
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: Cytoskeletal Mechanics and Mobility in the 

Axons of Sensory Neurons 
  
 Joshua Michael Chetta, Ph.D. 2011 
  
Directed By: Assistant Professor Sameer Shah, Fischell 

Department of Bioengineering 
 
 
The axon is a long specialized signaling projection of neurons, whose 

cytoskeleton is composed of networks of microtubules and actin filaments. 

The dynamic nature of these networks and the action of their associated 

motor and cross-linking proteins drives axonal growth. Understanding the 

mechanisms that control these processes is vitally important to 

neuroregenerative medicine and in this dissertation, evidence will be 

presented to support a model of interconnectivity between actin and 

microtubules in the axons of rat sensory neurons. First, the movement of 

GFP-actin was evaluated during unimpeded axonal outgrowth and a novel 

transport mechanism was discovered. Most other cargoes in the axon are 

actively moved by kinesin and dynein motor proteins along stationary 

microtubules, or are moved along actin filaments by myosin motor proteins. 

Actin, however, appears to be collected into short-lived bundles that are either 

actively carried as cargoes along other actin filaments, or are moved as 



  

passive cargoes on short mobile microtubules. Additionally, in response to an 

applied stretch, the axon does not behave as a uniform visco-elastic solid but 

rather exhibits local heterogeneity, both in the instantaneous response to 

stretch and in the remodeling which follows. After stretch, heterogeneity was 

observed in both the realized strain and long term reorganization along the 

length of the axon suggesting local variation in the distribution and 

connectivity of the cytoskeleton. This supports a model of stretch response in 

which sliding filaments dynamically break and reform connections within and 

between the actin and microtubule networks. Taken together, these two 

studies provide evidence for the mechanical and functional connectivity 

between actin and microtubules in the axonal cytoskeleton and suggest a far 

more important role for actin in the development of the peripheral nervous 

system. Moreover this provides a biological framework for the exploration of 

future regenerative therapies. 
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List of Figures 

Chapter1: 
Figure1: Cytoskeletal organization in the axon. The axonal cytoskeleton is composed  

of arrays of polymer filaments. Actin lies in a cortex underneath the 
membrane, while microtubules and neurofilaments occupy the core of the 
axon. A number of accessory proteins are associated with both actin and 
microtubules, including the motor proteins, kinesin, dynein, and myosin as 
well as other proteins which form more stable cross links.  

 
 
Chapter 2: 
Figure1: Building a kymograph. (A) A time-lapse movie is an ordered series of still 

images, in which data is encoded by a pixel’s intensity at specific x and y 
coordinates in an image at a particular time. A small region of interest 
(saROI) is used to align the images so that an axonal reference point is 
located in the same position in all frames. (B) The specific path of the axon is 
then defined and used to extract an intensity profile from each image. (C) 
When aligned vertically, these intensity profiles illustrate the position of 
particles within the axon as a function of time.  

 
Figure 2: Flowchart of the image processing algorithm. Refer to text for details. 
 
Figure 3: Automated method of kymograph generation outperforms manual methods. 

(A) DIC images of an axon labeled with Mitotracker green, taken from a time-
lapse movie illustrating the change in geometry and orientation of the axon 
over time. The black boxes outline the saROI used for alignment purposes. 
(B) Larger view of the saROIs from A. The white stars indicate the “centroid” 
of the branch as chosen by the user. (C) Movement of the centroid shown in 
B over time (D) Kymograph built using one path traced in the first frame of the 
movie to extract intensity profiles from all subsequent frames. The black 
arrows indicate the four stationary labeled mitochondria discussed in the text. 
(E) Kymograph in which the path of the axon was manually traced in every 
frame of the movie. White arrows identify jumps in particle position between 
frames. (F) Kymograph built using the automated two step alignment and 
axon detection algorithm. (G) Graph showing the displacement from its 
original position of the centroid of the saROI from B before and after image 
registration. Scale bar, 10µm in all panels. 

 
Figure 4: Hough transform. (A, E) Binary images created from the DIC images shown 

in Fig. 3A. (B-D, F-H) Image segments analyzed with the Hough transform to 
identify the two edges of the axon. Although, in A, the axon is one straight 
segment, it was divided into smaller regions to accommodate the more 
complex geometry in E, a frame from later in the movie. (I, J) Detailed views 
of panels B and F illustrating the accuracy of the Hough transform, even in 
the case where the axon is incomplete (white arrows).  

 
Figure 5: Robust Hough. (A) A DIC image of an axon transfected with actin GFP. (B) 

GFP-actin expression. (C) Binary image created from A. (D-K) User-defined 



 

 ix 
 

image segments used to approximate the curve of the axon showing the lines 
determined by the HT for each segment. These lines were used to create one 
continuous poly-line along the center of the axon. (L) Detailed view of panel 
F, 74 pixels wide. (M-P) Modified versions of panel L, used to illustrate the 
effect of the user defined segmentation boundaries. 10, 20, 30, or 50 pixels 
were added to each side of panel L to encompass more of the surrounding 
axon and then analyzed with the HT. The resulting lines, shown, were 
compared to that for L. (Q) The noise in L was artificially increased by 
decreasing the threshold used to convert the original DIC image to a binary 
image. This image was then analyzed with the HT and the resulting line 
compared to that for L. (R) Final kymograph of GFP-actin within axon. Scale 
bar, 10µm in all panels. 

 
Chapter 3: 
Figure 1:  Particle mobility in the axon. Rat sensory neurons were transfected with 

either GFP-actin, Lifeact-TagGFP2 or the soluble fluorescent reporter 
maxGFP. Kymographs were used to quantify the movement of fluorescently 
labeled particles along the axon. (A) GFP-actin expressing axons exhibited 
puncta that appeared and disappeared, and moved bidirectionally with 
frequent pauses. (B) The entire particle track was broken up into short 
segments, called “runs” during which the particle moved in one direction or 
remained paused. A track was categorized as anterograde or retrograde 
directed based on its net displacement (Red lines). Note that anterograde 
tracks could contain retrograde runs, during which the particle moved in the 
retrograde direction, and vice versa. Also note that a change in velocity 
without a change in direction was still counted as a single run (e.g. retrograde 
track). (C) GFP-actin puncta were co-labeled with phalloidin, suggesting they 
are composed of filamentous actin. “x’’ indicates the position of GFP-actin 
densities. The arrows indicate the position of phalloidin labeled puncta. (D) 
Nearly all of the GFP expressing puncta were labeled with phalloidin, but 
some phalloidin labeled puncta did not express GFP, suggesting that the 
GFP labeled actin puncta represent a subset of all actin densities in the axon. 
(E) The filamentous nature of these densities was confirmed by transfection 
with lifeact-TagGFP2, which only binds to filamentous actin and exhibits 
punctate expression in the axon. These puncta exhibit similar dynamics to 
those for GFP-actin (see Fig. 2). (F) The fluorescent signal in axons 
expressing maxGFP exhibited distinct behavior compared to both GFP-actin 
and Lifeact-TagGFP2 expressing axons. Many particles were indistinct and 
stationary, but fast moving retrograde particles were also apparent.  Scale 
Bar: 10 µm in all panels. 

  
Figure 2:  Transport characteristics of GFP-actin, Lifeact-TagGFP2 and maxGFP in 

axons. Kymographs were analyzed manually. GFP-actin and Lifeact-
TagGFP2 expressing axons exhibited distinct differences in a number of 
transport parameters compared to maxGFP, suggesting that actin dynamics 
are distinct from the dynamics of a general soluble protein. A student’s T-test 
was used to test for statistically significant differences between the groups. 
The *,#, and ♦ indicate those groups which were statistically different from 
GFP-actin with an alpha = 0.01 (A) GFP-actin and Lifeact-TagGFP2 were 
both more dynamic than maxGFP, exhibiting a larger number of tracks on 
average during each 6 minute movie. However, GFP-actin had a larger 
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proportion of anterograde and retrograde directed tracks compared to Lifeact-
TagGFP2 which had a larger number of paused tracks. (B) Similarly, both 
GFP-actin and Lifeact-TagGFP2 had a larger number of new tracks begin 
during the imaging time. (C) Tracks were divided into runs, and GFP-actin 
and Lifeact-TagGFP2 exhibited a larger number of runs on average than 
maxGFP during the imaging time. Additionally, maxGFP expressing axons 
had a disproportionately large number of stationary runs compared to Lifeact-
TagGFP2 and GFP-actin. (D) The stationary nature of maxGFP is even more 
striking when viewed in terms of time. The total time for all runs was summed 
and the fraction of that time spent in each of the three phases of movement 
calculated. MaxGFP particles spent a disproportionate amount of the total 
time paused. (E) The average net displacement for each time lapse was 
defined as the average displacement of each track in a time lapse. GFP-actin 
expressing axons exhibited a slight anterograde average net displacement, 
while Lifeact-TagGFP2 exhibited an average net displacement of zero. The 
average net displacement calculation for maxGFP expressing axons was 
dominated by the fast moving retrograde particles, contributing to the large 
retrograde average net displacement. When these particles were not included 
in the calculations, the average net displacement decreased to zero. (F, G) 
The average velocity, the duration in seconds and the distance traveled by a 
particle during a run were all calculated for Lifeact-TagGFP2 (F) and 
maxGFP (G) expressing cells. A Kolmogorov Smirnov test was used to 
determine statistically significant changes in these axons compared to GFP-
actin expressing axons. Confidence values for the change are indicated by 
the number of arrows, and the direction of the arrow indicates whether it 
increased or decreased. An open circle indicates no statistically significant 
change. 

 
Figure 3:  Actin density identity. Fluorescence recovery after photobleach (FRAP) 

was used to determine the contribution of monomeric soluble actin to the 
movement of actin in the axon. (A) A 30 µm long region of the axon (indicated 
in green) was bleached and observed for recovery of fluorescence. A number 
of 10x10 pixel regions of interest (ROIs) inside the axon were used to 
quantify the changing fluorescent signal over time. These are indicated by the 
colored brackets flanking the axon. (B) Fluorescence recovery was not 
uniform within the bleached region, though; the purple and the yellow regions 
recovered fluorescence much faster than the surrounding axon. (C) In 
another experiment, high magnification and a high frame rate were used to 
capture the birth and death of an actin density (arrow) in detail. Selected 
frames from the time-lapse are shown. Scale bar: 5 µm. (D) A kymograph of 
the region outlined by the black box in C between 45 and 120 seconds, 
illustrating the change in width of the particle track (black arrow) over time, 
suggesting that these particles are mediated by condensation and dissolution 
of bundles of actin filaments. (E) Line traces of the fluorescent intensity over 
time in the colored 10x10 pixel ROIs shown in C. Note the increased 
fluorescent intensity corresponding to the particle birth (red trace). (F) Lack of 
ribosomal co-localization with actin. Axons were stained for RPL-4 and 
labeled with phalloidin as well. “x” indicates phalloidin labeled puncta. The 
arrows indicate RPL-4 positive puncta. Scale bar: 10 µm. 
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Figure 4: Figure 4: Effect of microtubule associated drugs on the mobility of actin 
densities in the axon. (A-C) After exposure to either nocodazole (B) or EHNA 
(C), cells were fixed and stained for actin and tubulin to determine the effect 
of drug treatment on the axonal cytoskeleton. Note the disruption of 
microtubule continuity after exposure to nocodazole (Scale bars 10 µm). (D) 
Nocodazole exposure increased average net displacement in the axon, while 
EHNA treatment initially induced a strong retrograde average net 
displacement, which then diminished over time. (E-G) Both nocodazole and 
EHNA affected the overall number of tracks over time as well as the direction 
of those tracks. (H) Nocodazole increased the dynamic nature of actin 
mobility in the axon, increasing the duration and distance traveled for all three 
phases of motion. The effect on paused particles was particularly striking as 
they moved a significant distance in the anterograde direction, thus 
contributing to the observed anterograde average net displacement. (I) EHNA 
treatment initially increased the velocity with which retrograde particles 
moved, which contributed to the net retrograde average net displacement. 
However, over time, EHNA decreased the overall dynamics of actin mobility. 
Particle tracks lasted longer, but moved more slowly. 

 
Figure 5:  Effect of actin associated drugs on the mobility of actin densities in the 

axon. (A-E) After exposure to either latrunculin (B) or BDM (D), cells were 
fixed and stained for actin and tubulin to determine the effect of drug 
treatment on the axonal cytoskeleton. C is a frame from a time lapse movie of 
a GFP-actin axon treated with jasplakinolide. Note that latrunculin affected 
the distribution of actin, but also seemed to affect microtubule integrity as 
well; some microtubules buckled, and protruded through the axonal cortex 
(arrow). (E) Latrunculin and jasplakinolide had a significant effect on the 
distribution of actin, within the growth cone. BDM treatment induced a less 
severe disruption. Scale bars 10 µm, all panels. (F) Latrunculin exposure 
increased retrograde average net displacement in the axon initially, but this 
effect gradually decreased over time. BDM treatment induced a strong 
anterograde average net displacement which increased over time. (G-I) Both 
latrunculin and BDM affected the number of tracks over time as well as the 
direction of those tracks. Note that BDM preferentially reduced the number of 
retrograde and paused tracks. (J) Latrunculin increased actin particle 
dynamics, increasing the duration for all three phases of motion and 
increasing the distance traveled by moving particles. The retrograde velocity 
was most significant, though, in affecting the retrograde average net 
displacement. (K) BDM reduced the speed with which particles moved and 
increased the pause duration. It induced an increasingly strong anterograde 
average net displacement by reducing the number of paused and retrograde 
directed tracks.  

 
Figure 6:  Filopodia and actin densities. A portion of the mobile actin densities gave 

rise to filopodia that protruded from the side of the axon. However, not all of 
the observed filopodia were populated with fluorescent actin. Lifetime, 
maximum length achieved and the angle of protrusion out of the axon were 
all measured in the DIC channel and compared between those filopodia 
which were populated with fluorescent actin (DIC w/F) and for those that 
weren’t (DIC w/o F). Additionally, these same parameters were measured 
using only the fluorescent channel (Fluorescent). (A) There was no 
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statistically significant difference between the lifetimes of these three groups. 
(B) But those filopodia which were not populated by fluorescent actin were 
statistically shorter than those with fluorescent actin (alpha=0.0008). (C) 
There was also no difference in the measured angle of protrusion for filopodia 
between these three groups. (D, E) Individual filopodia were quite dynamic, 
often protruding out of the axon at one angle, and then moving through an arc 
before retracting back in. (F) The focal adhesion protein, talin, localized to the 
base of these filopodia, suggesting that they protrude from regions of stable 
adhesion to the substrate. Note that the starred filopodium at the top of the 
picture is actually protruding from another axon outside the field of view 
(Scale bar 10 µm). 

Figure 7: Actin’s association with mitochondria in the axon.  Axons were transfected 
with GFP-actin as well as with mitotracker red, and imaged over time. 
Kymographs from selected movies are shown here at 40x (A, B) and 100x 
(C). (A) Actin does associate with mitochondria but the inter-mitochondrial 
spaces appear more dynamic. (B) However, not all mitochondria are labeled 
with actin (stars) and the actin that is associated with a mitochondrion can still 
be active, as shown here (arrow) where an actin puncta moves away from the 
mitochondrion only to return a few seconds later. (C) Finally, not all stationary 
actin densities are localized to stationary mitochondria (arrows). Scale bars: 
10 µm in all panels. 

Figure 8:  Model of actin mobility in the axon. The data support a role for both 
microtubules and actin in the transport of actin in the axon. (A) Actin is 
transported as a passive cargo on microtubules moved forward by the action 
of dynein. (B) Actin is also moved by myosin as a cargo along tracks of actin. 
(C) The loss of either actin or microtubules facilitates more robust movement 
suggesting that these two transport mechanisms act antagonistically, each 
serving as a brake to motion along the other. 

Chapter 4: 
Figure 1: (A, B) Diagram of loading regimen. Cells were grown on flexible silicone 

stretched between two fixed clamps and inverted into a glass bottomed 
imaging dish. Stretch is applied via linear translation stages and results in 
uniform strain in the silicone. Deformations in the silicone are transferred into 
the cell, presumably through adhesive sites. (C) Axon of a sensory Neuron 
stained for talin, a focal adhesion protein, showing the distribution of adhesive 
sites along its length. 

 
Figure 2: Instantaneous strain in response to an applied tensile load is 

heterogeneous. An unstretched axon, under DIC illumination (A) and wide 
field fluorescence (B) was imaged at 0 (A, B) and 4 minutes (C). Four 
minutes was the amount of time it took to apply stretch to stretched axons 
and so it was necessary to quantify the underlying strain in unstretched axons 
over this same period of time. Stretched axons were imaged before (D, E) 
and after the application of 10% strain to the substrate (F). Individual 
mitochondria used for analysis are labeled. (G, H) Heterogeneity in strain 
along the length of the axon. Plot of calculated strain between consecutive 
pairs of mitochondria in unstretched (G) and stretched (h) axons shown in a-f. 
(I, J) Strain as a function of initial length. The calculated strain between all 
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possible pairs of mitochondria was plotted as a function of the initial length of 
the segment between the pairs for the unstretched (I) and stretched (J) axons 
shown in A-F.  

 
Figure 3: Strain heterogeneity is increased at small length scales. Data from all 

instantaneous deflections were pooled and analyzed. (A) Strain in a segment 
between two mitochondria was plotted as a function of the initial length of the 
segment (cf. Fig. 3I-J). The average value for strain in stretched axons 
approaches the expected strain of 10% (0.1 on the Y-axis – heavy black line). 
(B) Variability of strains in (A) was calculated using O’Brien’s method. (c) 
Variability for five µm bin sizes as quantified by O’Brien’s method is greatest 
between 5 and 10 µm, and decreases dramatically for regions longer than 20 
µm in length. While this same trend is noted in unstretched axons, the 
magnitude of the variability is much smaller. Using a two-tailed Student’s T-
test, variability in stretched axons was shown to be statistically different from 
variability in unstretched axons for the bins incorporating data from regions of 
the axons of initial length, 5-10, 10-15 and 15-20 µm as indicated by *, ‡,and 
● respectively. Not enough data was collected from regions of unstretched 
axons smaller than 5 µm to test for statistically significant differences from 
stretched axons. 

  
Figure 4: Regions within stretched axons exhibit continued remodeling following 

stretch. (A, B) Sample images of unstretched (A) and stretched (B) axons in 
which mitochondrial position was monitored over 22 minutes. (B) shows the 
axon before stretch. (C-E) Kymographs were created by tracing along the 
axon at each time and extracting the position of mitochondria from pixel 
intensities. For reference, the positions of mitochondria in the axon shown in 
B before stretch are shown in C. Kymographs for mitochondrial movement in 
unstretched (D) and stretched (E) axons from (A, B). Strain in regions of 
unstretched (F) and stretched (G) axons, calculated from the positions of 
consecutive pairs of mitochondria. A particularly active region of the stretched 
axons (arrow) exhibited very large strains that were achieved very quickly 
and then stabilized (G). As with other axons, this region of large strain was 
between closely spaced mitochondria, while strains in the rest of the axon 
and in unstretched axons were all of smaller magnitude (G, F). 

  
Figure 5: Remodeling in axons following stretch is length- and time-dependent. As 

with axons analyzed for instantaneous strain, all pairs of mitochondria in 
axons were used to calculate strain during the 22 minute experimental period. 
(A) Average calculated strain for all mitochondrial pairs over all time points. 
Strain in a segment of an axon between two mitochondria was plotted as a 
function of the initial length of that segment. Positive and negative strains 
represent net elongation or contraction of the axon, respectively. (B) 
Variability in this data, quantified using O’Brien’s Method. (C-F) To evaluate 
the change in strain over time, strain was calculated using the change in 
position of mitochondria between 1 and 4 minutes of imaging (beginning), 
between 9 and13 minutes (middle) and between 18 and 22 minutes (end). 
The average strain magnitude and variability are plotted for unstretched (C, 
D) and stretched (E, F) axons. A two-tailed student’s T-test was used to 
confirm that strain magnitude and variability decreased by a statistically 
significant amount in stretched axons over the course of the experiment. 
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Figure 6: Stretched axons display reduced cytoskeletal cohesion. (A, B) To assess 

the possibility of a long range framework coupling mitochondria within the 
axon, mitochondrial pairs were analyzed for correlation in their movement 
over time. The deflection of one mitochondrion in an axon was plotted against 
the deflection of another for each time point, and a linear regression fit to the 
data. Sample data and lines of best fit are shown for (A) mitochondria 6 and 7 
(correlated) and 7 and 8 (poorly correlated) in the unstretched axon of Fig. 5 
and (B) mitochondria 2 and 3 (poorly correlated) and 3 and 4 (correlated) 
from the stretched axon in Fig. 4. (C) Correlation analysis of all pairs of 
mitochondria from all axons reveals that the slope of the best fit lines shows a 
strong positive relationship with the r2 values. (D) Mitochondria in unstretched 
axons exhibited more correlated deflections than those in stretched axons, in 
which many more were uncorrelated. (E) Cumulative histogram of the 
distance between correlated and uncorrelated mitochondrial pairs for 
stretched and unstretched axons. Rightward shift in curves corresponding to 
uncorrelated pairs in stretched axons indicate that fewer mitochondrial pairs 
showed coordination in their movement in stretched axons than in 
unstretched axons 

 
Figure 7: Proposed model of cytoskeletal mobility over time. (A) The substrate was 

stretched to 10% over the course of 4.5 minutes and then held at the 
stretched length while cytoskeletal position was monitored for 22 minutes. (B) 
Cytoskeletal mobility showed three distinct phases in response to the applied 
tensile load. After the initial deformation, cytoskeletal deformation and 
mobility remained high for approximately 14 minutes, after which it decreased 
to levels below those seen for unloaded controls. The eventual resolution of 
this decreased mobility remains to be elucidated.  (C) It is unclear what 
mechanism underlies this behavior but we have suggested that 
reorganization of the axonal cytoskeleton occurs through sliding of 
cytoskeletal filaments with respect to one another. In response to an applied 
load, the connectivity of cross-linking proteins stabilizing the cytoskeleton is 
changed allowing for increased filament mobility (phase 2). Filament mobility 
is then dramatically decreased, either through reinforcement or further 
reduction in cross linking (phase 3).  These changes may occur either 
through passive or active mechanisms as described in the figure and 
discussion text. 

  
Figure 8: Biological components and organization of the axonal cytoskeleton. The 

axonal cytoskeleton is composed of a cortical region containing a contractile 
actin-myosin network to which adhesion sites are anchored.   Initial 
deformation in the substrate is likely transmitted through these adhesion sites 
into the actin cortex and then propagated into the axonal core. The core is 
composed of microtubules and neurofilaments connected by “rigid” and 
“dynamic” cross-linking proteins. 

 
Appendix: 
Supplemental figures for chapter 3: 
 
Figure S1: Cumulative histograms showing the distribution of transport parameters 

for particles in Lifeact, maxGFP and GFP-actin expressing axons. The 
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velocity, duration, and distance traveled by a particle were measured in 
axons expressing one of the three fluorescent constructs. Because the 
distributions were broad and non-normal, a Kolmogorov Smirnov test was 
used to test for significant differences between groups. The results of this 
analysis are summarized in the tables of figure 2. 

 
Figure S2: Cumulative histograms showing the distribution of transport parameters 

for particles in axons treated with either nocodazole or EHNA. The velocity, 
duration, and distance traveled by a particle were measured in axons 
expressing GFP-actin. Statistically significant differences are summarized in 
the table of Figure 4. 

 
Figure S3: Cumulative histograms showing the distribution of transport parameters 

for particles in axons treated with either Latrunculin or BDM. The velocity, 
duration, and distance traveled by a particle were measured in axons 
expressing GFP-actin. Statistically significant differences are summarized in 
the table of Figure 4. 

 
Figure S4: Changes in particle direction over time. (A) All of the drugs decreased the 

total number of tracks over time, although latrunculin showed a slight 
recovery during the last 12-20 minutes of imaging. (B) Run direction as a 
percentage of the total number of runs in a given time-lapse calculated for the 
middle time phase (6-12 minutes of drug exposure). (C-F) Track direction as 
a percentage of the total number of tracks for each of the three temporal 
phases of drug exposure. 
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Chapter 1: General Introduction 

 

The axon as a unique model system for studying transport and mechanics 

The neuron is responsible for transmitting electrochemical signals in 

the body. To accomplish this, peripheral neurons develop long specialized 

signaling projections called axons that grow out from the cell body, advance 

through the activity of a highly motile growth cone and establish a synaptic 

connection with other neurons or a muscle fiber. The energetic and structural 

costs of axonal outgrowth and maintenance are huge and the axonal 

cytoskeleton plays multiple roles meeting these demands throughout the life 

of the cell. First, microtubules and actin filaments form polymer scaffolds 

inside the axon that serve as tracks along which a variety of metabolic, 

structural and signaling cargoes are carried by motor proteins. Additionally, 

peripheral nerves are exposed to applied forces during movement and growth 

of the organism. Mechanical interactions between the cytoskeletal networks 

and their associated cross-linking and force generating proteins help axons 

within the nerves accommodate these loads.   

Previous work on individual cells has shown that axonal outgrowth and 

morphology are affected by an applied stretch, but the mechanisms 

underlying these effects are not known. In this work we have explored the 

hypothesis that both growth and mechanical adaptation in the axon are 

processes that depend on the structural integrity, passive connectivity and 
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activity of force generating components of the cytoskeleton. In effect, the 

axon’s ability to exert force and mechanically adapt to its changing 

environment depends on the adaptability of its supporting cytoskeleton. In the 

first part of this dissertation, our discovery of a novel transport mechanism for 

actin during axonal outgrowth will be discussed. This mechanism suggests 

that actin and microtubules exhibit greater interconnectivity in the axon than 

previously thought, and that this connectivity is extremely dynamic. In the 

second half of this work, we will present a discussion of the response of the 

axonal cytoskeleton to an applied tensile load. We found that in response to 

stretch, the axon behaves as a series of independent linked regions, 

suggesting heterogeneity in the integrity and connectivity of the underlying 

cytoskeleton. Furthermore, after stretch the cytoskeleton changes over time, 

a result that reinforces the idea that connections within and between the actin 

and microtubule polymer networks are dynamic. Taken together, our findings 

represent a major step forward in neuronal cell biology and provide a 

foundation for future research on axonal biomechanics and peripheral nerve 

regeneration. 

 

Background: Cytoskeletal Organization in the Axon 

The axonal cytoskeleton is a dynamic array of filamentous polymers 

connected by various static and force generating cross linking elements 

(Figure 1). Microtubules run through the core of the axon, with neurofilaments 

filling space between them and actin arrayed in a cortex lying directly 
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underneath the plasma membrane (Gallo et al. 2002; Heidemann et al. 1985; Lee 

and Cleveland 1996; Peters and Vaughn 1967; Yamada et al. 1971). Crosslinking 

elements include both rigid connectors and dynamic motor proteins. 

Microtubules in the axon exhibit a characteristic polarity, with their plus-ends, 

or rapidly polymerizing ends, extending away from the cell body(Baas and 

Black 1990). Along with their structural role in the axon, controlled and 

facilitated by microtubule associated proteins (MAPs), microtubules serve as 

the tracks along which the motor proteins kinesin and dynein walk (Schnapp 

and Reese 1989; Vale et al. 1985a). The majority of kinesins move towards 

the plus end of the microtubule, while dynein and a few minus-end oriented 

kinesins move towards the minus end. Filamentous actin (F-actin) is a 

polymer rod composed of monomers of globular (G-actin) subunits (Chang 

and Goldman 1973). Actin filaments are also complimented by a multitude of 

actin binding proteins (ABPs) which regulate functions important to the 

structural integrity of the actin cortex (Koenig and Letourneau 2009).  

Additionally, multiple types of myosin motor proteins move along 

actin(Unsicker K 1978). 
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Figure1: Cytoskeletal organization in the axon. The axonal cytoskeleton is composed 
of arrays of polymer filaments. Actin lies in a cortex underneath the membrane, while 
microtubules and neurofilaments occupy the core of the axon. A number of 
accessory proteins are associated with both actin and microtubules, including the 
motor proteins, kinesin, dynein, and myosin as well as other proteins which form 
more stable cross links.  
 

Background: Axonal Transport 

The history of axonal transport is covered in depth in the review by 

Alvarez (Alvarez et al. 2000), but, briefly, the transport of material from the 

cell body down the axon was proposed as a mechanism in 1948 (Weiss and 

Hiscoe 1948) and a number of subsequent radio-labeling experiments 

resulted in the parsing of axonal transport into one fast component, which 

moved at upwards of 40mm/day and two slow components, Slow component 

b (SCb) which moves between 2-7mm/day and slow component a (SCa) 

which moves between 0.1 and 1mm/day. (Black and Lasek 1980; Droz B 

1963; Hoffman and Lasek 1975; Willard et al. 1974). Microtubules were 

known to be important early on, (Banks et al. 1971a; Banks et al. 1971b), but 

it wasn’t until the 1980’s that kinesin and dynein were identified as the motors 

responsible for anterograde and retrograde movement of vesicles along the 

axon, respectively. (Schnapp and Reese 1989; Vale et al. 1985a; Vale et al. 

1985b) Because of their integral role in axonal outgrowth and the axon’s 

structural integrity, the mechanism underlying the transport of cytoskeletal 

proteins has been an area of intense debate and active study. Neurofilaments 

and microtubules are transported in the slow component but, unexpectedly, 

don’t move at a consistently slow rate. Rather these filaments are moved by 
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kinesins and dynein at the same instantaneous rate as fast cargoes but their 

motion is less processive; it is punctuated by pauses and reversals. (Allen et 

al. 1982; Brady et al. 1982; Wang and Brown 2002). Less well understood is 

the mechanism by which actin is transported in the axon.  Early radiolabeling 

experiments indicated that actin is transported at rates associated with slow 

component-b (Black and Lasek 1979; Willard et al. 1974), though other 

studies report that some actin may also travel with tubulin in both slow 

component-a and -b (McQuarrie et al. 1986; Tashiro and Komiya 1989). 

However, the initial possibility of a role for acto-myosin activity in the transport 

of SCb components has recently been rejected in favor of a microtubule 

based mechanism (Roy et al. 2000; Roy et al. 2007; Roy et al. 2008). 

 Biochemical and radiolabeling experiments from squid giant axon and 

chick sciatic nerve suggest that much of transported actin is soluble (Mills et 

al. 1996; Morris and Lasek 1982; Morris and Lasek 1984) but the role of 

monomers, oligomers, or short actin filaments to the soluble fraction is still 

unknown. However, there is frequent exchange between the filamentous 

fraction and these smaller units along the axon and within the growth cone 

(Okabe and Hirokawa 1992; Takeda et al. 1994). Additionally, recent work 

has demonstrated that actin is more mobile in the axon than originally thought 

(Gallo and Letourneau 2000).  Actin is a key component of axonal filopodia, 

protrusions of which extend and retract and which may ultimately represent 

precursors to branches (Ketschek and Gallo 2010; Spillane et al. 2011). In 

addition, actin has also been observed to move as a wave in the neurites of 
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cultured hippocampal neurons (Flynn et al. 2009; Ruthel and Banker 1998; 

Ruthel and Banker 1999). 

 

Background: Mechanical Loading and Growth 

Peripheral nerves undergo tensile loading, or stretch, within a 

physiological range during growth and voluntary or imposed joint extension 

and flexion (Topp and Boyd 2006).  Nerves are lengthened even more 

dramatically during orthopedic or regenerative surgery, including limb-

lengthening procedures(Murray et al. 1993).  Animal models of chronic nerve 

lengthening suggest that a threshold of strains and strain rates determine 

whether stretch is injurious or ameliorative, based on the structure and 

electrical conduction capabilities of the affected nerve (Eggli et al. 1999; Shi 

and Pryor 2002; Shi and Whitebone 2006; Shibukawa and Shirai 2001).  

However, the mechanisms underlying this empirically-determined threshold 

remain to be determined.  At the cell level, axons, situated between the 

adherent cell body and extending growth cone are also thought to be under 

tension (Bray 1979; Lambert de Rouvroit and Goffinet 2001).  As is true for 

many biological cells of the musculo-skeletal system, (Smith and Gilligan 

1996; Vandenburgh et al. 1991) neurons also exhibit a morphological 

response to mechanical loading. Under a “towed growth” loading regimen, 

micromanipulator controlled glass needles have been used to apply and 

measure tensile forces on axons by pulling on the growth cone.  These 

studies have revealed that axonal growth rate increases linearly with an 
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applied load, and that tension is important throughout neurite development 

(Heidemann et al. 1995). Related studies also showed that tension applied to 

the cell margin can induce neurite formation (Chada et al. 1997) and specify 

axonal fate(Lamoureux et al. 2002). A recent extension of towed growth, 

termed stretch growth (Pfister et al. 2004) has been used to create tracts of 

multiple axons that are up to 5 cm in length, towards a strategy for spinal cord 

regeneration(Iwata et al. 2006; Pfister et al. 2006b).  Collectively, these 

studies establish that neurons both produce and respond to tensile forces. 

Significance for Regenerative Medicine 

A major goal of neuroregenerative medicine is the replacement of 

axonal function lost due to disease or traumatic injury. Although autologous 

nerve transplantation after injury can achieve this reasonably well, the 

procedure may require multiple surgeries and is only suitable for bridging 

short lesions in the peripheral nervous system (Deumens et al.).  Much of the 

current research is focused on producing new materials that take advantage 

of extracellular signaling molecules to facilitate regeneration (Schmidt and 

Leach 2003). Particularly in light of the numerous effects of mechanical 

loading on axonal physiology and growth (see previous section: Mechanical 

Loading and Growth), a complimentary research perspective is to study the 

fundamental biological systems underlying the ways in which an axon 

interacts mechanically with its extracellular environment to modulate its 

internal structure during growth.  
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In many ways, this work was motivated by previous reports which 

enumerated the empirically determined thresholds and effects of mechanical 

loading. Our research extends those studies to provide a more complete 

understanding of dynamic cytoskeletal connectivity during growth and 

provides a biological mechanism for how the axon accommodates an applied 

tensile load in terms of the magnitude of cytoskeletal reorganization and the 

time course over which those changes take place. This more complete 

knowledge of axonal biology will facilitate the development of more 

comprehensive therapeutic interventions towards the goal of peripheral nerve 

regeneration. 

 

Organization and Summary of Dissertation 

This work examines the role of cytoskeletal dynamics in the axon 

during actin transport and in modulating the axon’s response to an applied 

tensile load. The research in this dissertation is divided into three chapters 

(chapters 2-4). In chapter 2, a novel image processing algorithm is discussed 

which facilitates the analysis of axonal transport in highly mobile axons. In 

chapter 3, this algorithm is used to analyze the movement of actin in the axon 

during growth and in chapter 4, the response of an axon to an applied tensile 

load is examined.  

Chapter2: 

Kymograph analysis offers a simple and effective tool for use in 

analyzing axonal transport. A kymograph is a graphical representation of 
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motion along a one dimensional path, where position along the path is one 

axis, and time is along the other (Ch 2. Fig. 1). Typically, kymographs are 

built by having a user trace the path of the axon in one frame of a time-lapse 

movie and extracting intensity profiles from subsequent frames along that 

path. This method cannot accommodate movies in which translation of the 

axon, or changes in axonal orientation or geometry, occur. Both are 

frequently observed in long-term movies of neurons, both in vitro and in vivo. 

To solve this problem and automate the creation of kymographs from these 

movies, we developed a two step algorithm which is discussed in the next 

chapter. The first step implemented a simple image registration algorithm that 

aligned axons based on identification of a reference point on the axon in each 

image. The second step used a Hough transformation (HT) to automatically 

detect the axonal contour in each frame. Intensity profiles along this contour 

were then used to construct a kymograph. This algorithm was able to build an 

accurate kymograph of mitochondrial and actin transport in dynamic cultured 

sensory neurons, which were not amenable to previously used analytical 

methods. 

 Chapter 3: 

This algorithm was then used to analyze the transport of GFP-actin in 

cultured sensory neurons, as discussed in chapter 3. GFP-actin expressing 

axons exhibited GFP labeled puncta that appeared and disappeared during 

the course of a time lapse and moved bidirectional with frequent pauses. 

Phalloidin staining as well as transfection with the actin labeling protein 
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Lifeact-TagGFP2 confirmed that these puncta were composed of filamentous 

actin. Additionally, the existence of these densities appeared to be controlled 

by bundling and dissociation of actin filaments rather than by de novo 

synthesis or polymerization. Most importantly, the overall dynamics of these 

particles exhibited a net anterograde displacement with rates of transport 

similar to those reported previously for the movement of slow component 

cargoes. To determine the mechanism by which these particles moved, 

pharmacological agents were used to perturb various components of the 

cytoskeletal network. Through rigorous quantification of changes in the 

transport parameters after exposure to these drugs, a model was developed 

in which actin transport is mediated by both actin and microtubule dependent 

processes. Most other transport in the axon occurs by kinesin and dynein 

motors carrying cargoes along stationary microtubules but our evidence 

suggests that actin is moved partially as a passive cargo attached to moving 

microtubules and is also moved by myosin, which is presumably walking 

along filaments in the actin cortex. This work represents a major step forward 

in understanding cytoskeletal mobility and slow component transport. 

 Chapter4: 

In the fourth chapter, a novel cell stretching device was designed and 

implemented to study the response of the axonal cytoskeleton to a tensile 

load applied by stretching the culture substrate. Rat sensory neurons were 

seeded onto a flexible silicone sheets and imaged during substrate stretch. 

The positions of stationary mitochondria, docked to the axonal cytoskeleton, 
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were determined before and after 10% stretch, and used to calculate the 

resulting “instantaneous” strain in regions of the axon. There was dramatic 

heterogeneity in strain along the length of the stretched axons, particularly in 

regions shorter than 20 µm. The substrate was then held at 10% strain and 

the axons imaged for 20 minutes during “relaxation.” Both strain magnitude 

and variability were larger at small lengths in stretched axons during the initial 

phase of relaxation, but after 14 minutes, decreased to levels smaller than 

those seen in unstretched axons. Mitochondrial pairs in stretched axons 

showed uncoordinated movement with each other at all lengths, suggesting 

that cytoskeletal cohesion is reduced after stretch. Collectively, these data 

present the axonal cytoskeleton as a dynamic structure, which responds to 

stretch rapidly and locally. Although, globally the axon behaves as a 

viscoelastic continuum, below a characteristic length, it appears to behave as 

a series of independent linked elements, each with unique mechanical 

properties. This suggests a length scale within which cytoskeletal structural 

elements may be altered to modulate the biomechanical response of the 

axon. 

Concluding Remarks and Summary 

In this work we have studied the dynamic connectivity between actin 

and microtubules in the transport of actin and in the axon’s response to an 

applied tensile load. We addressed fundamental questions concerning 

neuronal force transmission and its effects on local regulation of cytoskeletal 

reorganization during growth and transport in the axon. We provide evidence 
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that the dynamic nature of the actin cytoskeleton itself and its connectivity 

with microtubules play a central role in both processes. This suggests a more 

prominent role for actin in the axon’s engagement with its environment and 

answers questions about the role of the cytoskeleton in mediating the 

response of the axon to an applied stretch. Overall, this work provides a 

comprehensive framework for axonal physiology that has broad implications 

for the study of neuronal growth and peripheral nerve regeneration. 
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Chapter 2: A novel algorithm to generate kymographs  

from dynamic axons for the quantitative analysis of  

axonal transport 1 

Introduction 

 The axon is a long, narrow process that facilitates electrical signaling 

within the nervous system by transmitting action potentials. It also serves as a 

conduit within which a variety of structural, energetic, and signaling cargoes 

necessary for cellular function are actively transported by molecular motors 

along cytoskeletal tracks (Goldstein and Yang 2000; Hirokawa and Takemura 

2004). Defects in axonal transport have been implicated in a variety of 

neurodegenerative diseases, including Alzheimer’s Disease, Parkinson’s 

Disease, and Amyotrophic Lateral Sclerosis (Chevalier-Larsen and Holzbaur 

2006; Duncan and Goldstein 2006; Gunawardena and Goldstein 2004; Shah 

et al. 2009). The biological and clinical relevance of axonal transport has 

motivated an explosion of new approaches to its study. An increasingly 

common technique is the generation of fluorescence or bright field movies of 

labeled, motile cargoes in axons, both in vitro and in vivo (Cavalli et al. 2005; 

Mondal et al. 2011; Wang and Brown 2001; Waterman-Storer et al. 1997). 

Understanding changes in parameters describing the axonal transport of a 

particular cargo, such as directionality, velocity, or flux, can reveal details 

                                                 
1 This has been previously published as: Chetta J, Shah SB. 2011. A novel algorithm to generate 
kymographs from dynamic axons for the quantitative analysis of axonal transport. Journal of 
Neuroscience Methods 199(2):230-240. 
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about cellular mechanisms underlying transport as well as pathways of 

transport dysfunction.  

 

 Performing such analysis requires the accurate identification of the 

coordinates of individual axonal cargoes of interest in each frame of a movie. 

These can then be consolidated into a set of cargo tracks, from which 

transport parameters can be extracted. Several image processing 

approaches have been implemented to generate high-resolution tracks. At the 

more computationally intensive edge of the spectrum, combinatorial 

optimization problems have been solved to generate 2-D trajectories of cargo 

movement (Cameron et al. 2006). In addition to computational expense, such 

methods also require a very high signal to noise ratio, which can be difficult to 

achieve in live cell fluorescence or bright field microscopy. 
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Figure1: Building a kymograph. (A) A time-lapse movie is an ordered series of still 
images, in which data is encoded by a pixel’s intensity at specific x and y coordinates 
in an image at a particular time. A small region of interest (saROI) is used to align the 
images so that an axonal reference point is located in the same position in all 
frames. (B) The specific path of the axon is then defined and used to extract an 
intensity profile from each image. (C) When aligned vertically, these intensity profiles 
illustrate the position of particles within the axon as a function of time.  
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 More simply, a kymograph provides a plot of the cargoes’ positions 

along the one-dimensional path of the axon as a function of time. This 

graphical representation of cargo trajectories requires tracing a line upon the 

axon, from which intensity profiles are extracted and aligned at each time 

point (Bilsland et al. 2010; Haghnia et al. 2007; Miller and Sheetz 2004; Zhou 

et al. 2001). The kymograph can then be analyzed to determine the position 

of individual particles within the axon. To accurately interpret cargo 

trajectories, a fixed frame of reference for cargo motion must be identified, 

typically the axon itself. Additionally, the axon must be stationary for the 

duration of the movie, to provide a stable contour along which intensity 

profiles are generated. These requirements are often confounded by two 

major types of problems. The first, image drift, may result from temperature 

fluctuations or from instrumentation creep, and results in loss of focus and 

translation of the axon within the imaging field. The second problem is 

biological in nature; axons are dynamic, particularly over longer time periods, 

and frequently both their geometry and position change over time. Either of 

these two problems can result in unusable kymographs, due to movement of 

the axon away from, or even within (during elongation or retraction), the 

initially selected contour. More detrimental to interpretation may be 

trajectories in which more subtle artifacts of erroneous particle motion are 

introduced.  

 We have developed image processing algorithms that address artifacts 

and errors associated with axonal translation and altered axonal geometry. 
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First a stable reference point for cargo motion is established by bringing the 

beginning of the axon into registration in all frames of a time-lapse and then 

the axon is automatically identified in each frame. This method enables us to 

generate kymographs from movies of highly mobile axons not previously 

amenable to quantitative transport analysis. We have demonstrated the 

application of this method to track the movement of two fluorescently labeled 

cargoes with markedly different transport profiles, mitochondria and actin, in 

cultured mammalian sensory neurons. Ultimately, we anticipate that our 

methods will enable more rigorous quantitative characterization of transport 

within the context of axonal physiology, enhancing our understanding of 

mechanisms underlying transport function and dysfunction. 

Methods and Materials: 

Cell Culture and Microscopy 

 Time lapse (TL) movies of the axons of sensory neurons were created 

with paired Differential Interference Contrast (DIC) and wide field epi-

fluorescent images. Dorsal root ganglia (DRG) were cultured in glass-bottom 

dishes (MatTek Corp. Ashland, MA) coated with laminin and labeled with 

Mitotracker Green (Invitrogen, Carlsbad, CA), per previous methods (Chetta 

et al.). For examining the movement of actin, prior to plating, DRG were 

electroporated with plasmid encoding GFP-actin (a generous gift from Dr. 

Helim Aranda-Espinoza) using protocols provided for Amaxa Nucleofector II. 

Images were captured using a Nikon TE-2000E inverted microscope fitted 

with a 40x 1.35NA PlanApo oil-immersion objective (0.16µm/pixel), every 45 
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seconds for mitochondria and every 5 seconds for actin. Exposure times were 

3-5ms for the DIC channel and 100-200 ms for the fluorescent channel.  The 

microscope stage was enclosed within an environmental chamber, which 

controlled temperature (37°C), humidity, and carbon d ioxide (5%). Animal 

work has been approved by the IACUC at the University of Maryland. 

 

Statistics 

All statistical comparisons of significance were performed using a two 

tailed t-test assuming unequal variances. 

 

Algorithms – Overview 

 Algorithms for image processing were developed using Matlab 

software (The Mathworks, Natick, MA) and were designed to process the 

time-lapse frames from a typical experiment (Figure 1), towards the 

generation of a kymograph, which could then be analyzed using any number 

of published manual, semi-automated, or automated methods.  

The numbered steps of the algorithm summary (Figure 2) may be used to 

guide the remaining discussion of the algorithm. Those steps which required 

manual user inputs are outlined in a double box. Those which the computer 

performed automatically are outlined in a single box.   Examples of image 

processing results for each step are provided in Figures 3-6. For clarity, we 
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occasionally refer to both the summary and examples in the description of the 

algorithm itself as well as the results. 

Acquisition

Time-Lapse Capture
•Live cell microscopy

Processing

Axon Detection
•To extract intensity profile

6: Image Filtering
•Increase contrast of axon 
edges in DIC images

5: MSE Calculation
•saROI from one image 
compared to normal and 
binary versions of spatially 
shifted saROIs from the 
following image.
•Spatial shift with smallest 
MSE then applied to the 
whole image

4: saROI definition
•Small Alignment Region of 
Interest (saROI) defined 
within first image of the TL. 
This encompassed some 
physical axonal landmark 
visible in all frames.

3: Rotation
•Images rotated so that 
axons are horizontal

Alignment
•To correct for Axon 

movement

Output:
Time series of paired DIC 
and fluorescent images

8: Make Image Binary
•Use threshold determined 
by Otsu’s Method

7: Segmentation
•User defined inflection 
points used to segment the 
image into smaller panels 
which contain linear 
sections of the axon

9: Hough Transform
•Use Hough Transform to 
define center line for axon 
section in each panel.

10: Single Poly-line
•Center lines are combined 
to make one rough estimate 
of position of whole axon.  

11: Refinement
•Whole center line defines 
search area around axon
•Search fluorescent images 
for the maximum pixel 
intensity

2: Microscopy
•DIC and fluorescent 
images acquired in 
separate channels

•Series of ordered still 
images taken over time

1: Labeling
•Cells labeled with 
fluorescent markers

Output:
Rotated, cropped, aligned 
series of paired DIC and 
fluorescent images

Output:
Intensity profile of the 
axon from each frame –
used as an individual row 
of the kymograph

 

Figure 2: Flowchart of the image processing algorithm. Those steps which required 
manual user inputs are outlined in a double box. Those which the computer 
performed automatically are outlined in a single box. Refer to text for details. 
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 The algorithm to build a kymograph consisted of two main steps. In the 

first step, a user designated a distinctive axonal landmark to serve as a stable 

reference point for cargo moving in the axon. This axonal reference point was 

some feature visible in all frames, such as a branch point or the transition 

point (i.e., change in concavity) between the cell body and axon. An 

automated registration algorithm processed the images so that this landmark 

was located at the same x and y coordinates in all frames of the time lapse. In 

the second step, the axonal contour was identified automatically in each 

frame, and an intensity profile along this contour was extracted from each 

image to populate one row of the final kymograph.  

 Fluorescence signals often vary within and across experiments, while 

DIC images have a higher and more consistent signal to noise ratio (SNR). 

Therefore, DIC images were used for axonal identification and alignment, and 

the results were mapped to the corresponding fluorescent image for each 

frame of the TL (Figure 2: Steps 1 and 2). This allowed for the generation of 

kymographs and the analysis of labeled cargoes that varied in fluorescent 

intensity and spatial distribution over time. This also enabled the creation of 

kymographs from the DIC movies themselves, which are useful for the 

analysis of dense cargoes visible in bright field and the analysis of axon 

outgrowth. To demonstrate the applicability of our methods to a range of 

cargo and transport profiles, kymographs will be presented for fluorescently 

labeled mitochondria and GFP-actin. Mitochondria are distributed relatively 

sparsely and exhibit punctate fluorescence (e.g., Figure 3), while GFP-actin is 
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a more prevalent and more diffuse label, interspersed with regions of brighter 

intensity (e.g., Figure 5). 

Image Registration: 

Overview: 

Briefly, the image registration algorithm worked by comparing the 

location of a user designated axonal landmark in one frame of the TL to its 

location in the next frame. If the two positions were different, then the second 

frame was translated along the x and y axes until the locations of the 

landmarks were coincident. This was repeated with pairs of consecutive 

frames until all frames were processed. Because kymographs represent 

motion relative to some stationary point, it was necessary only to align this 

single reference point at the beginning of the axon. This greatly simplified the 

problem and reduced computation time. The comparisons and calculations 

were made using frames from the DIC channel, but the same translations 

were applied to the fluorescent channel(s) as well. The end result was a new 

series of images for each color channel. 

 

Algorithm: 

Before registration, each image in the time series was rotated so that 

the majority of the axon of interest was horizontal to within ± 15o (Figure 2: 

Step 3). The rotation was determined manually by the user and was 

performed to align the central axis of the axon with the x-axis of the image. 
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The whole time series was rotated by the same amount. In the case of a 

curved axon, the maximum possible length of the axon was aligned with the 

x-axis. To reduce the size of the image and associated computations, the 

user was asked to manually select a rectangular region around the axon, 

which was cropped out of the first frame of the TL. The user was then shown 

that cropped image and asked to manually select a region within it that 

encompassed a distinctive morphological feature, such as a branch point, that 

would be visible in all frames of the TL. This region will be referred to as the 

small alignment ROI (saROI, ~70x70pixels) in this discussion (Figure 1; 

Figure 2: Step 4; Figure3A-B). Finally, the user was asked to manually select 

the “centroid” of the feature. These initial selection steps were performed 

manually, but the following comparisons were all performed automatically. 

To determine how far out of register the axonal landmarks in 

consecutive images were, the saROI from the first image, called the reference 

image, was compared to shifted versions of the saROI collected from the next 

image in the series, called the target image (Figure 2: step 5; cf. (Zitová and 

Flusser 2003)). The saROI was spatially shifted within a 30 pixel x 30 pixel 

(roughly 5µm x 5µm) neighborhood in the target image, to create 900 

candidate saROIs which were all the same size as the reference saROI. The 

mean squared error (MSE) between each candidate saROI and the reference 

saROI was calculated and the candidate saROI which yielded the smallest 

MSE was recorded. If two candidates resulted in a similar MSE, the one 

which was produced by the smaller spatial shift was chosen. 
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Additionally, to confirm that this was the correct spatial shift, two further 

calculations were made, based on the MSE between binary versions of the 

spatially shifted candidate saROIs and a binary version of the reference 

saROI. Threshold levels for the reference and the target saROIs were 

determined automatically using Otsu’s method. For the first calculation, the 

reference threshold value was used to convert both the reference and target 

saROIs to binary images. In the second calculation, the reference threshold 

was applied to the reference saROI and the target threshold was applied to 

the target saROI. In both cases, the MSE between the binary saROIs was 

calculated and the associated spatial shift recorded. If they failed to produce a 

consensus for the correctly shifted saROI, the user was asked to manually 

pick the centroid in the target saROI and the images were aligned so that the 

two centroids coincided. Only a small fraction (<8%) of image pairs required 

that the user manually choose the centroid. Additionally, selecting a smaller 

alignment ROI (30x30 pixels) increased the number of times the user was 

asked to intervene. 

Once the appropriate spatial shift was determined by the above 

methods, it was applied to the rectangular region around the whole axon in 

the large target image so that the axonal landmark from the saROIs appeared 

at the same coordinates in both whole axon cropped images. The target 

image then became the reference image for the next round of alignment, and 

was compared to the image following it, and the process was repeated until 

all frames had been aligned. This simple image registration algorithm takes 
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advantage of the fact that the differences between consecutive images are 

small; although there may be significant differences between the position of 

the axonal landmark in the first and last images of a time-lapse, these large 

changes take place gradually. Tracking these small translational changes 

between consecutive images is straightforward and robust. 

Automated Axon Detection: 

Overview: 

 The generalized Hough transform (HT), used to identify lines in an 

image, was originally developed by Duda and Hart (Duda and Hart 1972) and 

has since been extended to identify other geometric shapes (Ballard 1981). It 

is an elegant method that transforms the computationally intensive problem of 

finding co-linear points in the x-y plane into a different problem, of finding the 

intersection point of sinusoidal curves in the θ-p plane, where θ and p are 

parameters that describe the angle and normal distance of a line away from 

the origin, respectively. The registration algorithm created a new set of 

smaller images, in which the original time lapse frames had been rotated, 

aligned, and cropped (Figure 2: Steps 3-5). The second step of this algorithm 

used the HT to identify the position of linear portions of the axon in frames 

from the DIC channel in these new images. Axons often follow tortuous paths, 

which can be approximated by a series of connected straight line segments. 

To identify each line segment, each DIC frame of the time lapse was 

binarized and then divided into smaller panels which contained one roughly 

linear section of the axon. Each of these binary panels was then analyzed 
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using the HT to determine the position of the axon section within it. The 

resulting line segments from all the binary panels were then combined to 

create an approximate map of the position of the axon. This map was then 

applied to images from the fluorescent channel, and a search was 

implemented to find the exact position of the axon based on the maximum 

pixel intensity. 

 

Algorithm 

 To divide the frames of the TL into smaller segments, the user was 

shown an overlay of the first and last images of the TL and asked to select 

points where the axon changed orientation at any point during the movie 

(inflection points). Inflection point selection was performed only once and the 

same points were used for all frames of a movie, so it was possible and 

acceptable for axon orientation to change in one part of the movie, but remain 

fixed for the remainder of the movie. This point selection was performed 

manually by the user; the following steps were all performed automatically. 

The possibility of error associated with these user-defined points and the 

associated size of the subdivided panels will be discussed in the results 

section.  

Only binary images can be used as an input for the HT, so each frame 

of the DIC channel of the TL had to be processed to create a binary version in 

which the axon was emphasized. First, a high pass Sobel filter with the kernel 

[-1 -2 -1; 0 0 0; 1 2 1] was used to emphasize the axon’s edges. This kernel is 
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“tuned” to recognize regions of high frequency change in the vertical direction 

(horizontal edges). Because it is directional, it was applied once from the top 

down and once from the bottom up (Figure 2: Step 6). The two resultant 

images were converted to binary images using thresholds determined by 

Otsu’s method and then combined into one composite image, with the edges 

of the axon in white against a black background (Figure 2: Step 7; Figure 4A, 

E; Figure 5C). The previously chosen inflection points were then used to 

divide the image into small panels (Figure 2: Step 8), which were processed 

with the HT (Figure 2: Step 9; Figure 4B-D, F-H; 5D-K). Two lines, one for 

each edge of an axon section, were determined and their end points 

averaged. These two resulting end points defined one consensus line through 

the middle of the axon section in each panel (Figure 4I, J). The center lines 

from neighboring panels were then joined end-to-end to make a continuous 

poly-line along the whole axon. If the end point of one center-line did not align 

with its neighbor’s end point, the average of the two was used (Figure 2: Step 

10). This poly-line lay roughly along the center of the axon. To extract one 

row of the kymograph, this rough poly-line was applied to the time-matched 

frame(s) of the fluorescent channel(s). To refine the position of the axon, a 

window roughly twice the width of the axon was defined and, at each point 

along the axon’s length, searched for the maximum pixel intensity (this 

window was 15 pixels wide for images acquired at 40x; Figure 2: Step 11). 

These points were used to define one row of the final kymograph (seven 

pixels wide for images acquired at 40x). It is worth emphasizing that the HT 
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provided a rough starting point for the location of the axon in the form of a 

linear approximation but this last step resulted in a more accurate final 

contour that was not necessarily linear. The kymograph was then finalized by 

vertically aligning the extracted intensity profiles in the correct temporal order. 

Cargo tracks were then visually apparent, and ready for analysis through the 

use of any number of manual, semi-automated, and automated methods 

commercially available or in the literature. 

 

Results: 

I: Identification of potential pitfalls in traditional kymograph analysis 

We first present an analysis of fluorescently labeled mitochondria moving 

within a cultured rat DRG axon. In this experiment, images were captured 

every 45 seconds for 20 minutes.  This example was selected because it 

emphasizes the dynamic nature of cultured axons and the potential for 

resultant errors and misinterpretation. Figure 3A shows the same axon at 

three different time points. The geometry of the axon clearly changes over 

this time period (cf. slopes at T=9min vs. T=19min). In the standard 

construction of a kymograph, a single user defined path is drawn in the first 

image of a TL and used to extract intensity profiles from all subsequent 

frames of the movie (outlined by the dashed white lines in Figure 3A), under 

the assumption that the axon has remained stationary from frame to frame.  

Such a kymograph is shown in Figure 3D. Due to the changes in axon 

orientation, the last several rows are dark because the axon has drifted 
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outside of the initially traced path, but a more subtle problem occurs within the 

rows in which particles are visible. This standard construction assumes a 

stable reference point along the axon, but figure 3B and 3C demonstrate the 

mobility of reference point used here, a branch point.  A non-automated 

approach to deal with a changing reference point, as well as changing axonal 

geometry requires the user to manually trace the axon in many or all of the 

frames throughout the time lapse, beginning each trace from the same 

reference point. These contours may then be assembled into a kymograph. 

Such analysis is shown in Figure 3E, using the branch point to the left of the 

figure as a reference point. This manual correction highlights the pitfalls of 

misalignment, as four seemingly mobile particles (arrowheads in figure 3D) 

are, in reality, stationary with respect to the branch point (arrowheads in figure 

3E and 3F). 
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Figure 3: Automated method of kymograph generation outperforms manual methods. 
(A) DIC and fluorescent images of an axon labeled with Mitotracker green, taken 
from a time-lapse movie illustrating the change in geometry and orientation of the 
axon over time. The black boxes outline the saROI used for alignment purposes. The 
white dotted lines in the DIC images illustrate the position of the axon in the first 
frame of the TL and the movement of the axon outside of that path in subsequent 
frames. The white arrows in the fluorescent images indicate the four stationary 
mitochondria discussed in the text and indicated in D-F.  (B) Larger view of the 
saROIs from A. The white stars indicate the “centroid” of the branch as chosen by 
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the user. (C) Movement of the centroid shown in B over time. (D) Kymograph built 
using one path traced in the first frame of the movie to extract intensity profiles from 
all subsequent frames. The black arrows indicate the four stationary labeled 
mitochondria discussed in the text. (E) Kymograph in which the path of the axon was 
manually traced in every frame of the movie. White arrows identify jumps in particle 
position between frames. (F) Kymograph built using our automated algorithm. (G) 
Graph showing the displacement from its original position of the centroid of the 
saROI from B before and after image registration. (H) The displacement of the 
centroid of an axonal landmark, such as the branch point shown in B, was analyzed 
in TL movies of 10 axons. While the gains were positive for both highly motile and 
more stationary axons, the algorithm made significant improvement for highly motile 
axons. Scale bar, 10µm in all panels. 
 

 While this manual approach resolves several artifacts associated with 

the standard method of building a kymograph, it is time consuming and also 

holds the potential for considerable user error highlighting the need for an 

automated method. A kymograph generated by this manual method was 

compared to a kymograph produced using our automated algorithms (Figure 

3F), the construction of which will be detailed in sections II and III. It is 

apparent that the kymograph built using our algorithm is qualitatively similar to 

that built with manual input, especially compared to the kymograph shown in 

Figure 3D, but there are slight differences between them. The most notable is 

in the tracks of the four stationary particles (black arrows). Watching the raw 

movie, these particles appear to be stationary with respect to the axon and 

also appear to be stationary in these kymographs. However, in Figure 3E, 

there are noticeable regions of discontinuity in these tracks (white arrows) not 

seen in Figure 3F. The tracks in Figure 3E also display a very slight drift to 

the right. Comparing the last row to the first row in this figure, from left to right, 

the particles each move to the right by 7.7 pixels (1.3%),2.7 pixels (0.4%), 9.3 

pixels (1.6%), and 8.7 pixels (1.5%) respectively, where the parenthetical 
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percentages refer to the shift relative to the total kymograph width (578 

pixels). In Figure 3F, this drift is smaller; the difference in position between 

the first and the last frame for these tracks is reduced to 3 pixels right (0.5%), 

3 pixels left (0.5%), 3 pixels right (0.5%) and 1 pixel left (0.2%), respectively, 

with a kymograph width of 662 pixels.  

 

II: Alignment of Reference Points 

 The MSE based image registration algorithm aims to solve the 

alignment problem highlighted above by bringing an axonal landmark into 

register in all frames of the time lapse to serve as a reference point for 

particle motion. When manually tracing paths (cf. Figure 3E), the user draws 

a line segment drawn in each frame that begins at approximately the same 

point on the axon, based on visual cues. To accomplish this computationally, 

small regions of the axon (saROIs) were used to align the same reference 

point in all images. In fact, it was not necessary to align the whole axon, but 

only to bring one point of the axon into registration to serve as a reference 

point while building the kymograph. To determine the effectiveness of this 

alignment protocol, the position of the branch point shown in figure 3B was 

determined before and after alignment. A user was asked to manually select 

the position of its centroid in all 25 frames of the unmodified TL as well as in 

the series after alignment. Before alignment, the branch point moved 

significantly over time, translating up to ten pixels between frames, and over 

35 pixels over the course of the movie (Figure 3B). It exhibited an average 



 

 31 
 

displacement from its initial position of 13.8 pixels (Figure 3G: diamonds). 

After alignment, its average displacement decreased to 3.7 pixels (Figure 3G: 

squares), which is only slightly larger than the average user error when 

selecting the same point multiple times (2 pixels; Figure 3G - horizontal dotted 

line). In an additional five TL movies of extremely motile axons created under 

similar imaging conditions (1 frame per 45 seconds, between 25 and 41 total 

frames) we were able to reduce the average displacement significantly 

(p<0.000001, Table 3H) . In four additional time lapse movies, with frames 

captured every 5 seconds, the axonal displacement was much less dramatic 

and the gains from our alignment procedure still positive, but not significant. 

 

III: Implementation of the Hough transform 

 The real power of this algorithm is the implementation of the HT to 

automatically identify axons that trace complex paths in the imaging field. 

Figures 4 and 5 demonstrate three characteristics of this transform that make 

it particularly effective. First, it is capable of accurately identifying linear 

structures in the image that are partially occluded or otherwise discontinuous. 

Additionally it retains a high degree of accuracy despite variation in user 

defined inputs as well as in images which contain noise. Between steps 5 and 

6 in the algorithm described above, the user was asked to choose inflection 

points – places where the axon changed orientation or geometry, or where it 

would change orientation or geometry during the movie. These points were 

used to define boundaries to divide the image into segments which contained 
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linear portions of the axon. The same points were used to segment all frames 

of a TL so that for some frames, a longer linear section of the axon was split 

into smaller sections to accommodate future or past axonal geometries. As an 

example, in the TL described in Figure 3, the axon was pulled upward during 

the last few frames by another cell (Figure 3A, Figure 4A,E), creating three 

distinct linear sections in one previously linear axon (Figure 4B-D, F-H). The 

left-most panels of both frames are shown in detail to illustrate a few 

important points (Figure 4 I, J). First, both edges of the axon were identified 

by the HT and then averaged to specify the location of the center line (not 

shown in these figures). Second, although binary images may show 

incomplete or ambiguous axonal edges due to inconsistencies in illumination 

or debris in the imaging field, the HT is able to accurately identify these 

broken lines (white arrows). 
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Figure 4: Hough transform. (A, E) Binary images created from the DIC images shown 
in Fig. 3A after image filtering and thresholding as discussed in the text. (B-J) Binary 
images with endpoints and lines determined by the HT overlaid on top. (B-D, F-H) 
Image segments analyzed with the Hough transform to identify the two edges of the 
axon. Although in A the axon is one straight segment, it was divided into smaller 
regions to accommodate the more complex geometry in E, a frame from later in the 
movie. (I, J) Detailed views of panels B and F illustrating the accuracy of the Hough 
transform, even in the case where the axon is incomplete (white arrows). Scale bar, 
10µm. 
 

 In this algorithm, we have used the Hough transform to identify the 

axonal center-line in an image, but this only provides a rough approximation 

of the axon’s position. This center-line is used to define a 15 pixel-wide 

window within which the actual position of the axon is refined through a 

search for the brightest pixel in the fluorescent channel. In the analyses 

discussed below, the HT was considered able to accurately identify the axon 
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if it was able to locate the position of the axon to within 7 pixels of its actual 

position. 

 To demonstrate the ability of the HT to accurately identify the axon in 

frames of a TL movie, a user was asked to manually select points along the 

axon. The x-coordinates chosen were used to divide the image into 

segments, which were then processed with the HT. Both the HT coordinates 

and whole axon center-lines they defined were compared to those chosen 

manually. Fourteen different axons were analyzed in this way (Figure 5A), 

and on average, the y-coordinate of an endpoint determined by the HT was 

different from one selected manually by 2.3 ±1.7 pixels. While the position of 

the endpoints for individual axonal segments is important, the more applicable 

metric for validation of this process is the position of the axonal center line 

determined by those endpoints. To test this, the center-lines defined by the 

manually selected endpoints were compared with those determined by the 

automatically generated HT endpoints. The residual, defined as the square 

root of the sum of the squares of the difference between the two lines, was 

calculated and normalized to the length of the axon. This error per unit length 

of the axon was found to be 2.2±0.5 pixels. 

 Additionally, The HT is relatively insensitive to noise in the image. 

Obtaining a clean image for all frames of a long time-lapse can be difficult and 

to demonstrate the ability of this algorithm to analyze noisy images, 

increasing amounts of Gaussian white noise was added to the original DIC 

images of these fourteen axons. The position of the endpoints and axonal 
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center-lines were then determined and compared to the manually selected 

positions. Gaussian white noise was added to each image in four increments, 

with the smallest amount of added noise having a standard deviation roughly 

one quarter of that of the image pixel intensity and the largest amount of 

noise having a standard deviation roughly equal to that of the image, such 

that the signal to noise ratio (SNR, defined here as the mean pixel intensity 

for the whole image divided by the standard deviation of the pixel intensity, 

µimage/σimage), decreased from an average of 31.1 in all of the unaltered 

images to an average of 12.6 in those versions with the highest level of noise. 

The extent of image degradation is illustrated by the three panels in Figure 

5B. These show an unaltered image, that same image with the least amount 

of noise added and, finally, with the largest amount of noise. It was found that 

for moderate levels of added noise, the HT performed well, and was able to 

accurately identify the position of the axon, but its accuracy diminished 

significantly (p<0.06 for residuals and p<0.01 for endpoints) at the two highest 

levels of additional noise (Figure 5C). 
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Figure 5: Robust Hough I. (A) Images of 14 different axons were analyzed using our 
algorithm. The HT is only able to identify linear structures in an image and so 
individual frames were broken into segments which contained linear sections of the 
axon. The parameters in this table define the standard criteria for which this 
algorithm was optimized. (B-C) To test the resilience of this algorithm to image noise, 
increasing levels of Gaussian white noise were added to a DIC image and the 
position of the resulting endpoint and centerline as determined by the HT algorithm 
were compared to those determined by manual user inputs. (B) Example of an 
unaltered image (top) and images with increasing levels of added noise. (C) The 
algorithm performed well for smaller levels of added noise, accurately identifying the 
axon to within seven pixels of its manually determined position, but at higher noise 
levels, both the discrepancy between the manual and automated selections 
increased as well as the variability in output from the automated algorithm. * and ‡ 
indicate groups that have statistically significant differences from the unmodified (no 
added noise) images for residuals and endpoints, respectively. (p<0.06 for stars and 
p<0.001 for endpoints). Scale bar, 10µm. 
 

 Figure 6 shows the construction of a kymograph from a movie of a rat 

sensory neurons expressing GFP-actin. In this case, the axon was curved, 

requiring a number of smaller linear sections to be used (Figure 6 A-K). The 

HT was able to accurately identify the axon in regions as small as 50 pixels 

wide, which translates to the ability of this algorithm to detect a radius of 

curvature of approximately 14.5 microns. The segmentation boundaries were 
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user defined, offering the potential for error and so the dependence of the 

HT’s accuracy on the boundaries’ position was tested. The same region of the 

axon was analyzed multiple times, each time using different points to define 

the segment boundary. Nine small regions from different axons were chosen, 

such that one or both edges lay at an inflection point of the axon. An example 

is shown in Figure 6 L-P. This example segment was 74 pixels wide, but the 

others varied from 56 to 116 pixels wide, with an average width of 75.5. In all 

cases, the small region was expanded incrementally by the addition of 10, 20, 

30, or 50 pixels of the flanking axonal segment on either side, so that the 

inflection points were now incorporated into the segment. For this example, 

regions were created with total widths of 94, 114, 134 and 174 pixels. Each 

region was then analyzed with the HT and the position of the endpoints for 

the resulting lines compared (Figure 6 R). These results suggest that the HT 

is largely insensitive to variations in user defined boundaries. Finally, it should 

be noted that one 46 pixel wide region performed poorly in this analysis and 

was not included in the presented data. The endpoints determined by the HT 

for all of the expanded regions were similar to each other, but below 50 pixels 

wide, this algorithm was unable to accurately identify the axonal section.  
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Figure 6: Robust Hough II. (A) A DIC image of an axon transfected with actin GFP. 
(B) GFP-actin expression. (C) Binary image created from A after image filtering and 
thresholding as discussed in the text. (D-P) Binary images with endpoints and lines 
determined by the HT overlaid on top. (D-K) User-defined image panels used to 
approximate the curve of the axon showing the lines determined by the HT for each 
segment. These lines were used to create one continuous poly-line along the center 
of the axon. (L) Detailed view of panel F, 74 pixels wide. (M-P) Modified versions of 
panel L, used to illustrate the effect of the user defined segmentation boundaries. 10, 
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20, 30, or 50 pixels were added to each side of panel L to encompass more of the 
surrounding axon and then analyzed with the HT. The resulting lines, shown, were 
compared to that for L. (Q) Final kymograph of GFP-actin within axon. (R) The 
analysis was repeated for 8 additional axons (n=9 total) and the position of the end 
points of the center lines determined by the HT for the expanded panels was 
compared to their position in the original panel. The discrepancy and magnitude of 
the discrepancy between are summarized here. Scale bar, 10µm in all panels. 
 

 

 All of the characteristics discussed are vital to the utility of the Hough 

transformation as the central analytical tool in this algorithm; it can accurately 

track the axon despite inconsistencies in image quality, changes in axon 

shape and variability in user defined boundaries between segments of the 

axon, making it ideal for the often suboptimal images produced from 

biological experiments. 

 

Discussion 

 A variety of cargoes move bidirectional between the cell body and the 

terminal of an axon. Tracking the movement of fluorescently labeled cargoes 

over time can provide insight into the biological mechanism underpinning this 

transport, as well as the conditions under which transport profiles change. 

Because of their inherent simplicity and reasonable accuracy, kymographs 

are frequently used in the analysis of axonal transport for fast cargoes. 

However, because of the longer imaging times required to accurately capture 

the motion of slow cargoes, the risk of artifacts or errors from changing axonal 

geometry is greater. This algorithm is particularly effective for these cases. 
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Regardless of their origins, though, there have been a number of successful 

efforts made to automate the detection of a particle’s path from a kymograph 

(Mukherjee et al.; Welzel et al. 2009; Zhang et al.) but the methodology to 

create a kymograph has remained relatively underdeveloped, often at the 

expense of efficiency and accuracy.  

 In this paper we have described the development of an algorithm that 

can accurately detect the contour of an axon in individual frames of a time 

lapse movie and extract intensity profiles to build a kymograph. The traditional 

method used to build a kymograph is unable to deal with changes in axonal 

position and geometry which arise from translation due to drift of the 

microscope stage, or from motility and growth. These confounding issues 

result in inconsistent extraction and alignment of axonal contours, and thus, 

cargo positions. The robustness and accuracy of the alignment algorithm and 

the resilience of the HT to noise and user-based error were demonstrated by 

analyzing axons of dynamic and varied geometry (Figures 3-6). These 

analyses also highlighted the versatility of this algorithm in analyzing both 

punctate and more uniform fluorescent signals within the axon (Figure 3, 5). 

Our method achieved a significant reduction in the required user inputs and 

the produced kymograph was equal or superior to kymographs produced by 

manual tracing of either a single line in the first frame of the movie, or axonal 

contours in each frame of the movie (Figure 3D-F).  By implementing a 

method of axon identification that is independent of fluorescent signal 
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distribution, intensity, and SNR, we have ensured both versatility and wide 

usability for this procedure. 

The first step of this algorithm used a small region of the whole image 

(the saROI) to align an axonal reference point to the same coordinates in all 

frames of the TL. Alignment was achieved by comparing the region in one 

image to spatially shifted versions of that region extracted from the next 

image in the TL. This protocol is similar to other commonly used methods, 

such as correlation analysis (Anuta 1970; Barnea and Silverman 1972, Pratt, 

1974 #1362), and was chosen here for its simplicity and ease of 

implementation. The selection of this reference point was at the discretion of 

the user. It was important that it lie on the axon in cases where significant 

axonal motility was observed in order to establish the necessary stationary 

reference point against which particle motion could be measured in a 

kymograph. In the case where axonal motility was low, this reference point 

could have been outside of the axon if necessary, such as a stationary 

marker on the substrate that might be used to correct for translation due to 

stage drift. For the needs of kymography, it was only necessary to align one 

axonal reference point at the beginning of the axon, rather than align the 

entire axon in all frames, a process which would require us to solve for a 

tensor that describes global rotational and shear deformations as well. Others 

have worked towards the development of “smarter” methods to direct the 

search for an optimal shift of the saROI to reduce computation time (see 

(Zitová and Flusser 2003) for a review), or towards methods to align an object 
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to a prototypical standard which can then be analyzed (Qu and Peng; Xin et 

al. 2007).  By design we searched only for translational deformations; for 

simplicity, the image rotation was explicitly defined by the user rather than 

solved computationally. Additionally, applying a unique shear tensor to 

individual TL frames risked the introduction of motion artifacts into cargo 

tracks by changing the axonal geometry. While potentially useful in future 

extensions of this protocol, these more complicated methods were 

unnecessary for the simple translational alignment required here. 

 The Hough transform has been used extensively in image processing 

and computer vision for object detection because of a few key features: it is 

relatively insensitive to noise and it retains its accuracy despite broken or 

occluded features (Shapiro 1978). Additionally, it is amenable to parallel 

processing applications and can be used to detect multiple objects 

simultaneously (Illingworth and Kittler 1988). Despite its broad use in other 

fields, this is the first instance we know of in which the HT has been used for 

analysis of dynamic axons towards the creation of a kymograph, and more 

broadly, to examine protein mobility. Interestingly, the HT has been used in 

medical imaging applications (Dove et al. 1994; Philip et al. 1994), and a 

modified HT tuned to find ellipses has been used to find axons in an electron 

micrograph of a whole-nerve cross-section (Ying-Lun et al. 1996). The latter 

work also implemented a commonly employed, but computationally intensive, 

active contour model (ACM) in order to identify the boundaries of the internal 

and external sides of the axonal membranes. The ACM is an iterative energy 
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minimization process that utilizes “snakes,” which are splines guided by 

energy minimization functions that incrementally gravitate towards features of 

interest based on the particular minimization functions used as well as user 

inputs (Kass et al. 1988). The final position of the snakes is heavily 

dependent on their initial position and so this method is frequently used 

following another coarse localization procedure. 

 While an ACM or other comparable algorithms may be readily layered 

upon our simple application of the linear HT to individual image segments, 

such contour refinement is likely unnecessary. Standard kymograph 

generating programs require the user to trace a path composed of straight 

lines, so the use of the approximation here isn’t unwarranted. Additionally, the 

classic neuronal mechanics paper by Dennis Bray, suggesting that neurites in 

culture are under tension, was developed from the observation that the 

neuron is composed of linear regions connected by nodes (Bray 1973; Bray 

1979; Letourneau 1975a; Letourneau 1975b). This linear approximation will 

fail at some point, but the theoretical limit for the radius of curvature we can 

detect is well below that calculated from reported observations of sensory 

neurons grown in culture; 99.7% of chick and frog axons have radii of 

curvature greater than 20.1 microns (Katz 1985). On the other hand, 

additional refinement might be useful to better define the profile of the axonal 

membrane, to answer questions regarding axonal diameter, membrane 

addition, filopodial protrusion, collateral branch formation, or even growth 

cone dynamics.  
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 Our algorithm also has the potential for broader applicability. While our 

focus for this study has been on cultured neurons, the ability to track the 

movement of axons over time makes it particularly useful for axonal transport 

experiments in vivo, particularly those in Danio embryos, Drosophila larvae, 

C. elegans, or mammalian models (Bilsland et al.; Haghnia et al. 2007; Miller 

and Sheetz 2004; Zhou et al. 2001). Axon movement from animal motion as 

well as from breathing or pulsatile blood flow could all be efficiently 

accommodated using our algorithm. 

 

Conclusions: 

 We have developed and tested an algorithm that automates the 

generation of and increases the accuracy of kymographs. This algorithm 

addresses the confounding changes in axonal orientation and geometry 

arising from stage translation or biological plasticity. The algorithm is based 

on the combination of straightforward and robust axon alignment and 

detection strategies. Our methods are resistant to noise in the images as well 

as to error in user defined parameters. This algorithm offers a new and 

powerful tool for use in the analysis of axonal transport, and should serve as 

a foundation upon which more sophisticated image processing applications 

can be built towards answering a myriad of other neurophysiological 

questions. 
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Chapter 3: Dynamic Actin Densities in the Axons of 

Sensory Neurons 

Introduction 

The cytoskeleton is vital for the development and maintenance of 

neuronal morphology, motility, and function. Dynamic forces between 

networks of microtubules, actin microfilaments, and intermediate filaments 

control axonal morphology and growth (Gallo et al. 2002; Heidemann et al. 

1985; Lee and Cleveland 1996; Peters and Vaughn 1967; Yamada et al. 

1971). In addition to their structural roles, microtubules and actin also support 

the long- and short-range movement, respectively, of a variety of cargoes 

within the axon through the activity of molecular motors (Bridgman 2004; 

Schnapp and Reese 1989; Vale et al. 1985a; Vale et al. 1985b) . Among 

these cargoes are cytoskeletal elements themselves, which are transported 

over a range of spatial and temporal scales to enable axonal outgrowth and 

pathfinding, regulate structural integrity, and guide the transport and 

localization of other cellular components. 

Axonal transport of cytoskeletal proteins is an area of intense debate 

and active study. Initial radio-labeling experiments resulted in the parsing of 

bulk axonal transport into a fast component, which moves at upwards of 

40mm/day and two slow components, slow component b (SCb) and slow 

component a (SCa), which move at 5-8 and 0.1-1 mm/day, respectively 

(Alvarez et al. 2000). Neurofilaments and microtubules, which primarily 
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occupy the axonal core, are transported in SCa (Black and Lasek 1980; Droz 

B 1963; Hoffman and Lasek 1975; Willard et al. 1974). Actin, which localizes 

largely to the cortex of the axon(Chang and Goldman 1973; Letourneau 1983; 

Nagele et al. 1988; Spillane et al. 2011), but also occasionally as short 

filaments within the axonal core, is transported in SCb (Willard et al. 1974). 

Mechanisms guiding axonal transport of neurofilaments and microtubules 

have been recently elucidated through live imaging experiments (Wang and 

Brown 2001; Wang and Brown 2002; Wang et al. 2000). Mobile neurofilament 

and microtubule units appear primarily to be short polymers several microns 

in length. Interestingly, neither cargo moves continuously at rates predicted 

by measurements of bulk transport. Rather, they move for short bursts 

punctuated by long pauses at instantaneous velocities similar to fast cargoes. 

Consistent with such rates of movement, neurofilaments, like many vesicular 

cargoes, are moved upon microtubules anterogradely (away from the cell 

body) by conventional kinesin and retrogradely (towards the cell body) by 

cytoplasmic dynein (Motil et al. 2006; Shea 2000). Interestingly, when the 

cargo binding domain of a dynein motor is bound to  a structure offering high 

resistance, such as the actin network or other microtubules, the motor domain 

pushes mobile microtubules down the axon. Thus, counterintuitiviely, dynein 

is responsbile for the anterograde movement of microtubules (Ahmad et al. 

1998; Baas et al. 2006; Hasaka et al. 2004). Motor proteins responsible for 

retrograde microtubule movement remain to be confirmed, but may include 

kinesin 5 (Myers and Baas 2007). 
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Mechanisms by which actin is transported in the axon are far less 

clear. Elucidation of these mechanisms is essential, given the critical roles for 

actin in such diverse cellular activities as adhesion, defining morphology, 

mechanical signaling, pathfinding, and anchoring of various organelles and 

protein complexes (Koenig and Letourneau 2009). Biochemical studies 

indicate that axonal actin exists dynamically in both soluble and filamentous 

states (Mills et al. 1996; Morris and Lasek 1984). A key role for microtubules 

in actin transport was suggested based on reduced bulk transport of actin in 

the presence of nocodazole (Banks et al. 1971a; Banks et al. 1971b). Recent 

work has suggested that actin and associated myosin motor proteins are 

neither directly responsible for SCb transport, nor does actin serve as a 

scaffold for other components of SCb (Roy et al. 2000; Roy et al. 2007; Roy 

et al. 2008). However, such hypotheses remain to be tested in the context of 

actin itself. Initial live imaging of fluorescence recovery after photobleaching 

(FRAP) of injected fluorescein labeled actin suggested that actin moved 

primarily as a soluble, diffusible cargo rather than through active, directional 

transport (Okabe and Hirokawa 1992). On the other hand, large complexes of 

actin “waves” have been observed in cultured hippocampal neurons (Ruthel 

and Banker 1998; Ruthel and Banker 1999) and in short axons in vivo (Flynn 

et al. 2009). These large, self-contained complexes of actin, similar in shape, 

size and dynamics to growth cones, move processively down the axon, and 

eventually fuse with the growth cone. In addition, GFP-actin expressed in the 

axon of cultured chick neurons forms transient patches of F-actin, a subset of 
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which give rise to axonal filopodia through an NGF-mediated signaling 

cascade (Ketschek and Gallo 2010; Spillane et al. 2011). Finally, indirect 

evidence inferred from the fluctuations of stationary mitochondria, which are 

likely docked to actin, suggests a baseline level of actin mobility in stationary 

axons that is enhanced in response to mechanical stimuli (Chetta et al. 2009). 

In this work we have undertaken the first comprehensive 

characterization of actin mobility and the first systematic investigation of the 

mechanism underlying its transport in the axon. Using a combination of high 

resolution imaging, image processing and perturbation of various components 

of the cytoskeletal network, we have revealed novel dynamics within the 

axon, characterized by the appearance and disappearance of filamentous 

densities which move short but significant distances bidirectionally. These 

movements reveal some similar principles, but also key differences compared 

to the movement of fast cargoes, other cytoskeletal filaments and even other 

SCb cargoes. Our data suggest a novel mechanism of transport in which the 

connectivity between the actin and microtubule cytoskeletons plays a crucial 

role in regulating actin mobility in the axon. We demonstrate that such 

transport can contribute both to slow anterograde bulk axonal transport of 

actin as well as local biological function. 

Methods: 

Tissue culture and expression of fluorescent proteins 

Dorsal Root Ganglia (DRG) were isolated from the entire spinal column 

of 2-5 day old Sprague-Dawley rats and maintained in ice cold F-10 
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supplemented with gentomycin. Cells were transfected with a plasmid 

encoding either GFP-actin, lifeact-tagGFP2, (ibidi GmbH, Germany), or 

maxGFP (Lonza, Walkersville, MD)  through electroporation using an Amaxa 

Nucleofector II (Lonza, Walkersville, MD) following the protocol provided by 

Lonza. Briefly, after removal from the spinal column, the whole DRGs were 

incubated with 2.5mg/ml collagenase II (Roche, Basel, Switzerland) for 15 

minutes at 37oC, pelleted at 76xg for 5 minutes, triturated in F-10, pelleted 

again and resuspended in electroporation media with 3mg/ml DNA and 

immediately electroporated. After electroporation they were allowed to 

recover for 20 minutes in RPMI at 37oC. Cells were then resuspended in 

growth media (10% Horse Serum in F-10, with 1% pen/strep,1% L-

glutamine), seeded onto laminin coated glass bottomed dishes (MatTek, 

Ashland, MA) at a density of 100,000 to 250,000 cells/ml, and incubated at 

37oC and 5% CO2 for 16-20 hours.  

Chemical perturbation 

For pharmacological experiments, cells were imaged for 6 minutes with 

images captured every 5 seconds in normal media. The appropriate drug was 

diluted in prewarmed media and added to the dish and the same axon was 

then imaged for an additional 20 minutes. All drugs were diluted from stocks 

dissolved in DMSO and care was taken so that the final concentration of 

DMSO in all experiments was less than 0.1%. The following concentrations 

were used: 10 µM Nocodazole (Sigma-Aldrich, M14047), 0.5 mM erythro-9-

(2-hydroxy-3-nonly)adenine (EHNA, Sigma-Aldrich, cat# E114), 10 µM 
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latrunculin (Sigma-Aldrich, cat# L5288), 10µM jasplakinolide (Calbiochem, 

cat# 420107)  or 25 mM 2,3-Butanedione monoxime (BDM, Sigma-Aldrich, 

cat# B0753). Animal work has been approved by the IACUC at the University 

of Maryland. 

Immunocytochemistry 

Cells were fixed for 10 minutes in 4% paraformaldehyde in PBS, rinsed 

well and permeabilized with 0.2% Triton X-100 in PBS for 10 minutes, 

incubated in blocking buffer (10% FBS, 3% BSA in PBS) for 30 minutes, and 

either incubated in primary antibody for one hour, followed by incubations with 

secondary antibody for one hour, or incubated with phalloidin for 30 minutes. 

The following antibodies and labels were used: for F-actin: AlexaFluor 594 

phalloidin (Molecular Probes); for mitochondria: Mitotracker Red (Molecular 

Probes); monoclonal antibodies (Sigma-Aldrich) produced in mouse against 

ribosome (RPL-4), talin, and α-tubulin were labeled with secondary antibodies 

raised in goat conjugated to either AlexaFluor-488 or AlexaFluor-594 

(Molecular Probes). 

Live imaging of actin 

For tracking the movement of individual actin densities, images were 

captured using a Nikon TE-2000E inverted widefield fluorescence microscope 

fitted with a 40x 1.35NA PlanApo oil-immersion objective, every 5 seconds. In 

some cases, additional high fame-rate movies were captured using a 100x 

1.4NA PlanApo oil immersion objective, with images captured every 600ms. 
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The microscope stage was enclosed within an environmental chamber, which 

controlled temperature (37°C), humidity, and carbon d ioxide (5%). Care was 

taken to image axons with free growth cones, and which were not undergoing 

active bouts of elongation. 

For fluorescence recovery after photobleaching (FRAP) experiments, a 

30 µm long region of interest (ROI) in the axon was bleached and 

fluorescence recovery imaged using a Leica SP5X Laser scanning confocal 

microscope fitted with a 63x/1.4NA objective. Cells were maintained in an 

environmental stage enclosure at 37oC and 5% CO2. The ROI was bleached 

using multiple high laser power scans from an argon laser. Recovery of 

fluorescence was monitored with images captured every 1.2 seconds for the 

first minute and every 5 seconds until fluorescent intensity in the bleached 

region recovered to that of surrounding unbleached regions. Multiple 10x10 

pixel square ROIs within the bleached region were then analyzed to examine 

spatial differences in the recovery rate. A fluorescent ROI away from the 

bleached region was used to normalize the ROI’s intensity at each time point. 

The fluorescence recovery profile was then fit with an exponential curve and 

the time constant, tau, calculated to quantify recovery.  

Image analysis 

All image analysis was performed in ImageJ (NIH, Bethesda, MD) or 

MATLAB (The MathWorks, Natick, MA). Paired DIC and fluorescent images 

were captured every 5 seconds, and used to build kymographs for 

quantification of particle motion in the axon. Kymographs were built using a 
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novel semi-automated image processing algorithm (Ch.2). Briefly, images 

were rotated so that most of the axon was roughly horizontal (±15o from the 

axis) and brought into register so that the beginning of the axon was 

positioned at the same point in all frames of a time lapse. Each DIC frame 

was filtered and made into a binary image that was divided into smaller 

regions at user defined inflection points along the axon. The position of the 

axon in these sections was automatically detected and an intensity profile 

was then extracted from the fluorescent channels and used for one row of the 

kymograph. 

Individual trajectories on kymographs were traced manually. Errors in 

tracing were no more than 3 pixels from the centroid of a fluorescent particle. 

The paths of the actin particles were complex, traveling both anterogradely 

and retrogradely. Trajectories also appeared and disappeared during the 

movie (e.g., Fig 1A, described in additional detail in the results). The entire 

path of a particle was termed its “track” and tracks were categorized by the 

net displacement of the particle over its entire lifetime (Fig 1B).  Those 

particles which achieved a net displacement in either direction of less than 0.3 

microns during the 6 minute time-lapse were considered to be stationary, and 

those moving in either direction were categorized as anterograde or 

retrograde, as appropriate. 0.3 µm was the distance traveled by 68% of the 

particles which were empirically considered to be stationary “by eye” in the 

kymographs. 
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To further quantify the dynamics of each particle’s track, the track was 

broken into a series of “runs.” A run consisted of that section of a particle’s 

motion during which it was moving in one direction or remaining stationary. If 

the particle changed its behavior, either by pausing (if moving), starting to 

move (if paused), or reversing direction, it was considered a new run; as long 

as the particle moved in one direction, regardless of it’s acceleration, it was 

considered a single run. Along with the direction of the motion, the duration in 

seconds of each run was calculated, as well as the distance traveled and the 

average and maximum velocities of the particles. A run was considered to be 

stationary if moved less than 0.11 µm in one 5 second time-step. Again this 

cutoff was determined empirically by the average displacement of those 

particles considered stationary by eye. An analysis of tracks allowed the 

quantification of the broad scale changes that occurred during a particle’s 

existence, but analysis of the runs provided insight into the details of how that 

motion occurred. It is important to point out that a stationary track could 

contain anterograde or retrograde runs, and vice versa and so runs were 

analyzed in both directional and stationary tracks. 

To quantify the global behavior of actin in the axon during imaging, two 

additional calculations were performed. In the first, the average net 

displacement for all particles in a movie was calculated by dividing the sum of 

the net displacement of all tracks by the number of tracks. This calculation did 

not take into account the variation in a particle’s lifetime and so the average 

“instantaneous” displacement was also calculated. The total displacement 
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was calculated at each time step for all particles in existence at that time and 

then averaged over all time steps to produce a single average displacement 

for each movie. For most of the time steps these displacements were close to 

zero but there were intermittent spikes of high anterograde or retrograde 

movement. Despite the different formulas used for the two calculations, their 

results about the average displacement of actin densities during the time 

lapse were in strong agreement.  

Statistics 

Transport parameters (average velocity, distance traveled and the 

duration of the run) were collected from runs pooled from multiple 

experiments. Sample sizes are provided in figure and table captions. Because 

most data sets had a broad, non-normal distribution, a two-sample 

Kolmogorov-Smirnov test was used to test for statistical significance between 

distributions. To test for statistically significant differences in the number of 

tracks and runs, two-tailed heteroscedastic paired student’s T-tests were 

used. Confidence values are indicated in the figure legends or captions for all 

tests. 

 

Results: 

Identity of actin densities 

Dissociated sensory neurons from neonatal rats were transfected with 

GFP-actin and grown on laminin coated glass coverslips. Axons with 
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unimpeded growth cones were imaged and frequent densities of GFP were 

noted. A general low level of background fluorescence was apparent in 

transfected axons, but these dense spots of GFP intensity arose along the 

length, and frequently moved for a short distance before disappearing again. 

In other cases, the densities appeared, remained stationary and then 

disappeared a short while later. In many cases, the particles exhibited 

complex, bidirectional movement interspersed with brief pauses.  

Kymographs were constructed to summarize this movement (Fig 1A), and 

were subsequently analyzed to quantitatively define the behavior of these 

actin densities.  
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Figure 1:  Particle mobility in the axon. Rat sensory neurons were transfected with 
either GFP-actin, Lifeact-TagGFP2 or the soluble fluorescent reporter maxGFP. 
Kymographs were used to quantify the movement of fluorescently labeled particles 
along the axon. (A) GFP-actin expressing axons exhibited puncta that appeared and 
disappeared, and moved bidirectionally with frequent pauses. (B) The entire particle 
track was broken up into short segments, called “runs” during which the particle 
moved in one direction or remained paused. A track was categorized as anterograde 
or retrograde directed based on its net displacement (Red lines). Note that 
anterograde tracks could contain retrograde runs, during which the particle moved in 
the retrograde direction, and vice versa. Also note that a change in velocity without a 
change in direction was still counted as a single run (e.g. retrograde track). (C) GFP-
actin puncta were co-labeled with phalloidin, suggesting they are composed of 
filamentous actin. “x’’ indicates the position of GFP-actin densities. The arrows 
indicate the position of phalloidin labeled puncta. (D) Nearly all of the GFP 
expressing puncta were labeled with phalloidin, but some phalloidin labeled puncta 
did not express GFP, suggesting that the GFP labeled actin puncta represent a 
subset of all actin densities in the axon. (E) The filamentous nature of these densities 



 

 57 
 

was confirmed by expression of lifeact-TagGFP2, which only binds to filamentous 
actin and exhibited punctate expression in the axon with similar dynamics to those 
for GFP-actin (see Fig. 2). (F) The fluorescent signal in axons expressing maxGFP 
exhibited distinct behavior compared to both GFP-actin and Lifeact-TagGFP2 
expressing axons. Many particles were indistinct and stationary, but fast moving 
retrograde particles were also apparent.  Scale Bar: 10 µm in all panels. 

 

First, in light of the reported presence of both soluble and filamentous 

pools of actin in the axon, (Allison et al. 1998; Cotman et al. 1974; 

Sankaranarayanan et al. 2003), the composition of the observed actin 

densities was examined. GFP-actin transfected cells were fixed and co-

labeled with alexa-fluor-594-phalloidin, which binds only to polymerized F-

actin (Fig 1C). The regions of the axon analyzed were an average of 32.4 

microns in length, and the average distance between phalloidin labeled 

puncta was 1.1 microns. In four axons expressing GFP-actin, phalloidin 

labeled 90 out of 92 (97.8%) of the GFP puncta (Fig 1D). Importantly, there 

were several phalloidin stained puncta that did not express GFP, suggesting 

that fluorescent densities are representative of native structures.  

Although no morphological differences or differences in phalloidin-

labeled puncta were observed between GFP-actin expressing and non-

expressing neurons, the actin filament binding protein Lifeact-TagGFP2 

(lifeact) was used to confirm the identity of these particles as filamentous 

actin in live cells, free from more subtle effects of over-expression on the 

axonal cytoskeleton (Riedl et al. 2008). Dissociated sensory neurons were 

transfected with Lifeact-TagGFP2, and axons expressing the protein were 

imaged and analyzed using kymography (Fig 1E).  Lastly, to confirm that the 

movement of these densities was specific to actin and not due to general 
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processing of soluble axoplasmic proteins, the fluorescent reporter maxGFP 

was expressed in cultured sensory neurons and kymographs created of the 

axons (Fig 1F). As an unconjugated fluorescent reporter, this served as a 

biologically inert marker. Qualitatively, kymographs of GFP-actin and Lifeact-

TagGFP2 appeared similar, but distinct from maxGFP.  

Quantitative characterization of actin mobility 

Because of its complexity, the entire trajectory of a particle over its 

entire lifetime, or track, was divided into smaller directional sections called 

runs (Fig 1B, Methods). On average, anterograde and retrograde tracks were 

composed of 31±32% and 35±32% paused runs by time, respectively, and 

paused tracks spent 14±21% moving in the retrograde direction and 10±16% 

moving in the anterograde direction, by time. The average velocity, duration, 

and distance traveled by a particle were calculated for anterograde and 

retrograde directed runs, as well as for paused runs. Although the velocity 

and distance would seem to be unnecessary for a stationary particle, in fact 

these apparently stationary particles exhibited a very slow drift in response to 

certain perturbations, and could move a noticeable distance over the course 

of the six-minute imaging time. For clarity, statistically significant differences 

in parameters are summarized in charts within figures (Fig 2F, G;  4F, G; 5F, 

G), but raw cumulative histograms of these parameters can be found in 

supplemental figures (Fig S1, S2, S3) as well.  
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Figure 2:  Transport characteristics of GFP-actin, Lifeact-TagGFP2 and maxGFP in 
axons. GFP-actin and Lifeact-TagGFP2 expressing axons exhibited distinct 
differences in a number of transport parameters compared to maxGFP. A student’s 
T-test was used to test for significant differences between the groups. The *, #, and ♦ 
indicate those groups which were statistically different from GFP-actin with an alpha 
= 0.01 (A) GFP-actin and Lifeact-TagGFP2 were both more dynamic than maxGFP, 
exhibiting a larger number of tracks on average during each 6 minute movie. 
However, GFP-actin had a larger proportion of anterograde and retrograde directed 
tracks compared to Lifeact-TagGFP2 which had a larger number of paused tracks. 
(B) Similarly, both GFP-actin and Lifeact-TagGFP2 had a larger number of new 
tracks begin during the imaging time. (C) Tracks were divided into runs, and GFP-
actin and Lifeact-TagGFP2 exhibited a larger number of runs on average than 
maxGFP during the imaging time. Additionally, maxGFP expressing axons had a 
disproportionately large number of stationary runs compared to Lifeact-TagGFP2 
and GFP-actin. (D) MaxGFP particles spent a significantly larger amount of the total 
time paused. (E) GFP-actin expressing axons exhibited a slight anterograde average 
net displacement, while Lifeact-TagGFP2 exhibited net displacement of zero. The 
average displacement for maxGFP expressing axons was dominated by the fast 
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moving retrograde particles, resulting in significant retrograde movement. When 
these particles were not included in the calculations, the net displacement decreased 
to zero. (F, G) The average velocity, the duration in seconds, and the distance 
traveled by a particle during a run were all calculated for Lifeact-TagGFP2 (F) and 
maxGFP (G) expressing cells. A Kolmogorov Smirnov test was used to determine 
statistically significant changes in these axons compared to GFP-actin expressing 
axons. Confidence values for the change are indicated by the number of arrows, and 
the direction of the arrow indicates whether it increased or decreased. An open circle 
indicates no statistically significant change. 

 

 

Analysis of kymographs made from axons expressing GFP-actin, 

lifeact, and maxGFP revealed a number of significant differences in transport 

parameters. First, the number of distinguishable tracks in maxGFP 

expressing axons was much lower than in axons expressing GFP-actin or 

lifeact (Figure 2A). Particle “births,” quantified as the number of new tracks 

originating during the course of the six minute imaging period, also occurred 

significantly less frequently in maxGFP expressing axons (Fig 2B). Similarly, 

the number of runs was much lower in maxGFP expressing axons than those 

expressing either GFP-actin or lifeact (Fig 2C), and well over 80% of the total 

combined time for all runs in maxGFP expressing axons was spent stationary 

(Fig 2D).  

Collectively, the net displacement for GFP-actin was slightly, but 

significantly, positive, with a calculated average displacement of 0.23±0.09 

µm per track within the imaging period (Fig 2E). The average duration for all 

tracks was 71.5 seconds, corresponding to an average rate of up to 0.8 

mm/day, which is slower than SCb transport rates, but well within transport 

rates for SCa. The average velocity for anterograde directed runs was much 
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faster than this, with an average rate of up to 8.5mm/day, commensurate with 

the maximum reported velocities for SCb cargo transport. This average net 

displacement was significantly different from that of lifeact, which was 

essentially zero. The low average net displacement for lifeact was due to the 

fact that stationary runs were stationary for a longer percentage of time than 

for GFP-actin particles, although there were no statistically significant 

differences in the duration, velocity, or distance traveled by particles which 

were moving in either the anterograde or retrograde direction (Fig 2F, Fig S1). 

GFP-actin average net displacement was also significantly different from that 

of maxGFP. The most notable feature of maxGFP kymographs was the 

numerous maxGFP labeled fast vesicular cargoes (Fig 1F), which moved 

primarily in the retrograde direction. This phenomenon was observed only 

once in all of the GFP-actin kymographs (>1,200 tracks). These fast moving 

cargoes dominated the calculation for average net displacement (Fig 2E) 

resulting in a very large retrograde value for maxGFP expressing axons. 

Average net displacement calculated without the fast moving maxGFP 

particles was not significantly different from zero, due the stationary nature of 

maxGFP labeled particles not associated with vesicles. Finally, compared to 

GFP-actin, maxGFP particles had larger paused and retrograde directed 

durations, distances, and velocities (Fig 2G). Collectively, these data suggest 

that both the existence and observed motion of GFP-actin densities are 

specific to filamentous actin, and that this GFP-actin construct is a reliable 

reporter of the activity and position of actin in the axon. 
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Table 1: Comparison of transport parameters in GFP-actin, lifeact, or maxGFP 
expressing axons. 

0±0.0520.052±0.030.064±0.041
Anterograde Velocity

(Microns/Second)

1.72±1.61.25±0.941.73±1.47
Anterograde Distance

(Microns)

22.13±10.8225.45±14.8828.79±19.3
Anterograde Duration

(Seconds)

130.67±90.3647.43±48.4635.51±38.39
Pause Duration

(Seconds)

-0.236±0.182-0.056±0.038-0.059±0.036
Retrograde Velocity
(Microns/Second)

-14.7±17.29-1.33±1.29-1.51±1.47
Retrograde Distance

(Microns)

43.1±36.7722.96±14.7826.29±18.35
Retrograde Duration 

(seconds)

maxGFPLifeactGFP-Actin
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(Microns/Second)

1.72±1.61.25±0.941.73±1.47
Anterograde Distance

(Microns)

22.13±10.8225.45±14.8828.79±19.3
Anterograde Duration

(Seconds)

130.67±90.3647.43±48.4635.51±38.39
Pause Duration

(Seconds)

-0.236±0.182-0.056±0.038-0.059±0.036
Retrograde Velocity
(Microns/Second)

-14.7±17.29-1.33±1.29-1.51±1.47
Retrograde Distance

(Microns)

43.1±36.7722.96±14.7826.29±18.35
Retrograde Duration 

(seconds)

maxGFPLifeactGFP-Actin

 

 

Assembly of actin densities 

A key and unique feature of the actin densities was their appearance 

and disappearance over time. Having demonstrated that they were composed 

of polymerized actin we next evaluated the possible role of monomeric G-

actin using fluorescence recovery after photobleaching (FRAP) within a 

region of interest (ROI) (Figure 3). Two major findings were of particular 

interest. First, the rate of recovery was quite rapid. The time constant for 

complete recovery after bleaching was 12.8±8.3s corresponding to a diffusion 

constant of ~70 µm2/sec, which is similar to previous values reported for actin 

monomers in endothelial cells (McGrath et al. 1998). Additionally, the 

dynamics of the recovery appeared distinct from dynamics observed for actin 

densities in kymographs. First, the directional movement of bright actin 



 

 63 
 

densities into the bleached region was not observed. Second, in a few cases, 

recovery was not uniform within the bleached region. Rather, there were 

islands in the middle of the bleached region which were brighter before 

bleaching and which recovered fluorescence much faster than the 

surrounding axon (Fig3B-C).  

 To further examine the dynamics surrounding a particle’s inception and 

disappearance, higher resolution and higher frame rate movies were made 

using a 100x oil immersion objective with images captured every 600ms. 

Selected frames from one of these movies (Fig 3C) and a kymograph of a 

small section of the axon illustrate the characteristic appearance and 

disappearance of a particle (Fig 3D, black arrow) in the absence of 

photobleaching. ROI analysis was used to calculate the average fluorescent 

intensity in sections of the axon around this particle (colored boxes in figure 

3C) and line traces illustrating the average fluorescent intensity over time for 

five of these regions are plotted (Fig 3E). An obvious peak in fluorescent 

intensity appears around 60 seconds, which moves to the right before 

dissipating (Fig 3D-E). Before and after this peak, the density is more diffuse 

and this coalescence followed by dissolution seems to be characteristic of 

both GFP-actin densities as well as lifeact densities (Fig 1, 2), suggesting that 

small actin filaments are undergoing bouts of organization and 

disorganization.  

 Though there is a clear narrowing of densities during coalescence, this 

occurs without apparently diminishing the overall fluorescence in regions of 
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the axon flanking the density. To test for the possibility of local actin 

synthesis, the axons of untransfected cells were co-labeled with phalloidin 

and with an antibody against RPL-4, a ribosomal protein. Although both 

ribosomes and actin exhibited punctate expression in the axon, there was 

minimal overlap between the two (Fig 3G), suggesting that the birth of these 

densities was unlikely to result from local synthesis. 
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Figure 3:  Actin density identity. Fluorescence recovery after photobleach (FRAP) 
was used to determine the contribution of monomeric soluble actin to the movement 
of actin in the axon. (A) A 30 µm long region of the axon (indicated in green) was 
bleached and observed for recovery of fluorescence. A number of 10x10 pixel 
regions of interest (ROIs) inside the axon were used to quantify the changing 
fluorescent signal over time. These are indicated by the colored brackets flanking the 
axon. (B) Fluorescence recovery for the entire bleached region (thick green line, 
arrow) was used to calculate the time constant and diffusion coefficient for actin-
GFP. Fluorescence recovery was not uniform within the bleached region though; the 
purple and the yellow regions recovered fluorescence much faster than the 
surrounding axon.  (C) In another experiment, high magnification and a high frame 
rate were used to capture the birth and death of an actin density (arrow) in detail. 
Selected frames from the time-lapse are shown. Scale bar: 5 µm. (D) A kymograph 
of the region outlined by the black box in C between 45 and 120 seconds, illustrating 
the change in width of the particle track (black arrow) over time, suggesting that 
these particles are mediated by condensation and dissolution of bundles of actin 
filaments. (E) Line traces of the fluorescent intensity over time in the colored 10x10 
pixel ROIs shown in C. Note the increased fluorescent intensity corresponding to the 
particle birth (red trace). (F) Lack of ribosomal co-localization with actin. Axons were 
stained for RPL-4 and labeled with phalloidin as well. “x” indicates phalloidin labeled 
puncta. The arrows indicate RPL-4 positive puncta. Scale bar: 10 µm. 
 

 

Microtubule-based influences on actin mobility 

 
Nocodazole: Having characterized the identity and movement of GFP-

actin densities, an examination of the mechanism underlying the observed 

motion was undertaken. We first examined the role of microtubule-based 

transport on actin mobility by exposing cells to 10µM of nocodazole, a 

concentration which induced growth cone collapse in some axons within 5 

minutes. Untreated axons exhibited small discontinuities in tubulin staining 

(Fig 4A) but treatment with nocodazole produced noticeable disruptions in the 

continuity of the microtubule cytoskeleton in many cases, severely, within 20 

minutes (Fig 4B). Analysis of kymographs of axons exposed to nocodazole 

revealed significant changes in a number of transport parameters. First, 
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anterograde average net displacement increased in magnitude, though not 

significantly (Fig 4D). A systematic inspection of transport parameters 

provided insight into this increase. There were no changes in bidirectional 

velocities, but significant increases both in run duration and run distance in 

both directions (Fig. 4H), suggesting a minimal effect of these parameters to 

the increased displacement. Conversely, although moving tracks decreased 

in number (Fig 4E, G), anterograde directed tracks still comprised a larger 

percentage of the total number of tracks (Fig S4C), suggesting a contribution 

of these tracks to the increased anterograde displacement. Interestingly, the 

major determinants for the increased displacement were the small, but 

significant anterograde movements of stationary particles. Although the 

number of stationary tracks decreased (Fig 4F), the increased duration of 

anterograde drift in paused runs resulted in an increase in the average 

distance traveled from 0.03±0.3 microns in untreated axons, to 0.12±0.6 

microns after treatment (Fig 4H, S2D). Collectively, then, although 

destabilizing microtubules decreased the total number of moving particles in 

the axon, when a particle did move, it did so for a longer duration, and 

covered a greater distance. This served to amplify the net anterograde 

displacement observed in untreated axons, through the increased 

anterograde displacement of both moving and paused particles. 
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Figure 4: Effect of microtubule associated drugs on the mobility of actin densities in 
the axon. (A-C) After exposure to either nocodazole (B) or EHNA (C), cells were 
fixed and stained for actin and tubulin to determine the effect of drug treatment on 
the axonal cytoskeleton. Note the disruption of microtubule continuity after exposure 
to nocodazole (Scale bars 10 µm). (D) Nocodazole exposure increased average net 
displacement in the axon, while EHNA treatment initially induced a strong retrograde 
displacement, which then diminished over time. (E-G) Both nocodazole and EHNA 
affected the overall number of tracks over time as well as the direction of those 
tracks. (H) Nocodazole increased the dynamic nature of actin mobility in the axon, 
increasing the duration and distance traveled for all three phases of motion. The 
effect on paused particles was particularly striking as they moved a significant 
distance in the anterograde direction, thus contributing to the observed anterograde 
average net displacement. (I) EHNA treatment initially increased the velocity with 
which retrograde particles moved, which contributed to the net retrograde average 



 

 69 
 

net displacement. However, over time, EHNA decreased the overall dynamics of 
actin mobility. Particle tracks lasted longer, but moved more slowly. 

 
 
 

EHNA: Given the interaction of dynein and the cortical actin network in 

the anterograde transport of short microtubules (Hasaka et al. 2004; Schnapp 

and Reese 1989), we examined the converse possibility that dynein could 

move smaller, more mobile actin densities in the retrograde direction upon 

microtubules. To test this hypothesis, neurons were treated with 0.5mM 

EHNA, a drug shown to selectively decrease retrograde axonal transport by 

inhibiting the action of dynein (Ekstrom and Kanje 1984; Forman et al. 1983; 

Penningroth et al. 1982). While EHNA’s interference with actin dynamics has 

been reported for higher concentrations of EHNA (additional details on 

possible non-specific effects in the discussion), phalloidin staining in fixed 

cells after exposure to 0.5mM EHNA for 20 minutes shows no obvious 

disruption of actin in the axon (Fig 4C, cf. latrunculin treatment in Fig 5B), and 

only very slight changes in lamellae. Similarly, EHNA exposure resulted in no 

obvious changes to the integrity of axonal microtubules (Fig 4C). EHNA 

treatment did, however, induce a rapid and significant retrograde average net 

displacement during the first 6 minutes of exposure, which gradually abated 

(Fig 4D). The initial reduction in average net displacement was due in part to 

a slight decrease in the number of anterograde and stationary tracks (Fig 4E, 

G) and a decrease in anterograde velocity (Fig 4I, S2E; Table 2). However, 

the primary contributor to the retrograde displacement was a dramatic 

doubling of retrograde run distance resulting from the increased average 
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velocity of retrograde particles (Fig 4I, S2F, G; Table 2). Consistent with this, 

stationary particles also drifted retrogradely in response to EHNA treatment. 

However, after 12 minutes of exposure, anterograde track number continued 

to decrease (Fig 4G), the average velocity in both directions decreased and 

stationary particles regained a slight anterograde drift (Fig 4I).  Additionally, 

EHNA treatment resulted in a significant 40% reduction in the number of runs 

per track (Table S1), suggesting that the ability of actin densities to transition 

between the different directional phases was inhibited. Taking into 

consideration all of these changes, EHNA treatment seems to have reduced 

the mobility of actin bidirectionally after the initial burst of retrograde mobility. 

 

Actin-based influences on actin mobility 

Latrunculin: We next tested the hypothesis that the actin cytoskeleton 

influences the mobility of actin densities. First, we tested the importance of 

the structural integrity of the actin cytoskeleton on actin transport. Axons were 

exposed to 10µM latrunculin, which, by binding to actin monomers, prevents 

the polymerization of actin filaments and results in a disorganized actin 

cytoskeleton over time (Coué et al. 1987). Phalloidin staining of cells treated 

with latrunculin for 10 minutes revealed a severely disrupted lamella and 

regions of the axon either void of actin or containing actin–enriched puncta 

(Fig 5A, B, E). Additionally, the axonal microtubule network was also 

moderately disrupted, (Fig 5B), confirming the interconnected nature of the 

actin and microtubule networks (Baas et al. 2006). It was not possible to fix 
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and reliably stain cells exposed to latrunculin for the full 20 minutes, as the 

staining protocol washed cells from the coverslip, presumably due to 

increased structural fragility and actin-associated adhesion. Not surprisingly, 

given that actin densities appear filamentous, latrunculin treatment resulted in 

a reduced number of total tracks as well as new tracks appearing over the 

course of 20 minutes (Fig S4A, Table S1). The densities that were observed 

appeared similar to those in GFP-actin controls. As with all drug treatments, 

latrunculin induced a significant increase in pause duration, implying some 

role of the actin cytoskeleton on actin mobility. Like EHNA, latrunculin induced 

a strong retrograde average displacement at early time points (Fig 5F), driven 

in large part by a significant increase in retrograde velocity (Fig 5J, S3E; 

Table 2) and a concomitant increase in the distance and duration of 

retrograde directed runs (Fig 5J; Table 2). Unlike EHNA, latrunculin did not 

affect the velocity of anterograde directed particles, but did induce an 

increase in anterograde duration and distance that slightly counteracted the 

retrograde average net displacement (Fig 5G). At later time points, net 

average net displacement as well as the number of anterograde, retrograde, 

and stationary tracks all rebounded slightly, though not quite to control levels 

(Fig 5F-I). Overall, the net retrograde shift in mobility suggests an important 

role for an intact actin cytoskeleton in guiding actin mobility. 
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Figure 5:  Effect of actin associated drugs on the mobility of actin densities in the 
axon. (A-E) After exposure to either latrunculin (B) or BDM (D), cells were fixed and 
stained for actin and tubulin to determine the effect of drug treatment on the axonal 
cytoskeleton. C is a frame from a time lapse movie of an GFP-actin axon treated with 
Jasplakinolide. Note that latrunculin affected the distribution of actin, but also 
seemed to affect microtubule integrity as well; some microtubules buckled, and 
protruded through the axonal cortex (arrow). (E) Latrunculin and jasplakinolide had a 
significant effect on the distribution of actin within the growth cone. BDM treatment 
induced a less severe disruption. Scale bars 10 µm, all panels. (F) Latrunculin 
exposure increased retrograde average net displacement in the axon initially, but this 
effect gradually decreased over time. BDM treatment induced a strong anterograde 
average net displacement which increased over time. (G-I) Both latrunculin and BDM 
affected the number of tracks over time as well as the direction of those tracks. Note 
that BDM preferentially reduced the number of retrograde and paused tracks. (J) 
Latrunculin increased actin particle dynamics, increasing the duration for all three 
phases of motion and increasing the distance traveled by moving particles. The 
retrograde velocity was most significant, though, in affecting the retrograde average 
net displacement. (K) BDM reduced the speed with which particles moved and 
increased the pause duration. It induced an increasingly strong anterograde average 
net displacement by reducing the number of paused and retrograde directed tracks.  
 

 

Jasplakinolide: To further test the role of actin in directing actin 

transport, neurons were exposed to 10 µM jasplakinolide, which induces actin 

polymerization in cells by enhancing the rate of filament nucleation in a 

manner that depends on the concentration of monomeric actin (Bubb et al. 

1994; Bubb et al. 2000).  Treatment with jasplakinolide had a dramatic effect 

on actin in the axons (Fig 6C). Almost immediately upon addition of the drug, 

large fluorescent densities appeared along the axon, which did not move for 

the remainder of the imaging time; there was a complete cessation of all 

activity. Growth cones were also severely compromised, collapsing rapidly to 

a brightly fluorescent dense point. The rapid rate at which these densities 

formed is consistent with a large pool of soluble monomeric actin implied by 

rapid FRAP (Figure 3). In combination with the results of latrunculin 
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treatment, these results suggest that polymerization and turnover are both 

vital to the existence and mobility of these densities. 

BDM: To further dissect the role of actin networks on actin transport, 

the role of myosin motors, which have been implicated in the short-distance 

transport of a number of cargoes, including neurofilaments, was probed. 

(Bridgman 2004; Jung et al. 2004; Lalli et al. 2003; Rao et al. 2002). Neurons 

were exposed to BDM, a broad spectrum myosin inhibitor (Cramer and 

Mitchison 1995; Cramer and Mitchison 1997). Although the efficacy and 

specificity of BDM have been questioned in the past (Ostap 2002), 

considerable evidence suggests that BDM interferes with the activity of all 

myosins except non-muscle myosin II, which generates contractility. 

However, we provide additional details on possible non-specific effects in the 

discussion. In our rat sensory neurons, exposure to BDM induced only 

minimal actin disruption in the axon, and only a mild decrease in staining at 

the leading edges of lamellipodia, as determined by phalloidin staining of 

fixed cells (Fig 5D, E). Similarly, the microtubule cytoskeleton showed only 

slight changes in its continuity. Like all drugs, BDM induced an increase in the 

pause duration of actin densities. Unlike EHNA and latrunculin, a net increase 

in the anterograde average net displacement was observed over time (Fig 

5F). Unlike the other drugs, BDM treatment decreased the velocity of both 

anterograde and retrograde directed runs (Fig 5K, S3A, B, and Table 2). 

Additionally, the net displacement of stationary particles was not significantly 

affected in one direction or the other (Fig 5K). The major contributor to 
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increased average net displacement was the decrease in retrograde directed 

and paused tracks, by 54% and 48%, respectively (Fig 5G, H), compared to 

anterograde tracks, which decreased only by 18% (Fig 5I). These results 

suggest that myosin is important for the bidirectional transport of actin 

densities in the axon, but may exhibit a retrograde bias. 

Table 2. Comparison of transport parameters in axons treated with nocodazole, 
EHNA, latrunculin, or BDM. 

0.052±0.0290.067±0.040.058±0.0410.066±0.0460.064±0.041
Anterograde Velocity

(Microns/Second)
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Anterograde Duration
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Pause Duration

(Seconds)
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Biological roles for actin densities 

Filopodia: Actin densities have been implicated in the formation of 

axonal filopodia in chick DRG through mechanisms enhanced by, but not 

requiring NGF. (Ketschek and Gallo 2010; Spillane et al.). We examined the 

formation of axonal filopodia in our mammalian DRG model, free from NGF. 

Twenty-two untreated GFP-actin expressing axons were analyzed. Filopodia 

protruded outward from the axon (Figure 6). The time at which a filopodium 

first protruded from the axon was recorded, as well as the time at which it 

reached its maximum length and the time at which it had retracted completely 
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back into the axon. For those filopodia which remained extended at the end of 

the time-lapse, the last frame was counted as its time of retraction. Similarly, 

for those filopodia which were already visible at the beginning of the time 

lapse, their protrusion time was counted as the first frame. The maximum 

length achieved by a filopodium was also measured as well as and the angle 

at which it protruded from the axon. Only 54.5% of the axons had any 

filopodia. In those axons which exhibited filopodia, an average of 1.75 

filopodia were observed along the axon per minute, which is comparable to 

previously reported rates (Ketschek and Gallo 2010). Additionally, only 51.4% 

of the observed filopodia were populated with GFP-actin. There was no 

difference between the total lifetime of filopodia which were populated with 

actin GFP and those that weren’t. Similarly, there was no difference between 

the time it took those filopodia to reach their maximum length, or to disappear 

(Fig 6A). However, the maximum length of those filopodia without GFP-actin 

was significantly less than those associated with fluorescent actin (Fig 6B). 

While most filopodia protruded perpendicular to the axon (Fig 6C), it was not 

uncommon for a filopodia to protrude at a more acute angle (Fig 6D) or to 

move with respect to the axon, so that the angle between the two changed 

(Fig 6E). In fact, filopodia tended to protrude with their tips pointed slightly 

toward the cell body, but it is unclear if this indicates a polarity within the 

underlying actin cytoskeleton. Lastly, staining for the focal adhesion protein, 

talin, shows talin localization to the base of these filopodia, and in some 
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cases, filling the body of the filopodium as well, suggesting that these 

filopodia protrude from stable adhesive islands along the axon. 
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Figure 6:  Filopodia and actin densities. A portion of the mobile actin densities gave 
rise to filopodia that protruded from the side of the axon. However, not all of the 
observed filopodia were populated with fluorescent actin. Lifetime, maximum length 
achieved and the angle of protrusion out of the axon were all measured in the DIC 
channel and compared between those filopodia which were populated with 
fluorescent actin (DIC w/F) and for those that weren’t (DIC w/o F). Additionally, these 
same parameters were measured using only the fluorescent channel (Fluorescent). 
(A) There was no statistically significant difference between the lifetimes of these 
three groups. (B) But those filopodia which were not populated by fluorescent actin 
were statistically shorter than those with fluorescent actin (alpha=0.0008). (C) There 
was also no difference in the measured angle of protrusion for filopodia between 
these three groups. (D, E) Individual filopodia were quite dynamic, often protruding 
out of the axon at one angle, and then moving through an arc before retracting back 
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in. (F) The focal adhesion protein, talin, localized to the base of these filopodia, 
suggesting that they protrude from regions of stable adhesion to the substrate. Note 
that the starred filopodium at the top of the picture is actually protruding from another 
axon outside the field of view (Scale bar 10 µm). 

 
 
 
 
Mitochondria: Previous work has shown that mitochondria are 

transported along the actin network by myosin, and require actin for docking 

in the growth cone (Morris and Hollenbeck 1995; Ruthel and Hollenbeck 

2003). Additionally, stationary mitochondria are associated with actin in the 

axon (Kang et al. 2008; Ketschek and Gallo 2010; Miller and Sheetz 2006). 

Although the movement of the actin densities appeared qualitatively different 

from the movement of mitochondria in the axon, we labeled axons transfected 

with GFP-actin with Mitotracker Red in order to examine the possibility that 

the motion of GFP-actin was correlated with the motion of mitochondria. It is 

clear that only a small fraction of the actin particles are associated with 

mitochondria for substantial periods of time. Inter-mitochondrial spaces 

appear to be particularly dynamic (Fig 7A), but even the regions around the 

mitochondria show obvious motility (Fig 7B arrow). Additionally, not all of the 

mitochondria are labeled with actin (Fig 7B stars) suggesting that not all 

mitochondria are surrounded by actin. Finally, it is important to note that not 

all “stationary” actin particles are associated with a mitochondrion (Fig 8C 

arrows). While mitochondria may serve as a sort of scaffold for actin 

accumulation, or vice versa, the relationship between GFP-actin and 

mitochondria in these cultured sensory neurons appears to be more complex 

and dynamic than previously thought.  
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Figure 7: Actin’s association with mitochondria in the axon.  Axons were transfected 
with GFP-actin as well as with mitotracker red, and imaged over time. Kymographs 
from selected movies are shown here at 40x (A, B) and 100x (C). (A) Actin does 
associate with mitochondria but the inter-mitochondrial spaces appear more 
dynamic. (B) However, not all mitochondria are labeled with actin (stars) and the 
actin that is associated with a mitochondrion can still be active, as shown here 
(arrow) where an actin puncta moves away from the mitochondrion only to return a 
few seconds later. (C) Finally, not all stationary actin densities are localized to 
stationary mitochondria (arrows). Scale bars: 10 µm in all panels. 
 
 
 

Discussion: 

It is only recently that details have emerged regarding mechanisms by 

which slow cargoes are transported. Microtubules and neurofilaments, which 

exist in SCa, move as filaments several microns in length at fast 

instantaneous velocities punctuated by frequent pauses (Wang and Brown 

2001; Wang and Brown 2002; Wang et al. 2000). On the other hand, a recent 

model proposes that cytosolic SCb cargoes form directional, transiently 
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associated multi-protein complexes, which display a net anterograde drift 

(Scott et al. 2011). However, details underlying actin transport have remained 

elusive. In this study, through the high resolution imaging of rat sensory 

neurons expressing GFP-actin and subsequent image processing, we have 

characterized the complex bidirectional movement of fluorescent actin 

densities. We have developed a novel model for the axonal transport of actin 

based on changes in this movement following the perturbation of specific 

components of the cytoskeletal network. We propose the coalescence of actin 

into short filamentous densities, which are then directionally translocated via 

contributions from coupled microtubule- and actin-based transport systems. 

Such transport can contribute both to the slow anterograde bulk axonal 

transport of actin as well as local biological function. 

 

Composition and formation of mobile actin densities 

Several results indicate that the mobile actin densities subsequently 

characterized are composed of filamentous actin. Most notably, these 

densities are labeled with both phalloidin and lifeact, which bind only to 

filamentous actin (Fig 1). Further, it appears that the coalescence, or birth, 

events responsible for the formation of visible densities represent a process in 

which stable polymerized actin is collected and bundled together. Such 

bundling is consistent with the similar number and dynamics of coalescence 

events observed in axons expressing lifeact compared to GFP-actin (Fig 2, 

Table 1). Additionally, imaging at higher temporal and spatial resolution 
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reveals the gradual transition from diffuse, but still distinguishable, puncta to a 

more intense and compact puncta prior to dissociation (Fig 3). 

Given the concentration dependence of actin filament nucleation, 

polymerization may play an indirect role in the formation and existence of 

actin densities. For example, the puncta which recovered fluorescence most 

quickly after photobleaching (Fig. 3A) were also the brightest before 

bleaching. They likely were bundles of polymerized actin, which served as 

sites of high polymerization during fluorescence recovery. However, a 

mechanism in which polymerization alone is the major driving force in density 

formation seems unlikely, since the tight punctate signal would seem to 

require the simultaneous polymerization multiple densely packed filaments. 

Additionally, while latrunculin treatment decreased the total number of axonal 

densities (Table S1, S2), it did not change the appearance or dynamics of 

coalescence events. Finally, the lack of co-localization between actin puncta 

and ribosomes suggests that the densities are likely not formed through local 

actin synthesis.  

While we cannot rule out the possibility that these densities are 

integrated within the actin cortex, and while no other studies have directly 

looked at this possibility, their dynamic natures suggests that they more likely 

exist as separate collections of F-actin. These findings are consistent with 

several electron microscopy studies, which reveal self-contained densities of 

F-actin lateral to the microtubule core as well as short actin filaments within 
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the core (Chang and Goldman 1973; Letourneau 1983; Nagele et al. 1988; 

Spillane et al. 2011). 

 

Characterization of actin mobility 

 Qualitative inspection of axons expressing GFP-actin revealed 

dynamic and complex patterns of fluorescence. Through rigorous high-

resolution imaging and image processing, we have quantified a number of 

parameters related to the instantaneous and longer-term movement of actin 

densities within the axon. The parameter which summarizes their global 

behavior is the average net displacement for all particles observed over a six-

minute imaging period. However, to better understand the mechanisms 

underlying this displacement, full tracks were also broken into shorter runs 

comprised of either times during which the particle was stationary or was 

undergoing processive movement in either the anterograde or retrograde 

direction. Analysis of these runs revealed statistically significant directional 

changes in the duration, distance traveled, and average velocity in axons 

exposed to a variety of drugs that perturbed elements of the cytoskeletal 

network, as compared to untreated axons. As a brief comment on 

nomenclature, the word “transport” will be used to refer to any directed 

movement, and does not necessarily imply the long range processive 

movement normally associated with fast axonal cargoes; in the case of actin, 

movements were of short but significant duration and distance, often 

punctuated by pauses. 
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Actin densities as a mechanism for slow component transport 

A key finding of this work was that GFP-actin in the axon showed a net 

anterograde displacement with a velocity of 0.8 mm/day. Though this average 

net displacement was slow, it was still significant and is commensurate with 

SCa transport rates. However, this displacement included contributions from 

retrogradely and anterogradely moving particles as well as paused particles. 

The average net displacement of moving particles yielded an anterograde 

velocity of 1.5mm/day, which is at the low end of SCb rates of transport, while 

the average net displacement of only anterogradely directed particles 

produced a velocity of 8.5mm/day, at the upper end of SCb transport rates. It 

should be pointed out that our methodology allowed us to track only densities 

with fluorescent intensities greater than the background fluorescence level. 

However, rates of FRAP suggest that diffusion of soluble actin in the axon is 

fast and shows no directional bias, indicating the absence of a significant 

concentration gradient within the axon. Thus while it is unlikely that diffusive 

movement contributes to directional actin transport, diffusion is likely to play a 

role by setting the G-actin concentration that ultimately drives polymerization 

of filaments. 

 

Mechanisms for the movement of actin densities 

A synthesis of the current models for transport in the axon, based on 

cell biological, biochemical, and biophysical literature suggests that non-

diffusive directional, actin transport may be explained by one of four general 
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models: (1) actin polymerization or treadmilling; (2) actin movement upon 

microtubules, but not actin; (3) actin movement upon actin, but not 

microtubules or; (4) a hybrid of models (2) and (3), including contributions 

from both microtubules and actin. 

There is little evidence in support of the first model. As described 

above, actin densities are composed of polymerized actin filaments, do not 

dramatically change their behavior in the presence of latrunculin, and do not 

display the characteristic treadmilling activity observed in the growth cone. To 

systematically examine the remaining models, we perturbed specific elements 

of the crosslinked cytoskeletal network and rigorously characterized 

parameters defining actin mobility.   

Our data support the final model. Specifically, we conclude that 

particles are moved by myosin on actin tracks, but also as passive cargoes 

on microtubules being moved by dynein anchored to cortical actin (Figure 8). 

The evidence in support of this model will be discussed below, based on our 

analysis of the movement of actin densities as well as on previous work, 

particularly that of the Baas group. First, however, pharmacological treatment 

enabled tight temporal control over a particular perturbation, and the 

specificities of the reagents selected for this study are essential to interpreting 

our results. Possible non-specific effects are well documented in the literature 

so care has been taken to limit and/or quantify them. Although genetic 

manipulation might have facilitated more specificity, inactivation of 
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cytoskeletal proteins, which are involved in a number of cellular processes, 

would likely result in cell death or other less tractable side effects. 

                    

A B C

Actin

Microtubule

Actin binding MAP

Dynein

Myosin

Cell Membrane

A B C

Actin

Microtubule

Actin binding MAP

Dynein

Myosin

Cell Membrane
 

Figure 8:  Model of actin mobility in the axon. The data support a role for both 
microtubules and actin in the transport of actin in the axon. (A) Actin is transported 
as a passive cargo on microtubules moved forward by the action of dynein. (B) Actin 
is also moved by myosin as a cargo along tracks of actin. (C) The loss of either actin 
or microtubules facilitates more robust movement suggesting that these two 
transport mechanisms act both as active movers of actin and as a brake to motion 
along the other. 
 

A role for microtubules in actin transport 

Treatment with nocodazole induced numerous changes in the 

measured transport parameters (Fig 4), indicating a role for microtubule 

stability and motor proteins in modulating axonal actin transport. However, 

this role appears distinct from the typical roles of microtubules in transporting 

fast or slow cargoes. Conventional transport of a cargo by kinesin or dynein, 

as observed for vesicular or neurofilament transport, assumes motor 

movement upon stationary microtubule tracks. If this were the case, then 

treatment with nocodazole should have inhibited the transport of actin 

bidirectionally. Although pause durations increased in response to 

nocodazole treatments, surprisingly, it resulted in an increased anterograde 

average net displacement.  Both the duration and distance traveled during 
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runs increased as well as the anterograde drift of stationary particles. This 

response is markedly different from that of other SCb cargoes, which are 

unaffected by actin destabilization but cease movement bidirectionally after 

microtubule destabilization, presumably due to the absence of tracks for 

kinesin and dynein motors (Roy et al. 2008). Rather, the observed 

enhancement in anterograde mobility is reminiscent of the response of 

microtubules, whose anterograde movement via dynein, stabilized on actin 

tracks, was enhanced following their decoupling from microtubule scaffolds 

(Ahmad et al. 2006; Hasaka et al. 2004).  

Intriguingly, several features of altered actin mobility following EHNA 

and latrunculin treatment were also consistent with dynein-mediated 

anterograde transport of microtubules upon intact actin scaffolds (Fig 8A). 

Actin densities in axons exposed to EHNA initially exhibited a large retrograde 

displacement, due to a reduction in their anterograde velocities and an 

increase in their retrograde velocities (Fig 4). This finding is opposite to that 

predicted for typical dynein-dependent retrograde transport, and provides 

strong evidence against a role for dynein in moving actin retrogradely in the 

axon. This interpretation holds true even factoring in unlikely, but possible, 

superposed non-specific effects on anterograde motors or actin 

polymerization (Penningroth et al. 1982; Schliwa et al. 1984; Walsh and 

Tellam 1986). Similarly, latrunculin also resulted in a large retrograde average 

net displacement. Taken together, the simplest explanation for these data is 
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that dynein does not directly move actin, but affects its movement indirectly, 

by moving microtubules on which actin is a passive cargo. 

This model is also supported with data from nocodazole treated axons, 

where increased anterograde mobility may be explained by decreased 

connectivity within the axonal core (Figure 4), which frees up microtubules to 

be moved by motor proteins. The model is also consistent with multiple 

biochemical and electron microscopy studies. Structurally, actin is known to 

associate closely with microtubules in the axon (Chang and Goldman 1973; 

Letourneau 1983; Nagele et al. 1988)(Gallo et al., 2011), and the microtubule 

associated proteins, MAP2c, doublecortin, pod1 as well as a few different 

formins have all been shown to mediate actin dynamics, suggesting that 

microtubules could serve as a nucleation site for actin densities (Deeks et al.; 

Fujiwara et al. 1999; Roger et al. 2004; Rothenberg et al. 2003; Tint et al. 

2009). 

 

A role for actin in actin transport 

While a bidirectional microtubule based model for actin transport is 

attractive in its simplicity, not all of the data are consistent with it. First, the 

instantaneous rates of movement for moving particles are far slower than 

those predicted by Baas and colleagues for microtubule-based transport. In 

fact, particles moved in both directions with average velocities of 0.06µm/sec, 

the same velocity reported for the movement of pigment granules carried 

along actin by myosin in fish melanocytes (Rodionov et al. 1998). Second, 
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retrograde microtubule transport is not affected by interfering with either 

dynein or actin (Ahmad et al. 2006; Hasaka et al. 2004), but in our 

experiments, both latrunculin and EHNA enhanced retrograde displacement 

of actin puncta (Fig 8b). Third, BDM treatment should have left transport 

unaffected if it were independent of myosin, even taking into account side 

effects on non-muscle myosin II (Chon et al. 2001; Forer and Fabian 2005; 

Yarrow et al. 2003). However, BDM significantly reduced the number of 

retrograde directed and paused tracks as well as the anterograde velocity. 

The milder effect on anterograde transport is consistent with the disruption of 

myosin mediated transport, but intact hitchhiking upon microtubules moving 

anterogradely against an intact actin cortex. This suggests a role for myosin 

in the retrograde movement of actin, but does not preclude one for piggy-

backing on to retrogradely moving microtubules. Finally, treatment with 

jasplakinolide completely abolished any movement of actin within the axon, 

similar to previous reports of jasplakinolide induced inhibition of  myosin 

mediated movement of vesicle bound cargoes (Semenova et al. 2008).  

 

Interactions between actin and microtubule-based transport systems 

A few results further support a stronger functional connectivity between 

actin and microtubules in our system. Both nocodazole and latrunculin 

treatments significantly increased the duration and distance traveled by 

particles bidirectionally. These results suggest a reciprocal inhibitory 

interaction between actin and microtubules; each serves to limit the 
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movement of actin densities along the other network. Destabilization of either 

decreased this inhibition and freed actin particles to move further and for a 

longer time. This seemingly passive inhibitory interaction is, however, likely a 

direct result of the active force generating components of the system. Myosin, 

dynein and other cross linking proteins are likely engaged in a sort of tug-of-

war over these actin densities.  When one protein “loses its grip” the actin is 

free to move for a short time, before it is rebound and frozen again (Fig 8C).    

 

Implications for the organization and dynamics of the actin cortex 

Changes in directional transport after microtubule destabilization with 

nocodazole could also suggest a directional bias in the orientation of actin 

filaments in the cortex. This type of organization has been proposed 

previously to explain the anterograde movement of mitochondria in 

microtubule depleted axons and neurofilaments after treatment with BDM 

(Jung et al. 2004; Morris and Hollenbeck 1995). In contrast to nocodazole 

treatment, when the actin cortex was interrupted by exposure to latrunculin, a 

net retrograde displacement of actin densities was observed, similar to the 

result of EHNA exposure. This retrograde average net displacement is likely 

due to the contractile nature of the actin cortex. On one hand, EHNA reduced 

the connectivity between actin and microtubules, and so freed actin to 

contract in a sort of contraction mediated translation of the actin framework 

(Miller and Sheetz 2006). Conversely, latrunculin treatment reduced the 
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connectivity within the actin cortex, but may have done so locally, causing 

actin to condense into disorganized puncta along the length of the axon. 

 

Implications for neurobiological function 

We have discussed polymerized and soluble actin in the context of 

axonal transport, but this transport occurs because actin is required for a 

number of biological functions at specific locations along the axon. To this 

end, while we have pooled our results, there is a strong possibility of 

functionally different populations within the pool of polymerized actin. We 

have built upon previous work noting that a subset of polymerized actin 

densities give rise to filopodia (Fig 6), and that some are associated with 

mitochondria (Fig 7) as well (Ketschek and Gallo 2010; Spillane et al. 2011). 

Additionally, our staining shows that actin densities co-localize with the focal 

adhesion protein talin (Figure 6F), as expected (Gardel et al. 2010). 

Surprisingly, although there is some co-localization with ribosomes in our 

axons (Fig 4F), the literature suggests a much stronger association between 

the two based on the importance of actin in transporting ribosomes and 

maintaining their distribution along the length of mature axons (Koenig and 

Koenig 2009; Koenig and Martin 1996; Koenig et al. 2000). One would expect 

the developing axon to require significant translational machinery as well. A 

quantitative study of the dynamic associations between actin densities and 

ribosomes or focal adhesion proteins along the length of growing axons would 

elucidate the possible interactions. 
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Summary and conclusions 

Our data provide clear evidence for a novel mode of transport for actin 

densities in the axon. Short bursts of small but significant movement are 

mediated by both actin and microtubules to produce a net anterograde 

average displacement at speeds commensurate with slow component 

transport rates. These actin densities are filamentous in nature, and their 

emergence appears to be due to bundling and polymerization of filaments, 

rather than de novo translation. They are moved bidirectionally by the action 

of myosin motors, presumably walking along the actin cortex and a significant 

fraction of their anterograde movement seems to be as passive cargoes 

piggybacking onto moving microtubules. It is not clear what role, if any, this 

microtubule piggybacking plays in their retrograde movement. In addition to 

their active roles in transport, the actin and microtubule cytoskeletons each 

seem to serve as a brake on movement mediated by the other. Finally, these 

densities seem to have a number of biological functions, as they are 

associated with filopodial protrusion, and co-localize with mitochondria and 

the focal adhesion complex protein talin. 
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Chapter 4: Cytoskeletal dynamics in response to 

tensile loading of mammalian axons 2 

Introduction 

Peripheral nerves are under tension and undergo additional tensile 

loading, or stretch, within a physiological range during growth and voluntary 

or imposed joint extension and flexion.(Topp and Boyd 2006) Nerves may be 

lengthened more dramatically during orthopedic or regenerative surgery, 

including limb-lengthening procedures. (Abe et al. 2004; Abe et al. 2002; Abe 

et al. 2003; Bora et al. 1980; Ichimura et al. 2005; Ikeda et al. 2000; Jou et al. 

2000; Lee et al. 2006; Li and Shi 2006; Spiegel et al. 1993; Yokota et al. 

2003). In vivo and in vitro animal models of nerve lengthening suggest that a 

threshold of strains and strain rates determines whether stretch is injurious or 

ameliorative, based on the structure and electrical conduction capabilities of 

the affected nerve.(Bueno and Shah 2008; Eggli et al. 1999; Shi and 

Whitebone 2006; Shibukawa and Shirai 2001) However, the mechanisms 

underlying this empirically determined threshold remain to be determined.  

At the cell level, axons, situated between the adherent cell body and 

extending growth cone, are also thought to be under tension.(Bray 1979; 

Lambert de Rouvroit and Goffinet 2001) As is true for many cells of the 

musculo-skeletal system, (Smith and Gilligan 1996; Vandenburgh et al. 1991) 

neurons exhibit a morphological response to mechanical loading during 
                                                 
2 This has been previously published as: Chetta J, Kye C, Shah SB. 2009. Cytoskeletal dynamics in 
response to tensile loading of mammalian axons. Cytoskeleton 67(10):650-665. 
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growth and development. In a “towed-growth” loading regimen, 

micromanipulator controlled glass needles have been used to apply and 

measure tensile forces on axons of cultured neurons by pulling on the growth 

cone (Bernal et al. 2007; Bray 1984; O'Toole et al. 2008; Zheng et al. 1991). 

These studies have revealed that axonal growth rate increases linearly with 

an applied load, and that tension is important for neurite 

development.(Heidemann et al. 1995) Related studies also showed that 

tension applied to the cell margin can induce neurite formation (Chada et al. 

1997) and specify axonal fate.(Lamoureux et al. 2002) A recent extension of 

towed growth, termed stretch growth (Pfister et al. 2004), has been used to 

create long tracts of parallel axons, towards a strategy for spinal cord 

regeneration.(Iwata et al. 2006; Pfister et al. 2006a; Pfister et al. 2006b) 

Towed and stretch growth are likely to be distinct from normal axonal growth 

during development in that growth cones are no longer free to stop, turn or 

retract. Adhesion of the growth cone itself and any other potential adhesion 

along the axon are also likely to be interrupted during this type of loading. 

Biomechanically, axons respond as a viscoelastic solid to imposed tensile or 

transverse loads (Dennerll et al. 1989).  The observed changes in the length 

of an axon in response to such loads have been explained by traditional 

spring-dashpot models of viscoelasticity, which assume a continuum of 

mechanical properties (Fung 1993). More recently, elements of adhesion and 

tension generated by the growth cone and borne by the cytoskeleton have 

been integrated into a mathematical model of axonal growth (O'Toole et al. 
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2008) that incorporates force, viscosity, and adhesions to govern the mode of 

outgrowth.  Each of these models accurately explains the observed bulk 

behavior of the axon, and has been valuable in multiscale modeling of axonal 

pathfinding (Aeschlimann and Tettoni 2001). However, it remains to be tested 

whether such models predict higher-resolution behavior of axons at smaller 

length scales. 

Inside the cell, a well-developed and organized cytoskeleton is 

responsible for creating and bearing mechanical forces in the cylindrical axon. 

The adherent growth cone, powered by actin-myosin interactions, generates 

tension in the axon during advancement. This is opposed by longitudinal 

compression imposed by the contractile actin-myosin network immediately 

underneath the plasma membrane in the axon.(Gallo et al. 2002) This 

compression is also borne by microtubules (MTs), which run through the core 

of the axon.(Heidemann et al. 1985; Peters and Vaughn 1967; Yamada et al. 

1971) Along with their structural role, microtubules serve as the tracks along 

which a variety of energetic, structural, nutritional, and signaling cargoes are 

transported bidirectional, through the action of kinesin and dynein motor 

proteins. (Chevalier-Larsen and Holzbaur 2006; Goldstein and Yang 2000; 

Hirokawa and Takemura 2004; Schnapp and Reese 1989) Among these 

transported cargoes are mitochondria, which localize to regions of high-

energy use along the axon. (Hollenbeck and Saxton 2005) In addition to the 

many motile mitochondria, a significant number are stationary, presumably 

having localized to their site of necessity.  These stationary mitochondria 
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have been described as markers for a slowly moving cytoskeletal framework, 

(Miller and Sheetz 2006) and may interact with and dock to microtubules, 

neurofilaments, and cortical actin (Chada and Hollenbeck 2003; Chada and 

Hollenbeck 2004), (Wagner et al. 2003) (Kang et al. 2008). 

Collectively, these studies establish that neurons both produce and respond 

to tensile forces. While several key structural elements involved in load-

bearing have been identified, the underlying mechanisms controlling the 

ability of neurons to respond to mechanical changes in their environment are 

not well understood. Towards the elucidation of these mechanisms, we 

examined the transmission of extracellular strains into the axonal 

cytoskeleton. We have developed a “substrate strain” loading regimen, in 

which cells are cultured on a flexible substrate, which is itself stretched (cf. a 

similar regimen applied to intervertebral disc fibroblasts (Gilchrist et al. 

2007)). This configuration allows unconstrained plasticity of a free growth 

cone and enables continued adhesion, and thus, transmission of loads, 

between the substrate and the axon. Using this setup, a moderate strain was 

imposed upon rat sensory neurons, and cytoskeletal deformation was tracked 

immediately after stretch and during twenty minutes of subsequent 

remodeling, by monitoring the position of fluorescently labeled docked 

mitochondria. Our results reveal the axon as a dynamic and heterogeneous 

structure, which interacts with the extracellular environment in mechanically 

complex ways. Specifically, we find that strain and tension are not distributed 

uniformly along the axon and that at small length scales, the axon behaves as 
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a series of independent linked regions. Our results suggest a length scale 

within which cytoskeletal structural elements may be altered to modulate the 

local biomechanical response of the axon. 

 

Methods and Materials 

Stretcher Design: 

We implemented a “substrate strain” loading regimen, in which cells 

were cultured on a flexible substrate, which was itself stretched (Fig. 1A). This 

configuration allowed unconstrained plasticity of a free growth cone and 

enabled continued adhesion, and thus, transmission of loads, between the 

substrate and the axon. Silicone sheets (SMI, Saginaw, MI) were fixed 

between two clamps bolted to a removable base plate. In control experiments 

without cells, deformation in the imaging region was confirmed to be 

repeatable, accurate, and homogenous at the µm length-scale, based on the 

imaging of fluorescent beads 200nm in diameter (Invitrogen, Carlsbad, CA) 

and ink markers on the silicone with both 100x/1.4 and 40x/0.95 oil immersion 

microscope objectives. Cells were cultured upright on the silicone but the 

short focal distance of oil immersion objectives required that the cells be 

inverted and suspended above a glass bottomed imaging window in a 

custom-designed chamber to perform live cell microscopy (Fig. 1B). Neurons 

exposed to long term (15 hours) inversion showed no significant differences 

in growth dynamics and behavior compared to upright neurons.(Shah et al. 

2009) Linear translation stages (Newport Corporation, Irvine, CA) mounted on 
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either side of the chamber and attached to each clamp allowed the silicone 

sheet to be appropriately positioned above the coverslip. Stretch was applied 

in µm increments via a third translation stage. 

                     

Base PlateRemovable Base Plate

Temporary Culture Well

Tension

Substrate Strain
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Clamps
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with inverted cells
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A

B

C
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Fig. 1: (A, B) Diagram of loading regimen. Cells were grown on flexible silicone 
stretched between two fixed clamps and inverted into a glass bottomed imaging dish. 
Stretch is applied via linear translation stages and results in uniform strain in the 
silicone. Deformations in the silicone are transferred into the cell, presumably 
through adhesive sites. (C) Axon of a sensory Neuron stained for talin, a focal 
adhesion protein, showing the distibution of adhesive sites along its length. 
 

Cell Culture: 

Dorsal Root Ganglia (DRG) were isolated from the entire spinal column 

of 2-6 day old Sprague-dawley rats and maintained in ice cold F-10 

supplemented with gentomycin. They were then incubated with 2.5mg/ml 

collagenase II (Roche, Basel, Switzerland) for 30 minutes at 37oC, triturated 

and pelleted at 76xg for 5 minutes. Cells were then resuspended in growth 
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media (10% Horse Serum in F-10, with 1% pen/strep,1% L-glutamine, 50 

ng/ml NGF 7-S and 2% B-27), seeded onto laminin coated silicone at a 

density of 100,000 to 250,000 cells/ml. and incubated at 370C and 5% CO2 for 

16-20 hours. To promote axon-enriched imaging regions, a temporary culture 

well was created in the middle of the membrane during cell seeding and initial 

cell body adhesion. Animal work has been approved by the IACUC at the 

University of Maryland. 

Fluorescent Labeling of Mitochondria: 

Dissociated DRG cultures were incubated with 1:10,000 dilution of 

mitochondrial dye, MitoTracker green (Invitrogen, Carlsbad, CA) for 2 minutes 

at 37°C and then allowed to recover in normal growth media for 1-3 hours 

before being imaged (modified from (Miller and Sheetz 2006)).  

Fluorescence Microscopy: 

Imaging was performed on an inverted TE-2000E microscope (Nikon, 

Melville, NY) outfitted with a LumenPRO2000 (Prior Scientific, Rockland, MA) 

illumination system and Chroma filters (Bellows Falls, VT. EPI: 488nm, 

Emission 530nm). Additionally, a custom built chamber (Precision Plastics, 

Beltsville, MD) maintained optimal temperature, humidity and CO2 levels 

during imaging. Exposure time was limited to 200-300ms per image. Axons 

were chosen for analysis which were roughly oriented in the direction of the 

applied strain (±15o) and were alone and in a non- growing state. 3 paired 

(DIC and fluorescence) images were taken of the unstretched (0% strain) 

cells with a 30 second lapse between each image. These images were used 
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to confirm that mitochondria used to calculate strain were stationary. The cells 

were then exposed to a 10% strain applied at a rate of 0.03%/sec-0.04%/sec, 

after which 3 more paired images were captured.  This strain rate falls on the 

high end of rates reported in the literature for long term growth of axons 

(0.012%/sec - 0.04%/sec). (Pfister et al. 2004; Smith et al. 2001) Similarly, 

10% strain lies at the high end of deformations for which functional deficits 

are reversible (Wall et al. 1991; Wall et al. 1992). A subset of stretched cells 

were then imaged over the course of 20 minutes with paired images captured 

every 45 seconds to assess longer term changes in the distribution of 

mitochondria after the application of strain.  

Image Analysis: 

All image analysis was performed in ImageJ (NIH, Bethesda, MD) or 

MATLAB (The MathWorks, Natick, MA). Only those mitochondria which were 

“stationary,” i.e. those not actively transported during loading were analyzed. 

The signatures of slowly moving or fast-transported mitochondria are different 

from stationary mitochondria (Miller and Sheetz 2004; Miller and Sheetz 

2006), providing additional confidence in appropriate identification. Only 

individual mitochondria that were visible and in the same position relative to 

other mitochondria in all images were considered. This resulted in 4 - 9 (avg = 

6.5) mitochondria being used per axon. The distance between a pair of 

fluorescently labeled mitochondria was determined for both 0% (unstretched) 

and 10% applied strain and used to calculate the strain in the intervening 

space, defined as the change in mitochondrial separation divided by the initial 
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separation, or ∆l/lo. For unstretched axons, two sets of three paired 

DIC/fluorescent pictures were taken four minutes apart (approximately the 

amount of time it took to stretch the neurons in the stretched group). For both 

groups, two points were chosen on the outside of the axon in the DIC images 

that encompassed the region containing the analyzed mitochondria. Strain 

calculated from these points was considered to be the whole axon strain and 

was defined as the “expected” strain based on the assumption of a 

homogenous distribution of strain inside the axon. Coordinates for 

mitochondrial position were defined based on manual identification of the 

peak of the intensity profile along the length of individual mitochondria. For 

stationary mitochondria, this peak moved <2 µm over 20 minutes, despite any 

minor fluctuations in mitochondrial shape over this time period. Also, repeated 

measurements of the same mitochondria in sample images by the same 

individual and by two different individuals yielded an error of <2 µm.  

 

Kymograph Analysis: 

To analyze the movement of mitochondria in the axon over time, a 

custom Matlab program was used to create kymographs from the timelapse 

movies. To create the kymograph, a line segment of pixel intensities along the 

axon was produced for each time point. These line segments were then 

aligned along their leftmost edge to provide a reliable frame of reference in 

the resulting composite image. The position of each mitochondria was then 
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manually extracted from these kymographs and used to calculate strain in the 

intermitochondrial spaces as a function of time.  

 

Correlation Analysis: 

If two mitochondria are coupled to each other, then a displacement of 

one should be reflected in an identical displacement of the other. To test for 

such coupling, the displacement for each mitochondrion per time step was 

determined for all time points in each experiment and plotted against the 

displacement of each other mitochondrion in the axon. This data was fit using 

linear regression. If two mitochondria were moving in perfect unison this data 

would all lie along the line y=x, so that the line of best fit would have a slope 

of 1. The lines y=0 (slope of zero) or x=0 (infinite slope) reflect a complete 

dissociation of the two mitochondria. Mitochondrial pairs with slopes between 

0.65 and 1.35 were considered to be “correlated” with each other, while those 

with slopes between -0.35 and 0.35 were considered to be “not correlated” 

with each other. The R2 value was also determined based on the goodness of 

fit for the regression line. 

Statistical  Analysis: 

To quantify and compare the variability between the stretched and 

unstretched data sets, O’Brien’s transformation was performed (O'Brien 

1981). Briefly, the data was divided into bins based on the initial length, and 
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each data point was transformed into its normalized distance from the mean 

of the bin according to the following formula:  

uas =Na (Na −1.5) (Yas −Ma)
2 −0.5SSa             (1) 

   (Na −1) (Na −2), 

 

with: 

Yas: Original value of datum 

uas: Transformed value of datum 

Na: Number of observations of Group a 

Ma: Mean of Group a 

SSa: Sum of the squares of Group a: SSa = ΣS (Yas −Ma)
2. 

 

This procedure takes into account the number of data points per bin and 

transforms each point of the original data set into a new one which effectively 

represents the variability in the original data. Moreover, the transformation 

produces a normally distributed population, enabling the use of ANOVA on 

the transformed data, to formally compare differences in the variability of the 

original data between bins. 

Bin sizes were initially set to 10 µm, but bin sizes of 5 and 8 µm were also 

used to test whether variability changed depending on bin size. The total bin 

number was chosen to maintain a similar number of points in each bin, as 

there are fewer data points at the longer lengths. Each point of the original 

data set was converted to its O’Brien number during the transformation, so 
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that the sizes of the original and transformed data sets were equivalent. 

Sample sizes for each comparison were selected based on a statistical power 

calculation with alpha = 0.05, beta = 0.8, and variances estimated from the 

first three experiments for each comparison. 

Results 

Phase I: Instantaneous response to strain 

Strain magnitude varies along the length of the axon 

Dissociated DRG neurons were seeded on a silicone substrate, loaded 

into a cell stretching device, and imaged using DIC and wide-field 

fluorescence at 0% (unstretched) and 10% substrate strain. Images and 

analysis from example stretched and unstretched axons are shown in Fig. 2 A 

– F. The distance between consecutive pairs of stationary mitochondria was 

used to calculate the cytoskeletal strain in the axon. Surprisingly, the 

magnitude of strain varied dramatically along the length of both unstretched 

and stretched axons (Fig. 2G, H - diamonds). Strain in the region between 

one pair of mitochondria was also different from strain in the region between 

its flanking neighbors, often in both the sign as well as the magnitude (Fig. 

2G, H – triangles). For data combined from all axons, variability in strain was 

higher for stretched axons than unstretched axons (Table 1), suggesting that 

after stretch, the underlying heterogeneity in strain along the axon was 

increased. Interestingly, in unstretched axons there was ongoing adjustment 

in the position of stationary mitochondria, and thus the axonal cytoskeleton 
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over the course of 4 minutes. Comparison of strain in consecutive pairs of 

mitochondria in all axons revealed a wide range of differences in strain 

between neighboring pairs in stretched axons and to a lesser degree, in 

unstretched axons (Table 1). In addition, only two of the mitochondrial pairs in 

the unstretched axons and five from the stretched axons showed a similar 

strain to their neighbors, as determined by a difference of less than 0.01. 

Collectively, these results reveal heterogeneity in strain along the length of 

the axon, in both stretched and unstretched axons. 
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Fig. 2: Instantaneous strain in response to an applied tensile load is 
heterogeneous. An unstretched axon, under DIC illumination (A) and widefield 
fluorescence (B) was imaged at 0 (A, B) and 4 minutes (C). Four minutes was the 
amount of time it took to apply stretch to stretched axons and so it was necessary to 
quantify the underlying strain in unstretched axons over this same period of time. 
Stretched axons were imaged before (D, E) and after the application of 10% strain to 
the substrate (F). Individual mitochondria used for analysis are labeled. (G, H) 
Heterogeneity in strain along the length of the axon. Plot of calculated strain between 
consecutive pairs of mitochondria in unstretched (G) and stretched (h) axons shown 
in a-f. (I, J) Strain as a function of initial length. The calculated strain between all 
possible pairs of mitochondria was plotted as a function of the initial length of the 
segment between the pairs for the unstretched (I) and stretched (J) axons shown in 
A-F.  
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Table 2. Correlation in Movement of Mitochondria Over Time 

  

 Control 10% Stretch 

Average slope 0.47±0.53 0.51±0.45 

Average r2 0.31±0.19 0.22±0.17 

   

Avg r2 slope = 1 0.46±0.15 0.38±0.14 

Percent of data 34.5% 27.1% 

Length (µm ) 29.5±22.9 39.8±25.3 

Avg r2 slope = 0 0.1±0.08 0.1±0.11 

Percent of data 23.3% 41% 

Length (µm) 43.0±25.2 51.4±33.7 

 

Actual strain magnitude is different from the expected strain magnitude 

To assess the fidelity of transmitting strain from the substrate to the 

axon, strain in the whole axon was calculated using the DIC images (Table 1). 

This whole axon strain was then used as the “expected” strain between 

mitochondrial markers, under the assumption that individual regions of the 

axon deformed with a uniform strain equal to that of the whole axon. The 

difference between the expected and actual strains revealed that very few 

regions of the axon deformed as expected (Fig. 2H – squares, Table 1 for all 

axons), although deviation from this expected strain was greater in stretched 

axons than in unstretched axons. 
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Table 1. Strain Along the Length of the Axon 

0-20 μm: 0.107±0.101
(n=124 pairs) (0.002, 0.458)
20+ μm: 0.052±0.060
(n= 218pairs) (0.000, 0.414)
Total: 0.073±0.083
(n=342 pairs) (0.000, 0.458)

10%

0-20 μm: 0.038±0.031
(n=39 pairs) (0.001, 0.113)
20+ μm: 0.015±0.018
(n= 161 pairs) (0.000, 0.126)
Total: 0.019±0.023
(n=200 pairs) (0.000, 0.126)

0%Difference between measured 
strain and expected strain, 
calculated based on whole axon 
strain

Measured vs. 
Expected 
Strain

Total: 0.098±0.065
(n=17 axons) (0.002, 0.206)

10%

Total: 0.005±0.01
(n=17 axons) (-0.005, 0.031)

0%Measured based on deformation 
of axon from DIC images

Whole Axon 
Strain

Total: -0.002±0.21
(n=81 pairs) (-0.61, 0.49)

10%

Total: 0.007±0.07 
(n=48 pairs) (-0.16,0.21)

0%Comparison of strain between 
one mitochondrial pair and 
flanking pairs 

Difference in 
Strain between 
Neighbors

0-20 μm: 0.081±0.147
(n=124 pairs) (-0.315, 0.462)
20+ μm: 0.064±0.070
(n= 218pairs) (-0.208, 0.256)
Total: 0.075±0.098
(n=342 pairs) (-0.32, 0.66)

10%

0-20 μm: 0.005±0.050
(n=39 pairs) (-0.088, 0.122)
20+ μm: 0.002±0.023
(n= 161 pairs) (-0.079, 0.149) 
Total: 0.003±0.03
(n=200 pairs) (-0.09, 0.15)

0%Strain between mitochondriaObserved 
Strain

Mean +/- STDEV (sample size)
(minimum, maximum)

Strain
Description

0-20 μm: 0.107±0.101
(n=124 pairs) (0.002, 0.458)
20+ μm: 0.052±0.060
(n= 218pairs) (0.000, 0.414)
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(n=200 pairs) (0.000, 0.126)
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Total: 0.098±0.065
(n=17 axons) (0.002, 0.206)

10%

Total: 0.005±0.01
(n=17 axons) (-0.005, 0.031)

0%Measured based on deformation 
of axon from DIC images

Whole Axon 
Strain

Total: -0.002±0.21
(n=81 pairs) (-0.61, 0.49)

10%

Total: 0.007±0.07 
(n=48 pairs) (-0.16,0.21)
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(n=124 pairs) (-0.315, 0.462)
20+ μm: 0.064±0.070
(n= 218pairs) (-0.208, 0.256)
Total: 0.075±0.098
(n=342 pairs) (-0.32, 0.66)

10%

0-20 μm: 0.005±0.050
(n=39 pairs) (-0.088, 0.122)
20+ μm: 0.002±0.023
(n= 161 pairs) (-0.079, 0.149) 
Total: 0.003±0.03
(n=200 pairs) (-0.09, 0.15)

0%Strain between mitochondriaObserved 
Strain

Mean +/- STDEV (sample size)
(minimum, maximum)

Strain
Description
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Variability in strain magnitude is dependent on the initial length of the 

the axonal region 

To compare biomechanical continuity over a range of length scales, 

strains between all possible mitochondrial pairs in a single axon were 

calculated (n = 16 for both sample axons in Fig. 2). The strains for each 

segment were plotted against the initial length of the segment (Fig. 2I, J). 

Data from multiple experiments were then pooled to evaluate the length 

dependence of heterogeneity in strain. The measured strain between two 

mitochondria was plotted as a function of the initial distance separating them 

in the axon (Fig. 3A, cf. Fig. 2I, J). For both the unstretched and stretched 

groups, the lines of best fit through the data have slopes close to zero, (-3x10-

5 and -9x10-6, respectively). Consistent with stretch, however, the Y-intercept 

of the stretched group is larger than for the unstretched group (0.07 vs. 0.004) 

and the average strain reflects this as well (0.075 vs. 0.002). There appears 

to be larger variability in strain in shorter regions of the axon in stretched 

axons compared to unstretched axons (Fig. 3A). To estimate the length scale 

at which this phenomenon is significant, we statistically compared differences 

in the variability of strains using O’Brien’s method (Fig. 3B, C). This analysis 

revealed that variability was significantly greater in stretched axons for 

lengths less than ~20 µm. Above this length, the variability decreased 

dramatically, suggesting that local discrepancies, and therefore local material 

properties, were averaged out over longer length scales. Interestingly, there 
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also appears to be a length scale of ~10 µm at which this variability is 

maximized, and below which variability actually decreases again (Fig. 3C). 

Collectively, these results support a hypothesis that individual regions of the 

axon exhibit unique material properties in response to tensile loading and 

suggest that there is a characteristic feature length that contributes to this 

variability. 
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Fig. 3: Strain heterogeneity is increased at small length scales. Data from all 
instantaneous deflections were pooled and analyzed. (A) Strain in a segment 
between two mitochondria was plotted as a function of the initial length of the 
segment (cf. Fig. 2I-J). The average value for strain in stretched axons approaches 
the expected strain of 10% (0.1 on the Y-axis – heavy black line). (B) Variability of 
strains in (A) was calculated using O’Brien’s method. (C) Variability for five µm bin 
sizes as quantified by O’Brien’s method is greatest between 5 and 10 µm, and 
decreases dramatically for regions longer than 20 µm in length. While this same 
trend is noted in unstretched axons, the magnitude of the variability is much smaller. 
Using a two-tailed Student’s T-test, variability in stretched axons was shown to be 
statistically different from variability in unstretched axons for the bins incorporating 
data from regions of the axons of initial length, 5-10, 10-15 and 15-20 µm as 
indicated by *, ‡,and ● respectively. Not enough data was collected from regions of 
unstretched axons smaller than 5 µm to test for statistically significant differences 
from stretched axons. 
 

Phases II and III: Long-term remodeling in response  to strain  

Relaxation in stretched axons is rapid and localized 

In a subset of the stretched (n=6) and unstretched (n=6) axons 

analyzed above, the silicone was held at the stretched length and the 

positions of stationary mitochondria in the axon were monitored over 20 

minutes to assess additional cytoskeletal remodeling (Fig. 8B – schematic of 

stretch protocol). Sample results for one stretched and one unstretched axon 

are shown in Fig. 4A – C. Kymographs were used to track mitochondrial 

position over time (e.g., Fig. 4D, E). To calculate changes in strain during 

remodeling, the distance between a pair of mitochondria at any given time 

was compared to the distance between them at the beginning of the time 

lapse. In all of the stretched axons, no more than two regions of each axon 

developed large strains shortly after stretch (e.g., arrow, Fig. 4B, E). The 

deformation in these regions was then maintained, suggesting the realization 

of a new equilibrium configuration for these segments of the axon. In four of 
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the stretched axons, these regions attained high strains (30-150%) within a 

few minutes of stretch and maintained them with fluctuations of <25% for the 

remainder of the experiment. In the fifth axon, this region of high strain 

developed more slowly, reaching its peak of 75% approximately 12 minutes 

after stretch. In the last axon, a region of 75% strain developed quickly after 

stretch and was maintained for 18 minutes, at which point it became negative 

very briefly and then increased slowly to 240% over the course of 10 minutes. 

The latter complex response coincided with increased growth cone activity, 

the effects of which were likely superposed upon the response to the applied 

stretch. Other regions of the stretched axons showed relatively small strains 

(Fig. 4F). An interesting observation in one unstretched axon was consistent 

with observations in stretched axons; a highly motile cell deflected this axon 

during the course of the observation period, inducing, as with substrate-

stretched axons, one region of high axonal strain (70% magnitude). In the 

remaining unstretched axons, strain was more uniformly distributed (10%-

38%), and all regions of the axon experienced fluctuations in strain over time. 
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Fig. 4: Regions within stretched axons exhibit continued remodeling following stretch. 
(A, B) Sample images of unstretched (A) and stretched (B) axons in which 
mitochondrial position was monitored over 22 minutes. (B) shows the axon before 
stretch. (C – E) Kymographs were created by tracing along the axon at each time 
and extracting the position of mitochondria from pixel intensities. For reference, the 
positions of mitochondria in the axon shown in B before stretch are shown in C. 
Kymographs for mitochondrial movement in unstretched (D) and stretched (E) axons 
from (A, B). Strain in regions of unstretched (F) and stretched (G) axons, calculated 
from the positions of consecutive pairs of mitochondria. A particularly active region of 
the stretched axons (arrow) exhibited very large strains that were achieved very 
quickly and then stabilized (G). As with other axons, this region of large strain was 
between closely spaced mitochondria, while strains in the rest of the axon and in 
unstretched axons were all of smaller magnitude (F, G). 

 

Strain magnitude and variability during relaxation show a length 

dependence 

The length dependence of strain during relaxation was also analyzed, similar 

to the analysis performed for instantaneous strain (cf. Fig. 3). On average, 

including data from all time points, short segments of stretched axons showed 

larger positive and negative strains compared to regions of unstretched axons 

(Fig. 5A). Positive strains reflect regions of extension between mitochondria 
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and negative strains reflect regions of contraction. Based on analysis by 

O’Brien’s method, stretched axons also exhibited greater variability in strain 

during relaxation at small lengths (Fig. 5B).  

Strain magnitude and variability decrease over time after stretch 

To test the time dependence of cytoskeletal reorganization, successive four-

minute increments within the 20 minute period were analyzed for unstretched 

and stretched axons. During each four-minute period, strain and variability in 

strain were calculated from mitochondrial position to assess cytoskeletal 

mobility over a short time. The average strain during all four-minute time 

increments showed a length dependent heterogeneity, with strains and 

variability both larger in stretched axons than in unstretched axons. This 

suggests that on average, strains changed more rapidly in stretched axons. 

However, to evaluate the change in heterogeneity over time, three specific 

increments of four minutes, from 1-4 minutes, from 9-13 minutes and from 18-

22 minutes were compared (Fig. 5C, E). In both stretched and unstretched 

axons, the large strains seen at small lengths decreased over time, but the 

decrease was much greater and statistically significant in stretched axons 

compared to that seen in unstretched axons. Moreover, both the magnitude 

and variability in strain at small lengths in stretched axons decreased over 

time to levels well below that in unstretched axons (Fig. 5D, F), suggesting 

that the cytoskeleton of stretched axons has a reduced capability for 

remodeling following ~20 minutes of relaxation. This result raises the 
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possibility of a refractory period, during which the ability of the cytoskeleton to 

respond to mechanical perturbations may be compromised. 

               

5 15 25 35 45 55 65

Unstretched
Stretched
Unstretched
Stretched

B

C D

FE

Unstretched
Stretched
Unstretched
Stretched

A

0.8

0.6

0.4

0.2

0

- 0.2
10 20 30 40 50 600

0.05

0.04

0.03

0.02

0.01

0

0.06

10 20 30 40 50 600

0.05

0.04

0.03

0.02

0.01

0

0.06

10 20 30 40 50 600
Initial Length of Segment (Microns)

S
tr

ai
n

Average Strain During Relaxation 

Initial Length of Segment (Microns)

O
’B

rie
n 

N
um

be
r

Variability in Strain During Relaxation 

0.04

0.03

0.02

0.01

0

15 25 35 45 55 650
Initial Length of Segment (Microns)

O
’B

ri
en

 N
um

be
r

Variability in Unstretched Axons Over Time 
0.15

0.12

0.09

0.06

0.03

0

15 25 35 45 55 650
Initial Length of Segment (Microns)

S
tr

ai
n

Relaxation in Unstretched Axons

0.04

0.03

0.02

0.01

0

15 25 35 45 55 650
Initial Length of Segment (Microns)

O
’B

ri
en

 N
um

be
r

Variability in Stretched Axons Over Time 

0.15

0.12

0.09

0.06

0.03

0
15 25 35 45 55 650

Initial Length of Segment (Microns)

S
tr

ai
n

Relaxation in Stretched Axons

Beginning
Middle
End

Beginning
Middle
End

Beginning
Middle
End

Beginning
Middle
End

Beginning
Middle
End

Beginning
Middle
End

Beginning
Middle
End

Beginning
Middle
End

*

*

‡

‡

 

Fig. 5: Remodeling in axons following stretch is length- and time-dependent. As with 
axons analyzed for instantaneous strain, all pairs of mitochondria in axons were used 
to calculate strain during the 22 minute experimental period. (A) Average calculated 
strain for all mitochondrial pairs over all time points. Strain in a segment of an axon 
between two mitochondria was plotted as a function of the initial length of that 
segment. Positive and negative strains represent net elongation or contraction of the 
axon, respectively. (B) Variability in this data, quantified using O’Brien’s Method. (C – 
F) To evaluate the change in strain over time, strain was calculated using the change 
in position of mitochondria between 1 and 4 minutes of imaging (beginning), between 
9 and13 minutes (middle) and between 18 and 22 minutes (end). The average strain 
magnitude and variability are plotted for unstretched (C, D) and stretched (E, F) 
axons. A two-tailed student’s T-test was used to confirm that strain magnitude and 
variability decreased by a statistically significant amount in stretched axons over the 
course of the experiment. 

Mitochondrial correlation analysis suggests a less coherent 

cytoskeletal framework after stretch 

It has been hypothesized that mitochondrial movement is coordinated 

by a coherent microtubule framework (Miller and Sheetz 2006). To investigate 
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the coherence of the cytoskeleton in response to stretch, pairs of 

mitochondria were analyzed for correlations in their movement over time in a 

manner similar to that described in (Miller and Sheetz 2006). The change in 

the position of one mitochondrion during a time step was plotted as a function 

of the change in position of a second mitochondrion, and a linear regression 

was performed on the data for all time points in an experiment (e.g., Fig. 6A, 

B, corresponding to mitochondria in Fig. 4A – E; cf. (Miller and Sheetz 2006)). 

Both the slope and the goodness of fit (R2) for the line of best fit were used to 

assess the strength of the correlation between the two mitochondria. In both 

stretched and unstretched axons, best fit lines with a slope close to one (well 

correlated mitochondrial pair) had higher R2 values than lines with a slope far 

from one (poorly correlated mitochondria), suggesting a strong relationship 

between these independent measures of correlation (Fig. 6C). As shown in 

Table 2, the average slope of all mitochondrial pairs was roughly the same for 

both stretched and unstretched axons. A two-tailed Student’s t-test confirmed 

that the two groups were not significantly different. There was also no obvious 

relationship between the distance between the mitochondrial pairs and the R2 

value or the slope of the regression line. In unstretched axons, however, a 

larger proportion of the mitochondrial pairs were correlated with each other 

than in stretched axons where more pairs were uncorrelated (Fig. 6D). Of the 

mitochondrial pairs which were correlated with each other in unstretched 

axons, over half were within 25 µm of each other (Fig. 6E). These results 

suggest that within moderate length scales, there is reduced coherence of the 
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cytoskeleton in stretched axons compared to unstretched axons. It should be 

noted, though, that in our system, even within unstretched axons, most 

regions demonstrate a surprising lack of coherence. 
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Fig. 6: Stretched axons display reduced cytoskeletal cohesion. (A, B) To assess the 
possibility of a long range framework coupling mitochondria within the axon, 
mitochondrial pairs were analyzed for correlation in their movement over time. The 
deflection of one mitochondrion in an axon was plotted against the deflection of 
another for each time point, and a linear regression fit to the data. Sample data and 
lines of best fit are shown for (A) mitochondria 6 and 7 (correlated) and 7 and 8 
(poorly correlated) in the unstretched axon of Fig. 5 and (B) mitochondria 2 and 3 
(poorly correlated) and 3 and 4 (correlated) from the stretched axon in Fig. 4. (C) 
Correlation analysis of all pairs of mitochondria from all axons reveals that the slope 
of the best fit lines shows a strong positive relationship with the r2 values. (D) 
Mitochondria in unstretched axons exhibited more correlated deflections than those 
in stretched axons, in which many more were uncorrelated. (E) Cumulative 
histogram of the distance between correlated and uncorrelated mitochondrial pairs 
for stretched and unstretched axons. Rightward shift in curves corresponding to 
uncorrelated pairs in stretched axons indicate that fewer mitochondrial pairs showed 
coordination in their movement in stretched axons than in unstretched axons. 
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Discussion 

In order to investigate the instantaneous response and subsequent 

remodeling of rat sensory neurons to an applied tensile load, we employed a 

strategy of deforming a flexible culture substrate. This loading protocol is 

novel in its application to neuronal lengthening, offering the advantages of 

unconstrained movement of the growth cone as well as continued adhesion 

along the axon. We found that strain in the axon in response to loading and 

during subsequent remodeling was heterogeneously distributed along its 

length and showed large variability at lengths between 5 and 20 µm 

compared to unloaded controls. Based on this length dependent 

heterogeneity, we propose that there is a characteristic length scale over 

which the mechanical response of an axon to tensile loading is regulated. 

Coordinated movement of mitochondria tethered to the cytoskeleton further 

suggests that intracellular structural elements may be responsible for 

regulating this mechanical response. To the best of our knowledge this is the 

first study to demonstrate significant regional and temporal heterogeneity in 

the axon, but this result fits within a growing body of work supporting this 

unique characteristic of cytomechanics (Heidemann and Wirtz 2004). Overall, 

our results indicate that the axonal cytoskeleton is a dynamic structure that 

responds quickly and heterogeneously to an externally applied stretch. 
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Spatial and temporal heterogeneity in the biomechancial response to 

tensile loading 

While tracking mitochondrial position within the axon, we observed 

three distinct phases of cytoskeletal response to the stretch protocol (Fig. 5). 

The first phase, instantaneous response immediately following the initial 10% 

strain, was characterized by deformation due to the applied load. The second 

phase, early relaxation, spanned the initial ~14 minute period of sustained 

strain, and was marked by elevated cytoskeletal mobility.  The third phase, 

late relaxation, was characterized by a dramatic reduction of cytoskeletal 

mobility, and spanned the period between ~14 and ~22 minutes after the 

initial strain.  

Several results suggest a characteristic length scale within which the 

cytoskeleton may remodel. Unstretched axons displayed some cytoskeletal 

mobility, particularly at shorter length scales, but this mobility was small and 

relatively uniform in magnitude (Fig. 3C; 5C, D). In contrast, measured strain 

in stretched axons was considerably more heterogeneous during all three 

phases, with the greatest variability observed in regions of the axon between 

5 and 20 µm in initial length (Fig. 3C; 5C, D). Additionally, one to two regions 

within this length scale in each stretched axon experienced large strains 

during the early relaxation phase before settling to a new “equilibrium” length 

(Fig. 4). On the other hand, in regions of the axon longer than about 40 µm, 

instantaneous strains approached the expected 10%, suggesting that the 

local variations in strain at small lengths were averaged out over these 
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greater distances. The average whole axon strain for all stretched axons was 

slightly less than the expected 10%. This may be due to a number of factors. 

First, deviations of ±15o in the alignment of axons with the direction of the 

applied strain were allowed in all experiments (cf. Fig. 4B), resulting in axonal 

exposure to strains of slightly less than 10%. Additionally, the average could 

reflect minor extension and retraction of axons in response to stretch. Lastly, 

this discrepancy may be due to small inefficiencies in the transmission of 

strain from the substrate to regions within the axon as the result of adhesive 

slippage or slippage within the layers of the cytoskeleton. Examination of 

mechanisms underlying this minor but potentially important lack of fidelity in 

strain transmission, particularly in the context of the small number of local, 

highly dynamic cytoskeletal regions observed in stretched axons, offers an 

interesting avenue for future research.  

Our analysis of axonal coherence also supports the idea of a 

characteristic length scale. An intriguing study recently raised the possibility of 

a coherent microtubule framework, that couples the movement of 

mitochondria over relatively long distances in the axon (Miller and Sheetz 

2006). Though axonal adhesion in our mammalian model (Fig. 1C) is likely to 

differ from the avian model used previously, we comprehensively examined 

our data for the possibility of a similar long distance coupling between 

mitochondria. Even in unstretched axons, only one third of the mitochondrial 

pairs analyzed showed coordination in their movement over time. While this 

coordination is not inconsistent with a long distance axonal framework, these 
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mitochondria tended to be close together and thus support the idea of local 

regulation of cytoskeletal properties. In stretched axons, mitochondrial 

movement was less coordinated, suggesting that stretch disrupts any sort of 

local or global framework that could regulate cell shape or axonal transport. 

 

A sliding filament model of cytoskeletal remodeling 

While our results reflect outcomes of biomechanical testing, they have 

implications for the composition and biological function of the axon. The 

axonal cytoskeleton is a well-organized polymer scaffold able to bear and 

produce mechanical loads through a network of filamentous and connecting 

proteins. Models of axonal biomechanics must be consistent with the material 

properties of this dynamic cytoskeletal lattice. In developing such a model 

(Fig. 7, 8), we have considered two characteristics that govern this system. 

The first is that, given the large persistence lengths and high tensile elastic 

moduli of cytoskeletal filaments (Gittes et al. 1993; Kojima et al. 1994; 

Kreplak et al. 2005; Leterrier et al. 1996; Venier et al. 1994; Zeiger and 

Layton 2008), they most likely retain their structural integrity in response to a 

tensile load. While some polymerization and de-polymerization may occur, 

filaments are unlikely to fail following stretch. Consistent with this, then, the 

second characteristic is that the ancillary proteins that connect or cross-link 

the filaments are likely to be most affected by an applied load. These 

connecting proteins may be either static load-bearing cross-links or dynamic 

force-generating links such as molecular motors. We propose that the 
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dynamics and mobility of the cytoskeleton will be determined by the changing 

connectivity and composition of these cross-links. Under load, either from 

within or without, a filament in the axon will experience some reorganization 

of its connections to its neighboring filaments. This will expose the filament to 

new forces and, ultimately, move it to a new equilibrium position. Global 

axonal dynamics would then reflect the propagation of numerous such events 

through the rest of the cytoskeleton. Such a “sliding filament” model takes into 

account the cell biological, biochemical, and biomechanical literature as well 

as our observations of temporal changes in cytoskeletal mobility, spatial 

differences in deformation, and the characteristic length scale over which 

remodeling occurs. We hypothesize that the relative movement of 

cytoskeletal filaments within the axon mediates the response of an axon to 

strain, with each of the three phases of remodeling characterized by particular 

changes in the strength and types of connections between filaments. 

The immediate response of the axon to 10% substrate strain 

constitutes the first phase of remodeling. As the substrate is stretched, 

networks of filaments in the periphery of the axon deform in the direction of 

loading, which then necessitates deformation of the coupled filament network 

deeper within the axon. This pattern of deformation most likely occurs due to 

the movement of overlapping filaments with respect to each other, rather than 

to deformation of the filaments themselves and results in a change in the 

composition and connectivity of the cross-linking and motor proteins 

associated with the filament network. Local heterogeneity would then be 



 

 121 
 

governed by differences in local material properties (e.g., filament density or 

connectivity) or boundary conditions (e.g., sites of axonal adhesion). We 

cannot exclude the possibility that the initial, rapid changes in local material 

properties or cytoskeletal mobility result from polymerization or 

depolymerization of individual filaments but these mechanisms are less likely 

to occur during the relatively short duration of the loading. 
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Fig7. Proposed model of cytoskeletal mobility over time. (A) The substrate was 
stretched to 10% over the course of 4.5 minutes and then held at the stretched 
length while cytoskeletal position was monitored for 22 minutes. (B) Cytoskeletal 
mobility showed three distinct phases in response to the applied tensile load. After 
the initial deformation, cytoskeletal deformation and mobility remained high for 
approximately 14 minutes, after which it decreased to levels below those seen for 
unloaded controls. The eventual resolution of this decreased mobility remains to be 
elucidated.  (C) It is unclear what mechanism underlies this behavior but we have 
suggested that reorganization of the axonal cytoskeleton occurs through sliding of 
cytoskeletal filaments with respect to one another. In response to an applied load, 
the connectivity of cross-linking proteins stabilizing the cytoskeleton is changed 
allowing for increased filament mobility (phase 2). Filament mobility is then 
dramatically decreased, either through reinforcement or further reduction in 
crosslinking (phase 3).  These changes may occur either through passive or active 
mechanisms as described in the figure and discussion text. 

 

The second and third phases of the axonal response occur while the 

substrate strain is maintained at 10%. Increased magnitudes and variability of 

cytoskeletal mobility during the second phase may reflect passive 

redistribution of filaments enabled by changes in the density and localization 

of cross-links (i.e., viscoelastic creep in response to a constant load imposed 

by the substrate). These changes could result from sheared rigid cross-links 

or from a sudden reduction in the number of bound motor proteins that had 

been previously stabilizing the cytoskeletal network. Alternately, enhanced 

cytoskeletal mobility could reflect active remodeling by means of filament 

polymerization, targeted redistribution of cross-links, or local regulation of 

filament transport by molecular motors. In light of the short duration of 

dramatic remodeling, de novo protein synthesis within the axon seems less 

likely but cannot be entirely discounted. 

The third phase of axonal remodeling revealed a surprising decrease 

in cytoskeletal mobility to levels below that of unstretched controls. This 

refractory period could be due to depleted metabolic or force-production 
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capabilities required for reorganization. Under the first scenario, ATP-

dependent processes such as transport or polymerization may be temporarily 

blocked (Sakama et al. 2003; Takeuchi et al. 2005); for the latter, the reduced 

number of bound (or activated) motor proteins may lack the ability to 

translocate filaments through a viscous axoplasm (Hill et al. 2004; Holzwarth 

et al. 2002; Mallik et al. 2004), serving to effectively decouple filaments from 

the global structural network(Shah et al. 2002). Conversely, it is conceivable 

that the cell could have reinforced its cytoskeleton through an augmentation 

of cross-link density in order to limit further plasticity or possible injury (Barash 

et al. 2002; Shah et al. 2002). 

Microtubule (MT)
Actin-Myosin Network Mitochondria

Axonal Membrane
Focal Adhesion Cross-Linking Proteins

Neurofilaments

Before Stretch After Stretch

Extracellular
Cortex

Axonal Core

 

Fig. 8: Biological components and organization of the axonal cytoskeleton. The 
axonal cytoskeleton is composed of a cortical region containing a contractile actin-
myosin network to which adhesion sites are anchored.   Initial deformation in the 
substrate is likely transmitted through these adhesion sites into the actin cortex and 
then propagated into the axonal core. The core is composed of microtubules and 
neurofilaments connected by “rigid” and “dynamic” cross-linking proteins. 
 

Potential cytoskeletal contributors to remodeling 

Considerable biological and biochemical literature suggests that 

filaments and crosslinks within our generalized siding filament model may be 

mapped to specific proteins (Fig. 8). Mitochondria are transported along 
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axonal microtubules by kinesin and dynein motors, and transition to short-

range movement upon actin filaments via myosin motors prior to docking 

(Morris and Hollenbeck 1995; Ruthel and Hollenbeck 2003). A sub-population 

of mitochondria is also anchored to neurofilaments (Hollenbeck 1996; 

Leterrier et al. 1996; Wagner et al. 2003), which are the most abundant 

cytoskeletal components in the neuron (Lee and Cleveland 1996). 

Additionally, microtubules, microfilaments, and intermediate filaments have 

each been reported to interact with each other through a variety of 

intermediaries detailed below. Consequently, mitochondrial deflection is likely 

to represent the deformation of any or all of these cytoskeletal components. 

Despite this complexity, our observations in combination with previous studies 

allow us to raise testable hypotheses regarding the transmission of strain 

from a substrate into the axon. 

The initial propagation of strain from the substrate into the cell may be 

attributed to focal adhesions that we observe along the length of the axon. 

Actin filaments in the axonal cortex, cross-linked by myosin motors, are 

anchored to these sites of adhesion. (Burridge and Fath 1989; Burridge et al. 

1987) Heterogeneity of strain at this interface may be due either to an uneven 

distribution of adhesion sites along the axon or to local variability in the 

density, and thus contractility, of the actin-myosin network. Attachment of 

focal adhesions to the extracellular matrix also induces actin recruitment and 

polymerization, and increases myosin activity (Hildebrand et al. 1996; Ridley 

and Hall 1992). Consequently, adhesion and contractility may be coupled, 
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with regions of enhanced contractility more likely to resist an applied tensile 

load.  

From actin-myosin networks, strain would then be transmitted to 

microtubules and neurofilaments within the axonal core. Actin has been 

reported to associate with neuronal microtubules through dynein motors 

(Ahmad et al. 2000; Baas et al. 2006; Hasaka et al. 2004; Pfister 1999) and 

through a variety of cross-linking proteins such as doublecortin, MACF, 

MAP1A/B, shortstop, or pod-1 (the latter two in Drosophila) (Applewhite et al.; 

Fujii et al. 1993; Leung et al. 1999; Rothenberg et al. 2003; Sanchez-Soriano 

et al. 2009; Tint et al. 2009; Tsukada et al. 2005). Additionally, the actin 

cytoskeletal network interacts with neurofilaments, directly or through spectrin 

and myosin (Frappier et al. 1991; Hao et al. 1997; Jung et al. 2004; Macioce 

et al. 1999; Rao et al. 2002). Within the core of the axon, microtubules 

associate with other microtubules and with neurofilaments through dynein and 

kinesin motors (Ahmad et al. 1998; He et al. 2005; Hirokawa 1982; Motil et al. 

2006; Myers and Baas 2007; Nadar et al. 2008; Pfister 1999; Shea 2000), 

while neurofilaments form cross-bridges with each other through extended 

sidearm domains (Garcia et al. 2003; Hirokawa 1982; Rao et al. 2002).  

Our observed length scales of axonal remodeling suggest that there 

are small dynamic regions of heterogeneous material properties in the axon. 

In the context of the proposed sliding filament model, the length of a given 

filament is of critical importance. Filament length not only dictates filament 

mobility through the viscous axoplasm, but is also likely to influence crosslink 
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or motor number; shorter filaments are likely to be more mobile, as they will 

experience less drag, and are less likely to be interconnected into a broader 

scaffold. This logic is consistent with previously reported observations of 

microtubule and neurofilament mobility. Microtubules vary in length with some 

ranging up to hundreds of µm in mature axons in vivo (Burton 1987), but 

primarily shorter microtubules have been reported to be more mobile (Ahmad 

et al. 1998; Vallee and Bloom 1991; Yu and Baas 1994). These shorter 

microtubules are also believed to be of central importance to axonal growth 

and branching (Myers et al. 2006; Yu et al. 1994), and so may be reasonable 

candidates for influencing remodeling within the axon. Similarly, 

neurofilaments form a dense, interconnected network in mature regions of the 

axon (Barry et al. 2007; Garcia et al. 2003; Hirokawa 1982; Lee and 

Cleveland 1996; Leterrier and Eyer 1987; Leterrier et al. 1996; Rammensee 

et al. 2007), but filaments observed to translocate along axons appear to be 

shorter in length (Shea 2000; Wang and Brown 2001; Yabe et al. 1999).   

Conclusions 

Collectively, our work suggests a conceptual model for the response of 

the axonal cytoskeleton to mechanical loading. We also provide several 

testable hypotheses for identifying specific cytoskeletal elements involved in 

such a model, including the interesting possibility of a role for motor proteins 

in modulating the local mobility and organization of cytoskeletal filaments 

within the axon. These hypotheses may be readily dissected through a 

combination of pharmacological, genetic, and fluorescent labeling methods.  
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Previous work examining the effect of mechanical forces on neurite 

development and growth rate suggests that the axon behaves as a 

viscoelastic material with homogenous material properties. We have, in 

contrast, demonstrated that at small length scales, the axon exhibits 

significant localized heterogeneity in its response to a uniform load. If this 

heterogeneity is coupled to local regulation of axonal processes, then an 

applied load could cause a dramatic shift in both local and global functioning 

of the axon. In particular, these variations may serve as mechanical signals 

that play a role in local regulation of axonal processes such as adhesion, 

transport, cytoskeletal reorganization or protein recruitment and docking to 

the cytoskeleton. Identification of mechanisms regulating these processes 

would be of great benefit for understanding neuronal development as well as 

designing more effective strategies for neuroregeneration and 

neuroprotection.  
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Chapter 5: Conclusions and future work 

Chapter Summaries: 

Summary: Chapter 2 

In this chapter we developed an algorithm that automates the 

generation of kymographs from time lapse movies of the axons of cultured 

neurons. Over long capture times, axons can change orientation and 

geometry within the field of view, and these changes confound traditional 

methods of building a kymograph. Our algorithm addressed these issues 

through a combination of robust axon alignment and detection strategies. We 

demonstrated that this algorithm increased the accuracy of kymographs and 

reduced the user time and effort in building them.  Additionally, we showed 

that our algorithm is resistant to noise in images as well as to error in user 

defined parameters. This offers a new and powerful tool for use in the 

analysis of axonal transport and should serve as a foundation upon which 

more sophisticated image processing applications can be built towards 

answering a myriad of other questions related to intracellular trafficking and 

signaling. 

Summary: Chapter 3 

The data presented in this chapter provide clear evidence for a novel 

mode of transport for actin densities in the axon. We showed that short bursts 

of small but significant movement are mediated by both actin and 
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microtubules to produce a net anterograde displacement of actin densities at 

speeds commensurate with slow component transport rates. These actin 

densities are filamentous in nature, and their emergence appears to be due to 

bundling and polymerization of filaments, rather than de novo translation. 

They are moved bidirectionally by myosin motors, presumably walking along 

the actin cortex, and our results suggest the possibility of a directional bias in 

the orientation of actin filaments there. A significant fraction of the 

anterograde movement of these actin densities appears to be as passive 

cargoes piggy-backing on microtubules being pushed down the axon by 

dynein. Intriguingly, the actin and microtubule cytoskeletons each seem to 

serve as a brake on movement mediated by the other. Finally, these densities 

seem to have a number of biological functions, as they are associated with 

filopodial protrusion and co-localize with mitochondria and the focal adhesion 

complex protein talin. This work represents a major step forward in 

elucidating a novel mechanism for the transport of actin and has broad 

implications for the movement of other soluble cargoes in the axon. 

Additionally, our work suggests a more prominent role for the dynamic 

reorganization of actin in regulating the axon’s internal environment.  

 

Summary: Chapter 4  

In chapter 4 the effect of an applied tensile load on the axonal 

cytoskeleton was examined. Previous work investigating the effect of 

mechanical forces on neurite development and growth rate suggests that the 
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axon behaves as a viscoelastic material with homogenous material 

properties. In this chapter, however, we demonstrated that at small length 

scales, the axon exhibits significant localized heterogeneity in its response to 

a uniform load. This is true for both the immediate response to an applied 

stretch as well as to changes in the cytoskeleton over time after stretch. 

Furthermore, our results suggest a conceptual model for the response of the 

axonal cytoskeleton to mechanical loading and we provided several testable 

hypotheses for identifying specific cytoskeletal elements involved in such a 

model.  Finally, if this heterogeneity is coupled to local regulation of axonal 

processes, then an applied load could cause a dramatic shift in both local and 

global functioning of the axon. In particular, these variations may serve as 

mechanical signals that play a role in local regulation of axonal processes 

such as adhesion, transport, cytoskeletal reorganization or protein recruitment 

and docking to the cytoskeleton. Identification of mechanisms regulating 

these processes would be of great benefit for understanding neuronal 

development as well as designing more effective strategies for 

neuroregeneration and neuroprotection. 

 
 

Overall Conclusions: 

An aim of this work was to expand on previous studies which have 

demonstrated numerous effects of mechanical loading on axonal physiology 

and morphology. In particular, we wanted to understand the role of the 

cytoskeleton during normal axonal outgrowth as well as in the response of the 
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axon to an applied tensile load. In this dissertation we have described our 

discovery of a novel mechanism for the axonal transport of actin that depends 

on an intimate and dynamic connection between the actin and microtubule 

cytoskeletons. Additionally, we have shown that the axon behaves as a series 

of linked independent functional units in response to stretch, rather than as a 

viscoelastic continuum. Each of these studies contributes significantly to the 

field of knowledge, but taken together, they represent a major step forward in 

neuronal cell biology and our understanding of the interactions within and 

between the actin and microtubule cytoskeletons in the axon. Further, this 

work provides a framework for future efforts to understand axonal physiology 

during growth and development and for future therapeutic approaches to 

regeneration of peripheral nerves. 

These studies also represent the fundamental importance of 

technology development to the future of basic research. Only because of the 

enormous amount of data analyzed in chapter 3 were we able to make new 

observations about slow axonal transport. Previously it was not feasible to 

collect and analyze data with the temporal resolution and breadth as we have 

done. By automating the processing of time lapse movies using our algorithm 

and by rigorously quantifying the movement of actin densities, we were able 

to support a truly novel model of transport in the axon. Additionally, the 

development of a cell stretching device that allowed the imaging of live 

fluorescently labeled cells at high magnification allowed us to rigorously 

quantify changes in the position of fiduciary cytoskeletal markers and produce 
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the first evidence that the axon does not behave as a viscoelastic continuum 

in its response to stretch. 

Broadly, our results demonstrate that the axon is not simply a passive 

conduit connecting the cell body to the synapse, but rather is a dynamic 

cellular antenna that must navigate a complex mechanical world. Our results 

provide an outline for the continued study of the mechanisms by which the 

axon exerts mechanical forces on the environment during growth, and how 

mechanical changes in that extracellular environment are interpreted by the 

axon. We have established 1) that an applied tensile load is transmitted into 

the axon through adhesion, 2) that polymerized actin densities vary in their 

lifetime and mobility, 3) interact dynamically with microtubules, 4) can be co-

localized with focal adhesions, and 5) are distributed heterogeneously along 

the axon. These results suggest that the actin cytoskeleton is dynamic, 

heterogeneous and integrated with both the intracellular cytoskeleton and the 

extracellular substrate. For all of these reasons, we suggest it as a primary 

mechano-sensing apparatus, which transmits substrate strain into the axon. 

Our hypothesis for future work is that changes in the connectivity within and 

between the actin and microtubule arrays are likely to signal the dynamic 

reorganization which we observed in chapter 4. Specifically we think that an 

extracellular strain will be transmitted through focal adhesions into the actin 

cortex. This will result in changes to the integrity and contractility of that 

network, but will also affect changes in the organization of the microtubule 

array in the core of the axon. 
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Future efforts should focus on performing an analysis of the 

connectivity within the actin cortex and the microtubule arrays in the core of 

the axon, as well as between actin and microtubules during and after loading. 

The technology to carry out these studies and analyze the results has been 

developed, as described in this work. Experimentally, individual cytoskeletal 

components will need to be fluorescently labeled in the axons which will 

subsequently be stretched. Ideally, multiple components will each be labeled 

in a different color so that the displacements of each can be monitored over 

time in the same axon. This will allow the calculation of local displacement for 

each component, but also will allow the quantification of the transmission of 

strain from the substrate, to adhesion sites, into the actin cortex and finally 

into the microtubule core of the axon. What remains is to identify appropriate 

fluorescent labels, and in fact a number of commercially available dyes exist 

and a number of researchers have developed fluorescently tagged fusion 

proteins for cytoskeletal components. These next steps will provide unrivaled 

insight into axonal physiology, growth, mechanical interaction with the 

extracellular environment and will complete the foundational work needed to 

develop truly extraordinary neuroregenerative therapeutic capabilities. 
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Appendices  
 

Supplementary figures for chapter 3 
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Figure S1: Cumulative histograms showing the distribution of transport parameters 
for particles in Lifeact, maxGFP and GFP-actin expressing axons. The velocity, 
duration, and distance traveled by a particle were measured in axons expressing one 
of the three fluorescent constructs. Because the distributions were broad and non-
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normal, a Kolmogorov Smirnov test was used to test for significant differences 
between groups. The results of this analysis are summarized in the tables of figure 2. 
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Figure S2: Cumulative histograms showing the distribution of transport parameters 
for particles in axons treated with either nocodazole or EHNA. The velocity, duration, 
and distance traveled by a particle were measured in axons expressing GFP-actin. 
Statistically significant differences are summarized in the table of Figure 4. 
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Figure S3: Cumulative histograms showing the distribution of transport parameters 
for particles in axons treated with either latrunculin or BDM. The velocity, duration, 
and distance traveled by a particle were measured in axons expressing GFP-actin. 
Statistically significant differences are summarized in the table of Figure 4. 
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Figure S4: Changes particle direction over time. (A) All of the drugs decreased the 
total number of tracks over time, although latrunculin showed a slight recovery during 
the last 12-20 minutes of imaging. (B) Run direction as a percentage of the total 
number of runs in a given time-lapse calculated for the middle time phase (6-12 
minutes of drug exposure). (C-F) Track direction as a percentage of the total number 
of tracks for each of the three temporal phases of drug exposure. 
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Supplementary tables for chapter 3: 

 

Table S1: Comparison of number and direction of tracks for all groups.  

2.33±0.6324.44±15.3115.313±10.81221.06±10.0547.81±27.4560.81±31.26Actin-GFP

2±0.3418.96±8.3922.08±10.3619.04±8.5246.4±18.2960.08±19.77Lifeact-GFP

2.4±0.7922.25±9.439.25±7.9314±8.8347.77±16.1545.5±24.23BDM 20 min

2.12±0.4519.86±9.8219.71±14.5518.57±10.7448.57±27.358.14±30.75BDM 12 min

2.28±0.6127.13±15.5417.63±11.4630.38±15.6563.5±31.2375.13±40.13BDM 6 min

2.48±0.1813.67±7.376.33±3.2112.67±4.7326.33±16.1732.67±15.14Latrunculin 20 min

2.29±0.487.33±5.392.83±3.768.5±7.0615.83±13.9618.67±14.9Latrunculin 12 min

2.21±0.9516.5±3.734±3.4116.17±5.1229.67±7.1536.67±9.07Latrunculin 6 min

1.79±0.3614.6±7.616.7±6.8215.1±5.7441.7±15.6146.4±16.37EHNA 20 min

1.66±0.2917.8±7.2713.9±7.6415.3±5.141.7±15.5447±17.31EHNA 12 min

1.65±0.2422.3±10.8120.2±10.3621.3±6.5556.6±19.3963.8±19.54EHNA 6 min

2.23±0.5110.75±6.344.63±3.8912.75±10.2524.63±16.3428.13±17.6Nocodazole 20 min

1.98±0.5315.33±5.455.33±5.0710.11±6.4927.67±11.6730.78±11.8Nocodazole 12 min

1.91±0.3517.67±9.679±5.113.89±5.7334.78±15.8340.56±18.05Nocodazole 6 min

1.75±0.578.19±7.198.44±5.998±4.7213.25±10.924.63±15.02GFP

Runs per 
Track

Anterograde
Tracks

Paused 
Tracks

Retrograde 
Tracks

New
Tracks

Number of 
Tracks

2.33±0.6324.44±15.3115.313±10.81221.06±10.0547.81±27.4560.81±31.26Actin-GFP

2±0.3418.96±8.3922.08±10.3619.04±8.5246.4±18.2960.08±19.77Lifeact-GFP

2.4±0.7922.25±9.439.25±7.9314±8.8347.77±16.1545.5±24.23BDM 20 min

2.12±0.4519.86±9.8219.71±14.5518.57±10.7448.57±27.358.14±30.75BDM 12 min

2.28±0.6127.13±15.5417.63±11.4630.38±15.6563.5±31.2375.13±40.13BDM 6 min

2.48±0.1813.67±7.376.33±3.2112.67±4.7326.33±16.1732.67±15.14Latrunculin 20 min

2.29±0.487.33±5.392.83±3.768.5±7.0615.83±13.9618.67±14.9Latrunculin 12 min

2.21±0.9516.5±3.734±3.4116.17±5.1229.67±7.1536.67±9.07Latrunculin 6 min

1.79±0.3614.6±7.616.7±6.8215.1±5.7441.7±15.6146.4±16.37EHNA 20 min

1.66±0.2917.8±7.2713.9±7.6415.3±5.141.7±15.5447±17.31EHNA 12 min

1.65±0.2422.3±10.8120.2±10.3621.3±6.5556.6±19.3963.8±19.54EHNA 6 min

2.23±0.5110.75±6.344.63±3.8912.75±10.2524.63±16.3428.13±17.6Nocodazole 20 min

1.98±0.5315.33±5.455.33±5.0710.11±6.4927.67±11.6730.78±11.8Nocodazole 12 min

1.91±0.3517.67±9.679±5.113.89±5.7334.78±15.8340.56±18.05Nocodazole 6 min

1.75±0.578.19±7.198.44±5.998±4.7213.25±10.924.63±15.02GFP
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Track
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New
Tracks

Number of 
Tracks
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Table S2: Comparison of number and direction of runs for all groups. 

39.31±20.7256.31±26.2438.63±17.46Actin-GFP

23.6±13.3452.16±16.8724.24±10.79Lifeact-GFP

37.25±26.3454.25±40.1928.25±27.93BDM 22 min

31.29±19.3562.57±38.6631.71±19.98BDM 12 min

42.13±27.5583.63±60.5151.63±28.03BDM 6 min

24.67±7.6434.67±18.7220.33±5.13Latrunculin 22 min

11.83±11.2517.33±14.7212.67±11.11Latrunculin 12 min

22.67±11.9932.67±6.2823±12.79Latrunculin 6 min

18±8.7644.7±15.5919.4±7.44EHNA 22 min

18.8±8.5740.9±16.3817.5±6.65EHNA 12 min

24.8±11.3156.1±16.6423.8±9.58EHNA 6 min

16.75±12.6128.25±20.6918.5±12.68Nocodazole 22 min

18.56±13.9328.33±11.5514±8.15Nocodazole 12 min

22.56±16.6537.78±17.5319.89±12.24Nocodazole 6 min

7.69±8.3726.31±16.2810.5±6.91GFP

Number
Anterograde

Runs

Number
Paused
Runs

Number
Retrograde

Runs

39.31±20.7256.31±26.2438.63±17.46Actin-GFP

23.6±13.3452.16±16.8724.24±10.79Lifeact-GFP

37.25±26.3454.25±40.1928.25±27.93BDM 22 min

31.29±19.3562.57±38.6631.71±19.98BDM 12 min

42.13±27.5583.63±60.5151.63±28.03BDM 6 min

24.67±7.6434.67±18.7220.33±5.13Latrunculin 22 min

11.83±11.2517.33±14.7212.67±11.11Latrunculin 12 min

22.67±11.9932.67±6.2823±12.79Latrunculin 6 min

18±8.7644.7±15.5919.4±7.44EHNA 22 min

18.8±8.5740.9±16.3817.5±6.65EHNA 12 min

24.8±11.3156.1±16.6423.8±9.58EHNA 6 min

16.75±12.6128.25±20.6918.5±12.68Nocodazole 22 min

18.56±13.9328.33±11.5514±8.15Nocodazole 12 min

22.56±16.6537.78±17.5319.89±12.24Nocodazole 6 min

7.69±8.3726.31±16.2810.5±6.91GFP

Number
Anterograde

Runs

Number
Paused
Runs

Number
Retrograde

Runs
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