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The capabilities of a robotic system are strongly constrained by the 

capabilities of its control software.  The development of this software represents a 

substantial fraction of the development effort of the overall system, due in part to the 

difficulty of reusing software written for previous robotic applications.  A reusable 

software control architecture therefore has enormous potential to expedite the 

development and reduce the cost of this development process.  This thesis presents a 

component-based reusable architecture for the top-level control of a robotic 

manipulator, developed within the Open Robot Control Software (Orocos) 

framework.  This framework enables the development of software components that 

are applicable to a variety of robotic manipulators.  The software is implemented on 

an existing manipulator platform as a demonstration of basic functionality.  

Simulations are conducted to verify adaptability to other kinematic arrangements. 
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Chapter 1: Introduction 
 

1.1 Motivation 

 When a new robot is developed, its software system is often custom built with 

little or no reuse of previously developed software [1],[2].  Moreover, the 

development of such software is often seen as simply a hurdle to be overcome on the 

way to a higher-level research goal for which the software is required [1].  Within the 

past decade, however, several open source projects have devoted considerable 

attention to the development of reusable robotic software as a goal in and of itself.  

By devoting extensive attention to a reusable software framework rather than a 

specific application, these projects have the potential to greatly reduce the time and 

effort needed for application development.  By leveraging the results of these open 

source efforts, the present work aims to implement a software system for the top-level 

control of a robotic manipulator having sufficient flexibility to enable a wide range of 

advanced research. 

1.2 Requirements 

 The following requirements drove the development of this system: 

• The system must be capable of point-to-point motion to a desired goal 

specified in Cartesian space, performing all necessary forward and inverse 

kinematic calculations. 

• The system must provide the capability to execute motion specified as a 

sequence of waypoints. 
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• The system must be adaptable, with modest effort, to a variety of serial-link 

robotic manipulators to enable reuse of the developed software. 

• The system must provide a simple command interface for external software to 

send basic commands to the system and receive updates from the system via a 

protocol that will not unduly constrain the development of the external 

software. 

• The system must be extensible to encompass more advanced capabilities such 

as visual servoing, path planning, collision avoidance, and nonlinear control 

laws. 

1.3 Previous Work in Software Reusability 

 Nesnas [3] divides the existing approaches to writing reusable software into 

two categories.  The first is a component-based approach, in which functional 

software units are written with the intention of being directly reused as building 

blocks for multiple applications, with suitably defined and abstracted ways of passing 

information between these blocks.  The second style of approach is object-oriented, in 

which the reusable elements are generic abstract base classes from which one derives 

specialized classes for each robotic system’s unique requirements, thus enforcing a 

level of standardization on the specialized classes that, it is hoped, will promote 

reusability.  Nesnas [4] attributes the historically limited success of the component-

based approach to excessive generality, leaving undone too much of the software 

engineering needed to produce the domain-specific solutions needed by robotics 

researchers.  To historical object-oriented approaches, Nesnas attributes exactly the 

opposite problem, observing that domain-specificity of the software led to only 
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limited levels of reuse that was largely confined to the particular domain in which it 

was originally developed.  Thus, a significant challenge in this area is to find the 

appropriate balance of generality and specificity, providing enough capability to be 

genuinely and directly useful in practice without becoming deeply tied to a specific 

application. 

 Fitzpatrick, Metta, and Natale [1] observe that, particularly with regard to 

domain specificity, robotic software development bears a resemblance to natural 

evolution.  All software has a domain in which it can be used.  It develops within that 

domain, possibly expanding to nearby domains as it changes and grows.  If this 

domain is too small, “genetic isolation” will quickly drive it to obsolescence as new 

technologies bring about new requirements that the old software is unable to fulfill.  

Thus, reusability is the key to survival in this Darwinian competition, with the fittest 

software exhibiting reusability across both time (i.e., from past to present and future 

applications) and place (i.e., between different researchers at different labs).  The 

authors go on to extol the merits of a modular approach in this regard, where they 

define modularity as the absence of unnecessary dependencies.  The authors’ 

argument here presents strongly in favor of a component-based approach, pointing 

out its flexibility to adapt to change as new components cleanly step in to replace 

obsolete ones without catastrophic effects rippling throughout the remainder of the 

code.  However, it must be noted that component-based and object-oriented 

reusability strategies are not at odds with one another.  Either strategy may be 

employed separately; or both may be employed together, with useful objects used and 

reused internally by components and even passed between components as an 
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exchange of information.  Moreover, the object-oriented approach has the potential to 

enable a significant degree of modularity in its own right, if abstract classes are 

carefully used to standardize interfaces such that a new child class may be readily 

inserted to replace an obsolete one.  Realizing this, however, would appear to require 

greater care to avoid dependencies that the component-based approach avoids by its 

very nature.  This raises an important additional consideration. 

 That a piece of software can in theory be reused does not necessarily mean 

that it will be reused in practice.  Software may see greater reuse if it promotes an 

architectural style that benefits the development process in ways other than mere 

reusability of code.  Eve Coste-Maniere and Reid Simmons [5] observe that robotic 

systems are becoming increasingly complex, and that the right choice of architecture 

can go a long way toward managing that complexity.  The appropriate choice of 

architecture, they claim, can ease the specification, execution, and validation of 

robotic systems.  Specification refers to the management of interactions, both 

between the system and its environment and between individual elements within the 

system.  An architecture can aid in this area by providing a structured decomposition 

of the system into smaller components and abstracting the flow of data between those 

components, thus simplifying the interactions that must occur.  Execution refers to the 

run-time behavior of the system, including its real-time abilities, scheduling of tasks, 

and appropriate and reliable behavior.  This may include resolving conflicting 

behaviors between tasks and invoking exception handlers whenever appropriate.  The 

third dimension of development, validation, refers to testing and verification of the 

system.  In this area, it may be desirable for an architecture to permit testing 
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individual system components independently of the rest of the system, which may not 

be written yet.  Viewing internal variables and visualizing data are useful capabilities 

here.  

 The following subsections describe specific projects that have aimed to 

produce reusable software for robotic systems.  In addition to their architectural 

benefits, particular emphasis is placed on capabilities for performing the manipulator 

kinematics calculations required for the present application.  Closed-source projects 

such as Microsoft Robotics Developer Studio (MRDS) were not considered for the 

present application.  Although MRDS has some useful features, the closed-source 

model necessarily introduces additional constraints on the roboticist’s capabilities, 

and leaves him or her dependent on the original developer for ongoing maintenance 

of the platform. 

1.3.1 Orocos 

 The Open Robot Control Software (Orocos) project combines both the 

component-based and object-oriented reusability strategies.  The project has yielded 

four C++ libraries, two geared toward each strategy.  The Real-Time Toolkit (RTT) 

and Orocos Component Library (OCL) establish a component-based infrastructure 

and a library of ready-to-use components, providing the high level management of 

interactions within an application.  Components exchange information primarily 

through abstracted Data-Flow Ports, an anonymous publish-subscribe system in 

which a component does not know where its inputs are originating or where its 

outputs are being utilized.  These Data-Flow Ports may be either buffered, in which 

case messages are stored in a single queue per link, or unbuffered, in which case only 
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the most recent message is available to be read by any subscribers.  This 

decomposition and isolation of the components enables easier specification of the 

interactions taking place within the software and easier validation of individual 

components, because this organization is conducive to generating test inputs and 

examining the resulting outputs.  A system of synchronous methods and 

asynchronous commands is also defined for explicitly requesting information or 

behavior of a component when the continuously updating Data-Flow Ports are not 

appropriate.  Through the use of the Common Object Request Broker Architecture 

(CORBA), one may even interconnect components running in different processes on 

different computers.  The remaining two libraries of the Orocos Project, the 

Kinematics and Dynamics Library (KDL) and Bayesian Filtering Library (BFL), 

instead employ the object-based reusability philosophy by providing a library of 

generically useful and reusable classes for use within an Orocos component (or in a 

non-Orocos-based application).  By embracing both the component-based and object-

oriented reusability methodologies, Project Orocos encourages application writers to 

take advantage of the best that each has to offer. 

The Orocos libraries are all released under either the GNU General Public 

License (GPL) or the GNU Lesser General Public License (LGPL), with terms that 

explicitly allow for any application or component to remain the property of the 

creator and to be distributed under any license that the creator sees fit.
1
  Moreover, 

the project’s website shows indications of continuous maintenance and development, 

with active discussion in its online forum, releases of updated versions of its libraries, 

                                                
1 Modifications to the Orocos libraries themselves may be distributed only under the appropriate GNU 

public license. 
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and preparations for the release of a version 2.0 of the RTT aimed at making the 

system faster and simpler.  Orocos supports standard GNU Linux, the Xenomai and 

LXRT real-time Linux extensions, Mac OS X, as well as Microsoft Windows. 

1.3.2 CLARAty 

 The Coupled Layer Architecture for Robotic Autonomy (CLARAty) is a 

reusable robotic software framework collaboratively developed by the Jet Propulsion 

Laboratory, NASA Ames Research Center, Carnegie Mellon, and the University of 

Minnesota.  The primary application for the work was on research rovers for NASA’s 

Mars Technology Program.  The overarching idea behind CLARAty is to decompose 

robotic software into a decision layer and a functional layer, and to provide a 

collection of standardized and reusable classes for use within these layers [4].  It 

therefore falls under the object-oriented approach to reusability. 

 CLARAty aims for considerably more generality in its modeling of 

kinematics than Orocos.  CLARAty includes a Mechanism_Model class to 

generically model any articulated mechanism, whether a robotic manipulator or rover 

mobility system (e.g., rocker-bogie).  It is comprised of a tree structure of rigid bodies 

of class ME_Body, with all attachments governed by an ME_Joint.  Each body may 

have only one parent within the tree, but may have multiple children.  It is therefore 

possible to model multiple manipulators connected to a common base within a single 

Mechanism_Model.  A structure is also defined for implementing linear constraints 

between joint values, enabling the modeling of simple parallel-link kinematic 

arrangements, a capability not present in Orocos.  The kinematic structure may be 

specified within the C++ code itself or loaded from an xml file.  A generic forward 
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kinematics system allows the querying of the relative transformation between any two 

frames in the mechanism.  A generic inverse kinematics algorithm, although 

envisioned, has not yet been implemented.  Thus, although the Mechanism_Model is 

applicable to a greater variety of mechanisms than anything in Orocos, its utility is 

limited. 

 A small fraction of the CLARAty code was publicly released in June 2007.  

Further public releases were scheduled to occur in 2008 providing complete 

capability for driving, terrain sensing, and path planning for a rover.  These public 

releases, however, have not yet occurred.  Additionally, although the CLARAty 

project’s publications describe a decomposition into functional and decision layers 

with objects accessible at various levels of abstraction, there is relatively little to force 

users to comply with this or any other architectural design, leaving it to the skills and 

judgment of the programmer to follow sound coding practices.  A portion of the 

software is publicly available, however the license under which it is released prohibits 

commercial use and is incompatible with the GNU General Public License, thus 

reducing its likelihood of building up a large support community. 

1.3.3 The Chimera Methodology 

 The Chimera architecture has its origins in a real-time operating system of the 

same name developed at Carnegie Mellon University (CMU) starting in the late 

1980s [6].  To maximize portability, Chimera was written to run on the Motorola 

68020, a popular general-purpose processor of the time.  Programs were written in the 

C programming language, with standard Unix libraries ported to the Chimera 

platform.  The system was expandable to meet performance requirements through the 
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addition of more CPUs from the same family.  By the mid-1990s, this real-time 

architecture had evolved to support a component-based reusable software paradigm 

bearing a strong resemblance to the Orocos framework established in the RTT [7].  

The authors envisioned a programming environment which would one day allow 

users to download software modules that had already been written and fully tested.  

Rather than reading a journal paper describing the algorithm and spending days or 

weeks themselves implementing and testing it, the user would be able to integrate this 

prepackaged module into a new application in a matter of hours. 

  The Chimera software saw use on CMU’s Reconfigurable Modular 

Manipulator System (RMMS).  The RMMS project developed a system that was 

modular not only in its software, but in the physical hardware as well.  

Interchangeable, general-purpose link and joint modules allowed the assembly of a 

variety of special purpose manipulators.  The hardware modules, which contained DC 

motors and custom electronics, could be quickly coupled by hand using locking 

collars that required no tools.  Chimera software components could be assembled via 

a graphical tool, dragging and dropping the components onto a canvas to form the 

desired application.  Relevant configuration information, such as Denavit-Hartenberg 

parameters, was specified via a data file for each component. 

 Chimera appears to have been somewhat successful in its reusability goal.  In 

addition to Carnegie Mellon University, the Chimera real-time operating system has 

seen use at the Jet Propulsion Laboratory, California Institute of Technology, 

Concordia University, Air Force Institute of Technology, and University of Alberta 

[8].  The present author was not, however, able to find any indication that Chimera 
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has seen substantial usage since the 1990s.  This may be attributable in part to the 

architecture’s dependence on the Motorola 680x0 family of processors, which has 

declined in usage since that time, especially in the market of desktop computers.  

Moreover, unlike the other robot software packages discussed in this section, 

Chimera is an operating system unto itself.  Although the effort was undertaken to 

port useful Unix C libraries to this operating system to enhance code reusability, it 

nonetheless requires setting aside other operating systems (such as Linux, Mac OS, or 

Windows) with which the user may be more familiar and for which ongoing 

development and maintenance will more assuredly continue. 

1.3.4 Yet Another Robot Platform (YARP) 

 YARP is a robot platform focusing on the communication between networked 

elements in a robotic system, enabling a component-based software architecture [1].  

The focus is on flexible methods of communication, enabling easy swapping among 

its family of connection types.  The communicating components may even be on 

different computers running different operating systems.  Its simple communication 

protocols also readily support interaction with non-YARP software.  The project also 

aims to enable flexible interfaces with hardware devices, such as motors and cameras.  

YARP has its origins in humanoid robotics, focusing primarily on behaviors 

involving sensors and actuators and ensuring that the coupling between these 

behaviors is sufficiently loose to enable a system to evolve to meet new requirements.  

YARP aims to be highly portable, employing no external libraries beyond ACE 

(which has itself been ported to Windows, Mac OS X, Linux, VxWorks, and other 
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operating systems).  It does not provide any built-in capabilities directly applicable to 

manipulator kinematics. 

1.3.5 The Player Project 

 The Player Project focuses instead on mobile robot applications and claims to 

be “probably the most widely used robot control interface in the world” [9].  In its 

typical implementation, a server runs onboard the robot and loads the appropriate 

drivers for the robot’s hardware.  Standardized interfaces are provided for interacting 

with different classes of devices.  This provides an abstraction of the robot, which a 

client program may then control without concerning itself with the underlying 

hardware.  Player is therefore primarily a hardware abstraction layer; and while the 

client/server model does decouple the higher-level control software from the details 

of the hardware, it does not promote modularity within the control software itself.  

Player aims not to constrain such higher-level architectural decisions.  While this may 

be useful in the relatively predictable domain of simple mobile robots, it does not 

seem especially well suited to the present application of robotic manipulation. 

1.3.6 Robot Operating System (ROS) 

 ROS is an open source robot software platform designed with the primary 

goal of enabling software reuse.  It is intended to be a thin architecture, providing 

sufficiently few constraints as to be integrable with software written for other 

platforms, such as Orocos and Player [10].  Like Orocos, it employs both the 

component-based and object-oriented reusability strategies.  ROS provides the 

infrastructure for writing software components, called nodes, and for exchanging 
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information between these nodes via an anonymous publish-subscribe model
2
.  

Message transport between nodes occurs via TCP/IP or UDP/IP, thus allowing the 

nodes to be easily distributed over multiple computers.  This networking style allows 

for individual components (which are separate processes) to be shut down, modified, 

recompiled, and re-initiated without interrupting the function of the rest of the 

application.  Similar to Orocos, the ROS developers recognized that this form of 

continuous data streaming is not appropriate for all interactions, and thus 

implemented a message-response form for command-style interactions. 

 The ROS project has built up a large collection of software packages for 

various purposes (serial port communication, stereo vision processing, motion 

planning, etc.) and devices (SICK laser scanners, Nintendo Wiimote, a variety of 

cameras, etc.).  Some packages are specific to individual robotic systems such as 

Stanford’s PR2 manipulator, while others are generic.  ROS draws heavily from other 

open source robotics projects for useful functionality, incorporating code from 

Orocos, OpenCV, Player, and other freely available software libraries.    Because it 

includes as one of its packages the Orocos Kinematics and Dynamics Library (KDL), 

ROS could be said to have all of the same manipulator kinematics capabilities as 

Orocos itself.   While this is not a particularly noteworthy achievement since the KDL 

was written to be portable to non-Orocos applications, in carrying the KDL as a 

package ROS may be providing a beneficial service to its users by pulling the best 

that other software packages have to offer into a single collection.  This has the 

potential to grow to daunting size.   ROS organizes the approximately one thousand 

software modules listed on its website into approximately 130 groups, called stacks.  

                                                
2 Published messages are buffered in a separate queue for each connected subscriber. 
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While this significantly reduces the sense of chaos experienced by someone 

approaching ROS for the first time, one is still left with a moderately long list of only 

brusquely described software units. 

A noteworthy feature of the ROS style is what its creators call a tools-based 

design philosophy [11].  ROS provides a utility for converting data streams to text, 

which can then be used in conjunction with Unix tools such as grep to inform the user 

when a message meeting certain criteria has been transmitted.  A virtual oscilloscope 

is available for plotting numerical variables as they change over time.  Another tool 

makes available debug information for the streaming links between components, 

including the publishing rate of messages and the type of the messages, with the 

ability to publish messages from that utility
3
.  Another utility allows the recording and 

playback (onto the application network) of data streaming between nodes, with a tool 

for offline visualization and inspection of these messages.  A utility called rxgraph 

graphically displays the running network of node interconnections. 

Real-time capability is not a driving goal of the ROS system, but a module is 

available for real-time communication between nodes.  For more serious hard real-

time purposes, ROS has been used in conjunction with the Orocos RTT [12].  This 

approach had an Orocos real-time application communicating information to a non-

real-time ROS application on which ROS’s various visualization tools could be used.  

The success of this integration suggests that, for a real-time application, the Orocos 

Real Time Toolkit may be best used to form the core of the application, with ROS 

serving more appropriately as a beneficial add-on than as the fundamental framework.  

                                                
3 Orocos has a somewhat similar utility called the TaskBrowser, described in Chapter 2.  The 

TaskBrowser does not make information available as to publishing rate, however. 
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For applications in which real-time performance is not as critical, however, ROS may 

be a very suitable choice by itself.  ROS currently supports the Linux and Mac OS X 

operating systems, and the Python and C++ programming languages.  It is released 

under a BSD license, allowing for both commercial and noncommercial use. 

1.3.7 Summary and Architecture Selection 

Table 1.1 summarizes the relative merits of each of the software platforms 

considered.  This is intended only as an evaluation of the suitability of each software 

package for the present application, and not an attempt to assess overall merit for a 

general robotic system.  Project Chimera was described above primarily as a 

historical reference, and is not considered here due to its apparent lack of 

development over the past decade and its dependence on the Motorola 68K processor.  

In keeping with the decision to consider only open source software, CLARAty is 

considered only on the basis of its publicly released code.  The capabilities along the 

left side of the table are derived from the requirements presented in Section 1.2, and 

are listed roughly in order of decreasing importance.  “Architecture” refers to the 

specification and enforcement of a design methodology to maximize modularity and 

ease development.  “R. T. Ready” refers to the capability for writing hard real-time 

applications.  “F.K. (Pos, Vel)” refers to the capability to perform forward kinematic 

calculations for a general serial link kinematic chain, separately indicating both 

position (i.e., from joint angles to Cartesian pose) and velocity (i.e., from joint rates to 

Cartesian translational and angular velocities).  “Traj. Gen.” refers to the ability to 

generate a sequence of set-points between an initial pose and a desired pose while 

respecting velocity and acceleration limits, in both Cartesian and joint space.  “Devel. 
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Tools” refers to tools for examining the internal happenings of an application, 

examining the flow of data between software elements and providing a means of 

visualizing those data.  “Ext. Interact.” refers to the ready capability to interact (over 

Ethernet or a similarly generic standard) with external processes that were not 

developed within the same software framework.  A fully blackened circle indicates 

that the capability is fully implemented and ready for basic use.  An empty circle 

indicates that the capability is either completely absent or substantially lacking.  A 

partially filled circle indicates an intermediate point between these two states, with an 

implementation that may be incomplete or ill-suited to the present application. 

Orocos and ROS both present as strong contenders for use in the present 

application.  Both offer the infrastructure for a component-based architecture.  Both 

offer generic manipulator forward and inverse kinematics capabilities.  Much of the 

appeal of ROS, however, comes from its integration with Orocos, which offers 

stronger real-time capabilities.  Although hard real-time capabilities are not 

immediately required for the present application and are not developed in the present 

research, real-time extensibility is strongly desirable for potential future applications.  

For this reason, Orocos was selected to form the basis of the present application, with 

ROS viewed as a potential future add-on if its capabilities should be desired.  The 

Orocos libraries relevant to the present work are described in greater detail in Section 

2.1. 
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Table 1.1 Comparison of the suitability of various software platforms for the present 

application. 

 Orocos CLARAty YARP Player ROS 

Architecture 
     

R.T. Ready 
     

F.K. (Pos, Vel) 
     

I.K. (Pos, Vel) 
     

Traj. Gen. 
     

Devel. Tools 
     

Ext. Interact. 
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Chapter 2: Background 

 This chapter provides an overview of the basic software and hardware 

resources used in the present work.  It begins with an overview of the relevant details 

of Orocos.  It then describes the manipulator hardware used as a test platform for the 

present research, along with the corresponding software drivers.  It concludes with a 

brief description of the measurement systems used to collect data for assessing system 

performance. 

2.1 Overview of Orocos 

 Dissatisfied with their experiences using commercial software for advanced 

robotics research, a group of roboticists in December 2000 conceived of an open 

source, modular, reusable software library for robotic control.  A proposal was 

submitted to the European Union, which sponsored the project for two years 

beginning in September 2001.  The Katholieke Universiteit Leuven in Belgium, 

Laboratory for Analysis and Architecture of Systems Toulouse in France, and Royal 

Institute of Technology in Sweden were selected for this initial stage of development 

of the Open Robot Control Software (Orocos) [13].  Since that time, the Orocos 

project has resulted in four separate C++ libraries.  The Real-Time Toolkit (RTT) 

provides the basic underlying framework of Orocos, establishing a generic 

infrastructure intended to support the widest possible variety of robotic systems.  The 

Kinematics and Dynamics Library (KDL) provides capabilities for calculations 

relevant to serial-link kinematic chains.  The Orocos Component Library (OCL) 

provides a selection of ready-to-use software units written within the framework 
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established by the RTT.  Lastly, the Bayesian Filtering Library (BFL) provides 

capabilities for information processing and estimation.  The following subsections 

describe the RTT, OCL, and KDL.  The BFL was not used in the present work. 

2.1.1 Real Time Toolkit (RTT) 

 The Orocos framework established in the RTT is built around the concept of 

the component as the basic functional unit of an application.  The level of granularity 

is at the discretion of the component builder, and a single component may represent 

as small or as large a unit of functionality as is appropriate for the application.  The 

framework provides for lock-free, thread-safe interaction between these components, 

both synchronously and asynchronously.  All components derive from the provided 

RTT::TaskContext class, and have a standardized interface for configuration, data 

flow, and execution flow.  The interfaces of multiple components may then be 

connected to form an application consisting of a network of peer components.  This 

subsection provides only a brief overview of the Orocos component-based design 

approach.  Additional information with a focus on the details of implementation can 

be found in reference [14]. 

 Components are equipped with five optional forms of public interface with 

their peers: Events, Attributes and Properties, Methods, Commands, and Data-Flow 

Ports.  Events allow changes in the system to be broadcast to whatever other 

components may be listening for that event.  Attributes and Properties specify 

configuration parameters that the component uses during its operation.  Methods are 

essentially publicly available synchronous calls making a request of the component 

that can be fulfilled or rejected immediately, such as a requested calculation.  
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Commands are similar to Methods, but are used in situations in which the request 

cannot be completed immediately, as when the component is instructed to reach a 

goal.  Commands are therefore executed asynchronously in the thread of the 

component receiving the command, and the caller is provided with the means to 

inquire as to whether the Command has been completed.  Lastly, Data-Flow Ports 

represent the primary means of regular information exchange between components.  

These connections may be either buffered, in which case messages accumulate until 

read, or unbuffered, in which case a new message will overwrite any previous one. 

A component has a small number of predefined states which govern its 

behavior.  The three states of primary interest are PreOperational, Stopped, and 

Running.  In the PreOperational and Stopped states, the component will not respond 

to Commands and Events.  A transition from PreOperational to Stopped may be 

initiated by calling the component’s configure function, and from Stopped to Running 

via the start function.  Each transition has a corresponding hook function in which the 

component builder may specify instructions to be performed upon these transitions.  

The full state diagram is presented in Fig. 2.1.  While in the Running state, the 

component’s Execution Engine is responsible for managing algorithms which form 

the functionality of that component.  This Execution Engine may be triggered either 

periodically or in response to the arrival of commands, events, or explicit trigger 

calls.  When triggered, whether periodically or otherwise, the Execution Engine 

executes an update hook into which the component builder has written the 

component’s primary run-time functionality.  Most of the effort involved in writing a 
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new Orocos component consists of populating these hook functions with the desired 

functionality. 

 

Components may also contain a finite state machine (RTT::StateMachine) 

representing a collection of states and corresponding actions to be taken on entry into 

each state, while running within the state, upon exit of that state, or in the event that 

no transition to another state is possible (specified as functions by the name of entry, 

run, exit, and handle, respectively).  Conditional requirements for transition to other 

states are also defined.  The StateMachine may run in either reactive or automatic 

mode.  In the reactive mode, state transitions will occur only in response to an event 

or a request to change states.  When activated, the StateMachine will default to 

reactive mode.  The start() command will put it into automatic mode.  In the 

automatic mode, the StateMachine will automatically transition to another state if any 

such transitions are legal.  StateMachines are specified in an Orocos State 

 
Figure 2.1  State diagram for an Orocos component.  Pre-Operational, Stopped, and 

Running are the three basic states.  From [14]. 
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Descriptions file defining the four functions for each state and stipulating the 

requirements for transitions between states.  These StateMachines may be used to 

tailor behavior to a more complex set of states than the simple five states available for 

the components themselves (PreOperational, Stopped, Running, etc.). 

2.1.2 Orocos Component Library (OCL) 

 The OCL contains a selection of components that are written and ready for 

use in an application.  This includes implementations of certain hardware such as 

firewire cameras and a laser ranging sensor, with varying degrees of reusability 

outside of the labs in which they were developed.  Of greater interest for the present 

application is OCL’s collection of motion control components, as well as its Task 

Browser and Deployment components. 

 The motion control components provide for trajectory generation and control, 

making use of some functionality from the KDL.  It includes a selection of feedback 

controllers and trajectory generation for both joint space and Cartesian space 

applications.  The position-trajectory generators output a sequence of waypoints 

along a trapezoidal trajectory obeying specified acceleration and velocity limits. 

 The Task Browser allows the user to browse the components within an 

application while it is running, providing the capability to inspect and interact with 

their interfaces.  The user can determine the current state of the component (Stopped, 

Running, etc.) and request transitions between those states.  He or she can call 

publicly available Methods or Commands.  The Task Browser can also display and 

edit the configuration properties, as well as messages on the Data-Flow Ports.  Its 

most glaring limitation is its relatively limited set of supported types.  While simple 
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types such as int and double can be readily examined and modified via this interface, 

more complicated types are not so easily accessible.  The contents of a Data-Flow 

Port or Property with type std::vector<double> can be displayed, but to edit its value 

the user has available only a two-argument function which takes the length of the 

vector and a single value for all elements of that vector.  Thus, a user wishing to 

change the value via this interface is constrained to having all of the elements be 

equal.  While this is useful, for example, if one wishes to set an input to all zeros or to 

the empty vector, more complicated adjustments do not appear to be possible.  

Moreover, the present author has reported a bug in the Task Browser which causes a 

segmentation fault if the user connects to a component’s Data-Flow Ports and then 

attempts to browse to a different component [15].  Nonetheless, the Task Browser is 

ultimately a very useful development and debugging tool because it immerses the 

user within the inner workings of the application, allowing much easier component-

level access than would otherwise be available. 

 As with other C++ objects, Orocos components may either be compiled and 

linked directly into an executable binary for a given application, or built into a 

separate dynamically linked library which multiple programs may utilize.  The OCL 

Deployment Component expands upon the versatility of the latter case by providing a 

means for automatically loading, configuring, and connecting components.  With the 

addition of a few lines of code employing compiler macros provided with the OCL, 

one or more components may be compiled into a deployable library.  The 

Deployment Component can then be instructed to import these deployable libraries, 

instantiate the desired components, specify the configuration properties, and establish 
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the desired interconnections.  These steps may be automated by preparing one or 

more xml files specifying all of this information.  (Orocos will issue an error if all of 

the necessary configuration parameters for a component have not been specified.)  In 

this way, the user can quickly and easily reconfigure for different applications 

without recompiling. 

2.1.3 Kinematics and Dynamics Library (KDL) 

 The KDL provides capabilities for kinematic calculations involving serial-link 

manipulators.  It defines classes for geometric primitives, including the vector and the 

rotation matrix.  A three-dimensional transformation is represented by the 

KDL::Frame, which contains a vector for the displacement distance and a rotation 

matrix for the relative orientation.  Functionality is provided for composition of 

transformations and for calculation of the inverse transformation.  Twist and Wrench 

classes are also defined, and may be transformed via a Frame from one coordinate 

system to another. 

 The KDL defines a Joint class to represent each degree of freedom of the 

kinematic chain.  There are seven types of joints: three representing rotations about 

each of the three principal coordinate axes, three representing translation along those 

axes, and a fixed joint which does not allow any movement.  The Segment class 

represents a combination of a Joint with a Frame containing the transformation from 

the proximal to the distal end of the link.  The KDL::Chain representing the serial 

kinematic chain for the robot is then built up from the appropriate number of 

Segments. 
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The KDL::Chain class representing the mechanism for which the kinematics 

solution is to be computed is limited to a serial chain of segments in which all of the 

joints may be actuated independently.  What it lacks in generality, however, it makes 

up for in concrete implementation.  In addition to providing abstract classes from 

which to derive a kinematics solver, the KDL also provides concrete solvers for 

forward and inverse kinematics which may be applied without modification to an 

arbitrary Chain.  Support is also provided for a kinematic tree, KDL::Tree, which may 

have multiple endpoints of interest. 

2.2 Hardware and Drivers 

2.2.1 Manipulator Hardware 

 The Ranger Mark I manipulator was originally developed in the 1990s for use 

as a camera arm on the Ranger Neutral Buoyancy Vehicle (NBV) at the University of 

Maryland Space Systems Laboratory (SSL).  It has six degrees of freedom, arranged 

roll-pitch-pitch-roll-pitch-roll.  Fig. 2.2 shows Ranger’s basic shape and depicts the 

coordinate frames assigned to each 

link.  The base frame, denoted with 

subscript 0, remains fixed regardless 

of any actuation of the robot’s joints 

and is the frame in which Cartesian 

commands are expressed.  Table 2.1 

gives the Denavit-Hartenberg 
 

Figure 2.2  Computer rendering of Ranger 

Mark I with link frames drawn.  From [16]. 
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parameters
4
 for Ranger, as measured by Ellsberry [16]. 

Table 2.1  Denavit-Hartenberg parameters for Ranger Mark I.  From [16]. 

i αi-1 (deg) ai-1 (m) di (m) θi (deg) 

1 0 0 0.2491 θ1 

2 90 0 0 θ2 

3 0 0.5589 0 θ3 

4 -90 0.1514 0.5388 θ4 

5 90 0 0 θ5 

6 90 0 0 θ6 

T 0 0 0.2666 0 

 

In a recent overhaul, Ranger has been equipped with six SimplIQ Whistle 

digital servo drive controllers from Elmo Motion Control.  The control hardware for 

this manipulator is the result of a separate research project; the rationale behind the 

selection of this hardware and the details of its implementation may be found in 

Reference 16.  For the purpose of the present research, this hardware platform is 

simply a given.  Each Whistle manages the servomotor for one of the robot’s joints.  

The SimplIQ line of servo drive controllers is capable of motor current, velocity, and 

position control modes.  Commands for the servo drives may be specified either by 

writing an onboard program in the SimplIQ drive language or, as in the present 

application, by sending commands from a host system via a supported 

communication interface.  The Whistle supports both RS-232 and CANopen 

communication protocols, the latter of which is employed in the present work.  

2.2.2 CAN bus and CANopen 

 This subsection describes the details of the Controller Area Network (CAN) 

that are relevant to the present research.  The use of CAN is a requirement imposed 

                                                
4 Denavit-Hartenberg parameters are a common way of describing the kinematic arrangement of a 

manipulator.  The parameters employed throughout this thesis conform to the convention presented in 

Reference 20. 
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by the control hardware described in subsection 2.2.1.  A discussion of the merits of 

employing CAN in a robotic system may be found in Reference 16. 

 The CAN bus is a serial bus system originally developed in the 1980s to 

enable communication between devices without a host computer.  Although 

originally designed for use in automobiles, the CAN bus quickly saw use in elevator 

systems and x-ray machines as well [17].  Nodes on this network may communicate 

at rates up to 1 megabit per second.  The CAN standard defines a standard message 

structure, the CAN frame.  This structure incorporates, among other things, an 

identification number for the message, a data field of up to 8 bytes, and a cyclic 

redundancy check.  Arbitration of multiple nodes is provided.  A message begins with 

a start-of-message signal followed by the message’s identification number.  If 

multiple nodes attempt to transmit at the same time, the message having the lower 

identification number will be given priority.  This arbitration happens without 

delaying the highest-priority message because the zero bit is dominant in the CAN 

architecture—i.e., if any node is transmitting a zero, other nodes on that bus will read 

a zero regardless of any nodes which may be attempting to transmit a one [18].  Thus, 

if a node is attempting to transmit a one and yet reads a zero on the bus, it detects that 

it has lost the arbitration to a higher-priority message having more dominant bits at 

the beginning of the ID.  The lower-priority node then ceases transmission and waits 

for the higher priority message to pass.  To the other nodes on the network, there is no 

indication that the lower-priority node was ever transmitting.  This capacity for 

prioritized communication is generally desirable when real-time communication is 

required.   Although not a vital part of the control architecture developed in the 
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present research, CAN hardware nicely complements the present architecture by 

providing a level of hardware standardization that enables even more extensive reuse 

of developed systems from one robot to the next. 

 The CANopen protocol provides a higher level communication protocol on 

top of the basic CAN specification.  The CAN frame’s identification number is 

divided into a message type identifier and a node identifier.  The two message types 

of primary interest in the present application are Emergency Objects, which indicate 

an exception such as a motor undervolt, and Process Data Objects, which are used to 

relay commands and other real-time information to the nodes.  A high-priority 

Synchronization Object is also available for triggering execution of tasks that are 

desired to begin simultaneously.  Lower-priority Service Data Objects can be used for 

configuration of the node. 

2.2.3 PCAN Interface and Driver 

 PEAK-System produces hardware and software for CAN applications.  They 

offer a variety of different CAN interfaces for connecting a host computer to a CAN 

bus via USB, PCI, PCI Express, and a number of other methods.  They also provide a 

Linux driver package, distributed under the GNU General Public License.  This driver 

provides a single Application Programming Interface (API) for all supported CAN 

interface hardware, thus allowing for software to be written so as to be compatible 

with most PEAK-System CAN interfaces without modification.  The API provides 

methods for opening and initializing the CAN interface, including specification of the 

desired data rate.  Blocking and nonblocking methods are available for reading and 
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writing to the CAN bus.  Statistics are available as to the number of pending reads 

and writes in the buffer. 

 The research, development, and testing described in the present work relied 

primarily on a PEAK-System PCI card (PCAN-PCI) as the interface device between 

the host computer
5
 and the CAN bus.  The PEAK-System USB interface (PCAN-

USB) was also used for limited testing, and was found to perform adequately in the 

present system. 

2.2.4 SimplIQ Command Language 

 The SimplIQ Command Reference Manual [19] documents the available 

commands for operating a SimplIQ servo drive such as the Whistles used in the 

present application.  These commands are grouped into a number of categories: 

motion, input/output, status, feedback, configuration, communication, control filters, 

protections, data recording, user programs, and general (miscellaneous) commands.  

These commands are available over both the RS-232 and CANopen interfaces, as 

well as within user-defined programs stored and executed onboard.  The RS-232 and 

CANopen interfaces are available simultaneously so that, for example, one could use 

the RS-232 serial interface to check values and settings to debug interactions that are 

happening over the CANopen interface.  By default, the Receive
6
 Process Data 

Object 2 (RPDO2) message type, having message ID 0x300 + node ID, is used to 

send commands to the drive.  The node replies with a Transmit Process Data Object 2 

(TPDO2) message, having message ID 0x280 + node ID.  To issue a command the 

                                                
5 A Dell Optiplex GX280 with a 3.6 GHz Intel Pentium 4 processor and 1 GB of memory, running 

Ubuntu 8.04 (Hardy Heron). 
6 The terms “receive” and “transmit” are defined from the node’s perspective. 
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RPDO2 is structured with eight data bytes, the first two of which are ASCII-encoded 

characters indicating the desired command.  The next two data bytes contain an 

index, and specify whether the last four bytes (which represent the numerical value 

being sent as an argument) form an integer or floating point number.  If it is only 

desired to query a value rather than modify it, the data portion may be reduced to four 

bytes containing only the two ASCII characters and index. 

 The motion commands allow specification of relevant motion parameters, 

including maximum acceleration/deceleration values and smoothing factors.  

Depending upon the operational mode, commands are also available to specify a 

point-to-point motion (PA or PR), desired jogging velocity (JV), or desired motor 

current (TC).  One command specifies the desired motion; and begin (BG) and stop 

(ST) commands are used to initiate and abort the motion.  Another command (MO) 

turns the motor on and off.  The SimplIQ commands for a simple point-to-point 

motion compute a trapezoidal trajectory so as to bring the motor to rest at the desired 

goal.  This is not desirable in a situation in which waypoints along a continuous 

trajectory are fed to the controller on the fly, as in the present application.  Separate 

configuration commands are provided for specifying trajectories, which one can 

initiate and abort using the same BG and ST commands.  QP provides access to an 

array of position values, specified in encoder counts.  A motion parameters array 

(MP) allows setting the time duration between waypoints, and specifies how to 

behave when upon reaching the end of the QP buffer.  A slightly more advanced form 

of trajectory configuration is also available, in which both joint positions and rates are 
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specified at each waypoint.  In either event, the servo drive performs a third-order 

polynomial interpolation to join the waypoints with a smooth trajectory. 

 Feedback and status commands provide access to the feedback information 

that the servo drive has available.  This includes the position (PX) and velocity (VX) 

as measured by the drive’s encoder, as well as motor current (resolved into two 

components, ID and IQ, respectively perpendicular to and aligned with the rotor’s 

magnetic direction).   A temperature command (TI) returns the temperature of the 

controller module as measured by an onboard sensor, if available. 

2.2.5 Faro Arm Coordinate Measurement Machine 

The SSL is also in possession of a Faro Arm Platinum portable coordinate 

measurement machine consisting of a six-degree-of-freedom serial kinematic chain 

with high-precision encoders for determining joint angles.  The Faro Arm, shown in 

Fig. 2.3, provides submillimeter-precision 

capabilities for determining the Cartesian 

coordinates of its end effector probe, which may be 

placed in contact with an object to be measured.  An 

adapter is available for holding this probe in a fixed 

position relative to the last link of the Ranger 

manipulator.  The Faro Arm may therefore be used 

to measure Ranger’s three-dimensional end effector 

position coordinates as an independent measure of 

its static position accuracy.   
Figure 2.3  Faro Arm 
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2.2.6 Vicon Visual Tracking System 

 The University of Maryland’s Autonomous Vehicle Laboratory (AVL) is 

equipped with a Vicon visual tracking system, which was made available to the 

present author.  This system utilizes an arrangement of cameras surround by light-

emitting diodes to track and record the motion of reflective spherical markers 

attached to an object, processing the two-dimensional position data recorded from 

each camera to yield a time-stamped history of that object’s translational and 

rotational motion in space.  AVL personnel informed the author that the system could 

be expected to report marker locations within an error of no more than 5 mm as 

calibrated during the present investigation.  Because the system tracks reflective 

markers, it is necessary to cover any reflective surfaces which may already exist on 

the object to be tracked. 
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Chapter 3: Software Development 
 

 This chapter describes the software system that was developed in the present 

research.  The goal here is to establish a top-level control system for a robotic 

manipulator, with the required kinematics and trajectory generation capabilities, 

while minimizing the effort required to port this software to a different robot system.  

By leveraging the open source efforts of Project Orocos, it is hoped that the cost of 

developing, debugging, and maintaining the present software system will be 

substantially reduced as compared to a completely custom-built system. 

3.1 Overview 

 Fig. 3.1 shows the components which make up the present application.  The 

command and data handling components (Ethernet Interface, Message Handler, and 

Logger) run in one thread, and are responsible for handling interactions with the 

client program and any information which needs to be logged.  The kinematics and 

trajectory components run in a separate thread, and are responsible for producing the 

joint-level commands to be sent to the robot.  The Robot Component is responsible 

for interaction over the CAN bus with the robot hardware.  This component runs in its 

own thread at a higher frequency than any of the other components in order to relay 

commands and update information at the required rates. 

 The CMake cross-platform build automation system was used to manage the 

compilation of the software components in this application.  This system enables the 

use of build configuration files that are independent of the system on which the code 
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is compiled.  This system then automatically generates makefiles for use with the 

GNU compiler collection in the Ubuntu Linux operating system used in the present 

application.  

 

 During run time, messages are received via ethernet Internet Protocol from a 

client program.  These messages are relayed to a message handling component, which 

processes them to identify the request that the client is making.  If the message is a 

request for information, the Message Handler gathers the request information and 

sends it to the client.  If the message is an instruction to be executed, the Message 

Handler initiates the appropriate commands and/or methods in the other components 

of the application, replying to the client to indicate success or failure of the 

instruction.  A Cartesian point-to-point motion command, for example, will be 

relayed to the trajectory generation component.  The Trajectory Generator will then 

begin sequentially outputting set-points lying on a straight line connecting the initial 

and goal positions, moving a step closer to the goal at each update cycle.  After being 

 
Figure 3.1  Overview of the software components and major interconnections in the present 

application. 
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checked by the Work Space Limiter to ensure that the set-point does not lie in a 

region marked as off-limits, these Cartesian set-points are passed through an inverse 

kinematics component which converts them to a joint space representation.  This 

desired joint configuration then passes through the Joint Limiter, which ensures that 

each set-point does not violate any joint travel limits.
7
  The allowed configuration 

then passes into the Robot component, which instructs the control hardware to 

execute the motion.  Commands sent from the client in joint space bypass the earlier 

stages of this system, with the joint space trajectory generation component feeding 

directly
8
 into the Joint Limiter. 

 In addition to the components which directly comprise the present application, 

additional software was written for validation of the system.  This includes a 

simulation version of the Robot Component, as well as a collection of simple client 

programs for sending commands to the control application. 

 The following sections describe the developed software components and 

programs in greater detail, explaining the details of their interfaces and 

implementation as well as the design decisions that went into them.  The source code 

may be found in Appendices B and C.  Both the Cartesian and joint space trajectory 

generation components were taken directly from the Orocos Component Library and 

required no further development for the present research.  The remaining components 

were written and developed during the present research by the present author.  The 

forward and inverse kinematics components contain fully functional kinematic solver 

                                                
7 The Joint Limiter and Work Space Limiter individual inspect each set-point generated by the 

trajectory generation component.  Their function and implementation are described in greater detail in 

Section 3.5. 
8 via the Switching Component described in Section 3.5 
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objects taken directly from the Orocos Kinematics and Dynamics Library (KDL) and 

used without modification.  The development of the kinematics components for the 

present research consisted primarily of wrapping these objects within a component 

interface, assembling the kinematic chain according to KDL conventions, and (in the 

case of the inverse kinematic position solver) correcting undesired behavior
9
.  The 

Ethernet component and the client programs employ communications objects 

developed by Stephen Roderick. 

3.2 Robot Component 

3.2.1 Purpose and Interface 

 The Robot Component (SSL::ElmoArm2) provides the interface between the 

control software and the robotic hardware.  Its purpose is to communicate the joint-

level commands generated by the control software to the servo drive controllers that 

implement them.  The component acts as an Orocos wrapper for all the hardware-

specific code that must inevitably be included somewhere within the control software.  

By encapsulating this functionality within a single component with a generic interface 

unencumbered by the details of the hardware, all of the code which would need to be 

modified to port this control application to another platform is cleanly isolated from 

the rest of the system.  Thus, the effect of even a complete overhaul of the robot’s 

internal electronics (or, equivalently, a transition to a different robot containing 

different electronics) would be limited to a single component. 

                                                
9 The divergence of the inverse kinematic solver near singular conditions, described in Section 3.3, 

could be viewed as a bug in the KDL solver, however the present author elected to correct it in the 

kinematic component rather than the solver object itself, though the technique used is readily 

transferable. 
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 The first major design choice in preparing this component was the level of 

granularity at which the rest of the software would interact with the robot.  A joint 

component representing a single joint could have been written, with as many copies 

instantiated in the control software as are necessary for the given robot.  Because, 

however, performing the kinematic computations for a typical manipulator requires 

collectively considering all joint positions and rates, this would only serve to 

complicate the interface between the robot component(s) and the kinematic 

components.  It was therefore decided that the Robot Component would be written 

such that a single instance of it would be responsible for all interaction with the servo 

drives. 

The ElmoArm2 interface was also desired to be generic, ideally betraying no 

hint of hardware specificity that could trickle over to other components.  In a 

manipulator control scenario, the commands to be sent to the robot typically consist 

of either desired joint rates, desired absolute joint positions, or desired motor currents 

(which closely relate to joint torques).  The present work focused primarily on the 

situation of sending desired absolute joint positions, although support has been 

written for the other two modes as well.  Thus, the essential elements of the interface 

are just two Data-Flow Ports.  One port accepts as input to the component a vector of 

desired joint positions to be transmitted to the drive controllers.  The other port 

provides as output from the component a vector of the current joint angles.  The 

std::vector<double> is used as the data type on both ports for compatibility with 

components in the OCL (viz., the feedback controllers and Task Browser).  In 

addition to these two ports for basic operation, the ability was desired to monitor 
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basic status information to detect off-nominal conditions that could cause damage to 

the robot.  The most obvious parameters to monitor for this purpose are the 

temperatures of the Whistle units.  An additional output Data-Flow Port was therefore 

incorporated into the Robot Component providing a vector of measured drive 

temperatures.  This information, however, is not utilized by any of the control 

components.  Temperature information is only made available to a client program via 

the MessageHandler, which can run otherwise unaffected alongside a robot 

component that does not have the capability to report controller temperatures.  

Although this component is unavoidably tied to the Elmo SimplIQ servo drive 

controllers and PEAK-System CAN interface driver, an effort was made to remain as 

reusable as reasonably possible within those constraints.  Thus, the component is 

configurable to accommodate any number of joints
10

 arranged in any manner, 

requiring only that each joint be controlled by a digital servo drive from the Elmo 

SimplIQ line of digital servo drives
11

 and that the host computer interact with those 

drives via a PEAK-System CAN interface. 

In addition to the robot component itself, simulated robot components were 

developed to enable testing and validation of the other components of the application 

when the robot hardware is not available or not required.  Initially, SSL::SimArm was 

developed as a very simple simulation that only copied the desired joint vector from 

its input port onto its output port, simulating a robot which instantaneously and 

                                                
10 Each joint’s servo drive must have a unique node ID for the CAN system to function properly. The 

standard CAN message structure allows for 127 unique node ID numbers. 
11 Elmo’s ExtrIQ line of digital servo drives, designed for use in extreme environments, conforms to 

the same communication protocols and command language as the SimplIQ line.  ExtrIQ products may 

therefore also be operated with SSL::ElmoArm2. 
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perfectly tracked any input.  A later version, SSL::SimArm_nAxes, uses an OCL 

trajectory generator to enforce maximum joint rates. 

3.2.2 Implementation 

 During configuration (i.e., in the configureHook function), ElmoArm2 sends a 

message over the CAN bus informing all the nodes (servo drive controllers) to switch 

into operational mode so that they will respond to instructions.  It then prepares an 

array of data structures that it uses to keep track of the latest information received 

from each joint, and queries each node for its operational mode (i.e., whether it is 

running a feedback loop to achieve desired position, speed, or motor current).  If any 

joint fails to respond, the configuration will fail (i.e., configureHook returns false) 

and no further action will be taken. 

 The start-up procedure (in the startHook function) verifies that all nodes are in 

the correct operational mode.  It requests the current position reading from each node 

and does not allow the component to start until all joint positions are known.  Because 

the hardware employed in the present study does not provide absolute encoders for 

position measurements, zero encoder counts is assumed to correspond to a home 

position which is specified in the component’s configuration properties.  These 

positions are converted from encoder counts to radians via a conversion factor which 

is also a configuration parameter.  A method is also provided for recalibrating the 

joint positions during run time by adjusting the zero reference position.  

 When operation first begins, the updateHook sets each node to operate in a 

cyclical mode, moving its read pointer back to the beginning of the buffer when it 

reaches the end.  The time duration between waypoints is calculated on the basis of 
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the period of the Robot component.  The Whistles’ set-point buffers are filled with 

several copies of the current position; and motion is initialized.  The Robot 

Component then continues to send it new position waypoints to allow for continuous 

operation.  Because the Whistles employ an onboard algorithm to smooth the 

trajectory, the Robot Component must maintain its write pointer ahead of the Whistle 

read pointer by several waypoints.  This buffering results in a time delay (roughly 0.1 

seconds as configured in the present testing) between writing the set-point to the 

buffer and actual motion to that set-point. 

 It was observed during testing that servo drives to which more than two 

messages were sent in rapid succession did not reliably respond to all of them.  This 

is most likely due to a limitation of the drive controller’s ability to store incoming 

messages.  It appeared as though the first message received would be executed 

immediately.  The second message would be stored for processing upon completion 

of the first.  If a third message arrives while the first is still being processed, it 

appeared to overwrite the second message.  ElmoArm2 therefore does not send more 

than two commands to each servo drive per cycle. 

3.3 Kinematics Components 

3.3.1 Purpose and Interface 

 The commands sent to the arm hardware via the Robot Component must be in 

joint space, but the higher level commands coming into the system are expressed in 

Cartesian space.  Thus, one or more kinematics components are required to convert 

quantities between the two representations.  Joint angles reported by the Robot 

Component must be converted into Cartesian positions (forward kinematics), and 
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desired Cartesian movements must be converted into the corresponding joint angles 

or rates (inverse kinematics).  To promote maximum reusability, none of the details 

of the robot geometry are written into the code itself.  All kinematics components 

have configurable properties containing the Denavit-Hartenberg (D-H) parameters 

specifying the robot’s geometry.  The appropriate KDL::Chain is then constructed in 

the configureHook at run time. 

In principle, both forward and inverse kinematics could be carried out within a 

single component, which would allow for all of the kinematic details of the robot to 

be managed neatly within a single component.  However, as can be seen from 

examination of the flow of execution in Fig. 3.1, this would complicate the selection 

of the period at which this component operates.  It would have to run once after 

Robot has updated its current position reading to perform the forward kinematics, and 

then again after the trajectory generation components to perform the inverse 

kinematics.  This could be accomplished by triggering the kinematics component 

when new information arrives on a Data Port rather than running periodically; 

however, this still results in a scheduling arrangement that requires more careful 

consideration than would otherwise be necessary.  It was instead decided to 

instantiate two separate kinematic components for this purpose.  Separating these 

capabilities also allows for more easily modifying one without affecting the other—

for example, switching from inverse position kinematics to inverse velocity 

kinematics—at the cost of some additional resource usage associated with 

instantiating two separate copies of the kinematic chain.  The risk of unexpected 

behavior due to an erroneous discrepancy between the two Chains can be somewhat 
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mitigated by writing an identical set of configuration properties for all components 

such that they may be configured from the same configuration parameters file. 

3.3.2 Implementation 

 All of the kinematics components contain essentially the same configureHook.  

The KDL::Frame contains a function which can produce a Frame corresponding to a 

set of four D-H parameters describing the relative orientation between two coordinate 

frames, following the convention of [20].  The variable parameter (θ for a revolute 

joint, and d for a prismatic joint) is set to zero, and this Frame is followed with the 

appropriate KDL::Joint for either rotation or translation along the local z-axis.  Thus, 

the combination of the variable transformation due to the Joint with the constant 

transformation supplied by the link is equivalent to the transformation between 

consecutive joint frames in Craig’s convention.  Because the KDL::Segment  contains 

a joint at its proximal end and the link afterward, the first KDL::Segment is a fixed 

transformation and uses the fixed Joint type.  Once the Chain has been built, it is used 

to initialize the appropriate kinematic solver(s) from the KDL. 

 With the exception of the inverse position kinematics component, 

SSL::InversePosKinematics, the start hooks of these components only resize the 

necessary arrays to have the appropriate size for the number of degrees of freedom of 

the robot (which is a configurable parameter).  InversePosKinematics additionally 

attempts to locate a peer component named JointLimiter and, if successful, inquires as 

to any joint range-of-motion limits that must be respected. 

 During operation (updateHook), most of the work is done within the 

kinematic solvers provided by the KDL.  The forward kinematics solver, 
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KDL::ChainFkSolverPos_recursive, simply uses the current joint angles to compute 

the end effector position, starting from the base frame and recursively right-

multiplying by the transformation from each link to the next along the chain.  A 

forward-kinematic velocity solver is available within the KDL but was not required 

for the present implementation. Inverse position kinematics are provided by 

KDL::ChainIkSolverPos_NR_JL, which uses an iterative Newton-Raphson technique 

along with an inverse velocity kinematics solver.  An implementation of inverse 

velocity kinematics is available in the form of a KDL solver which uses the Jacobian 

pseudoinverse
12

.  This solver is both used within the iterative inverse position 

kinematics component and, although not required for the present application, 

packaged into a separate component for potential future use.  These KDL kinematic 

solvers employ the KDL::JntArray rather than the std::vector<double> for 

representing the joint space configuration of the robot.  This introduces an 

unfortunate inconsistency of interface between the kinematic solvers and the OCL 

components that drove the use of the std::vector<double> in the present application.  

The kinematics components therefore must internally convert back and forth between 

the two. 

 It was observed during testing in simulation that the iterative inverse 

kinematic solver employed may diverge from the desired goal if in a near-singular 

configuration.  After successfully maneuvering through a sequence of waypoints, the 

simulated robot was commanded to a goal that was not within its reachable 

workspace.  The resulting trajectory is shown in the left of Fig. 3.2.  The robot moved 

                                                
12 The Jacobian pseudoinverse, J† = JT(JJT)-1, becomes the common inverse for a square Jacobian 

matrix but is applicable to manipulators having non-square Jacobians as well. 
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in an approximately straight line toward the goal until it approached full extension.  

The inverse kinematic solution then diverged, causing the robot to chaotically move 

further from the desired position.  For this reason, a solution check was written into 

the inverse kinematics component to calculate how far
13

 the inverse kinematic 

solution is from the desired Cartesian position.  If the inverse kinematic solution is 

further from the goal than the initial guess that was given to the solver, the new 

solution will be discarded.  The right side of Fig. 3.2 shows the same sequence of 

waypoints executed with this safety check in place.  The robot approaches the goal 

approximately as nearly as it is able, coming to a stop when the inverse kinematics 

fail to produce a solution which is nearer to the goal than its current position.  

 

                                                
13 The distance metric used here is the Cartesian straight-line distance (in meters) plus the angular 

orientation difference (in radians) between the desired pose and the pose resulting from the inverse 

kinematics solution. 

  
Figure 3.2  End effector trajectory in space, showing inverse kinematic divergence near 

full extension (left).  A system to detect and manage this was implemented (right).  Red 

asterisks denote the commanded waypoints.  The final waypoint, (-0.5, 4.0, 0.7), is beyond 
the bounds of the graph and hence is not shown.  Dimensions in meters. 
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3.4 Command and Data Handling Components 

3.4.1 Purpose and Interface 

 A system is needed for handling incoming instructions through a client 

interface and commanding the relevant components on the basis of those instructions.  

It was desired that this interface being as simple as reasonably possible, preferably 

enabling the client to issue commands to the manipulator without requiring the use of 

Orocos on the client side.  For this purpose, a simple instruction language was 

designed for interaction with a client program.  A message consists of two ASCII-

encoded characters indicating a command and an additional 29 bytes for any 

corresponding data, for a total of 31 bytes.  The 29-byte data portion of a message is 

sufficient to carry seven floating-point or integer numbers with one additional byte 

left over for other use (e.g., as an index).  The full list of available command 

instructions is given in Appendix A.  These commands provide the client program 

with the ability to specify a goal position (in joint space or Cartesian space), to initiate 

motion toward that goal, to stop motion, and to query the current end effector 

Cartesian position and joint angles, among other things.  To allow for maximum 

versatility, the interpretation of these commands was decoupled from the 

communication mechanism.  Thus, one component (SSL::MessageHandler) acts to 

interpret incoming messages, issue the appropriate commands, and prepare response 

messages to be sent to the client.  Another component (SSL::EthernetInterface) acts 

to relay these messages between the control application and the client program, in this 

case via User Datagram Protocol (UDP).  In this way, one could switch to a 

completely different communication protocol by simply writing a new component to 
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relay messages between its Data-Flow ports and this alternate communication 

channel. 

 In addition to interpreting and distributing commands, a system is needed for 

logging relevant data for debugging and other analysis.  Orocos is equipped with a 

system for logging information, but writes it all to a single orocos.log file in a manner 

more suitable for logging run time warnings and errors than large amounts of data.  It 

is instead desirable for the present application to have multiple log files (for Cartesian 

position, joint angles, incoming commands, etc.).  Because the data to be logged will 

vary from one component to the next, and from one application to the next, it was 

decided to give the component producing the log data full control over the content of 

each log entry, with the logging component (SSL::FileLogger) acting only as a simple 

mechanism for gathering these messages and writing them to the appropriate files. 

3.4.2 Implementation 

 In contrast to other components within this application, the transmission of a 

new message over one of the Data-Flow Ports connecting the command and data 

handling (CDH) components does not render any previous messages obsolete.  

Whereas the kinematics components, for example, need only concern themselves with 

the most recently measured position of the robot, CDH components must not discard 

commands to be processed or information to be logged.  For this reason, the Data-

Flow Ports connecting one CDH component to another are buffered; these 

components execute a loop within their respective update hook until they have 

processed all awaiting messages. 
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 SSL::MessageHandler needs to interact with a number of other components in 

the application in order to carry out the commands received from the client program.  

These other components must be set up as peers of MessageHandler so that it can 

access their interfaces.  This can be accomplished by specifying the appropriate peers 

in the xml configuration file from which OCL::Deployer determines the components 

and configuration information to be loaded.  MessageHandler::configureHook() then 

searches among MessageHandler’s peers for several mandatory and optional peers, 

and retrieves pointers to the necessary Commands, Methods, and Events within those 

peers.  For example, the Robot Component is a mandatory peer whose start and stop 

Methods must be available to the MessageHandler to allow for disabling and enabling 

control of the hardware.  If this component is not found, configuration of the 

MessageHandler will fail.  In contrast, the inverse kinematics component is optional.  

MessageHandler attempts to locate it during configuration and, if successful, connects 

to its divergence event (an event which the inverse kinematics component emits to 

indicate that it failed to converge to a solution).  If such a component is not found, 

however, MessageHandler produces a warning but still allows the configuration to 

proceed.  MessageHandler::startHook() then simply initializes some arrays and 

vectors to the appropriate sizes and sets variables to appropriate starting values. 

 MessageHandler::updateHook() checks for any warning conditions that need 

to be relayed to the client program.  It then enters a loop which pops a message from 

the incoming message buffer, sends a copy of the message (converted to an ASCII 

string) to the logging component, and uses nested switch statements to determine 

which code to execute on the basis of the two command characters.  After that loop, it 
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logs any additional information that may need to be logged.  The Cartesian position, 

joint space configuration, and desired Cartesian set point can then be logged.  

Counters are used to log these values only once in every several cycles to avoid 

generating excessive log data. 

 The FileLogger configuration hook call creates/opens a number of log files 

having file names of the form log#.dat, where # is an integer ranging from one to 

numLogs, a configuration parameter specifying how many log files are required.  A 

pointer to each of these files is stored in an array.  If any of these files fail to open, 

configureHook returns false and the configuration fails.  No functionality is written 

into startHook() because no further action is necessary to prepare the log files.  The 

update hook of the logging component pops a message from its incoming Data-Flow 

port buffer, writes it to the appropriate log file.  If there is more than one message in 

the buffer, it loops until the buffer is empty.  Writing to the hard drive in this manner 

requires an inherently unpredictable amount of time to complete.  For this reason 

FileLogger runs within its own thread, separated from every other component in the 

application so that performance of the CDH and control components will not be 

impaired if FileLogger blocks.  If it blocks for an extended period, its buffer can 

become full and messages that were intended to be logged will be lost, but the 

performance of the remainder of the application will be unaffected. 

3.5 Trajectory Generation and Management Components 

3.5.1 Purpose and Interface 

 Motion instructions received from the client consist of only a single goal 

position or a moderately distantly spaced sequence of several waypoints.  The Robot 
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Component, however, requires a continuously updating stream of desired positions.  

A trajectory generation system must therefore be implemented to produce a more 

tightly space sequence of set points, smoothly moving the robot from the starting 

position to the goal position.  Fortunately, the Orocos Component Library (OCL) 

already contains components written for precisely this purpose.  

OCL::CartesianGeneratorPos has an input Data-Flow Port for the current measured 

end effector position, and output ports for both desired position and desired velocity 

in Cartesian space.  When instructed via a Command, it begins outputting a sequence 

of setpoints following a trapezoidal trajectory from the current position (measured on 

the input Data-Flow Port) to the goal position within configured velocity and 

acceleration limits.  OCL::nAxesGeneratorPos does the same, but operates in joint 

space rather than Cartesian Space. 

 As a safety check on the system, components were desired to provide basic 

constraints to prevent motion which could damage the arm.  Attempting to drive a 

joint beyond its allowable range of motion, for example, could cause it to rip its 

internal wiring (for joints without a hard stop) or overheat due to excess current (for 

joints with a hard stop).  The ability to specify basic exclusion zones in Cartesian 

space into which the end effector is not allowed to move enables a basic level of 

protection against collision with the environment.  For these reasons, 

SSL::JointLimiter and SSL::WsLimiterCart were written to enforce these disallowed 

configurations in joint space and Cartesian space, respectively. 

 To enable switching between joint space and Cartesian space operating 

modes, SSL::ControlSwitch was written so that both a Cartesian and joint space 
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trajectory generator could be instantiated and that only one of them would command 

the Robot Component at any time.  ControlSwitch has two input ports, taking the 

desired joint space set point directly from the joint space trajectory generator and the 

desired Cartesian set point from the inverse kinematics component.  Thus, both inputs 

are vectors in joint space, and it is only a matter of selecting which of them to copy to 

its output port, which feeds into the Robot Component via the joint limiter.  In 

addition to selecting which of its inputs is to be passed to the robot, ControlSwitch 

also manages the starting and stopping of both trajectory generators and the inverse 

kinematics so that these components do not run when they are not needed. 

3.5.2 Implementation 

 There are two basic ways in which motion limitations could be enforced.  The 

motion-limiting component could either bring the robot to a halt if it is in violation of 

motion limits, or it could simply suppress the offending component of the motion.  

Joint range-of-motion limitations are sufficiently straightforward that the latter 

solution is feasible, with SSL::JointLimiter simply substituting the appropriate 

maximum or minimum joint value (specified in the component’s configuration 

parameters) when the desired joint-space vector exceeds a limit on a particular joint.  

The hope here is that, although this will cause a deviation from the desired path, this 

deviation may be temporary and not warrant aborting the motion.  In this case, a 

warning event is generated which is relayed to the client.  Cartesian obstacles, on the 

other hand, represent more complicated limitations that cannot be neatly implemented 

as simple upper and lower bounds on a single workspace coordinate.  They are 

represented in the workspace limiter’s configuration parameters as box-shaped 
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exclusion zones with principal axes aligned with the robot base frame’s coordinate 

axes.  Obstacle avoidance of this nature is really a path planning problem which 

would be more appropriately handled in the trajectory generation component.  

SSL::WsLimiterCart therefore resets the trajectory generator when an exception to its 

motion limitations is detected, aborting the motion and resulting in an error message 

to the client.  WsLimiterCart will suppress any illegal waypoints before they reach the 

Robot Component, thus allowing further motion in a legal direction.  If, however, the 

robot enters an exclusion zone due to imperfect tracking, WsLimiterCart will bring 

the robot to a stop within this exclusion zone and will not allow further Cartesian-

specified motion.  In joint space operations, such a workspace limit violation will still 

be reported to the client, however motion will not be aborted.  The user may therefore 

guide the robot in joint space until it is clear of the exclusion zone, at which point 

Cartesian control may be re-enabled. 

 SSL::ControlSwitch utilizes a finite state machine (RTT::StateMachine) to 

manage its state, ensuring that only one of the two operating modes (Cartesian and 

joint space) is running at any given time, and that transitions between the modes are 

handled properly.  Upon activation, the StateMachine begins in an initial state which 

immediately transitions to one of three states depending upon the mode setting 

(Disconnected, Cartesian, or Joint Space).  The entry and exit functions for each of 

these states ensure that the appropriate trajectory generator (and, in the Cartesian 

state, the inverse kinematics component) is enabled and disabled.  While in principle 

it would do no harm to leave these components running unnecessarily while not in 

use, it represents unnecessary computation.  Furthermore, disabling trajectory 
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generators that are not in use causes the MessageHandler to send an error to the client 

in the event that a command is specified in the wrong space for a given mode.  For 

example, when operating in joint space, commanding motion to a Cartesian goal will 

return an error rather than performing all of the trajectory generation and inverse 

kinematic calculations, only to have the results quietly suppressed at the 

ControlSwitch.  Starting and stopping these components breaks other components’ 

access to their Methods and Commands (except for the start and stop methods, which 

are available even when the component is not running).  While this is desirable when 

the components are not in use, it requires that the MessageHandler reestablish access 

when they are started again.  ControlSwitch uses only the start and stop methods of 

these components, and so is not affected by this. 

 ControlSwitch::configureHook() locates the two trajectory generators and 

establishes access to their start and stop methods.  The startHook() loads the 

StateMachine which manages the switch and sets the control mode Attribute to zero 

(which represents the Disconnected state).  The first time updateHook() executes, it 

activates the state machine and sets it to automatic mode.  After this, the 

updateHook() simply copies the appropriate input (or, in the Disconnected state, an 

empty vector) to its output, which passes through the joint limiting component to the 

robot.  MessageHandler may trigger a change of state by changing the value of 

ControlSwitch’s mode Attribute.  During the next run of updateHook(), the 

StateMachine will then determine that a transition to one of the other states is valid, 

and will execute the appropriate functions.  To ensure that the appropriate trajectory 
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generator has had an opportunity to reset to the current position, ControlSwitch does 

not pass along the desired joint vector for two cycles after the transition. 

3.6 Command Station Client 

 To enable user operation of the manipulator during development, a collection 

of software clients were written to relay user commands over ethernet to the control 

application.  A low-level client allows for text-based entry of the commands as given 

in Appendix A.  Because the user manually enters the command characters and data 

values, this provides access to the full set of supported commands but is cumbersome 

for basic operations.  For this reason, two clients were written (one for Cartesian 

space and one for joint space) to enable basic motion commands via a single keypress 

and to display basic status information.  Fig. 3.3 shows the Cartesian-space version of 

the client.  The arrow keys and page up/page down keys are used to increment and 

decrement the x, y, and z coordinates of the desired end effector position.  The plus 

and minus keys adjust the scaling factor which determines how much the arm moves 

in response to each key press.  The space bar resets the desired position to the current 

position.  The control software does not require continuous contact with the client 

program, so the user may start and stop the client as many times as desired, and 

switch between the available clients as needed.  This latter pair of client programs 

will also display any warnings or errors received from the control software.   These 

clients were written primarily to aid in development and testing of the control 

software; a more sophisticated user interface will have to be developed as the system 

sees more extensive use. 
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Figure 3.3  Cartesian client user interface.  Errors and warnings (not shown) are printed on 

the lines below the above information.  Pose values consist of translational coordinates 

(x,y,z) and unit quaternion. 
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Chapter 4: Demonstration and Testing 

 

 The following section describes an optimization technique used throughout 

the analyses presented in this chapter.  The remainder of the chapter then describes 

demonstration and testing of the developed control application, both in simulation and 

on the hardware platform described in Section 2.2.  The goal here is to assess whether 

the system meets the requirements set out in Section 1.2.  The static positional 

accuracy test serves to validate the basic functionality to drive the robot to a desired 

Cartesian position.  The trajectory tracking tests are designed to assess the 

performance of the system more thoroughly, investigating dynamic performance in an 

effort to characterize the system’s capabilities.  Simulations are then performed to 

demonstrate the adaptability of the system to a variety of kinematic configurations. 

4.1 A least squares optimization technique 

 The Nelder-Mead optimization method employs a simplex-based iterative 

search for the minimum of an objective function of multiple variables [21].  The 

simplex is an n-dimensional geometric figure having n+1 vertices.
14

  Such a 

collection of vertices is constructed in the objective function’s input space, and the 

objective function is evaluated at each of these vertices.  At each iteration, the 

algorithm performs one of four operations to select possible new vertices for the 

simplex.  Vertices with higher objective function values are discarded in favor of new 

ones with lower values.  The Nelder-Mead algorithm is implemented in the 

                                                
14 Thus, in the two-dimensional case the simplex is a triangle. 
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MATLAB function fminsearch, included in the optimization toolbox.  Because this 

search method does not require any information about the derivatives of the objective 

function, it is especially well suited to nonlinear optimization problems. 

When independent measurements of the end effector location are available, 

they may be compared to end effector positions computed using the forward 

kinematics model.  An objective function quantifying the accuracy of the kinematics 

model may then be defined as the sum squared error between expected and measured 

end effector coordinates: 

 sse = xK ,i − xM ,i( )
2

+ yK ,i − yM ,i( )
2

+ zK ,i − zM ,i( )
2

[ ]
i

∑  

where (xK,i, yK,i, zK,i) are the expected end effector coordinates as computed using the 

forward kinematics model and (xM,i, yM,i, zM,i) are the independently measured 

coordinates for the i
th

 datum point.  An analytical form of the forward kinematics, 

derived in Mathematica using formulas from [20], was used to compute the expected 

coordinates.   This objective function was used along with the Nelder-Mead 

optimization method for all least-squares optimizations mentioned in the remainder of 

this chapter. 

4.2 Initial Calibration 

 Ellsberry [16] has used the Faro Arm to measure the manipulator’s 

dimensions and to provide encoder calibration data.  For the latter purpose, he swept 

several links through a known quantity of encoder counts, using the Faro Arm 

software to determine the arclength and radius of that motion.  Dividing arclength by 

radius gives the angle swept in radians.  His data suggest 130,148 counts/radian for 
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the first two joints and 65,929 counts/radian for the third joint.  Due to hardware 

similarity, it is assumed that all subsequent joints are identical in this regard to the 

third.  These calibration settings were used in the static positioning test described in 

the following section. 

4.3 Static Positional Accuracy 

4.3.1 Set Up 

 Ranger and the Faro Arm were mounted facing one another on an optical 

bench as shown in Fig. 4.1.  The optical bench was assumed to be a sufficiently stiff 

mounting surface so as to minimize relative motion between the two arms.  This 

arrangement allows for a substantial region of overlap between the Ranger and Faro 

work spaces while reducing the likelihood of damage to the Faro Arm in the event of 

a Ranger malfunction.  Preliminary preparations for the static positioning test brought 

the arms slowly through the desired waypoints to verify that the motions could be 

executed safely without either arm approaching a joint range-of-motion limit or 

singularity. 

 The Faro Arm was calibrated via the procedure specified by the manufacturer, 

which involves placing the Faro end effector into a fixed mount, and moving the 

joints of the arm while the mount ensures that the end effector does not translate. 

 The Ranger arm was placed into the home position shown in Fig. 2.2 as 

precisely as possible through purely visual inspection.  Because Ranger is not 

equipped with any means of measuring its absolute joint angles, any error in this 

starting position will have propagated through to all future poses during the data 

collection.  
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4.3.2 Test Trajectory 

 A test trajectory was chosen to resemble the trajectory used to assess the static 

positional accuracy of a later-generation Ranger arm, presented in Reference 22.  The 

test trajectory lies in a plane angled approximately 55 degrees above the horizontal, 

with the waypoints of this trajectory lying along two lines passing horizontally 

through the robot’s workspace.  Each line contained four waypoints spaced 20 cm 

apart along the line.  The two lines themselves were spaced 10 cm apart, as shown in 

Fig. 4.2.  The test trajectory consisted of 10 vertices which were visited multiple 

times with a constant end effector attitude in order to collect 50 datum points for 

analysis.  Reference 22 demonstrated a static positional accuracy of 22.8 mm for the 

manipulator tested.  Because a similar testing procedure is used presently, this 

 
Figure 4.1 Hardware arrangement for positional accuracy testing. 
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performance figure of merit represents a reasonable baseline for comparison between 

the two systems.
15

 

 

4.3.3 Analysis 

 A least-squares match was performed to determine the transformation 

between the Faro Arm coordinate frame and the Ranger base frame.  All Faro 

measurements were then converted into the Ranger base frame, in which all 

subsequent analysis was performed.  Due to an offset between the resolution point of 

the Faro Arm measurement probe and the resolution point of the final Ranger link, 

the forward kinematics for the Ranger arm were recomputed with this additional 

transformation in place.  The results described in the following subsection are 

therefore the error between the predicted position of the Faro tip on the basis of 

Ranger’s kinematic model, and the actual location of the Faro tip as determined by 

                                                
15 The cited test conformed approximately but not strictly to the standardized testing procedure 

established in Reference 23.  This ANSI standard calls for an eccentric load attached to the end 

effector, a requirement not followed in the present investigation and similarly ignored in the cited test.  
The present investigation further ignored the requirement to begin testing from a cold start condition 

due to required preparation time.  Ambient temperature and humidity were not noted.  The order in 

which the points were visited was not fully randomized.  The present study also held the end effector at 

a level orientation rather than perpendicular to the test plane due to difficulties presented by the 

placement of the Faro arm.  

 
Figure 4.2  Test path for static positional accuracy.  The horizontal direction in this 
figure coincides with the x-axis of Ranger’s base frame.  The vertical direction in this 

figure is oriented at a slope of 2  above Ranger’s x-y plane.   Dimensions in 

centimeters. 
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the Faro measurement system
16

.  The distance between each pair of predicted and 

measured locations was then calculated as 

di = x p,i − xm,i( )
2

+ y p,i − ym,i( )
2

+ zp,i − zm,i( )
2

 

where i is the index for that pair of values, the subscript p indicates the predicted 

coordinate, and the subscript m indicates the measured coordinate.  The mean 

positional accuracy and its standard deviation are then calculated as 
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where N = 50 is the total number of datum points collected.  These formulas are taken 

from Reference 23. 

4.3.4 Results 

 The mean positional accuracy was found to be 5.1 mm with a standard 

deviation of 1.8 mm.  This represents a more than acceptable level of accuracy, at 

approximately one-fourth the error of the later-generation Ranger arm assessed in 

Reference 22.  These results demonstrate the basic validity of the kinematic 

calculations performed in the control application, as well as the capability of the 

system to perform point-to-point motion.  Fig. 4.3 shows a plot of the test data, 

indicating the end effector position predicted by the kinematics as well as the 

                                                
16 The accuracy values presented as the results of this analysis therefore quantify only the error in the 

forward kinematics model—i.e., the error between where the control application believed the Ranger 

end effector to be and where it actually was, not the error between the commanded and actual 
positions.  In all cases, however, the end effector position reported by the control application agreed 

with the commanded position to within several micrometers in each principal axis direction.  This 

small discrepancy is most likely the result of the error tolerance specified in the inverse kinematic 

solver object as 10-6 meters.  A smaller tolerance could be employed if greater accuracy is desired and 

sufficient computation time is available. 
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independent measurement from the Faro arm.  As a general trend, the Faro data lie 

toward the outside of the test trajectory  (in the x-direction) as compared to the 

kinematic predictions, hinting at a possible systematic error in the kinematics model.  

The following section explores the possibility of correcting for any such bias. 

 

4.4 Exploration of a Possible Refinement Approach 

Although the performance determined in the previous section is more than 

satisfactory, Ranger’s performance during that test was undoubtedly degraded by 

error in the joint angles.  Because Ranger has no means of measuring its absolute 

joint positions, the joint angle values used in the control software suffer from a 

constant offset due to error in the presumed starting position.  This section describes 

efforts undertaken to identify this offset for the static positioning testing session of 

the previous section
17

 through numerical optimization.  Consideration was also given 

to the possibility of error in the Denavit-Hartenberg parameters describing the robot’s 

physical geometry as well (link lengths and offsets).  Although the test employed the 

                                                
17 These angular offsets will in general vary from one testing session to the next because no system is 

yet implemented for holding the physical arm precisely in position between runs. 

 
Figure 4.3  Static positional test data.   Dimensions in meters. 
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D-H parameters measured by Ellsberry to a high precision via the Faro arm, the offset 

of the Faro positioning tip was estimated using only a tape measure.  Refinement of 

these parameters has the potential to improve Cartesian positional accuracy of the 

system.  Although this is presently an off-line optimization technique requiring the 

use of MATLAB, it provides a demonstration of concept which could lead to the 

development of a calibration technique for the manipulator.  

4.4.1 Analysis 

 The static positioning test described in the previous section yielded a data set 

containing a set of joint angles corresponding to various robot positions, and an 

independent measurement via the Faro Arm of the end effector positions for each of 

those joint configurations.  This information was also collected at additional points 

not within the standard test plane in order to provide further data for the present 

parameter refinement effort. 

 Because the goal is to identify the robot kinematics in a form that can be 

utilized in the present control application, the parameters that are available to be 

varied are the 21 Denavit-Hartenberg parameters required to describe the mechanical 

linkages of a six-degree-of-freedom manipulator.
18

  Uncertainty in the starting 

positions of the joints introduces a further six unknowns in the form of constant 

offsets to the joint angles.  A further six parameters could be introduced to 

accommodate the unknown transformation between the Faro coordinate frame and the 

robot’s base frame.  This approach, however, quickly results in an objective function 

                                                
18 There are additional effects that introduce error into the kinematic model, including the effect of link 

flexibility. These effects, however, are not supported by the present kinematics components.  The goal 

here is to refine the parameters used by these components. 
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having a great many input parameters.  In the interest of producing a tractable 

optimization problem, only the five nonzero length parameters describing the robot 

geometry were treated as free variables.  An additional parameter was added to 

account for the unknown offset between the Faro tip and the axis of Ranger’s last 

link.  These are combined with the six unknown joint offsets to yield an optimization 

problem in twelve variables.  Rather than attempting to optimize all twelve 

parameters simultaneously, the problem is initially divided into two subproblems: 

first optimizing only the joint offsets, and then optimizing only the length parameters.  

As described in the following subsection, one of the twelve parameters was fixed in 

order to achieve convergence to a set of values which the present author deemed 

reasonable. 

4.4.2 Results 

 Although the angle of the offset between the Faro tip and Ranger’s tip was not 

measured precisely, optimization efforts allowing this to vary as a parameter 

produced results which were not consistent with the author’s visual estimation of the 

value during testing.  This is likely an especially difficult parameter to optimize 

because the offset between the two tips is so small that its effect is not particularly 

pronounced compared to the other parameters.  The author therefore fixed this angle 

at 1.3 radians (approximately 75°) from the negative x-axis of the end effector frame.  

Optimization of only the five remaining joint angles yielded offsets of less than one 

degree, an easily believable magnitude given that the arm was initially aligned only 

by visual inspection.  With these adjustments to the joint angles, the mean positional 

accuracy for the test trajectory of the previous section is reduced to 3.1 mm with a 
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standard deviation of 1.4 mm, an improvement of nearly 40% over the uncorrected 

results. 

 Optimization of the D-H length parameters (with the angular offsets held 

constant at their separately optimized values) yielded the parameters given in Table 

4.1.  The optimized parameters agree to within a few millimeters with the original 

parameters measured by Ellsberry.  This optimization again results in a modest 

improvement of the mean positional error, which becomes 1.9 mm with a standard 

deviation of 0.7 mm with these modified parameters. 

Table 4.1  Separately optimized Denavit-Hartenberg parameters for Ranger Mark I.  The 

large offset on θ6 is due to the fact that the angular orientation of the Faro-Ranger tip offset 

was not measured and was determined only through optimization.  The parameter a6 was 

introduced to account for the Faro-Ranger tip offset.  The offsets given for the θ parameters 

will not persist to any future runs.  Optimized values are shown in bold.  

i αi-1 (rad) ai-1 (m) di (m) θi (rad) 

1 0 0 0.2477 θ1 – 0.001197 

2 π/2 0 0 θ2 + 0.001839 

3 0 0.5616 0 θ3 + 0.004736 

4 -π/2 0.1489 0.5366 θ4 – 0.003007 

5 π/2 0 0 θ5 – 0.01497 

6 π/2 0 0 θ6 + 1.3  

T 0 -0.003229 0.3118 0 

 

 

 Simultaneous optimization of all eleven free parameters, using the results of 

the previous two subproblems as the initial guess, actually produces a slight increase 

in positional error.
19

  Table 4.2 shows the fully optimized parameters, which yield a 

mean positional error of 2.0 mm with a standard deviation of 0.5 mm.  The values 

again come to within a few millimeters of Ellsberry’s measurements. 

                                                
19 Recall that the optimization was performed on a superset of the data used to evaluate mean 

positional accuracy, which is dictated by a desire to use a comparable test path to the later-generation 

Ranger evaluation. 
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Table 4.2  Simultaneously optimized Denavit-Hartenberg parameters for Ranger Mark I. 

i αi-1 (rad) ai-1 (m) di (m) θi (rad) 

1 0 0 0.2505 θ1 – 0.002627 

2 π/2 0 0 θ2 + 0.0008630 

3 0 0.5599 0 θ3 + 0.01267 

4 -π/2 0.1525 0.5335 θ4 – 0.006912 

5 π/2 0 0 θ5 – 0.006189 

6 π/2 0 0 θ6 + 1.3 

T 0 -0.00438 0.3122 0 

 

It is difficult to draw any meaningful conclusions as to the accuracy of the 

results of these optimization runs.  The first five joint offsets represent a reasonable 

consistency between the separate and simultaneous optimization runs, suggesting that 

there is likely some validity to the corrected values.  The optimization of the length 

parameters is a bit more questionable.  The D-H parameters were already known 

reasonably precisely at the outset of this investigation.  At the level of precision at 

which this effort attempts to optimize the values, the dominant source of error may no 

longer be D-H parameters themselves but instead the nonrigidity of the links, 

representing a breakdown of a central assumption of the kinematic model.  These 

optimized parameters may therefore represent an effective average set of D-H 

parameters over the range of poses visited in the present investigation.  In any event, 

these results suggest that the 5 mm accuracy determined in Section 4.3 is not a hard 

limit of the system’s capability. 

4.5 Trajectory Tracking Performance 

 While the static positional accuracy test of Section 4.3 confirms that the robot 

can eventually be driven to within a reasonable tolerance of a desired position, the 
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path via which the robot approaches that goal is also of interest.  In its Cartesian 

operating mode, the robot nominally follows a straight-line trapezoidal trajectory to 

the goal.  This section describes testing undertaken to assess the accuracy with which 

the system tracks this trajectory under the present hardware implementation.  Circular 

and sinusoidal trajectory tracking is also assessed.  Although the present client 

interface does not enable the user to command trajectories that are not piecewise 

linear, the system’s performance in this regard is of interest for potential future 

applications.  It must be emphasized that tracking performance is heavily a function 

of the Elmo control hardware and the means through which the Robot Component 

interacts with them.  The present tests therefore provide only a lower bound as to the 

system’s potential capabilities.  Possible techniques for improving performance are 

discussed in subsection 5.2.1. 

4.5.1 Test Set-up 

 Trajectory tracking performance 

was assessed using the Vicon motion 

tracking system described in subsection 

2.2.6.  In order to mitigate undesired 

triggering of the Vicon system by 

surfaces other than the reflective 

markers, Ranger’s reflective surfaces 

were covered with paper and painter’s 

tape, as shown in Fig. 4.4.  Reflective 

spherical markers were affixed with hot glue.  The optical bench was covered with a 

 
Figure 4.4  Ranger with reflective 

surfaces covered and markers attached in 

preparation for Vicon testing. 
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sheet of felt to avoid reflections off the tabletop.  Most of the Faro Arm’s outer casing 

is not especially reflective; however, some regions of exposed metal had to be 

similarly covered.  

4.5.2 Test procedure 

 The optical bench with the Ranger and Faro arms was situated within the 

Vicon sensing volume.  With the Faro arm attached, Ranger was successively 

commanded to visit six waypoints shown in Fig. 4.5 in alphabetical order, 

maintaining the end effector at a constant and level attitude.  The path forms a 

rectangle parallel to the x-z plane of Ranger’s base frame, at y = 58 cm.  Point A is 

located at (0, 58, 40) cm.  At each of these test points, the end effector position was 

recorded using both the Faro arm and the Vicon system.  This provides a basis for 

assessing the accuracy of the Vicon measurements and identifies the waypoints 

within the Vicon coordinate system, enabling assessment of the accuracy of the shape 

of the path as distinct from any absolute positioning issues.  With the Faro arm 

detached, Ranger was then commanded to 

perform a multipoint trajectory through the 

four vertices of this test path, nominally 

proceeding from B to C in 2 seconds, from 

C to E in 5 seconds, from E to F in 2 

seconds, and from F to B in 5 seconds.
20

  

This trajectory was specified and initiated 

                                                
20 The commanded motion is calculated to form a trapezoidal trajectory having the desired travel time 

within acceleration limits.  The top speed is therefore slightly in excess of 10 cm/s. 

 
Figure 4.5  Rectilinear tracking test 

path.  Dimensions in centimeters. 
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entirely via the client interface, and was executed twelve times with the Vicon system 

recording the motion. 

 Circular and sinusoidal trajectories were then similarly executed and recorded.  

Because the present control application does not yet provide a means for the client to 

command such trajectories, the trajectory generation component was replaced 

successively with a Cartesian circle generator (SSL::CircleGen) and a Cartesian 

sinusoid generator (SSL::SinusoidGen).  The source code for these components is 

located in shapegens.cpp and presented alongside the rest of the software in 

Appendices B and C.  Although these trajectories were therefore preprogrammed, that 

preprogramming occurred only for the Cartesian path.  The inverse kinematics were 

still computed during run time for each waypoint as it became active.  From a 

performance standpoint, this is therefore no different than if these trajectory 

generation components were receiving the waypoints from an outside source in real 

time.  The paths were executed at various speeds to assess the effect on tracking 

performance. 

4.5.3 Analysis 

The data initially recorded by the Vicon system consist of two-dimensional 

measurements from each camera, which must then be converted to three-dimensional 

position data in post-processing using Vicon-specific software.  This processing was 

performed by Autonomous Vehicle Laboratory personnel and provided to the author 

for analysis.  The rectilinear tracking test and some of the circular tracking tests were 

recorded by the Vicon system at a rate of 350 Hz.  This resulted in excessively large 

log files that, it was found during subsequent processing, cause the Vicon software to 
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crash.  For this reason, these data are not available for analysis.  This precludes the 

possibility of quantifying tracking error for the straight-line path employed for point-

to-point motions commanded via the client interface.  It also precludes comparison of 

Faro Arm measurements to Vicon measurements for purposes of estimating the 

accuracy of the Vicon system. 

Because the purpose of this test is to assess tracking of a desired path and not 

absolute positional accuracy, which was the subject of Section 4.3, the present 

analysis concerns itself only with the shape and dimensions of the test paths and not 

with their absolute positions and orientations within space.  The centers of the circular 

and sinusoidal test paths were identified by taking the arithmetic mean of the 

coordinates for the slowest run of that particular type of path.  The axis or plane of the 

motion was then identified via a singular value decomposition of a matrix containing 

the recentered position data.  The commanded motion was logged by the control 

application using a separate clock from the one used by the Vicon computer, with no 

means implemented of synchronizing the two.  A least squares match was therefore 

employed to align the commanded and recorded motions in precise phase with one 

another for comparison.  This does not allow for quantification of the time delay 

between generation and execution of the commands; however, identifying that 

quantity is not the purpose of the present test. 

Tracking error at each point was calculated as the Cartesian straight-line 

distance between the recorded and desired positions via the same formula presented 

in subsection 4.3.3 for static positional accuracy.  The arithmetic mean of this value 

over eight cycles of the motion was computed as the figure of merit for tracking 
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accuracy.  This includes a small dynamic response as the motion begins from rest, 

and the Whistle controllers attempt to catch up with the commanded velocity.  All test 

paths began and ended at the same point. 

4.5.4 Results 

 Table 4.3 shows the mean tracking error for the trials conducted with a 

circular test path 20 cm in radius, situated parallel to the x-z plane of Ranger’s base 

frame.   At low to moderate speeds, tracking error is approximately four millimeters. 

For the high-speed trajectory having a period of 5 seconds, the tracking error greatly 

increases to more than 4 cm.  Fig. 4.6 shows the actual and commanded paths for 

slowest (T = 20 sec) and fastest (T = 5 sec) runs of the circular test path.  As can be 

seen in this figure, the executed path for T = 20 seconds is quite nearly circular, but a 

bit smaller in radius than was commanded.
21

  The commanded paths shown in the 

figure were recalculated with the logged joint angle commands to demonstrate that 

the degradation of performance at high speeds was not caused by the control 

application.  Rather, it appears that the Whistle units were unable to effect motion at 

the commanded rates.  This was almost certainly due to a configuration parameter 

within the Whistle units which enforced a speed limit of approximately 0.9 rad/sec, 

while the test trajectory resulted in commanded rates of approximately 1.5 rad/sec on 

both joints 4 and 6.  It is likely that this issue could be surmounted by reconfiguration 

of the Whistles; however, servo level performance is not the focus of this thesis.  

Reference 16 explores the capabilities of this hardware platform in greater detail.  For 

                                                
21 Indeed, if compared to a circle of radius 19.6 cm, this path would exhibit only 1.2 mm mean tracking 

error.  The other circular test runs similarly conformed more nearly to a circle of that radius.  It could 

not be determined from the available data whether this might be a scaling issue within the Vicon 

system. 
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the present purposes, it is simply observed that the control application is not the 

limiting constraint on the ability of the overall system to track these motions. 

  

Table 4.3  Mean tracking error d  for a circular test path of 20 cm radius parallel to the x-z 

plane.  T is the period of commanded motion, f is the frequency of commanded motion, v 

is the nominal tangential speed, and S is the sample standard deviation on d . 

T (sec) f (Hz) v (mm/s) d  (mm) S (mm) 

5 0.200 251 42 20 

7 0.143 180 4.7 2.3 

10 0.100 126 4.0 0.9 

15 0.0667 84 3.9 0.9 

20 0.0500 63 3.8 0.9 

 

 

 
 Sinusoidal test paths were performed in both the x and z directions of the 

Ranger base frame with a peak-to-peak amplitude of 20 cm, centered on the point (0, 

62, 52) cm.  Table 4.4 shows the results from the x-direction maneuvers.  Table 4.5 

shows the results for the z-direction maneuvers.  Both directions were tested at 

frequencies between 0.5 and 0.1 Hz.  Due to its greater manipulability in the z versus 

the x direction in this configuration, z-direction testing exhibited superior 

performance, and was additionally performed at 1 Hz.  For low to moderate speeds, 

  
Figure 4.6 Circular test path with period T = 20 seconds (left) and T = 5 seconds (right), 

shown in the plane of motion. The actual path is shown as a solid blue curve, with the 

commanded path (recomputed from the commanded joint angles to show any error in the 

inverse kinematics solution) as a dashed red curve. 
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both test sets demonstrated mean tracking errors of a few millimeters.   Fig. 4.7 shows 

the measured and commanded paths for two of the x-direction sinusoidal trials.  It 

was again verified via recomputation of the forward kinematics on the commanded 

joint angles that the great majority of the error for the 0.5 Hz sinusoids was the result 

of tracking error on the Whistles and not the control application. 

 

Table 4.4  Mean tracking error d  for a sinusoidal motion in the x direction.  T is the 

period of commanded motion, f is the frequency of commanded motion, vmax is the 

nominal maximum speed, and S is the sample standard deviation on d . 

T (sec) f (Hz) vmax (mm/s) d  (mm) S (mm) 

2 0.500 314 37 15 

3 0.333 209 21 11 

  5 0.200 126 2.9 1.9 

8 0.125 79 2.6 1.3 

10 0.100 63 2.6 1.2 

15 0.0667 42 2.6 1.2 

 

Table 4.5  Mean tracking error d  for a sinusoidal motion in the z direction.  T is the 

period of commanded motion, f is the frequency of commanded motion, vmax is the 

nominal maximum speed, and S is the sample standard deviation on d . 

T (sec) f (Hz) vmax (mm/s) d  (mm) S (mm) 

1 1.00 628 23 11 

2 0.500 314 3.4 1.1 

3 0.333 209 3.8 0.8 

  5 0.200 126 3.7 0.9 

8 0.125 79 3.7 1.1 

10 0.100 63 3.7 0.9 

 

 

 It is likely that the Whistle units could demonstrate higher bandwidth for a 

smaller amplitude motion (See Reference 16).  Smaller motions were not attempted in 

the present study due to limited testing time with the Vicon system and uncertainty as 

to the precision to which the Vicon system could reliably detect marker locations.  In 

either event, this test provides a lower bound on the available dynamic performance 

of the combined hardware-software system presently employed to control Ranger.  
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Although the specific straight-line motion commands available via the client interface 

could not be analyzed due to data processing issues, such motions are not likely to 

result in greatly different performance from those analyzed here. 

 

4.6 Simulation of more diverse kinematics 

 The preceding evaluations validate the basic functionality required from the 

control application, but do little to demonstrate the true adaptability of the system to a 

variety of manipulators.  Different control hardware can be accommodated by writing 

a new Robot component.
22

  The basic ability to substitute one robot component for 

another is a clear capability of the Orocos framework, and is demonstrated by the fact 

that the author developed much of the present software using SSL::SimArm and 

SSL::SimArm_nAxes.  What is lacking to this point is therefore a demonstration of 

the ability to accommodate different manipulators having a variety of kinematic 

                                                
22 If the new control hardware is not capable of directly accepting position commands and running a 

servo loop, the necessary capabilities can be implemented as additional components in the control 

application, taking as input the desired joint angles and outputting suitable torques or joint rates to 

achieve them.  It would not, however, require substantial modification to the existing software 

components. 

    
Figure 4.7 Sinusoidal test path in the x direction with period T = 15 seconds (left) and T = 

2 seconds (right). The actual path is shown as a solid blue curve, with the commanded 

path (recomputed from the commanded joint angles to show any error in the inverse 

kinematics solution) as a dashed red curve.  Although a least squares alignment was used 

to put the commanded and actual paths in phase for the purpose of computing the mean 

tracking error, the plot at right shows the two curves approximately aligned on the basis of 

the time at which motion began. 
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configurations.  The six-degree-of-freedom, all-revolute nature of Ranger is a 

common configuration, but is not by any means the only one.  The proceeding 

simulations were therefore undertaken to demonstrate the versatility of the system to 

operate on robots having prismatic joints and redundant degrees of freedom.  

4.6.1 Mixture of prismatic and revolute joints 

 Table 4.6 shows the Denavit-Hartenberg parameters for a hypothetical robot 

consisting of a three-degree-of-freedom, pitch-pitch-roll arm mounted to a mobile, 

three-degree-of-freedom planar platform.  Fig. 4.8 shows a diagram of the robot. 

Table 4.6 Denavit-Hartenberg parameters for a hypothetical robot containing prismatic joints. 

i αi-1 (rad) ai-1 (m) di (m) θi (rad) 

1 π/2 0 d1 π/2 

2 π/2 0 d2 π/2 

3 π/2 0 0 θ3 

4 π/2 0 0 θ4 

5 0 0.5 0 θ5 

6 π/2 0 0.5 θ6 

T 0 0 0 0 

  

 

The simulated robot was commanded through a rectangular trajectory 

consisting of waypoints (0.5,0.2,0.1), (0.5,0.2,0.4), (0.5,-0.2,0.4), and (0.5,-0.2,0.1) 

meters, returning to the starting point after reaching the fourth waypoint.  The 

From above: From side: 

 
 

Figure 4.8  3DOF mobile platform with 3DOF arm. θ6, not shown, is end effector roll. 
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trajectory was executed at a nominal maximum velocity of 0.05 m/s and maximum 

acceleration of 0.10 m/s
2
.  Mean kinematic error was computed as the average 

distance between the end effector and the straight line connecting the previous to the 

following waypoint. 

Fig. 4.9 shows the executed trajectory in joint space.  The joint values vary 

smoothly and continuously over time, with a mean kinematic error of 0.18 mm.  The 

joint space trajectory is fairly simple, with the two prismatic joints doing the x-y 

translational work, and joints 4 and 5 maintaining a linearly negative relationship to 

keep the end effector level while achieving the desired z coordinate.  The maximum 

error, 2.02 mm, occurred approximately 23 seconds into the trajectory, during the 

downward leg of the motion. 

 

4.6.2 Eight degrees of freedom 

 The software as written is capable of accommodating redundant manipulators, 

with the caveat that the client communication protocol established in the 

 
Figure 4.9  Simulated trajectory in joint space.  Joints 1 and 2 are prismatic, with joint 

values given in meters.  Joints 3 through 6 are revolute, with values given in radians. 
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MessageHandler component (see Appendix A) was not written to accommodate joint 

space commands in greater than six dimensions.  If needed, it would be a reasonably 

simple matter to enlarge the standard message structure to accommodate the 

additional values.  Because the present simulation is done in Cartesian space, 

however, no software modification is necessary.  Table 4.7 shows the Denavit-

Hartenberg parameters for a later-generation, eight-degree-of-freedom Ranger 

manipulator, also in use at the Space Systems Laboratory.  Fig. 4.10 shows a diagram 

of the robot.  This arm was commanded in simulation through the same sequence of 

waypoints as in the preceding simulation. 

Table 4.7 Denavit-Hartenberg parameters for Ranger Mark II, from [24].  An offset to the 

tool frame, dT = 0.1 m, was inserted by the present author to represent a generic tool. 

i αi-1 (rad) ai-1 (m) di (m) θi (rad) 

1 0 0 0.1524 θ1 

2 π/2 0 0 θ2 

3 -π/2 0 0.5389 θ3 

4 π/2 0 0 θ4 

5 -π/2 0.1524 0.5117 θ5 

6 π/4 0 0 θ6 

7 π/2 0 0 θ7 

8 -π/2 0 0 θ8 

T 0 0 0.1000 0 

 

 

 
Figure 4.10 Ranger Mark II, from [24]. 
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 Fig. 4.11 shows the executed path in joint space.  All eight degrees of freedom 

were employed in this motion, and all joint motions were smooth and continuous.  

Note that, although the robot returns to its original Cartesian pose at the end of the 

trajectory, its joint space configuration is different.  This is typical of a Jacobian-

pseudoinverse-based inverse kinematics approach, which minimizes the joint rates 

required for a given motion and thus will produce different joint space solutions when 

the goal is approached from different directions. 

The mean kinematic error was on the order of one micrometer, the precision 

to which the forward kinematic results were logged.  Maximum kinematic error was 8 

micrometers and occurred at approximately 23 seconds into the maneuver, at around 

the same point in the trajectory for which the prismatic case produced its maximum 

path error.  The improved manipulability afforded by the redundant degrees of 

freedom may be responsible for the decreased error in this test versus the simulation 

of the previous section.  Obviously, this extremely high precision motion would be 

difficult to achieve on an actual robot due to real-world uncertainties such as joint 

flexibility and angular uncertainty, even if the robot’s nominal dimensions were 

known to high precision.  This test demonstrates, however, that the present system is 

capable of managing redundant degrees of freedom without significant software-level 

issues. 
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Figure 4.11  Simulated trajectory in joint space 
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Chapter 5: Conclusions and Future Work 

 

5.1 Summary and Conclusions 

 The present research developed and implemented a software architecture for 

the top level control of a robotic manipulator.  This architecture enables reuse of code 

between different robotics projects, as well as easy evolution and extension of the 

code by employing both component-based and object-oriented reusability strategies, 

and by leveraging the results of open-source projects freely available online.  As a 

demonstration of its basic validity and capability, the system has been demonstrated 

on the Ranger Mark I manipulator.  It demonstrated adequate performance in terms of 

both static positional accuracy and trajectory tracking.  Further simulation has shown 

that the system is capable of accommodating both prismatic and revolute joints, and 

both redundant and nonredundant serial-link manipulators. 

5.2 Future Work 

5.2.1 Refinement of Performance 

 Further work could be done to refine the system to improve the performance 

of the present implementation of this architecture.  Although Orocos supports real-

time extensions to the Linux kernel, the present development and testing occurred on 

a non-real-time Ubuntu Linux system.  By upgrading to a real-time system, it would 

become possible to assign priorities to each thread, ensuring that the control-critical 

components can be executed in a timely manner when they need to run.  The PEAK-
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System driver may be compiled with support for the Xenomai real-time environment.  

Since the current arrangement has the Whistles buffering incoming waypoints and 

timing the spacing of waypoints onboard, some amount of fluctuation in the arrival of 

incoming commands is tolerable and will not affect system performance.  In some of 

the potential future applications described below, however, this would adversely 

affect system performance. 

 In the interactions with the Whistles as well, there is further room for 

improvement.  Interaction between the host computer and Whistles is currently the 

limiting constraint on execution rate of the control components.  Although the 

investigations in Section 4.5 showed the Whistle tracking performance to be the 

ultimate limiter of performance for the motions attempted, the update rate of the 

control application could become the limiting constraint if smaller amplitude motions 

were attempted or if the Whistles were reconfigured for improved performance.  The 

limitations on update rate are likely a consequence of use of the non-real-time version 

of the PEAK-System driver
23

 and of data rate limitations.  In the present tests, the 

CAN bus was operated at 500 kilobits per second.
24

  Though the present hardware 

was not tested at higher speeds, the CAN bus standard supports a maximum rate of 

1,000 kilobits per second.  Communication efficiency might also be improved by 

mapping the communication objects such that messages transmitted by the host 

                                                
23 The non-real-time driver may be delaying transmission of outgoing messages and processing of 

incoming ones.  The present author observed that Graphical User Interface (GUI) events on the 

desktop operating system appeared to correlate with warnings from the Robot Component that 

responses were not received in a timely manner.  A real-time implementation would allow for 
prioritizing the control application more highly than other, less important processes which may be 

interfering with it.  Disabling the host computer’s GUI entirely, whether switching to a real-time 

implementation or not, would likely reduce such events. 
24 At the update rate of 51 Hz at which the tests of Chapter 4 were performed, this would result in a 

theoretical bus utilization of approximately 60% of capacity. 
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computer to the Whistles have a higher priority than replies from the Whistles to the 

host computer.  This would help ensure that the Whistles receive their instructions as 

quickly as possible at the beginning of each cycle.  As currently configured, it is 

possible that this dissemination of instructions to the later Whistles on the list is 

delayed by reply messages from Whistles at the beginning of the list that have already 

finished executing that instruction.  In addition, for position-based trajectory 

specification, a high speed communication technique is available in which two 

trajectory set-points are specified within a single CAN message, which is mapped to 

write directly to the trajectory buffer without the need to be processed by an 

interpreter as is the case with other commands.
25

  This would reduce both bus traffic 

and Whistle processing time, likely allowing for the set-points to be spaced more 

closely in time, thus reducing the motion delay due to buffering.  Improved 

synchronization of the motion of the various drives could be improved by configuring 

the Whistles to respond to a particular group ID number, allowing a single message 

on the CAN bus to instruct all of them to begin motion.  Sending the begin-motion 

commands separately to each Whistle as is currently done theoretically produces a 

mismatch of at least 480 microseconds between the first and last joint at a data rate of 

500 kilobits per second.
26

 

In addition to the SimplIQ Command Language, the SimplIQ line of servo 

drives also supports the DSP 402 protocol for motion controllers defined by the CAN 

                                                
25 This technique is not available for other control modes in which only desired joint rates or motor 
currents are communicated. 
26 This technique would also work in the joint-rate-only control mode because desired joint rates are 

similarly issued via separate specify-motion/begin-motion commands.  Precisely synchronizing motor 

current commands, which take effect immediately when processed, would require use of the 

synchronous trigger communication object. 
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in Automation (CiA) nonprofit organization.  This alternate protocol merits further 

investigation to determine whether it could be used to improve system performance, 

as well as for the potential development of a robot component which is compatible 

with an even greater variety of servo drives than the present SSL::ElmoArm2 

component. 

5.2.2 Teleoperation 

A more natural method for a human user to operate the manipulator might be 

the issuance of Cartesian twist27 (rather than pose) commands via joysticks (rather 

than a keyboard).  Although this could be done by replacing the trajectory generator 

with a component to increment the position command according to the desired twist, 

sending joint rate commands directly to the servo drives would have the advantage of 

eliminating the time delay due to trajectory buffering.  The basic capabilities required 

for this are already present.  As mentioned in Chapter 3, the necessary inverse 

kinematic solver has already been written, and the Robot Component supports joint-

rate commands.  With these components in place, the only further requirement would 

be the replacement of the trajectory generation component with a component which 

generates a desired twist on the basis of user input which is received in some 

manner—perhaps through the same UDP interface provided for other user 

commands, though a more nearly real-time protocol may be desirable. 

                                                
27 Translational and rotational rates 
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5.2.3 Path Planning 

 The trajectory generator currently employed, taken straight from the Orocos 

Component Library, does nothing more than connect the current and desired positions 

via a straight-line path.  More sophisticated path planning capabilities may be useful.  

Such a planner could attempt to find a path to a goal position while avoiding 

obstacles, singularities, and self-intersecting poses.  If the approach is simple, 

requiring relatively little planning time, the functionality might be written into a 

single component to replace the OCL trajectory generator currently employed.  A 

more sophisticated approach, in which path planning time is more substantial, might 

be better implemented with separate planning and execution components.  The higher 

level planning component(s) could run in a separate thread, perhaps triggered by 

incoming commands, while the executive trajectory generator would run periodically 

along with the other control components as in the present application. 

 Path planning with obstacle avoidance is an active research field unto itself, 

and has been described as “among the most difficult problems in computer science” 

[25].  The best known solutions which are guaranteed to find a solution if one exists 

(and to fail in finite time if one does not) grow at least exponentially with the number 

of degrees of freedom.  Therefore, except for in simple cases, one normally employs 

techniques which cannot be formally guaranteed to succeed.  Craig [20] divides the 

basic approaches which have emerged into two different styles.  In the first, a 

connected graph is used to represent motions which the robot may follow to travel 

from one pose to another.  This graph is then analyzed using some search algorithm to 

find a path that connects the initial and goal poses.  The second approach is to 
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construct artificial potential fields that repulse the robot from disallowed poses and 

attract it to the goal pose.  The robot is then made to move as though it were a point 

particle under the influence of these fields.  Spong, Hutchinson, and Vidyasagar [25] 

describe an approach to this latter technique, which is usually implemented in 

Cartesian space because determining the joint space distance to an obstacle is often 

difficult.  Such potential field techniques are desirable in that waypoints may be 

generated on the fly, with the next step in the motion depending only on the fictitious 

forces experienced in the current configuration.  Lozano-Perez [26] describes an 

approach instead employing the former technique, expending some up-front 

computational effort to construct a library of legal joint space configurations to be 

searched.  This technique is more difficult to implement in a generically reusable 

component, but is more robust for path planning in cluttered environments. 

 Marani, et al., [27] present a singularity avoidance technique which is 

particularly appealing for the present application.  It introduces a correction term to 

the desired direction of motion on the basis of the measure of manipulability, 

preventing the arm from moving into regions in which its manipulability drops below 

a particular constant.  This technique is particularly relevant to the present goal of 

writing reusable software, because it requires no advanced knowledge of the singular 

configurations of the robot.  Implementing this technique generically, however, 

would require (in addition to other values which the Orocos KDL can readily 

produce) the calculation of the derivative of the manipulator Jacobian with respect to 

the robot’s joint angles, ideally on the basis of only the Denavit-Hartenberg 

parameters so as not to require additional configuration information beyond that 
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already used to describe the robot geometry.  This technique is applicable to both 

redundant and nonredundant manipulators, though altering the desired path in this 

way is often unnecessary in the kinematically redundant case.  Nicholas Scott [28] 

presents a singularity avoidance technique which utilizes the self-motion of a 

kinematically redundant arm to avoid singularities and joint limits without deviating 

from the desired trajectory, adding a correctional term to the Jacobian-pseudoinverse-

based solution which resides in the Jacobian’s null space.  This technique could be 

implemented in the present application by inserting an additional component 

immediately following the presently employed inverse kinematics component. 

5.2.4 Nonlinear Control 

Although the present arrangement has the Whistles implementing a local 

feedback loop for each joint, the control application presented here forms only an 

open loop for the top-level control of the system.  The joint-rate and especially the 

motor current control modes available from the Whistles and partially implemented in 

the present software could enable the use of a higher-level closed control loop 

employing a more advanced nonlinear controller at the robot level rather than 

separate linear controllers at each of the joints individually.  Spong, Hutchinson, and 

Vidyasagar [29] describe inverse dynamics and passivity based control laws, 

presenting robust and adaptive versions of each.  By employing knowledge of the 

robot’s dynamics, including the varying effects of gravity and inertia
28

, such 

controllers may be able to provide superior tracking performance throughout the 

                                                
28 The moment arm to the collective center of mass of the links beyond a given joint in the kinematic 

chain varies as a function of the joint angles.  At full extension, more torque is generally required to 

achieve a given joint acceleration than when the arm is in a more compact configuration. 
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entire workspace.  Moving the control loop to the host computer comes at a cost, 

however, in that the Whistles have a default position-loop sampling rate of 2.75 kHz, 

far greater than would be achievable via the host computer. 

5.2.5 Future Applications 

 Because of the success of this project, the present system will continue to see 

use on the Mark I Ranger manipulator, soon to be mounted to the Robotic Assist 

Vehicle for Extraterrestrial Navigation (RAVEN) earth analogue.  RAVEN is a three-

wheeled lunar astronaut assistance rover designed by aerospace engineering seniors in 

the University of Maryland’s 2009-2010 ENAE 484 capstone design course.  The 

earth analogue, shown in Fig. 5.1, was designed to accommodate the Mark I Ranger 

manipulator.  On this vehicle, Ranger will be used to demonstrate the utility of a 

mobile robotic platform, and to test potential concepts of operation for future 

planetary exploration applications. 

 

 
Figure 5.1  The RAVEN astronaut assistance rover.  In this image, a nonfunctional Ranger 

manipulator occupies the location  in the front of the vehicle where Ranger Mark I will be 

mounted.  From [30]. 
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The present architecture will also be implemented on the Subsea Arctic 

Manipulator for Underwater Retrieval and Autonomous Interventions (SAMURAI).  

SAMURAI is a six-degree-of-freedom manipulator designed to be used on an 

autonomous underwater vehicle for sampling operations.  SAMURAI is in the 

process of being equipped with Whistle servo controllers to enable reuse of the 

present software without modification.  This architecture will enable SAMURAI to be 

made operational more quickly than would otherwise be possible, and will serve as 

the baseline control system for that arm. 
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Appendix A: Client Command Interface 
 

The following commands are available to the client for manipulator 

operations.  Each entry begins with two characters used to identify the command.  

The following boxes indicate the data values to be provided with that command.  The 

seven larger boxes represent 4-byte values
29

, while the final smaller box represents 

one byte
30

, for a total of 29 data bytes. 

The control application replies to a command with a message of the same 31-

byte size having the two leading command characters reversed (e.g., “GB” in 

response to a BG begin-motion command).  In addition to this, the control application 

may also transmit errors and warnings having leading characters ER and WN, 

respectively.  These messages consist entirely of ASCII-format characters forming a 

null-terminated string that specifies the nature of the error or warning 

 

BG 0 0 0 0 0 0 0 0 

Begin motion to the Cartesian goal pose:  The trajectory generator will begin 

outputting waypoints moving the robot from its current pose to the goal pose 

(specified with GL) via a trapezoidal trajectory.  This command will fail if no 

goal has been specified or if a previous motion is still in progress. 

 

CM M 0 0 0 0 0 0 0 

Switch command mode:  Instructs the CDH switching component to switch 

the control mode to the setting specified by the value M.  Command mode 0 is 

off, and prevents any commands from reaching the Robot Component.  

Command mode 1 is joint space control.  Command mode 2 is Cartesian 

control. 

                                                
29 Floating point numbers, arranged with the least significant byte first.   
30 Unsigned single-byte integer 



 

 88 

 

 

 

 

 

GL x y z Q1 Q2 Q3 Q4 0 

Specify Cartesian-space goal:  Specifies the goal end effector pose for the next 

Cartesian motion as a position (x,y,z) in meters and a unit quaternion 

(Q1,Q2,Q3,Q4).  The trajectory generator will move toward this goal as 

quickly as possible given its configured speed and acceleration limits. 

 

GT x y z roll pitch yaw T 0 

Specify Cartesian-space goal with minimum duration of motion:  Specifies the 

goal end effector pose for the next Cartesian motion as a position (x,y,z) in 

meters and an orientation described by angles roll, pitch, and yaw (in radians) 

according to the Z-Y-X Euler angle convention (Yaw about Z, Pitch about Y, 

Roll about X).  The trajectory generator will calculate the duration of motion 

to be either the specified time T, in seconds, or the minimum duration 

allowable due to configured speed limits, whichever is larger. 

 

jB 0 0 0 0 0 0 0 0 

Begin motion to the joint space goal:  The trajectory generator will begin 

outputting waypoints moving the robot from its current pose to the goal pose 

(specified with jG) via a trapezoidal trajectory.  This command will fail if no 

goal has been specified or if a previous motion is still in progress. 

 

jC 0 0 0 0 0 0 0 0 

Clear all specified joint space via points:  Clear all via points previously 

specified with the jV command. 

 

jE 0 0 0 0 0 0 0 0 

Execute the joint space multipoint trajectory:  Execute the sequence of 

waypoints, which has been specified previously using the jV command.  

Motion will continue until it reaches an index for which a via point has not 

been specified or the system fails to reach a via point within tolerance. 

 

jG Th1 Th2 Th3 Th4 Th5 Th6 0 0 

Specify goal for the next joint space motion:  Sets the goal for the next joint 

space motion to the given joint angle values (Th1,…,Th6) in radians.  When 

executed with the command jB, motion will proceed as quickly as possible 

under the configured joint rate limitations. 

 

jP 0 0 0 0 0 0 0 0 

Query joint space configuration:  The control application will reply with the 

current joint angles. 
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jV Th1 Th2 Th3 Th4 Th5 Th6 T i 

Specify a joint space via point for multipoint trajectory:  Specifies the i
th

 via 

point in a joint space multipoint trajectory with minimum duration of motion 

T in seconds.   The first via point is specified with i=0.  The jE command is 

used to begin motion. 

 

OF 0 0 0 0 0 0 0 0 

Disable the Robot Component:  The Robot Component’s stop hook is 

executed, bringing the component into its stopped state and preventing further 

motion of the arm.  This is a more robust way of stopping the arm than the ST 

command. 

 

ON 0 0 0 0 0 0 0 0 

Enable the Robot Component:  The Robot Component’s start hook is 

executed, bringing the component into its running state and enabling motion 

of the arm.  As presently configured, the Robot Component is started 

automatically and this command is needed only if the component has been 

disabled via the OF command. 

 

PS 0 0 0 0 0 0 0 0 

Query Cartesian pose:  The control application will reply with a message 

containing the current end effector pose in the same format as used for the GL 

command. 

 

RC Th1 Th2 Th3 Th4 Th5 Th6 0 0 

Recalibrate joint angles:  Declare the current joint angles to be (Th1,...,Th6), 

in radians.  The Robot Component will adjust its home position 

(corresponding to zero encoder counts) accordingly.  Because the reported 

joint angles will change discontinuously, this should only be performed in 

command mode 0.  This change will not persist after the control application 

exits. 

 

ST 0 0 0 0 0 0 0 0 

All stop:  The trajectory generator will be reset, with the current Cartesian 

pose taken as the new desired pose.  

 

TM 0 0 0 0 0 0 0 0 

Query drive temperatures:  The control application will reply with the drive 

temperatures reported by the Robot Component, in degrees Celsius.  A value 

of -100°C or lower indicates that temperature information has not been 

reported for that drive.  The SimplIQ standard for the servo drives used by the 

present Robot Component specifies that a servo drive that does not support 

temperature sensing will report -55°C. 
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VC 0 0 0 0 0 0 0 0 

Clear all specified Cartesian space via points:  Clear all via points previously 

specified with the VP command. 

 

VE 0 0 0 0 0 0 0 0 

Execute the Cartesian space multipoint trajectory: Execute the sequence of 

waypoints, which has been specified previously using the VP command.  

Motion will continue until it reaches an index for which a via point has not 

been specified or the system fails to reach a via point within tolerance. 

 

VP x y z roll pitch yaw T i 

Specify Cartesian space via point: Specifies the i
th

 via point in a Cartesian 

space multipoint trajectory with minimum duration of motion T in seconds.   

The first via point is specified with i=0.  The VE command is used to begin 

motion. 
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Appendix B: Header Files 
 

h/elmoarm2.h 
/* 

 * An orocos component (ElmoArm2) for interfacing with the Elmo arm hardware 

 * via CANbus.  There should be only a single instance of this component per arm, 

 * regardless of the number of servos comprising it.  It should be run as a periodic 

 * task at precisely 3x the speed of the kinematic/planning components.  Furthermore, 

 * the period of the kinematic/planning components must be an integer multiple of the 

 * Whistle controller sampling rate (360 microseconds by default). 

 * 

 * Communication with a particular joint may be suppressed by setting its node-ID 

 * to zero.  The EncoderReadings Data Port will indicate that that joint is 

 * taking on the desired value.  This can be used, for example, to disable end 

 * effector roll on the actual robot without affecting the kinematic components. 

 * Delay on any such suppressed joints will be greatly less than that of the 

 * real ones (because no buffering/smoothing occurs).  Joints may be suppressed 

 * only in position control mode. 

 * 

 * Fork of ElmoArm.  Trajectory smoothing via Whistle binary interpreter. 

 * 

 */ 

 

 

#ifndef SSL_ELMOARM2_H_ 

#define SSL_ELMOARM2_H_ 

 

 

#include <libpcan.h> // requires linking with pcan library during build 

#include <fcntl.h> // for CAN initialization 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

//include <rtt/marsh/PropertyMarshaller.hpp> 

#include <rtt/Logger.hpp> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

//using namespace RTT; 

 

 

// Unit Mode (UM) control codes as defined on page 3-148 of the SimplIQ 

// Command Reference Manual.  Any new control modes must also be added 

// to the validity check in startHook(). 

#define ELMO_ARM_POSITION_CONTROL 5 

#define ELMO_ARM_SPEED_CONTROL 2  

#define ELMO_ARM_TORQUE_CONTROL 1 

 

 

namespace SSL { 

 

 

// A structure for keeping track of the latest knowledge as to the 

// state of the servo drive. 

struct ElmoArmStatus 

{ 

 char nodeID; 

 

 int BG; 

 bool wait_BG; 

 DWORD time_BG; 

 

 float IQ; 

 bool wait_IQ; 

 DWORD time_IQ; 
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 int JV; 

 bool wait_JV; 

 DWORD time_JV; 

  

 int PA; 

 bool wait_PA; 

 DWORD time_PA; 

 

 int PX; 

 bool wait_PX; 

 DWORD time_PX; 

 char tally_PX; 

 

 float TC; 

 bool wait_TC; 

 DWORD time_TC; 

 char tally_TC; 

 

 int TI; 

 bool wait_TI; 

 DWORD time_TI; 

 

 int VX; 

 bool wait_VX; 

 DWORD time_VX; 

 char tally_VX; 

 

 int PT; 

 int prevPT; 

 bool wait_PT; 

 DWORD time_PT; 

 char tally_PT; 

 

 int UM; 

 

 bool PTmap; 

 

 bool buffer[6]; 

 

 bool overrun; 

 bool underrun; 

 

 // When adding elements to this, remember to put them in process_messages as 

well. 

 // Also, initialize the values in configureHook. 

 

}; 

 

 

 

class ElmoArm2 : public RTT::TaskContext 

{ 

 protected: 

  RTT::Property<int> numServos; 

  RTT::Property< std::vector<double> > home; 

  RTT::Property<int> ControlMode; 

  RTT::Property< std::vector<double> > EncoderCountsPerRev; 

  RTT::Property< std::vector<double> > NodeIDarr; 

  RTT::Property< std::string > CANdevice; 

  RTT::DataPort< std::vector<double> > DriveValue; // Radians 

  RTT::DataPort< std::vector<double> > SensorValue; 

  RTT::DataPort< std::vector<double> > Temperature; // degrees Celsius 

  RTT::Method< bool(std::vector<double>) > recalibrateJoints; 

  RTT::Method< void(void) > printMethod; 

 

 public: 

  ElmoArm2(std::string name); 

  bool configureHook(); 

  bool startHook(); 

  virtual void updateHook(); 

  void stopHook(); 
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  void cleanupHook(); 

 

 private: 

  double* drivevalue; // array of drivevalues converted to counts 

  double* prevdrivevalue; // for holding onto the last drive value 

  HANDLE CANhandle; // handle for the CAN card/port 

  //char* NodeIDarr; // array of node ID's for the servos in each joint 

  TPCANRdMsg msg_in; // Structure for incoming CAN messages 

  TPCANMsg msg_out; // Structure for outgoing CAN messages 

  int intCANset(HANDLE& h, char nodeID, char C1, char C2, int index, int value); 

  int ptCANset(HANDLE& h, char nodeID, int value1, int value2); 

  int floatCANset(HANDLE& h, char nodeID, char C1, char C2, int index, float 

value); 

  int CANquery(HANDLE& h, char nodeID, char C1, char C2, int index); 

  bool process_messages(); 

  ElmoArmStatus* statuses; // array of status structs for all the servos 

  int unpackData(); 

  float unpackFloat(); // when the data's not an int 

  std::vector<double> output; 

  bool command; 

  char* PTindex; 

  int cycle; 

  bool once; 

  int temp_counter; 

  bool recalibrateFunc( std::vector<double> vec ); 

  void printMethodFunc(); 

}; 

 

} // namespace SSL 

 

#endif // SSL_ELMOARM2_H_ 
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h/ethernet.h 

 
/* 

 * An orocos component (EthernetInterface) to accept commands and return 

 * feedback via an ethernet interface. 

 *  

 */ 

 

#ifndef SSL_ETHERNET_H_ 

#define SSL_ETHERNET_H_ 

 

 

#include<rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/Logger.hpp> 

#include <rtt/TimeService.hpp> 

#include <server.h> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

//using namespace RTT; 

 

 

namespace SSL 

{ 

 struct message{ 

  char array[31]; 

  int size; 

  RTT::TimeService::Seconds timestamp; 

 }; 

 

 class EthernetInterface : public RTT::TaskContext 

 { 

  protected: 

   RTT::Property<int> port; // port number 

   RTT::BufferPort< struct message > IncomingMessage; 

   RTT::BufferPort< struct message > OutgoingMessage; 

 

  public: 

   EthernetInterface(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  

  private: 

   communications::Server myserver; 

   struct message receivedmessage; 

   struct message sendbuffer; 

 }; 

 

} // namespace SSL 

 

 

#endif // SSL_ETHERNET_H_ 
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h/jointlimiter.h 
/* 

 * An orocos component (JointLimiter) for ensuring joints do not move 

 * beyond their respective limitations.  In speed control mode (UM=2), 

 * it is possible for the joints to slightly exceed the specified  

 * range of motion limit because the joint limiter will not engage 

 * instantly, nor will the joint come to a stop instantly.  Similarly, 

 * in position control mode (UM=5), the maximum joint rates are NOT 

 * enforced. 

 * 

 */ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/marsh/PropertyMarshaller.hpp> 

#include <kdl/jntarray.hpp> 

#include <cmath> 

#include <assert.h> 

 

#ifndef SSL_JOINTLIMITER_H_ 

#define SSL_JOINTLIMITER_H_ 

 

namespace SSL 

{ 

 

 class JointLimiter : public RTT::TaskContext 

 { 

  protected: 

   RTT::Property<int> numServos; 

   RTT::Property<int> ControlMode; 

   RTT::Property< std::vector<double> > UpLim; 

   RTT::Property< std::vector<double> > LowLim; 

   RTT::Property< std::vector<double> > MaxRates; 

   RTT::Event<void(void)> limitevent; 

   RTT::DataPort< std::vector<double> > DriveValueRequested; // Radians 

   RTT::DataPort< std::vector<double> > DriveValue; // Radians 

   RTT::DataPort< std::vector<double> > EncoderReading; // Radians 

   RTT::Method<void(KDL::JntArray*,KDL::JntArray*)> getLims; 

 

  public: 

   JointLimiter(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

 

  private: 

   std::vector<double> vec; 

   double dbl; 

   void getLimsFunc(KDL::JntArray*,KDL::JntArray*); 

   std::vector<double> emptyvec; 

 }; 

 

} // namespace SSL 

 

#endif // SSL_JOINTLIMITER_H_ 
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h/kinematics.h 

/* 

 * Orocos components for computing forward and inverse kinematics to allow 

 * for control of a serial-chain arm in cartesian space.  ForwardKinematics 

 * should run before the control (in the same thread) to update the position 

 * feedback, and InverseKinematics should run after the controller to update 

 * the desired commands. 

 */ 

 

#ifndef SSL_KINEMATICS_COMPONENTS_H_ 

#define SSL_KINEMATICS_COMPONENTS_H_ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <kdl/chain.hpp> 

#include <rtt/Command.hpp> 

#include <kdl/chainfksolver.hpp> 

#include <kdl/chainfksolverpos_recursive.hpp> 

#include <kdl/chainiksolvervel_pinv.hpp> 

#include <kdl/chainiksolverpos_nr_jl.hpp> 

//using namespace RTT; 

 

namespace SSL { 

 

class ForwardKinematics : public RTT::TaskContext 

{ 

 protected: 

  RTT::Property<int> numJoints; 

  RTT::Property< std::vector<double> > DHparams; 

  RTT::Property< std::vector<double> > EndEffDH; 

  RTT::DataPort< std::vector<double> > JointPoses; // Input 

  RTT::DataPort< KDL::Frame > CartesianPose; // Output 

  RTT::Method< void(void) > printMethod; 

 

  void printMethodFunc(); 

 

 public: 

  ForwardKinematics(std::string name); 

  bool configureHook(); 

  bool startHook(); 

  virtual void updateHook(); 

  void stopHook(); 

  void cleanupHook(); 

 

 private: 

  KDL::Chain* armChain; 

  KDL::ChainFkSolverPos_recursive* fksolver; 

  KDL::Frame cartframe; 

  KDL::JntArray jntarr; 

}; 

 

 

 

class InverseVelKinematics : public RTT::TaskContext 

{ 

 protected: 

  RTT::Property<int> numJoints; 

  RTT::Property< std::vector<double> > DHparams; 

  RTT::Property< std::vector<double> > EndEffDH; 

  RTT::Method< void(void) > printMethod; 

  void printMethodFunc(); 

 

  //Input 

  RTT::DataPort< std::vector<double>  > JointPoses; 

  RTT::DataPort< KDL::Twist > DesiredTwist; 

 

  //Output 
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  RTT::DataPort< std::vector<double> > JointVelocities; 

 

 public: 

  InverseVelKinematics(std::string name); 

  bool configureHook(); 

  bool startHook(); 

  virtual void updateHook(); 

  void stopHook(); 

  void cleanupHook(); 

 

 private: 

  KDL::Chain* armChain; 

  KDL::ChainIkSolverVel_pinv* iksolver; 

  KDL::JntArray qdot; 

  KDL::JntArray jntarr; 

  std::vector<double> v; 

}; 

 

 

class InversePosKinematics : public RTT::TaskContext 

{ 

 protected: 

  RTT::Property<int> numJoints; 

  RTT::Property< std::vector<double> > DHparams; 

  RTT::Property< std::vector<double> > EndEffDH; 

  RTT::Method< void(void) > printMethod; 

  void printMethodFunc(); 

  RTT::Event<void(void)> divergenceEvent; 

 

  //Input 

  RTT::DataPort< std::vector<double>  > CurrentJointPose; 

  RTT::DataPort< KDL::Frame > CurrentFrame; 

  RTT::DataPort< KDL::Frame > DesiredFrame; 

 

  //Output 

  RTT::DataPort< std::vector<double> > NewJointPose; 

 

 public: 

  InversePosKinematics(std::string name); 

  bool configureHook(); 

  bool startHook(); 

  virtual void updateHook(); 

  void stopHook(); 

  void cleanupHook(); 

 

 private: 

  KDL::Chain* armChain; 

  KDL::ChainIkSolverPos_NR_JL* iksolver; 

  KDL::ChainFkSolverPos_recursive* fksolver; 

  KDL::ChainIkSolverVel_pinv* ikvelsolver; 

  KDL::JntArray q; 

  KDL::JntArray jntarr; 

  KDL::Frame solnframe, localdesframe; 

  KDL::Twist error; 

  RTT::TaskContext* jl; 

  KDL::JntArray qmin; 

  KDL::JntArray qmax; 

  RTT::Method<void(KDL::JntArray*,KDL::JntArray*)> jlmeth; 

  std::vector<double> v; 

  bool go, once; 

}; 

 

 

} // namespace SSL 

 

#endif // SSL_KINEMATICS_COMPONENTS_H_ 
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h/logger.h 
/* 

 * A very simple component for logging information to log files 

 * because the OCL ReportingComponent is too complicated and 

 * depends upon sampling data ports, thus potentially missing 

 * messages.  This component gets its messages to be logged via 

 * a buffered data port so it won't miss anything unless the 

 * buffer overflows, but it is more intrusive in that it 

 * requires other components to prepare messages for logging 

 * rather than just passively reading what goes out on their 

 * data ports. 

 * 

 * This component performs file I/O and thus is decidedly 

 * nonrealtime.  It should not be put in the same thread as any 

 * critical components. 

 */ 

 

#ifndef SSL_LOGGER_H_ 

#define SSL_LOGGER_H_ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

#include <string> 

//using namespace RTT; 

 

namespace SSL 

{ 

 struct LogElement 

 { 

  char c_str[100]; 

  int index; 

 }; 

 

 class FileLogger: public RTT::TaskContext 

 { 

  protected: 

   RTT::Property< int > numLogs; 

   RTT::BufferPort< struct LogElement > Incoming; 

  public: 

   FileLogger(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  private: 

   FILE** pArr; // an array of pointers 

   struct LogElement local_element; 

 }; 

 

} // namespace SSL 

 

#endif // SSL_LOGGER_H_ 
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h/messagehandler.h 
/* 

 * An orocos component to handle received messages, providing 

 * a simple interface originally written for interaction with 

 * the Spring 2010 ENAE 484 rover.  Incoming messages are 

 * expected to consist of 31 bytes.  The first two bytes form 

 * a two-character (ASCII) command, and the remainder contain 

 * any necessary data.  Upon successful receipt of an 

 * instruction, this component will send a reply with the two 

 * command characters reversed. 

 * 

 * This component will need to be peers with the path 

 * generator as well as the arm.  It must be connected to the 

 * forward kinematics. 

 * 

 * Commands: 

 * 

 * -BG: Begin motion 

 *      Data: NULL 

 * -CM: Switch command mode ( 0.0=off, 1.0=Joint, 2.0=Cartesian) 

 *      Data: (float) mode, NULL 

 * -GL: Set goal state to the specified Cartesian coordinates 

 *          and orientation quaternion.  The quaternion follows 

 *          the same convention as Craig (1989) equation 2.89. 

 *      Data: (float) x, y, z, quat1, quat2, quat3, quat4 

 * -GT: Set goal state to the specified cartesian coordinates 

 *          and orientation roll/pitch/yaw, and specify 

 *          minimum duration of motion. 

 *      Data: (float) x, y, z, R, P, Y, t 

 * -ON: Start the arm 

 *      Data: NULL 

 * -OF: Stop the arm by shutting down the arm component 

 *      Data: NULL 

 * -PS: Request end effector pose (Or should this be transmitted 

 *          periodically?) 

 *      Data: NULL  (reply contains floats x,y,z,quat1,...,quat4) 

 * -jV: Specify a joint-space waypoint 

 *      Data: (float) theta1,...,theta6,time, (byte) index 

 * -jC: Clear all specified joint-space waypoints 

 *      Data: NULL 

 * -jE: Execute the specified joint-space waypoint sequence 

 *      Data: NULL 

 * -jP: Request joint-space pose (joint angles) 

 *      Data: NULL  (reply contains floats) 

 * -jG: Set joint-space goal (initiate motion with jB, not BG) 

 *      Data: (float) q1,q2,q3,q4,q5,q6,0 

 * -ST: Stop the arm by resetting the path generator 

 *      Data: NULL 

 * -TM: Request servo drive temperatures (deg Celsius) 

 *      Data: NULL  (reply contains floats) 

 */ 

 

 

#ifndef SSL_MESSAGEHANDLER_H_ 

#define SSL_MESSAGEHANDLER_H_ 

 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/Command.hpp> 

#include <rtt/Logger.hpp> 

#include <rtt/TimeService.hpp> 

#include <kdl/frames.hpp> 

#include <cmath> 

#include <server.h> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 
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#include <logger.h> 

//using namespace RTT; 

 

 

 

 

namespace SSL 

{ 

 struct message{ 

  char array[31]; 

  int size; 

  RTT::TimeService::Seconds timestamp; 

 }; 

 

 class MessageHandler : public RTT::TaskContext 

 { 

  protected: 

   RTT::BufferPort< struct SSL::message > IncomingMessage; 

   RTT::BufferPort< struct SSL::message > OutgoingMessage; 

   RTT::BufferPort< struct LogElement > Logger; 

   RTT::DataPort< KDL::Frame > CartesianPose; 

   RTT::DataPort< KDL::Frame > SetPointPose; 

   RTT::DataPort< std::vector<double> > JointPose; 

   RTT::DataPort< std::vector<double> > JointTemperature; 

   RTT::DataPort< std::vector<double> > DriveValue; 

 

  public: 

   MessageHandler(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  

  private: 

   struct message receivedmessage; 

   struct message outgoingmessage; 

   double* dblarr; // incoming numbers unpacked here 

   float* floatarr; // outgoing numbers packed here 

   void* pointer; 

   bool unpackFloats(); 

   bool sendFloats(char c1, char c2, unsigned char index); 

   bool sendNull(char c1, char c2, unsigned char index); 

   bool understood; 

   KDL::Rotation goal_rot; 

   KDL::Vector goal_vec; 

   double goal_time; 

   std::vector<double> goal_jnt; 

   double angle; KDL::Vector axis; double sinhalfang; // intermediate 

state for attitude representation 

   KDL::Frame currentFrame; 

   RTT::Command<bool(KDL::Frame,double)> cmd_moveTo; 

   RTT::Command<bool(std::vector<double>,double)> cmd_jntMoveTo; 

 

   RTT::Method<void(void)> methPG_reset; 

   RTT::Method<void(void)> methJG_reset; 

 

   RTT::Method<bool(void)> meth_roboStart; 

   RTT::Method<bool(void)> meth_roboStop; 

 

   RTT::Command<bool(void)> cmd_execSeq; 

   RTT::Method<void(void)> meth_stopSeq; 

   RTT::Method<bool(KDL::Frame,double,char)> meth_setVP; 

   RTT::Method<void(void)> meth_clearVP; 

   RTT::Attribute<int>* handle_switchCM; 

 

   RTT::Command<bool(void)> cmd_jntExecSeq; 

   RTT::Method<void(void)> meth_jntStopSeq; 

   RTT::Method< bool(std::vector<double>,double,char) > meth_jntSetVP; 

   RTT::Method<void(void)> meth_jntClearVP; 
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   RTT::Method<bool(std::vector<double>)> meth_recalJoints; 

 

   struct LogElement localLogElement; 

   RTT::Handle handleWsCartLimit; 

   bool WsCartLimitCallback(); 

   int WsCartLimit; 

   RTT::Handle handleJointLimit; 

   bool JointLimitCallback(); 

   int JointLimit; 

   bool InvKinDivCallback(); 

   int InvKinDiv; 

   bool havegoal; 

   bool jntC_avail; 

   bool multipoint_avail; 

   int logPose; 

   int logSP; 

   int logJnt; 

   int logDrive; 

   int rc; 

   void logOutgoing(); // for logging errors/warnings 

   std::vector< double >  localJnt; 

   std::vector< double >  localTemperature; 

   std::vector< double >  vec; 

   bool bootingup; 

   RTT::TaskContext* ptr; 

 }; 

 

} // namespace SSL 

 

 

#endif // SSL_MESSAGEHANDLER_H_ 
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h/multipoint.h 
/* 

 * An orocos component (MultipointManager) for managing a set of 

 * multiple via points to be sent sequentially to the path planner. 

 */ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/Command.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/marsh/PropertyMarshaller.hpp> 

#include <kdl/frames.hpp> 

#include <kdl/jntarray.hpp> 

#include <cmath> 

#include <assert.h> 

 

 

#ifndef SSL_MULTIPOINT_H_ 

#define SSL_MULTIPOINT_H_ 

 

namespace SSL 

{ 

 

 // Cartesian space multipoint manager 

 class MultipointManager : public RTT::TaskContext 

 { 

  protected: 

   //RTT::Property<int> maxSize; 

   //RTT::Attribute< std::vector<KDL::Frame> > viaPoints; 

   //RTT::Attribute< std::vector<double> > viaTimes; 

   //RTT::Attribute< int > lastIndex; 

   RTT::Command< bool(void) > execSequence; 

   RTT::Method<void(void)> haltSequence; 

   RTT::Method<bool(KDL::Frame,double,char)> viaPointSet; 

   RTT::Method<void(void)> viaClear; 

   RTT::DataPort< KDL::Frame > CurrentPose; 

 

  public: 

   MultipointManager(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

 

  private: 

   KDL::Frame* localViaPoints; 

   double* localViaTimes; 

   int localLastIndex; 

   bool* viaReady; 

   int currentIndex; 

   bool execSeqFunc(); 

   bool execSeqFinished(); 

   bool haltSeqFunc(); 

   RTT::Command<bool(KDL::Frame,double)> cmd_moveTo; 

   RTT::Method<void(void)> methPG_reset; 

   bool executing; 

   KDL::Frame* viaPoints; 

   double* viaTimes; 

   bool busy; 

   bool viaPointFunc(KDL::Frame frame, double time, char index); 

   void viaClearFunc(); 

   bool findPG(); 

   KDL::Twist error; 

   double normerr; 

   int count; 

 }; 
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 // Joint space multipoint manager 

 class MultipointManagerJnt : public RTT::TaskContext 

 { 

  protected: 

   RTT::Command< bool(void) > execSequence; 

   RTT::Method<void(void)> haltSequence; 

   RTT::Method<bool(std::vector<double>,double,char)> viaPointSet; 

   RTT::Method<void(void)> viaClear; 

   RTT::DataPort< std::vector<double> > CurrentPose; 

 

  public: 

   MultipointManagerJnt(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

 

  private: 

   std::vector< std::vector<double> > localViaPoints; 

   double* localViaTimes; 

   int localLastIndex; 

   bool* viaReady; 

   int currentIndex; 

   bool execSeqFunc(); 

   bool execSeqFinished(); 

   bool haltSeqFunc(); 

   RTT::Command<bool(std::vector<double>,double)> cmd_moveTo; 

   RTT::Method<void(void)> methPG_reset; 

   bool executing; 

   std::vector< std::vector<double> > viaPoints; 

   double* viaTimes; 

   bool busy; 

   bool viaPointFunc(std::vector<double> point, double time, char index); 

   void viaClearFunc(); 

   bool findPG(); 

   double error; 

   double normerr; 

   int count; 

 }; 

 

} // namespace SSL 

 

#endif // SSL_MULTIPOINT_H_ 
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h/shapegens.h 
/* 

 * Orocos components for generating Cartesian paths of useful shapes 

 * for assessing system performance. 

 */ 

 

#ifndef SSL_SHAPE_GENERATORS_H_ 

#define SSL_SHAPE_GENERATORS_H_ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <kdl/chain.hpp> 

#include <rtt/Command.hpp> 

#include <rtt/TimeService.hpp> 

#include <cmath> 

//using namespace RTT; 

 

namespace SSL { 

 

class SinusoidGen : public RTT::TaskContext 

{ 

 protected: 

  RTT::Attribute<double> K; // Gain (meters) 

  RTT::Attribute<double> T; // Period (seconds) 

  RTT::Attribute<int> axis; 

  RTT::DataPort< KDL::Frame > CartesianPosDes; // Output 

  RTT::DataPort< KDL::Frame > CartesianPosMeas; // Input 

  RTT::Method< void(void) > printMethod; 

  RTT::Method< void(void) > methReset; 

  RTT::Command<bool(KDL::Frame,double)> cmdMoveTo; // Ignored 

  RTT::Command<bool(void)> cmdWave; 

  RTT::Command<bool(void)> cmdEndWave; 

 

 public: 

  SinusoidGen(std::string name); 

  bool configureHook(); 

  bool startHook(); 

  virtual void updateHook(); 

  void stopHook(); 

  void cleanupHook(); 

 

 private: 

  KDL::Frame cartframe; 

  KDL::Frame zero; 

  void printMethodFunc(); 

  void resetMethodFunc(); 

  bool waveFunc(); 

  bool waveDone(); 

  bool waving; 

  bool stopAtZero; 

  bool funcMoveTo( KDL::Frame, double ); 

  bool moveDone(); 

  bool endWaveFunc(); 

  bool waveEnded(); 

  RTT::TimeService::Seconds startTime; 

  RTT::TimeService::Seconds now; 

  double dx, dx_prev; 

  KDL::Vector vec; 

}; 

 

 

 

class CircleGen : public RTT::TaskContext 

{ 

 protected: 

  RTT::Attribute<double> R; // Radius (meters) 

  RTT::Attribute<double> T; // Period (seconds) 
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  RTT::Attribute<int> axis_i; 

  RTT::Attribute<int> axis_j; 

  RTT::DataPort< KDL::Frame > CartesianPosDes; // Output 

  RTT::DataPort< KDL::Frame > CartesianPosMeas; // Input 

  RTT::Method< void(void) > printMethod; 

  RTT::Method< void(void) > methReset; 

  RTT::Command<bool(KDL::Frame,double)> cmdMoveTo; // Ignored 

  RTT::Command<bool(void)> cmdCircle; 

  RTT::Command<bool(void)> cmdEndCircle; 

 

 public: 

  CircleGen(std::string name); 

  bool configureHook(); 

  bool startHook(); 

  virtual void updateHook(); 

  void stopHook(); 

  void cleanupHook(); 

 

 private: 

  KDL::Frame cartframe; 

  KDL::Frame center; 

  void printMethodFunc(); 

  void resetMethodFunc(); 

  bool circFunc(); 

  bool circDone(); 

  bool circling; 

  bool stopAtZero; 

  bool funcMoveTo( KDL::Frame, double ); 

  bool moveDone(); 

  bool endCircFunc(); 

  bool circEnded(); 

  RTT::TimeService::Seconds startTime; 

  RTT::TimeService::Seconds now; 

  double th, th_prev; 

  KDL::Vector vec; 

}; 

 

} // namespace SSL 

 

#endif // SSL_SHAPE_GENERATORS_H_ 
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h/simarm.h 
/* 

 * An orocos component (SimArm) that pretends to be a real arm for testing purposes. 

 * Currently supports only speed control. 

 *  

 */ 

 

#ifndef SSL_SIMARM_H_ 

#define SSL_SIMARM_H_ 

 

#include<rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

//using namespace RTT; 

 

namespace SSL 

{ 

 

 class SimArm : public RTT::TaskContext 

 { 

  protected: 

   RTT::Property<int> numServos; 

   RTT::Property< std::vector<double> > home; 

   RTT::Property<int> ControlMode; 

   RTT::DataPort< std::vector<double> > DriveValue; 

   RTT::DataPort< std::vector<double> > SensorValue; 

   RTT::DataPort< std::vector<double> > Temperature; 

 

  public: 

   SimArm(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  

  private: 

   std::vector<double> positions; 

   std::vector<double> speeds; 

 }; 

 

} // namespace SSL 

 

 

#endif // SSL_SIMARM_H_ 
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h/simarm_naxes.h 
/* 

 * An orocos component that connects to nAxesGeneratorPos and uses it 

 * to simulate an arm in position control mode.  Unlike SimArm, this 

 * works only in position mode (UM=5), but is more realistic in that 

 * it does not instantaneously and discontinuously do exactly what 

 * you tell it to. 

 *  

 */ 

 

#ifndef SSL_SIMARM_NAXES_H_ 

#define SSL_SIMARM_NAXES_H_ 

 

#include<rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/Activity.hpp> 

#include <ocl/nAxesGeneratorPos.hpp> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

//using namespace RTT; 

 

namespace SSL 

{ 

 class SimArm_nAxes : public RTT::TaskContext 

 { 

  protected: 

   RTT::Property<int> numServos; 

   RTT::Property< std::vector<double> > home; 

   RTT::Property<int> ControlMode; 

   RTT::DataPort< std::vector<double> > DriveValue; 

   RTT::DataPort< std::vector<double> > SensorValue; 

   RTT::DataPort< std::vector<double> > PathPort; 

   RTT::DataPort< std::vector<double> > Temperature; 

   RTT::Method< bool(std::vector<double>) > recalibrateJoints; 

 

  public: 

   SimArm_nAxes(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  

  private: 

   std::vector<double> positions; 

   std::vector<double> speeds; 

   std::vector<double> lastcommand; 

   RTT::Command<bool(std::vector<double>,double)> cmd_moveTo; 

   RTT::Method<void(void)> meth_reset; 

   bool recalibrateFunc( std::vector<double> vec ); 

 }; 

 

} // namespace SSL 

 

#endif // SSL_SIMARM_NAXES_H_ 
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h/switch.h 
/* 

 * An orocos component (ControlSwitch) to enable runtime switching 

 * between joint- and cartesian-space control. 

 *  

 */ 

 

#ifndef SSL_CTRLSWITCH_H_ 

#define SSL_CTRLSWITCH_H_ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/Logger.hpp> 

#include <rtt/TimeService.hpp> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

//using namespace RTT; 

 

namespace SSL 

{ 

 

 class ControlSwitch : public RTT::TaskContext 

 { 

  protected: 

   RTT::DataPort< std::vector<double> > CartSystem; 

   RTT::DataPort< std::vector<double> > JointSystem; 

   RTT::DataPort< std::vector<double> > ControlOutput; 

   RTT::Attribute<int> mode; 

   RTT::Method<bool(void)> cartStart; 

   RTT::Method<bool(void)> cartStop; 

   RTT::Method<bool(void)> jointStart; 

   RTT::Method<bool(void)> jointStop; 

   RTT::Method<bool(void)> openSwitch; 

 

  public: 

   ControlSwitch(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  

  private: 

   RTT::TaskContext* ptr; 

   RTT::StateMachinePtr JsWsInstance; 

   RTT::Method<bool(void)> meth_ikStart; 

   RTT::Method<bool(void)> meth_ikStop; 

   RTT::Method<bool(void)> meth_pgStart; 

   RTT::Method<bool(void)> meth_pgStop; 

   RTT::Method<bool(void)> meth_jgStart; 

   RTT::Method<bool(void)> meth_jgStop; 

   bool once; 

   bool cartStartFn(); 

   bool cartStopFn(); 

   bool jointStartFn(); 

   bool jointStopFn(); 

   bool openSwitchFn(); 

   std::vector<double> emptyvector; 

   int count; 

 }; 

 

} // namespace SSL 

 

 

#endif // SSL_CTRLSWITCH_H_ 
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h/wslimiter.h 
/* 

 * An orocos component (WsLimiterCartPos) to restrict the Cartesian 

 * positions that the end effector is allowed to take on.  The 

 * property Bounds specifies overall x, y, and z limits.  Property 

 * Boxes specifies no-fly zones internal to those workspace bounds. 

 * It will try to stop the robot before it enters an illegal pose, 

 * but if it makes it into a disallowed region then there one must 

 * switch to joint space control to get out of it. 

 */ 

 

#ifndef SSL_WSLIMITER_H_ 

#define SSL_WSLIMITER_H_ 

 

#include <rtt/os/main.h> 

#include <rtt/PeriodicActivity.hpp> 

#include <rtt/Ports.hpp> 

#include <rtt/TaskContext.hpp> 

#include <rtt/Command.hpp> 

#include <kdl/frames.hpp> 

#include <assert.h> 

#include <stdio.h> 

#include <unistd.h> 

//using namespace RTT; 

 

 

namespace SSL 

{ 

 class WsLimiterCart : public RTT::TaskContext 

 { 

  protected: 

   RTT::Property< std::vector<double> > Bounds; 

   RTT::Property< std::vector<double> > Boxes; 

   RTT::Event<void(void)> limitevent; 

   RTT::DataPort< KDL::Frame > SetPointPos; // input 

   RTT::DataPort< KDL::Frame > FkPos; // input 

   RTT::DataPort< KDL::Frame > LimitedPos; // output 

 

  public: 

   WsLimiterCart(std::string name); 

   bool configureHook(); 

   bool startHook(); 

   virtual void updateHook(); 

   void stopHook(); 

   void cleanupHook(); 

  

  private: 

   KDL::Frame spframe, currframe; 

   bool fired; 

   bool ok; 

   int numBoxes; 

   RTT::Method<void(void)> methPG_reset; 

 }; 

 

} // namespace SSL 

 

#endif // SSL_WSLIMITER_H_ 
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Appendix C: Source Files 
 

 
 

 src/elmoarm2.cpp 
#include <elmoarm2.h> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::ElmoArm2 ) 

#endif 

 

 

#ifndef PI 

#define PI 3.14159265358979323846264338 

#endif 

 

 

 SSL::ElmoArm2::ElmoArm2(std::string name) : 

  TaskContext(name, PreOperational), 

  numServos("NumberOfServos","Number of servos"), 

  home("home","home positions"), 

  ControlMode("ControlMode", "Control Mode"), 

  EncoderCountsPerRev("EncoderCountsPerRev","Encoder counts per joint 

revolution"), 

  NodeIDarr("NodeIDarr", "Node ID arrays"), 

  CANdevice("CANdevice", "CAN interface device, e.g. /dev/pcan0"), 

  DriveValue("DriveValue"),  

  SensorValue("EncoderReading"), 

  Temperature("Temperature"), 

  recalibrateJoints("recalibrateJoints", &SSL::ElmoArm2::recalibrateFunc, this), 

  printMethod("print", &SSL::ElmoArm2::printMethodFunc, this) 

 { 

  // Add the attributes and ports 

  this->properties()->addProperty( &numServos ); 

  this->properties()->addProperty( &home ); 

  this->properties()->addProperty( &ControlMode ); 

  this->properties()->addProperty( &EncoderCountsPerRev ); 

  this->properties()->addProperty( &NodeIDarr ); 

  this->properties()->addProperty( &CANdevice ); 

  this->ports()->addPort( &DriveValue, "DriveValue"); 

  this->ports()->addPort( &SensorValue, "EncoderReading"); 

  this->ports()->addPort( &Temperature, "Temperature"); 

  this->methods()->addMethod( &recalibrateJoints, "recalibrateJoints", "vec", 

"new numbers for current pose" ); 

  this->methods()->addMethod( &printMethod, "print" ); 

 } 

 

 

 

 bool SSL::ElmoArm2::configureHook() 

 { 

  temp_counter = 0; // temporarily used to print the first few messages received 

      //              to the terminal for debugging purposes. 

 

  // Initialize the CAN interface 

  // (Right now it's hard-coded for 500 kbps and standard CAN frames) 

  CANhandle = LINUX_CAN_Open( CANdevice.get().c_str(), O_RDWR ); 

  if ( (NULL == CANhandle) || 

(CAN_Init(CANhandle,CAN_BAUD_500K,CAN_INIT_TYPE_ST)<0) ) 

  { 

   RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] Error 

initializing CAN interface" << CANdevice.get() << RTT::Logger::endl; 
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   return false; 

  } 

  // Could call CAN_Status to clear any errors in the status 

 

 

  // Start all servo drives - Without this, they won't respond to any messages 

  msg_out.MSGTYPE = MSGTYPE_STANDARD; 

  msg_out.ID = 0x00; // NMT message COB-ID 

  msg_out.LEN = 2; // NMT message length 

  msg_out.DATA[0] = 0x01; // Command 0x01: Start remote node (go to operational 

start) 

  msg_out.DATA[1] = 0x00; // Node-ID 0x00: All connected servo drives 

  CAN_Write(CANhandle, &(msg_out)); 

  usleep(12e3); 

 

 

  // Prepare for specified number of servo drives 

  printf(" %d\n", numServos.get() ); 

  assert( NodeIDarr.get().size() == numServos.get() ); 

  statuses = new ElmoArmStatus[numServos.get()]; 

  drivevalue = new double[numServos.get()]; 

  prevdrivevalue = new double[numServos.get()]; 

  PTindex = new char[numServos.get()]; 

  for (int i=0; i<numServos.get(); i++) 

  { 

 

   // Prepare status structure 

   if(  (NodeIDarr.get()[i] >= -0.4)  &&  (NodeIDarr.get()[i] < 127.4)  ) 

    statuses[i].nodeID = (int)(NodeIDarr.get()[i]+0.5); 

   else 

   { 

    RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] NodeID 

" << NodeIDarr.get()[i] << " (joint " << i+1 << ") out of range" << RTT::Logger::endl; 

    return false; 

   } 

 

   statuses[i].BG = 0; 

   statuses[i].wait_BG = false; 

   statuses[i].time_BG = NULL; 

 

   statuses[i].IQ = 0; 

   statuses[i].wait_IQ = false; 

   statuses[i].time_IQ = NULL; 

 

   statuses[i].JV = 0; 

   statuses[i].wait_JV = true; 

   statuses[i].time_JV = NULL; 

 

   statuses[i].PA = 0; 

   statuses[i].wait_PA = true; 

   statuses[i].time_PA = NULL; 

 

   statuses[i].PX = 0; 

   statuses[i].wait_PX = true; 

   statuses[i].time_PX = NULL; 

   statuses[i].tally_PX = 0; 

 

   statuses[i].TC = 0; 

   statuses[i].wait_TC = true; 

   statuses[i].time_TC = NULL; 

   statuses[i].tally_TC = 0; 

 

   statuses[i].TI = -100; 

   statuses[i].wait_TI = false; 

   statuses[i].time_TI = NULL; 

 

   statuses[i].VX = 0; 

   statuses[i].wait_VX = true; 

   statuses[i].time_VX = NULL; 

   statuses[i].tally_VX = 0; 
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   statuses[i].PT = 1; 

   statuses[i].prevPT = 1; 

   statuses[i].wait_PT = true; 

   statuses[i].time_PT = NULL; 

   statuses[i].tally_PT = 0; 

 

   statuses[i].UM = 0; 

 

   statuses[i].PTmap = false; 

 

   statuses[i].buffer[0] = false; 

   statuses[i].buffer[1] = false; 

   statuses[i].buffer[2] = false; 

   statuses[i].buffer[3] = false; 

   statuses[i].buffer[4] = false; 

   statuses[i].buffer[5] = false; 

 

   statuses[i].overrun = false; 

 

   // Inquire as to the node's Unit Mode.  If it's just a 

   // pretend node, pretend it has the correct mode. 

   // (Pretend nodes are only available in position mode.) 

   if (0 == statuses[i].nodeID) 

    statuses[i].UM = ELMO_ARM_POSITION_CONTROL; 

   else 

    CANquery( CANhandle, statuses[i].nodeID, 'U', 'M', 0 ); 

 

 

   drivevalue[i] = home.get()[i]; 

   } 

 

  output.resize(numServos.get()); 

  output = home.get(); 

  SensorValue.Set( output ); 

 

  // Don't let the configuration finish until we've received 

  // a response to our Unit Mode inquiry from all nodes. 

  for ( int i = 0; i < numServos.get(); i++) 

  { 

   cycle = 0; 

   while( 0 == statuses[i].UM ) 

   { 

    process_messages(); 

    usleep(3e3); 

    if(cycle++ > 10) 

    { 

     RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] 

Timed out waiting for Unit Mode " << NodeIDarr.get()[i] << " (joint " << i+1 << ")" << 

RTT::Logger::endl; 

     return false; 

    } 

   } 

  } 

 

  return true; 

 } 

 

 

 

 bool SSL::ElmoArm2::startHook() 

 { 

  // Confirm we're set to a valid control mode 

  switch ( ControlMode.get() ) 

  { 

   case ELMO_ARM_TORQUE_CONTROL: 

   case ELMO_ARM_SPEED_CONTROL: 

   case ELMO_ARM_POSITION_CONTROL: 

    break; 

 

   default: 

    return false; 
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  } 

 

 

  // Request necessary data and enable motor 

  output.resize(numServos.get()); 

  for (int i=0; i<numServos.get(); i++) 

  { 

   drivevalue[i] = 0; 

   PTindex[i] = 1; 

 

   // Confirm we're in the right control mode before turning the motor on 

   if ( ControlMode.get() != statuses[i].UM ) 

   { 

    intCANset( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'M', 'O', 

0, 0); // Motor off 

    intCANset( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'U', 'M', 

0, ControlMode.get()); 

    usleep(100e3); 

   } 

   intCANset( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'M', 'O', 0, 1); 

 

   // Give the servo drive a chance to catch up 

   //usleep(100e3); 

 

   // Request any necessary data 

   CANquery( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'V', 'X', 0); 

   CANquery( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'P', 'X', 0); 

   usleep(6e3); 

   CANquery( CANhandle, statuses[i].nodeID, 'U', 'M', 0 ); 

    

   if( ELMO_ARM_SPEED_CONTROL == ControlMode.get() ) 

   { 

    CANquery( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'J', 'V', 

0); 

    statuses[i].wait_JV = true; 

    usleep(1e3); 

   } 

   //CANquery( CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'T', 'C', 0); 

 

   // If it's a pretend node, pretend it responded with the necessary data 

   if ( 0 == statuses[i].nodeID ) 

   { 

    statuses[i].PX = 0; 

    statuses[i].wait_PX = false; 

    statuses[i].VX = 0; 

    statuses[i].wait_VX = false; 

   } 

 

 

   // Let's wait for the responses 

   //printf("RC's %d %d %d %d\n", rc[0], rc[1], rc[2], rc[3]); 

   printf("Waiting for responses to initial data queries...\n"); 

   cycle = 0; 

   while( statuses[i].wait_PX ) 

   { 

    process_messages(); 

    printf("Jnt %d: PX %d; PA %d; VX %d; JV 

%d\n",(int)(NodeIDarr.get()[i]+0.5), statuses[i].wait_PX, statuses[i].wait_PA, 

statuses[i].wait_VX, statuses[i].wait_JV); 

    usleep(3e3); 

    if(cycle++ > 4) 

    { 

     RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] 

Timed out waiting for NodeID " << NodeIDarr.get()[i] << " (joint " << i+1 << ")" << 

RTT::Logger::endl; 

     return false; 

    } 

   } 

   printf("Done.\n"); 

 

   output[i] = statuses[i].PX/EncoderCountsPerRev.get()[i]*2.0*M_PI + 
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home.get()[i]; 

   usleep(12000); 

 

   prevdrivevalue[i] = statuses[i].PX; 

  } 

 

  for (int i=0; i<numServos.get(); i++) 

  { 

   if ( ControlMode.get() != statuses[i].UM ) 

   { 

    RTT::Logger::log() << RTT::Logger::Warning << "[ElmoArm2] Unit 

mode mismatch on NodeID " << NodeIDarr.get()[i] << " (joint " << i+1 << ")" << 

RTT::Logger::endl; 

    return false; 

   } 

  } 

 

  SensorValue.Set( output ); 

  //usleep(1000); 

 

  cycle = 0; 

 

  if ( ELMO_ARM_POSITION_CONTROL == ControlMode.get() ) 

   once = true; 

  else 

   once = false; 

 

  return true; 

 } 

 

 

 

 void SSL::ElmoArm2::updateHook() 

 { 

  command = false; 

 

  if( once ) 

  { 

   printf("ElmoArm2 initializing PT buffered trajectory...\n"); 

 

   switch(cycle) 

   { 

    case 0: 

     for( int i=0; i<numServos.get(); i++) 

     { 

      intCANset( CANhandle, statuses[i].nodeID, 'M', 

'P', 5, 1); // EMCY underflow message at 1 setpoint 

      intCANset( CANhandle, statuses[i].nodeID, 'M', 

'P', 3, 1); // cyclical PT mode 

     } 

     break; 

    case 1: 

     for( int i=0; i<numServos.get(); i++) 

     { 

      intCANset( CANhandle, statuses[i].nodeID, 'M', 

'P', 6, 1); // set write pointer to index 1 

      intCANset( CANhandle, statuses[i].nodeID, 'M', 

'P', 4, (int)(this->getPeriod()*3.0/0.000360+0.5) ); // Default Whistle position 

sampling period is 360 microseconds. 

      //printf(" Setting MP[4] = %d\n", (int)(this-

>getPeriod()*3.0/0.000360)); 

     } 

     break; 

    case 2: 

     for( int i=0; i<numServos.get(); i++) 

     { 

      intCANset( CANhandle, statuses[i].nodeID, 'M', 

'P', 1, 1); // first index of PT buffer 

      intCANset( CANhandle, statuses[i].nodeID, 'M', 

'P', 2, 6); // last index 

     } 
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     break; 

    case 3: 

     for( int i=0; i<numServos.get(); i++) 

     { 

      for(int j=1; j<=6; j++) 

      { 

       intCANset( CANhandle, statuses[i].nodeID, 

'Q', 'T', j, (int)(this->getPeriod()*3*1000+0.5)); 

       intCANset( CANhandle, statuses[i].nodeID, 

'Q', 'P', j, statuses[i].PX ); 

       statuses[i].buffer[j] = true; 

      } 

      

      PTindex[i] = 6; 

      statuses[i].buffer[5] = false; // sixth element 

ready for new data 

      statuses[i].overrun = false; 

      statuses[i].underrun = false; 

     } 

     break; 

    case 4: 

     for( int i=0; i<numServos.get(); i++) 

     { 

      intCANset( CANhandle, statuses[i].nodeID, 'P', 

'T', 0, 1); 

      CANquery( CANhandle, statuses[i].nodeID, 'B', 

'G', 0); 

     } 

 

     if( ControlMode.get() == ELMO_ARM_POSITION_CONTROL ) 

      for( int i=0; i<numServos.get(); i++) 

       statuses[i].buffer[0] = false; 

 

     once = false; 

     break; 

    case 5: 

     printf("Elmoarm2: Huh?\n"); 

     once = false; 

     break; 

    default: 

     RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] 

Got lost in the startup procedures." << RTT::Logger::endl; 

     break; 

   } 

 

   cycle = cycle+1; 

   return; 

  } 

 

  // Process incoming messages 

  process_messages(); 

 

  // Update the the outputs 

  for( int i = 0; i < numServos.get(); i++) 

  { 

   // If it's a pretend node, pretend it's at the right position. 

   if (0==statuses[i].nodeID) 

   { 

    statuses[i].wait_PX = false; 

    statuses[i].PX = drivevalue[i]; 

 

    statuses[i].wait_VX = false; 

    statuses[i].wait_JV = false; 

   } 

 

   if (statuses[i].wait_PX)  

    RTT::Logger::log() << RTT::Logger::Warning << "Unacknowledged 

PX request on joint " << i+1 << RTT::Logger::endl; 

 

   output[i] = statuses[i].PX/EncoderCountsPerRev.get()[i]*2.0*M_PI + 

home.get()[i]; 
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  } 

  SensorValue.Set( output ); // Joint position readings 

  for ( int i = 0; i < numServos.get(); i++) 

   output[i] = statuses[i].TI; 

  Temperature.Set( output ); // Temperature readings 

 

 

  switch (ControlMode.get()) 

  { 

   case ELMO_ARM_TORQUE_CONTROL: 

 

    switch (cycle) 

    { 

     case 0: // Send latest drive value  

      if( DriveValue.Get().size() == numServos.get() ) 

       for( int i=0; i<numServos.get(); i++) 

       { 

        // Update the drive speed.  

Unlike speed (JV) and position (PA) commands, 

        // torque (TC) goes into effect 

immediately, without BG activation. 

        drivevalue[i] = 

DriveValue.Get()[i] * EncoderCountsPerRev.get()[i] / 2.0 / PI; 

        floatCANset(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'T','C', 0, DriveValue.Get()[i] ); 

        statuses[i].wait_TC = true; 

       } 

      else 

       for( int i=0; i<numServos.get(); i++) 

       { 

        // If we're not getting a valid 

command then do nothing, I guess... 

        // The arm will fall down if we 

do this! 

        floatCANset(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'T','C', 0, 0.0 ); 

        statuses[i].wait_TC = true; 

       } 

      break; 

     case 1: 

      for( int i=0; i<numServos.get(); i++) 

      { 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'T', 'I', 1); // Temperature update 

       statuses[i].wait_TI = true; 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'X', 0); // Position update 

       statuses[i].wait_PX = true; 

      } 

      break; 

     case 2: 

      for( int i=0; i<numServos.get(); i++) 

      { 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'X', 0); // Position update 

       statuses[i].wait_PX = true; 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'V', 'X', 0); // Velocity update 

       statuses[i].wait_VX = true; 

      } 

      break; 

    } 

      

    cycle = (cycle+1)%3; 

 

    break; 

 

   case ELMO_ARM_SPEED_CONTROL: 

 

    switch (cycle) 

    { 
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     case 0: // Send latest drive value  

      if( DriveValue.Get().size() == numServos.get() ) 

       for( int i=0; i<numServos.get(); i++) 

       { 

        // Update the drive speed 

        drivevalue[i] = 

DriveValue.Get()[i] * EncoderCountsPerRev.get()[i] / 2.0 / PI; 

        intCANset(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'J', 'V', 0, (int)(drivevalue[i]+0.5) ); 

        CANquery( CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'B', 'G', 0); 

       } 

      else 

       for( int i=0; i<numServos.get(); i++) 

       { 

        // Stop movement 

        intCANset(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'J', 'V', 0, 0 ); 

        CANquery( CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'B', 'G', 0); 

       } 

      break; 

     case 1: 

      for( int i=0; i<numServos.get(); i++) 

      { 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'T', 'I', 1); // Temperature update 

       statuses[i].wait_TI = true; 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'X', 0); // Position update 

       statuses[i].wait_PX = true; 

      } 

      break; 

     case 2: 

      for( int i=0; i<numServos.get(); i++) 

      { 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'X', 0); // Position update 

       statuses[i].wait_PX = true; 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'V', 'X', 0); // Velocity update 

       statuses[i].wait_VX = true; 

      } 

      break; 

    } 

      

    cycle = (cycle+1)%3; 

    break; 

 

   case ELMO_ARM_POSITION_CONTROL: 

 

    switch (cycle) 

    { 

     case 0: 

      for(int i=0; i<numServos.get(); i++) 

      { 

       if ( DriveValue.Get().size() > i ) 

       { 

        prevdrivevalue[i] = 

drivevalue[i]; 

        drivevalue[i] = ( 

DriveValue.Get()[i] - home.get()[i]) * EncoderCountsPerRev.get()[i] / 2.0 / PI; 

       } 

       else 

        drivevalue[i] = 

prevdrivevalue[i]; //statuses[i].PX; 

 

       if( statuses[i].prevPT != statuses[i].PT 

) 

       { 

        for( int j=0; j< 
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((statuses[i].PT-statuses[i].prevPT+6)%6); j++) 

        

 statuses[i].buffer[(statuses[i].prevPT-1+j)%6] = false; 

       } 

 

       if ( 0 < statuses[i].nodeID) // If it's 

not a pretend node 

       { 

        if ( 

((true==statuses[i].buffer[statuses[i].PT-1])) && 

(true==statuses[i].buffer[(statuses[i].PT)%6]) && 

(true==statuses[i].buffer[(statuses[i].PT+1)%6]) && 

(true==statuses[i].buffer[(statuses[i].PT+2)%6]) ) // if the current and next 2 

waypoints are valid 

        { 

         // Convert from radians to 

counts, subtracting offsets from home (zero encoder 

         // counts corresponds to 

the home position. 

         if( statuses[i].overrun ) 

// Overrun on previous cycle (average the point we should have sent with the one we 

now want to send) 

         { 

         

 statuses[i].overrun = false; 

          drivevalue[i] = 

0.5*(drivevalue[i]+prevdrivevalue[i]); 

         } 

         if ( PTindex[i] == 

statuses[i].PT ) 

         { // BUFFER OVERRUN (don't 

send, don't increment index) 

         

 statuses[i].overrun = true; 

          RTT::Logger::log() 

<< RTT::Logger::Warning << "Buffer full on joint " << i+1 << RTT::Logger::endl; 

         } else { 

          intCANset( 

CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'Q', 'P', PTindex[i], floor(drivevalue[i]) 

); 

         

 statuses[i].buffer[PTindex[i]-1] = true; 

          PTindex[i] = 

PTindex[i]%6 + 1; 

         } 

         if ( statuses[i].underrun 

) 

         { 

         

 statuses[i].underrun = false; 

          //CANquery( 

CANhandle, statuses[i].nodeID, 'B', 'G', 0); 

         } 

        } else { // BUFFER UNDERFLOW 

         RTT::Logger::log() << 

RTT::Logger::Warning << "Buffer underflow on joint " << i+1 << "(" << 

statuses[i].buffer[statuses[i].PT-1] << ", " << statuses[i].buffer[statuses[i].PT%6] 

<< ") " << statuses[i].PT%6 << RTT::Logger::endl; 

         //CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'S','T',0); 

         statuses[i].underrun = 

true; 

         intCANset( CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'Q', 'P', PTindex[i], floor(drivevalue[i]) ); 

        

 statuses[i].buffer[PTindex[i]-1] = true; 

         PTindex[i] = PTindex[i]%6 

+ 1; 

         intCANset( CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'Q', 'P', PTindex[i], floor(drivevalue[i]) ); 
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 statuses[i].buffer[PTindex[i]-1] = true; 

         PTindex[i] = PTindex[i]%6 

+ 1; 

         command = true; 

 

         // Print status of buffer 

         //printf(" Joint 1 buffer: 

%d %d %d %d %d (write %d) (read %d)\n\n", statuses[0].buffer[0], 

statuses[0].buffer[1], statuses[0].buffer[2], statuses[0].buffer[3], 

statuses[0].buffer[4], PTindex[0], statuses[0].PT); 

         //printf("  statuses[0].PT 

= %d, statuses[0].prevPT = %d\n", statuses[0].PT, statuses[0].prevPT); 

        } 

       } 

       statuses[i].prevPT = statuses[i].PT;  

      } 

      break; 

     case 1: 

      for( int i=0; i<numServos.get(); i++) 

      { 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'T', 'I', 1); // Temperature update 

       statuses[i].wait_TI = true; 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'T', 0); // Position-Time read index update 

       //statuses[i].wait_VX = true; 

      } 

      break; 

     case 2: 

      for( int i=0; i<numServos.get(); i++) 

      { 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'X', 0); // Position update 

       statuses[i].wait_PX = true; 

       CANquery(CANhandle, 

(int)(NodeIDarr.get()[i]+0.5), 'P', 'T', 0); // Position-time read index update 

       //statuses[i].wait_VX = true; 

      } 

      break; 

    } 

    cycle = (cycle+1)%3; 

    break; 

 

   default: 

    RTT::Logger::log() << RTT::Logger::Error << "ElmoArm2 in 

unknown control mode!  " << RTT::Logger::endl; 

    stop(); // If we're not in a known control mode, that's bad. 

    return; 

  }  // end of switch( ControlMode.get() ) 

 

 

 } 

 

 

 

 void SSL::ElmoArm2::stopHook() 

 { 

  // Clear any error status that may exist on the CAN card. 

  // Is there a way to purge the output buffer too? 

  CAN_Status(CANhandle); 

 

  // Make sure nothing is moving.  This could probably be done faster with group 

ID? 

  for(int i=0; i<numServos.get(); i++) 

  { 

   CANquery(CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'S','T',0); 

   usleep(100); 

  } 

   

  // Need to get confirmation that it stopped! 
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  // Print last message received in case it's needed for debugging 

  //printf("All servos are (supposedly) stopped.  Last message received before 

stopping:\n"); 

  printf("\n  %c %c 0x%08x %1d ",  

  (msg_in.Msg.MSGTYPE & MSGTYPE_RTR)      ? 'r' : 'm', 

  (msg_in.Msg.MSGTYPE & MSGTYPE_EXTENDED) ? 'e' : 's', 

  msg_in.Msg.ID,  msg_in.Msg.LEN);  

  // Make sure it's not a remote frame or invalid DLC before printing contents 

  if (!(msg_in.Msg.MSGTYPE & MSGTYPE_RTR)&&(msg_in.Msg.LEN<=8)) 

   for (int i = 0; i < msg_in.Msg.LEN; i++) 

    printf("0x%02x ", msg_in.Msg.DATA[i]); 

  printf("\n\n"); 

 

  // Print status of buffer 

  printf(" Joint 1 buffer: %d %d %d %d %d (write %d) (read %d)\n\n", 

statuses[0].buffer[0], statuses[0].buffer[1], statuses[0].buffer[2], 

statuses[0].buffer[3], statuses[0].buffer[4], PTindex[0], statuses[0].PT); 

  printf("  statuses[0].PT = %d, statuses[0].prevPT = %d\n", statuses[0].PT, 

statuses[0].prevPT); 

 } 

 

 

 

 void SSL::ElmoArm2::cleanupHook() 

 { 

  for(int i=0; i<numServos.get(); i++) 

  { 

   //intCANset(CANhandle, (int)(NodeIDarr.get()[i]+0.5), 'M', 'O', 0, 0); 

  } 

 } 

 

 

 

 // Sends a command to the servo driver consisting of command characters C1 and 

C2, and 

 // a (signed) int value 

 int SSL::ElmoArm2::intCANset(HANDLE& h, char nodeID, char C1, char C2, int index, 

int value) 

 { 

  assert( 128 > index ); 

 

  // Ignore anything for nodeID zero 

  if( 0 == nodeID ) 

   return 0; 

 

  // Prepare message 

  msg_out.MSGTYPE = MSGTYPE_STANDARD; 

  msg_out.ID = 0x300 + nodeID; // 0x300 corresponds to RPDO2 message type 

  msg_out.LEN = 8; 

  msg_out.DATA[0] = C1; 

  msg_out.DATA[1] = C2; 

  msg_out.DATA[2] = index; 

  msg_out.DATA[3] = 0; // Doesn’t support indices > 127. 

 

  // Divide up value into 4 bytes, little endian (LSByte first) 

  msg_out.DATA[4] = (0x000000FF & value); 

  msg_out.DATA[5] = (0x0000FF00 & value)/0x100; 

  msg_out.DATA[6] = (0x00FF0000 & value)/0x10000; 

  msg_out.DATA[7] = (0xFF000000 & value)/0x1000000; 

 

  // Send it 

  return CAN_Write(h, &(msg_out)); 

 } 

 

 int SSL::ElmoArm2::ptCANset(HANDLE& h, char nodeID, int value1, int value2) 

 { 

  // This function sends two consecutive waypoints (value1 and value2) 

  // to the Whistle for trajectory smoothing.  This works because RPDO3 

  // is mapped for this purpose during configureHook. 

  // ...But it doesn't work for unknown reasons. 
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  // Ignore anything for nodeID zero 

  if( 0 == nodeID ) 

   return 0; 

 

  // Prepare message 

  msg_out.MSGTYPE = MSGTYPE_STANDARD; 

  msg_out.ID = 0x400 + nodeID; // 0x400 corresponds to RPDO3 message type 

  msg_out.LEN = 8; 

 

  msg_out.DATA[0] = (0x000000FF & value1); 

  msg_out.DATA[1] = (0x0000FF00 & value1)/0x100; 

  msg_out.DATA[2] = (0x00FF0000 & value1)/0x10000; 

  msg_out.DATA[3] = (0xFF000000 & value1)/0x1000000; 

 

  // Divide up value into 4 bytes, little endian (LSByte first) 

  msg_out.DATA[4] = (0x000000FF & value2); 

  msg_out.DATA[5] = (0x0000FF00 & value2)/0x100; 

  msg_out.DATA[6] = (0x00FF0000 & value2)/0x10000; 

  msg_out.DATA[7] = (0xFF000000 & value2)/0x1000000; 

 

  // Send it 

  return CAN_Write(h, &(msg_out)); 

 } 

 

 int SSL::ElmoArm2::floatCANset(HANDLE& h, char nodeID, char C1, char C2, int 

index, float value) 

 { 

  assert(128 > index); 

 

  // Ignore anything for nodeID zero 

  if( 0 == nodeID ) 

   return 0; 

 

  // Prepare message 

  msg_out.MSGTYPE = MSGTYPE_STANDARD; 

  msg_out.ID = 0x300 + nodeID; // 0x300 corresponds to RPDO2 message type 

  msg_out.LEN = 8; 

  msg_out.DATA[0] = C1; 

  msg_out.DATA[1] = C2; 

  msg_out.DATA[2] = index; 

  msg_out.DATA[3] = 0x80; // Support indices > 127. 

 

  // This can't be a good idea 

  void* ptr = &value; 

  int ival = *((int*)ptr); 

 

  // Divide up value into 4 bytes, little endian (LSByte first) 

  msg_out.DATA[4] = (0x000000FF & ival); 

  msg_out.DATA[5] = (0x0000FF00 & ival)/0x100; 

  msg_out.DATA[6] = (0x00FF0000 & ival)/0x10000; 

  msg_out.DATA[7] = (0xFF000000 & ival)/0x1000000; 

 

  // Send it 

  return CAN_Write(h, &(msg_out)); 

 } 

 

 

 

 int SSL::ElmoArm2::CANquery(HANDLE& h, char nodeID, char C1, char C2, int index) 

 { 

  assert(128 > index); 

 

  // Ignore anything for nodeID zero 

  if( 0 == nodeID ) 

   return 0; 

 

  // Prepare message 

  msg_out.MSGTYPE = MSGTYPE_STANDARD; 

  msg_out.ID = 0x300 + nodeID; // 0x300 corresponds to RPDO2 message type 

  msg_out.LEN = 4; 

  msg_out.DATA[0] = C1; 
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  msg_out.DATA[1] = C2; 

  msg_out.DATA[2] = index; 

  msg_out.DATA[3] = 0; // Doesn’t support indices > 127. 

 

  // Send it 

  return CAN_Write(h, &(msg_out)); 

 } 

 

 

 

 // Process incoming messages (called by updateHook) 

 bool SSL::ElmoArm2::process_messages() 

 { 

  ElmoArmStatus* senderStatus = NULL; 

 

  while( 0 == LINUX_CAN_Read_Timeout(CANhandle,&(msg_in),0) ) 

  { 

 

   // Print last message received in case it's needed for debugging 

   //printf("All servos are (supposedly) stopped.  Last message received 

before stopping:\n"); 

   if( 15 > temp_counter++ ) 

   { 

    printf("\n  %c %c 0x%08x %1d ",  

    (msg_in.Msg.MSGTYPE & MSGTYPE_RTR)      ? 'r' : 'm', 

    (msg_in.Msg.MSGTYPE & MSGTYPE_EXTENDED) ? 'e' : 's', 

    msg_in.Msg.ID,  msg_in.Msg.LEN);  

    // Make sure it's not a remote frame or invalid DLC before 

printing contents 

    if (!(msg_in.Msg.MSGTYPE & MSGTYPE_RTR)&&(msg_in.Msg.LEN<=8)) 

     for (int i = 0; i < msg_in.Msg.LEN; i++) 

      printf("0x%02x ", msg_in.Msg.DATA[i]); 

    printf("\n\n"); 

   } 

 

   // Check if something is wrong 

   if ( (msg_in.Msg.ID <= 0xff) && (msg_in.Msg.ID >= 0x81) ) // if EMCY 

message 

   { 

    // First check to see if it's something we can handle. 

    // If not, panic and log the offending message. 

    if 

((0x80==msg_in.Msg.DATA[0])&&(0x83==msg_in.Msg.DATA[1])&&(0x81==msg_in.Msg.DATA[2])) 

    { 

     RTT::Logger::log() << RTT::Logger::Warning << "Ignoring 

digital hall error on node-ID " << msg_in.Msg.ID-0x80 << RTT::Logger::endl; 

    } else { 

     RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] 

See p13-26 in DS301 Implementation Guide" << RTT::Logger::endl; 

     this->stop(); 

     return false; 

    } 

   } else if (msg_in.Msg.DATA[3] & 0x40 ) { // if error TPDO2 message 

    // First check to see if it's something we can handle. 

    // If not, panic and log the offending message. 

    RTT::Logger::log() << RTT::Logger::Error << "[ElmoArm2] See EC 

in Command Reference Manual for Error TPDO" << RTT::Logger::endl; 

    this->stop(); 

    return false; 

   } 

 

 

   // Determine who sent the message 

   if ( (msg_in.Msg.ID < 0x281) || (msg_in.Msg.ID > 0x2ff) ) // if not 

TPDO 2 

   { 

    // There's only one non-TPDO2 we're equipped to deal with: 

    if( (msg_in.Msg.ID > 0x580) && (msg_in.Msg.ID < 0x600) ) // 

RSDO 

    { 

     for (int i=0; i<numServos.get(); i++) 
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     { 

      if ((char)(msg_in.Msg.ID-0x280) == 

statuses[i].nodeID) 

      { 

       senderStatus = &(statuses[i]); 

       break; 

      } 

     } 

     if (NULL == senderStatus) 

      break; // If we don't know who sent it, ignore 

it. 

 

     // If it matches the message given on page 5-3 of 

CANopen DS301 Implementation 

     // Guide, then presumably we've successfully mapped the 

PT motion command to 

     // RPDO3.  I changed the header to 0x60 because page 4-2 

indicates bits 0 to 4 

     // are not used and always zero for an SDO download 

response. 

     if ( (0x60==msg_in.Msg.DATA[0]) && 

(0x02==msg_in.Msg.DATA[1]) && (0x16==msg_in.Msg.DATA[2]) && (0x01==msg_in.Msg.DATA[3]) 

) 

      senderStatus->PTmap = true; 

    } 

    continue; 

   } else { 

    for (int i=0; i<numServos.get(); i++) 

    { 

     if ((char)(msg_in.Msg.ID-0x280) == statuses[i].nodeID) 

     { 

      senderStatus = &(statuses[i]); 

      break; 

     } 

    } 

    if (NULL == senderStatus) 

    { 

     printf("Ignoring message from node %d\n", msg_in.Msg.ID-

0x280); 

     continue; // ignore message from unknown node 

    } 

   } 

 

   // File away the new information 

   switch (msg_in.Msg.DATA[0])  

   { 

    case 'B': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'G': // BG - Begin Motion 

       senderStatus->BG = unpackData(); 

       if(0!=senderStatus->BG) 

       { 

        // If something went wrong, it 

shouldn't have gotten to this point 

        RTT::Logger::log() << 

RTT::Logger::Error << "[ElmoArm2] one of the joints failed to begin motion" << 

RTT::Logger::endl; 

        stop(); 

        return false; 

       } 

       senderStatus->wait_BG = false; 

       senderStatus->time_BG = msg_in.dwTime; // 

unnecessary? 

       break; 

     } 

     break; 

    case 'I': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'Q': // IQ - Reactive Current 



 

 124 

 

       senderStatus->IQ = unpackFloat(); 

       senderStatus->wait_IQ = false; 

       senderStatus->time_IQ = msg_in.dwTime; 

       break; 

     } 

     break; 

    case 'J': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'V': // JV - Jogging Velocity 

       senderStatus->JV = unpackData(); 

       senderStatus->wait_JV = false; 

       senderStatus->time_JV = msg_in.dwTime; 

       break; 

     } 

     break; 

    case 'P': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'A': // PA - Absolute Position 

       senderStatus->PA = unpackData(); 

       senderStatus->wait_PA = false; 

       senderStatus->time_PA = msg_in.dwTime; 

       break; 

 

      case 'T': // PT - position-time read index 

       senderStatus->PT = unpackData(); 

       senderStatus->wait_PT = false; 

       senderStatus->time_PT = msg_in.dwTime; 

       break; 

 

      case 'X': // PX - Main Position 

       senderStatus->PX = unpackData(); 

       senderStatus->wait_PX = false; 

       senderStatus->time_PX = msg_in.dwTime; 

       senderStatus->tally_PX = 0; 

       break; 

     } 

     break; 

    case 'T': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'C': // TC - Torque Command 

       senderStatus->TC = unpackFloat(); 

       senderStatus->wait_TC = false; 

       senderStatus->time_PX = msg_in.dwTime; 

       senderStatus->tally_TC = 0; 

       break; 

 

      case 'I': // TI - Temperature array 

       senderStatus->TI = unpackData(); 

       senderStatus->wait_TI = false; 

       senderStatus->time_TI = msg_in.dwTime; 

       break; 

     } 

     break; 

    case 'U': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'M': // UM - Unit Mode 

       senderStatus->UM = unpackData(); 

       break; 

     } 

     break; 

    case 'V': 

     switch (msg_in.Msg.DATA[1]) 

     { 

      case 'X': // VX - Main Feedback Velocity 

       senderStatus->VX = unpackData(); 

       senderStatus->wait_VX = false; 

       senderStatus->time_VX = msg_in.dwTime; 
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       senderStatus->tally_VX = 0; 

       break; 

     } 

     break; 

   } 

  } 

  return true; 

 } 

 

 

 

 // Unpacks an integer value contained in a TPDO2.  Called by process_messages. 

 // This should probably be set to disregard DATA[7] if not present so the same 

 // function can be used with the ChipF40 absolute encoder readings. 

 int SSL::ElmoArm2::unpackData() 

 { 

  return  msg_in.Msg.DATA[4] 

   + msg_in.Msg.DATA[5] * 0x100 

   + msg_in.Msg.DATA[6] * 0x10000 

   + msg_in.Msg.DATA[7] * 0x1000000; 

 } 

 

 

 float SSL::ElmoArm2::unpackFloat() 

 { 

  int value = msg_in.Msg.DATA[4] 

     + msg_in.Msg.DATA[5] * 0x100 

     + msg_in.Msg.DATA[6] * 0x10000 

     + msg_in.Msg.DATA[7] * 0x1000000; 

 

  // This can't be a good idea: 

  void* ptr = &(value); 

  return (*((float*)ptr)); 

 } 

 

 

 bool SSL::ElmoArm2::recalibrateFunc( std::vector<double> vec ) 

 { 

  if( vec.size() != numServos.get() ) 

   return false; 

 

  for( int i=0; i<numServos.get(); i++) 

   vec[i] = vec[i] - statuses[i].PX/EncoderCountsPerRev.get()[i]*2.0*M_PI; 

  home.set(vec); 

  return true; 

 } 

 

 

 void SSL::ElmoArm2::printMethodFunc() 

 { 

  printf("\n"); 

  for( int i=0; i<numServos.get(); i++) 

   printf(" %.6f ", statuses[i].PX/EncoderCountsPerRev.get()[i]*2.0*M_PI + 

home.get()[i] ); 

  printf("\n"); 

  for( int i=0; i<numServos.get(); i++) 

   printf(" %d ", statuses[i].PX ); 

  printf("\n\n");  

  return; 

 } 
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src/ethernet.cpp 
#include <ethernet.h> 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::EthernetInterface ) 

#endif 

 

 

 SSL::EthernetInterface::EthernetInterface(std::string name) :  

  TaskContext(name, PreOperational), 

  port("port", "port number"), 

  IncomingMessage("IncomingMessage", 20), 

  OutgoingMessage("OutgoingMessage", 20) 

 { 

  // Add the attributes and ports and stuff 

  this->properties()->addProperty( &port ); 

  this->ports()->addPort( &IncomingMessage, "IncomingMessage"); 

  this->ports()->addPort( &OutgoingMessage, "OutgoingMessage"); 

 } 

 

 

 

 bool SSL::EthernetInterface::configureHook() 

 { 

  return true; 

 } 

 

 

 

 bool SSL::EthernetInterface::startHook() 

 { 

  myserver.Initialize(port.get(),false,true); 

 

  return true; 

 } 

 

 

 

 void SSL::EthernetInterface::updateHook() 

 { 

 

  // Incoming Messages 

  do 

  { 

   receivedmessage.size = myserver.Receive(receivedmessage.array, 31); 

   if( 0 < receivedmessage.size ) 

   { 

    receivedmessage.timestamp = RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()); 

    IncomingMessage.Push(receivedmessage);   

   } 

 

   //if(31 == receivedmessage.size) 

   // printf(" Last byte = %d\n", receivedmessage.array[30]); 

  } while ( 0 < receivedmessage.size ); 

 

 

  // Outgoing Messages 

  while( OutgoingMessage.size() ) // while messages await to be sent 

  { 

   OutgoingMessage.Pop(sendbuffer); 

   //printf("EthernetInterface transmitting...\n"); 

   myserver.Send( sendbuffer.array, sendbuffer.size ); 

  } 

   

 } 
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 void SSL::EthernetInterface::stopHook() 

 { 

 

 } 

 

 

 

 void SSL::EthernetInterface::cleanupHook() 

 { 

  // Clean things up 

 

 } 
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src/jointlimiter.cpp 
#include <jointlimiter.h> 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::JointLimiter ) 

#endif 

 

 

void SSL::JointLimiter::getLimsFunc(KDL::JntArray* qmin,KDL::JntArray* qmax) 

{ 

 for(int i = 0; i < numServos.get(); i++) 

 { 

  (*qmin)(i) = LowLim.get()[i]; 

  (*qmax)(i) = UpLim.get()[i]; 

 } 

 return; 

} 

 

 

SSL::JointLimiter::JointLimiter(std::string name) : 

 TaskContext(name, PreOperational), 

 numServos("NumberOfServos","Number of servos"), 

 ControlMode("ControlMode", "Control Mode"), 

 UpLim("UpLim","upper joint limits"), 

 LowLim("LowLim","lower joint limits"), 

 MaxRates("MaxRates","maximum joint rates"), 

 limitevent("JointLimitEvent"), 

 DriveValueRequested("DriveValueRequested"), 

 DriveValue("DriveValue"), 

 EncoderReading("EncoderReading"), 

 getLims("getLims", &SSL::JointLimiter::getLimsFunc, this) 

{ 

 // Add the attributes and ports 

 this->properties()->addProperty( &numServos ); 

 this->properties()->addProperty( &ControlMode ); 

 this->properties()->addProperty( &UpLim ); 

 this->properties()->addProperty( &LowLim ); 

 this->properties()->addProperty( &MaxRates ); 

 this->events()->addEvent( &limitevent, "JointLimitEvent"); 

 this->ports()->addPort( &DriveValueRequested, "DriveValueRequested"); 

 this->ports()->addPort( &DriveValue, "DriveValue"); 

 this->ports()->addPort( &EncoderReading, "EncoderReading"); 

 this->methods()->addMethod( &getLims, "Get joint limits",  

      "&qmin", "min vals", 

      "&qmax", "max vals"); 

} 

 

 

bool SSL::JointLimiter::configureHook() 

{ 

 if (  (numServos.get() != UpLim.get().size())   ||   (numServos.get() != 

LowLim.get().size()) || (numServos.get() != MaxRates.get().size())  ) 

  return false; 

 vec.resize( numServos.get() ); 

 //std::vector<double> v; 

 //v.resize(numServos.get()); 

 //DriveValue.Set(v); 

 return true; 

} 

 

 

bool SSL::JointLimiter::startHook() 

{ 

 emptyvec.resize(0); 

 return true; 

} 
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void SSL::JointLimiter::updateHook() 

{ 

 if(DriveValueRequested.Get().size() == numServos.get() ) 

 { 

  vec = DriveValueRequested.Get(); 

 

  switch(ControlMode.get()) 

  { 

   case 2: 

    if ( EncoderReading.Get().size() == numServos.get() ) 

    { 

 

     for(int i=0; i<numServos.get(); i++) 

     { 

      if ( (EncoderReading.Get()[i] >= UpLim.get()[i]) 

&& (vec[i] > 0) ) // Enforce Upper Limit 

      { 

       vec[i] = 0.0;  

       limitevent(); 

      } 

      if ( (EncoderReading.Get()[i] <= 

LowLim.get()[i]) && (vec[i] < 0) ) // Enforce Lower Limit 

      { 

       vec[i] = 0.0; 

       limitevent(); 

      } 

      if ( fabs(vec[i]) > MaxRates.get()[i] ) // 

Enforce Maximum Rate 

       vec[i] = MaxRates.get()[i] * (vec[i] < 0? 

-1.0 : 1.0); 

     } 

 

    } 

 

    break; 

   case 5: 

    for(int i=0; i<numServos.get(); i++) 

    { 

 

     if( vec[i] >= UpLim.get()[i] ) // Enforce Upper Limit 

     { 

      vec[i] = UpLim.get()[i]; 

      limitevent(); 

     } 

     if( vec[i] <= LowLim.get()[i] ) // Enforce Lower Limit 

     { 

      vec[i] = LowLim.get()[i]; 

      limitevent(); 

     } 

 

    } 

    break; 

   default: 

    assert(false); 

  } 

 

  DriveValue.Set(vec); 

 } else { 

  DriveValue.Set(emptyvec); 

 } 

} 

 

 

void SSL::JointLimiter::stopHook() 

{ 

  

} 
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void SSL::JointLimiter::cleanupHook() 

{ 

 // Clean things up 

} 
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src/kinematics.cpp 
#include <kinematics.h> 

#include <iostream>  

#include <kdl/frames_io.hpp>  

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::ForwardKinematics ) 

ORO_LIST_COMPONENT_TYPE( SSL::InverseVelKinematics ) 

ORO_LIST_COMPONENT_TYPE( SSL::InversePosKinematics ) 

#endif 

 

 

SSL::ForwardKinematics::ForwardKinematics(std::string name) :  

 TaskContext(name, PreOperational), 

 numJoints("numJoints","Number of joints"), 

 DHparams("DHparams","D-H Parameters"), 

 EndEffDH("EndEffDH","End effector D-H"), 

 JointPoses("JointPoses"), 

 CartesianPose("CartesianPose"), 

 printMethod("printMethod", &ForwardKinematics::printMethodFunc, this) 

{ 

 this->ports()->addPort( &JointPoses, "JointPoses" ); 

 this->ports()->addPort( &CartesianPose, "CartesianPose" ); 

 this->properties()->addProperty( &numJoints ); 

 this->properties()->addProperty( &DHparams ); 

 this->properties()->addProperty( &EndEffDH ); 

 printf(" bool addMethod = %d\n", this->methods()->addMethod( &printMethod, 

"printMethod" ) ); 

} 

 

 

// For debugging purposes only 

void SSL::ForwardKinematics::printMethodFunc() 

{ 

 std::cout << std::endl << cartframe << std::endl; 

 for ( int i=0; i<numJoints.get(); i++) 

  printf(" %.6f", JointPoses.Get()[i]); 

 printf("\n"); 

 return; 

} 

 

 

bool SSL::ForwardKinematics::configureHook() 

{ 

 // Set up the arm geometry and initialize to specified home position 

 std::vector<double> myarray(numJoints.get()); 

 armChain = new KDL::Chain; 

 if ( (DHparams.get().size() != 5*numJoints.get()) || (EndEffDH.get().size() != 4) 

) 

  return false; 

 if (DHparams.get()[0]) 

 { 

  armChain->addSegment( KDL::Segment(KDL::Joint::None, KDL::Frame::DH_Craig1989( 

DHparams.get()[1],DHparams.get()[2],0,DHparams.get()[4]))); 

  myarray[0] = DHparams.get()[3]; 

 } 

 else 

 { 

  armChain->addSegment( KDL::Segment(KDL::Joint::None, KDL::Frame::DH_Craig1989( 

DHparams.get()[1],DHparams.get()[2],DHparams.get()[3],0))); 

  myarray[0] = DHparams.get()[4]; 

 } 

 for(int i=1; i<numJoints.get(); i++) 

 { 

  if (DHparams.get()[5*(i-1)]) 
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  { 

   armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::TransZ), 

KDL::Frame(KDL::Frame::DH_Craig1989( 

DHparams.get()[5*i+1],DHparams.get()[5*i+2],0,DHparams.get()[5*i+4]))) ); 

   myarray[i] = DHparams.get()[5*i+3]; 

  } 

  else 

  { 

   armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::RotZ  ), 

KDL::Frame(KDL::Frame::DH_Craig1989( 

DHparams.get()[5*i+1],DHparams.get()[5*i+2],DHparams.get()[5*i+3],0))) ); 

   myarray[i] = DHparams.get()[5*i+4]; 

  } 

 } 

 if (DHparams.get()[5*(6-1)]) 

  armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::TransZ), 

KDL::Frame::DH_Craig1989( EndEffDH.get()[0], EndEffDH.get()[1], EndEffDH.get()[2], 

EndEffDH.get()[3])) ); 

 else 

  armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::RotZ  ), 

KDL::Frame::DH_Craig1989( EndEffDH.get()[0], EndEffDH.get()[1], EndEffDH.get()[2], 

EndEffDH.get()[3])) ); 

 fksolver = new KDL::ChainFkSolverPos_recursive(*armChain); 

 

 return true; 

} 

 

 

bool SSL::ForwardKinematics::startHook() 

{ 

 jntarr.resize(numJoints.get()); 

 return true; 

} 

 

 

void SSL::ForwardKinematics::updateHook() 

{ 

 if (JointPoses.Get().size()) 

 { 

  for(int i=0; i<numJoints.get(); i++) 

   jntarr(i) = JointPoses.Get()[i]; 

 

  // Use the forward kinematics solver to update the output cartesian frame 

  if ( fksolver->JntToCart(jntarr,cartframe) >= 0 ) 

  { 

   CartesianPose.Set(cartframe); 

  } else { 

   // Do something to deal with the problem? 

   // If forward kinematics fail, something is very wrong. 

  } 

 } 

  

 return; 

} 

 

 

void SSL::ForwardKinematics::stopHook() 

{ 

 // No preparation needed 

 return; 

} 

 

 

void SSL::ForwardKinematics::cleanupHook() 

{ 

 // Undo whatever got done in configureHook 

 delete armChain; 

 delete fksolver; 

 return; 

} 
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SSL::InverseVelKinematics::InverseVelKinematics(std::string name) :  

 TaskContext(name, PreOperational), 

 numJoints("numJoints","Number of joints"),  

 DHparams("DHparams", "D-H parameters"), 

 EndEffDH("EndEffDH","End effector D-H"), 

 printMethod("printMethod", &InverseVelKinematics::printMethodFunc, this),  

 JointPoses("JointPoses"),  

 DesiredTwist("DesiredTwist"),  

 JointVelocities("JointVelocities") 

{ 

 this->properties()->addProperty( &numJoints ); 

 this->properties()->addProperty( &DHparams ); 

 this->properties()->addProperty( &EndEffDH ); 

 this->methods()->addMethod( &printMethod, "printMethod"); 

 this->ports()->addPort( &JointPoses, "JointPoses" ); 

 this->ports()->addPort( &DesiredTwist, "DesiredTwist" ); 

 this->ports()->addPort( &JointVelocities, "JointVelocities" ); 

} 

 

 

// For debugging purposes only 

void SSL::InverseVelKinematics::printMethodFunc() 

{ 

 printf(" des_trans_vel = [ %f %f %f ]\n",DesiredTwist.Get().vel.x(), 

DesiredTwist.Get().vel.y(), DesiredTwist.Get().vel.z() ); 

 

 printf(" qdot = [ "); 

 for ( int i=0; i<numJoints.get(); i++) 

  printf("%f ",qdot(i)); 

 printf("]\n"); 

 return; 

} 

 

 

bool SSL::InverseVelKinematics::configureHook() 

{ 

 // Set up the arm geometry and initialize to specified home position 

 armChain = new KDL::Chain; 

 if ( (DHparams.get().size() != 5*numJoints.get()) || (EndEffDH.get().size() != 4) 

) 

  return false; 

 if (DHparams.get()[0]) 

 { 

  armChain->addSegment( KDL::Segment(KDL::Joint::None, KDL::Frame::DH_Craig1989( 

DHparams.get()[1],DHparams.get()[2],0,DHparams.get()[4]))); 

 } 

 else 

 { 

  armChain->addSegment( KDL::Segment(KDL::Joint::None, KDL::Frame::DH_Craig1989( 

DHparams.get()[1],DHparams.get()[2],DHparams.get()[3],0))); 

 } 

 for(int i=1; i<numJoints.get(); i++) 

 { 

  if (DHparams.get()[5*(i-1)]) 

  { 

   armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::TransZ), 

KDL::Frame(KDL::Frame::DH_Craig1989( 

DHparams.get()[5*i+1],DHparams.get()[5*i+2],0,DHparams.get()[5*i+4]))) ); 

  } 

  else 

  { 

   armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::RotZ  ), 

KDL::Frame(KDL::Frame::DH_Craig1989( 

DHparams.get()[5*i+1],DHparams.get()[5*i+2],DHparams.get()[5*i+3],0))) ); 

  } 

 } 

 if (DHparams.get()[5*(6-1)]) 
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  armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::TransZ), 

KDL::Frame::DH_Craig1989( EndEffDH.get()[0], EndEffDH.get()[1], EndEffDH.get()[2], 

EndEffDH.get()[3])) ); 

 else 

  armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::RotZ  ), 

KDL::Frame::DH_Craig1989( EndEffDH.get()[0], EndEffDH.get()[1], EndEffDH.get()[2], 

EndEffDH.get()[3])) ); 

 iksolver = new KDL::ChainIkSolverVel_pinv(*armChain); 

 

 return true; 

} 

 

 

bool SSL::InverseVelKinematics::startHook() 

{ 

 std::vector <double> jointposes(3); 

 //JointPoses.Set( jointposes ); 

 jntarr.resize(numJoints.get()); 

 qdot.resize(numJoints.get()); 

 v.resize(numJoints.get()); 

 return true; 

} 

 

 

void SSL::InverseVelKinematics::updateHook() 

{ 

 for(int i=0; i<numJoints.get(); i++) 

  jntarr(i) = JointPoses.Get()[i]; 

 

 // Use the forward kinematics solver to update the output cartesian frame 

 if ( iksolver->CartToJnt(jntarr,DesiredTwist.Get(),qdot) >= 0 ) 

 { 

  for( int i = 0; i<numJoints.get(); i++) 

   v[i] = qdot(i); 

  JointVelocities.Set(v); 

 } else { 

  // Do something to deal with the problem? 

  printf("Warning: Inverse kinematics failure!\n");  

 } 

  

 return; 

} 

 

 

void SSL::InverseVelKinematics::stopHook() 

{ 

 // No preparation needed 

 return; 

} 

 

 

void SSL::InverseVelKinematics::cleanupHook() 

{ 

 // Undo whatever got done in configureHook 

 delete armChain; 

 delete iksolver; 

 return; 

} 

 

 

 

 

SSL::InversePosKinematics::InversePosKinematics(std::string name) :  

 TaskContext(name, PreOperational), 

 numJoints("numJoints","Number of joints"),  

 DHparams("DHparams", "D-H parameters"), 

 EndEffDH("EndEffDH","End effector D-H"), 

 printMethod("printMethod", &InversePosKinematics::printMethodFunc, this),  

 divergenceEvent("InvKinDivEvent"), 

 CurrentJointPose("CurrentJointPose"),  

 CurrentFrame("CurrentFrame"), 
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 DesiredFrame("DesiredFrame"),  

 NewJointPose("NewJointPose") 

{ 

 this->properties()->addProperty( &numJoints ); 

 this->properties()->addProperty( &DHparams ); 

 this->properties()->addProperty( &EndEffDH ); 

 this->methods()->addMethod( &printMethod, "printMethod"); 

 this->events()->addEvent( &divergenceEvent, "InvKinDivEvent" ); 

 this->ports()->addPort( &CurrentJointPose, "CurrentJointPose" ); 

 this->ports()->addPort( &CurrentFrame, "CurrentFrame" ); 

 this->ports()->addPort( &DesiredFrame, "DesiredFrame" ); 

 this->ports()->addPort( &NewJointPose, "NewJointPose" ); 

} 

 

 

// For debugging purposes only 

void SSL::InversePosKinematics::printMethodFunc() 

{ 

 /*printf(" des_trans_vel = [ %f %f %f ]\n",DesiredTwist.Get().vel.x(), 

DesiredTwist.Get().vel.y(), DesiredTwist.Get().vel.z() ); 

 

 printf(" qdot = [ "); 

 for ( int i=0; i<numJoints.get(); i++) 

  printf("%f ",qdot(i)); 

 printf("]\n");*/ 

 printf("\nPrint method not implemented.\n"); 

 return; 

} 

 

 

bool SSL::InversePosKinematics::configureHook() 

{ 

 // Set up the arm geometry and initialize to specified home position 

 armChain = new KDL::Chain; 

 if ( (DHparams.get().size() != 5*numJoints.get()) || (EndEffDH.get().size() != 4) 

) 

  return false; 

 if (DHparams.get()[0]) 

 { 

  armChain->addSegment( KDL::Segment(KDL::Joint::None, KDL::Frame::DH_Craig1989( 

DHparams.get()[1],DHparams.get()[2],0,DHparams.get()[4]))); 

 } 

 else 

 { 

  armChain->addSegment( KDL::Segment(KDL::Joint::None, KDL::Frame::DH_Craig1989( 

DHparams.get()[1],DHparams.get()[2],DHparams.get()[3],0))); 

 } 

 for(int i=1; i<numJoints.get(); i++) 

 { 

  if (DHparams.get()[5*(i-1)]) 

  { 

   armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::TransZ), 

KDL::Frame(KDL::Frame::DH_Craig1989( 

DHparams.get()[5*i+1],DHparams.get()[5*i+2],0,DHparams.get()[5*i+4]))) ); 

  } 

  else 

  { 

   armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::RotZ  ), 

KDL::Frame(KDL::Frame::DH_Craig1989( 

DHparams.get()[5*i+1],DHparams.get()[5*i+2],DHparams.get()[5*i+3],0))) ); 

  } 

 } 

 if (DHparams.get()[5*(6-1)]) 

  armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::TransZ), 

KDL::Frame::DH_Craig1989( EndEffDH.get()[0], EndEffDH.get()[1], EndEffDH.get()[2], 

EndEffDH.get()[3])) ); 

 else 

  armChain->addSegment( KDL::Segment(KDL::Joint(KDL::Joint::RotZ  ), 

KDL::Frame::DH_Craig1989( EndEffDH.get()[0], EndEffDH.get()[1], EndEffDH.get()[2], 

EndEffDH.get()[3])) ); 
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 fksolver = new KDL::ChainFkSolverPos_recursive(*armChain); 

 ikvelsolver = new KDL::ChainIkSolverVel_pinv(*armChain); 

 iksolver = new KDL::ChainIkSolverPos_NR_JL(*armChain, qmin, qmax, *fksolver, 

*ikvelsolver, 5, 1e-6); // last two args: maxiter, tolerance 

 

 return true; 

} 

 

 

bool SSL::InversePosKinematics::startHook() 

{ 

 jntarr.resize(numJoints.get()); 

 q.resize(numJoints.get()); 

 qmin.resize(numJoints.get()); 

 qmax.resize(numJoints.get()); 

 

 

 // See if we've got a joint limiter in place 

 jl = getPeer("JointLimiter"); 

 if( NULL == jl ) 

 { 

  // Allow full +/- pi range of motion 

  for ( int i = 0; i < numJoints.get(); i++) 

  { 

   qmax(i) = M_PI; 

   qmin(i) = -M_PI; 

  } 

 } else { 

  // Get joint limits from the joint limiter 

  jlmeth = jl->methods()-

>getMethod<void(KDL::JntArray*,KDL::JntArray*)>("getLims"); 

  assert(jlmeth.ready()); 

  jlmeth(&qmin,&qmax); 

 } 

 

 v.resize(numJoints.get()); 

 go = false; 

 return true; 

} 

 

 

void SSL::InversePosKinematics::updateHook() 

{ 

 localdesframe = DesiredFrame.Get(); 

 

 if ( (!go) && (localdesframe!=(KDL::Frame())) ) 

  go = true; 

 

 if ( go && CurrentJointPose.Get().size() ) 

 { 

 

  for(int i=0; i<numJoints.get(); i++) 

   jntarr(i) = CurrentJointPose.Get()[i]; 

  

  // Use the inverse kinematics solver to update the desired joint pose 

  iksolver->CartToJnt(jntarr,DesiredFrame.Get(),q); // returns < 0 if it doesn't 

converge 

 

  // Divergence check (if the current position is closer to the 

  // desired pose than the IK solution is, disregard the IK 

  // solution and just stay where we are) 

  fksolver->JntToCart(q,solnframe); 

  error = diff(localdesframe, solnframe); 

  v[0] = error.vel.Norm() + error.rot.Norm();      // This could stand to be 

tuned. Right now 

  error = diff(localdesframe, CurrentFrame.Get()); // 1 meter of position error 

is considered 

  v[1] = error.vel.Norm() + error.rot.Norm();      // to be equal to 1 rad 

orientation error. 

  if ( v[1] - v[0] > -1.0e-4 ) 
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  { 

   for( int i = 0; i<numJoints.get(); i++) 

    v[i] = q(i); 

  } 

  else 

  { 

   for( int i = 0; i<numJoints.get(); i++) 

    v[i] = jntarr(i); 

   divergenceEvent(); 

    

  } 

 

 

  NewJointPose.Set(v); 

 } 

  

 return; 

} 

 

 

void SSL::InversePosKinematics::stopHook() 

{ 

 // No preparation needed 

 return; 

} 

 

 

void SSL::InversePosKinematics::cleanupHook() 

{ 

 // Undo whatever got done in configureHook 

 delete armChain; 

 delete iksolver; 

 return; 

} 
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src/logger.cpp  
#include <logger.h> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::FileLogger ) 

#endif 

 

 

 SSL::FileLogger::FileLogger(std::string name)  

  : TaskContext(name, PreOperational),  

    numLogs("numLogs","number of log files"), 

    Incoming("Incoming",50) 

 { 

  // Add the attributes and ports and stuff 

  this->properties()->addProperty(&numLogs); 

  this->ports()->addPort(&Incoming, "Incoming"); 

  pArr = NULL; 

 } 

 

 

 

 bool SSL::FileLogger::configureHook() 

 { 

  pArr = new FILE*[numLogs.get()+1]; 

  pArr[0] = NULL; // There is no log zero 

  for( int i = 1; i <= numLogs.get(); i++) 

  { 

   sprintf( local_element.c_str, "log%d.dat", i); // uses local_element to 

store filename just for a moment 

   pArr[i] = fopen(local_element.c_str,"w"); 

   if( NULL == pArr[i] ) 

    return false; 

  } 

  //fprintf(pFile, "Start of log\n"); 

  return true; 

 } 

 

 

 

 bool SSL::FileLogger::startHook() 

 { 

  return true; 

 } 

 

 

 void SSL::FileLogger::updateHook() 

 { 

  while ( Incoming.size() ) // while messages await in buffer 

  { 

   Incoming.Pop(local_element); 

   //printf(" Log index %d\n",local_element.index); 

   if( (0<local_element.index) && (numLogs.get()>=local_element.index) ) 

    fprintf(pArr[local_element.index], "%s\n", 

local_element.c_str); 

  } 

 } 

 

 

 void SSL::FileLogger::stopHook() 

 { 

   

 } 
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 void SSL::FileLogger::cleanupHook() 

 { 

  for( int i = 1; i <= numLogs.get(); i++) 

  { 

   fflush(pArr[i]); 

   fclose(pArr[i]); 

  } 

  delete pArr; 

 } 

 



 

 140 

 

src/messagehandler.cpp 
#include <messagehandler.h> 

 

//Only need this if we're printing KDL frames for testing/debugging 

//#include <kdl/frames_io.hpp> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::MessageHandler ) 

#endif 

 

 

#define FLOATSIZE 4 // float size = 4 bytes 

 

 

 SSL::MessageHandler::MessageHandler(std::string name) : 

  TaskContext(name, PreOperational), 

  IncomingMessage("IncomingMessage",20), 

  OutgoingMessage("OutgoingMessage",20), 

  Logger("Logger",50), 

  CartesianPose("CartesianPose"), 

  SetPointPose("SetPointPose"), 

  JointPose("JointPose"), 

  JointTemperature("JointTemperature"), 

  DriveValue("DriveValue") 

 { 

  // Add the attributes and ports and stuff 

  this->ports()->addPort( &IncomingMessage, "IncomingMessage"); 

  this->ports()->addPort( &OutgoingMessage, "OutgoingMessage"); 

  this->ports()->addPort( &Logger, "Logger"); 

  this->ports()->addPort( &CartesianPose, "CartesianPose" ); 

  this->ports()->addPort( &SetPointPose, "SetPointPose" ); 

  this->ports()->addPort( &JointPose, "JointPose" ); 

  this->ports()->addPort( &JointTemperature, "JointTemperature" ); 

  this->ports()->addPort( &DriveValue, "DriveValue" ); 

 } 

 

 

 

 

 bool SSL::MessageHandler::configureHook() 

 { 

  /* Find all of our peers and grab the necessary commands/methods. 

   * Some of these are optional and only produce a warning if not 

   * found. 

   */ 

 

  // Find the moveTo command in peer PathGenerator 

  ptr = getPeer("PathGenerator"); 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Error << "MessageHandler could not 

find peer PathGenerator.\n"; 

   return false; 

  } 

  cmd_moveTo = ptr->commands()->getCommand<bool(KDL::Frame, double)>("moveTo"); 

  methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

  if(!cmd_moveTo.ready() || !methPG_reset.ready()) 

   return false; 

 

 

  // Find the start and stop methods in peer Robot 

  ptr = getPeer("Robot"); 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Error << "MessageHandler could not 
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find peer Robot" << RTT::Logger::endl; 

   return false; 

  } 

  meth_roboStart = ptr->methods()->getMethod<bool(void)>("start"); 

  if(!meth_roboStart.ready()) 

   return false; 

  meth_roboStop = ptr->methods()->getMethod<bool(void)>("stop"); 

  if(!meth_roboStop.ready()) 

   return false; 

 

 

  // Find workspace limiter, if present.  Otherwise, skip it. 

  ptr = getPeer("WsCartLimiter"); 

  if ( NULL != ptr) 

  { 

   handleWsCartLimit = ptr->events()-

>setupConnection("WorkSpaceCartLimitEvent").callback( this, 

&SSL::MessageHandler::WsCartLimitCallback, this->engine()->events() ).handle(); 

   if( handleWsCartLimit.ready() ) 

    handleWsCartLimit.connect(); 

   else 

    RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler 

found WsCartLimiter, but couldn't find limit event!" << RTT::Logger::endl; 

   if( 0 == handleWsCartLimit) 

    RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler 

couldn't connect to ws limit event." << RTT::Logger::endl; 

  } else { 

   RTT::Logger::log() << RTT::Logger::Warning << "WsCartLimiter not found 

among MessageHandler's peers." << RTT::Logger::endl; 

  } 

 

 

  // Find joint limiter, if present.  Otherwise, skip it. 

  ptr = getPeer("JointLimiter"); 

  if ( NULL != ptr) 

  { 

   handleJointLimit = ptr->events()-

>setupConnection("JointLimitEvent").callback( this, 

&SSL::MessageHandler::JointLimitCallback, this->engine()->events() ).handle(); 

   if( handleJointLimit.ready() ) 

    handleJointLimit.connect(); 

   else 

    RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler 

found JointLimiter, but couldn't find limit event!" << RTT::Logger::endl; 

   if( 0 == handleJointLimit) RTT::Logger::log() << RTT::Logger::Warning 

<< "MessageHandler couldn't connect to joint limit event." << RTT::Logger::endl; 

  } else { 

   RTT::Logger::log() << RTT::Logger::Warning << "JointLimiter not found 

among MessageHandler's peers." << RTT::Logger::endl; 

  } 

 

 

  // Find inverse kinematics if present.  Otherwise, skip it. 

  ptr = getPeer("InvKin"); 

  if ( NULL != ptr) 

  { 

   handleJointLimit = ptr->events()-

>setupConnection("InvKinDivEvent").callback( this, 

&SSL::MessageHandler::InvKinDivCallback, this->engine()->events() ).handle(); 

   if( handleJointLimit.ready() ) 

    handleJointLimit.connect(); 

   else 

    RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler 

found InvKin, but couldn't find divergence event!" << RTT::Logger::endl; 

   if( 0 == handleJointLimit) RTT::Logger::log() << RTT::Logger::Warning 

<< "MessageHandler couldn't connect to InvKin divergence event." << RTT::Logger::endl; 

  } else { 

   RTT::Logger::log() << RTT::Logger::Warning << "InvKin not found among 

MessageHandler's peers." << RTT::Logger::endl; 

  } 
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  // Find control switch, if present.  Otherwise, skip it. 

  ptr = getPeer("cSwitch"); 

  if ( NULL != ptr) 

  { 

   handle_switchCM = ptr->attributes()->getAttribute<int>("mode"); 

   if( !handle_switchCM->ready() ) 

    RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler 

found cSwitch, but couldn't find mode attribute!" << RTT::Logger::endl; 

  } else { 

   RTT::Logger::log() << RTT::Logger::Warning << "cSwitch not found among 

MessageHandler's peers." << RTT::Logger::endl; 

  } 

 

 

  // Find the moveTo command in peer JointGenerator, if present 

  ptr = getPeer("JointGenerator"); 

  jntC_avail = true; 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler could not 

find peer JointGenerator.\n"; 

   jntC_avail = false; 

  } else { 

   cmd_jntMoveTo = ptr->commands()->getCommand<bool(std::vector<double>, 

double)>("moveTo"); 

   methJG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

   if(!cmd_jntMoveTo.ready() || !methJG_reset.ready()) 

    jntC_avail = false; 

  } 

 

  if( !jntC_avail ) 

   RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler could not 

establish joint control.\n"; 

 

 

 

  // Find the executeSeq command in peer MultiMan, if present 

  ptr = getPeer("MultiMan"); 

  multipoint_avail = true; // prove otherwise 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler could not 

find peer MultiMan.\n"; 

   multipoint_avail = false; 

  } else { 

   cmd_execSeq = ptr->commands()->getCommand<bool(void)>("execSequence"); 

   meth_stopSeq = ptr->methods()->getMethod<void(void)>("haltSequence"); 

   if(!cmd_execSeq.ready() || !meth_stopSeq.ready()) 

    multipoint_avail = false; 

   meth_setVP = ptr->methods()->getMethod< bool(KDL::Frame,double,char) 

>("viaPointSet"); 

   meth_clearVP = ptr->methods()->getMethod< void(void) >("viaClear"); 

   if(!meth_setVP.ready() || !meth_clearVP.ready() ) 

    multipoint_avail = false; 

  } 

 

 

 

  // Find the executeSeq command in peer MultiManJnt, if present 

  ptr = getPeer("MultiManJnt"); 

  multipoint_avail = true; // prove otherwise 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler could not 

find peer MultiManJnt.\n"; 

   multipoint_avail = false; 

  } else { 

   cmd_jntExecSeq = ptr->commands()-

>getCommand<bool(void)>("execSequence"); 
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   meth_jntStopSeq = ptr->methods()-

>getMethod<void(void)>("haltSequence"); 

   meth_jntSetVP = ptr->methods()->getMethod< 

bool(std::vector<double>,double,char) >("viaPointSet"); 

   meth_jntClearVP = ptr->methods()->getMethod< void(void) >("viaClear"); 

  } 

 

 

  // Find the recalibrateJoints method in peer Robot, if present 

  ptr = getPeer("Robot"); 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler could not 

find peer Robot.\n"; 

  } else { 

   meth_recalJoints = ptr->methods()->getMethod< bool(std::vector<double>) 

>("recalibrateJoints"); 

  } 

   

 

  // All outgoing messages are 31 bytes 

  outgoingmessage.size = 31; 

 

  return true; 

 } 

 

 

 

 bool SSL::MessageHandler::startHook() 

 { 

  dblarr = new double[7]; 

  floatarr = new float[7]; 

  localLogElement.index = 1; 

  WsCartLimit = 0; 

  JointLimit = 0; 

  InvKinDiv = 0; 

  havegoal = false; 

 

  logPose = -1; // Logs synchronized here.  Could stagger 

  logSP =   -1; // them if it's too much at once. 

  logJnt =  -1;  

  logDrive= -1; 

 

  localJnt.resize(10); // oversized 

  goal_jnt.resize(6); // TEMPORARY - 6DOF shouldn't be hardcoded 

  //sendNull('R','D'); 

 

  goal_time = 0.0; 

 

  bootingup = false; 

 

  return true; 

 } 

 

 

 

 void SSL::MessageHandler::logOutgoing() // not equipped for floats 

 { 

  if (Logger.ready()) 

  { 

   snprintf( localLogElement.c_str, 99, "[%010.4f] OUT: %s", 

RTT::TimeService::Instance()->secondsSince(RTT::Logger::log().getReferenceTime()), 

outgoingmessage.array ); 

   localLogElement.index = 4; 

   Logger.Push(localLogElement); 

  } 

  return; 

 } 
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 void SSL::MessageHandler::updateHook() 

 { 

  // Relay any errors/warnings to client 

  if (1 == WsCartLimit) 

  { 

   strcpy( outgoingmessage.array, "ER21 Work space limit.\0"); 

   OutgoingMessage.Push(outgoingmessage); 

   logOutgoing(); 

   WsCartLimit++; 

  } 

  if (1 == JointLimit) 

  { 

   strcpy( outgoingmessage.array, "WN12 Joint limit.\0"); 

   OutgoingMessage.Push(outgoingmessage); 

   logOutgoing(); 

   JointLimit++; 

  } 

  if (1 == InvKinDiv) 

  { 

   strcpy( outgoingmessage.array, "WN22 Inv Kin Divergence.\0"); 

   OutgoingMessage.Push(outgoingmessage); 

   logOutgoing(); 

   InvKinDiv++; 

  } 

 

  if(bootingup) 

  { 

   methPG_reset(); 

   bootingup = false; 

  } 

 

  // Process any incoming messages from client 

  while( IncomingMessage.size() ) // while messages await in the buffer 

  { 

   // Retrieve the next message and verify size 

   IncomingMessage.Pop(receivedmessage); 

   if (receivedmessage.size < 30) 

   { 

    strcpy( outgoingmessage.array, "ER01 Msg XX undersized.\0"); 

    outgoingmessage.array[9] = receivedmessage.array[0]; 

    outgoingmessage.array[10] = receivedmessage.array[1]; 

    OutgoingMessage.Push(outgoingmessage); 

    logOutgoing(); 

    continue; 

   } 

   // For now we'll just ignore it if the client didn't send 

   // a thirty-first byte 

   if (30==receivedmessage.size) 

    receivedmessage.array[30] = 0; 

   unpackFloats(); 

 

   // Log the message if possible 

   if ( Logger.ready() ) 

   { 

    snprintf( localLogElement.c_str, 99, "[%010.4f] MSG: %c%c %.4f 

%.4f %.4f %.4f %.4f %.4f %.4f (%d)", receivedmessage.timestamp, 

receivedmessage.array[0],receivedmessage.array[1], dblarr[0], dblarr[1], dblarr[2], 

dblarr[3], dblarr[4], dblarr[5], dblarr[6], receivedmessage.array[30]); 

 

    //snprintf( &(localLogElement.c_str[21]), 79, "%.4f %.4f %.4f 

%.4f %.4f %.4f %.4f", dblarr[0], dblarr[1], 

    //    dblarr[2], dblarr[3], dblarr[4], 

dblarr[5], dblarr[6]); 

    localLogElement.c_str[99] = NULL; // just in case 

    localLogElement.index = 1; 

 

    Logger.Push(localLogElement); 

   } 

 

   // Process the message 
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   understood = true; // prove otherwise 

   switch( receivedmessage.array[0] ) 

   { 

    case 'B': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'G': // BG - begin motion 

       if( !havegoal || 

!cmd_moveTo(KDL::Frame(goal_rot,goal_vec),goal_time) ) 

       { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd BG rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

        //printf("cmd_moveTo.ready() = 

%d\n", cmd_moveTo.ready()); 

       } else { 

        sendNull('G','B',0); 

       } 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'C': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'M': // CM - Command Mode 

       if( handle_switchCM->ready() && 

jntC_avail ) 

       { 

        methPG_reset(); 

        methJG_reset(); 

        handle_switchCM-

>set((int)(dblarr[0]+0.5)); 

        floatarr[0] = handle_switchCM-

>get(); 

        for (int i=1; i<7; i++) 

         floatarr[i] = 0.0; 

 

        // Stopping a component breaks 

our access to its commands/methods, 

        // so we must repeat the 

initialization procedure (with less robust 

        // error checking since things 

are presumably as they should be if 

        // we made it through the 

configureHook): 

        switch(handle_switchCM->get()) 

        { 

         case 0: 

          break; 

         case 1: 

           

          // Find the moveTo 

command in peer JointGenerator 

          ptr = 

getPeer("JointGenerator"); 

          if(NULL == ptr) 

          { 

          

 RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler could not find peer 

JointGenerator.\n"; 

           jntC_avail 

= false; 

          } else { 

          

 cmd_jntMoveTo = ptr->commands()->getCommand<bool(std::vector<double>, 

double)>("moveTo"); 



 

 146 

 

          

 methJG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

          } 

          break; 

         case 2: 

          // Find the moveTo 

command in peer PathGenerator 

          ptr = 

getPeer("PathGenerator"); 

          if(NULL == ptr) 

          { 

          

 RTT::Logger::log() << RTT::Logger::Error << "MessageHandler could not find peer 

PathGenerator.\n"; 

          } else { 

           cmd_moveTo 

= ptr->commands()->getCommand<bool(KDL::Frame, double)>("moveTo"); 

          

 methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

          } 

 

          // Find inverse 

kinematics 

          ptr = 

getPeer("InvKin"); 

          if ( NULL != ptr) 

          { 

          

 handleJointLimit = ptr->events()->setupConnection("InvKinDivEvent").callback( 

this, &SSL::MessageHandler::InvKinDivCallback, this->engine()->events() ).handle(); 

           if( 

handleJointLimit.ready() ) 

           

 handleJointLimit.connect(); 

           else 

           

 RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler found InvKin, but 

couldn't find divergence event!" << RTT::Logger::endl; 

           if( 0 == 

handleJointLimit) RTT::Logger::log() << RTT::Logger::Warning << "MessageHandler 

couldn't connect to InvKin divergence event." << RTT::Logger::endl; 

          } 

 

          break; 

         default: 

          RTT::Logger::log() 

<< RTT::Logger::Warning << "MessageHandler doesn't know how to repair any 

commands/methods that may have been broken by CM switch." << RTT::Logger::endl; 

          break; 

        } 

 

        sendFloats('M','C',0); 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd CM rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'G': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'L': // GL - set goal state 

 

       // position vector 
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       goal_vec = KDL::Vector(dblarr[0], 

dblarr[1], dblarr[2]); // x,y,z position 

 

       // normalize the quaternion before 

accepting it 

       angle = 

sqrt(dblarr[3]*dblarr[3]+dblarr[4]*dblarr[4]+dblarr[5]*dblarr[5]+dblarr[6]*dblarr[6]); 

// this is not really an angle, but I see no reason to declare another variable 

       dblarr[3] = dblarr[3]/angle; 

       dblarr[4] = dblarr[4]/angle; 

       dblarr[5] = dblarr[5]/angle; 

       dblarr[6] = dblarr[6]/angle; 

       goal_rot = 

KDL::Rotation::Quaternion(dblarr[3], dblarr[4], dblarr[5], dblarr[6]); // quaternion 

w,x,y,z 

       //std::cout << " Goal rot: " << std::endl 

<< KDL::Frame(goal_rot,goal_vec) << std::endl; 

 

       goal_time = 0.0; // go there as fast as 

possible 

 

       for ( int i = 0; i < 7; i++ ) 

        floatarr[i] = dblarr[i]; 

       sendFloats('L','G',0); 

       //printf("\n Received goal: %f, %f, %f;\n   

%f, %f, %f, 

%f\n",dblarr[0],dblarr[1],dblarr[2],dblarr[3],dblarr[4],dblarr[5],dblarr[6]); 

 

       havegoal = true; 

 

       break; 

      case 'T': // GT - set Goal pose with travel Time 

        

       // position vector 

       goal_vec = KDL::Vector(dblarr[0], 

dblarr[1], dblarr[2]); // x,y,z position 

 

       // orientation 

       goal_rot = 

KDL::Rotation::RPY(dblarr[3],dblarr[4],dblarr[5]); // roll, pitch, yaw 

 

       // travel time 

       if( 0.0 > dblarr[6] ) 

        dblarr[6] = 0.0; 

       goal_time = dblarr[6]; 

 

       //std::cout << " Goal pose: " << 

std::endl << KDL::Frame(goal_rot,goal_vec) << std::endl; 

       //std::cout << " Goal time: " << 

goal_time << std::endl; 

 

       // Send confirmation to client 

       for ( int i = 0; i < 7; i++ ) 

        floatarr[i] = dblarr[i]; 

       sendFloats('T','G',0); 

 

       havegoal = true; 

       break; 

      default: 

       understood = false; 

       break;   

     } 

     break; 

    case 'j': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'B': // jB - Joint space Begin goal seek 

       if (jntC_avail) 

       { 

        bool temp = 

cmd_jntMoveTo(goal_jnt,0); 
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        sendNull('B','j',0); 

        printf(" Joint command: %f %f %f 

%f (size %d) (ret %c)\n", goal_jnt[0], goal_jnt[1], goal_jnt[2], goal_jnt[3], 

goal_jnt.size(), (1==temp)?'1':'0'); 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd jB rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      case 'C': // jC - Clear Joint space sequence 

       if( meth_jntClearVP.ready() ) 

       { 

        meth_jntClearVP(); 

        sendNull('C','j',0); 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd jC rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      case 'E': // jE - Execute Joint space sequence 

       if( !cmd_jntExecSeq() ) 

       { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd jE rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } else sendNull('E','j',0); 

       break; 

      case 'G': // jG - Joint space Goal 

       if (jntC_avail) 

       { 

        for (int i=0; i<6; i++) 

        { 

         goal_jnt[i] = dblarr[i]; 

         floatarr[i] = dblarr[i]; 

        } 

        sendFloats('G','j',0); 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd jG rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      case 'P': // jP - Joint Position request 

       localJnt = JointPose.Get(); 

       for(int i=0; i<localJnt.size(); i++) 

        if (i < 7) 

         floatarr[i] = localJnt[i]; 

       for(int i=localJnt.size(); i<7; i++) 

        floatarr[i] = 0.0; 

       sendFloats('P','j',0); 

       break; 

      case 'R': // jR - Joint space Reset 

       // This command is actually redundant 

since ST resets both path generators 

       if (jntC_avail) 

       { 

        methJG_reset(); 

        sendNull('R','j',0); 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd jR rejected\0"); 
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 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      case 'V': // jV - specify Joint space Via point 

       for (int i=0; i<6; i++) 

       { 

        localJnt[i] = dblarr[i]; // 

localJnt is too big but MultiManJnt ignores the extra entries 

        floatarr[i] = dblarr[i]; 

       } 

       floatarr[6] = dblarr[6]; // minimum 

duration 

 

       // Specify goal and minimum duration of 

motion 

       printf(" Received setpoint for index 

%d\n", receivedmessage.array[30]); // TEMPORARY 

       if( !meth_jntSetVP(localJnt, dblarr[6], 

receivedmessage.array[30]) ) 

       { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd jV rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } else 

sendFloats('V','j',receivedmessage.array[30]); 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'O': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'N': // ON - start robot 

       methPG_reset(); // Makes sure there are 

no old commands trying to execute 

       if ( meth_roboStart() ) 

       { 

        methPG_reset(); 

        bootingup = true; 

        sendNull('N','O',0); 

       } else  { 

        strcpy( outgoingmessage.array, 

"ER11 Arm did not start\0" ); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      case 'F': // OF - stop robot 

       if( meth_roboStop() ) 

       { 

        sendNull('F','O',0); 

       } else  { 

        strcpy( outgoingmessage.array, 

"ER10 Arm did not stop\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 
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    case 'P': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'S': // PS - request end effector Pose 

       currentFrame = CartesianPose.Get(); 

 

       // Cartesian coordinates: 

       floatarr[0] = currentFrame.p.x(); 

       floatarr[1] = currentFrame.p.y(); 

       floatarr[2] = currentFrame.p.z(); 

 

       // Orientation: 

       // KDL does have a GetQuaternion command, 

but it's not shown 

       // in the API documentation and it 

requires doubles rather 

       // than floats.  Here I use formula 2.89 

from Craig (1989). 

       angle = currentFrame.M.GetRotAngle(axis); 

       sinhalfang = sin(angle/2); 

       floatarr[3] = axis.x()*sinhalfang; 

       floatarr[4] = axis.y()*sinhalfang; 

       floatarr[5] = axis.z()*sinhalfang; 

       floatarr[6] = cos(angle/2); 

 

       sendFloats('S','P',0); 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'R': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'C': // RC - Recalibrate joints 

       vec.resize(6); // TEMPORARY - shouldn't 

be hardcoded to six 

       for( int i=0; i<6; i++) 

        vec[i] = dblarr[i]; 

       meth_recalJoints(vec);  

       // to do: need to reply 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'S': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'T': // ST - Stop 

       methPG_reset(); 

       if( jntC_avail ) 

        methJG_reset(); 

       if( multipoint_avail ) 

        meth_stopSeq(); 

       meth_jntStopSeq(); 

       sendNull('T','S',0); 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'T': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'M': // TM - Temperature 

       localTemperature = 

JointTemperature.Get(); 
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       for(int i=0; i<localTemperature.size(); 

i++) 

        if (i < 7) 

         floatarr[i] = 

localTemperature[i]; 

       for(int i=localTemperature.size(); i<7; 

i++) 

        floatarr[i] = -1000.0; 

       sendFloats('M','T',0); 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    case 'V': 

     switch( receivedmessage.array[1] ) 

     { 

      case 'C': // VC - Clear Via points (really just 

resets the lastIndex count) 

       if( multipoint_avail) 

       { 

        meth_clearVP(); 

        sendNull('P','V',0); 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd VC rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      case 'E': // VE - Execute Via point trajectory 

       if( !multipoint_avail || !cmd_execSeq() ) 

       { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd VE rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } else sendNull('E','V',0); 

       break; 

      case 'P': // VP - specify Via Point 

       if( multipoint_avail ) 

       { 

        // position vector 

        goal_vec = KDL::Vector(dblarr[0], 

dblarr[1], dblarr[2]); // x,y,z position 

 

        // orientation 

        goal_rot = 

KDL::Rotation::RPY(dblarr[3],dblarr[4],dblarr[5]); // roll, pitch, yaw 

 

        // Specify goal frame and minimum 

duration of motion 

        printf(" Received setpoint for 

index %d\n", receivedmessage.array[30]); // TEMPORARY 

        if( 

!meth_setVP(KDL::Frame(goal_rot,goal_vec), dblarr[6], receivedmessage.array[30]) ) 

        { 

         strcpy( 

outgoingmessage.array, "ER20 Cmd VP rejected\0"); 

        

 OutgoingMessage.Push(outgoingmessage); 

         logOutgoing(); 

        } else { 

         // Copy back the goal 

position 

         floatarr[0]=goal_vec.x(); 

floatarr[1]=goal_vec.y(); floatarr[2]=goal_vec.z(); 
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         // ...and orientation 

         goal_rot.GetRPY( 

dblarr[0], dblarr[1], dblarr[2]); 

         floatarr[3]=dblarr[0]; 

floatarr[4]=dblarr[1]; floatarr[5]=dblarr[2]; 

 

         // ...and specified 

minimum duration 

         floatarr[6] = dblarr[6]; 

 

        

 sendFloats('P','V',receivedmessage.array[30]); 

        } 

       } else { 

        strcpy( outgoingmessage.array, 

"ER20 Cmd VP rejected\0"); 

       

 OutgoingMessage.Push(outgoingmessage); 

        logOutgoing(); 

       } 

       break; 

      default: 

       understood = false; 

       break; 

     } 

     break; 

    default: 

     understood = false; 

   } 

 

   if (!understood) 

   { 

    strcpy( outgoingmessage.array, "ER00 Cmd XX not understood\0" 

); 

    outgoingmessage.array[9] = receivedmessage.array[0]; 

    outgoingmessage.array[10] = receivedmessage.array[1]; 

    OutgoingMessage.Push(outgoingmessage); 

    logOutgoing(); 

   } 

  } 

 

  // Periodically log pose and setpoint if possible 

  if ( Logger.ready() ) 

  { 

   if( 0 == logPose ) 

   { 

    currentFrame = CartesianPose.Get(); 

   

 currentFrame.M.GetQuaternion(dblarr[0],dblarr[1],dblarr[2],dblarr[3]); 

    snprintf( localLogElement.c_str, 99, "[%010.4f] POS: %.6f %.6f 

%.6f %.6f %.6f %.6f %.6f", RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()),currentFrame.p.x(),currentFrame.p

.y(),currentFrame.p.z(),dblarr[0],dblarr[1],dblarr[2],dblarr[3]); 

    localLogElement.c_str[99] = NULL; // just in case 

    localLogElement.index = 2; 

    Logger.Push(localLogElement); 

   } 

   logPose = (logPose+1)%5; 

 

   if( (0==logSP)&&(SetPointPose.ready()) ) 

   { 

    currentFrame = SetPointPose.Get(); 

   

 currentFrame.M.GetQuaternion(dblarr[0],dblarr[1],dblarr[2],dblarr[3]); 

    snprintf( localLogElement.c_str, 99, "[%010.4f] SP: %.6f %.6f 

%.6f %.6f %.6f %.6f %.6f", RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()), 

currentFrame.p.x(),currentFrame.p.y(),currentFrame.p.z(),dblarr[0],dblarr[1],dblarr[2]

,dblarr[3]); 

    localLogElement.c_str[99] = NULL; // just in case 

    localLogElement.index = 3; 
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    Logger.Push(localLogElement); 

   } 

   logSP = (logSP+1)%5; 

 

   if( (0==logJnt)&&(JointPose.ready()) ) 

   { 

    localJnt = JointPose.Get(); 

    rc = snprintf( localLogElement.c_str, 99, "[%010.4f] Jnt:", 

RTT::TimeService::Instance()->secondsSince(RTT::Logger::log().getReferenceTime())); 

//, localJnt[0], localJnt[1], localJnt[2], localJnt[3], localJnt[4], localJnt[5]); 

    for( int i=0; i<JointPose.Get().size(); i++) 

     rc += snprintf( &(localLogElement.c_str[rc]), 99-rc, " 

%.6f", localJnt[i]); 

    localLogElement.index = 5; 

    Logger.Push(localLogElement); 

   } 

   logJnt = (logJnt+1)%5; 

 

   if( (0==logDrive)&&(DriveValue.ready()) ) 

   { 

    vec = DriveValue.Get(); 

    rc = snprintf( localLogElement.c_str, 99, "[%010.4f] Drv:", 

RTT::TimeService::Instance()->secondsSince(RTT::Logger::log().getReferenceTime())); 

//, localJnt[0], localJnt[1], localJnt[2], localJnt[3], localJnt[4], localJnt[5]); 

    for( int i=0; i<vec.size(); i++) 

     rc += snprintf( &(localLogElement.c_str[rc]), 99-rc, " 

%.6f", vec[i]); 

    localLogElement.index = 6; 

    Logger.Push(localLogElement); 

   } 

   logDrive = (logDrive+1)%5; 

  } 

 

 } 

 

 

 

 void SSL::MessageHandler::stopHook() 

 { 

  delete dblarr; 

  delete floatarr; 

 } 

 

 

 

 void SSL::MessageHandler::cleanupHook() 

 { 

  // Clean things up 

 } 

 

 

 bool SSL::MessageHandler::unpackFloats() 

 { 

  // NOTE this function unpacks the floats into dblarr, 

  // not floatarr.  Doubles are used internally and 

  // floats only for communication with the outside 

  // world. 

 

  // This function should be called only from within updateHook. 

  for (int i = 0; i < 7; i++) 

  { 

   pointer = receivedmessage.array + 2 + FLOATSIZE*i; 

   dblarr[i] = *((float*)pointer); 

  } 

  return true; 

 } 

 

 bool SSL::MessageHandler::sendFloats(char c1, char c2, unsigned char index) 

 { 

  outgoingmessage.array[0] = c1; 

  outgoingmessage.array[1] = c2; 
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  memcpy( &(outgoingmessage.array[2]), floatarr, 7*4 ); 

  outgoingmessage.array[30] = index; 

  OutgoingMessage.Push(outgoingmessage); 

  //logOutgoingF(); 

  return true; 

 } 

 

 bool SSL::MessageHandler::sendNull(char c1, char c2, unsigned char index) 

 { 

  outgoingmessage.array[0] = c1; 

  outgoingmessage.array[1] = c2; 

  for ( int i = 2; i < 30; i++ ) 

   outgoingmessage.array[i] = NULL; 

  outgoingmessage.array[30] = index; 

  OutgoingMessage.Push(outgoingmessage); 

  //logOutgoingF(); 

  return true; 

 } 

 

 bool SSL::MessageHandler::WsCartLimitCallback() 

 { 

  WsCartLimit = (WsCartLimit + 1)%11; // modulo 11 to avoid bombarding client 

  return false; // ignored 

 } 

 

 bool SSL::MessageHandler::JointLimitCallback() 

 { 

  JointLimit = (JointLimit + 1)%11; 

  return false; // ignored 

 } 

 

 bool SSL::MessageHandler::InvKinDivCallback() 

 { 

  InvKinDiv = (InvKinDiv + 1)%11; 

  return false; // ignored 

 } 
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src/multipoint.cpp 
#include <multipoint.h> 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::MultipointManager ) 

ORO_LIST_COMPONENT_TYPE( SSL::MultipointManagerJnt ) 

#endif 

 

#define VIASIZE 20 

 

 

//Only need this if we're printing KDL frames for testing/debugging 

//#include <kdl/frames_io.hpp> 

 

 

 

/************************************************************* 

 *           Cartesian Space Multipoint Manager              * 

 *************************************************************/ 

 

SSL::MultipointManager::MultipointManager(std::string name) : 

 TaskContext(name, PreOperational), 

 //viaPoints("viaPoints"), 

 //viaTimes("viaTimes"), 

 //lastIndex("lastIndex"), 

 execSequence("execSequence", &SSL::MultipointManager::execSeqFunc, 

&SSL::MultipointManager::execSeqFinished, this), 

 haltSequence("haltSequence", &SSL::MultipointManager::haltSeqFunc, this), 

 viaPointSet("viaPointSet", &SSL::MultipointManager::viaPointFunc, this), 

 viaClear("viaClear", &SSL::MultipointManager::viaClearFunc, this), 

 CurrentPose("CurrentPose") 

{ 

 // Add the attributes and ports 

 //this->properties()->addProperty( &maxSize ); 

 this->commands()->addCommand( &execSequence, "beginSequence" ); 

 this->methods()->addMethod( &haltSequence, "haltSequence" ); 

 this->methods()->addMethod( &viaPointSet, "viaPointSet", "frame", "goal", 

"time","minimum duration of motion", "index", "index"); 

 this->methods()->addMethod( &viaClear, "viaClear" ); 

 this->ports()->addPort( &CurrentPose, "CurrentPose" ); 

 //this->attributes()->addAttribute( &viaPoints ); 

 //this->attributes()->addAttribute( &viaTimes ); 

 //this->attributes()->addAttribute( &lastIndex ); 

} 

 

 

bool SSL::MultipointManager::viaPointFunc(KDL::Frame frame, double time, char index) 

{ 

 if ( (index < VIASIZE) && !busy ) 

 { 

  viaPoints[index] = frame; 

  viaTimes[index] = time; 

  viaReady[index] = true; 

  return true; 

 } 

 return false; 

} 

 

 

void SSL::MultipointManager::viaClearFunc() 

{ 

 for(int i=0; i<VIASIZE; i++) 

  viaReady[i] = false; 

 return; 

} 
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bool SSL::MultipointManager::execSeqFunc() 

{ 

 if (!executing) 

 { 

  busy = true; 

  for(int i=0; i<VIASIZE; i++) 

  { 

   if(viaReady[i]) 

   { 

    localViaPoints[i] = viaPoints[i]; 

    localViaTimes[i] = viaTimes[i]; 

   } else { 

    localLastIndex = i-1; 

    break; 

   } 

  } 

  busy = false; 

  currentIndex = 1; 

  executing = (0<=localLastIndex); 

  if(executing) 

   cmd_moveTo(localViaPoints[0], localViaTimes[0]); 

  return executing; 

 } else { // still executing a previous sequence 

  return false; 

 } 

} 

 

bool SSL::MultipointManager::execSeqFinished() 

{ 

 return ( !executing && cmd_moveTo.done() ); 

} 

 

bool SSL::MultipointManager::haltSeqFunc() 

{ 

 executing = false; 

 return true; 

} 

 

 

bool SSL::MultipointManager::configureHook() 

{ 

 /*viaPoints.get().resize(20); 

 viaTimes.get().resize(20); 

 lastIndex.set(0);*/ 

 viaPoints = new KDL::Frame[VIASIZE]; 

 viaTimes = new double[VIASIZE]; 

 

 localViaPoints = new KDL::Frame[VIASIZE]; 

 localViaTimes = new double[VIASIZE]; 

 localLastIndex = 0; 

 viaReady = new bool[VIASIZE]; 

 

 

 // Find the moveTo command in peer PathGenerator 

 RTT::TaskContext* ptr = getPeer("PathGenerator"); 

 if(NULL == ptr) 

 { 

  RTT::Logger::log() << RTT::Logger::Error << "MultipointManager could not find 

peer PathGenerator.\n"; 

  return false; 

 } 

 cmd_moveTo = ptr->commands()->getCommand<bool(KDL::Frame, double)>("moveTo"); 

 methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

 if(!cmd_moveTo.ready() || !methPG_reset.ready()) 

  return false; 

 

 return true; 

} 
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bool SSL::MultipointManager::findPG() 

{ 

 // Find the moveTo command in peer PathGenerator 

 RTT::TaskContext* ptr = getPeer("PathGenerator"); 

 if(NULL == ptr) 

 { 

  RTT::Logger::log() << RTT::Logger::Error << "MultipointManager could not find 

peer PathGenerator.\n"; 

  return false; 

 } 

 cmd_moveTo = ptr->commands()->getCommand<bool(KDL::Frame, double)>("moveTo"); 

 methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

 if(!cmd_moveTo.ready() || !methPG_reset.ready()) 

  return false; 

 

 return true; 

} 

 

 

bool SSL::MultipointManager::startHook() 

{ 

 executing = false; 

 busy = false; 

 count = 0; 

 

 for( int i=0; i<VIASIZE; i++) 

 { 

  viaReady[i] = false; 

 } 

 

 return true; 

} 

 

 

void SSL::MultipointManager::updateHook() 

{ 

 if (executing) 

 { 

  if (cmd_moveTo.done()) // If the path planner has reached the current via 

point 

  { 

 

   if (currentIndex > localLastIndex) 

   { 

    // If we're out of via points, stop. 

    executing = false; 

   } else { 

 

    // Check how far we are from the current via point. 

    error = diff(localViaPoints[currentIndex-1], 

CurrentPose.Get()); 

    normerr = error.vel.Norm() + error.rot.Norm(); 

 

 

    if ( (0.002 > normerr) && 

cmd_moveTo(localViaPoints[currentIndex], localViaTimes[currentIndex]) ) 

    { 

     // If we're within tolerance of the previous via point, 

move on to the next. 

     printf("\nmoving to index %d\n",currentIndex); // 

TEMPORARY 

     currentIndex++; 

     count = 0; 

    } else if (8<count++)  { 

     if ( 0.1 > normerr ) 

     { 

      // If we've been trying to get there for a few 

cycles but 

      // it didn't quite happen, move on anyway. 

      printf("\nmoving to index %d\n",currentIndex); 

// TEMPORARY 
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      currentIndex++; 

      count = 0; 

     } else { 

      // If we're nowhere near the via point, abort 

the trajectory. 

      //this->warning(); 

      executing = false; 

     } 

    } 

   } 

 

 

  } 

 } else if (!methPG_reset.ready()) // If the path generator gets turned off and 

on, 

  findPG();    // then our access to its commands/methods will break. 

} 

 

 

void SSL::MultipointManager::stopHook() 

{ 

  

} 

 

 

void SSL::MultipointManager::cleanupHook() 

{ 

 // Clean things up 

 delete viaPoints; 

 delete viaTimes; 

 delete viaReady; 

 delete localViaPoints; 

 delete localViaTimes; 

} 

 

 

 

 

 

/************************************************************* 

 *            Joint Space Multipoint Manager                 * 

 *************************************************************/ 

 

 

SSL::MultipointManagerJnt::MultipointManagerJnt(std::string name) : 

 TaskContext(name, PreOperational), 

 execSequence("execSequence", &SSL::MultipointManagerJnt::execSeqFunc, 

&SSL::MultipointManagerJnt::execSeqFinished, this), 

 haltSequence("haltSequence", &SSL::MultipointManagerJnt::haltSeqFunc, this), 

 viaPointSet("viaPointSet", &SSL::MultipointManagerJnt::viaPointFunc, this), 

 viaClear("viaClear", &SSL::MultipointManagerJnt::viaClearFunc, this), 

 CurrentPose("CurrentPose") 

{ 

 // Add the attributes and ports 

 this->commands()->addCommand( &execSequence, "beginSequence" ); 

 this->methods()->addMethod( &haltSequence, "haltSequence" ); 

 this->methods()->addMethod( &viaPointSet, "viaPointSet", "point", "goal", 

"time","minimum duration of motion", "index", "index"); 

 this->methods()->addMethod( &viaClear, "viaClear" ); 

 this->ports()->addPort( &CurrentPose, "CurrentPose" ); 

} 

 

 

bool SSL::MultipointManagerJnt::viaPointFunc(std::vector<double> point, double time, 

char index) 

{ 

 if ( point.size() < CurrentPose.Get().size() ) 

  return false; 

 if ( point.size() > CurrentPose.Get().size() ) 

  point.resize( CurrentPose.Get().size() ); 
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 if ( (index < VIASIZE) && !busy ) 

 { 

  viaPoints[index] = point; 

  viaTimes[index] = time; 

  viaReady[index] = true; 

  return true; 

 } 

 return false; 

} 

 

 

void SSL::MultipointManagerJnt::viaClearFunc() 

{ 

 for(int i=0; i<VIASIZE; i++) 

  viaReady[i] = false; 

 return; 

} 

 

 

bool SSL::MultipointManagerJnt::execSeqFunc() 

{ 

 if (!executing) 

 { 

  busy = true; 

  for(int i=0; i<VIASIZE; i++) 

  { 

   if(viaReady[i]) 

   { 

    localViaPoints[i] = viaPoints[i]; 

    localViaTimes[i] = viaTimes[i]; 

   } else { 

    localLastIndex = i-1; 

    break; 

   } 

  } 

  busy = false; 

  currentIndex = 1; 

  executing = (0<=localLastIndex); 

  if(executing) 

   cmd_moveTo(localViaPoints[0], localViaTimes[0]); 

  return executing; 

 } else { // still executing a previous sequence 

  return false; 

 } 

} 

 

bool SSL::MultipointManagerJnt::execSeqFinished() 

{ 

 return ( !executing && cmd_moveTo.done() ); 

} 

 

bool SSL::MultipointManagerJnt::haltSeqFunc() 

{ 

 executing = false; 

 return true; 

} 

 

 

bool SSL::MultipointManagerJnt::configureHook() 

{ 

 /*viaPoints.get().resize(20); 

 viaTimes.get().resize(20); 

 lastIndex.set(0);*/ 

 //viaPoints = new std::vector<double>[VIASIZE]; 

 viaPoints.resize(VIASIZE); 

 viaTimes = new double[VIASIZE]; 

 

 //localViaPoints = new std::vector<double>[VIASIZE]; 

 localViaPoints.resize(VIASIZE); 

 localViaTimes = new double[VIASIZE]; 

 localLastIndex = 0; 
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 viaReady = new bool[VIASIZE]; 

 

 // Find the moveTo command in peer PathGenerator 

 RTT::TaskContext* ptr = getPeer("JointGenerator"); 

 if(NULL == ptr) 

 { 

  RTT::Logger::log() << RTT::Logger::Error << "MultipointManager could not find 

peer JointGenerator.\n"; 

  return false; 

 } 

 cmd_moveTo = ptr->commands()->getCommand<bool(std::vector<double>, 

double)>("moveTo"); 

 methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

 if(!cmd_moveTo.ready() || !methPG_reset.ready()) 

  return false; 

 

 return true; 

} 

 

 

bool SSL::MultipointManagerJnt::findPG() 

{ 

 // Find the moveTo command in peer PathGenerator 

 RTT::TaskContext* ptr = getPeer("JointGenerator"); 

 if(NULL == ptr) 

 { 

  RTT::Logger::log() << RTT::Logger::Error << "MultipointManager could not find 

peer JointGenerator.\n"; 

  return false; 

 } 

 cmd_moveTo = ptr->commands()->getCommand<bool(std::vector<double>, 

double)>("moveTo"); 

 methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

 if(!cmd_moveTo.ready() || !methPG_reset.ready()) 

  return false; 

 

 return true; 

} 

 

 

bool SSL::MultipointManagerJnt::startHook() 

{ 

 executing = false; 

 busy = false; 

 count = 0; 

 

 for( int i=0; i<VIASIZE; i++) 

 { 

  viaReady[i] = false; 

 } 

 

 return true; 

} 

 

 

void SSL::MultipointManagerJnt::updateHook() 

{ 

 if (executing) 

 { 

  if (cmd_moveTo.done()) // If the path planner has reached the current via 

point 

  { 

 

   if (currentIndex > localLastIndex) 

   { 

    // If we're out of via points, stop. 

    executing = false; 

   } else { 

 

    // Check how far we are from the current via point. 

    normerr = 0; 
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    for( int i=0; i<CurrentPose.Get().size(); i++) 

    { 

     error = (localViaPoints[currentIndex-1])[i] - 

CurrentPose.Get()[i]; 

     normerr += error*error; 

    } 

    normerr = sqrt(normerr); 

 

 

    if ( (0.001 > normerr) && 

cmd_moveTo(localViaPoints[currentIndex], localViaTimes[currentIndex]) ) 

    { 

     // If we're within tolerance of the previous via point, 

move on to the next. 

     printf("\nmoving to index %d\n",currentIndex); // 

TEMPORARY 

     currentIndex++; 

     count = 0; 

    } else if (8<count++)  { 

     if ( 0.05 > normerr ) 

     { 

      // If we've been trying to get there for a few 

cycles but 

      // it didn't quite happen, move on anyway. 

      printf("\nmoving to index %d\n",currentIndex); 

// TEMPORARY 

      currentIndex++; 

      count = 0; 

     } else { 

      // If we're nowhere near the via point, abort 

the trajectory. 

      //this->warning(); 

      executing = false; 

     } 

    } 

   } 

 

 

  } 

 } else if (!methPG_reset.ready()) // If the path generator gets turned off and 

on, 

  findPG();    // then our access to its commands/methods will break. 

} 

 

 

void SSL::MultipointManagerJnt::stopHook() 

{ 

  

} 

 

 

void SSL::MultipointManagerJnt::cleanupHook() 

{ 

 // Clean things up 

 viaPoints.clear(); 

 delete viaTimes; 

 delete viaReady; 

 localViaPoints.clear(); 

 delete localViaTimes; 

} 
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src/shapegens.cpp 
#include <shapegens.h> 

#include <iostream> 

#include <kdl/frames_io.hpp>  

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::SinusoidGen ) 

ORO_LIST_COMPONENT_TYPE( SSL::CircleGen ) 

#endif 

 

 

SSL::SinusoidGen::SinusoidGen(std::string name) :  

 TaskContext(name, PreOperational), 

 K("K",0.1), 

 T("T",10), 

 axis("axis",0), 

 CartesianPosDes("CartesianDesiredPosition"), 

 CartesianPosMeas("CartesianSensorPosition"), 

 printMethod("printMethod", &SinusoidGen::printMethodFunc, this), 

 methReset("resetPosition", &SinusoidGen::resetMethodFunc, this), 

 cmdMoveTo( "moveTo", &SinusoidGen::funcMoveTo, &SinusoidGen::moveDone, this), 

 cmdWave("wave", &SinusoidGen::waveFunc, &SinusoidGen::waveDone, this), 

 cmdEndWave("endWave", &SinusoidGen::endWaveFunc, &SinusoidGen::waveEnded, this) 

{ 

 this->attributes()->addAttribute( &K ); 

 this->attributes()->addAttribute( &T ); 

 this->attributes()->addAttribute( &axis ); 

 this->ports()->addPort( &CartesianPosDes, "CartesianDesiredPosition" ); 

 this->ports()->addPort( &CartesianPosMeas, "CartesianSensorPosition" ); 

 this->methods()->addMethod( &printMethod, "printMethod" ); 

 this->methods()->addMethod( &methReset, "resetPosition" ); 

 this->commands()->addCommand( &cmdMoveTo, "moveTo", "setpoint", "ignored", 

"when", "ignored" ); 

 this->commands()->addCommand( &cmdWave, "wave" ); 

 this->commands()->addCommand( &cmdEndWave, "endWave" ); 

} 

 

 

// For debugging purposes only 

void SSL::SinusoidGen::printMethodFunc() 

{ 

 std::cout << std::endl << cartframe << std::endl; 

 return; 

} 

 

 

bool SSL::SinusoidGen::configureHook() 

{ 

  

 return true; 

} 

 

 

bool SSL::SinusoidGen::startHook() 

{ 

 zero = CartesianPosMeas.Get(); 

 waving = false; 

 stopAtZero = false; 

 

 switch( axis.get() ) 

 { 

  case 0: 

   vec = KDL::Vector(1,0,0); 

   break; 

  case 1: 
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   vec = KDL::Vector(0,1,0); 

   break; 

  case 2: 

   vec = KDL::Vector(0,0,1); 

   break; 

  default: 

   return false; 

   break; 

 } 

 

 return true; 

} 

 

 

void SSL::SinusoidGen::updateHook() 

{ 

 if (waving) 

 { 

  now = RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()); 

  dx_prev = dx; 

  dx = K.get() * sin( 2*M_PI/T.get() * (now - startTime) ); 

  cartframe = zero; 

 

  if (stopAtZero && (dx_prev*dx <= 0)) 

  { 

   waving = false; 

   stopAtZero = false; 

  } else 

   cartframe.p += vec*dx; 

 } 

 CartesianPosDes.Set(cartframe); 

 return; 

} 

 

 

void SSL::SinusoidGen::stopHook() 

{ 

  

 return; 

} 

 

 

void SSL::SinusoidGen::cleanupHook() 

{ 

 // Undo whatever got done in configureHook 

  

 return; 

} 

 

 

bool SSL::SinusoidGen::waveFunc() 

{ 

 if (!waving) 

 { 

  startTime = RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()); 

  zero = CartesianPosMeas.Get(); 

  waving = true; 

  return true; 

 } else return false; 

} 

 

 

bool SSL::SinusoidGen::waveDone() 

{ 

 return true; 

} 

 

 

bool SSL::SinusoidGen::funcMoveTo( KDL::Frame x, double t ) 
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{ 

 // Ignore it 

 return true; 

} 

 

 

bool SSL::SinusoidGen::moveDone() 

{ 

 // The command was ignored to start with 

 return true; 

} 

 

void SSL::SinusoidGen::resetMethodFunc() 

{ 

 waving = false; 

 cartframe = CartesianPosMeas.Get(); 

 return; 

} 

 

bool SSL::SinusoidGen::endWaveFunc() 

{ 

 stopAtZero = true; 

 return true; 

} 

 

bool SSL::SinusoidGen::waveEnded() 

{ 

 return !waving; 

} 

 

 

 

 

 

 

 

SSL::CircleGen::CircleGen(std::string name) :  

 TaskContext(name, PreOperational), 

 R("R",0.1), 

 T("T",10), 

 axis_i("axis_i",0), 

 axis_j("axis_j",1), 

 CartesianPosDes("CartesianDesiredPosition"), 

 CartesianPosMeas("CartesianSensorPosition"), 

 printMethod("printMethod", &CircleGen::printMethodFunc, this), 

 methReset("resetPosition", &CircleGen::resetMethodFunc, this), 

 cmdMoveTo( "moveTo", &CircleGen::funcMoveTo, &CircleGen::moveDone, this), 

 cmdCircle("circle", &CircleGen::circFunc, &CircleGen::circDone, this), 

 cmdEndCircle("endCircle", &CircleGen::endCircFunc, &CircleGen::circEnded, this) 

{ 

 this->attributes()->addAttribute( &R ); 

 this->attributes()->addAttribute( &T ); 

 this->attributes()->addAttribute( &axis_i ); 

 this->attributes()->addAttribute( &axis_j ); 

 this->ports()->addPort( &CartesianPosDes, "CartesianDesiredPosition" ); 

 this->ports()->addPort( &CartesianPosMeas, "CartesianSensorPosition" ); 

 this->methods()->addMethod( &printMethod, "printMethod" ); 

 this->methods()->addMethod( &methReset, "resetPosition" ); 

 this->commands()->addCommand( &cmdMoveTo, "moveTo", "setpoint", "ignored", 

"when", "ignored" ); 

 this->commands()->addCommand( &cmdCircle, "circle" ); 

 this->commands()->addCommand( &cmdEndCircle, "endCircle" ); 

} 

 

 

// For debugging purposes only 

void SSL::CircleGen::printMethodFunc() 

{ 

 std::cout << std::endl << cartframe << std::endl; 

 return; 

} 
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bool SSL::CircleGen::configureHook() 

{ 

  

 return true; 

} 

 

 

bool SSL::CircleGen::startHook() 

{ 

 switch (axis_i.get()) 

 { 

  case 0: 

  case 1: 

  case 2: 

   break; 

  default: 

   return false; 

 } 

 

 center = CartesianPosMeas.Get(); 

 center.p.data[axis_i.get()] -= R.get(); 

 circling = false; 

 stopAtZero = false; 

 

 return true; 

} 

 

 

void SSL::CircleGen::updateHook() 

{ 

 if (circling) 

 { 

  now = RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()); 

  cartframe = center; 

  th_prev = th; 

  th = 2*M_PI/T.get() * (now - startTime); 

 

  if (stopAtZero && ( floor(th/2/M_PI) > (th_prev/2/M_PI))) 

  { 

   circling = false; 

   stopAtZero = false; 

   cartframe.p.data[axis_i.get()] += R.get(); 

  } else { 

   cartframe.p.data[axis_i.get()] += R.get() * cos( th ); 

   cartframe.p.data[axis_j.get()] += R.get() * sin( th ); 

  } 

 } 

 CartesianPosDes.Set(cartframe); 

 return; 

} 

 

 

void SSL::CircleGen::stopHook() 

{ 

  

 return; 

} 

 

 

void SSL::CircleGen::cleanupHook() 

{ 

 // Undo whatever got done in configureHook 

  

 return; 

} 

 

 

bool SSL::CircleGen::circFunc() 
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{ 

 if (!circling) 

 { 

  startTime = RTT::TimeService::Instance()-

>secondsSince(RTT::Logger::log().getReferenceTime()); 

  center = CartesianPosMeas.Get(); 

  center.p.data[axis_i.get()] -= R.get(); 

  stopAtZero = false; 

  circling = true; 

  return true; 

 } else return false; 

} 

 

 

bool SSL::CircleGen::circDone() 

{ 

 return true; 

} 

 

 

bool SSL::CircleGen::funcMoveTo( KDL::Frame x, double t ) 

{ 

 // Ignore it 

 return true; 

} 

 

 

bool SSL::CircleGen::moveDone() 

{ 

 // The command was ignored to start with 

 return true; 

} 

 

void SSL::CircleGen::resetMethodFunc() 

{ 

 circling = false; 

 cartframe = CartesianPosMeas.Get(); 

 return; 

} 

 

bool SSL::CircleGen::endCircFunc() 

{ 

 stopAtZero = true; 

 return true; 

} 

 

bool SSL::CircleGen::circEnded() 

{ 

 return !circling; 

} 
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src/simarm.cpp 
#include <simarm.h> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::SimArm ) 

#endif 

 

 

 

 SSL::SimArm::SimArm(std::string name) : 

  TaskContext(name, PreOperational), 

  numServos("NumberOfServos","Number of servos"), 

  home("home","home positions"), 

  ControlMode("ControlMode","Mode of control"), 

  DriveValue("DriveValue",(std::vector<double>)0), 

  SensorValue("EncoderReading"), 

  Temperature("Temperature") 

 { 

  // Add the attributes and ports and stuff 

  this->properties()->addProperty( &numServos ); 

  this->properties()->addProperty( &home ); 

  this->properties()->addProperty( &ControlMode ); 

  this->ports()->addPort( &DriveValue, "DriveValue"); 

  this->ports()->addPort( &SensorValue, "EncoderReading"); 

  this->ports()->addPort( &Temperature, "Temperature"); 

 } 

 

 

 

 bool SSL::SimArm::configureHook() 

 { 

  std::vector<double> v; 

  v.resize(numServos.get()); 

 

  positions.resize(numServos.get()); 

  speeds.resize(numServos.get()); 

 

  for( int i=0; i<numServos.get(); i++) 

  { 

   positions[i] = home.get()[i]; 

   speeds[i] = 0; 

   v[i] = positions[i]; 

  } 

  SensorValue.Set(v); 

   

  return true; 

 } 

 

 

 

 bool SSL::SimArm::startHook() 

 { 

  std::vector<double> v; 

  v.resize(6); 

 

  for( int i=0; i<numServos.get(); i++) 

  { 

   v[i] = -100; 

  } 

  Temperature.Set(v); 

 

  return true; 

 } 
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 void SSL::SimArm::updateHook() 

 { 

  if( DriveValue.Get().size() > 0 ) 

  switch(ControlMode.get()) 

  { 

   case 2: 

    for(int i=0; i<numServos.get(); i++) 

    { 

     if (speeds[i] == speeds[i]) // if !nan 

      positions[i] += speeds[i] * 0.01; // presumes 

100 Hz 

     speeds[i] = DriveValue.Get()[i]; 

    } 

    SensorValue.Set(positions); 

    break; 

   case 5: 

    for(int i=0; i<numServos.get(); i++) 

    { 

     if( DriveValue.Get()[i] == DriveValue.Get()[i] ) 

      positions[i] = DriveValue.Get()[i]; 

    } 

    SensorValue.Set(positions); 

    break; 

   default: 

    assert(false); 

  } 

   

 } 

 

 

 

 void SSL::SimArm::stopHook() 

 { 

  printf("SimArm has stopped.\n"); 

 } 

 

 

 

 void SSL::SimArm::cleanupHook() 

 { 

  // Clean things up 

 

 } 
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src/simarm_naxes.cpp 
#include <simarm_naxes.h> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::SimArm_nAxes ) 

#endif 

 

 

 

 SSL::SimArm_nAxes::SimArm_nAxes(std::string name) : 

  TaskContext(name, PreOperational), 

  numServos("NumberOfServos","Number of servos"), 

  home("home","home positions"), 

  ControlMode("ControlMode","Mode of control"), 

  DriveValue("DriveValue",(std::vector<double>)0), 

  SensorValue("EncoderReading"), 

  PathPort("PathPort"), 

  Temperature("Temperature"), 

  recalibrateJoints("recalibrateJoints", &SSL::SimArm_nAxes::recalibrateFunc, 

this) 

 { 

  // Add the attributes and ports and stuff 

  this->properties()->addProperty( &numServos ); 

  this->properties()->addProperty( &home ); 

  this->properties()->addProperty( &ControlMode ); 

  this->ports()->addPort( &DriveValue, "DriveValue"); 

  this->ports()->addPort( &SensorValue, "EncoderReading"); 

  this->ports()->addPort( &PathPort, "PathPort"); 

  this->ports()->addPort( &Temperature, "Temperature"); 

  this->methods()->addMethod( &recalibrateJoints, "recalibrateJoints", "vec", 

"new numbers for current pose" ); 

 } 

 

 

 

 bool SSL::SimArm_nAxes::configureHook() 

 { 

  if ( 5 != ControlMode.get() ) 

  { 

   printf("Error: must be in position control (UM=5)\n"); 

   return false; 

  } 

 

  std::vector<double> v; 

  v.resize(numServos.get()); 

 

  positions.resize(numServos.get()); 

  speeds.resize(numServos.get()); 

  lastcommand.resize(numServos.get()); 

 

  for( int i=0; i<numServos.get(); i++) 

  { 

   positions[i] = home.get()[i]; 

   speeds[i] = 0; 

   v[i] = positions[i]; 

  } 

  SensorValue.Set(v); 

 

  PathPort.connectTo( getPeer("SimGen")->ports()-

>getPort("nAxesDesiredPosition") ); 

  cmd_moveTo = getPeer("SimGen")->commands()-

>getCommand<bool(std::vector<double>,double)>("moveTo"); 

  meth_reset = getPeer("SimGen")->methods()-

>getMethod<void(void)>("resetPosition"); 
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  return (cmd_moveTo.ready() && meth_reset.ready()); 

 } 

 

 

 

 bool SSL::SimArm_nAxes::startHook() 

 { 

  std::vector<double> v; 

  v.resize(numServos.get()); 

 

  for( int i=0; i<numServos.get(); i++) 

  { 

   v[i] = -100; 

  } 

  Temperature.Set(v); 

  return true; 

 } 

 

 

 

 void SSL::SimArm_nAxes::updateHook() 

 { 

  if( DriveValue.Get().size() > 0 ) 

  { 

   if( DriveValue.Get() == DriveValue.Get() ) 

   { 

    if( lastcommand != DriveValue.Get() ) 

    { 

     meth_reset(); 

     cmd_moveTo(DriveValue.Get(),0.0); 

     lastcommand = DriveValue.Get(); 

    } 

   } 

 

   if( PathPort.Get() == PathPort.Get() ) 

    SensorValue.Set(PathPort.Get()); 

 

  } 

   

 } 

 

 

 

 void SSL::SimArm_nAxes::stopHook() 

 { 

  printf("SimArm_nAxes has stopped.\n"); 

 } 

 

 

 

 void SSL::SimArm_nAxes::cleanupHook() 

 { 

  // Clean things up 

 

 } 

 

 

 bool SSL::SimArm_nAxes::recalibrateFunc( std::vector<double> vec ) 

 { 

  if( (vec == vec) && (vec.size()==numServos.get()) ) 

  { 

   SensorValue.Set(vec); 

   meth_reset(); 

   return true; 

  } else return false; 

 } 
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src/switch.cpp 
#include <switch.h> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::ControlSwitch ) 

#endif 

 

 

 

 SSL::ControlSwitch::ControlSwitch(std::string name) : 

  TaskContext(name, PreOperational), 

  CartSystem("CartSystem"), 

  JointSystem("JointSystem"), 

  ControlOutput("ControlOutput"), 

  mode("mode"), 

  cartStart("cartStart", &SSL::ControlSwitch::cartStartFn, this), 

  cartStop("cartStop", &SSL::ControlSwitch::cartStopFn, this), 

  jointStart("jointStart", &SSL::ControlSwitch::jointStartFn, this), 

  jointStop("jointStop", &SSL::ControlSwitch::jointStopFn, this), 

  openSwitch("openSwitch", &SSL::ControlSwitch::openSwitchFn, this) 

 { 

  // Add the attributes and ports and stuff 

  this->attributes()->addAttribute( &mode ); 

  this->ports()->addPort( &CartSystem ); 

  this->ports()->addPort( &JointSystem ); 

  this->ports()->addPort( &ControlOutput ); 

  this->methods()->addMethod( &cartStart, "cartStart" ); 

  this->methods()->addMethod( &cartStop, "cartStop" ); 

  this->methods()->addMethod( &jointStart, "jointStart" ); 

  this->methods()->addMethod( &jointStop, "jointStop" ); 

  this->methods()->addMethod( &openSwitch, "openSwitch" ); 

 } 

 

 

 

 bool SSL::ControlSwitch::configureHook() 

 { 

  mode.set(0); 

 

  // Find the start and stop methods in peer InvKin. 

  ptr = getPeer("InvKin"); 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Error << "ControlSwitch could not 

find peer InvKin" << RTT::Logger::endl; 

   return false; 

  } 

  meth_ikStart = ptr->methods()->getMethod<bool(void)>("start"); 

  if(!meth_ikStart.ready()) 

   return false; 

  meth_ikStop = ptr->methods()->getMethod<bool(void)>("stop"); 

  if(!meth_ikStop.ready()) 

   return false; 

 

 

  // Find the start and stop methods in peer PathGenerator. 

  ptr = getPeer("PathGenerator"); 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Error << "ControlSwitch could not 

find peer JointGenerator" << RTT::Logger::endl; 

   return false; 

  } 

  meth_pgStart = ptr->methods()->getMethod<bool(void)>("start"); 

  if(!meth_pgStart.ready()) 
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   return false; 

  meth_pgStop = ptr->methods()->getMethod<bool(void)>("stop"); 

  if(!meth_pgStop.ready()) 

   return false; 

 

 

  // Find the start and stop methods in peer JointGenerator. 

  ptr = getPeer("JointGenerator"); 

  if(NULL == ptr) 

  { 

   RTT::Logger::log() << RTT::Logger::Error << "ControlSwitch could not 

find peer JointGenerator" << RTT::Logger::endl; 

   return false; 

  } 

  meth_jgStart = ptr->methods()->getMethod<bool(void)>("start"); 

  if(!meth_jgStart.ready()) 

   return false; 

  meth_jgStop = ptr->methods()->getMethod<bool(void)>("stop"); 

  if(!meth_jgStop.ready()) 

   return false; 

 

 

  scripting()->loadStateMachines( "./controlswitch.osd" ); 

  // need to add a check that the SM loaded successfully 

 

  return true; 

 } 

 

 

 

 bool SSL::ControlSwitch::startHook() 

 { 

  JsWsInstance = engine()->states()->getStateMachine("JsWsInstance"); 

  once = true; 

 

  mode.set(0); 

 

  emptyvector.resize(0); 

 

  count = 0; 

   

  return true; 

 } 

 

 

 

 void SSL::ControlSwitch::updateHook() 

 { 

  if( once ) 

  { 

   // Start up the state machine in automatic mode 

   JsWsInstance->activate(); 

   JsWsInstance->automatic(); 

   once = false; 

  } 

 

  // Pass through the drive value from whichever control 

  // system is active. 

  if ( 0 == count) 

  { 

   switch( mode.get() ) 

   { 

    case 0: 

     ControlOutput.Set(emptyvector); 

     break; 

    case 1: 

     ControlOutput.Set(JointSystem.Get()); 

     break; 

    case 2:  

     ControlOutput.Set(CartSystem.Get()); 

     break; 
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    default: 

     mode = 0; 

     RTT::Logger::log() << RTT::Logger::Warning << 

"ControlSwitch mode invalid. Disabling control." << RTT::Logger::endl; 

     break; 

   } 

  } else { 

   count = (count+1)%3; // Disable motion for a couple cycles after a mode 

switch 

   ControlOutput.Set(emptyvector); 

  } 

   

 } 

 

 

 

 void SSL::ControlSwitch::stopHook() 

 { 

  // This doesn't work because updateHook is no longer running at this point! 

  engine()->states()->getStateMachine("JsWsInstance")->deactivate(); 

  engine()->states()->getStateMachine("JsWsInstance")->deactivate(); 

 } 

 

 

 

 void SSL::ControlSwitch::cleanupHook() 

 { 

  // Clean things up 

  engine()->states()->unloadStateMachine("JsWsInstance"); 

 } 

 

 

 bool SSL::ControlSwitch::cartStartFn() 

 { 

  printf("\nAttempting to start Cartesian mode...\n"); 

  if( meth_ikStart.ready() && meth_pgStart.ready() ) 

  { 

   count = 1; 

   return ( meth_ikStart() && meth_pgStart() ); 

  } else { 

   return false; 

  } 

 } 

 

 

 bool SSL::ControlSwitch::cartStopFn() 

 { 

  if( meth_ikStop.ready() && meth_pgStop.ready() ) 

   return ( meth_ikStop() && meth_pgStop() ); 

  else 

   return false; 

 } 

 

 

 bool SSL::ControlSwitch::jointStartFn() 

 { 

  if( meth_jgStart.ready() ) 

  { 

   count = 1; 

   return meth_jgStart(); 

  } else { 

   return false; 

  } 

 } 

 

 

 bool SSL::ControlSwitch::jointStopFn() 

 { 

  if( meth_jgStop.ready() ) 

   return meth_jgStop(); 

  else 
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   return false; 

 } 

 

 

 bool SSL::ControlSwitch::openSwitchFn() 

 { 

  ControlOutput.Set(emptyvector); 

  return true; 

 } 
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src/wslimiter.cpp 
#include <wslimiter.h> 

 

 

// For compilation of a shared object library that can be 

// loaded in Deployer. 

#ifdef OCL_COMPONENT_ONLY 

#include <ocl/ComponentLoader.hpp> 

ORO_CREATE_COMPONENT_TYPE( ) 

ORO_LIST_COMPONENT_TYPE( SSL::WsLimiterCart ) 

#endif 

 

 

 

 SSL::WsLimiterCart::WsLimiterCart(std::string name) :  

  TaskContext(name, PreOperational), 

  Bounds("xyzBounds","Maximal x-y-z limits"), 

  Boxes("Boxes","Internal off-limits regions"), 

  limitevent("WorkSpaceCartLimitEvent"), 

  SetPointPos("SetPointPos"), 

  FkPos("FkPos"), 

  LimitedPos("LimitedPos") 

 { 

  // Add the attributes and ports and stuff 

  this->properties()->addProperty( &Bounds ); 

  this->properties()->addProperty( &Boxes ); 

  this->events()->addEvent( &limitevent, "WorkSpaceCartLimitEvent"); 

  this->ports()->addPort( &SetPointPos, "SetPointPos"); 

  this->ports()->addPort( &FkPos, "FkPos"); 

  this->ports()->addPort( &LimitedPos, "LimitedPos"); 

 } 

 

 

 

 bool SSL::WsLimiterCart::configureHook() 

 { 

  if( (0!=Boxes.get().size()%6) || (6!=Bounds.get().size()) ) 

   return false; 

  numBoxes = Boxes.get().size() / 6; 

  RTT::TaskContext* ptr = getPeer("PathGenerator"); 

  if ( NULL == ptr ) 

   return false; 

  methPG_reset = ptr->methods()->getMethod<void(void)>("resetPosition"); 

  return methPG_reset.ready(); 

 } 

 

 

 

 bool SSL::WsLimiterCart::startHook() 

 { 

  fired = false; 

  ok = true; 

  return true; 

 } 

 

 

 

 void SSL::WsLimiterCart::updateHook() 

 { 

  spframe = SetPointPos.Get(); 

  currframe = FkPos.Get(); 

  ok = true; // prove otherwise 

 

  if ( KDL::Frame() == spframe ) // if the setpoint has not been initialized 

   spframe = currframe;     // then replace it with the current frame 

(which had better be initialized) 

 

  // x-y bounds 

  if( (spframe.p.x()<Bounds.get()[0]) || (spframe.p.x()>Bounds.get()[1]) || 

(spframe.p.y()<Bounds.get()[2]) || (spframe.p.y()>Bounds.get()[3]) || 
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(spframe.p.z()<Bounds.get()[4]) || (spframe.p.z()>Bounds.get()[5]) ) 

  { 

   methPG_reset(); 

   if (!fired) 

   { 

    ok = false; 

    limitevent(); 

    printf(" WS LIMIT! reset.\n"); 

   } 

  } 

  if( (currframe.p.x()<Bounds.get()[0]) || (currframe.p.x()>Bounds.get()[1]) || 

(currframe.p.y()<Bounds.get()[2]) || (currframe.p.y()>Bounds.get()[3]) || 

(currframe.p.z()<Bounds.get()[4]) || (currframe.p.z()>Bounds.get()[5]) ) 

  { 

   methPG_reset(); 

   if (!fired) 

   { 

    ok = false; 

    limitevent(); 

    printf(" WS LIMIT! reset.\n"); 

   } 

   fired = true; 

  } 

 

  // internal boxes 

  for( int i = 0; i<numBoxes; i++) 

  { 

   if( (spframe.p.x()>Boxes.get()[6*i]) && 

(spframe.p.x()<Boxes.get()[6*i+1]) && (spframe.p.y()>Boxes.get()[6*i+2]) && 

(spframe.p.y()<Boxes.get()[6*i+3]) && (spframe.p.z()>Boxes.get()[6*i+4]) && 

(spframe.p.z()<Boxes.get()[6*i+5]) ) 

   { 

    methPG_reset(); 

    if (!fired) 

    { 

     ok = false; 

     limitevent(); 

     printf(" WS LIMIT! reset.\n"); 

    } 

   } 

   if( (currframe.p.x()>Boxes.get()[6*i]) && 

(currframe.p.x()<Boxes.get()[6*i+1]) && (currframe.p.y()>Boxes.get()[6*i+2]) && 

(currframe.p.y()<Boxes.get()[6*i+3]) && (currframe.p.z()>Boxes.get()[6*i+4]) && 

(currframe.p.z()<Boxes.get()[6*i+5]) ) 

   { 

    methPG_reset(); 

    if (!fired) 

    { 

     ok = false; 

     limitevent(); 

     printf(" WS LIMIT! reset.\n"); 

    } 

    fired = true; 

   } 

  } 

 

  if (ok) 

   LimitedPos.Set(spframe); 

  else 

   LimitedPos.Set(currframe); 

 

 } 

 

 

 

 void SSL::WsLimiterCart::stopHook() 

 { 

 

 } 
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 void SSL::WsLimiterCart::cleanupHook() 

 { 

  // Clean things up 

 

 } 

 

 



 

 178 

 

Appendix D: Configuration Files 
 

Configuration files for Ranger Mark I.  The XML file, presented first, lists the 

software components to be loaded, the interconnections to be established, and the 

configuration parameter files (CPF) to be loaded.  The CPF files follow in 

alphabetical order. 

config/configuration_nbv.xml 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

 

 

 <!-- This file instructs Deployer to load ElmoArm2 and connects it to 

  the full suite of stuff for position-mode Cartesian control. 

 

  Execute as: deployer-gnulinux -s /path/to/configuration.xml 

 --> 

 

 

 

 <!-- Where to find the shared object files --> 

 <simple name="Import" 

type="string"><value>/home/ndamore/ssl/rtsx/projects/orocos/bin/</value></simple> 

 <simple name="Import" type="string"><value>/usr/local/lib/</value></simple> 

 

 

 

 <!-- ROBOT --> 

 <struct name="Robot" type="SSL::ElmoArm2"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="Activity"> 

   <simple name="Period" type="double"><value>0.00648</value></simple> 

   <simple name="Priority" type="short"><value>5</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="DriveValue" type="string"> 

    <value>DriveValue</value> 

   </simple> 

   <simple name="EncoderReading" type="string"> 

    <value>EncoderReading</value> 

   </simple> 

   <simple name="Temperature" type="string"> 

    <value>JointTemperature</value> 

   </simple> 

  </struct>  

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/elmoarm.cpf</value> 

  </simple> 
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 </struct> 

 

 

 

 

 <!-- ETHERNET INTERFACE --> 

 <struct name="etherface" type="SSL::EthernetInterface"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.025</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="IncomingMessage" type="string"> 

    <value>IncomingMessage</value> 

   </simple> 

   <simple name="OutgoingMessage" type="string"> 

    <value>OutgoingMessage</value> 

   </simple> 

  </struct>  

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/ethernet.cpf</value> 

  </simple> 

 

 </struct> 

 

 

 

 

 <!-- MESSAGE INTERPRETER --> 

 <struct name="interpreter" type="SSL::MessageHandler"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.025</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="IncomingMessage" type="string"> 

    <value>IncomingMessage</value> 

   </simple> 

   <simple name="OutgoingMessage" type="string"> 

    <value>OutgoingMessage</value> 

   </simple> 

   <simple name="CartesianPose" type="string"> 

    <value>CartesianPos</value> 

   </simple> 

   <simple name="SetPointPose" type="string"> 

    <value>SetpointPos</value> 

   </simple> 

   <simple name="JointPose" type="string"> 

    <value>EncoderReading</value> 

   </simple> 

   <simple name="JointTemperature" type="string"> 

    <value>JointTemperature</value> 
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   </simple> 

   <simple name="DriveValue" type="string"> 

    <value>DriveValue</value> 

   </simple> 

   <simple name="Logger" type="string"> 

    <value>logs</value> 

   </simple> 

  </struct>  

 

  <struct name="Peers" type="PropertyBag"> 

   <simple type="string"><value>PathGenerator</value></simple> 

   <simple type="string"><value>JointGenerator</value></simple> 

   <simple type="string"><value>Robot</value></simple> 

   <simple type="string"><value>WsCartLimiter</value></simple> 

   <simple type="string"><value>JointLimiter</value></simple> 

   <simple type="string"><value>cSwitch</value></simple> 

   <simple type="string"><value>InvKin</value></simple> 

   <simple type="string"><value>MultiMan</value></simple> 

   <simple type="string"><value>MultiManJnt</value></simple> 

  </struct> 

 

 </struct> 

 

 

 

 <!-- Logger --> 

 <struct name="logger" type="SSL::FileLogger"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.05</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="Incoming" type="string"> 

    <value>logs</value> 

   </simple> 

  </struct>  

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/logger.cpf</value> 

  </simple> 

 </struct> 

 

 

 

 <!-- FORWARD KINEMATICS --> 

 <struct name="myfk" type="SSL::ForwardKinematics"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="JointPoses" type="string"> 

    <value>EncoderReading</value> 
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   </simple> 

   <simple name="CartesianPose" type="string"> 

    <value>CartesianPos</value> 

   </simple> 

  </struct> 

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/kinematics.cpf</value> 

  </simple> 

 

 </struct> 

 

 

 

 

 <!-- MULTIPOINT MANAGER, CARTESIAN --> 

 <struct name="MultiMan" type="SSL::MultipointManager"> 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <struct name="Peers" type="PropertyBag"> 

   <simple type="string"><value>PathGenerator</value></simple> 

  </struct> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="CurrentPose" type="string"> 

    <value>CartesianPos</value> 

   </simple> 

  </struct> 

 </struct> 

 

 

 

 

 <!-- TRAJECTORY GENERATOR, CARTESIAN --> 

 <struct name="PathGenerator" type="OCL::CartesianGeneratorPos"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>0</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="CartesianSensorPosition" type="string"> 

    <value>CartesianPos</value> 

   </simple> 

   <simple name="CartesianDesiredPosition" type="string"> 

    <value>SetpointPos</value> 

   </simple> 

  </struct> 

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/trajgen.cpf</value> 
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  </simple> 

  

 

 </struct> 

 

 

 

 

 <!-- WORKSPACE LIMITER --> 

 <struct name="WsCartLimiter" type="SSL::WsLimiterCart"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="SetPointPos" type="string"> 

    <value>SetpointPos</value> 

   </simple> 

   <simple name="FkPos" type="string"> 

    <value>CartesianPos</value> 

   </simple> 

   <simple name="LimitedPos" type="string"> 

    <value>AllowedFrame</value> 

   </simple> 

  </struct> 

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/wslimits.cpf</value> 

  </simple> 

  

  <struct name="Peers" type="PropertyBag"> 

   <simple type="string"><value>PathGenerator</value></simple> 

  </struct> 

 

 </struct> 

 

 

 

 

 <!-- INVERSE KINEMATICS --> 

 <struct name="InvKin" type="SSL::InversePosKinematics"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>0</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="CurrentJointPose" type="string"> 

    <value>EncoderReading</value> 

   </simple> 

   <simple name="DesiredFrame" type="string"> 

    <value>AllowedFrame</value> 

   </simple> 

   <simple name="CurrentFrame" type="string"> 
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    <value>CartesianPos</value> 

   </simple> 

   <simple name="NewJointPose" type="string"> 

    <value>CartDriveValue</value> 

   </simple> 

  </struct> 

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 

  

 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/kinematics.cpf</value> 

  </simple> 

 

  <struct name="Peers" type="PropertyBag"> 

   <simple type="string"><value>JointLimiter</value></simple> 

  </struct> 

 

 </struct> 

 

 

 

 <!-- MULTIPOINT MANAGER, JOINT SPACE --> 

 <struct name="MultiManJnt" type="SSL::MultipointManagerJnt"> 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <struct name="Peers" type="PropertyBag"> 

   <simple type="string"><value>JointGenerator</value></simple> 

  </struct> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="CurrentPose" type="string"> 

    <value>EncoderReading</value> 

   </simple> 

  </struct> 

 </struct> 

 

 

 

 <!-- TRAJECTORY GENERATOR, JOINT --> 

 <struct name = "JointGenerator" type="OCL::nAxesGeneratorPos"> 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>0</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="nAxesSensorPosition" type="string"> 

    <value>EncoderReading</value> 

   </simple> 

   <simple name="nAxesDesiredPosition" type="string"> 

    <value>JointDriveValue</value> 

   </simple> 

  </struct> 

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 
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 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/naxestrajgen.cpf</value

> 

  </simple> 

 </struct> 

 

 

 

 <!-- CONTROL SWITCH --> 

 <struct name="cSwitch" type="SSL::ControlSwitch"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="ControlOutput" type="string"> 

    <value>DriveValueRequested</value> 

   </simple> 

   <simple name="CartSystem" type="string"> 

    <value>CartDriveValue</value> 

   </simple> 

   <simple name="JointSystem" type="string"> 

    <value>JointDriveValue</value> 

   </simple> 

  </struct> 

 

  <struct name="Peers" type="PropertyBag"> 

   <simple type="string"><value>InvKin</value></simple> 

   <simple type="string"><value>PathGenerator</value></simple> 

   <simple type="string"><value>JointGenerator</value></simple> 

  </struct> 

 </struct> 

 

 

 

 <!-- JOINT LIMITER --> 

 <struct name="JointLimiter" type="SSL::JointLimiter"> 

 

  <!-- Set it up as a periodic activity.  --> 

  <struct name="Activity" type="PeriodicActivity"> 

   <simple name="Period" type="double"><value>0.01944</value></simple> 

   <simple name="Priority" type="short"><value>0</value></simple> 

   <simple name="Scheduler" 

type="string"><value>ORO_SCHED_OTHER</value></simple> 

  </struct> 

  <simple name="AutoConf" type="boolean"><value>1</value></simple> 

  <simple name="AutoStart" type="boolean"><value>1</value></simple> 

 

  <!-- Configure the ports. --> 

  <struct name="Ports" type="PropertyBag"> 

   <simple name="DriveValue" type="string"> 

    <value>DriveValue</value> 

   </simple> 

   <simple name="DriveValueRequested" type="string"> 

    <value>DriveValueRequested</value> 

   </simple> 

   <simple name="EncoderReading" type="string"> 

    <value>EncoderReading</value> 

   </simple> 

  </struct> 

 

  <!-- Configure properties. --> 

  <simple name="PropertyFile" type="string"> 
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 <value>/home/ndamore/ssl/rtsx/projects/orocos/config/nbv/jointlimiter.cpf</value

> 

  </simple> 

 

 </struct> 

 

 

</properties> 
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config/elmoarm.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

 

  <!-- Total number of servos (joints) in the kinematic chain. --> 

  <simple name="NumberOfServos" type="long"><description>Number of 

servos</description><value>6</value></simple> 

 

  <!-- CAN interface device --> 

  <simple name="CANdevice" type="string"><description>CAN 

interface</description><value>/dev/pcan0</value></simple> 

 

  <!-- Servo drive unit mode (UM).  1=torque, 2=speed, 5=angle. --> 

  <simple name="ControlMode" type="long"><description>Control 

Mode</description><value>5</value></simple> 

 

  <!-- Encoder counts per joint revolution. --> 

  <struct name="EncoderCountsPerRev" type="array"> 

     <description>Encoder counts per joint revolution</description> 

     <simple type="double"><value>817741</value></simple> 

     <simple type="double"><value>817741</value></simple>  <!--  +/- ~0.14%  --> 

     <simple type="double"><value>-414246</value></simple> <!--  +/- ~0.06%  --> 

     <simple type="double"><value>414246</value></simple> 

     <simple type="double"><value>-414246</value></simple> 

     <simple type="double"><value>414246</value></simple> 

  </struct> 

 

  <!-- Home position --> 

  <struct name="home" type="array"> 

     <description>home position</description> 

     <simple type="double"><value>1.5708</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

     <simple type="double"><value>1.5708</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

     <simple type="double"><value>1.5708</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

  </struct> 

 

  <!-- The Node-ID's to which the servo drives will respond. 

       SimArm will ignore these values. --> 

  <struct name="NodeIDarr" type="array">  

     <description>Joint node IDs</description> 

     <simple type="double"><value>101</value></simple> 

     <simple type="double"><value>102</value></simple> 

     <simple type="double"><value>103</value></simple> 

     <simple type="double"><value>104</value></simple> 

     <simple type="double"><value>105</value></simple> 

     <simple type="double"><value>106</value></simple> 

  </struct> 

 

</properties> 
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config/ethernet.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

 

  <!-- Port number --> 

  <simple name="port" 

type="long"><description>port</description><value>49151</value></simple> 

 

</properties> 

 

 

config/jointlimiter.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

  <!-- Total number of servos (joints) in the kinematic chain. --> 

  <simple name="NumberOfServos" type="long"><description>Number of 

servos</description><value>6</value></simple> 

 

  <!-- Servo drive unit mode (UM).  1=torque, 2=speed, 5=angle. --> 

  <simple name="ControlMode" type="long"><description>Control 

Mode</description><value>5</value></simple> 

 

  <!-- Upper Limits --> 

  <struct name="UpLim" type="array"> 

     <description>Joint upper limits</description> 

     <simple type="double"><value>4.713</value></simple> 

     <simple type="double"><value>3.926</value></simple> 

     <simple type="double"><value>1.600</value></simple> 

     <simple type="double"><value>3.142</value></simple> 

     <simple type="double"><value>3.926</value></simple> 

     <simple type="double"><value>3.142</value></simple> 

  </struct> 

 

  <!-- Lower Limits --> 

  <struct name="LowLim" type="array"> 

     <description>Joint lower limits</description> 

     <simple type="double"><value>-4.713</value></simple> 

     <simple type="double"><value>-0.785</value></simple> 

     <simple type="double"><value>-2.350</value></simple> 

     <simple type="double"><value>-3.142</value></simple> 

     <simple type="double"><value>+0.785</value></simple> 

     <simple type="double"><value>-3.142</value></simple> 

  </struct> 

 

  <!-- Maximum Rates --> 

  <struct name="MaxRates" type="array"> 

     <description>Joint lower limits</description> 

     <simple type="double"><value>0.2</value></simple> 

     <simple type="double"><value>0.2</value></simple> 

     <simple type="double"><value>0.2</value></simple> 

     <simple type="double"><value>0.2</value></simple> 

     <simple type="double"><value>0.2</value></simple> 

     <simple type="double"><value>0.2</value></simple> 

  </struct> 

 

</properties> 
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config/kinematics.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

  <!-- Total number of servos (joints) in the kinematic chain. --> 

  <simple name="numJoints" type="long"><description>Number of 

joints</description><value>6</value></simple> 

 

  <!-- D-H Parameters following John Craig's (1989) convention. 

       {type(0=revolute,1=prismatic), a, alpha, d, theta} per joint. 

       Joint variables should be set to zero here. --> 

  <struct name="DHparams" type="array"> 

     <description>D-H Values</description> 

     <simple type="double"><value>0.0</value></simple>     <!-- First joint, 

0.0=revolute --> 

        <simple type="double"><value>0.0</value></simple>     <!-- a_0 --> 

        <simple type="double"><value>0.0</value></simple>     <!-- alpha_0 --> 

        <simple type="double"><value>0.250</value></simple>    <!-- d_1 --> 

        <simple type="double"><value>0.0</value></simple>     <!-- theta_1 --> 

     <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>1.5708</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.558</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.152</value></simple> 

        <simple type="double"><value>-1.5708</value></simple> 

        <simple type="double"><value>0.538</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>1.5708</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

     <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>1.5708</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

        <simple type="double"><value>0.0</value></simple> 

  </struct> 

 

  <!-- Description via the same D-H convention of the end effector 

 frame relative to the last joint frame. --> 

  <struct name="EndEffDH" type="array"> 

 <description>End Effector Frame</description> 

        <simple type="double"><value>0.0</value></simple>     <!-- a --> 

        <simple type="double"><value>0.0</value></simple>     <!-- alpha --> 

        <simple type="double"><value>0.264</value></simple>    <!-- d --> 

        <simple type="double"><value>0.0</value></simple>     <!-- theta --> 

  </struct> 

 

</properties> 
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config/logger.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

 

  <!-- Total number of logs. --> 

  <simple name="numLogs" type="long"><description>Number of log 

files</description><value>5</value></simple> 

 

</properties> 

 

 

 

 

 

config/naxestrajgen.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

  <simple name="num_axes" type="long"><description>Number of 

servos</description><value>6</value></simple> 

  <struct name="max_vel" type="array"> 

     <description>Maximum rotational rates</description> 

     <simple type="double"><value>0.07</value></simple> 

     <simple type="double"><value>0.08</value></simple> 

     <simple type="double"><value>0.10</value></simple> 

     <simple type="double"><value>0.10</value></simple> 

     <simple type="double"><value>0.10</value></simple> 

     <simple type="double"><value>0.10</value></simple> 

  </struct> 

  <struct name="max_acc" type="array"> 

     <description>Maximum accelerations</description> 

     <simple type="double"><value>0.50</value></simple> 

     <simple type="double"><value>0.50</value></simple> 

     <simple type="double"><value>0.50</value></simple> 

     <simple type="double"><value>0.50</value></simple> 

     <simple type="double"><value>0.50</value></simple> 

     <simple type="double"><value>0.50</value></simple> 

  </struct> 

</properties> 
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config/trajgen.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

  <struct name="max_vel" type="array"> 

     <description>Maximum translational/rotational rates</description> 

     <simple type="double"><value>0.03</value></simple> 

     <simple type="double"><value>0.03</value></simple> 

     <simple type="double"><value>0.03</value></simple> 

     <simple type="double"><value>0.05</value></simple> 

     <simple type="double"><value>0.05</value></simple> 

     <simple type="double"><value>0.05</value></simple> 

  </struct> 

  <struct name="max_acc" type="array"> 

     <description>Maximum accelerations</description> 

     <simple type="double"><value>0.01</value></simple> 

     <simple type="double"><value>0.01</value></simple> 

     <simple type="double"><value>0.01</value></simple> 

     <simple type="double"><value>0.05</value></simple> 

     <simple type="double"><value>0.05</value></simple> 

     <simple type="double"><value>0.05</value></simple> 

  </struct> 

</properties> 

 

 

 

config/wslimits.cpf 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE properties SYSTEM "cpf.dtd"> 

<properties> 

 

  <!-- Servo drive unit mode (UM).  1=torque, 2=speed, 5=angle. --> 

  <simple name="ControlMode" type="long"><description>Control 

Mode</description><value>5</value></simple> 

 

  <!-- Overall x-y-z workspace bounds --> 

  <struct name="xyzBounds" type="array"> 

     <description>x-y-z bounds</description> 

     <simple type="double"><value>-0.8</value></simple>  <!-- x_min --> 

     <simple type="double"><value>2.0</value></simple>   <!-- x_max --> 

     <simple type="double"><value>-2.0</value></simple>  <!-- y_min --> 

     <simple type="double"><value>2.0</value></simple>   <!-- y_max --> 

     <simple type="double"><value>-1.0</value></simple>  <!-- z_min --> 

     <simple type="double"><value>2.0</value></simple>   <!-- z_max --> 

  </struct> 

 

  <!-- Ceilings --> 

  <struct name="Boxes" type="array"> 

     <description>internal off-limits regions</description> 

     <simple type="double"><value>-0.2</value></simple> 

     <simple type="double"><value>+0.2</value></simple> 

     <simple type="double"><value>-0.2</value></simple> 

     <simple type="double"><value>+0.2</value></simple> 

     <simple type="double"><value>-0.1</value></simple> 

     <simple type="double"><value>+0.4</value></simple> 

 

  </struct> 

</properties> 
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