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1. Introduction

Consider a stochastic dynamic programming model (also known as a Markov decision
process (MDP), see Arapostathis et al. 1993, Bertsekas 1995, Puterman 1994), in the
setting where only sample paths of state transition sequences are available, e.g., when
it is impractical to explicitly specify the transition probabilities, but the underlying
system can be readily simulated. This is often the case when the system of interest is
large and complex, and must therefore be modeled by a stochastic simulation model.
One drawback of using sample path estimation is the relatively slow convergence rate
for estimation of performance measures (e.g., the value, or cost-to-go, function), which
is generally on the order of O(N−0.5), where N is the number of sample paths. The
focus of this paper is the problem of finding an optimal policy, and we exploit the fact
that the policy search involves ordinal comparisons, rather than absolute estimation.
In practice, the main idea of this approach is to compare relative orders of performance
measures in finding the best action as quickly as possible rather than wasting effort
in getting a more precise absolute estimate of the value function associated with each
possible action. Under appropriate conditions, we show that the probability of selecting
suboptimal actions is bounded by a quantity that decays to zero at an exponential rate.

The overriding purpose of our work is to provide a rigorous theoretical foundation for
the sample path approach in finding good policies in stochastic dynamic programming
problems. The convergence results obtained here are completely new to this setting.
To put our results in some perspective, we touch on the most closely related work. A
type of exponential (geometric) convergence rate is well known in the traditional MDP
framework (e.g., Puterman 1994), where the convergence is with respect to the horizon
length for the value iteration procedure in infinite horizon problems with explicitly
known transition probabilities. Our finite action setting is included in the book of
Bertsekas and Tsitsiklis (1996), where the solution approach goes under the name
of neuro-dynamic programming, but the focus there is on approximating the value
function, and sample path optimal policies are not analyzed. Our results buttress
the literature on ordinal optimization see Ho et al. (1992, 2000), which focuses on the
efficiency of ordinal comparisons rather than absolute estimation. In particular, the ex-
ponential convergence rate for static stochastic optimization problems is established in
Dai (1996) and Dai and Chen (1997). Also, somewhat in the same spirit as our approach
is the work of Robinson (1996) and Gürkan, Özge, and Robinson (1999), who consider
sample path solution to stochastic variational inequalities, and establish conditions
under which the sample path solution converges to the true solution; however, their
setting is quite different from ours, in that we consider a dynamic model involving
sequential decision making under uncertainty, and we focus on actually quantifying
the error incurred in utilizing sample path estimates, going beyond just establishing
convergence.

The rest of the paper is organized as follows. Section 2 defines the problem setting.
Section 3 establishes the theoretical results on the exponentially decaying probability
error bounds for the basic finite horizon discounted cost problems. Section 4 briefly
discusses some easy extensions, and the Appendix contain the detailed proof of one of
the more technical lemmas.

1



2. Problem Setting

In this section, we formulate the basic problem of minimizing total expected dis-
counted cost in a setting where the state space and action space are finite, albeit
possibly non-stationary. Let {Xk, k = 1, 2, ...} denote a Markov decision process with
finite state space S (|S| > 1), where X1 is the starting state. Let T ≥ 2 be the time
horizon, or number of periods (also known as stages), Sk ⊆ S be the state space for
the kth period, and Ak(x), x ∈ Sk, be the (finite) set of feasible actions in state x and
period k. At stage k in state x, the decision maker chooses an action a ∈ Ak(x); as a
result the following occur:

(i) an immediate (deterministic) cost ck(x, a) ≥ 0 is accrued, and

(ii) the process moves to a state x′ ∈ Sk+1 with transition probability pk(x′|x, a),
where pk(x′|x, a) ≥ 0 and

∑
x′∈Sk+1

pk(x′|x, a) = 1.

The objective is to find a sequence of decision rules {µk(·)} comprising a policy µ =
{µk} that minimizes total expected discounted cost given by

E

[
T∑

k=1

αk−1ck(Xk, Ak)

]
, (1)

where Ak is the action taken in period k — which would be µk(Xk) under policy µ —
and α ∈ (0, 1) is the (constant) discount factor. Here Xk+1 depends on both Xk and
Ak, i.e., given Xk = x and Ak = a, we have

Xk+1(x, a) ∼ {pk(·|x, a)}, (2)

but such dependence will generally be suppressed for the sake of simplicity. Through-
out, we assume a fixed initial state X1 = x1, but this can easily be generalized to
the setting where the initial state is a random variable with an associated probability
distribution.

Define the optimal cost-to-go (or value) function from stage k by

Jk(x) = min
µ∈U

E

[
T∑

i=k

αi−kci(Xi, µi(Xi))

∣∣∣∣∣Xk = x

]
, ∀x ∈ Sk, k = 1, ..., T, (3)

where U denotes the set of all policies. The value of the MDP is given by J1(x1),
and an optimal policy µ∗ — defined as any policy that minimizes (1) — satisfies the
following set of equations:

µ∗
k(x) ∈ arg min

a∈Ak(x)
{ck(x, a) + αE [Jk+1(Xk+1(x, a))]}, k = 1, 2, ..., T, (4)

where the expectation is taken with respect to the next state Xn+1, which is a function
of the current state x and action a, and we follow the convention that JT+1(·) = 0.

It will be convenient to introduce the Q-factors defined by the expectation on the
right-hand side (e.g., Bertsekas 1995):

Qk(x, a) = ck(x, a) + αE [Jk+1(Xk+1(x, a))] , k = 1, 2, ..., T, (5)
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representing the expected cost of taking action a from state Xk = x in period k, and
then following the optimal policy thereafter. In particular,

QT (x, a) = cT (x, a). (6)

Thus, we have
Jk(x) = min

a∈Ak(x)
Qk(x, a).

For finite horizon dynamic programming with finite space, backward induction can
be used via Equation (3) to obtain the optimal value functions {Jk(x), x ∈ Sk, k =
1, 2, ...., T} and a corresponding optimal policy satisfying (4). For the infinite horizon
case, value iteration, policy iteration, or variants on these are used to solve the sta-
tionary version of (3) when applicable. When the transition probabilities are explicitly
known, these procedures can sometimes be carried out in closed form or by using
straightforward numerical procedures to calculate the necessary expectations.

In our setting, based on sample paths of the MDP sequence X1, X2, ... for a given
policy µ, the expectations in (1), (3), or (4), are estimated by taking sample means.
By a sample path optimal policy, we mean a policy (possibly only partially specified, if
not all states are visited in the sample paths) that optimizes the sample mean of the
objective function given in (1). (This is not to be confused with using a single “long”
sample path to estimate a stationary optimal policy for infinite horizon problems.) This
will be a function of both the sample path length and the number of sample paths. For
the finite horizon setting, the sample path length will be equal to the number of periods
T , whereas in the infinite horizon case, the optimal policy is approximated by a finite
horizon sample path optimal policy. A direct implementation for using sample paths
would be to take a “large” number of samples for each value that must be estimated,
thus in essence reducing the problem to the traditional setting. In practice, taking a
large number of samples may be unnecessarily wasteful, especially when the ultimate
objective is to find the optimal policy, not necessarily to precisely estimate the optimal
value functions for all states. The underlying philosophy is that one may obtain good
policies through ordinal comparison even while the estimate of the value function itself
is not that accurate.

3. Sample Path Probability Error Bounds

We now derive probability error bounds for the convergence of sample path optimal
policies to a true optimal policy. We focus on searching for the optimal action in the
first period, since optimal actions for subsequent periods can be obtained in the same
manner. Write the feasible action set for the initial period starting in state x1 as

A1(x1) = {a1, a2, ..., am}.

The Q-factor of interest for the first period, as defined by (5), is

Q1(x, a) = c1(x, a) + αE [J2(X2(x, a))] ,

where J2 is the cost-to-go function defined by (3) with horizon T −1. Since throughout
we are focusing on the first period with initial state X1 = x1, we will simplify notation
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by dropping explicit display of the dependence on the period and initial state by
defining the unsubscripted Q-factor:

Q(a) = Q1(x1, a).

Without loss of generality, we assume

Q(a1) < Q(a2) ≤ . . . ≤ Q(am),

i.e., µ∗
1(x1) = a1. The case with ties for the best can also be handled in exactly the

same way; see Remark 3.2 following Theorem 3.1.
The procedure to estimate the optimal action from a given state in the setting of

this section uses sample trees. Specifically, for state x1, for each action al ∈ A1(x1),
n independent sample trees are generated. Each tree begins by taking action al in
period 1, and then sampling all possible actions in subsequent states visited. Since
the state space is finite, there may be common states visited between trees and also
within trees. We keep the tree structure by sampling from each node separately and
independently according to (2), so there will be no “recombining” branches, even if the
same state were reached at different nodes of the tree. To be more specific, a sample
tree is generated as follows for initial period action al:

(i) In period 1, generate one next (period 2) state sample (node) according to
p1(·|x1, al).

(ii) In period 2, generate a next (period 3) state sample (node) according to p2(·|x, a),
for each feasible action a ∈ A2(x), where x is the state generated in step (i).

(iii) Starting from each state x visited in period k of the tree (k = 3, . . . , T − 1),
generate a next (period k+1) state sample (node) according to pk(·|x, a) for each
feasible action a ∈ Ak(x).

As mentioned earlier, all sampling is done independently of other trees and other nodes
in the same tree; however, correlation between sampling of different actions from the
same node in a tree is allowed. Let S(l)

k ⊆ Sk, k = 2, . . . , T, denote the set of states
actually visited in period k over all n sample trees initiated with action al. An example
for n=3 is shown in Figure 1. In this example, even if x5 = x6, i.e., the state reached is
the same, the nodes themselves remain distinct, in that separate independent samples
would be generated from each for each possible action in A3(x5) = A3(x6).

Sample path estimates for the Q-factors and cost-to-go functions are obtained via
backward induction as follows:

Q̂
(l)
T (x, a) = cT (x, a), x ∈ S(l)

T , (7)

µ̂
(l)
k (x) ∈ arg min

a∈Ak(x)
Q̂

(l)
k (x, a), x ∈ S(l)

k , k = 2, . . . , T, (8)

Ĵ
(l)
k (x) = min

a∈Ak(x)
Q̂

(l)
k (x, a) = Q̂

(l)
k (x, µ̂

(l)
k (x)), x ∈ S(l)

k , k = 2, . . . , T, (9)

Q̂
(l)
k (x, a) = ck(x, a) + |N (l)

k+1(x, a)|−1α
∑

y∈N (l)
k+1(x,a)

Ĵ
(l)
k+1(y), x ∈ S(l)

k , k=2, . . . , T − 1,(10)

where N (l)
k+1(x, a) is the multi-set (i.e., includes states repeated if sampled more than

once) of states reached in period k + 1 from state x with action a in period k (k =
1, . . . , T − 1).
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′
4, a
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5}, A2(x3) = {a′

6, a
′
7},

S(l)
2 = {x2, x3, x4}, S(l)

3 = {x5, x6, . . . , x11}.

Figure 1: Example of simulated trees for n=3.

Similar to the unsubscripted initial period, initial state, Q-factors defined earlier,
we define the following corresponding tree-based estimator:

Q̂(al) = c1(x1, al) +
1
n

α
∑

y∈N (al)

Ĵ
(l)
2 (y),

where we have defined N (al) = N (l)
2 (x1, al) and |N (al)| = n. We then estimate the

optimal first-period action in the natural way:

â1(n) = arg min
al∈A1(x1)

{Q̂(al)}. (11)

Averaging over N (l)
k+1(x, a) in (10) is needed to ensure consistency in defining decision

rules via (8), since the same state can be reached more than once in sampling, on the
same tree or on different trees. If all n trees for a given al are distinct with no common
states in any period beyond the initial state, so |N (l)

k+1(x, a)| = 1 for k > 1, then the
DP algorithm simply corresponds to performing (deterministic) backward induction
individually on each tree.

Figure 2 shows a simple example, which we use to illustrate how Equations (7)-(11)
are applied and why the averaging is necessary. There are two trees (n=2), and both
reach the same state x2 in period 2, hence the multi-set N (al) = {x2, x2}. Assume
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N2(x1, al) = {x2, x2},N3(x2, a
′
1) = {x3, x4},N3(x2, a

′
2) = {x4, x5},

S(l)
2 = {x2},S(l)

3 = {x3, x4, x5}.

Figure 2: Example of two simulated trees with common states (costs shown on branches).

Dynamic programming performed separately on each tree would lead to a different action from

state x2 in period 2 on the two trees (a′
1 in the upper tree, a′

2 in the lower tree). Averaging

appropriately over the corresponding nodes in two trees leads to �µ2(x2) = a′
1.

for simplicity that the discount factor is one (α = 1). Applying the DP algorithm
separately to each tree, we obtain (suppressing superscripted (l) for notational con-
venience) Ĵ3(x3) = 1, Ĵ3(x4) = 3, Ĵ3(x5) = 1; for the upper tree, Ĵ2(x2) = 2 and
µ̂2(x2) = a′

1, whereas for the lower tree, Ĵ2(x2) = 3 and µ̂2(x2) = a′
2, leading to a

conflict in specifying the decision rule (action for state x2). On the other hand, with
the averaging (over just the two trees, i.e., n = 2), Q̂2(x2, a

′
1) = 1 + (1 + 3)/2 = 3 and

Q̂2(x2, a
′
2) = 2 + (3 + 1)/2 = 4, which gives Ĵ2(x2) = min{Q̂2(x2, a

′
1), Q̂2(x2, a

′
2)} = 3

and µ̂2(x2) = arg mina′
i
{Q̂2(x2, a

′
i)} = a′

1, hence Q̂(al) = c1(x1, al) + 3. This would
be repeated for all other actions in A1(x1), and then (one of) the action(s) with the
lowest value of Q̂(·) would be selected to be the estimated optimal action in state x1.

Our results use the large deviations principle (cf. Dembo and Zeitouni 1998), which
yields exponentially decaying probability error bounds under appropriate conditions.

Lemma 3.1: Consider a sequence of i.i.d. random variables {Yn, n ≥ 1} with moment
generating function M(λ) = E[exp(λY1)]. Let Sn =

∑n
i=1 Yi. If M(λ) exists in a

neighborhood (−ε, ε) of λ = 0 for some ε > 0, then

P (Sn/n ≥ x) ≤ exp(−nΛ∗
+(x)), ∀x,

and
P (Sn/n ≤ x) ≤ exp(−nΛ∗

−(x)), ∀x,
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where
Λ∗

+(x) = sup
0≤λ<ε

(λx − log M(λ))

and
Λ∗
−(x) = sup

−ε<λ≤0
(λx − log M(λ)).

Furthermore, if |Y1| ≤ M for some constant M < ∞, then Λ∗
+(x) > 0 for x > E[Y1],

and Λ∗
−(x) > 0 for for x < E[Y1].

Proof. The first part follows directly from Xie (1997). For the second part, we show
only the x > E[Y1] case, since the x < E[Y1] case is similar.

Using a Taylor series expansion around λ ≥ 0, there exists ξ ∈ [0, λ) such that

Λ(λ) = log E[exp[λY1]]

= Λ(0) + Λ′(0)λ +
1
2
Λ′′(ξ)λ2 = λE[Y1] +

1
2
Λ′′(ξ)λ2,

the last equality following from Λ(0) = 0 and Λ′(0) = E[Y1].
We now turn to evaluating Λ′′(ξ). Since, |Y1| ≤ M ,

Λ′′(ξ) =
E[Y 2

1 exp(ξY1)]E[exp(ξY1)] − (E[Y1 exp(ξY1)])2

(E[exp(ξY1)])2

≤ E[Y 2
1 exp(ξY1)]

E[exp(ξY1)]
≤ M2.

Consequently, for x > E[Y1],

Λ∗
+(x) = sup

λ≥0
{λx − log E[exp[λY1]]}

≥ sup
λ≥0

{
λ(x − E[Y1]) − M2λ2

2

}
> 0, (12)

completing the proof.

Remark 3.1: For a finite-horizon MDP with finite action and state spaces, the total
discounted cost

∑T
k=1 αk−1ck(Xk, µk(Xk)) has finite moment generating function on

(−∞,∞) for any policy µ ∈ U . Define

c̃0 = max
k∈{1,2,...,T}

max
x∈Sk,a∈Ak(x)

ck(x, a),

and

J̃0 =
T∑

k=1

αk−1c̃0.

From the backward induction DP algorithm, it is easy to show that for any l, k, and
x,

Ĵ
(l)
k (x) ≤ J̃0,

and, from the definition of Jk(x), it is easy to see

Jk(x) ≤ J̃0.
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Set
|A| = max

k∈{1,2,...,T}
max
x∈Sk

|Ak(x)|.

Lemma 3.2: If γ ∈ (0, 1) and δ > 0 satisfy

2∆γ,δ < Q(a2) − Q(a1), (13)

where ∆γ,δ = (
T−1∑
i=1

αi−1)δ + (
T−2∑
i=1

αi−1)|S|γJ̃0, (14)

then

P

(
m⋃

l=1

{Q̂(al) ≥ Q(al) + ∆γ,δ}
)

≤ |A|
(

T−2∑
i=0

|S|i exp(−nγiδ′)

)
, (15)

P

(
m⋃

l=1

{Q̂(al) ≤ Q(al) − ∆γ,δ}
)

≤ |A|
(

T−2∑
i=0

|S|i exp(−nγiδ′)

)
, (16)

where

δ′ = sup
λ≥0

{
λδ − (αJ̃0)2λ2

2

}
> 0. (17)

Proof. See the Appendix.

We are now in a position to present and prove the main result of this section. In
words, the theorem states that the sample path first-period optimal action(s) contained
in the set â1(n) converges in probability to the true optimal action a1 for the finite
horizon problem at an exponentially decaying rate with respect to the number of sample
paths (trees).

Theorem 3.1:

P (â1(n) �= {a1}) ≤ 2|A|
(

T−2∑
i=0

|S|i exp(−nγiδ′)

)
,

where γ and δ satisfy the conditions of Lemma 3.2 and δ′ is given by (17).

Remark 3.2: If Q(a1) = Q(a2) = . . . = Q(ak) < Q(ak+1) ≤ . . . ≤ Q(am), then the
left-hand side just becomes P (â1(n) �⊆ {a1, . . . , ak}) .

Proof. Suppose that â1(n) �= {a1}. Then, ∃ l �= 1 such that Q̂(al) ≤ Q̂(a1), i.e.,

P (â1(n) �= {a1}) = P

⎛⎝⋃
l �=1

{Q̂(al) ≤ Q̂(a1)}
⎞⎠

≤ P

⎛⎝⋃
l �=1

{Q̂(al) ≤ Q̂(a1)}, Q̂(a1) ≤ Q(a1) + ∆γ,δ

⎞⎠
+ P

(
Q̂(a1) > Q(a1) + ∆γ,δ

)
.

Since Q(a2) ≤ Q(al) for any al(�= a1), condition (13) gives

Q(a1) < Q(a2) − 2∆γ,δ ≤ Q(al) − 2∆γ,δ,
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or
Q(a1) + ∆γ,δ ≤ Q(al) − ∆γ,δ,

so we have

P (â1(n) �= {a1}) ≤ P

⎛⎝⋃
l �=1

{Q̂(al) ≤ Q(al) − ∆γ,δ}
⎞⎠+ |A|

(
T−2∑
i=0

|S|i exp(−nγiδ′)

)

≤ 2|A|
(

T−2∑
i=0

|S|i exp(−nγiδ′)

)
,

where Lemma 3.2 has been applied twice.

4. Extensions

The results can be extended to the following cases with essentially the same frame-
work:

• random costs;

• stochastic and non-stationary discount factor, by replacing αk throughout by∏k
j=1 αj , where αj is the discount rate for period j.

Convergence of the same algorithm for infinite state spaces is not a problem, but
the current method of proof for the convergence rate result will not carry through.
Extension to infinite action spaces is also not straightforward, as the current algorithm
is not even applicable. These extensions are topics of ongoing research.

Appendix A. Proof of Lemma 3.2

We show (15) only, as the proof for (16) proceeds analogously. First, we first
establish three preliminary results.

Lemma A1: Let Zi ∼ pk(·|x, a) i.i.d. for fixed x ∈ Sk, a ∈ Ak(x). For any N ≥ 0 and
δ > 0,

P

(
α

N

N∑
i=1

Jk+1(Zi) ≥ αE[Jk+1(Zi)] + δ

)
≤ exp(−Nδ′),

k = 1, ..., T − 1, where δ′ is given by (17).

Proof. The proof follows directly from Lemma 3.1, with Yi = α(Jk+1(Zi) −
E[Jk+1(Zi)]), so E[Yi] = 0 and Yi has finite moment generating function (cf. Remark
3.1). Applying the first part of Lemma 3.1 leads to

P

(
1
N

N∑
i=1

αJk+1(Zi) ≥ αE[Jk+1(Zi)] + δ

)
≤ exp(−NΛ∗

+(δ)),

where
Λ∗

+(δ) = sup
λ≥0

(λδ − log E[exp[λYi]]).

Since |Yi| ≤ αJ̃0 = M , the second part of Lemma 3.1 can be applied:

sup
λ≥0

(λδ − log E[exp[λYi]]) ≥ sup
λ≥0

{
λδ − (αJ̃0)2λ2

2

}
≡ δ′ > 0,

9



with δ′ derived using (12).

Lemma A1′: Under the same conditions as Lemma A1, let N be a non-negative
integer-valued random variable independent of {Zi}. Then,

P

(
α

N
N∑

i=1

Jk+1(Zi) ≥ αE[Jk+1(Zi)] + δ,N ≥ N

)
≤ exp(−Nδ′),

k = 1, ..., T − 1, where δ′ is given by (17).

Proof. Using Lemma A1, note that the conditional probability

P

[
α

N
N∑

i=1

Jk+1(Zi) ≥ αE[Jk+1(Zi)] + γ

∣∣∣∣∣N = N0

]

= P

[
α

N0

N0∑
i=1

Jk+1(Zi) ≥ αE[Jk+1(Zi)] + γ

∣∣∣∣∣N = N0

]
≤ exp(−N0δ

′).

Unconditioning yields the desired result.

Note that |N (l)
t (x, a)| is constant over At−1(x), i.e., |N (l)

t (x, a)| = |N (l)
t (x, a′)|, for

all a′ ∈ At−1(x), so we simplify notation by dropping the dependence on the action in
writing |N (l)

t (x)| for |N (l)
t (x, a)|.

Lemma A2: For x ∈ ST−1,

P
(
Ĵ

(l)
T−1(x) ≥ JT−1(x) + δ, |N (l)

T (x)| ≥ N
)
≤ |A| exp(−Nδ′), (18)

Proof. For x ∈ ST ,

Ĵ
(l)
T (x) = min

a∈AT (x)
QT (x, a) = min

a∈AT (x)
cT (x, a) = JT (x), (19)

so
Ĵ

(l)
T−1(x) = min

a∈AT−1(x)

{
cT−1(x, a) + |N (l)

T (x)|−1α
∑

y∈N (l)
T (x,a)

JT (y)
}

.

Note that{
Ĵ

(l)
T−1(x) ≥ JT−1(x) + δ

}
=

{
min

a∈AT−1(x)

{
cT−1(x, a) + |N (l)

T (x)|−1α
∑

y∈N (l)
T (x,a)

JT (y)
}

≥ min
a∈AT−1(x)

{
cT−1(x, a) + αE[JT (XT (x, a))] + δ

}}
⊆

⋃
a∈AT−1(x)

{
|N (l)

T (x)|−1α
∑

y∈N (l)
T (x,a)

JT (y) ≥ αE[JT (XT (x, a))] + δ
}

.

Thus,

P
(
Ĵ

(l)
T−1(x) ≥ JT−1(x) + δ, |N (l)

T (x)| ≥ N
)

≤ P
( ⋃

a∈AT−1(x)

{
|N (l)

T (x)|−1α
∑

y∈N (l)
T (x,a)

JT (y) ≥ αE[JT (XT (x, a))] + δ, |N (l)
T (x)| ≥ N

})
≤ |A| exp(−Nδ′),

10



the last inequality following from Lemma A1′, proving (18).

Lemma A3: For k ∈ {2, 3, ..., T − 1}, x ∈ Sk, and a ∈ Ak(x),

P
(
Ĵ

(l)
k (x) ≥ Jk(x) + Ck, |N (l)

k+1(x)| ≥ nγk−1
)
≤ Dk, (20)

where Ck = (
∑T−k

i=1 αi−1)δ + (
∑T−k−1

i=1 αi−1)|S|γJ̃0

and Dk = |A|(∑T−1−k
i=0 |S|i exp(−nγk−1+iδ′)).

In particular, C1 = ∆γ,δ and CT−1 = δ.

Proof. We establish the result via backward induction. By (18) in Lemma A2, (20)
holds when k = T − 1. Assuming that (20) is true when k = t, t ∈ {3, ..., T − 1}, we
want to show that it holds when k = t − 1.

Recall that N
(l)
k (y) denotes the number of times state y is reached in period k over

all n sampled trees initiated by al, and define the set

R(l)
k ≡ R(l)

k (γ) = {y ∈ S(l)
k : N

(l)
k (y) ≥ nγk−1},

where explicit dependence on γ is omitted for notational simplification, since it is fixed.
If y ∈ R(l)

k , then state y was visited at least nγk−1 times in period k.
From the definition of Ĵ

(l)
t given by (9) and (10), we have the following decomposition

for x ∈ St−1:

Ĵ
(l)
t−1(x) = min

a∈At−1(x)

{
ct−1(x, a) + |N (l)

t (x)|−1α
∑

y∈N (l)
t (x,a)̂

J
(l)
t (y)

}
= min

a∈At−1(x)

{
ct−1(x, a) + |N (l)

t (x)|−1α
∑

y∈N (l)
t (x)∩R(l)

t

Ĵ
(l)
t (y)

+ |N (l)
t (x)|−1α

∑
y∈N (l)

t (x,a)∩R̄(l)
t

Ĵ
(l)
t (y)

}
, (21)

where the set complement is denoted using the overbar, and the intersection of a
multi-set and an ordinary set is assumed to be given by a corresponding multi-set. For
example, {1, 1, 1, 2, 3}∩ {1, 3, 5} = {1, 1, 1, 3}. We now find bounds for each of the last
two terms in the decomposition given by (21).

By definition of R(l)
k , we have the following bound:

|N (l)
k (x, a) ∩ R̄(l)

k | =
∑
y∈S

N
(l)
k (y)1{N (l)

k (y) < nγk−1} <
∑
y∈S

nγk−1 = |S|nγk−1.

Thus, for x ∈ Sk−1 such that |N (l)
t (x)| ≥ nγt−1, we have

|N (l)
t (x)|−1α

∑
y∈N (l)

t (x,a)∩R̄(l)
t

Ĵ
(l)
t (y) ≤ |N (l)

t (x, a) ∩ R̄(l)
t |

|N (l)
t (x)|

αJ̃0 (since Ĵ
(l)
t (·) ≤ J̃0)

≤ αJ̃0|S|nγt/(nγt−1) ≤ |S|γJ̃0. (22)

Note that for a ∈ At−1(x), y ∈ N (l)
t (x, a) ∩ R(l)

t , we have |N (l)
t+1(y)| ≥ nγt, and by

the induction assumption, (20) holds when k = t, so

P (Ĵ (l)
t (y) ≥ Jt(y) + Ct, y ∈ N (l)

t (x, a) ∩R(l)
t )

≤ P
(
Ĵ

(l)
t (y) ≥ Jt(y) + Ct, |N (l)

t+1(y)| ≥ nγt
)
≤ Dt,

11



implying that

P

⎛⎜⎝ ⋃
a∈At−1(x)

⋃
y∈N (l)

t (x,a)∩R(l)
t

{Ĵ (l)
t (y) ≥ Jt(y) + Ct}

⎞⎟⎠
≤ P

⎛⎝ |S|⋃
i=1

{Ĵ (l)
t (si) ≥ Jt(si) + Ct, |N (l)

t+1(si)| ≥ nγt}
⎞⎠ ≤ |S|Dt, (23)

where we have enumerated all possible states as S = {s1, . . . , s|S|}.
Hence, similar to the proof of Lemma A2, by combining (21), (22) and (23), we have

P
(
Ĵ

(l)
t−1(x) ≥ Jt−1(x) + Ct−1, |N (l)

t (x)| ≥ nγt−1
)

≤ P
( ⋃

a∈At−1(x)

{
|N (l)

t (x)|−1α
∑

y∈N (l)
t (x,a)̂

J
(l)
t (y) ≥ αE[Jt(Xt(x, a))] + Ct−1

}
, |N (l)

t (x)| ≥ nγt−1
)

= P
( ⋃

a∈At−1(x)

{
|N (l)

t (x)|−1α
[ ∑

y∈N (l)
t (x,a)∩R̄(l)

t

Ĵ
(l)
t (y) +

∑
y∈N (l)

t (x,a)∩R(l)
t

Ĵ
(l)
t (y)

]
≥ αE[Jt(Xt(x, a))] + Ct−1

}
, |N (l)

t (x)| ≥ nγt−1
)

by (21)

≤ P
( ⋃

a∈At−1(x)

{
|S|γJ̃0 + |N (l)

t (x)|−1α
∑

y∈N (l)
t (x,a)∩R(l)

t

Ĵ
(l)
t (y) ≥ αE[Jt(Xt(x, a))] + Ct−1

}
,

|N (l)
t (x)| ≥ nγt−1

)
by (22)

≤ P
( ⋃

a∈At−1(x)

{
|S|γJ̃0 + |N (l)

t (x)|−1α
[ ∑

y∈N (l)
t (x,a)∩R(l)

t

(Jt(y) + Ct)
]

≥ αE[Jt(Xt(x, a))] + Ct−1

}
, |N (l)

t (x)| ≥ nγt−1
)

+ |S|Dt by (23)

= P
( ⋃

a∈At−1(x)

{
|S|γJ̃0 +

|N (l)
t (x, a) ∩R(l)

t |
|N (l)

t (x)|
αCt + |N (l)

t (x)|−1α
∑

y∈N (l)
t (x,a)∩R(l)

t

Jt(y)
]

≥ αE[Jt(Xt(x, a))] + Ct−1

}
, |N (l)

t (x)| ≥ nγt−1
)

+ |S|Dt

≤ P
( ⋃

a∈At−1(x)

{
|N (l)

t (x)|−1α
∑

y∈N (l)
t (x,a)

Jt(y) ≥ αE[Jt(Xt(x, a))] + δ
}

,

|N (l)
t (x)| ≥ nγt−1

)
+ |S|Dt (since δ = Ct−1 − αCt − |S|γJ̃0)

≤ |A| exp(−nγt−1δ′) + |S|Dt = Dt−1 by Lemma A1′, (24)

completing the induction.

Similar to the proofs of Lemmas A2 and A3, we finish the proof of Lemma 3.2 by

12



establishing (15), recalling that N (al) = N (l)
2 (x1, al) and |N (al)| = n:

P

(
m⋃

l=1

{Q̂(al) ≥ Q(al) + ∆γ,δ}
)

= P
( m⋃

l=1

{ 1
n

∑
y∈N (al)

αĴ
(l)
2 (y) ≥ αE[J2(X2(x1, al))] + C1

})

≤ P
( m⋃

l=1

{ 1
n

∑
y∈N (al)

αJ2(y) + αC2 + |S|γJ̃0 ≥ αE[J2(X2(x1, al))] + C1

})
+ |S|D2

by (21), (22), (23)

= P
( m⋃

l=1

{ 1
n

∑
y∈N (al)

αJ2(y) ≥ αE[J2(X2(x1, al))] + δ}
})

+ |S|D2

≤ |A| exp(−nδ′) + |S|D2 = D1 = |A|
(

T−2∑
i=0

|S|i exp(−nγiδ′)

)
using Lemma A1.
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