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Abstract

The physical motivation and rigorous proof of convergence for a particular network of

nonlinear coupled oscillators are reviewed. Next, the network and convergence proof are gener-

alized in several ways, to make the network more applicable to actual engineering problems. It

is argued that such coupled oscillator circuits are more natural to implement in analog hardware

than other types of dynamical equations because the signal levels tend to remain at su�ciently

large values that e�ects of o�sets and mismatch are minimized. Examples of how analog imple-

mentations of these networks are able to address actual control problems are given. The �rst

example shows how a pair of coupled oscillators can be used to compensate for the feedback path

phase shift in a complex LMS loop, and has potential application for analog adaptive antenna

arrays or linear predictor circuits. The second example shows how a single oscillator circuit with

feedback could be used for continuous wavelet transform applications. Finally, analog CMOS

implementation of the coupled oscillator dynamics is brie
y discussed.
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1. Introduction

Networks of coupled oscillators have been proposed for various applications, including

locomotion (speci�cally, central pattern generators) [1], pattern recognition (for instance, dis-

tinguishing between di�erent objects in view simultaneously), and biological information pro-

cessing (as a solution to the dynamic binding problem [2,3,4,5]). There is evidence that coupled

oscillator networks play a role in biological systems [6], but the point of view taken in this work

is that the mathematical analysis of coupled oscillator networks can also yield networks which

are useful in their own right for applications in pattern recognition and control. In particular,

coupled oscillator networks, with their generally large and predictable signal levels, appear to

be better suited to analog VLSI implementation than other dynamical systems because o�set

and mismatch problems, which lead to large relative errors at small signal levels, are minimal

at large signal levels.

The basic network examined in this paper is given by

_yj = �yj + r(�jxj j)
xj
jxj j

xj =
nX
k=1

ykw
�
jk; j = 1; :::; n (1)

where xj and yj are complex numbers 8j, wjk are �xed complex interconnecting weights with

wjj = 0 8j and wjk = w�kj (i.e., the weight matrix is Hermitian), � is a scalar parameter, and

r(�) : [0;1) ! < is a memoryless strictly monotone increasing nonlinearity with r(0) = 0 and

limm!1 r(m) = 1 (later to be speci�ed precisely) [8]. r(�) is also assumed to be analytic, and

the function r(�jzj) zjzj : C ! C is a well-de�ned function which compresses the magnitude

of its complex argument while retaining its angle.

For the jth unit (or oscillator), yj may be thought of as its state, and xj represents its

input from the rest of the network. Because the states are complex, each unit carries both phase

and amplitude information, and it is the phase information which is of primary interest. In the

coupled oscillator context, the phases of coupled oscillators oscillating at the same frequency are

represented.
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The reason for choosing these dynamical equations is that they represent a very simple

method of de�ning a coupled-oscillator network. The input to each unit is the weighted sum

of the states of the other units, where the weights themselves are complex (and thus may alter

the phase as well as the amplitude of the signals they weight). The input to each unit is then

passed through a memoryless saturating nonlinearity whose gain is a parameter, and the result

is then low-pass-�ltered to produce that unit's state.

It turns out that the oscillator network described by (1) can be derived from a mean-�eld

analysis of a stochastic physical oscillator problem, as discussed by Zemel, et. al. [8]. Fur-

thermore, the physical motivation leads to a Lyapunov function which can be used to rigorously

prove stability of the network, in the sense that every trajectory must converge to an equilibrium

point in the ambient space <2n in which the complex xj ; j = 1; :::; n, evolve [9,10].

However, to proceed further, careful examination of the form of the Lyapunov function

is required. The main contribution of this work is an explanation of three ways in which the

dynamical equations can be modi�ed, but for which the Lyapunov function can also be modi�ed

to retain the convergence property. With these generalizations, the coupled oscillator network

is much better suited to potential real-world applications.

With the convergence analyses complete, the focus turns next to simple examples illustrat-

ing how such networks can be usefully applied to high-speed analog circuit problems. The �rst

example shows how a pair of coupled oscillators can be used to compensate for the feedback path

phase shift in a complex LMS loop, and has potential application for analog adaptive antenna

arrays or linear predictor circuits. The second example shows how a single oscillator circuit with

feedback could be used for continuous wavelet transform applications. Finally, analog CMOS

implementation of the coupled oscillator dynamics is brie
y discussed. Application of nonlinear

coupled oscillator theory to high-speed analog circuits is a recent development [11,12].
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2. Fixed-Weight Network Analysis

2.1 Introduction

The dynamics given by (1) can be rewritten solely in terms of the xj variables:

_xj =
X
k

_ykw
�
jk

=
X
k

�
�yk + r(�jxkj)

xk
jxkj

�
w�jk

= �
X
k

ykw
�
jk +

X
k

r(�jxkj)
xk
jxkj

w�jk

= �xj +
X
k

r(�jxkj)
xk
jxkj

w�jk. (2)

These dynamics were proposed and physically motivated by Zemel, et. al. [8]; however, their

proof of convergence was incomplete. After a review of the physical motivation, a rigorous proof

of convergence, in the sense that each trajectory asymptotically converges to an equilibriumpoint

of the dynamics, will be presented (see, for earlier versions, [9,10]). Furthermore, it is shown

that convergence of (2) implies convergence of (1), even if the weight matrix is not invertible.

2.2 Physical Motivation

Zemel, et. al. propose �rst a stochastic network of directional units (complex-valued ran-

dom variables with magnitude one and angle representing directional information) intercon-

nected by complex weights which are considered �xed [8]. The directional units evolve accord-

ing to probability distributions determined by the other directional units and interconnecting

weights. The stochastic network is then simpli�ed using the mean-�eld approximation to give

a deterministic network. The purpose of examining the stochastic network is that it provides

insight for the stability analysis of the deterministic network.

To begin the stochastic network analysis, consider a network of directional units, each

represented by a random variable Zj taking values on the unit circle in the complex plane.

The directional units are interconnected by �xed complex weights wjk satisfying wjj = 0 and
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wkj = w�jk. De�ning xj =
P
k zkw

�
jk to represent the interaction of unit j with the rest of the

network, the angle of xj is related to the mean value of Zj, and the magnitude of xj is inversely

related to the variance of Zj (the precise dependence to be determined below).

Next, a quadratic form representing \energy" in terms of unit states and interconnecting

weights is de�ned:

E(z) = �
1

2
zTWz� = �

1

2

X
j;k

zjz
�
kwjk; z = (z1; :::; zn)

T . (3)

Because W is hermitian (i.e., wkj = w�jk), E(z) is real-valued. (This de�nition of energy

generalizes the Hop�eld energy function for binary units [8].) Using xj =
P
k zkw

�
jk and changing

to polar coordinates: xj = aje
i�j and zj = ei�j (recall that jzj j is constrained to equal 1), we

de�ne

Ej(z) = �
1

2

h
zjx

�
j + (zjx

�
j )
�
i

= �aj cos(�j � �j) (4)

as unit j's contribution to the total energy. Then E(z) = 1
2

P
j Ej(z). (Observe that when

the angle of xj is aligned with the angle of zj , unit j is in a low-energy state.) Introducing a

\Boltzmann factor" � (interpreted as the reciprocal of temperature), and taking the probability

density that the jth unit is in a state zj = ei�j to be proportional to e��Ej(z), we obtain:

fZj
(zj) / e�aj cos(�j��j); (5)

where Zj , the state of unit j, is a random variable taking values on the unit circle in the complex

plane and fZj
(�) is a probability density function. Appropriate normalization gives

fZj
(�j) =

1

2�I0(mj)
emj cos(�j���j); mj = �aj; ��j = �j ; (6)

where I0(�) is the modi�ed Bessel function of the �rst kind and order zero. This is known as the

Von Mises, or circular normal, distribution, and it is a distribution for circular random variables

having some characteristics similar to the usual normal distribution for linear random variables

[13]. A circular normal distribution is completely characterized by two parameters: a mean
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direction �� 2 [0; 2�) and a concentration parameter m > 0 which corresponds to the reciprocal

of the variance of a linear normal random variable.

Next, Zemel, et. al. apply a mean-�eld approximation to come up with a deterministic

network model. In the mean-�eld approximation, the random variables Zj are replaced by their

means yj =<Zj> and are treated as independent (even though they are, in fact, highly coupled).

The mean <Zj> of a Von Mises random variable is a complex number yj = rje
i
j with 
j = ��j

and rj =
I1(mj)
I0(mj)

. Figure 2.1 shows rj as a function of mj: it is strictly monotone increasing,

passes through the origin, and satis�es limmj!1 rj(mj) = 1.
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Figure 2.1: Plot of rj =
I1(mj )
I0(mj )

(from [5]).

The dynamics for the deterministic network are chosen to be

dxj
dt

= �xj +
X
k

ykw
�
jk (7)

so that at equilibrium, xj =
P
k ykw

�
jk, in analogy with the expression xj =

P
k zkw

�
jk for the

stochastic network. Furthermore, yj = r(�jxj j)
xj
jxj j

, so that if xj is viewed as determining the
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mean and concentration parameter of a Von Mises distribution according to (6), yj will be the

mean value of the distribution. The deterministic dynamics can be expressed in terms of the xj

alone as:

dxj
dt

= �xj +
X
k

r(�jxkj)
xk
jxkj

w�jk. (8)

The total energy for the deterministic network is found by taking the mean of the total

energy expression for the stochastic network (and assuming the units are independent):

<E>= �
1

2

X
j;k

yjy
�
kwjk. (9)

Furthermore, the \entropy" for the deterministic network is found by summing the entropies of

the individual units of the stochastic network (again using the independence assumption):

H =
X
j

"
��aj

I1(�aj)

I0(�aj)
+ log(2�I0(�aj))

#
. (10)

With these de�nitions of <E> and H, a Lyapunov function corresponding to what Zemel

et. al. call \free energy," F =<E>�TH, T = 1
�
, can be computed, and this Lyapunov func-

tion can be used to prove convergence of the deterministic network using LaSalle's invariance

principle.

2.3 Proof of Convergence

As will now be shown, the deterministic dynamics (2) are convergent: every trajectory

converges to an equilibrium point. LaSalle's invariance principle is invoked to prove this, and a

Lyapunov function based on the physically motivated \free energy" is used.

Letting xRj = Re(xj) and x
I
j = Im(xj) we can rewrite the dynamics as

_xRj = �xRj +
X
k

r(�jxkj)
xRk w

R
jk + xIkw

I
jk

jxkj

_xIj = �xIj +
X
k

r(�jxkj)
xIkw

R
jk � xRk w

I
jk

jxkj
; j = 1; :::; n; (11)
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which gives a well-de�ned vector �eld on <2n, the state space for purposes of the proof of con-

vergence. (If xk = 0, we take r(�jxkj)
xR
k
wR
jk
+xI

k
wI
jk

jxkj
= r(�jxkj)

xI
k
wR
jk
�xR

k
wI
jk

jxkj
= 0.) The equilibrium

points of the dynamics are points where _xR1 = _xI1 = ::: = _xRn = _xIn = 0.

At any point in the state space <2n, except where xRj and xIj are both zero for some j, we

can de�ne a valid (nonsingular) change of coordinates by xRj + ixIj = aje
i�j ; j = 1; :::; n. In the

new coordinates, the dynamics become:

_aj = �aj +
X
k

r(�ak)bjk cos(�k � �j � �jk)

_�j =
1

aj

X
k

r(�ak)bjk sin(�k � �j � �jk); (12)

where wRjk + iwIjk = bjke
i�jk .

At all points in <2n where the change of coordinates is valid, we de�ne the Lyapunov

function (simply the free energy <E>�TH, T = 1
�
):

V = �
X
j<k

r(�aj)r(�ak)bjk cos(�k � �j � �jk)

�T
X
j

[��ajr(�aj) + log (2�I0(�aj))] (13)

where log denotes the natural log. (Keep in mind that wjk = w�kj, wjj = 0, and � = 1
T
.) It turns

out that V can be continuously de�ned even where the change of coordinates is singular, because

if either aj or ak is taken to be zero in the above formula for V, the term r(�aj)r(�ak)bjk cos(�k�

�j � �jk) will be zero regardless of the value of �j or �k. Let �i = ai; i = 1; 2; :::; n and

�i+n = �i; i = 1; 2; :::; n.

Calculating _V (�) = @V
@�

_�, we obtain

_V (�) = �
X
j

8<
:�r0(�aj)

"
�aj +

X
k

r(�ak)bjk cos(�k � �j � �jk)

#2

+
r(�aj)

aj

"X
k

r(�ak)bjk sin(�k � �j � �jk)

#29=
; : (14)
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Note that r(�aj) > 0 8aj > 0 and
r(�aj)
aj

> 0 8aj > 0. Also, r0(�aj) !
1
2 as aj ! 0, and

r(�aj)
aj

! �r0(�aj) as aj ! 0.

Thus, _V (�) � 0 8aj > 0 8�j; and _V (�) = 0 if and only if8>><
>>:
�aj +

X
k

r(�ak)bjk cos(�k � �j � �jk) = 0X
k

r(�ak)bjk sin(�k � �j � �jk) = 0
8j = 1; :::; n: (15)

But this will hold at a point xj = aje
i�j 8j where the change of coordinates is valid if and only

if it is an equilibrium point of the dynamics.

We now show that the Lyapunov function V (�) has bounded sublevel sets, because this

will enable us to exhibit compact sets which are positively invariant under the dynamics, as

required to apply LaSalle's invariance principle. Observe that the �rst term of V,

�
X
j<k

r(�aj)r(�ak)bjk cos(�k � �j � �jk); (16)

is bounded as aj !1 for any (or all) aj . A straightforward but lengthy calculation shows that

�ajr(�aj) � log (2�I0(�aj)) ! 1 as aj ! 1. Then because �ajr(�aj) � log (2�I0(�aj)) >

0 8aj > 0, and because the terms �ajr(aj) � log (2�I0(�aj)) appear summed in V , it follows

immediately that V is radially unbounded in the aj (where by de�nition V : <n ! < is radially

unbounded in its argument a 2 <n if V (a) ! 1 as jjajj ! 1 [14]). Moreover, since V is

continuous even at points where the change of coordinates is singular, we can conclude that V

has bounded sublevel sets when viewed as a function of (xR1 ; x
I
1; :::; x

R
n ; x

I
n).

So far we have shown that there is a Lyapunov function V continuous on all of <2n, which

has bounded sublevel sets, and which has _V (�) < 0 provided � is not an equilibrium point and

provided � is not a point where our change of coordinates is singular. What we will now show is

that there is no loss of generality in assuming that a trajectory will pass through points where

the change of coordinates is singular only at isolated points in time.

Speci�cally, we will show that if a trajectory has xRj (t
�) = xIj (t

�) = 0 for some j 2 f1; :::; ng

and for some t� then either t� is an isolated point in time for which xRj = xIj = 0 or else
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xRj = xIj = 0 8t > 0. If xRj = xIj = 0 8t > 0, then simply eliminate the xRj and xIj coordinates

and consider the reduced system of dimension <2n�2. Repeating this test will reduce the system

to a new system with coordinates (x̂R1 ; x̂
I
1; :::; x̂

R
n̂ ; x̂

I
n̂) with n̂ � n. The trajectories of the reduced

system will have x̂Rj (t
�) = x̂Ij(t

�) = 0 only at isolated time instants t�, and hence we will have

_V = 0 only at equilibrium points and at isolated times t�. (It is easy to verify that the reduced

system has exactly the same form in terms of dynamics, equilibria, and Lyapunov function as

the original system.)

Analyticity properties are the key to showing that the system can be reduced so that

xRj = xIj = 0 for some j only at isolated points in time. That the right-hand-side of the

di�erential equation for (xR1 (t); x
I
1(t); :::; x

R
n (t); x

I
n(t)), equation (11), is analytic in the variables

xR1 ; x
I
1; :::; x

R
n ; x

I
n follows straightforwardly from basic properties of analyticity (using methods in,

e.g., [15]). This in turn implies that the trajectory (xR1 (t); x
I
1(t); :::; x

R
n (t); x

I
n(t)) is an analytic

function of t (the necessary results on analyticity and di�erential equations can be found in

[16]). Therefore, for any j 2 f1; :::; ng, (xRj ; x
I
j ) will be an analytic function of t. Hence if

xRj (t
�) = xIj (t

�) = 0 then either t� is an isolated point in time for which xRj = xIj = 0 or else

xRj = xIj = 0 8t > 0.

We have a well-de�ned, C1 (in fact, analytic) vector �eld (11) on <2n and a Lyapunov

function V which has bounded sublevel sets. For simplicity, think of the vector �eld abstractly,

as given by _� = f(�), with Lyapunov function V (�). Also, _V (�) � 0 along trajectories.

Fix c > 0 and let


c = f� 2 <2njV (�) � cg: (17)

In order to apply LaSalle's invariance principle, the chief control theory tool which applies to

this problem, we need to show that 
c is a compact positively invariant set. We have already

shown that the Lyapunov function has bounded sublevel sets, and hence 
c is bounded. In fact,

it can be easily shown that 
c is closed as well, and hence is compact. Positive invariance of 
c

follows from the fact that _V (�) � 0 along trajectories.
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Theorem 2.1 (LaSalle's invariance principle): Let 
 be a compact set and suppose the

solution �(t) starting in 
 stays in 
 for all t > 0. Let V : 
! < be a continuous function such

that V (�(t)) is a monotone nonincreasing function of t. Let E be the set of all points in 
 where

_V (�) exists and equals zero. Let M be the largest invariant set in E. Then �(t) approaches M

as t!1.

Proof: (See [14].)

Theorem 2.2: The dynamics (11) converge to an equilibrium point.

Proof: For any initial condition �0, reduce the system if necessary so that we may assume

that the coordinate transformation is only singular at isolated points in time. Also, choose c > 0

to be greater than or equal to V (�0). Then the set 
 in Theorem 2.1 is taken to be 
c, as de�ned

earlier, which is a well-de�ned compact subset of <2n when viewed in (xR1 ; x
I
1; :::; x

R
n ; x

I
n) coordi-

nates. Because the vector �eld is well-de�ned, the Lyapunov function is monotone nonincreasing

along trajectories, and the set 
c is compact, it follows that the trajectory �(t) exists and stays

in 
c 8t > 0. Thus, the hypotheses of Theorem 2.1 are satis�ed, enabling us to conclude that

the trajectory will converge to the largest invariant subset of the set of points in 
c such that

_V (�) = 0. But the largest invariant subset of the set of points with _V (�) = 0 are just the

equilibrium points of the system which lie inside 
c.

LaSalle's Principle thus enables us to conclude convergence of any trajectory to the set of

equilibrium points of the dynamics, but not to a speci�c equilibrium point. We will now show,

by appropriate choice of inner product, that the system follows gradient dynamics except at

isolated points in time. At points � = (a1; :::; an; �1; :::; �n), de�ne the inner product:

D
v1� ; v

2
�

E
= v1 T� diag(�r0(�a1); :::; �r

0(�an); a1r(�a1); :::; anr(�an))v
2
� ; (18)

where v1� and v
2
� are two tangent vectors at the point �. Then h _�; v�i = �d�V � v� = h�rV; v�i

so that _� = �rV ; i.e., the system satis�es gradient dynamics (except at isolated time instants).

Thus, we may conclude that in fact the dynamics (11) converge to an equilibium point. Q.E.D.
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2.3 Application of Convergence Result

The convergence result just proved implies the convergence of the complex dynamics (2).

An additional argument is required to conclude that the dynamics of equation (1) converge.

Because the xj converge to constant values, the terms

uj = r(�jxj j)
xj
jxj j

(19)

also converge to constant values (by continuity). Now consider the system

_yj = �yj + uj ; (20)

which is clearly globally asymptotically stable if the uj are constant. Because the xj trajectories

remain bounded, so do the uj , and it is not hard to see that the uj remaining bounded implies

that the yj trajectories also remain bounded. Therefore, the yj asymptotically converge to an

equilibrium point [17].

2.4 Generalization to a Class of Networks

Although the choice of r(�) as the ratio of bessel functions enabled a physical motivation

to be given for the dynamics, careful examination of the proof of convergence reveals that as

long as r(�) satis�es certain properties, the convergence result will still hold. First, the function

r(�) must be strictly monotone increasing with r(0) = 0. Second, r(�) must be analytic. Third,

we need to ensure that a suitable radially unbounded Lyapunov function exists:

V = �
X
j<k

r(aj)r(ak)bjk cos(�k � �j � �jk) +
X
j

h(aj) (21)

where lima!1
h(a)
r2(a)

=1, @h
@a

= ar0(a), and h(0) = constant.

The ability to generalize the convergence proof to a class of networks in this manner is

important when analog implementations of these networks are considered. Although saturating

nonlinearities can be achieved in analog hardware, a saturating nonlinearity for the magnitude

of a complex number which leaves the phase unaltered is more complicated [9].
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3. Adaptive Control Law for a Variable-Weight Network

3.1 Motivation for the Adaptive Control Law

The usefulness of the network presented in the last section would be greatly enhanced if

the weights were not constrained to be constant. An adaptive control law for variable weights

is now described which retains the convergence properties of the �xed-weight network - namely,

the variable weight network with adaptively controlled weights is shown to converge to an

equilibrium point. The utility of the rigorous proof of convergence for the �xed-weight network

is that it can be extended to more general and useful networks, of which the adaptive control

law described here is an example.

The mathematical motivation for the adaptive control law comes from viewing the dy-

namics and Lyapunov function abstractly and performing some calculations. Abstractly, for the

�xed-weight case we have

_� = f(�;w) (dynamics)

V (�;w) (Lyapunov function)

_V (�;w) =
@V

@�
f(�;w)

= � < f(�;w); f(�;w) > : (22)

Now letting some of the weights be feedback functions, we have

_� = f(�;w(�)) + g(�) (dynamics)

V (�;w(�)) (Lyapunov function)

_V (�;w(�)) =

�
@V

@�
+
@V

@w

@w

@�

�
(f(�;w(�)) + g(�))

= � < f(�;w(�)) + g(�); f(�;w(�)) + g(�) > (23)

provided �
@V

@w

@w

@�

�
� = � < g(�); � > : (24)
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In the transformed coordinates, this condition becomes

@V

@w

@w

@�
= �[�r0(�a1)g1(�) � � � �r

0(�an)gn(�)

a1r(�a1)gn+1(�) � � � anr(�an)g2n(�)]: (25)

Suppose unit j interconnects units l1 and l2, and all other weights are constants. Fur-

thermore, suppose bl1;l2 depends only on aj and �l1;l2 depends only on �j . Then for V as in

(13),

@V

@w

@w

@�
=

h
0 � � � 0 � r(�al1)r(�al2)

@bl1;l2
@aj

cos(�l2 � �l1 � �l1;l2) 0 � � � 0

0 � � � 0 � r(�al1)r(�al2)bl1;l2 sin(�l2 � �l1 � �l1;l2)
@�l1;l2
@�j

0 � � � 0
i

(26)

where the �rst nonzero term is in position j of the row vector, and the second nonzero term is

in position j + n.

If we choose bl1;l2(aj) = dl1;l2r(�aj) and �l1;l2(�j) = �j, then
@bl1;l2
@aj

= dl1;l2�r
0(�aj) and

@�l1;l2
@�j

= 1, so

@V

@w

@w

@�
= �

h
0 � � � 0 �r0(�aj)(dl1;l2r(�al1)r(�al2) cos(�l2 � �l1 � �j)) 0 � � � 0

0 � � � 0 ajr(�aj)

 
1

aj
dl1;l2r(�al1)r(�al2) sin(�l2 � �l1 � �j)

!
0 � � � 0

i
(27)

where again the nonzero terms are in positions j and j + n of the row vector.

Thus, letting

gj(�) = dl1;l2r(�al1)r(�al2) cos(�l2 � �l1 � �j)

gj+n(�) =
1

aj
dl1;l2r(�al1)r(�al2) sin(�l2 � �l1 � �j)

gk(�) = 0; k 6= j; j + n (28)

we then have

(
@V

@w

@w

@�
)� = � < g(�); � > . (29)
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Generalizing to an arbitrary number of variable weights, we have

Ijl1;l2 =

(
1 if bl1;l2e

i�l1;l2 = dl1;l2r(�aj)e
i�j

0 otherwise

_aj = �aj +
X
k

r(�ak)bjk cos(�k � �j � �jk)

+
X
l1;l2

Ijl1;l2dl1;l2r(�al1)r(�al2) cos(�l2 � �l1 � �j)

_�j =
1

aj

�X
k

r(�ak)bjk sin(�k � �j � �jk)

+
X
l1;l2

Ijl1;l2dl1;l2r(�al1)r(�al2) sin(�l2 � �l1 � �j)
�

(30)

which (provided the change of coordinates is nonsingular) is equivalent to

Ijl1;l2 =

(
1 if wl1;l2 = dl1;l2r(�jxj j)

xj
jxjj

0 otherwise

_xj = �xj +
X
k

r(�jxkj)
xk
jxkj

w�jk

+
X
l1;l2

Ijl1;l2dl1;l2r(�jxl1 j)r(�jxl2 j)
xl2
jxl2 j

x�l1
jxl1 j

; (31)

where the conditions bl1;l2e
i�l1;l2 = dl1;l2r(�aj)e

i�j and wl1;l2 = dl1;l2r(�jxj j)
xj
jxj j

simply indicate

that unit j is serving as the interconnecting weight between units l1 and l2, with the sense of

the connection (recall that wkj = w�jk) taken into account.

3.2 Proof of Convergence for the Adaptive Control Law

To prove convergence of the adaptive control law, we start with the dynamical equations

just given, (30)-(31), along with the Lyapunov function

V = �
X
j<k

r(�aj)r(�ak)bjk cos(�k � �j � �jk)

�T
X
j

[��ajr(�aj) + log (2�I0(�aj))] ; (32)

where now we may have bjk = djkr(�al) and �jk = ��l for various j; k; l.

The new calculation of _V gives:

_V (�) = �
X
j

�
�r0(�aj)

�
� aj +

X
k

r(�ak)bjk cos(�k � �j � �jk)
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+
X
l1;l2

Ijl1;l2dl1;l2r(�al1)r(�al2) cos(�l2 � �l1 � �j)

�2

+
r(�aj)

aj

�X
k

r(�ak)bjk sin(�k � �j � �jk)

+
X
l1;l2

Ijl1;l2dl1;l2r(�al1)r(�al2) sin(�l2 � �l1 � �j)

�2�
: (33)

From this point on, the proof of convergence is basically the same as the convergence proof for

the �xed-weight case. The reason for labeling the feedback law an adaptive control law is that

the original dynamics were linear in certain parameters (the weights), which are now adapted

according to a feedback law which guarantees convergence. In this way, coupled oscillator

networks can be designed to adapt in the presence of, for example, �xed but (a priori) unknown

weight values.

3.3 Application of the Adaptive Control Law Convergence Result

The adaptive control law just derived is in the form corresponding to equation (2) rather

than equation (1) for the �xed-weight case. Therefore, we need to determine how equation

(1) should be modi�ed to correspond to equation (31). A calculation (shown in [9]) gives the

required modi�cation to (1):

_yj = �yj + r(�jxj j)
xj
jxj j

xj =
nX
k=1

ykw
�
jk + uj �

X
l1;l2

I l1j;l2dj;l2yl2r(�jxl1 j)
x�l1
jxl1 j

_uj = �uj +
X
l1;l2

�
Ijl1;l2dl1;l2 + I l1j;l2dj;l2

�
r(�jxl1 j)r(�jxl2 j)

xl2
jxl2 j

x�l1
jxl1 j

yj = r(�jxj j)
xj
jxj j

at equilibrium. (34)

An example illustrating how this adaptive control law might be used is discussed in [9,10].

There is an interesting implication of the adaptively controlled network convergence result

in terms of hierarchical control of coupled oscillator networks. If two or more networks are

arranged in a hierarchical fashion, with the units of one network serving as the weights for the

next network in the hierarchy, the convergence result implies that feedback can be applied from
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lower levels to higher levels and stability will be maintained, as long as the adaptive control law

is obeyed. Consideration of these networks of coupled oscillators for hierarchical control systems

with local and global feedback might therefore be worthwhile.

4. Network with Auxiliary Control Inputs

4.1 Convergence Result

Besides adaptively controlling the weights, another way in which it would be useful to

extend the basic coupled-oscillator network would be to add auxiliary inputs and determine

under what circumstances the network is still guaranteed to converge. So consider adding a

control input term to equation (1):

_yj = �yj + r(�jxjj)
xj
jxj j

xj =
nX
k=1

ykw
�
jk + uj ; j = 1; :::; n: (35)

Computing the dynamics for the xj alone, in the manner of equation (2), we �nd

_xj = �xj +
nX
k=1

r(�jxkj)
xk
jxkj

w�jk + vj ; (36)

where vj = uj + _uj. Our ambient space, the space in which the trajectories are considered to

lie, is still <2n. Next, we change to polar coordinates using

xj = aje
i�j

wjk = bjke
i�jk

vj = dje
i j ; (37)

so that the dynamics become

_aj = �aj +
X
k

r(�ak)bjk cos(�k � �j � �jk) + dj cos( j � �j)

_�j =
1

aj

"X
k

r(�ak)bjk sin(�k � �j � �jk) + dj sin( j � �j)

#
: (38)
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For now, assume that the vj are constants instead of functions of time, and at all points

in <2n where the change of coordinates is valid, consider the new Lyapunov function

V = �
X
j<k

r(�aj)r(�ak)bjk cos(�k � �j � �jk)�
X
j

r(�aj)dj cos( j � �j)

�T
X
j

[��ajr(�aj) + log (2�I0(�aj))] : (39)

Calculating _V (�) = @V
@�

_� (under the assumption that the vj are constant) gives

_V (�) = �
X
j

(
�r0(�aj)

"
� aj +

X
k

r(�ak)bjk cos(�k � �j � �jk) + dj cos( j � �j)

#2

+
r(�aj)

aj

"X
k

r(�ak)bjk sin(�k � �j � �jk) + dj sin( j � �j)

#2)
: (40)

Again, from this point on, the proof of convergence with the vj constant is essentially the same

as in the �xed-weight case.

The convergence result can be extended to the case where uj and vj are nonconstant in the

following manner. As long as both uj and _uj are bounded, vj = uj+ _uj will also be bounded, and

hence for any initial condition, the xj trajectories will remain bounded. Therefore, as long as

vj asymptotically converges to a constant value, the coupled-oscillator system will asymtotically

converge to an equilibrium point [17].

4.2 Example: Feedback Loop Phase Shift Compensating Circuit

4.2.1 Overview of the feedback loop phase shift problem

This example illustrates how the theory of nonlinear coupled oscillators can be applied

to a real-world analog circuit problem: phase shift in the feedback path of a complex LMS

loop con�gured as a frequency-programmable bandpass �lter. In theory, an ideal frequency-

programmable two-pole linear bandpass �lter can be implemented using a single complex LMS

loop. However, one critical nonideality which must be taken into account at high center frequen-

cies is phase shift through the feedback path due to propagation delays and �nite component

bandwidths.
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Figure 4.1 shows a single-complex-learning-element LMS adaptive �lter [18]. The actual

circuit used is described in [19]. In the absence of feedback path delays and other nonidealities,

by applying a �xed reference frequency to the \oscillator natural frequency" input, the circuit

behaves as a bandpass �lter from the \exogenous input" to \output" ports. However, for certain

values of gain and phase shift through the feedback path, labeled \�" in �gure 1, it is well-known

that the LMS loop becomes unstable, in the sense that the feedback becomes positive.

Figure 4.1: Bandpass �lter circuit and oscillator representation.

In the upper-left corner of �gure 4.1 is a sketch of how the system can be viewed as an

oscillator. The oscillator point of view does not distinguish between stability and instability

based on whether the feedback is positive or negative. Stability for the LMS model corresponds

to a stable equilibrium point at the origin for the oscillator system, and instability for the LMS

model corresponds to a stable limit cycle solution for the oscillator system (the amplitude of the

oscillations are limited in practice by the range of the analog elements used). To further simplify
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the oscillator model, only the oscillator amplitude and phase (relative to the unforced natural

frequency) are retained. This information can be compactly modeled as a time-varying vector

in the complex plane, and is what is represented by the upward pointing arrow labeled \state"

in �gure 4.1. As will be demonstrated, the oscillator point of view leads to a simple analysis of

how the LMS loop functions as a bandpass �lter.

4.2.2 LMS loop bandpass �lter mathematical analysis

Each signal in the circuit is represented as a complex-valued function of time with magni-

tude corresponding to the amplitude of the signal and with angle corresponding to the phase of

the signal. If the signal is high-frequency, then its phase is measured with respect to the unforced

natural frequency of the oscillator (in this case the bandpass �lter programming frequency). The

goal is to derive the transfer function from the complex exogenous input to the state, which in

turn determines the bandpass �lter characteristic from exogenous input to output. (The follow-

ing analysis is a linearized analysis about the equilibrium point at the origin for the bandpass

�lter oscillator, and thus only applies when the equilibrium point at the origin is stable.)

Referring to �gure 4.1, and treating the integrator block as a single-pole low-pass �lter

with transfer function K=(s + !0), we have the following di�erential equation for the oscillator

state y(t):

_y(t) = �!0y(t) +Kx(t); (41)

with x(t) is given by

x(t) = u(t)� �y(t); (42)

giving

_y(t) = �(!0 +K�)y(t) +Ku(t): (43)

Thus, the transfer function from input to state is

Y (s)

U(s)
=

K

s+ (!0 +K�)

=
K

s+ (!0 +Kbej�)
; (44)
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where b = j�j and � = 6 �.

From this transfer function, we deduce that as the feedback path phase shift increases

toward instability for the LMS loop, the bandpass �lter center frequency shifts higher in fre-

quency, and the bandwidth of the �lter narrows, approaching the bandwidth of the low-pass

�lters used as the integrators. Also, as the feedback path phase shift increases, the �lter gain at

the center frequency increases. Clearly feedback path phase shift has a profound e�ect on the

performance of the complex LMS loop as a bandpass �lter.

4.2.3 Phase shift compensation circuit

Figure 4.2 shows a modi�cation to the circuit of �gure 4.1 to allow an additional compen-

sating phase shift to be incorporated, which could serve to bring the overall loop phase shift to

zero.

Figure 4.2: Bandpass �lter circuit with compensating phase shift.
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Figure 4.3 shows a nonlinear oscillator diagram for the phase compensation circuit. Oscil-

lators y1 and y2 are interconnected so that their stable equilibrium phases di�er by the feedback

path phase shift, 6 �. The input u to y1 is the bandpass �lter programming signal, which causes

the phase of y1 to allign with the phase of the programming signal. Therefore, the phase of y2

converges to the phase of the feedback path phase shift, 6 �. The phase of y2 is in turn used to

shift the phase of the bandpass �lter feedback signal so correct for the 6 � phase shift through

the feedback path of the bandpass �lter LMS loop.

* *

Y
1

Y
2

U

BANDPASS FILTER

EXOGENOUS INPUT

PHASE SHIFT

BY C
Y
3

OUTPUT

W = U
12

U

U

U

Figure 4.3: Coupled oscillators for compensating bandpass �lter feedback phase shift.

Figure 4.4 shows the general schematic for implementing the pair of coupled oscillators

y1 and y2. As indicated in �gure 4.4, complex conjugation simply amounts to a change in sign,

and hence with the di�erential circuits described in [19] implies no additional circuit complexity.

Although not shown explicitly in �gure 4.4, it is to be understood that the upper row of multi-

pliers, in particular, have a smoothly saturating input characteristic with respect to the input

signal from the other oscillator. Although all the analog components have �nite range, it is the

saturating characteristic of the �rst multipliers (in the multiply-integrate-multiply chain) which
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are assumed to apply the saturating characteristic in the dynamical equations used to describe

the coupled oscillator system.

OSCILLATOR NATURAL FREQUENCY

90o

_

_+

COMPEN-
SATING
PHASE
SHIFT

U

U

Y
1

Y
2

Figure 4.4: Coupled oscillator circuit showing complex conjugation.

The dynamical equations for the coupled oscillators y1 and y2 are

_y1 = �y1 + r(�jy2�
� + uj)

y2�
� + u

jy2�� + uj

_y2 = �y2 + r(�jy1�j)
y1�

jy1�j
; (45)

where !0 is taken to be 1 for simplicity. By the general stability result of section 4, the oscillator

network consisting of y1 and y2 will converge to steady-state magnitudes and phases. Changing

to the transformed coordinates, if there is no stable equilibrium point with aj = 0 for any j,

then we can conclude that the stable steady-state phases of y1 and y2 will be included in the set

X
k

r(�ak)bjk sin(�k � �j � �jk) + dj sin( j � �j) = 0; (46)

which in this case reduces to

r(�a1)b sin(�2 � �1 � �) + d sin( � �1) = 0
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r(�a2)b sin(�1 � �2 + �) = 0; (47)

where � = bei� and u = dei . The desired equilibrium solution is the one for which y1 is alligned

with u and the phase di�erence between y1 and y2 corresponds to the feedback path phase shift

of �:  
�1
�2

!
=

 
 

 + �

!
: (48)

The desired equilibrium solution is indeed an equilibrium solution, but there are other

equilibrium solutions as well. Futhermore, we must carefully rule out the possibility of a stable

equilibrium point with a1 = 0 or a2 = 0. For this simple two-oscillator network, if the steady-

state value of u is nonzero, then no equilibrium point has a1 = 0 or a2 = 0. (If the steady

state value of u is zero, the equilibrium point at the origin can be destabilized by choosing the

gain �b su�ciently large [9].) The technique for showing that the desired equilibrium point is

the unique stable equilibrium point uses the Lyapunov function, which for the two-oscillator

network becomes

V = �r(�a1)r(�a2)b cos(�2 � �1 � �)� r(�a1)d cos( � �1)

�T [��a1r(�a1) + log(2�I0(�a1))� �a2r(�a2) + log(2�I0(�a2))]: (49)

The equilibrium phases are 
�1
�2

!
=

 
 

 + �

!
(the desired equilibrium)

 
�1
�2

!
=

 
 + �

 + � + �

!
 
�1
�2

!
=

 
 + �
 + �

!
 
�1
�2

!
=

 
 

 + � + �

!
: (50)

However, for all but the desired equilibrium point, perturbing the equilibrium angles in the

expression for V is seen to reduce V . On the other hand, for the desired equilibrium point,

perturbing the equilibrium angles in the expression for V increases V . Hence, the desired

equilibrium point is indeed the unique stable equilibrium point.
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Now that we have shown that y1 and y2 converge appropriately in �gure 4.4, with the

steady-state phase of y2 corresponding to the feedback path phase shift of �, it is clear that

applying y�2 directly to the \compensating phase shift" input to the bandpass �lter in �gure 4.2

will bring the total loop phase shift to zero. The complex conjugation of y2 again involves no

additional circuit complexity, as it simply amounts to a sign change.

The practical importance of the coupled-oscillator approach to correcting for the feedback

path phase shift in the LMS-loop frequency-programmable bandpass �lter is that it addresses one

of the major limitations of a widely used and important high-speed analog feedback circuit con-

�guration. The frequency-programmable single-complex-LMS-loop bandpass �lter is a special

case of a more general network architecture, the least-mean-square-error adaptive �lter circuit

used in adaptive antenna arrays, co-site interference rejection circuits, and linear-predictor cir-

cuits for separating coherent from noncoherent signals. Each of these circuits requires feedback,

and feedback path phase shift is a major limitation at high frequencies of operation.

One aspect of the feedback path phase shift correction circuit worth emphasizing is that

the correct compensating phase is determined regardless of the feedback path phase shift over

the full range from zero to 2�. This property indicates that coupled oscillator circuits may prove

quite useful for high-speed analog feedback circuit design problems, where signal phase shifts

are large and di�cult to estimate.

5. Single Feedback Oscillator for Frequency Translation

5.1 Convergence Result

So far, we have generalized the basic �xed-weight network by allowing for an adaptive

control law to update some of the complex weights and by allowing for auxiliary inputs. However,

in order to guarantee convergence, a key assumption was the Hermitian symmetry of the weight

matrix. It turns out that a simpli�ed version of the same basic technique for proving convergence

can also be used for a single oscillator feeding back to itself with an arbitrary weight. In fact,
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this is precisely the situtation in the complex LMS loop with feedback path phase shift: the

complex LMS loop with a saturating characteristic in the high-speed feedback path acts as an

oscillator with the feedback weight determined by the feedback path phase shift. When used to

implement the LMS algorithm, the complex feedback weight must stabilize the equilibrium at

the origin, or the circuit is considered \unstable." However, with a feedback path weight value

which destabilizes the origin, the circuit is stable in the sense of converging to a stable limit

cycle, and this behavior can be employed to translate the natural frequency of the complex LMS

loop viewed as an oscillator to a di�erent output frequency determined by the complex weight

in the feedback path. One use envisioned for such a circuit is as a reference-frequency generator

for a continuous wavelet transform (CWT) circuit.

Figure 5.1 identi�es the signals relevant to the oscillator analysis: y is a complex number

representing the (low-frequency component of the) input to the low-pass �lter, x is a complex

number representing the low-pass �lter output, and c is the complex input signal (supplied as

voltages corresponding to its real and imaginary parts) providing phase shift in the feedback

path. (The x and y signals are interchanged with respect to the previous example to simplify the

algebra.) The signal y is passed through the lowpass �lter with corner frequency !0 to produce

x, so one equation for the circuit is

1

!0
_x = �x+ y: (51)

The high-frequency positive feedback with sigmoidal nonlinearity acts to amplify the complex

signal cx, and saturate its magnitude without altering its phase. This leads to the second

equation for the circuit,

y = r�(jcxj)
cx

jcxj
; (52)

where � is a real constant and z 7! r�(jzj)
z
jzj is a complex-valued function which compresses the

magnitude of its complex argument while leaving its phase unaltered. The small-signal gain of

the saturation function is parameterized by �. Combining these two equations gives

1

!0
_x = �x+ r�(jcxj)

cx

jcxj
: (53)
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Figure 5.1: Circuit for single feedback oscillator convergence analysis.

The next step is to change to polar coordinates. Letting

x = aej� (54)

c = dej�; (55)

we can rewrite the dynamics as

1

!0
_a = �a+ r�(da) cos � (56)

1

!0
_� =

1

a
r�(da) sin �: (57)

Now, we need to make some assumptions on the sigmoidal function r�(�). First, assume

that the parameter � simply multiplies the argument of r�(�), i.e.,

r�(a) = r(�a) 8a; � 2 <; a; � � 0: (58)

Second, r(�) must be strictly monotone increasing with r(0) = 0. Third, we will assume for

convenience that r(�) 2 C1. Finally, we require, as in section 2.4, that a function h(�) exist
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satisfying

lim
a!1

h(a)

r2(a)
= 1;

@h

@a
= ar0(a); and

h(0) = constant: (59)

These assumptions on r�(�), which are not overly restrictive, are required for the following

convergence analysis, which is used to conclude that the magnitude a of x converges to an

equilibrium value regardless of initial conditions.

To prove convergence of the oscillator output amplitude, de�ne the Lyapunov function

V (a) = �
1

2
r(�da)2 cos � + h(�da): (60)

We �rst observe that our assumptions on r(�) imply that V is radially unbounded in its argument

a (recall that V (a) is radially unbounded in its argument a if V (a) ! 1 as a ! 1). Next,

calculating _V (a) = @V
@a

_a, we obtain

@V

@a
= ��dr0(�da)r(�da) cos � + �

@h

@a

= ��dr0(�da)[�a + r(�da) cos �] (61)

_V (a) =
@V

@a
_a

= ��dr0(�da)[�a + r(�da) cos �]2: (62)

The assumptions on r(�) are su�cient to conclude that _V (a) � 0 8a, and _V (a) = 0 if and only

if

� a+ r(�da) cos � = 0; (63)

which holds at a point x = aej� if and only if it is an equilibrium point of the dynamics. (The

singularity in the polar change of coordinates poses no problem because it is easy to see that

the origin is an equilibrium point. For the circuit to work as an oscillator, we will want the

equilibrium point at the origin to be unstable.) Combining the radial unboundedness of V (a),

the fact that _V (a) � 0 and _V (a) = 0 only at equilibrium points, and the observation that in fact
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the dynamics for a actually follow the negative gradient of V (a), we can conclude by the same

arguments as in the previous convergence analyses that a converges to an equilibrium value.

5.2 Example: Continuous Wavelet Transform Circuit

5.2.1 Overview of the Continuous Wavelet Transform Application

The continuous wavelet transform (CWT) is currently seen as a potential alternative to

digital signal wavelet processing in certain application areas in which the digital approach is

too slow for real-time processing. Passive monitoring of the electromagnetic environment, radar

systems, communications, and data compression are examples of potential application areas for

the continuous wavelet transform.

An analog (e.g. microelectronic) CWT approach is based on the idea that the CWT can

be realized using a bank of bandpass �lters. Furthermore, because resolution in the time domain

as well as in the frequency domain is intrinsically important for the CWT, the bandpass �lters

can be second-order, the lowest order possible for a bandpass �lter.

Within a CWT system, there are two uses envisioned for microelectronic oscillator circuits.

First, bandpass detectors implemented in the form of synchronous receivers require reference fre-

quencies to be available to mix with the receiver input signal. As a reference frequency generator,

the feedback oscillator circuit would be operating in its steady-state mode of operation.

The second CWT use for the microelectronic oscillator circuit would be to generate an

approximation to the wavelet corresponding to the bandpass �lter impulse response functions.

The impulse response of a second-order bandpass �lter is a burst at the center frequency of the

�lter with an exponentially decaying envelope whose time constant is related to the bandpass

�lter bandwidth. The transient response of the single feedback oscillator circuit is a burst at

a frequency determined by design and with an exponentially growing envelope. Therefore, the

bandpass �lter with the same center frequency and bandwidth corresponding to the exponential

time constant of the envelope serves as a matched �lter for the signal generated by the oscillator
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circuit.

5.2.2 Design Equations for Steady-State Operation

Figure 5.2 shows the single feedback oscillator circuit acting as a quadrature reference

frequency generator for a CWT system. The sigmoidal transfer characteristic is simply the

input saturating characteristic of the multiplier which multiplies the feedback signal by the

high-frequency reference input, and hence is not a distinct component. Furthermore, the low-

pass �lter is just a capacitor placed across the di�erential multiplier outputs, and the summers

are simply nodes where currents combine. Therefore, the oscillator circuit really only consists

of 10 multipliers, and it provides both I and Q output signals (90o out of phase).

_

LPF
Fo

LPF
Fo

_

IM(C)
RE(C)

I IN (Fr) Q IN (Fr)

Q OUT (Fr+Fo tan O)

I OUT (Fr+Fo tan O)
SIGMOID IMPLEMENTED BY FIRST MULTIPLIER

Figure 5.2: Single feedback oscillator frequency translator.

From the convergence analysis, we have the following dynamical equations for the oscillator
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output:

1

!0
_a = �a+ r�(da) cos � (64)

1

!0
_� =

1

a
r�(da) sin �: (65)

The convergence analysis showed that the output amplitude a converged to a constant value, so

that in steady state,

� a+ r�(da) cos � = 0: (66)

The steady-state equation for �, which represents the output signal phase with respect to the

oscillator input frequency, then becomes

1

!0
_� = tan �; (67)

where � is assumed to be constant. Hence, the phase of the output signal, in steady state,

advances at a constant rate given by !0 tan �, which means that the output is frequency-shifted

with repect to the input by !0 tan �.

Thus, the output frequency of the oscillator circuit is given by the input frequency plus

a term which depends on RC values (!0) times a term which is given by dc electrical inputs

(tan �). Therefore, if a number of oscillators which are identical except for geometrically scaled

!0 values are driven with the same input frequency, the electrical input c = dej� can be used

to correct for processing uncertanties in the !0 values. This is an important feature for a

microelectronic circuit, because while ratios of time constants can be made relatively accurately

on an IC, the absolute values have a very large uncertainty (as high as 50%). Furthermore,

using feedback control, � could be controlled to maintain the correct frequency ratios despite

temperature changes.

Examination of the dynamics for a, equation (64), reveals that in order to destabilize

the origin as an equilibrium point, j�j must be su�ciently close to zero and �da must be large

enough to overcome the decay term �a. The larger �d is, the larger j�j can be, up to �=2, where

the feedback is guaranteed to become negative. If � = 0, then the small signal gain through
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the feedback loop must be greater than unity to prevent the oscillator output from decaying.

In practice, there is a tradeo� between having a low feedback loop gain (to minimize power

dissipation) and control authority through �.

Even though the steady state output amplitude depends on both d and �, the magnitude

and polar angle of the complex input c, the output frequency only depends on � and is indepen-

dent of d. Therefore, the output frequency and amplitude can be tuned sequentially, another

nice feature of this oscillator circuit.

5.2.3 Design Equations for transient operation

For the transient analysis of the circuit starting from an initial condition near the origin

so that the output appears as a sine-wave burst with exponentially growing envelope, we need

to reexamine the dynamical equations for a and �. If we assume that the slope of r(�) is unity

at the origin, then the dynamics become, approximately,

1

!0
_a = (�d cos � � 1)a (68)

1

!0
_� = �d sin �: (69)

Both the output frequency shift !0�d sin � and the time constant associated with the exponential

growth, 1=[!0(�d cos �� 1)], depend on d and �. The design equations for this case are thus two

equations in two unknowns. In fact, since !0 is also a design parameter, many combinations of

output frequency and envelope time constant can be obtained.

6. Implementation of Coupled Oscillator Circuits in Analog CMOS

To illustrate one approach for implementing the oscillator dynamics described in this

work in analog CMOS hardware, consider the single feedback oscillator circuit of �gure 5.2.

The transistor-level circuit design basically comes down to deciding what type of four-quadrant

multipliers to use for the ten multipliers appearing in the circuit, and then ensuring that the

small-signal gain, sigmoidal nonlinearity, and lowpass �lter time constant are correctly accounted

for. The two multipliers whose outputs go to the low-pass �lters are identical, the four multipliers
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which perform the complex multiplication between the lowpass �lter outputs and C are identical,

and the four multipliers which produce the I and Q output signals are identical, so the design

problem reduces to the design of only three distinct multiplier circuits.

Based on the success of the wide-range Gilbert multiplier circuits used in [19], the wide-

range Gilbert multiplier circuit, shown in �gure 6.1, would be a good choice for all three distinct

multiplier circuits. However, di�erent choices of transistor sizes are needed to provide the ap-

propriate small-signal gain and saturating characteristic. Figure 6.2 shows multiplier star curves

(from a PSPICE simulation) appropriate for the input-saturating multiplier. A fundamentally

di�erent approach for implementing the oscillator dynamics directly in the form of complex

signals instead of as high-frequency real signals with di�erent phases is described in [9].

VCOM

IM

VSF

VDD

VCOM

VOUT

VFEED

+

_ +

_

C

VIN

+

_

Figure 6.1: Wide-range Gilbert multiplier circuit.
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Figure 6.2: Simulated star curves for multiplier with saturating input characteristic.
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7. Conclusion

To summarize, convergence results for a class of networks of nonlinear coupled oscillators

(or directional units, depending on the point of view taken) have been presented. Physical

motivation has been given for the simplest network considered, but the convergence results for

the rest of the networks are based solely on the adaptability of the original Lyapunov function

arguments to the various networks.

The �rst modi�cation to the �xed-weight network was the adaptively controlled network,

which might be of interest for hierarchical control in systems with both local and global feedback.

The second modi�cation was the incorporation of external control inputs to the coupled oscillator

network, and the example discussed was a pair of coupled oscillators for correcting for the

feedback path phase shift of a complex LMS loop for adaptive �lter applications. The third

modi�cation yielded a single oscillator with feedback through a complex weight, producing

a circuit of potential interest for continuous wavelet transform applications. Analog CMOS

implementation of the coupled oscillator dynamics was also brie
y discussed.

This work represents a �rst attempt at applying a particularly basic form of coupled

oscillator network to actual engineering problems. What the most useful oscillator network

paradigms are, to what extent oscillator networks can be used in hierarchical control systems,

and what the best implementation techniques are for high-speed analog circuit implementation

all remain open questions.
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