j = 0, 1, . . . ,m− 1.
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Since g(1)
j (ω) = h1(ω) for all ω ∈ Aj, we know the evaluations of h1(x) at all the points

in ∪m−1
j=0 Aj. So we can also recover h1(x). From h0(x), h1(x) and {gj(x)}m−1

j=0 , we can
calculate the polynomials

g
(2)
j (x) =

g
(1)
j (x)− h1(x)

pj(x)

= hl−m+j(x)(pj(x))l−m−2 +
l−m−1∑
u=2

hu(x)(pj(x))u−2, j = 0, 1, . . . ,m− 1.

Since g(2)
j (ω) = h2(ω) for all ω ∈ Aj, we know the evaluations of h2(x) at all the points

in ∪m−1
j=0 Aj. So we can also recover h2(x). It is clear that we can repeat this procedure until

we recover {hj(x)}l−m−1
j=0 . Then the polynomials {hl−m+j(x)}m−1

j=0 can be easily recovered
from

hl−m+j(x) =
gj(x)−

∑l−m−1
u=0 hu(x)(pj(x))u

(pj(x))l−m
.

This shows that we can recover the polynomials {hj(x)}l−1
j=0 from the polynomials {gj(x)}m−1

j=0 ,
and consequently recover the original codeword.

6.4 Fractional decoding of Folded RS codes
Guruswami and Rudra [25] introduced Folded Reed-Solomon (FRS) code to show that
it achieves the list decoding capacity. In this section we show that FRS codes also have
optimal α-decoding radius among all the codes of the same length and dimension. We
begin with recalling the definition of FRS codes.

Definition 6.2. Let F be a finite field of cardinality |F | > nl. Let γ be a primitive element
of F. An FRS code FRS(n, k, l) ⊆ F nl is an MDS array code with codewords given by

{(C1,C2, . . . , Cn) :

Ci =
(
h(γ(i−1)l), h(γ(i−1)l+1), . . . , h(γil−1)

)
∈ F l, h ∈ F [x], deg h ≤ kl − 1}.

We assume throughout that αl is an integer.

6.4.1 Unique decoding
Proposition 6.3.

rα(FRS(n, k, l)) = b(n− k/α)/2c.

Proof. We shall define n + 1 functions fi, i = 1, 2, . . . , n and g that satisfy (6.1)-(6.2).
Define f : F l → Fαl as follows: For any (d1, d2, . . . , dl) ∈ F l,

f((d1, d2, . . . , dl)) = (d1, d2, . . . , dαl). (6.10)
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Let fi = f for 1 ≤ i ≤ n. Define a new code

Cα =

{(Cα
1 , C

α
2 , . . . , C

α
n ) = (f(C1), f(C2), . . . , f(Cn)) : (C1, C2, . . . , Cn) ∈ FRS(n, k, l)}.

(6.11)
It is easy to see that Cα defined above has the following equivalent description:

Cα = {(Cα
1 , C

α
2 , . . . , C

α
n ) : Cα

i =
(
h(γ(i−1)l), h(γ(i−1)l+1), . . . , h(γ(i−1)l+αl−1)

)
∈ F l,

1 ≤ i ≤ n, h ∈ F [x], deg h ≤ kl − 1}. (6.12)

Since any k/α coordinates of Cα contain (k/α)(αl) = kl evaluations of the encod-
ing polynomial h of degree less than kl, we can recover h and thus the whole codeword
from any k/α coordinates of Cα. We thus conclude that Cα is an (n, k/α, αl) MDS array
code, and so it can correct up to b(n− k/α)/2c errors.

Remark 6.2. Suppose that there are several values α1, α2, . . . , αm such that αil are in-
teger for all i = 1, . . . ,m. Then the code FRS(n, k, l) achieves the optimal αi-decoding
radius for all i = 1, . . . ,m simultaneously.

We can use the decoding method described above to give more general code con-
structions achieving the optimal α-decoding radius. In fact, we can take any (nl, kl)
scalar MDS code Cs over finite field F and bundle together every l coordinates of Cs into
a vector in F l. It is clear that we obtain an (n, k, l) MDS array code C(arr) in this way.
Moreover, by reading αl symbols of F from each of the coordinates of C(arr) we obtain an
(n, k/α, αl) MDS array code Cα which can correct up to b(n− k/α)/2c errors. Thus the
code C(arr) can correct up to b(n− k/α)/2c errors by downloading αnl symbols of F.

In conclusion note that the FRS codes accomplish fractional decoding with the
optimal access property discussed briefly in Remark 6.1.

6.4.2 Fractional list decoding and α-list decoding capacity
So far we have focused on the unique decoding problem under the constraint of fractional
decoding. In this section we consider list decoding from partial information.

We say that a code C of length n corrects ρn errors under list-of-L decoding (has
normalized list decoding radius ρ) if every sphere of radius ρn in the space F n contains
at most L codewords of C. In other words, there exists a decoder of C that outputs a list
of ≤ L codewords including the transmitted one as long as the channel introduces no
more that ρn errors. To maintain low complexity of decoding, we require that L be a
polynomial function of n.

Let R = k/n denote the rate of the code. It is clear that for any sequence of codes
with fixed rate R and growing length n, the list decoding radius does not exceed 1 − R.
As shown in [25], FRS codes of growing length have list decoding radius that for n→∞
approaches the optimal value of 1−R (as [25] puts it, FRS codes achieve the list decoding
capacity).
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In this section we show that the conclusion about the optimal list decoding radius of
FRS codes extends to the case of fractional decoding. We begin with defining the α-list
decoding radius of the code.

Definition 6.3 (α-list decoding capacity). Let C be an (n, k, l) array code, where each
codeword C = (C1, . . . , Cn) is an l × n matrix with Ci ∈ F l, i = 1, . . . , n. We say that
C corrects up to t errors under list-of-L decoding by downloading αnl symbols of F if
there exist functions

fi : F l → Fαil, i = 1, 2, . . . , n, and

gi : F (
∑n
i=1 αi)l → F nl, i = 1, 2, . . . , L

(6.13)

such that
∑n

i=1 αi ≤ nα, and for any codeword C ∈ C and any error E ∈ F ln, w(E) ≤ t
the decoding list

{gi(f1(C1 + E1), f2(C2 + E2), . . . , fn(Cn + En))}Li=1 (6.14)

contains the codeword C.
For α ≥ k/n, we define the (α,L)-list decoding radius rα,L(C) of C as the max-

imum number of errors that can be corrected under list-of-L decoding by downloading
αnl symbols of F. Let rα,L(n, k) = maxC rα,L(C), where the maximum is taken over all
codes of length n and dimension k.

For α ≥ R, we further define the α-list decoding capacity of codes of rate R as

ρα(R) = sup
m∈N

lim sup
n→∞

rα,nm(n,Rn)

n
.

Using an argument that closely follows the proof of Theorem 6.2 , we can show that
ρα(R) ≤ 1 − R/α. On the other hand, there exists a family of FRS codes of increasing
length n and sub-packetization l that are (α,L)-list decodable from a fraction arbitrarily
close to 1 − R/α of errors with list size L polynomial in n. This leads to the following
statement.

Theorem 6.4. We have
ρα(R) = 1−R/α,

and this bound is achievable by a family of FRS codes.

To show that the FRS codes achieve the α-list decoding capacity, we need to define
the functions fi, i = 1, 2, . . . , n and gi, i = 1, 2, . . . , L that satisfy (6.13)-(6.14). We again
use the functions f1 = f2 = · · · = fn = f defined in (6.10), i.e., we still download an
αl symbols of F from each of the codeword coordinates. Then we obtain the code Cα
defined in (6.12) whose rate is R/α. When the code length n and sub-packetization l of
the FRS code become large enough, we can use the list decoding algorithm introduced
in [25] to decode Cα up to a fraction arbitrarily close to 1−R/α of errors with list size L
polynomial in n.

Note that for sufficiently large n and l, the FRS codes achieve the α-list decoding
capacity uniformly for all values of α.
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Remark 6.3. The code Cα differs from FRS codes in the sense that the evaluation points
in two consecutive coordinates are not consecutive powers of the primitive element. How-
ever, the list decoding algorithm introduced in [25] only requires that within each code-
word coordinate, the evaluation points are consecutive powers of the primitive element.
The code Cα satisfies this constraint, so the list decoding algorithm in [25] still applies to
it.

Remark 6.4. Although FRS codes achieve the α-list decoding capacity, they require
larger node (codeword coordinate) size than the RS construction given in Sect. 6.3. The
base field in RS construction (the field B in Sect. 6.3) has to be only of size q ≥ n, while
the base field in this section has to be of size at least nl. As a result, the node size in the
RS construction is l log n bits, while the codeword coordinates of the FRS codes contain
l log(nl) bits.

6.5 Concluding remarks
In this chapter we studied the problem of decoding from errors under the constraint of
downloading only a part of the received codeword. We gave two families of optimal code
constructions and their error correction (decoding) procedures. The idea behind the con-
structions and recovery schemes is rather similar to regenerating codes: in regenerating
codes, we can repair the same number of erasures by downloading a smaller proportion of
the codeword if we connect to more helper nodes; here we can correct the same number of
errors by downloading a smaller proportion of the codeword if we utilize all codeword co-
ordinates. Equivalently, for the same amount of downloaded information we can decode
from a larger number of errors.

A natural further question to ask is whether it is possible to construct an MDS code
that corrects both erasures and errors (nearly) optimally in terms of the bandwidth, where
the optimality that corresponds to erasures is measured by the cut-set bound given in [12],
and the optimality of correcting errors is measured by the α-decoding radius defined in
this chapter.
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Chapter 7: Some open problems

In this thesis we presented various constructions of MSR codes with some additional
favorable properties, such as small field size, small sub-packetization and optimal access
property. We also constructed explicit scalar linear MSR codes, which resolve the open
problem about the existence of such codes. Finally, we extended the concept of repair
bandwidth to the context of error correction and introduced a new problem in coding
theory. Below we list several open problems that constitute potential directions for future
research.

1. CONSTRUCT EXPLICIT MSR CODES WITH SUB-PACKETIZATION l = rn/(r+1).
For simplicity, let us consider the case (r+1)|n. As shown in [68], there exist MSR
codes with sub-packetization l = rn/(r+1), and this is the best known achievable
sub-packetization value. For the case r = 2 and 3, explicit constructions with this
sub-packetization are given in [68] and [44], respectively. For general values of r,
it remains an open problem to construct explicit MSR codes with small field size
(e.g., linear in n) achieving this sub-packetization value.

2. CLOSE THE GAP BETWEEN ACHIEVABLE SUB-PACKETIZATION VALUE AND THE

LOWER BOUND.
The best known lower bound on the sub-packetization value of MSR codes is due
to [22]. It has the following form:

2 log2 l(logr/(r−1) l + 1) ≥ k.

In contrast, constructions of codes with the smallest currently known sub-packetization
achieve logr l = n/(r + 1) [68]. The gap between the bound and the known con-
structions calls for either improving the bound or finding better codes, and this
constitutes an intriguing open problem concerning regenerating codes.

3. SUB-PACKETIZATION DEPENDENT BOUND ON REPAIR BANDWIDTH.
For simplicity, let us assume that d = n − 1. Namely, we repair the failed node
by connecting to all the surviving nodes. The cut-set bound is derived without any
constraints on how large the sub-packetization l can be. According to [22], in order
to achieve the cut-set bound, l needs to be larger than 2

√
k/(2r−1). This might not

always be possible in practice due to the complexity consideration. Therefore it is
of interest to derive a tight (achievable) lower bound on the repair bandwidth under
an additional constraint that l < L. The cut-set bound corresponds to the case
L = ∞. It is interesting to see how the lower bound changes as L decreases. We
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note that [5] states some relevant results in this direction, but this question is still
far from being fully understood.
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