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A second-order accurate model has been developed and validated for modeling

the unsteady aerodynamics of a wind turbine. The free-vortex wake method consists

of the Lagrangian description of the rotor flow field and viscous effects were incor-

porated using a viscous splitting approach. The wake geometry solution was then

integrated with the rotor aerodynamics model in a consistent manner. The analysis

was then used to predict the performance and airloads on a wind turbine in the

upwind configuration under unyawed and yawed flow conditions. The present work

has demonstrated the versatility and robustness of the free-vortex wake method for

wind turbine applications.

The understanding of the accuracy and the stability of the numerical method

is very important in developing robust wake methodology. The accuracy of the

straight-line segmentation method has been examined for a vortex ring and helical

vortex, and it has been shown to be second-order accurate. However, a minimum

discretization of ten degrees is shown to be required to obtain second-order accuracy

and also keep the maximum error in the induced velocity field less than 10%. Lin-



ear and nonlinear numerical stability of various time-marching schemes were also

examined, and a two-step backward differencing scheme was chosen. The overall

numerical solution was demonstrated to converge with a second-order accuracy.

The nonlinear unsteady aerodynamics of the blade section was modeled using

the Leishman–Beddoes dynamic stall model modified for wind turbine applications.

The numerical simulations captured the dynamics of the unsteady flow over the air-

foil surface for both attached and stalled flow conditions. Validation of the numerical

predictions of the aerodynamic force coefficients against measurements obtained for

the S809 airfoil showed overall good agreement. It has been shown that with a

proper representation of the static stall characteristics, this model can be used to

predict dynamic stall for airfoil sections typical of those used for wind turbine appli-

cations. The unsteady airfoil model coupled with the blade model also adequately

represented the three-dimensionality of the unsteady flow field for a parked blade,

under both steady and unsteady flow conditions.

The wake geometry solution integrated with the blade model was then used

to predict the performance and airloads for a wind turbine tested under controlled

conditions. It has been shown that it is important to accurately predict the transient

wake aerodynamics to obtain accurate estimates of the unsteady airloads and power

output. The skewed wake geometry behind an upwind wind turbine was successfully

predicted in yawed flow conditions over a range of yaw angles and tip speed ratios.

Measurements from the Phase VI of the NREL/NASA Ames wind tunnel test were

used for validating the predictions of performance and airloads. The variation of the

turbine thrust and the aerodynamic power output with wind speed was adequately

predicted. Spanwise distributions of the aerodynamic coefficients were represented

well, and encouraging agreement was obtained against the measured coefficients.

The azimuthal variation of loads showed that the unsteady aerodynamic behavior

of the the wind turbine was adequately represented, with some exceptions.
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Chapter 1

Introduction

1.1 Historical Development of Wind Turbines

Wind energy is one of the leading contenders among renewable sources of en-

ergy. The cost of wind energy has steadily decreased over the last few decades,

mainly because of the improvement in design and reliability of wind turbines. Wind

energy has been used for centuries in the form of windmills for milling grain and

pumping water. Some authors maintain having discovered stone windmills used

in Egypt, which are suspected to be 3,000 years old [1]. From the seventh to the

eleventh century, windmills were developed in Persia, Afghanistan, and China; these

were mainly vertical-axis windmills. The horizontal-axis windmill design, which is

the most commonly used design in present times, was probably developed indepen-

dently in Europe, with a lot of success in Germany, the Netherlands, and France.

Figure 1.1 shows a photograph of a Dutch windmill used in the early 19th century.

In America, Daniel Halladay [1] is credited with the invention of the first com-

mercially successful windmill. Initially, American “fan” windmills were small and

were designed for pumping water. In the late 19th century, some larger windmills

were designed for industrial water supply system. The transition of windmills to

wind turbines for producing electricity happened somewhere at the end of the 19th

century. Charles Brush, an industrialist in Ohio, is credited with erecting the first

windmill [2] to supply 12 kW of DC power to charge storage batteries. The Brush

windmill had an upwind rotor with 144 blades, and was 17 m in diameter mounted

on an 18 m high tower.
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Figure 1.1: A photograph of a Dutch windmill.

The improvement in windmills or wind turbines from medieval times to the

17th century was not a result of any systematic research, but more of trial and error.

The fundamental physics of wind turbines technology was first developed by the end

of the 17th century. Gottfried Leibniz, Daniel Bernoulli and Leonhard Euler were

among the first researchers to apply the physical and mathematical principles in

wind turbine design. However, Paul LaCour in Denmark was the first to conduct

wind turbine research using engineering principles. He was probably the first to use

a wind tunnel to study the aerodynamics of the blades of a wind turbine. LaCour

also solved the problem of energy storage using the direct current produced by

the wind turbine for electrolysis, and stored the hydrogen gas thus produced [1].

Figure 1.2 shows a four bladed LaCour Lykkegard wind turbine, with rectangular,

twisted blades. In the early 20th century, LaCour wind turbines generating 5 to 25

kW of power were extensively used for agriculture.

The use of wind energy in the 20th century has always fluctuated with the price
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Figure 1.2: A four bladed windmill designed by LaCour for generation of electricity.

of conventional sources of energy. It was during the Second World War (WWII)

that F.L. Smith and several other companies began successfully producing two- and

three-bladed wind turbines. In the early 1950s, the turbines were equipped with the

first AC generators, rather than the conventional DC generators. The interest in

wind turbines dropped again when the energy crisis of WWII had passed. Cheap

oil and the development of nuclear power in the 1950s led to a decline of interest

in wind turbine technology. However, the oil crisis of the 1970s again propelled

renewed interest in wind energy. In the last few decades, the increasing cost of

conventional sources of energy, compounded by increased realization of the effects

of these energy sources on pollution, global warming, health, etc., have also propelled

the development of renewable energy technologies. At present, wind energy is the

fastest growing renewable energy technology, with an increase in the world wind

energy capacity from 2,000 MW in 1990 to approximately 40,000 MW in 2004. The

wind energy potential in the US is 10,777 billion KWh, which is twice that of the

electricity generated in the US at the end of 2004.
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Fuel Levelized costs (cents/kWh)

Coal 4.8–5.5

Natural gas 3.9–4.4

Hydroelectric 5.1–11.3

Nuclear 11.1–14.5

Wind 4.0–6.0

Table 1.1: Comparison of the levelized cost of various energy options according to

California Wind Energy Commission (CWEC) energy technology report. (Taken

from Ref. 3).

Table 1.1 shows a comparison of the levelized costs of various energy options

according to a California Wind Energy Commission energy technology report in

1996 [3]. It can be seen that the cost of wind energy is still relatively high as

compared to the conventional sources of energy. Better and more reliable design

of the various components of a wind turbine, such as the rotor blades, nacelle and

the tower is, thus, very important for reducing the cost per unit of energy extracted

from wind.

1.2 Energy Extraction Using a Wind Turbine

A wind turbine is a device that extracts the kinetic energy of the wind from

the mass of air that flows through the turbine disk. Wind turbines can be classified

according to their aerodynamic function or their conceptual design. The simplest

type of wind turbines use aerodynamic drag surfaces to capture the power of the

wind. However, the maximum power coefficient of a pure drag rotor is limited to only

0.2, which is less than 30% efficient. On the other hand, wind energy converters using

aerodynamic lift can achieve considerably higher power coefficients. Approximately

80− 90% of modern wind turbines use aerodynamic lift to capture the power of the

wind.
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The second way to classify wind turbines is based on their design, and this is

determined by the axis of rotation of the rotor plane: vertical axis or horizontal axis

wind turbines. Vertical axis wind turbines (VAWT) have a vertical axis of rotation,

and are really the oldest form of design. The first designs of VAWT were purely drag

based rotors, such as the Savonius rotor. Purely drag based designs turn relatively

slowly, but yield a high torque. They can be useful for grinding grain, pumping

water, and many other tasks but are not as good for generating electricity. However,

vertical axis wind turbines using aerodynamic lift concepts have also been designed.

French engineer Darrieus proposed a design where the rotation of the blades follow

a “spinning rope” or “eggbeater” pattern, with a vertical axis of rotation, as shown

in Fig. 1.3. A variation of the Darrieus rotor is the H-rotor design [4], where straight

blades connected to the shaft by struts are used. Even after the advantages such

as simplicity of their design and elimination of the need for a yaw mechanism,

VAWTs have not been very successful in the commercial wind turbine market. The

disadvantages of this design include an inability to self-start, an inability to control

power output by pitch of the rotor blades and aeroelastic issues for larger wind

turbines.

The horizontal axis wind turbines (HAWT) have a horizontal axis of rotation.

About 95% of the wind turbines, which are used to produce electricity, follow this

design. There are several advantages of the HAWT design such as the ability to

control power and rotational speed using blade pitch control. This design has the

ability to achieve high efficiency using aerodynamically optimized blades. However,

one of the main disadvantages of HAWTs is dependence of power output on the

wind direction, and the need for a yaw control mechanism. Figure 1.4 is a schematic

showing the components of a HAWT.
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Figure 1.3: A 500 kw variable speed Darrieus wind turbine installed by the DOE.

1.3 Momentum Theory

In this section, the mechanism for energy extraction is discussed for horizontal

axis wind turbines only. The axial momentum method in which the rotor is modeled

as an actuator disk is used. This analysis was first developed for propellers by

Froude [5], Betz [6] and Lanchester [7]. Assuming that the mass of air slowed down

can be separated from the unaffected mass by a boundary, a streamtube can be

formed by extending it upstream and downstream of the turbine disk, as shown in

Fig. 1.5. The mass flow rate of the air will be constant across all cross-sections (with

the assumption that no air crosses the streamtube boundary). This means that the

streamtube expands behind the turbine disk, where the air is slowed down.

An actuator disk concept can be used to explain the energy extraction process.

As shown in Fig. 1.5, the mass flow rate of the air through a given cross section of

the stream-tube is given by

ṁ = ρAU (1.1)
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Figure 1.4: Schematic of a horizontal axis wind turbine showing the major compo-

nents. (Taken from Ref. 1.)
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Figure 1.5: A simple schematic of the control volume showing the extraction of

energy by a wind turbine.

The mass flow rate should be same everywhere along the streamtube so from con-

tinuity

ρA∞U∞ = ρAU = ρAwUw (1.2)

where A∞ and Aw are the areas of a cross-section upstream and downstream of the

disk, respectively. Similarly, U∞ is the free-stream velocity upstream of the turbine

and Uw is the velocity of air in the wake of the turbine. Taking an axial induction

factor a, the net streamwise velocity at the disk is given by

U = U∞(1− a) (1.3)

The net rate of change of momentum is equal to the change in velocity times the

mass flow rate. This change in momentum comes from the pressure difference across

the actuator disk. Therefore,

(pd − pu)A = (U∞ − Uw)ρAU∞(1− a) (1.4)

To obtain the pressure difference, the Bernoulli’s equation is applied both upstream
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and downstream of the turbine disk. Assuming incompressible flow and no change

in height, the Bernoulli’s equation upstream of the disk can be written as

1

2
ρU2

∞ + p∞ =
1

2
ρU2 + pu (1.5)

Similarly, Bernoulli’s equation on the downstream can be written as

1

2
ρU2 + pd =

1

2
ρU2

w + p∞ (1.6)

Subtracting Eq. 1.5 from 1.6 gives

(pd − pu) =
1

2
ρ(U2

∞ − U2
w) (1.7)

Equation 1.4 then gives

1

2
ρ(U2

∞ − U2
w)A = (U∞ − Uw)ρAU∞(1− a) (1.8)

which results in

Uw = (1− 2a)U∞ (1.9)

This implies that the loss in the speed of the wind is equal upstream and downstream

of the turbine disk. The net thrust on the turbine disk is then given by the rate of

change of momentum and is equal to

T = (pd − pu)A = 2ρAU2
∞a(1− a) (1.10)

Similarly, the power extracted from the wind turbine is given by

P = TU = 2ρAU3
∞a(1− a)2 (1.11)

The power coefficient, which defines the ratio of the power extracted to the power

available in the air is defined as

CP =
P

1
2
ρAU3

∞
(1.12)

Substituting the expression for power from Eq. 1.11, then

CP = 4a(1− a)2 (1.13)
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The maximum value of CP occurs when

dCP
da

= 4(1− a)(1− 3a) = 0 (1.14)

which gives a = 1/3. Therefore, the maximum value of the power coefficient is then

CPmax = 16/27 = 0.593 (1.15)

The maximum value of power coefficient achievable by a wind turbine is called the

Betz limit after German aerodynamicist, Albert Betz, who derived this theoretical

limit [6]. This value of the power coefficient corresponds to 100% extraction of energy

from the air. The same conclusion was drawn by Lanchester [7] independently, and

this limit is sometimes called the Lanchester–Betz limit. However, it has been

theorized by van Kuik [8] that the assumption of no radial force on the streamtube

does not hold, and a slightly higher maximum power coefficient than the Betz limit

can be achieved. In addition to this, the use of flow diffusers [9] or tip vanes [10]

can increase the value of CPmax .

1.4 Factors Affecting the Power Output

The electricity produced from wind turbines is the cleanest form of energy with

minimal environmental footprint. However, the higher cost of electricity produced

from wind turbines is still a limiting factor in the acceptance of wind energy. Techni-

cal improvements in turbine design, new blade materials, electrical generators, etc.,

over the past two decades has helped to reduce the cost of wind energy by almost

tenfold. Besides the technological development, government subsidies, transmission

tax and the cost of financing, are also important factors in determining the cost of

wind energy. In Europe, favorable policies and encouragement from the government

has led to rapid developments in wind turbine technology. In Denmark, almost 20%

of the electricity consumed is produced using the wind.

However, the improvement in the wind turbine technology areas still holds the

key to reduction in the cost per unit of energy from the wind. This can be achieved,
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in part, by developing a thorough understanding of the complicated aerodynamics

and dynamics of a wind turbine. Various factors that play an important role in the

design of wind turbine are now discussed.

1.4.1 Wind Regime

The mean annual wind speed at the hub height of the wind turbine is the most

important parameter that determines the energy captured by a wind turbine. As

shown in Eq. 1.11, the energy extracted by a turbine from the wind varies as the

cube of the average wind speed. For example, a wind turbine site with average wind

speed of 6 ms−1 theoretically produces 72% more power than at a site with average

wind speed of 5 ms−1. However, at higher wind speeds, the net power output of a

wind turbine is either limited by the blade stall or otherwise regulated by the control

system to prevent high loads on the turbine components.

Wind resource assessment is one of the most important aspects of a wind farm

design. In the planning phase of a wind farm, wind speed is usually monitored over

a range of 6 months to 1 year by obtaining several types of meteorological data

from the planned site. The spatial and temporal variability of the wind at the site

are important in the overall output from the turbine because it directly affects the

annual energy production (AEP) and the structural fatigue life of the turbine.

Figure 1.6 shows a typical variation of the power output with increasing wind

speed. As the average hub-height wind speed increases beyond 4 ms−1, turbine

starts to produce power. This speed is defined as the cut-in speed (Vcut−in) of a

wind turbine. The cut-in wind speed is governed, in part, by the torque required

to overcome friction and drive train losses. The power produced then increases as

the cube of wind speed, and reaches a maximum power output at the rated wind

speed (Vrated). At higher wind speeds, the loads on the turbine become very large,

and it would have to be very heavy and expensive to carry the loads. Therefore,

wind turbines are designed to reach a maximum power output, after which the
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Figure 1.6: Typical variation of the power output of a wind turbine with the average

wind speed at the hub.

power produced is controlled either by flow separation on the blades (stall controlled

turbines) or pitch control (most of the larger wind turbines use this form of control).

At very high wind speeds (usually more than 25 ms−1), wind turbine blades are

locked into a parked position to prevent excessive loads and subsequent damage to

the turbine. This wind speed is defined as the cut-out speed (Vcut−out).

1.4.2 Rotor Swept Area and Hub Height

The power output of a wind turbine is directly proportional to the area swept

by the rotor blades, i.e., to the square of the rotor diameter, as can be seen from

Eq. 1.11. Therefore, larger the blades the higher is the power output from a wind

turbine. However, the blade mass also increases with increasing size of the turbine,

and the blades become more expensive. For sites with very high wind speeds, such

as offshore wind turbines, very large blades (with a diameter of up to 100 meters)

are used. An increase in power output can also be achieved by increasing the hub

height. With a greater hub height, the wind turbine operates out of the ground

boundary layer, and so sees a higher annual mean wind speed. The minimum value
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2.3. BLADES

current is then distributed by a transformer to the grid. Many different design
concepts are in use. The most common ones are two- or three-bladed, stall or
pitch regulated, horizontal-axis machines working at variable or near fixed rotational
speed.
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Figure 2.2: Wind turbine layout. Reproduced from [53].

2.3 Blades

All forms of wind turbines are designed to extract power from a moving air stream.
The blades have an airfoil cross-section and extract wind by a lift force caused by
a pressure difference between blade sides. For maximum efficiency, the blades often
incorporate twist and taper.

LM Glasfiber in Denmark is the largest independent blade manufacturer with a
product range that consists of standard blades in lengths from 13.4 to 61.5 metres
for turbines from 250 kW to 5 MW, Figure 2.3. The information in this section is
based on references [3, 22,24].

2.3.1 Material

Wood has a natural composite structure of low density, good strength and fatigue
resistance. The drawbacks are the sensitivity to moisture and the processing costs.
There are, however, techniques that overcome these problems.
Most larger wind turbine blades are made out of Glass fibre Reinforced Plastics
(GRP), e.g. glass fibre reinforced polyester or epoxy. According to [33], is a weight

5

Figure 1.7: Layout of a modern wind turbine describing the various components.

of the hub height is obviously determined by the radius of the rotor.

1.4.3 Power Control and Electronic Monitoring

The power control mechanism also has an influence on the annual energy yield.

Blade stall as a means of power control is usually only used for smaller wind turbines.

However, this leads to non-optimal operation in the partial load regime, leading to

approximately 1 to 3 % loss in the annual energy yield. Blade pitch control, on the

other hand, is usually used for larger wind turbines. This form of power control

provides better conditions for optimal energy capture, especially if it is combined

with variable-speed operation. Wind turbines operate at maximum efficiency only

at a given tip-speed ratio. In a variable speed turbine, the rotational speed of the

rotor is adjusted so that it operates at this optimal tip-speed ratio. This improves

the power captured from the wind, and is commonly used in most of the large wind

turbines.

1.4.4 Layout of a Modern Wind Turbine

About 95% of the wind turbines producing electricity in the world are hor-

izontal axis wind turbines. The hub is connected to the generator via a gearbox.
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Both the generator and the gearbox are housed in a nacelle, as shown in Fig. 1.7,

which shows the general layout of a wind turbine. The nacelle is mounted on the

tower, which can be either a tubular or lattice tower. A tubular tower allows for

access to the generator, the gearbox, and the rotor, from within the tower. This

is advantageous in bad weather conditions. On the other hand, the lattice tower

design is cheap with considerable material savings. The electric current produced

by the generator is then distributed to the transformer through high voltage cables

located inside the tower.

Two- and three-bladed turbines are the most commonly used designs for mod-

ern wind turbines. The blade cross section is made of an airfoil designed to produce

lift as the blades rotate. Most large wind turbine blades are made from glass fiber

reinforced plastic (GRP) or carbon fiber reinforced plastic (CFRP). Wood is also

a light-weight, good strength, and fatigue-resistant material, but the sensitivity to

moisture and processing costs are a drawback. However, blades for some small wind

turbines are still made out of wood.

1.5 Aerodynamic Environment of a Wind Turbine

Wind turbines operate in a very complicated aerodynamic environment [11,12].

Turbulent winds, ground boundary layer, yawed flows, tower shadow effects, spatial

and temporal shear layer, and the vortical wake behind the wind turbine compound

the difficulties in predicting the aerodynamics of a wind turbine. With each revo-

lution, a wind turbine rotor undergoes complete gravity stress reversal, along with

out-of-plane cyclic loading as a result of these effects. Because of these unsteady

loads on a wind turbine, it is subjected to a severe fatigue loading. Therefore, fa-

tigue loads are one of the key criteria for the design of a wind turbine. Coupled with

the elastic deformation of the blade, these unsteady loads can also cause aeroelastic

instabilities. With modern wind turbines, which are flexible and bigger, under-

standing the coupling between the aerodynamics and the structural dynamics of
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wind turbines becomes even more important. Figure 1.8 shows various components

of the aerodynamic environment of a horizontal axis wind turbine.

1.5.1 Yawed Flow

Wind turbines experience yawed flow for a substantial amount of their oper-

ational time. Yawed flow operation means that the wind direction is not always

perpendicular to the rotor disk. This is quite common as the wind direction on

a site is not constant and changes continuously. A crossflow velocity leads to an

asymmetry in the magnitude of wind speed over the azimuth. This leads to an

asymmetry in the local airloads and fluctuations in the power output.

Operation in yawed flow results in a loss of power output from the turbine

for a given wind speed. If Λ is the yaw error in tracking the wind speed, it can

be easily shown that the power output will be proportional to the cube of the yaw

angle, i.e., Poutput ∝ Λ3. Most of the modern large wind turbines use yaw control to

ensure that there is no yaw error. However, sudden changes in the wind direction

or crossflow gusts cause the turbine to operate in yawed flow. Moreover, for smaller

wind turbines, yawing the rotor out of the wind has also been used for power control

in high wind speeds. Cyclic variation in the loads as a result of the asymmetry in flow

conditions reduce the fatigue life of various mechanical components. The operation

of the turbine blade sections beyond stall in yawed flow can also lead to dynamic

stall. Dynamic stall is characterized by a considerable hysteresis in the airloads and

reduced aerodynamic damping, particularly in torsion [13].

1.5.2 Turbulence

The wind speed, U , at any instant in time consists of two components: a mean

speed, Ū , that is determined by the seasonal, synoptic and diurnal effects, with a
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Figure 1.8: A schematic of the unsteady aerodynamic environment of a wind turbine

(Reproduced from Ref 1).

14

Figure 1.8: A schematic of the unsteady aerodynamic environment of a wind turbine.

(Reproduced from Ref. 1.)
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Figure 1.9: Rotor blade flapwise bending deflection without and with the inclusion

of turbulence spectrum for a HWP-300 wind turbine. (Reproduced from Ref. 14.)

turbulent fluctuation part u′, i.e.,

U = Ū + u′ (1.16)

Turbulent fluctuations in the wind are a result of friction with the earth’s surface and

also thermal effects. The flow disturbances resulting from friction can be thought of

as a result of the roughness of the earth’s surface, and also because of topographical

features such as hills, mountains, etc. Thermal effects cause the air mass to move

vertically as a result of variations in temperature, which leads to the formation of

turbulent eddies.

Turbulence can be described as a chaotic process, and can be described in

terms of its statistical properties. Turbulence intensity, which is a measure of the

overall level of turbulence, can be defined as

I =
σ

U
(1.17)

where σ is the standard deviation of the wind speed. The turbulent intensity varies

with the wind speed, the earth’s surface roughness, and topographic features [15].

The minimum value of turbulence intensity (about 5%) is usually found over the

open sea and the maximum value (around 20%) is found in dense forests. Turbulent
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fluctuations cause unsteady airloads on the turbine blades with sharp peaks in the

load history. Fluctuating loads on different components of a wind turbine from the

turbulent winds also leads to structural fatigue loads.

Figure 1.9 shows the effect of wind turbulence on a specific dynamic load

situation showing the flapwise bending deflections with and without the inclusion

of turbulence. Note that that the maximum deflection value is almost doubled after

the inclusion of the turbulence spectrum.

1.5.3 Wind Shear and the Ground Boundary Layer

The presence of the ground boundary layer leads to vertical shear in the wind

speed. The mean horizontal speed of the wind at the surface of the earth is zero and

increases with the altitude. A ground boundary layer can be as large as 50 m above

the earth’s surface. An example of a typical wind speed profile is shown in Fig. 1.10.

The instantaneous profile shows large peaks associated with gusts and turbulent

eddies. The solid line shows the steady wind speed profile, which is obtained by time

averaging the instantaneous speed. The principal effect that governs the properties

of the boundary layer are the surface roughness, the strength of the geostrophic

wind, thermal effects, and the Coriolis effects from earth’s rotation. Thermal effects

are the most important effect governing the strength and properties of the boundary

layer.

The variation of wind speed with height above ground is important for both

the assessment of the wind energy resource and the design of wind turbines. If the

rotor disk is operating in the presence of the wind shear, wind impacts the rotor

asymmetrically. During each revolution, a blade experiences higher wind speed in

the upper rotational half than the lower half. This leads to cyclic varying loads on

the blades with higher loads in the upper half than lower half. A representative

result demonstrating the effect of the wind shear on the flapwise bending moment is

shown in Fig. 1.11. The cyclic loading of the blades and other parts of the turbine
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Figure 1.10: A typical profile of the wind speed, with both the instantaneous and

steady components shown. (Reproduced from Ref. 16.)

causes considerable fatigue loads. Power output is also affected by the rotor above

ground. The designer has to come up with an optimum hub height to balance the

the excess energy captured against the cost of taller tower.

1.5.4 Tower Shadow Effects

The rotor of a horizontal axis wind turbine rotates very close to the support

tower. To limit the size of the nacelle supporting the rotor, the clearance between

the rotor and the tower is usually small. This leads to an aerodynamic flow around

the tower and an influence of the turbine. These interference effects are minimized

for the upwind configuration of a HAWT. In this configuration, the rotor is mounted

upwind of the tower, and the tower shadow effect manifests as slowing of the flow in

front of the tower. For modern wind turbines with slender towers, this effect is quite

small. For downwind turbines, the tower is mounted upstream of the turbine disk.
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Figure 1.11: Cyclically varying flapwise bending moment with a high wind shear.

(Reproduced from Ref. 1.)

Hence, the tower shadow effect is significant because the rotor blades encounter the

wake of the tower during each revolution. The reduced wind speed near the tower

changes the effective angle of attack at the rotor blades, which affects the forces and

torque.

Figure 1.12 shows an example of the azimuthal variation of the torque output

for a two-bladed wind turbine. The flow behind the cylindrical cross section of the

tower is turbulent, with the alternative shedding of vortices from the cylindrical

tower with a defined frequency (called as Kàrmàn vortex sheet). This frequency

can fall within the range of of some of the turbine’s natural frequencies, especially

those of the drive train. The aeroelastic problems caused by the rotor wake (which

persists long enough), and the noise generated by the downwind wind turbines, has

led to almost complete disappearance of downwind type wind turbines.
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Figure 1.12: Influence of the tower shadow on the rotor torque for the experimental

MOD-0 wind turbine. (Reproduced from Ref. 1.)

1.5.5 Wake Array Effects

For the economical use of wind energy, wind farms consist of a number of

individual wind turbines arranged on a given site. The wind turbines situated

upwind for a given wind direction affect the flow downwind of the turbine, causing

significant turbulence mainly because of the strong vortical wake behind the turbine.

This effect is called the wake array effect, and poses significant challenge for a wind

farm designer. The optimum placement of wind turbines on the site is one of the

major challenges in designing a wind farm because the loss in power capture from

wake array effects can be significant.

Representative results of the energy loss for a 6 × 6 array of wind turbines

spaced 10 diameters apart in the prevailing wind direction [17] is shown in Fig. 1.13

as a function of the crosswind spacing and the turbulence intensity. It can be

seen that losses of almost 15 − 20% is possible for a small crosswind spacing. The

total losses also depend on the directionality of the wind; power losses from wake

array effects are more dominant in a unidirectional wind than in the case of an
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Figure 1.13: Influence of the crosswind spacing and turbulent intensity on the power

output of a wind turbine. (Reproduced from Ref. 17.)

omnidirectional wind, as shown in Fig. 1.13.

An understanding of wake array effects requires an accurate understanding of

the strong vortical wake behind a wind turbine and its effects on the local turbu-

lence [18]. The turbulence generated by upstream turbines can affect the operation

of a downwind turbine leading to a loss of fatigue life, exciting blade vibrations, and

unfavorable control response.

1.6 Aerodynamic Modeling of Wind Turbines

The aerodynamics of a wind turbine are dominated by the aerodynamic flow

around the rotor. Different approaches have been used to model the aerodynamics of

a wind turbine, ranging from engineering models using the blade element momentum

(BEM) theory, to solving the Navier–Stokes equations using computational fluid

dynamics. However, for design purposes, the use of engineering models based on
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BEM has been dominant. Another class of methods called vortex wake models have

also been used, which use the potential, inviscid and irrotational flow approximation

to the Navier–Stokes equations. These methods bridge the gap between the blade

element models and CFD by giving a cost-effective but more physical solution, and

a solution that is valid over a wide range of turbine operating conditions.

1.6.1 Blade Element Momentum Methods

Momentum theory, as discussed previously in Section 1.3, was developed in-

dependently by Betz [6] and Lanchester [7]. Also, see Ref. 19 for more details. The

theory is based on an actuator disk concept, and provides a derivation for the the-

oretical maximum power that can be produced by a wind turbine. However, this

theory assumes a constant inflow through the rotor disk, which does not precisely

represent the actual flow physics. The theory also neglects the effects of viscous

forces on the power extraction. However, momentum theory gives an upper limit to

the aerodynamic power output available from a wind turbine.

Glauert [20] extended the basic theory to apply the momentum theory to an

annular ring of the disk, and to match the results of thrust and torque derived from

the blade element analysis. The theory was developed initially for propellers and

also extended to wind turbines. Glauert also added the equation for the balance

of change in angular momentum to the torque exerted by the rotor on the air.

The application of momentum theory at the annular level then provides a tool for

the design and analysis of wind turbine. Wilson and Lissaman [21] updated the

blade element momentum method to account for finite number of blades by using

the Prandtl tip and hub loss model. A detailed description of the blade element

momentum method (BEM) is given later in Chapter 5.

The BEM method assumes independence of the annular sections. This as-

sumption introduces a limitation in the BEM method for application in the case

of yawed flow, i.e., when there exists a finite angle between wind direction and the

23



rotor axis. As mentioned earlier, yawed flow operation is common for wind turbines.

Changes in the wind direction from gusts and turbulence are too rapid to be fol-

lowed by the yaw control system. The BEM approach is often acceptably accurate

for predicting the axisymmetric distribution of inflow in unyawed flow, but addi-

tional inflow estimates at the rotor disk are required to apply the BEM methods

to yawed flows. However, this introduces empiricism into the calculations. Glauert

proposed a simple sinusoidal distribution of inflow over the rotor disk,

ui = ui

[
1−Kcf

(
r

R

)
sinφr

]
(1.18)

Here ui is the induced velocity averaged over the whole disk. Various linear inflow

models have been developed to approximate the cyclic variation of the inflow. These

models mainly differ in the way they represent Kc, which is usually a function of the

wake skew angle (the angle between the wake slipstream and the rotor axis). For

the radial dependency function, f(r/R), Glauert proposed a simple linear relation,

f

(
r

R

)
=

r

R
(1.19)

The inflow equation used in most of the models are similar to Eq. 1.18, but differ in

the coefficients and the radial dependency function. The coefficients of these inflow

models are derived empirically from either experiments [22,23] or numerical simula-

tions [24]. However, the applicability of these models is limited to a restricted range

of wind turbine operating conditions. Another shortcoming of the BEM methods

is their inability to capture the transient behavior of the power output in yawed

flow. Moreover, these models have also not been validated for dynamically chang-

ing yaw angles, which happens frequently during the operational regime of wind

turbines. Recent developments of inflow models for application to yawed flow have

been discussed by Snel [25], and also by Snel and Schepers [26].

BEM also breaks down for very high rotor disk loading, i.e., when the inflow

through the rotor disk is very high. This flow state usually arises for high tip speed

ratios (low wind speeds), which are around 1.3 to 1.4 times the value for which
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the maximum power output is attained. This flow state is known as the turbulent

wake state (TWS), and a considerable amount of energy extracted from the wind is

converted into large scale recirculating flow in the far wake of the turbine. In these

conditions, the assumption of the existence of a streamtube does not hold. BEM

methods have been modified based on empirical corrections [21,27,28] to overcome

this limitation. However, these corrections are not applicable for all operating con-

ditions, and often fail at higher tip-speed ratios. Some of the limitations of the BEM

methods have been addressed in Refs. 29 and 30. For a variable speed wind turbine,

this condition does not occur in practice. However, it has been estimated that about

15%− 20% of the yearly energy generation takes place in this region. Assuming the

prediction error of 20%, the total error in the annual energy yield would be around

4% [31].

Blade element models forms the basis of most of the modern wind turbine

design tools such as Aerodyn [32], BLADED [33], ADAMS [34], etc. A number

of additional corrections are also made in the state-of-the-art models, such as a

correction for 3D effects and dynamic stall. Blade element momentum theory uses

2D airfoil characteristics from wind tunnel tests. However, the flow field around

a blade in a wind turbine is inherently 3D. The radial flow on the blade resulting

from Coriolis forces modifies the pressure gradients on the flow about the blade

section [35]. The 3D corrections in airfoil characteristics account for the changes in

these pressure gradients resulting in the delayed stall and enhanced force coefficients.

A number of 3D stall delay models [36–38] have been proposed. However, these

models give acceptable prediction only in the case of unyawed flow.

Wind turbine blade sections undergo dynamic stall in an unsteady flow envi-

ronment such as operation in turbulent winds, in the presence of a ground boundary

layer, yaw error, etc. Dynamic stall is characterized by a delay in the onset of flow

separation to a higher angle of attack than can be achieved statically [39]. Com-

bined with the effects of a dynamic stall vortex, dynamic stall is responsible for

25



enhanced values of lift and increases in drag on the blade. In addition, there are

a significant hysteresis in the airloads. In the BEM method, the effect of dynamic

stall is accounted for by using several types of engineering models. However, most

of these models have been developed for helicopter applications [40, 41] and cannot

be directly applied to wind turbines.

1.6.2 CFD Based Methods

At the other end of the modeling spectrum are the computational fluid dynam-

ics (CFD) methods. Using CFD methods to solve the time-dependent incompressible

Navier–Stokes (N–S) equations provides the most comprehensive way of analyzing

the flow field around the wind turbines. However, with the current computational

power available, it is not possible to solve these equations. CFD methods, although

more exact are computationally very expensive and have large memory require-

ments. In addition to this, the numerical issues associated with CFD methods such

as turbulence modeling, wake diffusion, etc. have prevented the routine use of these

methods. Various approximations are thus made to provide a more approximate

and practical level of solution.

For an incompressible flow, the Navier–Stokes equations can be written as

∂uj
∂xj

= 0 (1.20)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ fi, i = 1, 2, 3 (1.21)

Equation 1.20, known as the continuity equation represents mass conservation and

Eq. 1.21 represents the balance of momentum. The momentum equations are non-

linear in velocity components through the convective acceleration terms. The exact

solution of these nonlinear equations is available only for a few special cases. Di-

rect numerical solution (DNS) of the N–S equations requires a numerical resolution,

which is beyond the present levels of computational power. However, various ap-
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proximations to the N–S equations have been used, which make the solutions more

tractable.

The Euler equations are a non-viscous form of the N–S equations. Euler equa-

tions cannot represent the creation, diffusion, or dissipation of vorticity. Because of

high Reynolds number in the global flow, and the absence of solid boundaries except

near the rotor, this approximation is somewhat justified. However, the diffusion of

vorticity in the wake of the turbine, and creation of turbulence and mixing because

of strong tip vortices is not accounted for by the Euler equations. A detailed discus-

sion on Euler solvers for wind turbines can be found in Ref. 42. Another approach,

effectively also an Euler flow solver, is the use of asymptotic acceleration method

developed at the Delft University of Technology. Although adapted for helicopter

applications [43] initially, the method was extended to wind turbines by van Bus-

sel [44]. This method extends Prandtl’s lifting line theory to the case of rotating

blades with unsteady flow. However, the small perturbation approximation is not

always valid for wind turbines.

A simplification to the full N–S equations for high Reynolds number flows is

done through the use of Reynolds Averaged Navier–Stokes equations (RANS). The

RANS uses a time-averaged form of N–S equations, and averages the turbulent fluc-

tuations in the flow field. This leads to a larger number of unknowns than equations.

To resolve this issue, closure models called as turbulence models are used [45–48].

Many researchers have used this methodology for computing flow field around a

wind turbine [49–51]. The RANS model has shown a lot of success in predicting the

flow field under attached flow conditions. However, the uncertainity in prescribing

the flow transition point has caused some problems in the separated flow regime

and deep stall regimes. Wolfe and Ochs [52] noted that the poor predictions of the

maximum lift coefficient for the S809 airfoil is probably caused by the deficiency of

the k − ε model in a stalled flow. Chaviaropolous [53] also noted the problems re-

garding turbulence modeling for 2D unsteady and quasi-3D N–S modeling. Langtry
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et al. [54] discuss the use of transition model for general CFD codes for 2D airfoil

and 3D wind turbine rotor performance. Evaluation of turbulence models for pre-

dicting wind turbine aerodynamics in the realm of RANS solvers has been discussed

in Ref. 55.

The use of hybrid codes has also been explored by some researchers. Soren-

son and colleagues have developed Ellipsys3D [56], a steady N–S solver for flow

about a wind turbine. The global flow field is computed by an axisymmetric

Euler solver, with the rotor represented as an actuator disk. The rotor flow is

solved by the solution of the RANS equations with a k − ω turbulence model de-

veloped by Menter [57]. Sankar and co-workers [58–60] have developed a hybrid

Navier–Stokes/full potential/free-wake method for predicting 3D unsteady viscous

flow around a horizontal axis wind turbine, which is a promising approach for the

application of CFD to wind turbines.

1.6.3 Vortex Methods

A special case of the Euler equations comprise vortex wake methods. Vortex

methods assume an incompressible potential flow, with the wake vorticity being

confined to a finite number of nominally helical vortex elements. These vortex

elements can be either straight lines or vortex blobs. Lagrangian fluid markers are

placed along each vortex element and are linked together, usually with straight

line segments. Using the principle of vorticity transport [61], the movement of the

Lagrangian fluid markers is described by the advection equation

dr

dt
= V(r, t), r(t0) = r0 (1.22)

where r0 is the initial position vector of the wake marker. One such equation holds

for each marker. The governing equation in the blade fixed coordinates can be

written as

∂r

∂ψ
+
∂r

∂ζ
=

V(r)

Ω
(1.23)
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where ψ is the azimuthal position of a blade defined from a reference datum, and ζ is

the time (age) of the vortex filament since it was trailed into the flow. A numerical

solution to the free-vortex problem dictates a discretization of both the left- and

right-hand sides of Eq. 1.23. A time-marching method gives the force-free solutions

of the wake for the given operating conditions of the wind-turbine.

Vortex methods were initially developed for helicopter applications [62, 63].

However, the early time marching methods suffered from numerical convergence

problems. This problem motivated the development of steady state vortex wake

methods, which can be classified into relaxation wake methods and prescribed wake

methods. Both these methodologies have seen significant development over the last

three decades.

1.6.4 Prescribed Vortex Wake Methods

Prescribed vortex methods assume a priori specification of the position of the

vortex elements from experiments. Once the wake geometry has been prescribed,

the induced velocity and circulation distribution along the blade can be calculated.

Wake visualization of helicopter wake in hover [64] laid the foundation of such meth-

ods for helicopters operating in hover. Kocurek & Tangler [65] also proposed a

semi-empirical model based on measurements made on a sub-scale hovering rotor.

Egolf & Landgrebe [66] proposed a prescribed wake model for helicopters in forward

flight.

Prescribed vortex wake models have been also been used for wind turbines ap-

plications. Kocurek [67] described a method featuring a detailed, prescribed wake

solution. The wake model was extended to include the effect of the windmill brake

state on the radial and axial displacement rates of the trailing vortex system. Per-

formance calculations were made by coupling the lifting-surface circulation solution

to a blade-element analysis. Coton and Wang [68] coupled a prescribed wake model

with a semi-empirical unsteady aerofoil model to provide the unsteady aerodynamic
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response of the blades to the cyclic variation of blade pitch. They showed good

comparisons between the predictions from the model and experimental measure-

ments, both in terms of gross performance prediction and detailed blade loads. A

similar model was also used by Coton et al. [69] to model the tower shadow effect

on downwind wind turbines. Dumitrescu and Cardos [70] used a prescribed wake

model along with blades being represented by lifting lines. Predictions were shown

to compare well with the existing numerical data from free vortex wake methods at

much lower computational cost.

Despite their simplicity and computational efficiency, prescribed wake methods

are limited in their formulation by the unavailability of experimental data for wind

turbine wakes. To resolve this problem, recent flow visualization experiments have

been performed to obtain vortex wake measurements. Laser sheet flow visualization

was used by Grant et al. [71] to obtain wake positions for a HAWT in an open

jet closed return wind tunnel under various conditions of turbine yaw and blade

azimuth. Selected results obtained in the experimental study were compared with

the predictions made by a prescribed wake model.

Experimental measurements of wake positions have also been obtained at the

Delft University of Technology for unyawed [72] and yawed flow conditions [73].

The availability of wake position measurements resolves one limiting factor of pre-

scribed vortex wake methods. However, these models cannot predict the distortion

in the wake geometry and roll up of the tip vortices, and are also not useful for the

prediction of transient loads and power output of wind turbines.

1.6.5 Free Vortex Wake Methods

Unlike prescribed wake methods, free-vortex wake methods do not require a

priori specification of the position of the vortex elements. The vortex elements are

allowed to distort freely under the influence of the local velocity field to force free

locations. In this approach, the wake positions at each time step are calculated using
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Biot–Savart law to obtain the induced velocities over all vortex filaments. These

methods have fewer potential limitations, and are also applicable over a wider range

of operating conditions.

Free-vortex methods can be classified into relaxation methods and time-marching

methods. Relaxation methods assume that the steady state wake structure is pe-

riodic at the rotor frequency. The governing equations are modified to include a

pseudo-time term, i.e.,

∂r

∂τ
+
∂r

∂ψ
+
∂r

∂ζ
=

V(r)

Ω
(1.24)

This equation is solved in pseudo-time domain (τ) until a steady state is reached.

The wake solution is relaxed until the vortex element positions remain unchanged

over successive iterations. At this time, the τ derivative vanishes and Eq. 1.23 is

recovered. The relaxation methods show rapid convergence. With earliest imple-

mentations in the early 1970s [74,75], relaxation based free wake methods have been

developed by the helicopter community [76–78]. These methods have also been used

for comprehensive rotorcraft analyses like CAMRAD [79] and UMARC [80].

One of the shortcomings of the relaxation based methods is their inability

to capture the transient wake aerodynamics. On the other hand, a time-marching

algorithm has that flexibility, which makes it suitable for the simulation of a wind

turbine operating in unsteady aerodynamic environment. Despite their success for

helicopter applications [81–83], and potential flexibility for wind turbine applica-

tions, the free-vortex method (FVM) has yet seen only limited use for wind turbines

flow-field predictions. As mentioned earlier, either filaments or particles/blobs can

be used as vortex elements in a free wake method.

Simoes et al. [84] and Wagner et al. [85] have used vortex filaments for FVM

calculation. Voutsinas et al. [86] have developed a vortex particle method called

GENUVP, which was used successfully to investigate the response of horizontal axis

wind turbines during yawed operation [87]. The numerical results were validated

against full-scale measurements made on the Tjareborg [88] wind turbine. ROVLM
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was developed at the University of Stuttgart by Wagner et al. [85], and GENUVP

was also used in the JOULE projects. Duque et al. [89] present a comparison of

a blade element momentum method and a RANS solver with a free wake solver

CAMRAD II developed by Johnson [90].

The solution of the equation governing the rotor wake problem given by

Eq. 1.23 is quite challenging. This is because the right-hand side (RHS) of Eq. 1.23

is the velocity at each fluid marker, which is a highly nonlinear term. This ve-

locity comprises of the free-stream velocity, any external or perturbation velocity,

and the induced velocity from vortex filaments. The vortex induced velocities are

governed by the Biot–Savart law, which gives a highly coupled system of equations.

A practical disadvantage of the free vortex method is thus very large amount of

computational time needed for the calculation. The CPU times for FVM are about

two orders of magnitude higher than the BEM methods. However, at the same time,

free-vortex wake can easily model the unsteady aerodynamics, and can be used to

obtain transient loads on a wind turbine.

1.7 Objectives of the Dissertation

The motivation for the current research stems, in part, from a blind compar-

ison study that was conducted in 2000 by National Renewable Energy Laboratory

(NREL). In this experiment, a two-bladed wind turbine with twisted and tapered

blades was tested over a wide range of operating conditions in the full-scale NASA

Ames 80× 120 ft wind tunnel [91,92]. This experiment provided an extensive set of

airloads and performance measurements, which can be used for thorough validation

of predictive codes free of uncertainties caused by atmospheric effects. To ascertain

the baseline capabilities of various competing predictive methodologies, NREL con-

ducted a blind comparison study involving twenty participants, who used the gamut

of methods for the prediction of the loads and performance of the NREL Phase VI

turbine.
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Fig. 1 Summary of the various aerodynamic sources that

contribute to the airloads on a wind turbine.

complicated and in many ways parallel the problems found

with helicopter rotors. Such problems include the chal-

lenges in understanding and predicting the unsteady blade

airloads and rotor performance, as well as predicting the

dynamic stresses and aeroelastic response of the blades.

Wind turbines are also subjected to complicated environ-

mental effects such as atmospheric turbulence, ground

boundary layer effects, directional and spatial variations in

wind shear, thermal stratifications, and the possible effects

of an upstream unsteady wake from a support structure

(tower shadow).

Figure 1 summarizes the various aerodynamic sources

that may affect the airloads on a wind turbine, which can be

decomposed into a variety of essentially periodic and ape-

riodic contributions. The net effect is that the wind turbine

operates in an adverse, unsteady aerodynamic environment

that is both hard to define using measurements and also to

predict using mathematical models. The overall difficul-

ties in predicting the performance and structural loads have

led to higher capital investment and operating/maintenance

costs for wind turbines, making it difficult for wind energy

devices to compete with other forms of renewable and non-

renewable energy sources.1

Because the blade loads and performance of a wind

turbine are directly determined by unsteady aerodynamic

forces, a better understanding of the underlying fluid dy-

namics is essential if accurate modeling of the rotor aero-

dynamics and acceptable predictions of the turbine loads

and power generation are to be made. A better definition

of the airloads will also define the structural requirements

and will allow optimal strength, light-weight blades to be

designed. It is clear that better predictive tools are criti-

cal if more efficient and lower cost wind turbines are to be

designed in the future.

Recently, the National Renewable Energy Laboratory

(NREL) invited the international community to participate

in an “in the blind” prediction of the loads and performance

of a comprehensively instrumented wind turbine that was

tested under controlled conditions in the 80–by–120 foot

(24.4–by–36.6 meter) wind tunnel at NASA Ames.2 The

primary objective of those experiments was to create a

definitive set of airloads and performance measurements

over a wide range of operating conditions that was free of

the uncertainties caused by the various atmospheric effects

that are always found in field tests with turbines. These

Fig. 2 Representative “in the blind” predictions of turbine

power output as a function of wind speed compared to exper-

imental measurements.2

wind tunnel results provide the analyst with an opportunity

to better understand the physics of wind turbine aerody-

namics, and gives a definitive data resource for validat-

ing predictive methods and perhaps resolving outstanding

modeling issues.

Results from the NREL blind comparisons were found

extremely mixed,3 with considerable deficiencies noted be-

tween the predictions for blade loads and power output

from the wind turbine even for the simplest unyawed, un-

stalled operating conditions – see Fig. 2. The results for

power (torque) output ranged from a 60% underprediction

to more than a 150% overprediction. Even using similar

predictive methods with essentially the same medley of

sub-component models, there were significant differences

between the results. This suggests unresolved deficiencies

in the models, perhaps even at a first-order level. However,

it is clear that at least some part of the differences can be

attributed to inconsistencies in empirical input parameters,

such as assumed two-dimensional airfoil characteristics.4, 5

For operations in yawed flow and/or for higher wind

speed conditions where unsteady effects become impor-

tant and the turbine begins to stall, the modeling of the

rotor aerodynamics becomes much more challenging and

the NREL blind comparisons suggested major deficiencies

in the models for these conditions. Unlike a helicopter rotor

where the onset of stall is a “hard” boundary severely lim-

iting its performance, fixed pitch wind turbines may have

to operate continuously with considerable amounts of flow

separation and blade stall.6 Even for pitch controlled tur-

bines, because of changing wind and flow directions, un-

steady aerodynamics and stall effects can still be important

contributors to the blade airloads and wind turbine perfor-

mance.

One unsteady, nonlinear aerodynamic problem of partic-

ular significance on wind turbines is “dynamic stall.” This

is a transient stall effect that can result in unsteady aero-

dynamic forces being produced that are considerably in

excess of what would be expected or predicted under steady

(static) conditions. Results from the NREL blind com-

parisons have shown that when the wind turbine was op-
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Figure 1.14: A comparison of the representative ”in the blind” predictions of turbine

low speed shaft torque output to experimental measurements. (Reproduced from

Ref. 11.)

The results from the NREL blind comparison study showed unexpected large

margins of disagreement between predicted and measured data [93]. In addition, no

consistent trends were apparent regarding the magnitude or the sign of the devia-

tions. Figure 1.14 depicts the prediction of the low speed shaft torque at zero yaw

with various predictive codes, where the solid circles represent the measurements.

The results of the torque output varied from 60% underprediction to more than

150% overpredictions. In addition, the predictive tools with essentially the same set

of sub-models showed large differences in the predictions. This suggested both the

inconsistencies in the assumptions made in certain predictive tools [94], as well as

errors in the coupling between various sub-models [11].

The gross failure of the state-of-the-art tools to predict the aerodynamics loads

and performance of the NREL wind turbine, even for the simplest of operating

cases underlined the need for a careful study of the assumptions made in various
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methodologies and in the assumption made in the coupling of the sub-models. In the

present research, a time-accurate free-vortex wake method has been developed for

the aerodynamic modeling of wind turbines. Vortex methods have a great potential

to provide a high fidelity aerodynamic model with reasonable computational cost

for wind turbine applications.

The development of a robust free wake methodology requires understanding

of the stability characteristics and the overall accuracy of the numerical scheme.

Numerical instabilities can mimic the growth of physical disturbances, which makes

it harder to recognize the origin of these instabilities. One objective of this dis-

sertation was to develop and carefully examine the stability characteristics of the

numerical scheme. In addition to this, the present work also examines the accuracy

of using straight-line vortex segmentation in a detailed manner. The objective was

to ensure that an overall second-order predictive accuracy was maintained for the

numerical solution.

The numerical method also needs to be validated against experimental data for

a wide range of operating conditions. The coupled blade and wake model includes

empiricism in the numerical method in the form of the viscous core growth model

and dynamic stall model. One objective of the present work was to validate the

empirical model with available experimental data. Finally, the long term objective

of the current work is to develop an aerodynamic model that can be integrated with

a structural dynamics code to provide a high fidelity aeroelastic tool and to help in

the more efficient and less expensive design of wind turbines.

1.8 Organization of the Dissertation

An introduction to the origin and evolution of modern wind turbines, along

with a discussion of the complicated operating aerodynamic environment of the

wind turbine has been introduced in Chapter 1. The current state-of-the-art in

aerodynamic modeling strategies were then discussed in Section 1.6. The motivation

34



and objectives of the current research were then discussed.

Chapter 2 describes the methodology for solving the governing wake equa-

tions. The blade lift solution methodology is also discussed. Wind turbine airfoil

characteristics especially for the stall controlled turbines are unique, and a detailed

description of the steady and unsteady airfoil modeling is also given.

The remainder of the dissertation follows a building-block strategy. Each sub-

model of the numerical method is analyzed and validated before moving on to the

next step. Chapter 3 discusses the accuracy of the straight-line segmentation of the

vortex wake behind a wind turbine. The stability and accuracy of the numerical

algorithm used for the time integration of the rotor wake equations is also discussed

in Chapter 3.

Chapter 4 compares the predictions of the power and thrust for unyawed and

yawed flows from the blade element momentum and the proposed free-vortex wake

method for a wind turbine with hyperbolically twisted rotor in the absence of a stall

model.

Chapter 5 describes the validation of the stall model modified for wind turbine

applications. The model is first validated against the 2D steady airfoil lift and drag

measurements. The comparison is then extended to unsteady measurements from

an oscillating S809 airfoil. The coupling between the airfoil model and the blade

model is comprehensively validated with the parked blade measurements from the

NREL tests.

Chapter 6 discusses the validation of the coupled free-vortex wake model

against the experimental measurements. The wake geometry validation against

wake measurements is presented. Finally, the validation of the predicted power and

aerodynamic loads against the NREL wind tunnel measurements is presented for

a wide range of conditions to demonstrate the robustness of the method for wind

turbine applications. Finally, Chapter 7 summarizes the conclusions drawn from

the present work, and provides some suggestions for future research.
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Chapter 2

Methodology

This chapter describes the details of the methodology used in the present study.

Various sub-models are involved in the aerodynamic modeling of a horizontal axis

wind turbine, including a time-accurate free-vortex wake method. In the following

sections, the governing equations and the numerical methodology are explained in

detail. A strategy to account for the viscous diffusion of the wake is then presented.

Modification of the vorticity field because of filament stretching is also discussed. A

one panel lifting surface model, called the Weissinger-L model, is used to represent

the blade, and its coupling with the wake model is discussed. The 2D blade airfoil

model is then discussed, with an emphasis on the modification of an existing dynamic

stall model for wind turbine applications.

2.1 Governing Equations of the Downstream Wake

A vortex wake approach represents the vortical structure of the downstream

wake in the form of vortex lines that exist in a potential flow. In vortex theory,

the mathematical representation of the wake can be done in variety of ways, such

as by means of constant vorticity straight-line filaments, curved vortex filaments, or

vortex blobs [95]. The straight-line segment approximation approach is most often

used because the induced velocity contribution of each segment can be evaluated

exactly.

Lagrangian markers placed on the vortex filaments are linked together, usu-

ally with straight line segments. These markers and the associated vorticity are
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then convected naturally through the flow field at the local flow velocity to force

free locations. The incompressible Navier–Stokes equations in the velocity–vorticity

form describe the convection these wake filaments. The governing equations can be

written as

D~ω

Dt
= (~ω · ~∇)V + ν ~∆ · ~ω (2.1)

The left-hand side of the equation is the material derivative of vorticity. The first

term on the right hand side represents the strain term. This term represents the

change in the length of the vortex filament as well as the change in the orientation of

the vorticity vector. The second term accounts for the diffusion of vorticity because

of the viscosity of the fluid.

The global flow field can be assumed to be essentially inviscid as the viscous

effects are confined to much smaller length scales compared to the potential flow

field. Assuming an inviscid flow field Eq. 2.1 can be written as

D~ω

Dt
= (~ω · ~∇)V (2.2)

It has been shown that under the assumptions of an inviscid, incompressible and

irrotational flow, the elements on the vortex lines move convect with the fluid par-

ticles [96]. In other words, the rate of change of the position vector of an element

on a vortex filament is equal to its local velocity. With these assumptions, Eq. 2.2

reduced to a convection equation.

In the present formulation, the vorticity is assumed to be concentrated in a

finite number of vortex filaments with a singularity at the center of each filament.

The convection of the Lagrangian markers (or vorticity) on a free-vortex filament is

then described by the equation

dr(ψ, ζ)

dt
= V(r(ψ, ζ), t), r(t0) = r0 (2.3)

In Eq. 2.3, ψ is the azimuthal position of a blade defined from a reference datum,

and ζ is the time (age) of the vortex filament since it was trailed into the flow – see
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Fig. 2.1. The symbol r is the position vector of marker lying on a vortex filament

that is trailed from a rotor blade located at an azimuth ψ at time t, V is the local

velocity of that marker and r0 is the initial position vector.

Let t0 denote the time when the vortex element was first formed and the blade

was located at (ψ − ζ), i.e.,

(ψ − ζ) = Ωt0 (2.4)

Because ψ = Ωt, it can be written

ζ = Ω(t− t0) (2.5)

Using the chain rule of differentiation, the time derivative of Eq. 2.3 can be written

in terms of ψ, ζ and Ω [97,98], i.e.,

dr(ψ, ζ)

dt
=
∂r(ψ, ζ)

∂ψ

dψ

dt
+
∂r(ψ, ζ)

∂ζ

dζ

dt
(2.6)

Because dζ/dt = dψ/dt = Ω, the time derivative can be written as

dr(ψ, ζ)

dt
= Ω

(
∂r(ψ, ζ)

∂ψ
+
∂r(ψ, ζ)

∂ζ

)
(2.7)

In blade fixed coordinates, this latter equation can be then written as the partial

differential equation

∂r(ψ, ζ)

∂ψ
+
∂r(ψ, ζ)

∂ζ
=

V(r)(ψ, ζ)

Ω
(2.8)

The velocity term on the right-hand side is the sum of the free stream velocity V∞,

any external sources of perturbation Vex, such as the atmospheric boundary layer,

wind turbulence, etc., and the wake induced velocity Vind. Therefore, V can be

written as

V = V∞ + Vex + Vind (2.9)

The induced velocity term is comprised of the self- and mutually-induced veloc-

ities in the wake, mainly from the tip and root vortex filaments, but also the induced
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law.

velocity contribution of the bound vortex. This term is highly nonlinear function of

the spatial and temporal locations of the vortices, as dictated by the Biot–Savart

law. The left-hand side of Eq. 1.23 is essentially a one dimensional wave equation.

The equation is solved numerically using finite difference approximations, which will

be discussed later in this chapter.

2.1.1 Nonlinear Induced Velocity

The wake induced velocity, Vind on the right-hand side of Eq. 2.25, is a highly

nonlinear term. It is the most difficult element of the wake problem to calculate

accurately and the most expensive to compute. The solution to the wake induced

velocity is evaluated by the repeated application of the Biot–Savart law as an integral

along the complete length of each vortex wake filament. This integral is, in general,

not available in analytic form for curvilinear vortex filaments. To overcome this,

straight-line segmentation of the vortex filament is normally used. The induced

velocity contribution for each segment can then be analytically calculated.

Consider a vortex segment of infinitesimal length dl and a point P at a distance

40



r from the line segment AB, as shown in Fig. 2.2. By means of the Biot–Savart law,

the velocity induced, dV, at point P by the vortex segment is given by

dV =
Γv

4π

dl× r

|r|3
(2.10)

For a finite segment as shown in Fig. 2.2, where r1 and r2 are the distances of the

end point of the line segment from a point P , the induced velocity dV can be written

as [99]

dV =
Γv

4π
(r1 × r2)

(
1

r1
+

1

r2

)(
1

r1r2 + r1 · r2

)
(2.11)

One of the disadvantages of all types of vortex methods is the relatively large num-

ber of individual vortex filaments necessary to fully resolve the vortical flow, and

the associated high computational cost of evaluating the Biot–Savart law for each

and every filament. This often prevents the use of very fine discretization in the

free-vortex wake calculations. Unfortunately, the use of smaller number of segments

can compromise the accuracy of the induced velocity field reconstruction. Therefore,

there is a need to carefully evaluate the accuracy of the straight-line segmentation

approach, and to establish thresholds of discretization that will provide good accu-

racy while still containing computational costs (see Section 3.1).

The viscous diffusion and stretching of the vortex filaments have been neglected

in Eq. 2.1. This assumption is valid in most operating conditions for wind turbines

because these effects are usually confined to a much smaller scale. However, the

detailed structure of the tip vortices can become important even at large scales

away from the blades. The wake induced loads, especially when the vortex filaments

interact with the blades, depend on the exact viscous structure of the tip vortex

filaments. For wind turbines, this is not a common problem unless the turbine is

yawing dynamically in and out of the wind. The modeling of the viscous and strain

effects is also important when the turbine is operating in yawed flow because the

wake filaments come close together at points in the downstream wake, and begin

to roll up and bundle around each other. An improved modeling capability of tip
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vortices will directly translate into the improved prediction of the wind turbine

transient loads and power output.

In this study, the vortex filament positions are updated along with the consid-

eration of viscous and strain effects by using a sequential treatment of the convective,

viscous and strain effects, as shown in Figure 2.3. The approach is formulated as

a time-marching process with three sub-component models. This approach follows

the classical concepts to distinguish viscous and inviscid phenomenon developed by

Prandtl [100], Chorin [101], Ananthan et al. [102] and others.

The first step in the process is a convection process, where the filaments are

moved to new positions under the influence of the local velocity field as described

above. In the second step, viscous effects associated with diffusion of the filaments

are calculated based on the age of the filaments relative to the time at which they

originated in the flow, and the vorticity field is thus modified accordingly. The third

step accounts for the stretching effects, which uses the position vectors from the first

step and serves to modify the vorticity field. In this study, each step of this process

has been implemented as a predictor-corrector sequence to improve the accuracy of

the solution.

2.1.2 Viscous Core Model

The motion of the Lagrangian marker on each vortex filament to a force free

position is described by Eq. 2.1. The induced velocity at each marker position in the

wake is calculated using the Biot–Savart law. However, the self-induced velocity has

a logarithmic singularity at the axis of each filament. Unusually large wake induced

velocities can cause the evolving tip vortex geometries to over-react to self- and

mutually-induced effects, and will cause convergence problems. The same problem

occurs when a collocation point moves very close to the vortex line segment and

ejects at a very high induced velocity.

To desingularize the calculation of the induced velocity, a constant viscous
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Figure 2.3: Schematic of the sequential treatment of the convective, viscous diffusion,

and strain effects in the free-vortex model.
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core size or a diffusive viscous core can be used. The “cutoff method,” similar to the

one used by Saffman [103], has been proposed by some to exclude the logarithmic

singularity in vortex filaments. In this correction, for collocation points at a dis-

tance smaller than the “cut-off” length from a vortex filament, the induced velocity

contribution from that vortex filament is zero. However, the solution then becomes

a function of the cut-off length. To overcome this limitation in the present wake,

the cut-off distance or the viscous core radius is prescribed based on experimental

measurements.

Several empirical models have been developed to model the viscous diffusion of

the tip vortex. The simplest model for a viscous vortex is the Rankine vortex [104].

Rankine vortex has a finite core, with a solid body-like rotation near the vortex

center, and a potential vortex away from the center. The swirl velocity of a Rankine

vortex can be written as

Vθ(r̄) =



(
Γv

2πrc

)
r̄ 0 < r̄ < 1

(
Γv

2πrc

)
1

r̄
r̄ > 1

(2.12)

where r̄ = r/rc is the non-dimensional radial location normalized by the core radius,

rc. However, the swirl velocity distribution and the circulation are discontinuous

at the vortex core radius. The classical Lamb–Oseen [105] model is a solution

to the one-dimensional N–S equations. It is assumed that the axial and radial

velocity components are zero, and analytical solution of the swirl velocity can thus

be obtained. The swirl velocity according to the Lamb–Oseen model is given by

Vθ(r̄) =
Γ

2πr

[
1− exp

(
− r2

4νt

)]
(2.13)

The viscous core radius is the radial location where the swirl velocity is a maximum.

The core radius can be obtained by setting the derivative of Eq. 2.13 to zero and is

given by

rc =
√

4ανt (2.14)
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where α = 1.25643. The Lamb–Oseen model can then be written in the form

Vθ(r̄) =
Γ

2πrc

(
1− e−αr̄

2

r̄

)
(2.15)

Using a vortex length scale of r̄c =
√

4νt, the Lamb vortex model can be written as

Vθ(r̄) =
Γ

2πrcr̄

(
1− e−r̄

2
)

(2.16)

Using a series expansion for the exponential term and ignoring higher order terms,

the model can be reduced a model proposed by Scully [62], which can be written as

Vθ(r̄) =
Γ

2π

(
r̄

1 + r̄2

)
=

Γ

2π

(
r

r2 + r2
c

)
(2.17)

In this work, a generalized swirl velocity profile given by Vatistas [106] has been

used, which can be written in the form

Vθ(r) =
Γv
2π

(
r

(r2n
c + r2n)1/n

)
(2.18)

For n = 1, Vatistas model reduces to the Scully model given by Eq. 2.17. In

this study, a value of 2 was used for n because this has been found to give better

correlation with experimental measurements.

The swirl velocity given by the Lamb–Oseen model in Eq. 2.13 is singular at

the formation of the tip vortex, i.e., at t = t0, and unrealistically high velocities

are obtained at young wake ages compared to measurements. In addition, the core

growth given by Eq. 2.14 has been found to be unrealistically slow. Therefore, an

effective origin offset was further proposed by Squire [107] to give a finite core size

and finite induced velocity field at the origin of the vortex filament. Squire also

proposed the inclusion of a turbulent eddy viscosity parameter δ to account for the

effects of turbulence on the net rate of viscous diffusion. In this work, a core growth

model similar to the Lamb–Oseen model [105], and modified according to empirical

observations by Bhagwat et al. [82], has been used to account for the average viscous

and turbulent diffusion of the vortex core with time as given by

rc(t) =

√
r2
c0

+
4αδνζ

Ω
(2.19)
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where rc0 is the vortex core radius at zero wake age. However, the effect of turbu-

lence on the vortex core radius is not well understood. Some researchers [108,109],

have shown a negligibly small effect of turbulence on the diffusion of the vortex

core and claim that the vortex diffusion is dominated by viscous effects. From the

rotating-wing measurements in Ref. 109, it has been shown that the core growth

rate is inversely proportional to the vortex Reynolds number, which suggests lami-

nar viscous diffusion. Iversen [110] reported that the turbulent effects of the vortex

core are visible only for high vortex Reynolds number ( Rev > 105), which partly

explains the laminar core growth achieved in the experiments, which used small

scale models.

The eddy viscosity coefficient (δ) is formulated in terms of the vortex Reynolds

number (Rev = Γv/ν) as given by

δ = 1 + a1Rev (2.20)

which implies that vortex diffusion increases with increasing vortex Reynolds num-

ber. From experimental measurements, it has been observed that the rotary-wing

results show a slightly higher viscous diffusion corresponding to an average value of

a1 = 2×10−4, while the fixed-wing results show a lower diffusion with a1 = 5×10−5.

However, these empirical value of a1 comes from experiments performed on heli-

copter blades. No experiments data is available about the detailed viscous structure

of the tip vortices for wind turbines.

2.1.3 Effect of Vortex “Stretching”

Distortion of the wake in the free-vortex wake solution causes three-dimensional

strain in the vortex filaments, which in turn modifies the core vorticity and the re-

sulting induced velocity field. In addition, the vortical wake behind a wind turbine

expands, which stretches the vortex filaments. It is thus important to consider the

effects of stretching of the vortex filaments for wind turbine applications. In the
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Figure 2.8: Schematic showing stretching of individual vortex filaments and vorticity

intensification that results in an increase in swirl velocity surrounding the filament

core.

Positive strain, or stretching, of the vortex filament as it encounters the strain field

produced by the induced velocity field, therefore, must increase the vorticity of that

filament. This is because in an incompressible flowfield an increase in the length

of the cylindrical filament must be accompanied with a corresponding decrease in

the cross-sectional area of the filament — see Fig. 2.8. To find the effect of strain

rate on the vorticity and velocity field, the vorticity in the filament is assumed to be

concentrated inside a cylinder of length l, with an effective core radius rc. Because the

flow is considered to be incompressible, the principle of conservation can be applied
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Figure 2.4: Schematic showing stretching of a vortex filaments and vorticity inten-

sification that results in an increase in the induced swirl velocity from the filament

core. (Schematic taken from Ref. 102.)

present formulation, stretching effects have been accounted for by an application of

a model developed by Ananthan and Leishman [102].

Assuming that the flow is incompressible, net circulation of any vortex filament

remains constant according to Helmholtz’s third law. The circulation in a vortex

filament is given as

Γ =
∫
s
~ω dS (2.21)

In an incompressible flow field, an increase in the length of the cylindrical filament

must be accompanied with a corresponding decrease in the cross-sectional area of

the filament. This implies that as the vortex filament is stretched, the net vorticity

increases to maintain a constant circulation – see Fig. 2.4

Consider a vortex filament, where the vorticity is assumed to be concentrated

inside a cylinder of length l and core radius rc. Assuming a change in the length be-

cause of filament straining to be ε = ∆l/l, which occurs over a time step ∆t = ∆ζ/Ω,
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the conservation of the filament volume (using an incompressible flow assumption)

states

πr2
c l = π(rc −∆rc)

2(l + ∆l) (2.22)

The change in the effective core radius can then be given as

∆rc = rc

(
1− 1√

1 + ε

)
(2.23)

Combining Eqs. 2.19 and 2.23, the effective core radius at time t = ζ/Ω can

be written as

rc(ζ, ε) =

√
r2
c0

+
4αδνζ

Ω

∫ ζ

0
(1 + ε)−1dζ (2.24)

The above equation gives the effective core radius at any time and includes the

integral effects of the strain field from the point of the origin of the vortex. The

modified core radius obtained from Eq. 2.24 is then used to compute the induced

velocities from the vortex segments.

2.1.4 Time Marching Solution of Left-Hand Side

A numerical solution to the free-vortex problem dictates a discretization of

both the left- and right-hand sides of Eq. 2.1. The discretization scheme should how-

ever ensure a consistent order of approximation between both sides. The left-hand

side of the equation is essentially a one-dimensional wave equation. The discretized

equation can be written as

(Dψ +Dζ)r =
1

Ω

∑
V (2.25)

where Dψ and Dζ are the temporal and spatial finite difference operators. This

discretization results in a set of finite difference equations, which can be solved using

various types of numerical integration techniques [111]. A study of the stability of

various time-marching schemes will be described in detail in Section 3.2.

Special discretization algorithm based on 5-point central differencing in space

and 2-point backward differencing in time (PC2B scheme) developed by Bhagwat
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Figure 3.15: Stencil for the second-order backward difference approximation used in

the PC2B time-marching algorithm.

113

Figure 2.5: Stencil for the second-order two-step backward differencing scheme used

in the PC2B algorithm. (Reproduced from Ref. 112.)

and Leishman [112] has been used in the present study. The governing equations are

solved at the midpoints (ψ + ∆ψ/2, ζ + ∆ζ/2) of the computational grid cell. The

velocity at the center of the grid cell is approximated by averaging the velocities at

the four surrounding grid points, which gives a second-order accurate approximation

of the induced velocity.

The spatial derivative, Dζ is approximated by a five-point central difference

scheme, i.e.,

Dζ |ψ++∆ψ/2,ζ+∆ζ/2 =
r(ψ + ∆ψ, ζ + ∆ζ) + r(ψ, ζ + ∆ζ)− r(ψ + ∆ψ, ζ)− r(ψ, ζ)

2∆ψ
(2.26)

The PC2B time-accurate algorithm uses a second-order backward difference ap-

proximation for the time (ψ) derivative. In this case, three previous time steps are

used in approximating the temporal derivative – see Fig. 2.5. This approximation

is given by

Dψ|ψ+∆ψ/2,ζ =
3r(ψ + ∆ψ, ζ)− r(ψ, ζ)− 3r(ψ −∆ψ, ζ) + r(ψ − 2∆ψ, ζ)

4∆ψ
(2.27)

The spatial operator is the same as in the PCC scheme. Using a Taylor series
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expansion around the mid-point of a cell at r(ψ + ∆ψ/2, ζ + ∆ζ/2) and expressing

all the extra terms in terms of spatial derivatives, the modified equation for the

PC2B scheme is obtained as [112]

∂r

∂ψ
+
∂r

∂ζ
= V + ∆ζ2

 nonlinear dissipative

and dispersive terms
− ∆ζ

4
r4ζ

 (2.28)

The −r4ζ term in the modified equation is a dissipative term, and is independent of

the velocity field. This dissipative term acts like an energy sink and is stabilizing,

and so this makes the overall PC2B scheme stable. This term is also a third-order

term, so the overall second-order accuracy of the scheme is preserved.

2.1.5 Blade Model

In this work, the turbine was modeled as Nb rigid blades. The simplest rep-

resentation of the blade model in terms of vortex singularities is the classical lifting

line model. However, this model does not capture the three-dimensional effects on

a wind turbine blade. Using a lifting surface model, where the blade is divided

into a matrix of spanwise and chordwise panels, has been shown to better repre-

sent the three-dimensionality of the flow on the blade. However, the computational

cost of using a a lifting surface model is much higher than a simple lifting line

model. A good compromise between the lifting line and lifting surface models is the

Weissinger-L model [113]. It is essentially a lifting surface model with one chordwise

panel – see Fig. 2.6. Bound vortices are located at the 1/4-chord and the control

points are located at 3/4-chord at the center of each panel. The trailed wake vortices

extend downstream from the 1/4-chord forming a a series of horseshoe filaments. A

Weissinger-L blade model has been shown to give much better representation of the

aerodynamics of a blade as compared to a lifting-line model and at the same time

with a much lower computational cost than a lifting-surface model.

The rotor blade is divided into N spanwise panels. The strength of the trailed

vortices is determined using Helmholtz’s law of circulation conservation and is given
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Figure 2.6: Schematic of the Wissinger-L blade model used in free-vortex wake

modeling of wind turbines.

by

Γtrailed|i = Γbound|i − Γbound|i+1 (2.29)

The contribution of bound vortices to the induced velocity is added to the contri-

bution from the trailing vortices and the flow tangency condition is satisfied at the

3/4-chord. The immediate near wake is assumed to be in the same plane as the

blade, and is geometrically constrained relative to the blade control points. The

induced velocity is, therefore, normal to the blade plane, and so changes the effec-

tive angle of attack. The flow tangency condition for the ith blade segment at the

3/4-chord is given by

Vbi = V∞i(θi − φFW i − φNW i) (2.30)

where θi is the geometric angle of attack and φFW i and φNW i are the induced angles

of attack from the far wake and near wake, respectively. Equation 2.30 can be

rewritten as

Vbi = V∞i(θi − φFW i)− VNW i
(2.31)

The induced inflow from the far wake is calculated using the free-vortex wake so-

lution. The bound circulation and the near wake are, however, geometrically con-
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strained relative to the blade control points. The induced velocity from the bound

circulation and the near-wake are written as

Vbi =
∑
j

Ibi,jΓj (2.32)

VNWi
=
∑
j

INWi,j
Γj (2.33)

Here Ib and INW are the influence coefficient matrices for the bound vortex and the

near wake, respectively. The governing equation for the blade circulation can then

be written as
N∑
j=1

(Ibi,j + INWi,j
)Γj = V∞j(θi − φFW i) (2.34)

This linear system of equations is then solved by standard methods to obtain the

bound circulation on the blade. In this study, the near wake is truncated at after a

short azimuthal distance, typically ∆ψ = 30◦. It is assumed that, beyond this point,

the vortex sheet has completely rolled up and all the circulation in the flowfield is

concentrated in the free trailers, which comprise the far-wake.

In the case of a geometrically twisted blade, which is very typical for wind

turbines, the near wake trailers are not in the same plane. This implies that the

velocity induced by the near wake is not exactly normal to the blade sections at the

control point. The effect of twist is accounted for by evaluating the component of

near wake induced velocity normal to the blade sections.

The lift produced by each blade segment can be computed directly once the

blade bound circulation is determined. The rotor forces and moments can then be

calculated by numerically integrating the segment loads along the blade span using

T =
∫ R

e
Nb (dL cosφ− dD sinφ) dr (2.35)

Q =
∫ R

e
Nb (−dL sinφ+ dD cosφ) rdr (2.36)

where e is the distance of the root cut-out from the root of the blade. The instan-

taneous values of thrust and torque are then averaged over the azimuth to obtain

the average thrust and torque.
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Coupling of the Blade Model with the Wake Solution

The far-wake or tip vortex release point and initial strength depend on the

near-wake solution. Beyond the assumed 30◦ of near-wake, extends a far-wake com-

prised of a single tip vortex filament. From visualization experiment performed for

the helicopter and wind turbine rotors, the tip vortex has been found to be fully

developed within a few chords behind the rotor blades. The initial strength and

radial location from which the tip vortex is trailed by the blades into the wake is

required as a boundary condition for the free-wake analysis.

The strength of the tip vortex was determined by assuming that the sum of

the blade bound vorticity outboard of the maximum is trailed into the tip vortex.

It can be shown that this results in a tip vortex of strength equal to the global

maximum bound vorticity over the span of the blade at any given azimuth location.

The release point of the tip vortex is usually the tip of the blade. It has been shown

in some experimental studies of helicopter rotors [114] that the tip vortex release

point is somewhat inboard of the tip. However, this has not been shown in the

visualization experiments performed on wind turbine blades [73,115].

2.2 Blade Section Model

Wind turbine blade sections can stall when the turbine operates at high wind

speeds. Because of the low rotational speed of the turbine rotor, the inboard re-

gions of the blades on a stall controlled wind turbine are stalled for much of their

operational time. Thus, It is very important to model accurately the detailed aero-

dynamic characteristics of the airfoils being considered over a wide range of angles

of attack.

Most of the numerical methods used to model the aerodynamics of wind tur-

bines (see Ref. 1.6), with the exception of CFD based methods, require empirical

modeling of airfoil behavior in the post-stall regime. CFD methods model the
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physics of the flow over a wind turbine blade from the first principles using the

Navier–Stokes equations. However, there are numerous unresolved numerical issues

in the application of CFD methods to practical problems such as turbulence closure

models, excessive numerical diffusion, etc. In addition, the computational expense

involved is very high.

Various experimental studies [116, 117] have been conducted to understand

the complex aerodynamics of a wind turbine in the attached and the separated

flow regimes. A post-stall model proposed by Viterna [118] based on flat-plate

theory has been used extensively in wind turbine research. Stall delay models have

also been formulated [36, 37] to account for the influence of the three-dimensional

flow [35] on the blade stall. Pierce and Hansen [119] applied the Leishman–Beddoes

model [40,120] to predict the blade loads with dynamic stall [121]. The use of two-

dimensional measurements with BEM methods to predict the performance of wind

turbines in attached and separated flows has been discussed by Tangler [122]. Most

of the methods obtain a reasonable agreement with measurements for low angles of

attack and attached flows, but the agreement is not always as good at or in stall or

in the post-stall region.

In addition to this, the inherent unsteady nature of aerodynamic environment

poses further problems. An airfoil section undergoes dynamic stall when it is sub-

jected to any form of unsteady angle of attack motion (like pitching, plunging etc.),

which takes the effective angle of attack beyond its normal static stall angle [39].

Dynamic stall of an airfoil is characterized by the shedding of a strong vortical dis-

turbance from its leading edge, which is called a dynamic stall vortex. The onset

of flow separation is also delayed to a higher angle of attack than the static stall

angle, and combined with the effects of the dynamic stall vortex, is responsible for

elevated values of lift. The aft movement of the center of pressure during the vor-

tex shedding causes a large nose-down pitching moment (moment stall). When the

angle of attack decreases, flow reattachment is found to be delayed to an angle of
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attack lower than the static stall angle. This leads to significant hysteresis in the

airloads and reduced aerodynamic damping, particularly in torsion [13]. This can

cause torsional aeroelastic instabilities on the blades. Therefore, the consideration

of dynamic stall is important to predict the unsteady blade loads, and also to define

the operational boundaries of a wind turbine.

Modeling of dynamic stall through the numerical solution of the unsteady

Navier–Stokes equations with CFD techniques has shown some recent success [123,

124], and has become increasingly feasible with the increase in computational power.

CFD solutions are, however, still computationally very expensive, and are basically

prohibitive for the routine engineering analyses of wind turbines. In addition, there

are numerous issues such as turbulence modeling that still need to be understood.

In the absence of less approximate and cost effective solutions, researchers have

used various semi-empirical models to represent dynamic stall [40,41,120,125] - see

Ref. 95 for a discussion on dynamic stall and alternative models. The advantage

of using these models is their relative simplicity and low computational expense.

These models have met with good success, and have been shown to improve the

predictive capability for blade airloads. Some of these models have also been used

for wind turbine applications [119,126].

In this formulation, the complex post-stall behavior of the wind turbine air-

foil sections is modeled by dividing the problems into smaller and more physically

identifiable aerodynamic sub-systems. These are then connected in the form of a

Kelvin chain, when the output from one sub-systems defines the input to the other

sub-system. All these effects are represented in such a way as to allow progres-

sive transition between the static stall and dynamic stall characteristics. Figure 2.7

shows the components involved in calculating the unsteady airloads on an airfoil.
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previously available for use in helicopter rotor analysis.

The emphasis in this model is on a more complete physical

representation of the overall unsteady aerodynamic prob-

lem, but still keeping the complexity of the analysis down

to minimize computational overheads. The model was ini-

tially developed by Beddoes,85 with various developments

documented by Leishman86 and Tyler & Leishman.87 The

latest versions of the model encompass elements described

previously, including the effects of different modes of forc-

ing (i.e., pitch versus plunge versus nonuniform vertical

velocity fields), unsteady free-stream velocity effects, im-

proved numerical methods, etc. The model has also been

adapted and modified by Pierce & Hansen65 for the class

of airfoil sections used on wind turbines.

The Leishman–Beddoes model consists essentially of

four subsystems: 1. An attached flow model for the un-

steady (linear) airloads based on Duhamel superposition,

2. A separated flow model for the nonlinear airloads, 3. A

dynamic stall onset model, 4. A dynamic stall model for

the vortex induced airloads. The sub-models are connected

as an open-loop system in the form of a Kelvin chain –

see Fig. 18. An important feature is that rigorous repre-

sentations of compressibility effects, which are essential

for helicopter applications, are included in the model. The

model has also been developed as a set of ordinary differ-

ential equations,60,88 which, as mentioned previously, can

be useful for some applications. The treatment of nonlin-

ear aerodynamic effects associated with flow separation on

the airfoil are derived from Kirchhoff/Helmholtz theory,89

which can be used to relate the airfoil lift to the angle of

attack and an effective trailing-edge separation point. In

application, the experimental static lift characteristics are

used with the Kirchhoff/Helmholtz model to define this

effective separation point variation that can then be gener-

alized empirically as a function of angle of attack and used

to accurately reconstruct the nonlinear static airloads.

To represent the effects of dynamic stall, a further sub-

system emulates the dynamic effects on the airloads of the

accretion of vorticity into a concentrated leading-edge vor-

tex, the passage of this vortex across the upper surface of

the airfoil, and its eventual convection downstream. The

dynamic stall process begins when an equivalent leading-

edge pressure parameter reaches a Mach number/Reynolds

number dependent critical value indicative of leading-edge

or (for high free-streamMach numbers) shock induced sep-

aration.71,85 The lift then continues to build in a manner

that is related to the rate of change of movement of the

separation point. A first-order dynamic system with an em-

pirically derived time constant governs the accumulation

of vortex lift, and in the limit when the changes in angle

of attack become small, the vortex lift dissipates and the

airloads return to their static (nonlinear) values. The cor-

responding pitching moment during the vortex shedding

process is obtained using a center of pressure function es-

timated from correlation studies with unsteady airfoil mea-

surements in dynamic stall.

An advantage of the Leishman–Beddoes model is that

Fig. 18 Flow chart showing elements of the Leishman–

Beddoes dynamic stall model.

it uses relatively few empirical coefficients, with all but

four being derived from static airfoil data. There are two

time constants used in the second subsystem of the model,

and one in the dynamic stall subsystem. The fourth pa-

rameter is a nondimensional time period related to the

duration of the dynamic stall process. The first time con-

stant is used in the stall onset model, and recognizes that

the pressure distribution on the leading-edge of the airfoil

is not in phase with the unsteady lift. This behavior is

also modeled as a first-order dynamic system, and the time

constant is derived from experimental measurements by ex-

amining the relationship between the unsteady lift and the

pressure response near the leading-edge. The second time

constant represents unsteady effects on the boundary layer

response and the movement of the separation point; this

time constant has been obtained through a combination of

unsteady boundary layer theory and experimental measure-

ments. The third time constant is used for the dynamic

lift subsystem, which has been described previously. A

fourth coefficient is used in the center of pressure function,

and represents the time period (in semi-chords of airfoil

travel) between the initiation of vortex shedding from the

leading-edge and the point when the vortex reaches the

trailing-edge of the airfoil. This coefficient is obtained sta-

tistically from correlation studies using a variety unsteady

airfoil measurements in dynamic stall, and simply recog-

nizes that despite the type of airfoil motion the dynamic

stall process occurs (on average) over a common time-

scale. To simulate the effects of the complex changes in the

flow topology during dynamic stall, the two time constants

involved in the behavior of the dynamic stall subsystem and

the trailing-edge separation subsystem are modified in a
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Figure 2.7: Flow chart of the elements of the unsteady airfoil model.
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2.2.1 Nonlinear Static Airfoil Model

The normal force coefficient Cn is expressed in terms of the trailing-edge flow

separation point f using two exponential curves to obtain a continuous functional

form similar to that used in the Leishman–Beddoes model. Stall controlled wind

turbine sections have unique nonlinear airfoil characteristics. S809 airfoil, which

was used in the NREL wind tunnel tests [91] has a characteristic lift curve (see

Fig. 2.8) where the lift coefficient Cl changes slowly over a range of angle of attack

just before stall, i.e., between α1 and α2. The Leishman–Beddoes (L–B) model has

been modified for use with the S809 airfoil, and the variation of the trailing-edge

separation point with angle of attack is expressed in terms of three exponential

curves.

Trailing-edge flow separation causes a loss of circulation and introduces non-

linearities into the lift, drag, and pitching moment. To represent the static (quasi-
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steady) nonlinear post-stall behavior, the Kirchhoff/Helmholtz formulation [127] for

modeling the lift on a flat plate is used. The relationship between the normal force

coefficient and a fixed trailing-edge flow separation point is given by

Cn = Cnα

(
1 +

√
f

2

)2

α (2.37)

where f is the effective flow separation point on the chord non-dimensionalised by

the chord length. This formulation is strictly valid only up to moderate angles of

attack. To model the airfoil behavior at very high angles of attack, as seen in wind

turbines, the Kirchhoff formulation is modified to read

Cn = Cnα

(
1 +

√
f

2

)2

sinα (2.38)

In either case, the variation of the separation point f with angle of attack α can be

obtained from the experimental measurements of static Cn by rearranging Eq. 2.38

to solve for f in terms of the measured values of Cn and α.

As an extension to this approach, the leading-edge thrust coefficient can be

approximated by [40]

Ct =


Cnα

√
f α sinα Cn < Cn(α2)

K1 + Cnαf α sinα Cn > Cn(α2)
(2.39)

Here α2 is the static stall angle for S809 airfoil. The parameter K1 is a constant

required to fit the Ct curve from 2D static test data. The leading-edge thrust

coefficient varies as
√
f below Cn(α2) and is proportional to f above Cn(α2). The

lift and drag coefficients are then obtained from the normal force and leading-edge

thrust coefficients.

It is, however, not possible to define a general expression for the pitching

moment variation from the Kirchhoff formulation so an empirical relation is used.

This relation is derived from static airfoil measurements by expressing the center of

pressure variation Cm/Cn as a function of the effective flow separation point [40].

The empirical relation for Cm/Cn (accounting for the zero-lift moment) for the S809
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Figure 2.9: Variation of the center of pressure with the effective trailing-edge flow

separation point for the S809 airfoil.

airfoil is fitted to the form

Cm =


Cm0 +

(
C0 + C1(1− f) + C2 sin(πfm)

)
Cn for α < α2

Cm0 +
(
C0 + C1 exp(C2f

m)
)
Cn for α > α2

(2.40)

Here Cm0 is the zero-lift moment and C0 is the mean offset of the aerodynamic

center from the 1/4-chord (C0 = xac/c− 1/4). The coefficients C1 and C2 describe

the nonlinear variation of the center of pressure. Figure 2.9 shows the variation of

the steady center of pressure for the S809 airfoil versus the separation point, f , and

Fig. 2.10 shows the reconstructed pitching moment curve according to Eq. 2.40.

2.2.2 Unsteady Attached Flow

The mathematical root of the L–B model lies within the classical, incompress-

ible unsteady thin airfoil theory, but it is modified semi-empirically to represent

compressibility effects in subsonic flow. The ability to accurately predict the un-

steady aerodynamic forces and moments in attached flows is critical to the prediction

of the onset of nonlinear aerodynamic effects, such as dynamic stall. The unsteady
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attached flow response is computed in the L–B model in terms of a superposition

of indicial aerodynamic responses. The indicial functions were derived for the Mach

number range appropriate to helicopter rotors, but they can be applied to lower

Mach numbers as well. The indicial responses are composed of the non-circulatory

and circulatory loading components, which are written in functional form as expo-

nential series.

The indicial response for the normal force and 1/4-chord pitching moment (in

terms of the relative distance travelled by airfoil in semi-chords) for a step change

in angle of attack ∆α is given by

∆Cn(s) =
(
Cnαφ

c
α(s,M) +

4

M
φncα (s,M)

)
∆α (2.41)

∆Cm(s) =
(
(0.25− xac)Cnαφ

c
α(s,M)− 1

M
φncα (s,M)

)
∆α (2.42)

The indicial responses from a step change in non-dimensional pitch rate about 1/4-

chord is given by

∆Cn(s) =
(
Cnα

2
φcq(s,M) +

1

M
φncq (s,M)

)
∆q (2.43)
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∆Cm(s) =
(
− Cnα

16
φcq(s,M)− 7

12M
φncq (s,M)

)
∆q (2.44)

where the φnc refers to the non-circulatory part of the response, and φc refers to

the circulatory part. The indicial response from the circulatory part [120] can be

approximated by

φc(s,M) = 1.0− A1 exp(−b1β2s)− A2 exp(−b2β2s) (2.45)

where the constants are A1 = 0.3, A1 = 0.7, b1 = 0.14 and b2 = 0.53, and

β =
√

1−M2 is the Glauert factor. The non-circulatory indicial functions for step

change in angle of attack and pitch rate about 1/4-chord are also approximated by

exponential functions (see Ref. 128).

The above step response can then be superimposed using finite-difference ap-

proximation to Duhamel’s integral (for details see Ref. 125) to take into account

the time history of the change in angle of attack and pitch rate. For a continuously

changing angle of attack, the effective unsteady angle of attack of the airfoil is given

by

αce(s,M) = α(s)−X(s)− Y (s) (2.46)

where X(s) and Y (s) are deficiency functions written in terms of the exponential

series representation of the indicial functions as given by

X(s) = A1

∫ s

s0

dα

ds
(σ) exp(−b1(s− σ)dσ) (2.47)

Y (s) = A2

∫ s

s0

dα

ds
(σ) exp(−b2(s− σ)dσ) (2.48)

These integral equations can be solved using a special finite-difference approximation

to Duhamel’s integral that is formulated as a set of recurrence equations [95]. A

second-order algorithm can be written as

X(s) = X(s−∆s) exp(−b1β2∆s) + A1∆α exp(−b1β2∆s/2) (2.49)

Y (s) = Y (s−∆s) exp(−b2β2∆s) + A2∆α exp(−b2β2∆s/2) (2.50)
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Here A1, A2, b1 and b2 are the coefficients of indicial functions, and are a function

of the airfoil and the Mach number. These recurrence relations account for the

circulatory time-history effects in the airloads.

A similar recurrence relation is used for the non-circulatory part of the airloads

(see Refs. 40 & 125 for details). The non-circulatory normal force coefficients are

given by

Cnc
nα

=
4

M
φncα =

4

M
exp

(−s
T ′α

)
(2.51)

Cnc
nq

=
q

M
φncq =

1

M
exp

(−s
T ′q

)
(2.52)

Matching the correct initial value and the slope of the the total indicial response as

given by the exact theory, the values of constants T ′α and T ′q are given by

T ′α =
2M

(1−M) + πβM2(A1b1 + A2b2)
(2.53)

T ′q =
2M

(1−M) + 2πβM2(A1b1 + A2b2)
(2.54)

A Duhamel recurrence solution can also be written for the non-circulatory terms.

For a change in effective angle of attack ∆α, the non-circulatory component of

normal force coefficient is given as

Cnc
∆α|s = Cnc

∆α|s−∆se
−∆s/T ′α + (∆α|s −∆α|s−∆s)

(
2V

c∆s

)
e−∆s/2T ′α (2.55)

Cnc
nα

=
4Tα
M

[(
2V

c∆s

)
∆α− Cnc

∆α

]
s

(2.56)

Similarly, for a pitch rate q, the recurrence relation for Cn can be written as

Cnc
∆q|s = Cnc

∆q|s−∆se
−∆s/T ′q + (∆q|s −∆q|s−∆s)

(
2V

c∆s

)
e−∆s/2T ′q (2.57)

Cnc
nq

=
4Tq
M

[(
2V

c∆s

)
∆q − Cnc

∆q

]
s

(2.58)

This linear unsteady aerodynamic model then forms the root for the upper level

part of the overall nonlinear aerodynamic model, as shown in Fig. 2.7.
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2.2.3 Unsteady Separated Flow

Defining the onset of leading-edge flow separation is the most important aspect

of modeling dynamic stall. The criterion in the L–B model for static leading-edge

flow separation can be represented in terms of the critical leading-edge pressure and

the associated pressure gradient. This is equivalent to defining a critical value of

normal force coefficient Cn1 , which corresponds to the critical pressure for the onset

of flow separation [120]. Under unsteady conditions, there is a lag in the leading-

edge pressure with increasing angle of attack, which can be expressed as a first-order

lag as given by

C ′
n = Cn −Dp

n (2.59)

where Dp
n is given by

Dp
nk

= Dp
nk−1

exp
(
− ∆s

Tp

)
+ (Cp

nk
− Cp

nk−1
) exp

(
− ∆s

2Tp

)
(2.60)

The attainment of C ′
n ≥ Cn1 causes leading edge flow separation. The time constant

TP is determined from unsteady airfoil data. Based on correlation with various

airfoils, TP has been found to be largely independent of airfoil shape [125, 129].

Trailing-edge separation is modeled as described in Section 2.2.1.

Under unsteady flow conditions, the value of f is modified because of the

previously mentioned temporal effects on the airfoil pressure distribution and the

boundary layer response. The effective angle of attack after incorporating the un-

steady pressure response is given by

αf = C ′
n/Cnα (2.61)

This value of αf is used to obtain a new value of the effective flow separation point

called f ′. The additional effects of the boundary layer response are incorporated as

a first-order lag as given by

f ′′ = f ′ −Dfk
(2.62)

63



where

Dfk
= Dfk−1

exp
(
− ∆s

Tf

)
+ (f ′k − f ′k−1) exp

(
− ∆s

2Tf

)
(2.63)

Using the final modified separation point, f ′′, the effective normal force coefficient

is then obtained by

Cf
n = Cnα

(
1 +

√
f ′′

2

)2

sinα (2.64)

Similar to Eq. 2.39, the leading-edge thrust coefficient on the airfoil for the

unsteady separated flow can be approximated by [40]

Ct =


Cnα

√
f α sinα C ′

n ≤ Cn1

K1 + Cnα

√
ffΦ α sinα C ′

n > Cn1

(2.65)

Here C ′
n is the so-called lagged value of the normal force and Cn1 , is the critical

normal force value. The parameter K1 is a constant required to fit the Ct curve

from 2D static test data. Ct varies as
√
f below Cn1 , and is proportional to

√
ffΦ

beyond stall. The parameter Φ is given by

Φ = Df (C
′
n − Cn1) + Ef (f

′′ − f) (2.66)

where f is the quasi-static separation point, f
′′

is the lagged separation point at Cn1

and Ef and Df are constants. The lift and drag coefficients are obtained by force

resolution from the normal force and leading-edge thrust coefficients (see Fig. 2.11)

using

Cl = Cf
n cosα+ Ct sinα (2.67)

Cd = Cf
n sinα− Ct cosα+ Cd0 (2.68)

where Cd0 is the zero-lift drag coefficient of the airfoil.

2.2.4 Vortex Lift

Dynamic stall is characterized by the formation of a vortical disturbance near

the leading-edge of the airfoil, which separates from the surface at some critical point
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Figure 2.11: A schematic of the S809 airfoil and the various aerodynamic force

coefficients.

and is then convected downstream along the chord. The effect of the vortex shedding

is accounted in the L–B model by defining the vortex lift as the difference between

the linearized value of the unsteady circulatory lift and the unsteady nonlinear lift

obtained from the Kirchhoff approximation, i.e., by using

Cv
n = Cc

n(1−Kn) (2.69)

where

Kn = (1 +
√
f ′′)2/4 (2.70)

At the same time, the vortex lift is allowed to decay with time, but it can be updated

by a new increment in lift based on prior forcing conditions, i.e.,

Cv
nk

= Cv
nk−1

exp
(
− ∆s

Tv

)
+ (Cvk

− Cvk−1
) exp

(
− ∆s

2Tv

)
(2.71)

where Tv is the vortex time decay constant. When the critical conditions for leading-

edge flow separation are reached (i.e., C ′
n > Cn1), the accumulated vortex lift starts

to convect over the airfoil chord. During vortex convection process, the vortex lift

continues to accumulate but ends when the vortex reaches the airfoil trailing-edge

(i.e., when the non-dimensional vortex time, τv, is equal to the vortex traversal time,

Tvl).
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The center of pressure produced on the airfoil also varies with the convection of

the leading-edge vortex over the chord, and is represented by the empirical relation

x̄cpv = 0.20
(
1− cos

(
πτv
Tvl

))
(2.72)

The increment in pitching moment about 1/4-chord resulting from the aft movement

of the center of pressure is given by

Cv
m = −x̄cpv C

v
n (2.73)

The total loading on the airfoil is then obtained by adding the vortex induced

contributions using

Cn = Cf
n + Cnc

n + Cv
n (2.74)

Cm = Cc
m + Cnc

m + Cv
m (2.75)

Cd = Cc
d + Cd0 (2.76)

Although the above components have been described in an open loop sense, the

elements are coupled, which are represented by temporary modifications of the ap-

propriate time constants [125].

2.2.5 Tower Shadow Model

Tower shadow manifests as a velocity deficit in the flow behind the support

tower. This leads to a reduction in the net lift and torque produced by the blade.

In the FVM, the tower shadow effect is modeled as a velocity deficit normal to the

surface of the blade, centered around an azimuth angle of ψ = 180◦, i.e.

Vz(ψ) = Vz∞ −∆vz exp

(
− (ψ − ψ0)

2

2σ2
tower

)
(2.77)

The velocity deficit normal to the surface of the blade ∆vz and the azimuthal span of

the velocity deficit σtower are determined empirically from experiment. The effect of

the change in the velocity field on the lift and torque, as a function of the azimuthal

location, is then accounted by the unsteady airfoil model.
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2.3 Summary

In this chapter, the methodology used in the present research has been dis-

cussed. The governing equations of the vortex wake were reviewed. The free-vortex

wake methodology for the solution of the wind turbine wake dynamics was devel-

oped. Straight-line segmentation was used to discretize the vortical wake. This gives

a second-order accurate reconstruction of induced velocity. A second-order, time-

accurate, two-step backward, predictor-corrector algorithm was used to numerically

solve the inviscid, incompressible form of the governing equations for the convection

of the wake markers.

Assuming incompressible. inviscid and irrotational flow, the governing equa-

tions of the wake were reduced to sets of convection equations. A sequential approach

was adopted to include the viscous and stretching effects. The viscous diffusion and

the filament strain effects were accounted for by using a viscous core growth model

that was corrected for filament strain effects. The modified position vectors and the

vorticity field were then marched to the next time step.

The Weissinger-L method was used for the blade lift solution. It is lifting

surface method with only one chordwise panel. The Weissinger-L solution for blade

bound circulation is related to the blade lift through an application of the Kutta–

Joukowski theorem. Although the theoretical basis for the model is inviscid incom-

pressible flow, compressibility and viscous effects can be included using an empirical

airfoil lift and drag model.

A nonlinear airfoil characteristics model was formulated for wind turbines.

The model is based on a the the Kirchhoff/Helmholtz formulation for modeling the

lift on a flat plate, and a continuous functional representation was developed for the

normal force coefficient. The original formulation was, however, modified to extend

its validity to large angles of attack. A semi-empirical model was formulated for

expressing the leading-edge thrust and the pitching moment coefficient.
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Chapter 3

Accuracy and Stability of Numerical Scheme

A numerical solution provides an approximate representation of the real physi-

cal solution. Two kinds of errors are introduced into the numerical solution: round-

off errors or discretization errors. The round-off errors are a result of non-exact

representation of real numbers in floating-point arithmetic. These errors mainly de-

pend on the floating-point precision used by the computer program. For the double

precision arithmetic used in the present work, these errors have a relative magni-

tude of approximately 10−16. Therefore, the round-off errors are not a real concern

for most practical problems. On the other hand, discretization errors are the errors

introduced during the discretization of the original governing equations, and depend

on the grid size. The discretization errors are much larger in magnitude, and are

more important to the problem of the aerodynamic numerical solution.

The discretized governing equation of the vortical wake is given by Eq. 2.25.

The right-hand side of the governing equation is the nonlinear velocity field. It in-

cludes the self- and mutually-induced field from the helicoidal vortex filament behind

the turbine. The approximate representation of the continuous vortex filament using

straight-line segments gives an approximate solution of the induced velocity field.

Similarly, the left-hand side of the governing equations for the wake is discretized

and solved using a time-marching method, which is an approximate representation

of the physical solution.

The overall order of accuracy of the numerical solution is governed by the order

of accuracy of the lowest order accurate term. Hence, it is important to analyze the

order of accuracy of both sides of the governing equation to ensure a consistent
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level of accuracy. A numerical solution with a higher order of accuracy is also

more computationally expensive. Therefore, there is a need to carefully evaluate

the accuracy of the numerical solution for the engineering analysis of wind turbines,

and to establish thresholds of discretization that will provide acceptable levels of

accuracy while still containing computational costs.

3.1 Accuracy of the Induced Velocity Reconstruction

Vortex methods model the vortical structure of the rotor wake in the form of

continuous vortex lines that exist in a potential flow. As discussed in Section 2.1, the

mathematical representation of a vortex wake can be done in variety of ways, such as

constant vorticity straight-line filaments, curved vortex filaments, and vortex blobs

[95]. Straight-line segment approximation is commonly used because the induced

velocity contribution of each separate vortex segment can be evaluated exactly using

the Biot–Savart law.

Bhagwat & Leishman [112] used the problem of calculating the induced ve-

locity of an inviscid vortex ring to estimate the accuracy of straight-line segment

approximation. The induced velocity calculations from the numerical integration

of the Biot–Savart law were compared with the analytical result for a vortex ring

derived in terms of elliptic integrals [130]. The error analysis was done by calculat-

ing the L2-norm and L∞-norm of the relative error in the induced velocity across

the plane of a vortex ring. It was shown that the straight-line segmentation gives a

second-order accurate reconstruction of the velocity field.

Wood & Li [131] have suggested a helical vortex as more appropriate and

stringent case for estimating the accuracy of straight-line segmentation. They con-

sidered three test cases for various helical pitch values of a singly-infinite helical

vortex. They showed a second-order accuracy for a control point away from the

filament and a dependence on helical pitch for control points near the singularity.

Asymptotic results for the binormal velocity of a singly-infinite helical vortex de-
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rived by Boersma & Wood [132, 133] were used where an analytic solution is not

available. Wood & Li also argued that a vortex ring is not a special case of a helical

vortex as its helical pitch tends to zero.

In this section, the accuracy of the induced velocity reconstruction using a

straight-line segmentation of the vortex filaments has been discussed. The induced

velocity distribution and error behavior of a vortex ring and a helical vortex are also

compared.

3.1.1 Vortex Ring

A vortex ring can be thought of as one revolution of the helicoidal wake with

the helical pitch equal to zero. The velocity induced by a vortex ring is given by the

integration of the velocity induced by each straight line segment (given by Eq. 2.11)

over the perimeter of the ring, which is given in polar coordinates r and z by the

equations

Vr(r, z) = − Γ

4π

∫ 2π−δ

δ

Rz cos θ

(R2 + r2 − 2rR cos θ + z2)3/2
dθ

Vz(r, z) = − Γ

4π

∫ 2π−δ

δ

R(R− r cos θ)

(R2 + r2 − 2rR cos θ + z2)3/2
dθ (3.1)

Here δ is the cutoff angle which is equal to the angular discretization of the vortex

ring.

An exact solution for the velocity induced by a vortex ring at any point can

be found in terms of elliptic integrals [130]. For a vortex ring with strength Γ and

radius R, the axial and radial velocity components are given by

Vz(r, z) =
−Γ

2π
√
z2 + (r +R)2

[
K(x) +

R2 − r2 − z2

z2 + (R− r)2
E(x)

]

Vr(r, z) =
−Γz

2π
√
z2 + (r +R)2

[
K(x)− R2 + r2 + z2

z2 + (R− r)2
E(x)

]
(3.2)

respectively, where K(x) and E(x) are the elliptic integrals of the first and second
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kind respectively. The argument x is defined by the equation

x =

√
4rR

z2 + (r + 1)2
(3.3)

The velocity induced by the discretized vortex ring was calculated along a

diameter across the plane of the vortex ring. All the calculations were done using

double precision arithmetic. In the plane of the vortex ring, the radial component

of the induced velocity is zero and only the axial component exists. The azimuthal

discretization level was varied from a coarse azimuthal segmentation of 30◦ to a fine

resolution of 0.01◦.

Figure 3.1 shows the numerical results for the axial velocity, Vz, for various

discretization levels, as compared to the exact solution given by Eq. 3.2. The exact

solution is not defined at |~r| = 1, which is where a logarithmic singularity exists.

For all other points in the plane of the ring, the numerical results show very good

agreement with the exact solution. For ∆θ = 0.01◦, the two values agree numerically

up to 7 decimal places. Figure 3.2 shows the relative error distribution along the

radius of the vortex ring. The magnitude of the relative error is maximum near the

singularity at |~r| = 1, and decreases away from the singularity.

To estimate the accuracy of the reconstruction of induced velocity, a plot of

L2-norm versus the discretization level is shown in Fig. 3.3. In the first case, the

error is calculated with respect to the exact solution, and in the second case with

respect to the numerical solution from finest discretization. The two values were

found to coincide for all discretization levels. A quadratic fit is also shown, indicating

a second-order accuracy. For coarse discretizations, (∆θ > 10◦), the maximum error

is more than 10%, and the order of accuracy appears to be lower. The above results

show that for fine discretizations, the induced velocity calculation is at least second-

order accurate.

The fact that the induced velocity calculation from the finest discretization

compares so well with the exact solution will be used in the analysis of helical vortex.

The induced velocity from the finest discretization will be used as an approximation

71



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

 Δθ  = 30 o

 Δθ  = 10o

 Δθ  =   1o

 Δθ  = 0.02 o

 Δθ  = 0.01o

 Exact 

N
on

-d
im

en
si

on
al

 a
xi

al
 v

el
oc

ity
,  

V zR
 / 
Γ

v

Non-dimensional distance, r/R

Figure 3.1: Induced velocity in the plane of a vortex ring.
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Figure 3.2: Numerical error distribution in the plane of a vortex ring.

72



10-7

10-6

10-5

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

L
2 
-norm wrt exact solution

L
2 
-norm wrt finest mesh

Quadratic fit

L 2 
-n

or
m

 

Discretization level, Δθ (deg.)

2:1

Figure 3.3: L2-norm versus discretization for a vortex ring showing a second-order

accuracy.

to the exact solution to calculate the error for a helical vortex, which does not have

an analytical solution.

3.1.2 Comparison of a Vortex Ring and a Helical Vortex

A vortex ring can be thought of as helical vortex of pitch equal to zero laid

down by one revolution of the rotor. It has been argued by Wood and Li [131],

that the vortex ring is not a special case of a helical vortex with helical pitch,

p → 0. To understand this problem and compare the two cases quantitatively, the

induced velocity distribution, scaled by the number of turns, from a singly-infinite

and a doubly-infinite helical vortex with very small helical pitch was examined and

compared to that of a vortex ring. Three cases were considered.

1. The spatial extent of the helical vortex (N × p) was held constant.

2. Number of turns in the helical vortex, N , for different values of helical pitch,

p was held constant.
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3. Number of turns of the helix was varied for a constant helical pitch, p.

The results are presented for an azimuthal discretization of ∆θ = 0.1◦. In

Section 3.1.1, it was shown that the numerical evaluation of the Biot–Savart integral

using an azimuthal discretization of ∆θ = 0.1◦ to obtain induced velocity field gives

a maximum error of less than 0.01%, which is essentially exact for any practical

purpose.

Case 1: N × p is constant

In this case, the spatial extent of the helical vortex is kept constant. For

p = 0.01, a total of 20 and 40 turns were used for singly-infinite and doubly-infinite

helical vortices, respectively. For decreasing helical pitch, the number of turns was

increased to keep the product N × p constant, and hence the spatial extent of the

helix constant.

Figure 3.4 shows the induced velocity distribution across the z = 0 plane of a

singly-infinite helical vortex. Notice that the induced velocity in this case is scaled

by the number of turns. Also shown, is the induced velocity distribution from

a vortex ring across the same plane. With decreasing helical pitch, the induced

velocity distribution remains the same and does not approach the induced velocity

distribution from a vortex ring. Figure 3.5 shows the error distribution of the

induced velocity as compared to the exact solution for a vortex ring. For various

helical pitch values, the error distribution was found to be the same.

The induced velocity distribution from a doubly-infinite helical vortex, scaled

by the number of turns, is shown in Fig. 3.6. In this case, the velocity distribution

was similar to the velocity induced by a singly-infinite helical vortex, and did not

change for decreasing pitch. Figure 3.7 shows the error in induced velocity as com-

pared to vortex ring. The magnitude of the error at all points was, again, the same

as for the singly-infinite vortex.
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Case 2: Constant N

For the second case, the number of turns of the helical vortex was kept constant

for different helical pitch values, and the spatial extent of the helical vortex decreased

with decreasing pitch. A total of 20 and 40 turns were used for the singly-infinite

and doubly-infinite helical vortices, respectively. The induced velocity distribution

for singly-infinite helical vortex is shown in Fig. 3.8. In this case, with decreasing

helical pitch the induced velocity distribution approached the velocity distribution

from a vortex ring, as shown by the solid line.

Figure 3.9 shows the magnitude of the error in the induced velocity calculated

with respect to the induced velocity from a vortex ring. The magnitude of this error

decreased as the value of helical pitch decreased. Similarly, the induced velocity

distribution for a doubly infinite helical vortex (shown in Fig. 3.10), also approached

the vortex ring result. For this case, the induced velocity scaled by number of turns

for the singly-infinite and doubly-infinite helical vortices are the same. The error

distribution for a doubly-infinite helical vortex, is similar to singly-infinite helical

vortex, as shown in Fig. 3.11.

Case 3: Constant p

The variation in the induced velocity distribution for a fixed helical pitch, p,

but with an increasing number of turns was also studied. Figure 3.12 shows the

induced velocity distribution from a singly-infinite helical vortex with p = 0.001 for

increasing N . It can be seen that the velocity distribution differs more and more

from the vortex ring case, as N is increased. A doubly-infinite vortex ring also

behaves in a similar way, as shown in Figure 3.13.

All of the above results show that a helical vortex reduces to a vortex ring as

the helical pitch p → 0, provided the number of turns, N , is kept constant. If the

spatial extent of the helical vortex is kept constant, the velocity distribution does
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Figure 3.4: Induced velocity distribution from a singly-infinite helical vortex for

decreasing helical pitch with N × p constant. An azimuthal discretization of ∆θ =

0.1◦ is used. The velocity induced by a vortex ring is also shown.

not depend on the helical pitch. When the helical pitch is reduced for a constant

N , the case of a vortex ring is approached. If the number of turns is increased for

small but finite helical pitch (Figs. 3.12 and 3.13), the induced velocity distribution

becomes less like the vortex ring case.
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Figure 3.5: Error distribution in induced velocity from a singly-infinite helical vortex

for decreasing helical pitch with N × p constant, compared to a vortex ring. An

azimuthal discretization of ∆θ = 0.1◦ is used.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

p = 0.001
p = 0.005
p = 0.01
Vortex Ring

N
on

-d
im

en
si

on
al

 a
xi

al
 v

el
oc

ity
,  

(V
z/(Γ

v/R
))

/N

Non-dimensional distance, r/R

Figure 3.6: Induced velocity distribution from a doubly-infinite helical vortex for

decreasing helical pitch with N × p constant. An azimuthal discretization of ∆θ =

0.1◦ is used. The velocity induced by a vortex ring is also shown.
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Figure 3.7: Error distribution in induced velocity from a doubly-infinite helical

vortex for decreasing helical pitch with N × p constant, compared to a vortex ring.

An azimuthal discretization of ∆θ = 0.1◦ is used.
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Figure 3.8: Induced velocity distribution from a singly-infinite helical vortex for

decreasing helical pitch with N constant. An azimuthal discretization of ∆θ = 0.1◦

is used. The velocity induced by a vortex ring is also shown.
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tex for decreasing helical pitch with N constant, compared to a vortex ring. An
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Figure 3.10: Induced velocity distribution from a doubly-infinite helical vortex for

decreasing helical pitch with N constant. An azimuthal discretization of ∆θ = 0.1◦

is used. The velocity induced by a vortex ring is also shown.
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Figure 3.11: Error distribution in induced velocity from a doubly-infinite helical

vortex for decreasing helical pitch with N constant, compared to a vortex ring. An

azimuthal discretization of ∆θ = 0.1◦ is used.
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Figure 3.12: Comparison of the induced velocity distribution from a vortex ring and

a singly-infinite helical vortex for increasing number of turns and constant helical

pitch p = 0.001. An azimuthal discretization of ∆θ = 0.1◦ is used.
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Figure 3.13: Comparison of the induced velocity distribution from a vortex ring and

a doubly-infinite helical vortex for increasing number of turns and constant helical

pitch p = 0.001. An azimuthal discretization of ∆θ = 0.1◦ is used.
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3.1.3 Accuracy of Straight-Line Segmentation of Helical Vortex

In Section 3.1.2, the induced velocity distribution and error distribution for

singly-infinite and doubly-infinite helical vortex with very small pitch were compared

with that of a vortex ring. The vortex ring has been established as a special case of

helical vortex with the helical pitch tending to zero, but only if number of turns is

held constant. In this section, the accuracy of the induced velocity reconstruction

from a helical vortex will be considered.

It was shown in Section 3.1.1 that the numerical results from the finest dis-

cretization for the induced velocity reconstruction of the vortex ring agree very well

with the exact solution. This result will be used in assessing the accuracy of the

induced velocity from both singly-infinite and doubly-infinite helical vortices, and

so the errors were calculated with respect to the numerical results from the finest

discretization level. Results were studied for a range of values of helical pitch, p.

All the calculations were done in double precision arithmetic.

Figure 3.14 shows the induced velocity from a singly-infinite helical vortex

with a helical pitch of p = 0.05. The induced velocity distribution has a singularity

at ~r = +1, but the variation near ~r = −1 is smoother. The error distribution in

the induced velocity calculated with respect to the finest discretization is shown in

Fig. 3.15. The error distribution has a maximum at ~r = −1.2. The induced velocity

near ~r = −1.2 is close to zero, which causes an increase in the relative error at this

point. However, the absolute maximum error still occurs at the singularity ~r = 1.

The solid line shows the relative error in the induced velocity for a vortex ring for

a discretization of ∆θ = 0.02◦. It can be seen that the magnitude of the relative

error for the vortex ring is greater than the corresponding case of a helical vortex at

all points. The position of minimum error is governed by the cancellation of errors

from the successive turns of the helix.

Figure 3.16 shows the velocity distribution for a helical pitch of p = 0.1. The

velocity distribution is essentially the same, except for the value of constant velocity
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near |r| = 0. The error distribution (Fig. 3.17) has only one minima at ~r = −0.2

and a maxima near the singularity at |r| = 1.0. For p = 1.0 (Fig. 3.18), the vortex

element nearest to ~r = −1.0, is relatively far, and the induced velocity distribution

is flat. The minima in the error distribution moves to ~r = 0.0 (Fig. 3.19).

Figure 3.20 shows the L2-norm versus discretization level for various values

of helical pitch. A curve fit is also shown to bring out the nature of the numerical

errors. For all values of helical pitch, the errors decreased quadratically with grid

discretization. The results were similar to the case of vortex ring, as discussed

previously in Section 3.1.1. The magnitude of the L2-norm (computed from the

relative error) for p = 0.05 was more than the other cases because of the reasons

cited earlier. The accuracy is less than second-order for coarse discretizations, and

as found for the vortex ring case, a discretization of at least ∆θ = 10◦ was required

to keep the maximum error less than 10%.

Next, the case of a doubly-infinite vortex was considered. It was shown pre-

viously in Section 3.1.2 that the induced velocities (scaled by the number of turns),

and the error behavior of both the doubly-infinite vortex and the singly-infinite vor-

tex were similar. Figure 3.21 shows the velocity induced by a doubly-infinite vortex

for p = 0.05. Notice that, in this case, the velocity is not scaled by the number of

turns, and the magnitude of the induced velocities is almost twice that of the singly-

infinite case. The error behavior (Fig. 3.22) was the same as for the singly-infinite

vortex with p = 0.05. The minima is at ~r = −0.7 and a maxima is at ~r = −1.2.

Figure 3.23 shows the velocity induced by a doubly-infinite vortex with helical

pitch of p = 0.1. Again, the magnitude of the velocity is twice the magnitude of the

velocity induced by a singly-infinite helical vortex with the same pitch. The error

distribution for this case is shown in Fig. 3.24.

The convergence trend (L2-norm versus grid discretization) is shown in Fig. 3.25.

A quadratic fit is also shown, which indicates a second-order accuracy for all values

of helical pitch. For different helical pitch values, it is clear that the reconstruction
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Figure 3.14: Induced velocity in the plane of a singly-infinite helical vortex with

pitch p = 0.05 calculated using straight-line segmentation.

of the induced velocity field from both the singly-infinite and the doubly-infinite

helical vortex by straight-line segmentation is at least second-order accurate.
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Figure 3.15: Error distribution in the induced velocity in the plane of a singly-

infinite helical vortex (p = 0.05) with respect to the finest discretization. The error

distribution for the case of vortex ring with discretization level of ∆θ = 0.02◦ is also

shown.
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Figure 3.16: Induced velocity in the plane of a singly-infinite helical vortex with

pitch p = 0.1 calculated using straight-line segmentation.
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Figure 3.17: Error distribution in the induced velocity in the plane of a singly-

infinite helical vortex (p = 0.1) with respect to the finest discretization. The error

distribution for the case of vortex ring (∆θ = 0.02◦) is also shown.
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Figure 3.18: Induced velocity in the plane of a singly-infinite helical vortex with

pitch p = 1.0 calculated using straight-line segmentation.
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Figure 3.19: Error distribution in the induced velocity in the plane of a singly-

infinite helical vortex (p = 1.0) with respect to the finest discretization. The error

distribution for the case of vortex ring (∆θ = 0.02◦) is also shown.
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Figure 3.20: L2-norm versus discretization level for various pitch values showing

the convergence trend for the numerical scheme for the accuracy of induced velocity

calculation by straight-line segmentation of doubly-infinite helical vortex.
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Figure 3.21: Induced velocity in the plane of a doubly-infinite helical vortex with

pitch p = 0.05 calculated using straight-line segmentation.
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Figure 3.22: Error distribution in the induced velocity in the plane of a doubly-

infinite helical vortex (p = 0.05) with respect to the finest discretization. The error

distribution for the case of vortex ring (∆θ = 0.02◦) is also shown.
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Figure 3.23: Induced velocity in the plane of a doubly-infinite helical vortex with

pitch p = 0.1 calculated using straight-line segmentation.
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Figure 3.24: Error distribution in the induced velocity in the plane of a doubly-

infinite helical vortex (p = 0.1) with respect to the finest discretization. Error

distribution for the case of vortex ring (∆θ = 0.02◦) is also shown.
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Figure 3.25: L2-norm versus discretization level for various pitch values showing

the convergence trend for the numerical scheme for the accuracy of induced velocity

calculation by straight-line segmentation of doubly-infinite helical vortex.
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3.1.4 Comparison of Results With Wood & Li

In this section, the accuracy of the reconstruction of the induced velocity

field from a singly-infinite helical vortex using straight-line segmentation is consid-

ered. The approach follows the procedure of Wood & Li [131]. Three cases were

considered. First case is the induced velocity on the axis of the helix at Point

1:(x, y, z = 0, 0, 0), for which an analytic solution is available. The second case is

the velocity at Point 2:(x, y, z = 0,−1, 0) in Fig. 3.26, which is at the same radius

as the vortex but displaced from the vortex by a distance pRπ. Third case is the

self-induced velocity at Point 3:(x, y, z = 0, 1, 0).

The accuracy of the numerical scheme is analyzed locally at each point in [131].

An exact solution U = p−1 is available for Point 1. For Points 2 and 3, a binormal

velocity is available from the analysis performed in [132, 133], which was obtained

using asymptotic expansions for small and large pitch. The results for the binormal

velocity from Boersma & Wood [132, 133] are accurate up to six significant figures

for all values of helical pitch. In this study, the binormal velocity is calculated

numerically using the Biot–Savart law.

The error behavior with respect to the exact solution for Point 1, and binormal

velocity given in Table 1 in Wood & Li [131] for Point 2, and Point 3 is compared

with that of [131] for a wide range of helical pitch values. The binormal velocity,

Ub, is calculated from the x and z direction velocities U and W using

Ub =
U ± pW

(p2 + 1)1/2
(3.4)

where pW is added for Point 2 and subtracted for Point 3. The components U and

W are the sum of induced velocities contribution from each straight-line segment

obtained by the Biot–Savart law.

In the first method, the singly-infinite helical vortex was approximated by a

large number of helical turns (1000 turns), which is constant for different discretiza-

tion levels. This is different than the procedure of Wood & Li, which will be analyzed
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Figure 3.26: Schematic of a singly-infinite helical vortex discretized by straight-line

segments, showing the three control points.

later in this section. The “analytic remainder”, which approximates the remaining

contribution from the infinite integral, is not calculated. According to Wood &

Li [131], the analytic remainder, in any case, does not contribute significantly to the

calculation of the induced velocities.

Figure 3.27 shows the absolute error plotted against discretization level for

Point 1. This figure corresponds to Fig. 4 in Wood & Li [131]. The error for a par-

ticular value of helical pitch stays constant, and is not sensitive to the discretization

level. The value of induced velocity is very close to the analytic result of 1/p, even

for very coarse discretization, and does not change with discretization level.

The variation of absolute error with discretization level for Point 2 is shown

in Fig. 3.28. The thick solid line is a quadratic fit (M−2 fit), indicating that the

accuracy of the induced velocity reconstruction for Point 2 is second-order, and does

not change for large values of M . The increase in error, at large M for p = 0.05 and

p = 0.1, as shown in [131], is not present here. Figure 3.29 shows the error variation

for Point 3. A cutoff method proposed by Saffman [103], to exclude the logarithmic

singularity, is used to obtain the induced velocity at this point. For small value of
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helical pitch (p = 0.01 and p = 0.05), the absolute error decreases with increasing

discretization level. For higher values of pitch, the absolute error increases with

increasing values of M . This variation is consistent with the results in Fig. 6(a) in

Wood & Li [131].

The second method proposed by Wood & Li [131], approximates the singly-

infinite helical vortex with a finite number of number of turns, depending upon the

number of divisions per revolution, M (or the discretization level) and the helical

pitch, p, which is given by

N =
5M

πp
(3.5)

An error analysis using this value of N was done for the three control points.

As shown in Fig. 3.30 and Fig. 3.31, this approach gives a second-order trend for the

variation of error in Point 1 and Point 2. Results for small helical pitch (p = 0.01 and

p = 0.05) are not included because of the large number of turns required according

to the results given by Eq. 3.5, yet Fig. 3.30 shows very good agreement with Fig. 4

of [131]. The dashed line shows a M−2 fit, indicating second-order accuracy. The

solid line shows the variation of error for a vortex ring with discretization level, and

the magnitude of the error for Point 1 is always more than the helical vortex with

finite pitch.

From Fig. 3.27 and Fig. 3.30, it is clear that the second-order error trend seen

in the second approach is a result of the small number of turns used for small M ,

pushing up the error. Consider the case for p = 0.1. When using 1000 turns, the

error at M = 10 is 1e−5, whereas in the second approach, number of turns used

is 16, and the magnitude of the error is 1e−3. For larger M , the magnitude of the

error is smaller in the second approach because of a large number of turns used. For

Point 2 (Fig. 3.31), the error variation is second-order, as indicated by a quadratic

fit. The increase in the accuracy for large values of M , as reported in Ref. 131 is not

seen here. Figure 3.32 shows the error behavior for Point 3, which is very similar to

the results of Fig. 6(b) in Ref. 131.
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Figure 3.27: Absolute error in the induced velocity for Case 1 with respect to the

exact solution (1/p) for a singly-infinite helical vortex.
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Figure 3.28: Absolute error in the induced velocity for Case 2 with respect to the

numerical solution of binormal velocity Ub given in Table 1 of Ref. 131.
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Figure 3.29: Absolute error in the induced velocity for Case 3 with respect to the

numerical solution of binormal velocity Ub given in Table 1 of Ref. 131.
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Figure 3.30: Absolute error in the induced velocity for Case 1 with respect to the

exact solution (1/p) for a singly-infinite helical vortex and number of turns given by

Eq. 3.5.
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Figure 3.31: Absolute error in the induced velocity for Case 2 with respect to the

numerical solution of binormal velocity Ub given in Table 1 of Ref. 131 and number

of turns given by Eq. 3.5.
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Figure 3.32: Absolute error in the induced velocity for Case 3 with respect to the

numerical solution of binormal velocity Ub given in Table 1 of Ref. 131 and number

of turns given by Eq. 3.5.
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3.1.5 Accuracy of Induced Velocity Field for a Skewed Helix

The wake of a wind turbine in yawed operation resembles that of a skewed he-

lical vortex. It is, therefore, important to understand the accuracy of the reconstruc-

tion of induced velocity of a skewed helical vortex using straight-line segmentation.

In this section, the accuracy of this approach is studied, and the error behavior is

compared with the unskewed case. In Section 3.1.3, it was seen that the behavior of

singly-infinite and doubly-infinite unskewed helical vortex is very similar. Therefore,

in this section only a singly-infinite skewed helical vortex will be analyzed.

Figure 3.33 shows a schematic of a skewed helical vortex, which is skewed

along the x-axis. As in the unskewed case, using straight-line segmentation to

discretize the vortex, the induced velocities are calculated in the z = 0 plane as

the sum of the contribution from each vortex segment. Errors in the calculation of

the induced velocity for each discretization level are calculated with respect to the

induced velocity for the finest level of discretization (∆θ = 0.01◦).

Figure 3.34 shows the induced velocity for a helical pitch of p = 0.05 (which

is typical of wind turbine wakes) for different skew angles. Figure 3.35 shows the

distribution of the relative error across the disk plane for different skew angles. The

induced velocity near x = −1.2 for the unskewed case is close to zero (see Sec-

tion 3.1.3), which causes an increase in the magnitude of the error. The distribution

of absolute error across the z = 0 plane is shown in Figure 3.36. Notice that the

peak near x = −1.2 vanishes in this case, and the maximum error is found at the

singularity (~r = 1.0), which is the same for the skewed and unskewed case. There

are some additional minima in the skewed case which are a result of the cancellation

of errors from adjacent turns of the helix.

Figure 3.37 shows the convergence trend (L2-norm calculated from the relative

error). The unskewed case has relatively higher errors because of the reasons stated

above. The L2-norm for the absolute error is plotted in Fig. 3.38, and the the

values are similar for the skewed and unskewed case. A quadratic fit for both cases,
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Figure 3.33: A schematic of a singly-infinite skewed helical vortex. The helical pitch

of the vortex is p = 1.0 and the skew angle is 30◦ along the x-axis.

indicates the second-order accuracy of the straight-line approximation.

The free wake models used in practice normally use an azimuthal discretiza-

tion of between 5◦ and 20◦ for efficiency considerations. This is because to convect

and track a large number of vortex filaments is not computationally practical. Fig-

ures 3.39 and 3.40 show the relative errors in the calculation of induced velocity,

for a practical range of azimuthal discretization of a singly-infinite helical vortex

(p = 0.05, β = 30◦). The errors were calculated with respect to a discretization

of ∆θ = 0.01◦. Figure 3.39 shows that at least a 10◦ discretization is required to

keep the magnitude of the maximum error below 10%. An azimuthal discretization

of less than 2.5◦ is required to keep maximum error less than 1%. The order of

accuracy of straight-line segmentation is less than two for most practical values of

∆θ (Fig. 3.40), and it is only for ∆θ < 5◦ that a second-order accuracy is achieved.
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Figure 3.34: Non-dimensional induced axial velocity in the z = 0 plane of a skewed

helical vortex with pitch p = 0.05 and skew angle β = 0◦, β = 30◦ and β = 60◦.
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Figure 3.35: Relative error in the induced axial velocity in the z = 0 plane of a

skewed helical vortex with pitch p = 0.05 and skew angle β = 0◦, β = 30◦ and

β = 60◦.
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Figure 3.36: Absolute error in the induced axial velocity in the z = 0 plane of a

skewed helical vortex with pitch p = 0.05 and skew angle β = 0◦, β = 30◦ and

β = 60◦.
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Figure 3.37: L2-norm for the relative error in the induced axial velocity in the z = 0

plane of a skewed helical vortex with pitch p = 0.05 and skew angle β = 0◦, β = 30◦

and β = 60◦.
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Figure 3.38: L2-norm for the absolute error in the induced axial velocity in the z = 0

plane of a skewed helical vortex with pitch p = 0.05 and skew angle β = 0◦ , β = 30◦

and β = 60◦.
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Figure 3.39: Relative error distribution in the induced axial velocity in the z = 0

plane of a skewed helical vortex with pitch, p = 0.05, and skew angle, β = 30◦ for

practical values of ∆θ.

101



0.001

0.01

0.1

1

1 10 100

L
2
-norm wrt finest mesh

 Quadratic fit

L 2-n
or

m
 w

ith
 rr

es
pe

ct
 to

 fi
ne

st
 m

es
h

Discretization Level, Δθ (deg.)

2:1

Figure 3.40: Convergence trend for straight-line segmentation of a skewed helical

vortex with pitch p = 0.05 and skew angle β = 30◦ for practical values of ∆θ.

3.2 Stability of Time-Marching Scheme

Time marching free-vortex wake methods track the discretized wake filaments

to force-free locations in a time-accurate manner. The time-marching free-vortex

wake methods are more flexible in representing the unsteady operating environment

encountered by wind turbines.

This section examines the stability and accuracy of the numerical methods

that can be used to solve the free-vortex wake problem for a wind turbine. This ap-

proach is used to quantify the source of potential numerical errors, and to ultimately

help identify sources of discrepancies between numerical results and experimental

measurements of turbine loads and performance. Both a linear and nonlinear sta-

bility analysis of the various methods has been conducted. Numerical convergence

can be ensured by requiring that the discretized equations be (linearly) stable and

also consistent with the governing equations. Yet, these two criteria alone may not

guarantee convergence. It is further shown that the equations governing the behav-
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ior of the turbine wake are highly nonlinear because of the induced velocities in the

wake, which can affect the stability of the scheme. The optimum choice of numerical

integration method is not an obvious one.

3.2.1 Linear Stability Analysis

The linear stability of the time-marching scheme has been studied using the

method of representative equations [134]. Consider the first-order representative

differential equation defined by

du

dt
= λu+ aeµt (3.6)

The exact solution to Eq. 3.6 is given by

u(t) = u(0)eλt + a

(
eµt − eλt

µ− λ

)
(3.7)

Applying various time-marching schemes to the representative equation in Eq. 3.7,

a linear ordinary differential equation (ODE) can be converted to a linear ordinary

difference equation (O∆E). The use of an Euler explicit time-marching method gives

un+1 = un + hu′n (3.8)

where h is the time step. Applying this to the representative equation gives

P (σ) = Q(σ)aeµhn (3.9)

where P (σ) is known as the characteristic polynomial. The values of σ are the roots

of this polynomial, and their magnitudes determine the stability of the method. For

numerical stability, the criterion that

|σ(λ = iωh)| ≤ 1 (3.10)

must be met, where ω is the spatial wave number. For the Euler explicit time-

marching method, the characteristic polynomial is

P (σ) = σ − 1− λh (3.11)
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Figure 3.41: The eigenvalues for the Euler explicit method in the complex σ plane.

In this case, it gives the single (principal) eigenvalue as

σ1 = 1 + λh (3.12)

which is O(h) and confirms that this scheme is only first-order accurate. The lin-

ear stability criterion requires that |σ| < 1, which implies that the eigenvalues for

λ = iωh must lie within the unit circle in the complex σ plane. Figure 3.41 shows

the principal eigenvalue for the Euler explicit method, and this method is always un-

stable for all values of ωh. This means that based on this simple linear analysis, the

Euler explicit method would always be an inappropriate choice for the integration

of the wake equations.

Various other time-marching schemes have been proposed and used in free-

vortex wake methods. Bhagwat & Leishman [112] have used a Predictor-Corrector

Central (PCC) and a Predictor-Corrector second-order Backward (PC2B) scheme.

A fourth-order Adams–Moulton method was used by Kini & Conlisk. [81]. A second-
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order Adams–Bashforth method has also been analyzed in this study. For predictor-

corrector and multi-step methods, multiple eigenvalues exist. One of the eigenvalues

is the principal eigenvalue, and this dictates the accuracy of the numerical method.

The other eigenvalues are called spurious roots. These do not affect the accuracy

of the numerical scheme but may affect the overall stability of the time-marching

method.

Applying Bhagwat & Leishman’s PCC difference algorithm to the representa-

tive equation (Eq. 3.6) gives

ũn+1 = un +
1

2
λh(ũn+1 + un) +

1

2
aheµhn

un+1 = un +
1

2
λh(un+1 + un) +

1

2
ah
(
eµhn + eµh

˜(n+1)
)

(3.13)

The characteristic polynomial in this case is given by

P (σ) = (1− 1

2
λh)σ − (1 +

1

2
λh) (3.14)

and the principal eigenvalue by

σ1 =
1− 1

2
λh

1 + 1
2
λh

= 1 + λh+
1

2
λ2h2 + · · · (3.15)

The O(h2) term in this latter equation indicates that the PCC algorithm is second-

order accurate. The second eigenvalue, which in this case is zero, is the spurious

root. Figure 3.42 shows the eigenvalues for the PCC scheme in the complex σ plane.

Notice that the principal eigenvalue follows the exact solution, whereas the second

eigenvalue is zero. This result shows that the PCC method is neutrally stable for

all values of ωh.

Bhagwat & Leishman’s PC2B method uses backward differencing with three

previous time steps. This scheme adds additional effective damping, making it more

stable whilst retaining the second-order accuracy. In this case, the PC2B scheme

applied to the representative equation (Eq. 3.6) gives

ũn+1 = un +
1

2
λh(ũn+1 + un) +

1

2
aheµhn

3un+1 = un + 3un−1 − un−2 + 2λh(un+1 + un)2ah
(
eµhn + eµh

˜(n+1)
)

(3.16)
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Figure 3.42: The eigenvalues for the PCC scheme in the complex σ plane.
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Figure 3.43: The eigenvalues for PC2B scheme in the complex σ plane.

106



Notice that like the PCC scheme, this scheme is more expensive because it uses two

velocity field evaluations per time step. The characteristic polynomial for the PC2B

scheme is

(3− 2λh)σ3 − (1 + 2λh)σ2 − 3σ + 1 = 0 (3.17)

The PC2B scheme uses three time steps in the integration algorithm, so there are

three eigenvalues. These are given by

σ1 = 1 + λh+
1

2
λ2h2 +

1

2
λ3h3 + · · ·

σ2 =
1

3
− 1

9
λh+

5

54
λ2h2 +

17

162
λ3h3 + · · ·

σ3 = −1 (3.18)

Figure 3.43 shows the eigenvalues for the PC2B scheme. The principal eigen-

value follows the exact solution for smaller values of ωh and deviates from it only

at higher values because of implicit dissipation in the scheme. In particular, notice

that the PC2B scheme is stable for all values of ωh.

Generalized Adams–Bashforth type schemes for the time-marching solutions

can be written in the form

un+1 = un + ∆t
(
αu′n + βu′n−1 + γu′n−2

)
(3.19)

where α, β and γ are constants. By developing a Taylor series expansion and

imposing a second-order accuracy requirement, the above equation reduces to a one

parameter family of AB2 schemes as given by

un+1 = un + ∆t
(
α(u′n − 2u′n−1 + u′n−2) + (5u′n−1 − 3u′n−2)/2

)
(3.20)

Applying this scheme to the representative equation (Eq. 3.6) gives

un+1 = un + h
(
α(λun + aeµhn − 2(λun−1 + aeµh(n−1)) + λun−2 + aeµh(n−2))

+ (5(λun−1 + aeµh(n−1) − 3(λun−2 + aeµh(n−2))/2
)

(3.21)

In particular, the characteristic polynomial for the case of α = 1.5 is given by

P (σ) = σ3 − σ2(1 +
3

2
λh) +

σ

2
λh (3.22)
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Figure 3.44: The eigenvalues for one-parameter, second-order Adams–Bashforth

family of time-marching methods with α = 1.5.

The roots of Eq. 3.22 can be obtained analytically. Figure 3.44 shows the

variation of the eigenvalues with ωh for α = 1.5. The principal eigenvalue falls

outside the unit circle for all values of ωh, and so the scheme is unstable. The

spurious eigenvalue stays within the unit circle.

The Adams–Moulton scheme is implicit, and so computationally very expen-

sive. The fourth-order accurate Adams–Moulton (AM4) scheme can be written as

un+1 = un + h
(

9

24
u′n+1 +

19

24
u′n −

5

24
u′n−1 +

1

24
u′n−2

)
(3.23)

Applying this scheme to the representative equation (3.6) gives

un+1 = un + h
(

9

24
(λun+1 + aeµh(n+1)) +

19

24
(λun + aeµhn)

− 5

24
(λun−1 + aeµh(n−1)) +

1

24
(λun−2 + aeµh(n−2))

)
(3.24)
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Figure 3.45: The eigenvalues for fourth-order Adams–Moulton method.

The characteristic equation in this case is given by

P (σ) = (1− 9

24
λh)σ3 − (1 +

19

24
λh)σ2 +

5

24
λhσ − λh

24
(3.25)

The roots of this equation are plotted in Fig. 3.45. Notice that the principal eigen-

value follows the exact solution for smaller values of ωh. The spurious roots always

stay within the unit circle. In this case the scheme is only stable for ωh < 0.7.

Figure 3.46 shows a summary of the variations of the magnitude of the prin-

cipal eigenvalue for all the previously considered schemes. When |σ| = 1, the exact

amplitude of the solution is recovered. If the magnitude of the principal eigenvalue

is smaller than unity then the scheme is stable, otherwise the scheme is unstable.

It can be seen that the PC2B scheme is stable for all values of ωh, whereas the

Adams–Bashforth (AB2) and the Euler explicit schemes are unstable. The PCC

scheme is neutrally stable.

Figure 3.47 shows the corresponding variation of the phase errors introduced
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Figure 3.46: Variation of the magnitude of the principal eigenvalue with ωh for

various time-marching methods.

with the various time-marching methods. The phase error is defined as

εp = ωh− tan−1 [(σ1)Im/(σ1)Re] (3.26)

where σ1 is the principal eigenvalue. A positive value of the phase error εp corre-

sponds to a phase lag, while a negative value corresponds to a phase lead. It can

be seen from Fig. 3.47 that εp is a maximum for the Euler explicit scheme, and the

AM4 method has the lowest phase error. For small values of ωh, both the PCC

and PC2B schemes give comparable phase lags, whereas for higher values of ωh, the

PCC scheme is better. Notice that the phase error for the second-order AB2 scheme

changes from a phase-lead to a phase-lag, which thereafter increases rapidly with

increasing ωh. From a linear stability point of view, the AM4 scheme seems to be

the best scheme. However, it is an implicit scheme and, therefore, computationally

expensive for a free-vortex wake analysis.
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Figure 3.47: Variation of the phase error with ωh for various time-marching methods.

3.2.2 Nonlinear Stability Analysis

Linear stability of the scheme is a necessary but an insufficient condition for

nonlinear problems. A linear analysis gives an upper bound for the time step size

that can be used with different time-marching methods, and a quantification of

the associated amplitude and phase errors. The governing equation of the wake

dynamics involves the highly nonlinear velocity term, V, which also must affect

the stability of the overall time-marching scheme [112]. Therefore, a more detailed

nonlinear stability analysis of the various schemes is required.

Two approaches are used to study the nonlinear stability characteristics: 1.

The modified equation approach. 2. A direct examination of numerical convergence.

The modified equation is the equation resulting from the discretization and averaging

of all the terms in the governing equation. A modified equation can be used to

help better understand the influence of any nonlinearities. The second approach

is based on the philosophy used in traditional CFD analyses, in that a numerical
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scheme is stable if the errors start out small and then remain small with increasing

time. Linear stability requires that the numerical errors be properly bounded. For

linear equations this is synonymous to the behavior being convergent. For nonlinear

equations, the solution may exhibit spurious oscillations, although these may still be

bounded. However, the solution may not be convergent because, although bounded

for a given discretization, it may also depend on the grid discretization itself.

3.2.3 Modified Equation Approach

The modified equations are the equations obtained after discretizing and av-

eraging all the terms in the original governing equations. The numerical method

approximately solves the original governing equation but exactly solves the modified

equation. Therefore, the modified equations provide key insight into the nonlinear

behavior of the numerical solution.

As previously shown, the governing equation for the convection of the wake

markers can be written as

∂r

∂ψ
+
∂r

∂ζ
= V(r) (3.27)

where Ω has now been absorbed in the velocity term. The modified equations

are obtained by discretizing Eq. 3.27 (see Fig. 3.48) and taking all extra terms to

the right-hand side except those in the governing equation, and expressing them

in terms of the spatial derivative of the solution. In the following analysis, equal

discretization (∆ψ = ∆ζ) is assumed, and only terms up to O(∆ζ2) are shown for

conciseness.

Euler Explicit Scheme

Dropping the vector notation for simplicity, the Euler explicit scheme as ap-

plied to Eq. 3.27 is given by

r(ψ + ∆ψ, ζ + ∆ζ) = r(ψ, ζ) + V (ψ, ζ)∆ψ (3.28)
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The right-hand side of Eq. 3.28 contains the highly nonlinear velocity field. This

is the sum of the free-stream velocity, induced velocity from the turbine and any

other form of perturbation velocity such as gusts and turbulence. Straight-line

segmentation is used to evaluate the Biot–Savart integral to calculate the induced

velocity, which has been shown to be second-order accurate. [112]

In the Euler explicit scheme, the induced velocity at the mid-point r(ψ +

∆ψ
2
, ζ + ∆ζ

2
) is approximated by the velocity at the neighboring point, r(ψ, ζ). A

Taylor series expansion shows that

V (ψ, ζ) = V
(
ψ +

∆ψ

2
, ζ +

∆ζ

2

)
− ∆ψ

2
Vψ −

∆ζ

2
Vζ

+
1

8

(
∆ψ2Vψψ + ∆ζ2Vζζ + 2∆ψ∆ζVψζ

)
(3.29)

Assuming ∆ψ = ∆ζ and adding the Biot–Savart approximation error, the dis-

cretized right-hand side term gives the modified equation

∂r

∂ψ
+
∂r

∂ζ
= V − ∆ζ

2
(Vψ + Vζ) +

1

12
Vζζ∆ζ

2 +
∆ζ2

8
(Vψψ + 2Vψζ + Vζζ) (3.30)
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The discretized equation for the left-hand side results in a further error. The Euler

explicit scheme approximates the left-hand side by r(ψ + ∆ψ, ζ + ∆ζ) − r(ψ, ζ).

Expanding these terms around the mid-point of the cell gives

r(ψ + ∆ψ, ζ + ∆ζ)− r(ψ, ζ) =
∂r

∂ψ
+
∂r

∂ζ

+∆ζ2
(

1

24
r3ψ +

1

8
rψψζ +

1

8
rψζζ +

1

24
r3ζ

)
(3.31)

The last term in above equation can be written as

1

24
(r3ψ + r3ζ) +

1

8
(rψ + rζ)ψζ =

1

24
(Vψψ + 2Vψζ + Vζζ) (3.32)

Therefore, the complete modified equation for the Euler explicit algorithm is given

by

∂r

∂ψ
+
∂r

∂ζ
= V − ∆ζ

2
(Vψ + Vζ) + ∆ζ2

(
1

12
Vζζ +

1

12
(Vψψ + 2Vψζ + Vζζ)

)
(3.33)

Using the governing equation (Eq. 3.27), the extra terms on the right-hand side of

Eq. 3.33 can be written in terms of the spatial derivatives of the solution. Using

Eq. 26 from Ref. 112, the modified equation for the Euler explicit algorithm is

∂r

∂ψ
+
∂r

∂ζ
= V − ∆ζ

2
VrV +

∆ζ2

12

[
Vrrr

2
ζ + Vrrζζ + (VrrV + V 2

r )V
]

(3.34)

The dominant error terms in the modified equation are O(∆ζ), which shows

that the algorithm is only first-order accurate. The modified equation reduces to the

original governing equation (Eq. 3.27) when ∆ζ = 0, so the scheme is consistent.

The first-order term and the last of the extra second-order terms are the source

terms, and have no direct impact on the numerical stability. The first term in the

second-order extra term is the dispersive term, which may lead to phase errors in

the numerical calculations, and perhaps to some spurious oscillations. The second

term is the nonlinear implicit dissipation term, which is dependent on the velocity

gradients (Vr, Vrr, etc.) in the flow. If this term is negative, it acts as an energy

source, and the solution will be unstable.
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PCC Scheme

The PCC scheme uses a five-point central difference approximation [135] for

both the spatial and temporal derivatives. The governing equation is solved at the

mid-point and the temporal difference operator is given by

Dψ ≈ dr

dψ
|ψ+∆ψ/2,ζ+∆ζ/2

=
r(ψ + ∆ψ, ζ + ∆ζ)− r(ψ, ζ + ∆ζ) + r(ψ + ∆ψ, ζ)− r(ψ, ζ)

2∆ψ
(3.35)

The spatial operator is also given by an analogous expression. Expanding each term

as a Taylor series around the mid-point of the cell gives

(Dψ +Dζ)r(ψ + ∆ψ/2, ζ + ∆ζ/2) =
∂r

∂ψ
+
∂r

∂ζ
+
(

1

24
r3ψ +

1

8
rψ2ζ

)
∆ψ2

+
(

1

8
rζ2ψ +

1

24
r3ζ

)
∆ζ2 (3.36)

Following the procedure outlined above for the Euler explicit scheme, the modified

equations for the PCC algorithm are

∂r

∂ψ
+
∂r

∂ζ
= V +

∆ζ2

12

[
4(Vrrζ)ζ − 3(VrrV + V 2

r )rζ − (VrrV + V 2
r )V

]
(3.37)

The extra terms in the modified equation are all O(∆ζ2), i.e., the algorithm is

second-order accurate.

In the manner found for the Euler explicit method, it is noted that the implicit

dissipation term depends on the velocity gradients. Bhagwat & Leishman [112] have

shown that the velocity gradients can be negative in the rotor wake. Therefore,

the artificial dissipation term in Eqs. 3.34 and 3.37 can be negative and therefore,

destabilizing. Although, the PCC scheme was found to be neutrally stable from

the linear stability analysis, the modified equation shows that for certain operating

conditions the scheme could, in fact, be unstable. Therefore, it is apparent that it

will be desirable for a time-marching algorithm to contain some implicit dissipation

that will compensate for the potentially destabilizing effects of the nonlinear velocity

field.
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PC2B Scheme

As previously explained, the PC2B scheme uses a second-order backward dif-

ference approximation to the temporal derivative. The temporal difference operator

in this case is given as

Dψ ≈ dr

dψ
|ψ+∆ψ/2,ζ

=
3r(ψ + ∆ψ, ζ)− r(ψ, ζ)− 3r(ψ −∆ψ, ζ) + r(ψ − 2∆ψ, ζ)

4∆ψ
(3.38)

The spatial operator is the same as in the PCC scheme. Using a Taylor series

expansion around the mid-point of a cell at r(ψ + ∆ψ/2, ζ + ∆ζ/2) and expressing

all the extra terms in terms of spatial derivatives, the modified equation for the

PC2B scheme is obtained [112].

∂r

∂ψ
+
∂r

∂ζ
= V + ∆ζ2

 nonlinear dissipative

and dispersive terms
− ∆ζ

4
r4ζ

 (3.39)

The −r4ζ term in the modified equation is a dissipative term, and is independent of

the velocity field. This dissipative term acts like an energy sink and is stabilizing,

and so this makes the overall PC2B scheme stable. This term is also a third-order

term, so the overall second-order accuracy of the scheme is preserved.

AB2 Scheme

The Adams–Bashforth (AB2) scheme solves the discretized governing equation

at the grid points. This is unlike the schemes described in previous sections, which

solve the equation at the mid-points of the cell. A five-point central difference

operator is used to approximate the spatial difference operator. The discretized

equation using the Adams–Bashforth scheme is then given by

r(ψ + ∆ψ, ζ + ∆ζ) = r(ψ −∆ψ, ζ −∆ζ) +
4∆ψ

3

(
3V (ψ, ζ)− V (ψ −∆ψ, ζ)

)
−8

3

(
r(ψ + ∆ψ, ζ)− r(ψ, ζ)

)

116



+
(
r(ψ + ∆ψ, ζ −∆ζ)− r(ψ −∆ψ, ζ + ∆ζ)

)
+

1

3

[
r(ψ, ζ + ∆ζ)− r(ψ, ζ −∆ζ)− r(ψ − 2∆ψ, ζ + ∆ζ)

−r(ψ − 2∆ψ, ζ −∆ζ)
]

(3.40)

Using a Taylor series expansion around the grid point (ψ, ζ) in the computational

grid, and expressing all the extra terms in terms of spatial derivatives, the modified

equation for the AB2 scheme is obtained as

∂r

∂ψ
+
∂r

∂ζ
= V +

∆ζ2

12

[
(Vrrζ)ζ − 7(VrrV − V 2

r )rζ − 5(VrrV + V 2
r )V − 5r3ζ

]
(3.41)

The extra terms on the right are all O(∆ζ2), i.e. the algorithm is second-order

accurate. The first term is the dissipation term, which depends on the velocity

gradients. The second and fourth terms are dispersion terms, which introduce phase

errors. The third term is the source term, which does not affect the stability of the

numerical scheme.

3.2.4 Wake Convergence

To better understand the concept of the nonlinear stability of the time-marching

method in the free-vortex wake method, a series of numerical experiments were

performed. These calculations were performed using a representative three-bladed

Grumman wind turbine with a nominal power output of 15 kW. Table 3.1 gives

the geometrical and operational parameters of the turbine. The actual blade twist

is hyperbolic. The present calculations were performed for a steady wind speed of

13 ms−1.

The numerical experiments were performed using each of the Euler explicit,

PCC, and PC2B schemes with a wake discretization of ∆ψ = ∆ζ = 10◦ for both

the unyawed and the yawed cases. Figure 3.49 show the front view and the top

view of the turbine wake after 40 revolutions when using the Euler explicit scheme

for the unyawed case. It can be seen that the wake exhibits significant numerical
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Number of blades, Nb 3

Radius, R 5.0290 m

Chord, c 0.457 m

Airfoil S809

Twist, θtw Hyperbolic

Rotational speed, Ω 7.53 rad/s

Wind speed, V∞ 13.0 m/s

Nominal power output at V∞, Pout 15 kW

Table 3.1: Geometry of wind turbine and operational parameters

instabilities along the length of each vortex filament, especially at older wake ages.

Recall from earlier that the linear stability analysis showed the Euler explicit method

to be unstable for all time steps. However, the discretization of rζ (see Eq. 3.34) and

the averaging errors introduces some implicit dissipation. Nevertheless, the Euler

scheme produces a non-physical result compared to what would be expected based on

experimental observations, such as those shown in Fig. 3.50, which suggests a much

more smoothly expanding and relatively undisturbed helicoidal wake downstream

of the turbine disk. The loss of axisymmetry in the experiment is partly a result

of the ground boundary layer and the tower shadow. While there is perhaps some

experimental evidence of wake instabilities in Eq. 3.50, they are relatively mild and

seem to be excited by perturbations introduced by the tower shadow.

Figure 3.51 shows that PCC scheme gives a significant improvement in the

numerical stability of the wake compared to the Euler explicit scheme. In this case

there are still wake instabilities, but these grow more slowly. It could be argued that

this particular result more closely resembles the result in Fig. 3.50 in the near wake

region, although in this case the modeling does not represent the ground boundary

layer or the tower shadow. Clearly, there are issues that must be fully explored in

the future to help properly distinguish numerical versus physical wake instabilities.
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Figure 3.49: Time-marching free-vortex wake geometry for a three-bladed unyawed

Grumman wind turbine using the Euler explicit scheme: (a) Front view, (b) Top

view.
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Figure 3.50: Photograph of the expanding vortical wake downstream a horizontal

axis wind turbine rendered visible using smoke injection. Photo courtesy of NREL.

The wake obtained using the PC2B scheme (as shown in Fig. 3.52) gives a

smoothly expanding structure with almost no evidence of disturbances, and is more

consistent with the experimental observations of the wind turbine wake (Fig. 3.50).

Figure 3.53 shows a time-history of the L2-norm of the change in the wake

geometry using all three schemes. Notice that the result for the Euler explicit

scheme initially reduces, but then continues to fluctuate. At later times, the L2-

norm begins to increase, suggesting that the result will eventually diverge. This is

further evidence that, despite its simplicity and computational efficiency, the Euler

method produces a non-physical solution, even for this relatively simple test case.

The PCC scheme shows a converging trend, but there is still an accumulation of

numerical errors. This is because the discrete approximation of the temporal and

spatial derivatives results in a larger error as compared to the PC2B scheme. Notice

that the wake geometry stabilizes very quickly when using the PC2B scheme. This

is because the implicit dissipation in the method damps-out any numerical errors.
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Figure 3.51: Time-marching free-vortex wake geometry for a three-bladed unyawed

Grumman wind turbine using the PCC scheme: (a) Front view, (b) Top view.
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Figure 3.52: Time-marching free-vortex wake geometry for a three-bladed unyawed

Grumman wind turbine using PC2B scheme: (a) Front view, (b) Top view.
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Figure 3.53: Time history of the L2-norm of the error in wake geometry for the

unyawed wind turbine.

It is common for wind turbines to operate in the yawed flow condition. Even

though larger turbines have yaw control, sudden changes in the wind direction during

gusts can cause yawed flow condition. For smaller wind turbines, turning the rotor

out of the wind is used to limit the power captured from the wind. Operation in

a yawed flow condition causes unsteady airloads (Nb/rev) on the rotor blades. The

wind turbine has to be designed to account for these unsteady loads. To predict these

unsteady airloads correctly, it is very important to capture the rotor wake accurately.

The changes in the wake geometry affect the induced velocity in the rotor plane,

which causes significant change in the angle of attack on the blade because of its

low rotational speed. The Grumann wind turbine described previously was yawed

30◦ out of the wind, and a time-accurate calculation was performed using the three

time-marching schemes. The unyawed wake obtained from the PC2B scheme was

used to initialize the wake, and a yaw angle of 30◦ was then imposed. Figure 3.54
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Figure 3.54: Time-marching free-vortex wake geometry for a three-bladed Grumman

wind turbine yawed 30◦ out of the wind using the Euler explicit scheme: (a) Front

view, (b) Top view.
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shows the front view and the top view of the rotor wake after 60 rotor revolutions

that was obtained using the Euler explicit scheme. Notice that the wake structure

shows significant disturbances at later wake ages. Unlike the unyawed case, the PCC

scheme (Fig. 3.55) does not show any improvement over the Euler explicit scheme

whereas the wake geometry obtained using the PC2B scheme (Fig. 3.56) is free of

any numerical disturbances.

Figure 3.57 shows the L2-norm of the change in wake geometry with time. The

error in all cases increases as the wake tries to readjust to the yawed flow but for the

Euler explicit and the PCC schemes the error continues to fluctuate even after 50

revolutions. Notice that the wake geometry stabilizes quickly when using the PC2B

scheme.

3.3 Summary

A systematic study of the accuracy of the reconstruction of the induced velocity

from helical vortices was performed for a range of values of helical pitch, number

of turns and wake skew angles. The accuracy of the straight-line segmentation

approach of discretizing a helical vortex was found to be second-order for different

combinations of pitch, skew and number of turns. A minimum discretization of

∆θ = 10◦ is required to keep the maximum error in the induced velocity field less

than 10%. To keep the maximum error less than 1%, a discretization of ∆θ < 2.5◦

is required, which may be less practical for routine engineering use of vortex wake

models.

A vortex ring can be viewed as a special case of helical vortex with its helical

pitch tending to zero. The induced velocity from helical vortices with a helical pitch

p→ 0 and scaled by number of turns was shown to reduce to that of a vortex ring.

A vortex ring was found to be a more challenging case to model accurately using

the straight-line segmentation approach than for the helical vortex. In the case of a

vortex ring, the magnitude of the errors in the induced velocity for a particular level
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Figure 3.55: Time-marching free-vortex wake geometry for a three-bladed Grumman

wind turbine yawed 30◦ out of the wind using the PCC scheme: (a) Front view, (b)

Top view.
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Figure 3.56: Time-marching free-vortex wake geometry for a three-bladed Grumman

wind turbine yawed 30◦ out of the wind using PC2B scheme: (a) Front view, (b)

Top view.
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Figure 3.57: Time history of the L2-norm of the error in wake geometry for a wind

turbine yawed 30◦ out of the wind.

of discretization has been found to be larger than the corresponding helical vortex.

The reconstruction of induced velocity by straight-line approximation of a skewed

helical vortex was also found to be second-order accurate, and the magnitude of the

errors were found to be comparable to those of the unskewed case.

The linear and nonlinear stability of various time-marching methods used in

free-vortex wake methods has been analyzed. The linear stability analysis has shown

that the PCC and PC2B schemes are stable for all values of time discretization. The

Euler explicit and second-order Adams–Bashforth schemes are unstable for all values

of discretization. The fourth-order Adams–Moulton scheme is stable for values of

ωh < 0.7. The fourth-order AM4 scheme produces the lowest phase error and the

Euler explicit scheme has the largest error. From a linear stability point of view, the

AM4 scheme seems to be the best scheme. However, the Adams–Moulton scheme

is implicit and computationally expensive especially for a free-vortex wake analysis.
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Any linearization or approximation to make this scheme explicit or semi-implicit

will change the stability and dispersion characteristics of the scheme.

Considering the stability and dispersion characteristics as well as the com-

putational cost, the PC2B algorithm seems to be the ideal scheme. The modified

equation approach showed that the PC2B scheme introduces extra implicit dissi-

pation that is independent of the velocity gradients. The dissipation term in all

other schemes (Euler explicit, PCC and Adams–Bashforth) is affected by the in-

duced velocity field gradients. The presence of the negative velocity gradients then

introduces an anti-dissipation, which has a destabilizing effect on the developing

wake geometry.

Numerical experiments were performed for a three-bladed Grumman wind

turbine in the zero yaw condition and 30◦ yawed out of the wind. The Euler explicit

method produces and non-physical unstable wake system. The PCC scheme showed

a modest growth of numerical errors with time, albeit bounded. The PC2B scheme

was found to produce a stable and convergent wake system free of any types of

disturbances.
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Chapter 4

Stall Modeling

Because of the low rotational speed of a turbine, the inboard regions of the

blades are stalled for much of their operational time. Additionally, stall regulation

is one of the methods used to control peak power output for smaller wind turbines.

For the larger wind turbines, which use pitch control for power regulation, stall

conditions can occur during wind gusts. Thus, predicting blade loads and the power

output during stall (and in the post-stall region) is fundamental to the improved

design of all types of wind turbines. It is, therefore, very important to model

accurately the detailed aerodynamic characteristics of the airfoils being considered

over a wide range of angles of attack.

In addition to this, a wind turbine blade section can undergo dynamic stall [39]

when it is subjected to the unsteady aerodynamic environment. In the present for-

mulation, a modified version of the Leishman–Beddoes (L–B) dynamic stall model [125]

has been used to predict the aerodynamic characteristics of S809 airfoil under in-

cipient and deep dynamic stall conditions. Several key modifications to the base

model required to improve its validity over a wider range of angle of attack and

operating Reynolds number representative of wind turbines have been discussed in

Section 2.2.2.

Three data sets are available that document the 2D lift and profile drag co-

efficients for the S809 airfoil. The CSU test [136] is available for the low Reynolds

number range (up to 650,000), whereas the higher Reynolds number data (Re > 106)

is available from OSU [137] and the Delft University tests [138]. In this section, the

aerodynamic coefficients for the S809 airfoil at Re = 106, as obtained from the OSU
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tests are used as the 2D static test data. Although the aerodynamic coefficients were

measured only up to an angle of attack of 40◦, the results show relative insensitivity

to Reynolds number at the higher angles of attack, as shown in Fig. 4.1. Once

the static and unsteady stall model was validated against the experimental mea-

surements, the airfoil model was coupled with the Weissinger-L blade model. The

numerical results are then validated using the NREL static and oscillating parked

blade measurements.

OSU Experimental Test Setup

The OSU 3 × 5 subsonic open circuit wind tunnel was used to conduct the

tests on the S809 airfoil section. The test section dimensions were 1.0 m high by

1.4 m wide by 2.4 m long. An airfoil model with a constant chord of 457 mm was

used in the experiment. A shaker system was incorporated to oscillate the airfoil for

the unsteady airfoil measurements. The trailing-edge of the airfoil was thickened to

1.25 mm, and this thickness was added to the upper surface over the last 10% of the

chord. Pressure measurements were obtained from 60 surface pressure taps. The

distribution of pressure taps was dense near the leading-edge, and scarce near the

trailing-edge. Wind tunnel wall corrections were applied to the pressure data. The

corrected pressure data were integrated around the chord and thickness to obtain

aerodynamic lift and profile drag, respectively.

4.1 2D Static Airfoil Coefficients

The S809 airfoil was designed by Somers [138] for applications in the wind

turbines using stall as a method for power regulation. This airfoil has unique

aerodynamic characteristics. The S809 airfoil was designed to have a pronounced

trailing–edge separation and reduced sensitivity to increases in drag. With the low

rotational speeds of a wind turbine, the inboard sections of the blade operate at
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relatively high angles of attack. The lift coefficient for the S809 airfoil is found to be

relatively constant for a range of angle of attack near the maximum lift coefficient.

This ensures that loss in lift is not abrupt, and the inboard sections of the turbine

blades also produce useful torque. Figure 4.1 shows the lift versus angle of attack

curves for different chord Reynolds numbers.

For the numerical stall modeling, the variation of the effective trailing-edge

separation point, f was estimated using the normal force coefficient values from the

2D static test data by rearranging Eq. 2.38. The deduced values of f were then fitted

in a least-square sense by three exponential curves by using an implementation of a

nonlinear least-squares Marquardt–Levenberg algorithm. These exponential curves

are defined as

f =


c1 + a1 exp(S1α) α ≤ α1

c2 + a2 exp(S2α) α1 ≤ α ≤ α2

c3 + a3 exp(S3α) α ≥ α2

(4.1)

where c1, c2, c3, a1, a2, a3, S1, S2 and S3 are constants, which all depend on the

Table 4.1: Variation of airfoil section curve fit coefficients with the chord Reynolds

number.

Re 300,000 500,000 650,000 106

c1 1.0 1.0 1.0 1.0

c2 0.0 0.0 0.0 0.0

c2 0.02 0.01 0.005 0.02

a1 0.02539 0.00250 0.02168 0.04995

a2 4.5278 4.5503 3.4934 2.8844

a3 8.61× 107 4.76× 106 4.97× 108 4.08× 104

S1 15.618 19.829 18.269 12.066

S2 -12.499 -11.299 -11.324 -9.82694

S3 -74.270 -64.93 -78.675 -43.0635
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Figure 4.1: Variation of the lift coefficient with angle of attack for the S809 airfoil

for different chord Reynolds number.
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number.
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Figure 4.4: Variation of the measured and the predicted Cn with angle of attack at

Re = 106.
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Figure 4.5: Variation of the measured and the predicted Ct with angle of attack at

Re = 106.
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Figure 4.6: Variation of the measured and the predicted Cl with angle of attack at

Re = 106.
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Figure 4.7: Variation of the measured and the predicted Cd with angle of attack at

Re = 106.
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Reynolds number (see Table 4.1). The constants α1 and α2 are the angles of attack

corresponding to the first and second breaks in lift curve slope, as denoted by α1 and

α2 in Fig. 4.1. The values of α1 and α2 were found to be fairly constant for different

Reynolds numbers. However, the lift curve slope, Clα also varies with the chord

Reynolds number; the variation of Clα with Re obtained from the experimental

data, along with a smooth fit to the measured values is shown in Fig. 4.2.

The variation of the measured and reconstructed effective flow separation point

f with the angle of attack is shown in Fig. 4.3. It can be seen that the flow separation

point is close to the trailing-edge at low angle of attack. This shows that the flow

is attached over most of the airfoil. With an increase in the angle of attack, there

is in an increase in the adverse pressure gradient. The flow starts separating near

the trailing-edge, and the separation point moves towards the leading-edge. At very

high angles of attack, the flow separates over most of the airfoil, and the effective

separation point stablizes very close to the leading-edge. Using the reconstructed

effective flow separation point, Cn and Ct are obtained using the relations described

in Section 2.2.1, i.e.,

Cn = Cnα

(
1 +

√
f

2

)2

sinα (4.2)

and

Ct =


Cnα

√
f α sinα Cn < Cn(α2)

K1 + Cnαf α sinα Cn > Cn(α2)
(4.3)

The variation of the reconstructed Cn and Ct using the mathematical is shown

in Figs. 4.4 and 4.5, respectively. In the attached flow region (α < α1), good

agreement was obtained from the model against the experimental values. The range

of the angle of attack where Cn stays relatively constant is captured well by the

model. In the post-stall regime, Cn was only slightly underestimated at very high

values of angle of attack. The agreement between the modeled and measured Ct was

seen to be very good for the attached flow regime. The increase in Ct with angle of

attack was also captured well by the model. Airfoil stall is accompanied by a sudden
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drop in Ct. As the angle of attack increases further, the airfoil stalls completely and

the leading-edge thrust becomes negative. Ct stays relatively constant in the deep

stall regime (α > 20◦). Notice that Ct is slightly over-predicted in the deep stall

regime.

Figures 4.6 and 4.7 show the modeled static lift and drag coefficients. Good

agreement is obtained with the experimental data at low to moderate angles of

attack. The lift coefficient Cl is, however, underpredicted at high angle of attack.

Variation of Cd is captured very well and the increase in drag with the onset of

airfoil stall is represented accurately. However, the drag is slightly underpredicted

at very high angles of attack. The reconstruction of the aerodynamic coefficients for

the S809 airfoil at other Reynolds numbers was also equally good. However, results

for only Re = 1 million have been shown here.

4.2 2D Unsteady Airfoil Coefficients

Unsteady airfoil model as described in Section 2.2.2 was used in conjunction

with the static stall model modified for wind turbine applications. It has been shown

in the previous section, that the static stall model provides a good reconstruction

against the measured aerodynamic coefficients. For the validation of the unsteady

airfoil model, the aerodynamic coefficient measurements from the OSU tests on an

oscillating S809 airfoil at Re = 106 were used for validation [137]. The experimental

data is available for sinusoidal pitch oscillations for various reduced frequencies, k,

mean angles of attack, αmean, and for two angle of attack amplitudes, αamp, of 5.5◦

and 10◦.

Table 4.2 shows the values of various parameters used for the S809 airfoil in

the modified L–B model. These parameters were, remarkably, found to be close

to the values used in the original model, which was formulated for the NACA0012

airfoil. The robustness of the L–B model has been demonstrated by its application

to S809 airfoil (21% thick airfoil).
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Table 4.2: Various parameters used in the model for the S809 airfoil.

C0 C1 C2 Cm0 m Cn1 Tp Tf Tv Tvl Cd0 Df Ef

-0.0032 -0.001 -0.025 -0.036 6 1.9 1.7 3.0 6.0 11.0 0.012 2.0 1.0

The variation of the predicted unsteady lift coefficient Cl is shown in Fig. 4.8

for a reduced frequency of k = 0.026, angle of attack amplitude αamp = 5.5◦ and

three values of αmean. Four cycles of extracted data are plotted to show both the

cycle-to-cycle repeatability as well as its variability. For a mean angle of attack of 8◦,

the lift hysteresis loop was predicted well by the model. Notice that stall is delayed

to a slightly higher angle of attack than the static case, and the lift curve is almost

linear up to α = 10◦. As the angle of attack decreases during the pitch oscillation

cycle, the onset of flow reattachment is delayed to lower angle of attack than in the

static case. For αamp = 14◦, the airfoil section is operating near the maximum lift

coefficient. The hysteresis in the lift coefficient is much more pronounced and is well

predicted by the model. For the higher mean angle of attack of αmean = 20◦, the

experimental data shows some deviations over the three cycles but the airloads are

predicted well by the model, on average.

The corresponding variation of Cm is shown in Fig. 4.9. Good agreement was

obtained with the experimental values for all mean angles of attack. For αmean = 8◦,

the flow is mostly attached, and the model easily predicts Cm. For the higher values

of αmean = 14◦, there is some evidence of dynamic stall and an abrupt increase in

the nose-down pitching moment. However, the model and the experimental results

show some differences. In particular, the model slightly underpredicts the angle

of attack corresponding to the moment stall during the upstroke. Experimental

measurements of Cm for αmean = 20◦ are seen to have oscillations, which are a result

of the unsteady, aperiodic flow field in deep stall. The average pitching moment

distribution is, however, represented well by the model.

The variation of Cd is shown in Fig. 4.10. Again, the agreement between the
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model and the experiment was reasonably good for αmean = 8◦ and 14◦, but Cd is

underpredicted on average for αmean = 20◦. However, it should be noted that the

measurements of Cd were obtained by integrating the pressure data across thickness

of the airfoil, which is known to be very sensitive to the number of chordwise pressure

points. Therefore, the measurements of Ct must have a higher degree of uncertainty

in the deep stall regime than in Cn.

For the higher reduced frequencies (k = 0.05 and k = 0.077), the hysteresis

in the airloads is larger than at the lower reduced frequency, as would be expected.

The agreement between the experiments and the model for the Cl, Cm and Cd is

reasonably good (see Figs. 4.11 through 4.16). For a reduced frequency k = 0.077,

the hysteresis behavior in Cm was seen to be more pronounced in the experimental

results compared to the predictions made by the model. The sudden decrease in Cm

during moment stall is also slightly underpredicted by the model for αmean = 20◦,

but the overall agreement with the measurements is good enough for engineering

purposes, especially bearing in the mind the simplicity of the L–B model.

Measurements were also available at Re = 106 for αamp = 10◦ for the same

mean angle of attack and reduced frequencies as the αamp = 5.5◦ case. Figure 4.17

shows the variation of Cl for a reduced frequency of k = 0.026. The agreement

between the predictions and measurements was found to be good for low mean angles

of attack. For the higher values of αmean, some transient overshoots and undershoots

shown in the Cl measurements were present, however, those were not predicted by

the model. The angle of attack in the experiments also showed deviations from the

prescribed nominal angle of attack history. The agreement between the experiment

and Cm predictions for k = 0.026 (see Fig. 4.18) was again very good, as seen for

αamp = 5.5◦ case. The drag coefficient (see Fig. 4.19) was also well predicted for the

lowest mean angle of attack, but was underpredicted for αmean = 14◦ and 20◦.

Figure 4.20 shows the variation of Cl with angle of attack for a reduced fre-

quency of k = 0.77 and the three values of αmean. The hysteresis in the value of
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Cl during the cycle is predicted reasonably well except for the flow reattachment

regime, where Cl is overpredicted. For all three values of αmean, the variation of Cm

is predicted well (Fig. 4.21). The contribution of the dynamic stall vortex to Cm

can be clearly seen for αmean = 14◦ and 20◦. The variation in Cm and the pitching

moment stall is predicted well. Good agreement was also achieved in the predic-

tion of Cd (Fig. 4.22). However, the predicted maximum drag during the cycle is

somewhat lower than the experimental measurements.
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Figure 4.8: Variation of the lift coefficient with angle of attack for a reduced fre-

quency k = 0.026 and angle of attack amplitude αamp = 5.5◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.9: Variation of the pitching moment coefficient with angle of attack for

a reduced frequency k = 0.026 and angle of attack amplitude αamp = 5.5◦ (a)

αmean = 8◦, (b) αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.10: Variation of the drag coefficient with angle of attack for a reduced

frequency k = 0.026 and angle of attack amplitude αamp = 5.5◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.11: Variation of the lift coefficient with angle of attack for a reduced

frequency k = 0.05 and angle of attack amplitude αamp = 5.5◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.12: Variation of the pitching moment coefficient with angle of attack for a

reduced frequency k = 0.05 and angle of attack amplitude αamp = 5.5◦ (a) αmean =

8◦, (b) αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.13: Variation of the drag coefficient with angle of attack for a reduced

frequency k = 0.05 and angle of attack amplitude αamp = 5.5◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.14: Variation of the lift coefficient with angle of attack for a reduced

frequency k = 0.077 and angle of attack amplitude αamp = 5.5◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.15: Variation of the pitching moment coefficient with angle of attack for

a reduced frequency k = 0.077 and angle of attack amplitude αamp = 5.5◦ (a)

αmean = 8◦, (b) αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.16: Variation of the drag coefficient with angle of attack for a reduced

frequency k = 0.077 and angle of attack amplitude αamp = 5.5◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.17: Variation of the lift coefficient with angle of attack for a reduced

frequency k = 0.026 and angle of attack amplitude αamp = 10◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.18: Variation of the pitching moment coefficient with angle of attack for a

reduced frequency k = 0.026 and angle of attack amplitude αamp = 10◦ (a) αmean =

8◦, (b) αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.19: Variation of the drag coefficient with angle of attack for a reduced

frequency k = 0.026 and angle of attack amplitude αamp = 10◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.20: Variation of the lift coefficient with angle of attack for a reduced

frequency k = 0.077 and angle of attack amplitude αamp = 10◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.21: Variation of the pitching moment coefficient with angle of attack for a

reduced frequency k = 0.077 and angle of attack amplitude αamp = 10◦ (a) αmean =

8◦, (b) αmean = 14◦, and (c) αmean = 20◦.
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Figure 4.22: Variation of the drag coefficient with angle of attack for a reduced

frequency k = 0.077 and angle of attack amplitude αamp = 10◦ (a) αmean = 8◦, (b)

αmean = 14◦, and (c) αmean = 20◦.
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4.3 NREL Parked Blade Test Validation

In the previous two sections, the airfoil model used to represent the non-

linear aerodynamic characteristics of the S809 airfoil has been validated against

experimental measurements. After the unsteady 2D model was defined, the stall

model was coupled with the 3D Weissinger–L blade model to account for the three-

dimensionality of the flow. The effective angle of attack obtained from the Weissinger–

L model is then used as an input to the nonlinear airfoil stall model. The output

gives the nonlinear aerodynamic coefficients for the blade. In the next two sections,

the coupled stall and blade model will be validated against the measurements from

the static and oscillating NREL parked blade test.

In the comprehensive wind turbine tests conducted by NREL [91], experiments

were also performed on a blade in the parked position. The parked blade has a linear

taper and a nonlinear twist distribution, as shown in Fig. 4.23. A non-aerodynamic

attachment is used for sections inboard of 0.25R, where there is a cylindrical section

and then a fairing, which joins with the S809 airfoil. However, a root cut-out of

0.175R was used in the numerical study and the S809 airfoil continues up to this

root cut-out. The blade pitch is defined with respect to the tip. The geometric

angle of attack is defined as the angle between the tunnel center-line and the section

chord. To obtain the static parked blade pressure measurements, a 5◦ step change

was made in the blade pitch and then held constant for 8 seconds, after which

the measurements were made (see Ref. 91 for the details of the experiment). For

oscillating parked blade experiment, the parked blade was pitched sinusoidally, and

the pressure measurements were acquired for successive pitch cycles.

4.4 Static Parked Blade Validation

Static parked blade measurements were available for wind speeds of 20 ms−1

and 30 ms−1. In this section, the comparison between the predicted loads and
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Figure 4.23: Distribution of (a) chord and (b) nonlinear twist for the Phase VI

NREL wind turbine blade.
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the experimental measurements will be shown, and the capability of the model to

capture the 3D flow physics will be demonstrated. In this section, comparison will

be made only for 20 ms−1 case as it represents both attached and separated flow

conditions on the blade. The higher wind speed case, i.e., 30 ms−1 was found to

show similar results and did not represent any additional flow physics.

Figures 4.24 through 4.28 show the variation of the Cn with the geometric

angle of attack for the 2D tests at Re = 106. Clearly, the onset of stall and the

corresponding values of Cn in the post-stall region are predicted well. It can be seen

that the agreement between the model and the measurements is good in the attached

flow region for all spanwise sections, except at the furthest inboard section at 0.3R.

This can be attributed to the changes in the blade planform near this spanwise

station, and the potential effects of the non-aerodynamic blade attachments. The

aerodynamic interference resulting from the geometrical modifications has not been

modeled, and this is probably the reason for the over-prediction of the lift-curve

slope here. The maximum Cn is, however, slightly under-predicted for most of the

blade stations. In the deep stall region, the predicted Cn from the model is higher

than the experimental values for all sections except at the outermost section at

0.95R, where the predicted Cn is smaller.

The variation of Ct is shown in Figs. 4.29 through 4.33. The agreement between

the predicted and the experimental Ct values is again good in the attached flow

region, except at 0.3R and 0.95R. Notice that the Ct is over-predicted at 0.3R,

again most likely because the effects of the non-aerodynamic blade attachment are

not being modeled correctly. The predicted Ct also shows an offset compared to the

experimental values for the section at 0.95R. In the post-stall region, the predicted

Ct stays relatively constant for all sections compared to an increase in Ct that

was obtained in the experiment. The reason for this discrepancy is not yet fully

understood. The increase in Ct for the parked blade compared to the constant

values of Ct found in the 2D airfoil tests could be an artifact of the sensitivity of the
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method of calculation of the integrated Ct from the measured pressure at discrete

points, and the relatively sparse number of pressure taps used in the experiment.

The variation of Cn with blade pitch angle is shown in Fig. 4.34. The effects

of the blade twist and the three-dimensionality of the flow on the blade can now be

more clearly seen. For the outermost section (0.95R), the lift-curve slope is markedly

less than the inboard sections. The maximum normal force coefficient is, however,

almost the same for all the sections. Figure 4.35 shows the spanwise distribution

of lift coefficient on the blade at different pitch angles. For a pitch angle of 90◦, it

is apparent that most of the blade produces negative lift. With decreasing blade

pitch (increasing angle of attack), the outboard sections start producing positive

lift. With further increase in the blade pitch, the outer sections begin to stall and

the flow separation progresses from tip to root, which is predicted well by the model.

Figure 4.36 shows the corresponding chordwise and spanwise movement of

the trailing-edge separation point from the trailing-edge to the leading-edge with a

decrease in the blade pitch (increase in geometric angle of attack). At θ = 90◦, the

flow is fully attached along the entire blade span. At θ = 80◦ the flow begins to

separate near the blade tip. The separation point then moves towards the leading-

edge near the tip while the flow is still attached at the inboard sections of the blade.

With further reduction in the pitch angle, the flow separates completely and most

of the blade operates with stall.
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Figure 4.24: Variation of the normal force coefficient of the parked blade with

geometric angle of attack at 0.3R, Re = 106.
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Figure 4.25: Variation of the normal force coefficient of the parked blade with

geometric angle of attack at 0.466R, Re = 106.
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Figure 4.26: Variation of the normal force coefficient of the parked blade with

geometric angle of attack at 0.63R, Re = 106.
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Figure 4.27: Variation of the normal force coefficient of the parked blade with

geometric angle of attack at 0.8R, Re = 106.
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Figure 4.28: Variation of the normal force coefficient of the parked blade with

geometric angle of attack at 0.95R, Re = 106.
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Figure 4.29: Variation of the leading-edge coefficient of the parked blade with geo-

metric angle of attack at 0.3R, Re = 106.
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Figure 4.30: Variation of the leading-edge coefficient of the parked blade with geo-

metric angle of attack at 0.466R, Re = 106.
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Figure 4.31: Variation of the leading-edge coefficient of the parked blade with geo-

metric angle of attack at 0.63R, Re = 106.
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Figure 4.32: Variation of the leading-edge coefficient of the parked blade with geo-

metric angle of attack at 0.8R, Re = 106.
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Figure 4.33: Variation of the leading-edge coefficient of the parked blade with geo-

metric angle of attack at 0.95R, Re = 106.
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Figure 4.34: Variation of the normal force coefficient of the parked blade with the

blade tip pitch angle at the four radial stations.
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various blade pitch angles.
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4.5 Oscillating Parked Blade Validation

The next step in the validation study of the coupled airfoil and blade model

was to compare the predictions with the unsteady load measurements. Integrated

aerodynamic coefficients obtained from the NREL parked blade test [91] for various

reduced frequencies k, mean angles of attack αmean, and angle of attack amplitudes

αamp were used to validate the numerical predictions. An extensive dataset from the

NREL test is available for five spanwise stations, i.e., at r/R = 30%, 46%, 63%, 80%

and 95%. In this study, only the combinations of k, αmean, and αamp correspond-

ing to those tested at OSU using the S809 airfoil section were used for validation.

As described earlier, the blade used in the experiment has a nonlinear, hyperbolic

twist distribution. To understand three-dimensionality of the unsteady flow, the

oscillating parked blade was tested under a wide range of forcing conditions. In this

section, only the cases where the prescribed angle of attack oscillations are enforced

at r/R = 80% by varying the tip pitch angle will be shown.

The variation of Cn against the tip pitch angle is shown in Fig. 4.37 for k =

0.025, αamp = 5.5◦ and αmean = 8◦. Tip pitch angle has been used because the

angle of attack measurements were not available. A few representative cycles are

plotted for the experimental data to show both the variability and repeatability of

the measurements. The flow is mostly attached along the blade span. Because the

blade has a hyperbolic twist towards feather (i.e. nose-down) at most of the blade

span, inboard stations of the blade are operating at negative angles of attack.

The predictions of Cn were found to be in good agreement with the experi-

mental measurements. As was observed in the static parked blade case, the slope

of the lift curve is slightly over-predicted at r/R = 30%, which can be attributed

to the non-aerodynamic attachments near the root. The effective angle of attack

increases from inboard to outboard sections. Figure 4.38 shows the variation of the

pitching moment coefficient at each spanwise station for the same forcing condition.

Prediction of the pitching moment is good at inboard sections. The incipient dy-
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namic stall can be observed for r/R = 80%, which is not predicted by the model.

For r/R = 95%, the pitching moment is underpredicted. However, the reason for

this discrepancy is not entirely clear.

For the higher mean angle of attack αmean = 14◦ (Fig. 4.39) at r/R = 80%,

the outboard sections of the blade are operating in the light stall region but the

flow is still attached at the inboard blade sections. The agreement between the

predicted and the measured values is reasonably good, except for the outermost

station i.e., at r/R = 95%. For αmean = 20◦ (see Fig. 4.41), most of the blade is

in deep stall. Significant dynamic stall is observed on the outboard blade sections,

as is clear from the pitching moment variation shown in Fig. 4.42. Good agreement

is obtained between the experimental data and the predictions. The discrepancy in

the pitching moment for αmean = 8◦ for the blade section at r/R = 95% might be

a result of some unexplained offset in the experimental data; the pitching moment

coefficient Cm ≈ −0.05 for all inboard sections, but suddenly jumps to Cm ≈ 0.0.

This event, however, does not happen for αmean = 14◦ (Fig. 4.40) or αmean = 20◦

(Fig. 4.42).

Figure 4.43 show the variation of Cn for a higher reduced mean frequency

k = 0.05 and αmean = 14◦. Good agreement is obtained between the experimental

data and the predictions. The inboard section at r/R = 30% is operating in the

attached flow regime during the cycle, and the hysteresis in the ailoads is predicted

well. The effective angle of attack exceeds the static stall angle for the section

outboard of r/R = 30%. It can be seen that the Cn values exceed the maximum

static Cn because of the stall delay and the enhanced lift from the shed dynamic

stall vortex. The presence of the dynamic stall in the flow is also shown by the

moment stall for the outboard section, as shown in Fig. 4.44. Similar observation

can be made for αamp = 20◦, where most of blade is operating in deep stall. The

predictions of Cn and Cm show slight differences (see Figs. 4.45(e) and 4.46(e)) as

compared to the measurements.
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Similarly, for the higher angle of attack amplitude αamp = 10◦ and αmean = 20◦

at a reduced frequency of k = 0.025, the agreement between the predicted and

the measured values for different mean angles of attack is reasonably good (see

Figs. 4.47 and 4.48). The flow is attached at the inboard section of the blade at

r/R = 30% for most of the cycle. The section at r/R = 46% operates in both

attached and separated flow regime during the pitching cycle. Higher than static

values are obtained for Cn (see Fig. 4.47(b)). A sudden increase in the nose-down

pitching moment (see Fig. 4.48(b)) is also observed during the cycle. Outboard

sections are operating in deep stall regime but the overall agreement is reasonably

good. Similar predictions were obtained for the other forcing conditions, but only

representative cases have been shown in this paper to demonstrate the validity of

the model over the range of measured operating conditions.

Summary

This chapter has presented the development and validation of a modified

Leishman–Beddoes (L–B) unsteady stall model for wind turbine applications. The

unsteady airloads predictions on the S809 airfoil. The static stall model was modi-

fied to account for the separation point dynamics of the S809 airfoil in the post-stall

region. The unsteady stall model was then integrated into a Weissinger-L type of 3D

blade model. The numerical predictions of the aerodynamic force coefficients were

compared against the NREL static and oscillating parked blade measurements.

The reconstruction of the aerodynamic force coefficients, expressed in terms

of the effective trailing-edge flow separation point, was found to be in very good

agreement with the 2D measurements for the S809 airfoil over a wide range of

Reynolds numbers. Even in the deep stall regime, the predicted values of the normal

force coefficient were found to be close to the experimental values. The leading-edge

thrust coefficient was, however, underpredicted as compared to the experimental

values. The discrepancy in the prediction of the leading-edge thrust coefficient
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is probably an artifact of the errors introduced because of the sparse number of

pressure taps used in the experiment. Good agreement was also obtained between

the predictions and the experimental results for pitch oscillations at several mean

angles of attack and reduced frequencies. The results showed encouraging agreement

in predicting the onset and consequences of dynamic stall. The model was successful

in predicting the dynamic stall characteristics of the S809 airfoil with almost same

dynamic time constants as were used in the original L–B model.

A comparison between the predicted and measured aerodynamic force coeffi-

cients for both the static and oscillating NREL parked blade measurements showed

a very encouraging agreement. The predicted force coefficients were also in agree-

ment with the measured values for the attached flow and the post-stall regime, thus

validating the effective integration of the 2D stall model into the 3D blade model.

Three-dimensionality of the unsteady flow on the oscillating parked blade was rep-

resented well and the prediction of the aerodynamic coefficients over the blade span

compared well with the experimental measurements.
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Figure 4.37: Variation of the normal force coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025, angle of

attack amplitude αamp = 5.5◦ and αmean = 8◦. (a) r/R = 30%, (b) r/R = 46%, (c)

r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.38: Variation of the pitching moment coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025, angle of

attack amplitude αamp = 5.5◦ and αmean = 8◦. (a) r/R = 30%, (b) r/R = 46%, (c)

r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.39: Variation of the normal force coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025 and angle

of attack amplitude αamp = 5.5◦ and αmean = 14◦. (a) r/R = 30%, (b) r/R = 46%,

(c) r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.40: Variation of the pitching moment coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025 and angle

of attack amplitude αamp = 5.5◦ and αmean = 14◦. (a) r/R = 30%, (b) r/R = 46%,

(c) r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.41: Variation of the normal force coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025 and angle

of attack amplitude αamp = 5.5◦ and αmean = 20◦. (a) r/R = 30%, (b) r/R = 46%,

(c) r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.42: Variation of the pitching moment coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025 and angle

of attack amplitude αamp = 5.5◦ and αmean = 20◦. (a) r/R = 30%, (b) r/R = 46%,

(c) r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.43: Variation of the normal force coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.05 and angle

of attack amplitude αamp = 5.5◦ and αmean = 14◦. (a) r/R = 30%, (b) r/R = 46%,

(c) r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.

178



-0.4

-0.3

-0.2

-0.1

 0

 0.1

 68  70  72  74  76  78  80  82

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t, 
C

m

Angle of attack, deg.

L-B Model
 Experiment

(a)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 68  70  72  74  76  78  80  82

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t, 
C

m

Angle of attack, deg.

L-B Model
 Experiment

(b)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 68  70  72  74  76  78  80  82

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t, 
C

m

Angle of attack, deg.

L-B Model
 Experiment

(c)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 68  70  72  74  76  78  80  82

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t, 
C

m

Angle of attack, deg.

L-B Model
 Experiment

(d)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 68  70  72  74  76  78  80  82

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t, 
C

m

Angle of attack, deg.

L-B Model
 Experiment

(e)

Figure 4.44: Variation of the pitching moment coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.05 and angle

of attack amplitude αamp = 5.5◦ and αmean = 14◦. (a) r/R = 30%, (b) r/R = 46%,

(c) r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.45: Variation of the normal force coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.05, angle of

attack amplitude αamp = 5.5◦ and αmean = 20◦. (a) r/R = 30%, (b) r/R = 46%, (c)

r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.46: Variation of the pitching moment coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.05, angle of

attack amplitude αamp = 5.5◦ and αmean = 20◦. (a) r/R = 30%, (b) r/R = 46%, (c)

r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.47: Variation of the normal force coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025, angle of

attack amplitude αamp = 10◦ and αmean = 20◦. (a) r/R = 30%, (b) r/R = 46%, (c)

r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Figure 4.48: Variation of the pitching moment coefficient with tip pitch angle with

spanwise station r/R = 80% subjected to a reduced frequency k = 0.025, angle of

attack amplitude αamp = 10◦ and αmean = 20◦. (a) r/R = 30%, (b) r/R = 46%, (c)

r/R = 63%, (d) r/R = 80% and (e) r/R = 95%.
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Chapter 5

Comparison with Blade Element Momentum

Methods

Blade element momentum (BEM) methods have been dominant in the wind

turbine industry for the design of wind turbines, as was mentioned previously in

Chapter 1. BEM methods are simple and fast, but are strictly valid only for a

limited range of flow conditions, and breakdown in the turbulent wake state (TWS)

and the vortex ring state (VRS). This chapter compares the results from the blade

element momentum (BEM) theory and the free-vortex wake methods (FVM) for

a 2-bladed rotor with ideal twist for a range of tip speed ratios. The various flow

states of a wind turbine where BEM methods fail or are valid only with additional

empirical approximations have also been identified.

FVM calculations were performed using a 2-bladed wind turbine to compare

the results with BEM theory. The comparison was performed using tip losses alone,

and also when both tip and viscous (profile) losses were accounted for. In the second

case, a constant profile drag coefficient along the blade was assumed. However, no

blade stall model was used in the calculation. The simulation was undertaken for

a range of tip speed ratios (XTSR) and the variation of the predicted power and

thrust coefficients were then compared. The comparison was then extended to the

prediction of the local axial induction factor, a, the turbine thrust coefficient, CT ,

and the power coefficient, CP . The turbine parameters that were used are given in

Table 5.1.

A comparison is also made for a wind turbine yawing out of the wind. A
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Table 5.1: Rotor geometry and operating parameters.

Number of blades 2

Solidity 0.05

Twist Hyperbolic (θtip/r)

Radius 5 m

Chord 0.3926 m

Tip pitch 1◦ & 4◦

simple inflow model has been used. Although more sophisticated inflow models

have been developed for wind turbine applications in recent years, the comparison

shown in this chapter shows the ability of the FVM to account for the nonlinearities

involved in the turbulent wake state and yawed flow. This shows the flexibility and

robustness of the FVM to capture the time-accurate aerodynamic response of a wind

turbine.

5.1 Blade-Element Momentum Theory (BEM)

The BEM theory is a hybrid method [20, 139] that combines the principles of

an equivalence between the circulation and momentum theories of lift. With certain

assumptions, the BEM theory allows the induction factor (induced inflow) along

the blade to be estimated. Thereafter, all of the airloads can be determined. The

idea of this essentially analytical approach is to solve for the turbine inflow based

on a combination of a momentum balance on successive annuli of the turbine disk

and a blade element representation of the sectional aerodynamics. The underlying

principle is that each section of the annulus behaves independently of each other,

i.e. a 2D assumption. This approach generally gives acceptable approximations to

the axisymmetric distribution of inflow and loads found under conditions where the

wind is normal to the plane of rotation of the turbine (i.e., the turbine is unyawed
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with respect to the oncoming wind).

On the basis of the simple momentum theory one may compute the incremental

thrust on an annulus of the turbine disk. Neglecting the tangential induction factor

(swirl) in the formulation, which is generally small, the mass flow rate over an

annulus of the disk is given by

dṁ = ρdA(V∞ − vi) = 2πρ(V∞ − vi)y dy (5.1)

so that the incremental thrust on the annulus is

dT = 2ρ (V∞ − vi) vidA = 4πρ (V∞ − vi) viy dy (5.2)

In coefficient form this is simply

dCT =
dT

1
2
ρAV∞

2 = 8
(
1− vi

V∞

)
vi
V∞

(
y

R

)
d
(
y

R

)
(5.3)

Writing in terms of the non-dimensional blade radius, r = y/R, then

dCT = 8
(
1− vi

V∞

)
vi
V∞

r dr = 8(1− a)ar dr (5.4)

where a is the induction factor. From the blade element approach, the thrust coef-

ficient can be expressed as

dCT = σX2
TSR

Clr
2 dr (5.5)

where X
TSR

is the tip speed ratio. Equating the results for the thrust from the

momentum and blade element approaches gives

8(1− a)ar dr = σX2
TSR

Clr
2 dr (5.6)

Assuming that Cl varies linearly with the angle of attack, then,

Cl = Clα (θ + φ) with φ =

(
1− a

rX
TSR

)
(5.7)

Using this assumption gives

8(1− a)a = σX
TSR

Clr = σX
TSR

Clα(X
TSR

θr + (1− a)) (5.8)
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and after further manipulation this later equation can be expressed in the form

a2 −
(
σX

TSR
Clα

8
+ 1

)
a+

σX
TSR

Clα(X
TSR

θr + 1)

8
= 0 (5.9)

where the induction factor a is the unknown. This has the solution

a(r,X
TSR

) =
(
σX

TSR
Clα

16
+

1

2

)
−
√(

σX
TSR

Clα
16

+
1

2

)2

− σX
TSR

Clα(X
TSR

θr + 1)

8
(5.10)

This is the fundamental equation in the BEM theory. However, it is valid only for

the range 0 ≤ a ≤ 0.5; the upper level of validity is because the turbine approaches

the turbulent wake state and vortex ring state for which, a > 0.5 and so momentum

theory affords no solution.

Equation 5.10 allows the induction factor a and the induced velocity vi to be

obtained as a function of radial position on the blade for any given blade pitch,

blade twist, chord, and airfoil section distribution. Suitable design can be used to

optimize the wind turbine rotor for the maximum performance (i.e. maximum power

extraction). After the induction factor is obtained, the rotor thrust and power may

then be found by integration across the rotor disk using

CT = σX2
TSR

∫ 1

0
Clr

2 dr (5.11)

and

CP = σX3
TSR

∫ 1

0
(φCl − Cd)r

3 dr (5.12)

Because the basis of the BEM theory is strictly a “two-dimensional” theory,

3D effects such as the physical roll-off in the lift as the blade tip is approached

are treated using the Prandtl’s tip loss function [95]. The Prandtl correction can

approximately account for a finite number of blades, and also the effects of blade

planform and twist distribution through the effect on the inflow angle. Prandtl’s

tip and root loss can be expressed in terms of a correction factor F to the change

in momentum over the annulus of the disk given by Eq. 5.6 such that now

dCT = 8F (1− a)ar dr (5.13)
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where

F = Ftip Froot (5.14)

where the tip loss is defined as

Ftip =
(

2

π

)
cos−1 e−ftip , (5.15)

The exponent ftip is given in terms of the number of blades and the radial position

of the blade element r by

ftip =
Nb

2

(
1− r

rφ

)
=
Nb

2

(
1− r

1− a

)
X

TSR
(5.16)

The root loss factor is defined in an analogous way to Eq. 5.15 but the exponent

froot is now given by

froot =
Nb

2

(
r − rc
rφ

)
=
Nb

2

(
r − rc
1− a

)
X

TSR
(5.17)

With the inclusion of the tip-loss factor, Eq. 5.10 can be written as

a(r,X
TSR

, F ) =
(
σX

TSR
Clα

16F
+

1

2

)
−
√(

σX
TSR

Clα
16F

+
1

2

)2

− σX
TSR

Clα(X
TSR

θr + 1)

8F
(5.18)

Because F is not known a priori, an iteration process is required to solve for a and

F . This converges rapidly unless a becomes greater than 0.5, at which point BEM

assumptions break down and the iteration process fails. To extend the application

of BEM for average axial induction factors greater than 0.5, Glauert [27] suggested

a correction in the thrust coefficient based on the experimental results by Lock [28].

Various curve fits have been used to fit the thrust coefficient curve suggested by

Galuert. One of the representations of the curve fit is given by

dCT = (8(a− 1)a+ 4)r dr (5.19)

Using this latter result and equating the momentum and blade element results for

dCT gives

(8(a− 1)a+ 4)F = σX2
TSRClα (XTSRθr + (1− a)) (5.20)
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This gives a quadratic in a which has the solution

a(r,XTSR, F ) = −
(
σX

TSR
Clα

16F
− 1

2

)
(5.21)

+

√(
σX

TSR
Clα

16F
− 1

2

)2

− σX
TSR

Clα(X
TSR

θr + 1)

8F
− 1

2

This modified equation is valid for the range 0.5 < a < 1.0, which extends the ap-

plicability of BEM to a wider range of operating conditions. However, the modified

equation is based on empirical evidence and also breaks down for high tip speed

ratios when the Prandtl tip-loss function is used. Notice that the effect of the wake

rotation and the tangential induction factor (a′) has not been accounted for in the

above formulation. It will be shown later in this chapter that the effect of wake ro-

tation is negligible in the predictions of the power output and aerodynamic loading

on a wind turbine.

5.2 Unyawed Flow

The FVM wake structure and the corresponding particle streamtraces for vari-

ous wind speeds (TSR) for θtip = 4◦ is shown in Fig. 5.1. At 2 ms−1 [see Fig. 5.1(a)],

the turbine operates in the vortex ring state. This is an operating state where the

BEM theory breaks down. The wake interacts with the rotor and the flow direc-

tion is not unique, which is one of the assumptions made in the formulation of the

BEM. The corresponding streamtraces for 2 ms−1 shows a significant flow recircu-

lation region near the blades. At 2.5 ms−1 [see Fig. 5.1(b)], the rotor operates in

the turbulent wake state. Here, the recirculation region moves downstream and a

significant mixing region exists in the wake.

At 4 ms−1 (XTSR = 8.3333) the wake is stable, but for the last turn the

tip vortices interact to produce a form of pairing instability. The corresponding

streamtraces show the wake expansion region and then a wake contraction near the

last turn where the wake is unstable. At higher wind speeds (lower TSR), the wake

structure is now stable [see Figs. 5.1(d) - 5.1(f)]. The streamtraces expand and pass
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(a) XTSR = 16.667, V∞ = 2 m/s

(b) XTSR = 13.333, V∞ = 2.5 m/s

(c) XTSR = 8.333, V∞ = 4 m/s

Figure 5.1: Top view of the wake geometry and the streamtraces behind the wind

turbine for various tip speed ratios for a wind turbine rotor with ideal twist and

θtip = 4◦.
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(d) XTSR = 6.667, V∞ = 5 m/s

(e) XTSR = 4.1667, V∞ = 8 m/s

(f) XTSR = 3.333, V∞ = 10 m/s

Figure 5.1: (Cont’d) Top view of the wake geometry and the streamtraces behind

the wind turbine for various tip speed ratios for a wind turbine rotor with ideal

twist and θtip = 4◦.
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smoothly through the rotor. The maximum expansion of the wake (corresponding

to maximum power extraction) is obtained for XTSR = 6.6667 in this case. For

higher wind speeds, the wake is stable but the wake expansion reduces and the

power output from the turbine decreases.

Figure 5.2 shows the comparison of the predicted variation of power coefficient,

CP , versus TSR from the BEM analysis and the FVM calculations for a tip pitch

of 4◦. As the TSR is increased, an optimum tip speed ratio is reached where the

power coefficient is maximum. For the BEM method with no losses, a maximum

power coefficient of 0.593 corresponding to the Lanchester–Betz limit is obtained.

When tip losses and profile losses are included into the calculation the maximum

CP is reduced, as would be expected. In this case, the maximum power coefficient

is achieved for a TSR of around 5.75 from both the BEM theory and the FVM.

From the BEM theory results, it is evident that the addition of the tip losses causes

significant change in the predicted power output, whereas the addition of the viscous

losses does not significantly alter the power output. For the low values of TSR, there

is no significant difference in the predicted power output with and without viscous

losses in the FVM calculations. The addition of viscous losses, however, reduces the

power output at moderate to high values of TSR.

The agreement between the predicted power coefficient from the FVM and

the BEM theory was noted to be very good for low values of TSR. As the TSR is

increased further, however, the turbulent wake/vortex ring state is encountered. The

BEM results shown here include the correction for a > 0.5 as given by Eq. 5.19. The

variation of the thrust coefficient (see Fig. 5.3) with TSR is almost linear. Again,

the BEM method and the FVM predictions are found to be in very good agreement

up to a TSR of 6. For higher TSR, the modified BEM theory with the inclusion of

tip losses also breaks down, and does not converge for blade section near the tip.

BEM method with no tip or hub losses underpredicts the thrust coefficient.

Figure 5.4 shows the comparison of the power and thrust coefficient, respec-
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Figure 5.2: Comparison of the variation of the predicted power coefficient with tip

speed ratio for θtip = 4◦.

tively, for θtip = 1◦ including both the tip losses and profile losses. Hereafter, a

lower tip pitch angle (θtip = 1◦) is used because the modified BEM equations break-

down at higher values of TSR. The predicted power coefficient from the FVM and

the BEM theory are in good agreement for XTSR < 5. For higher values of TSR,

the BEM calculation with the Glauert correction significantly underpredicts the

power coefficient. Notice that the predicted thrust coefficient (Fig. 5.5) from the

two methods are very similar until the BEM theory breaks down.

Figures 5.6(a) show the distribution of the axial and the tangential induction

factor over the blade for various tip speed ratios, as obtained from the FVM cal-

culation. For higher values of TSR, the average axial induction factor is larger. It

can be seen that the value of the axial induction factor for moderate values of TSR

is very large near the blade root and blade tip. The average value of the tangential

induction factor [see Fig. 5.6(b)] decreases with increasing values of TSR. However,

the tangential induction factor is noted to be very small compared to the axial in-
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Figure 5.3: Comparison of the variation of the predicted thrust coefficient with tip

speed ratio for θtip = 4◦.
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speed ratio for θtip = 1◦.
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Figure 5.5: Comparison of the variation of the predicted thrust coefficient with tip

speed ratio for θtip = 1◦.

duction factor except near the blade root. This justifies neglecting the effect of swirl

in the BEM methodology, as assumed previously.

Although the above results show that the integrated thrust and power coef-

ficients obtained from the BEM and FVM calculations are in good agreement for

low values of TSR, predicting the local distribution of airloads accurately is very

important for the reliable design of wind turbines. Figures 5.7 through 5.9 compare

the local variation of the induction factor and the thrust and power coefficient for

two different cases: (1) same tip pitch, and (2) same thrust coefficient. In the sec-

ond case, the thrust coefficient obtained from the FVM is prescribed for the BEM

calculation.

Figures 5.7(a) and (b) show the distribution of the induction factor over the

blade for the two cases for a TSR of 6.0. The BEM result with no tip losses is also

shown. It can be seen that the tip losses cause an increase in the axial induction

factor near the blade tip and root, which is captured very well in the BEM method
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Figure 5.6: FVM wake prediction of the distribution of the induction factors for

various tip speed ratios: (a) axial induction factor, (b) tangential induction factor.
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Figure 5.7: Distribution of the induction factor along the blade for a tip speed ratio

of XTSR = 6.0 and θtip = 1◦: (a) same value of θtip, (b) same value of CT .
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Figure 5.8: Distribution of the thrust coefficient along the blade for a tip speed ratio

of XTSR = 6.0 and θtip = 1◦: (a) same value of θtip, (b) same value of CT .
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Figure 5.9: Distribution of the power coefficient along the blade for a tip speed ratio

of XTSR = 6.0 and θtip = 1◦: (a) same value of θtip, (b) same value of CT .
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using the Prandtl tip-loss function. The overall agreement in the local induction

factors obtained with the FVM and BEM theory is good when the tip pitch is the

same for the two calculations, but is not as good when the thrust coefficient obtained

from the BEM is trimmed to match the thrust from the FVM.

Figures 5.8 and 5.9 show the thrust and the power coefficient distributions for

the two cases. The thrust coefficient distribution agrees very well for the second

method, whereas the local CT is overpredicted when the tip pitch is kept the same

in the two calculations. In both cases, the FVM gives a slightly higher local power

coefficient as compared to the BEM theory. These results shows that the integrated

power and thrust predicted by the two methods are in good agreement. However,

the predictions of the local induction factor, the thrust coefficient and the power

coefficient are not so similar for the two methods, even for moderate tip speed ratios.

5.3 Wind Turbine in Yawed Flow

Because of the variability of wind direction and the need to yaw the rotor out

of the wind to limit power at high wind speeds, wind turbines work in yawed flow

for a significant amount of their operational time. BEM methods are fundamentally

incapable of handling this problem without the prescription of a modified inflow at

the rotor disk.

A FVM calculation has been performed where a turbine yaws 30◦ out of the

wind during the period of 5 revolutions. Figure 5.10 shows the top view of the

evolving wake at different times. Just after the yaw starts, the turbine moves into

its own wake, which can cause highly unsteady loads on the rotor blades. After 5

revolutions, the wake reorganizes and shows disturbances only along the filaments for

the last 2 to 3 wake turns. After about 10 revolutions, the wake becomes essentially

periodic.

The corresponding time-history of the power output is shown in Fig. 5.11.

Notice that the power output drops rapidly with yaw; this drop is proportional
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Figure 5.10: Top view of the evolving wake geometry behind the wind turbine yawing

30◦ out of the wind: (a) time = 0, (b) time = 2 revs., (c) time = 5 revs.
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Figure 5.10: (Cont’d) Top view of the evolving wake geometry behind the wind

turbine yawing 30◦ out of the wind: (d) time = 10 revs., (e) time = 20 revs. and

(f) time = 60 revs.
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Figure 5.11: Power coefficient as a function of time for when the turbine is yawed

30◦ out of the wind.

to the cube of the yaw angle. After the wake starts reorganizing, there is some

recovery in the power output. After 10 revolutions, the power output becomes

essentially periodic with a strong 2/rev output variation.

To apply the BEM method to a wind turbine in yawed flow, an additional

approximation to the inflow through the wind turbine rotor is required. Usually the

axial induction factor for the unyawed case is calculated first and a correction for the

yawed flow effects [140] based on linear inflow models [22–24] is then applied. For a

wind turbine operating in yawed flow at an angle γ, the inflow can be represented

by

a(r, γ) = a(r, γ = 0) + a0(kxr cosψ + kyr sinψ) (5.22)

where a0 is the mean axial induction factor given by the momentum theory. The

coefficients kx and ky are the longitudinal and lateral inflow weighting factors, re-

spectively, which vary with the linear inflow model being used. In this study, a

203



-0.05

0

0.05

0.1

0.15

-1 -0.5 0 0.5 1

Λ = 15o

Λ = 30o

D
iff

er
en

tia
l a

xi
al

 in
du

ct
io

n 
fa

ct
or

, Δ
a

Longitudinal position, x/R

θ
tip

= 1o,  σ = 0.05

Ideal twist 

Figure 5.12: Distribution of the differential axial induction factor along the longi-

tudinal axis in yawed flow with respect to the unyawed flow.

simple Coleman model [22] is considered for the comparison with the FVM, which

seems to be a common model used in wind turbine applications. In the Coleman

model, the weighting factors are given by

kx = tan(χ/2) and ky = 0.0 (5.23)

where χ is the wake skew angle obtained using the momentum theory and is given

by

χ = tan−1

(
V∞ sin γ

V∞ cos γ − vi

)
(5.24)

Figure 5.12(a) shows the distribution of the axial induction factor along the

longitudinal axis in the rotor disk plane for different yaw angles as obtained using

the FVM method and from the BEM theory with a Coleman inflow correction. The

comparison shows that the BEM method with a yawed flow correction gives good

agreement with the FVM for smaller yaw angles, whereas the agreement is not as

good for the larger yaw angles. The asymmetry in the axial induction factor across
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the disk is also not in agreement with the FVM. The distribution of axial induction

factors along the lateral axis of the rotor is shown in Fig. 5.12(b). It can be seen that

the distribution of a is symmetric over the rotor for smaller yaw angles. However,

for γ = 30◦ some asymmetry can be observed in the FVM calculation. The BEM

predictions with the Coleman correction overlap for different yaw angles because

ky = 0, which holds for smaller yaw angles but is obviously not valid for larger yaw

angles.

The above results show that the BEM theory with linear inflow assumption

seems to give acceptable agreement with the FVM calculation, but only for small

yaw angles. For larger yaw angles, the agreement between the predicted induction

factor distribution along the longitudinal and lateral axis of the turbine disk from

the BEM theory and the FVM is not as good.

5.4 Universal Thrust and Power Coefficient Curve

To understand various flow states of a rotor over which the BEM theory can be

applied, it is instructive to construct a universal power and thrust coefficient curve.

In helicopter theory, the universal induced velocity curve gives the relation between

the axial velocity and the induced velocity at a constant thrust. This relation can

be expressed in terms of the variation of thrust coefficient with the axial induction

factor.

The axial induction factor for a wind turbine, a, is defined as the ratio of

induced velocity at the rotor disk to the free stream velocity (i.e., a = vi/V∞). This

can be expressed in terms of the ratio of induced velocity and induced velocity of a

powered rotor in hovering flight using

a =
vi
V∞

=
vi
vh

( vh
V∞

)
(5.25)

where vi/vh is a function of the axial free-stream velocity, V∞. The exact solution
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for vi/vh in the normal working state (V∞/vh > 0) is given by

vi
vh

= −V∞
2vh

+

√(V∞
2vh

)2
+ 1 (5.26)

In the windmill brake state (V∞/vh < −2), the solution is given by

vi
vh

= −V∞
2vh

−
√(V∞

2vh

)2
− 1 (5.27)

For the turbulent wake state/vortex ring state, no exact solution is available from

the momentum theory. The relation for the induced velocity in the range −2 <

V∞/vh < 0 has been expressed as a quartic fit by Leishman [95] based on exper-

imental measurements for helicopter rotors as given by Gessow in Ref. 141. This

relation can be used to express the axial induction factor in terms of V∞/vh using

Eq. 5.25, i.e.,

vi
vh

= A+B
V∞
vh

+ C
(V∞
vh

)2
+D

(V∞
vh

)3
+ E

(V∞
vh

)4
(5.28)

where A = 1.15, B = −1.125, C = −1.372, D = −1.718 and E = −0.665. The

thrust coefficient for a helicopter is defined as

CThel
=

T

ρA(ΩR)2
(5.29)

This form of the thrust coefficient can be expressed in terms of the mean inflow as

CThel
= 2λ2

h (5.30)

where λh = vh/ΩR. Here vh is the induced velocity at the rotor disk in hover. The

thrust coefficient for a wind turbine is defined as

CTwt =
T

1
2
ρAV 2

∞
(5.31)

which can be re-expressed in terms of the helicopter thrust coefficient as

CTwt = 2CThel

(ΩR

V∞

)2
= 4

(V∞
vh

)−2
(5.32)
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Figure 5.13: Variation of the thrust coefficient with the axial induction factor for

normal working state (NWS), turbulent wake state (TWS), vortex ring state (VRS)

and windmill brake state (WBS): (a) linear scale and (b) log scale to show the

asymptotic values.
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Figure 5.14: Variation of the power coefficient with the axial induction factor for

normal working state (NWS), turbulent wake state (TWS), vortex ring state (VRS)

and windmill brake state (WBS): (a) linear scale and (b) log scale to show the

asymptotic values.
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In a similar manner, the power coefficient for wind turbine is defined as

CPwt =
P

1
2
ρAV 3

∞
= CTwt(1− a) (5.33)

The value of CPwt can now be expressed in terms of the ratio V∞/vh using the

expressions for CTwt and a in terms of V∞/vh.

For a given V∞/vh, the thrust coefficient and the axial induction factor can be

obtained and these are plotted in Fig. 5.13. The solid line shows the momentum

theory predictions in the windmill brake state. The momentum theory fails when the

axial induction factor is greater than 0.5. Various empirical corrections have been

suggested for this range some of which are shown in Fig. 5.13(a). Experimental

measurements in this flow state from Lock [28] and Washizu et al. [142] are also

shown. As the descent velocity through the rotor decreases and the hovering state

is approached, the thrust coefficient and the axial induction factor approach infinity,

which indicates the asymptotic limits shown in Fig. 5.13(b). This corresponds to

the VRS where the vortex filaments are bundled up near the rotor disk. In the

second branch, the climb velocity is increased from hover and the variation of the

thrust coefficient with the axial induction factor is shown. As the climb velocity is

increased, the thrust coefficient approaches zero.

The variation of the power coefficient with the axial induction factor for the

various flow states is shown in Fig. 5.14(a). The power coefficient, CP is defined as

positive when the rotor is extracting power from the wind. The momentum theory

is valid until a = 0.5. An approximate fit for the CP variation (Leishman fit) is also

shown in this figure. Again, when powered hovering flight is approached the value of

the power coefficient and the axial induction factor approaches infinity, as shown in

Fig. 5.14(b). The above results show that the Glauert correction was really obtained

only for a limited set of experimental values. The agreement between the extended

set of experimental results and Glauert correction in the vortex ring state is not as

good, whereas the Leishman fit shows a good agreement for the whole range of axial

induction factors.
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5.5 Summary

A comparison of the power output and thrust based on blade-element mo-

mentum theory (BEM) and free-vortex model (FVM) has been performed. Good

agreement in the power and thrust prediction is observed between the FVM and

BEM methods for low tip speed ratios (XTSR < 6). For higher tip speed ratios,

the wake induction factor is very high near the tip region and the BEM model fails.

It is also shown that the corrections for CT at higher axial induction factors may

break down. On the other hand, the FVM shows the flexibility for the aerodynamic

analysis of wind turbines in all working states including the vortex ring state (high

TSR).

The FVM can also be used for the aerodynamic analysis of wind turbines in

yawed flow for which BEM method is less applicable without resorting to various

types of approximations. It is also shown that the linear inflow models often used

with the BEM theory are probably not applicable for large yaw angles. The ability

of the FVM to capture the time-accurate behavior of the aerodynamic response of

wind turbines (in yawed flow) has also been shown. A universal thrust and power

coefficient curve has been derived to understand various flow states of a wind turbine

(i.e., normal working state, turbulent wake state and the windmill brake state). In

the vortex ring state, the Glauert correction is shown to be adequate only when the

axial induction factor is between 0.5 and 1.
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Chapter 6

Comparison with Experiments

In Chapter 4, the nonlinear unsteady airfoil model was coupled with the

Weissinger-L blade model, and was validated against the experimental measure-

ments from the NREL parked blade test. In Chapter 5, the coupling between the

blade model and the vortex wake model was analyzed, and validated for attached

flow conditions. The next step is to couple the airfoil and blade model with the

vortex wake model. Before the resulting model can be used in the design phase for

the calculation of loads and power output for a wind turbine, the effectiveness and

robustness of the free-vortex wake model needs to be established properly. In this

chapter, the numerical predictions obtained from the the free-vortex wake method

(FVM) are validated against the experimental measurements obtained for a wind

turbine that was operated under controlled conditions.

The emphasis of the first part of this chapter will be on the validation of the

wake geometry behind a horizontal axis wind turbine that is predicted by the FVM.

Defining accurately the aerodynamic angle of attack at the blades is obviously key

to predicting the airloads and the power produced by the wind turbine. An im-

portant part of this problem is to consider the effects of the self-generated vortical

wake downstream of the turbine disk, which is a source of a non-uniform velocity

field and three-dimensional angle of attack distribution over the disk. Wind tur-

bines also operate in yawed flow for a significant part of their operational time. The

wake behind a wind turbine in yawed flow is skewed (epicycloidal), and contributes

further to the non-uniformity of the inflow. This results in a time-varying aero-

dynamic loading on the blades and, hence, a fluctuating power output. Therefore,
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proper modeling and an accurate treatment of the wake becomes fundamental to

the problem of predicting the loads and operational performance of a wind turbine.

Over the past decade, free-vortex wake methods (FVM) have emerged as very

flexible numerical tools for modeling helicopter rotor wakes [83]. The progress in

improving the free-vortex wake modeling of helicopter rotors has been accelerated

by detailed flow experiments that have been used to validate the FVM and to de-

velop viscous-corrected models of the concentrated tip vortices [82,143,144]. These

experimental data have been used to validate the FVM over a wide range of oper-

ating conditions. However, for wind turbines, despite similarities to the helicopter

problem, only a very few experimental studies have been undertaken to investigate

its detailed structure and evolution. Notable work includes Vermeer et al. [72],

who conducted experiments with a two-bladed turbine in axial flow. Also, Grant et

al. [145,146] performed flow visualization experiments and particle image velocime-

try (PIV) studies on a wind turbine in an open-jet facility.

More recently, a quantitative flow visualization of the wake geometry behind

a two-bladed model turbine has been performed by Haans et al. [73] in an open-

jet tunnel at Delft University of Technology (DUT), and in both axial and yawed

flow operating conditions. In the present study, the wake geometry measurements

obtained by Haans et al. will be used. This comparison is valuable because it

provides confidence in the FVM to accurately capture the wake geometry behind a

wind turbine. This is fundamental to predict the induced velocity on the rotor disk,

and subsequently the angle of attack and airloads on the blade.

In the second part of this chapter, the validation of the FVM is extended to

measurements from the NREL Phase VI wind turbine [91, 92]. In this experiment,

a two-bladed wind turbine with twisted and tapered blades was tested over a wide

range of operating conditions in the full-scale NASA Ames 80× 120 ft wind tunnel.

This experiment provides a comprehensive set of airloads and performance measure-

ments. NREL blind comparison study based on the Phase VI tests underlined the
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inadequacies of the current predictive tools [94] used to model the aerodynamic loads

and performance of a wind turbine. Even for unyawed and unstalled conditions flow,

predictions of blade loads and power output using various numerical methodologies

were found to be significantly different from the experimental measurements. It

was also found that numerical models with essentially the same set of sub-models

gave different results. This is the motivation behind the crawl-walk-run approach

followed in this study. In this part, the validation of the free-vortex wake model will

be extended to the azimuthal and spanwise variations of the airloads, in addition

to the integrated thrust and power output. The ability of the FVM to predict the

unsteady aerodynamic response of a wind turbine in a time-accurate manner will

also be shown.

6.1 Wake Geometry Validation

The validation of the free-vortex wake method for a wind turbine in axial and

yawed flow was performed against the wake geometry measurements obtained by

Haans et al. [73]. A two-bladed rotor model was placed in the Open Jet Facility

of the Delft University of Technology (DUT). The open jet tunnel has a maximum

attainable wind speed of 14.5 ms−1 and free-stream turbulence intensities of 1.2 ±

0.2% at 5.5 ms−1, the wind tunnel speed at which the measurements were taken.

The readings from three inter-connected Pitot-static tubes, mounted in the jet exit

plane, together with ambient pressure and jet temperature recordings, were used

to derive the wind tunnel speed. The rotor hub is located 1 m downstream of the

jet exit plane. This tunnel was not equipped with a separate return channel; the

tunnel hall was used for recirculation instead. The distance from the rotor hub to

the downstream tunnel wall is 11 m. For the setup and coordinate systems, see

Figure 6.1.

The geometric properties of the wind turbine rotor blade used in the experi-

ment are given in Table 6.1. The blade pitch was varied by altering the tip pitch
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Figure 6.1: Schematic of the experimental test setup. (Taken from Ref. 73): (a)

side view (b) top view.
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Number of blades 2

Airfoil Section NACA 0012

Rotor radius (m) 0.6

Root cut-out 30%

Chord (m) 0.08

Blade twist (deg.) 6− 6.67r/R for r/R ≤ 0.9

0 for r/R ≥ 0.9

Table 6.1: Geometric properties of the model scale wind turbine used by Haans et

al. in Ref. 73.

angle θtip. Yaw angle ψ was defined as the angle between the normal to the rotor

plane and the undisturbed wind speed. Experimental data were obtained for three

tip speed ratios of λ = 6, 8 and 10. The tunnel wind velocity was kept constant

at V∞ = 5.5 ms−1, and the tip speed ratio was changed by changing the rotational

speed of the turbine.

A strain gauge attached on the rotor shaft enabled measurement of axial force

on the rotor. The second strain gauge on the root of one blade was used to quantify

the flapping moment, and another for the lead-lag moment on the instrumented

blade. The axial force is the force on the rotor in the direction of the rotor axis.

Hence, for yawed conditions, the axial force vector is directed at an angle to the

free-stream flow velocity. The side force on the rotor was not recorded. Details of

the experimental setup and the procedure to quantify the wake positions can be

found in Ref. 73.

A representative result from the flow visualization is shown in Fig. 6.2, which

uses a form of smoke to seed the flow. It can be seen that the wake behind the

turbine expands because it is extracting energy from the flow. The concentrated

tip vortices can be clearly identified by the swirling smoke patterns and the dark

“seed” voids at the center of the vortex cores. Notice that the smoke becomes quite
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Figure 6.2: Typical flow visualization showing the tip vortex and the blade for

Λ = 0◦, λ = 8 and θtip = 2. (Image courtesy of Wouter Haans from DUT.)

diffused at older wake ages, and the vortex cores are more difficult to discern. It

is clear that the core radii of the vortices increases. By ζ = 720◦ the vortex core

is filled with smoke and the vorticity near the vortex cores is now relatively well

diffused.

6.1.1 Wind Turbine in Axial Flow

Numerical simulations were performed using the FVM for the given turbine

geometry at various tip-speed ratios and tip pitch angles in both axial and yawed

flow conditions. A numerical discretization of ∆ψ = ∆ζ = 10◦ was used in the

simulations. This level of discretization gives only a small error in the reconstruction

of the tip vortex induced velocity field (as concluded in Chap. 3) in and is a relatively

inexpensive solution to run on a high-end computer workstation.

Figure 6.3(a) shows a comparison of the tip vortex positions obtained from

the experiment versus results from the FVM for axial (unyawed) flow conditions for

λ = 8, θtip = 0◦, and Λ = 0◦. The wake expands behind the turbine, and the FVM
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captures the tip vortex locations well for younger wake ages. Some differences can

be seen in the positions of the tip vortices for older wake ages. The increased uncer-

tainty in defining the tip vortex core positions is because of the diffusion of smoke

particles. In addition, some aperiodicity of the flow may account for the differences

in the locations for older wake ages. However, the predicted tip vortex locations are

still within the experimental uncertainty bounds in marking the position of the tip

vortices as the center of the dark seed void or “core” regions free of smoke.

As the blade tip pitch angle increases, the thrust on the turbine decreases.

(Note that blade pitch angle convention is positive towards nose down). The wake

expansion is found to be reduced as compared to the wake at lower tip pitch angle.

With decreased induced velocity at the disk, the effective velocity behind the turbine

disk increases. Hence, the helical pitch of the vortical wake also increases, which

is represented well by the FVM. The predicted tip vortex positions were found to

be in good agreement with the experimental measurements for θtip = 2◦, as shown

in Fig. 6.3(b). For θtip = 4◦ - see Fig. 6.3(c), the tip vortex positions were slightly

overpredicted by the FVM for older wake ages.

A comparison of the predicted and experimental turbine thrust coefficient for

the unyawed case is shown in Fig. 6.4. In the experiment, turbine thrust was mea-

sured using a strain gauge, which provides an azimuthally averaged measurement.

The predicted CT was found to be in good agreement with the experimental values.

The underpredicted thrust for λ = 8 and θtip = 4◦ correlated well with the corre-

sponding overprediction of the tip vortex positions, as shown in Fig. 6.3(c). The

induced inflow at the disk as predicted by the FVM for this case is lower than com-

pared to experiment. Thrust coefficient CT is, therefore, lower than in experiments

and the helical pitch of the wake is higher.

The corresponding values of the predicted power coefficient is shown in Fig. 6.5.

The power output from the turbine was not measured in the experiment, so a com-

parison could not be made. It can be seen, however, that the power decreases with
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increasing tip speed ratio for a given tip pitch angle. A tip speed ratio λ = 6 gives

the maximum power coefficient.

6.1.2 Wind Turbine in Yawed Flow

Figure 6.6 shows the wake geometry behind the turbine for a yaw angle of

Λ = −30◦ and λ = 8. The wake expands and now develops a significant asymmetry

on the upstream and downstream sides (it becomes more epicycloidal in form). This

asymmetric development of the wake results in a non-uniform induced velocity over

the turbine disk, which leads to cyclic loading on the blades. The FVM better

represents this asymmetric wake geometry, and hence the cyclic loading will be

predicted without any additional modeling requirements such as would be required

with BEM methods.

Figure 6.6(a) compares the predicted and measured tip vortex locations for

θtip = 0◦. The vortex positions on the downstream side agree very well with the

experimental measurements. However, the tip vortex locations show slight differ-

ences on the upstream side of the wake at older wake ages. For the higher tip pitch

angles, a similar trend is seen – see Figs. 6.6(b) and 6.6(c).

A time history of the thrust and power coefficient for λ = 8 and θtip = 2◦

for two yaw angles is shown in Figs. 6.7 and 6.8, respectively. For axial flow case

(Λ = 0◦), CT and CP are steady and do not vary with time. In the FVM, to model

the behavior of a wind turbine in yawed flow, the wake geometry for the unyawed

case was used as the initial condition. After the fourth revolution, the wind turbine

rotor is yawed out of the wind to the desired yaw angle over four revolutions. As

the yaw angle is increased, the wake behind the turbine reorganizes itself and the

FVM predicts the transient behavior of the wake in a time-accurate manner.

Even after the desired yaw angle has been achieved, there is a slight lag until

the wake becomes periodic. Once all the vortex filaments have the correct circula-

tion, the numerical solution becomes periodic. Both the thrust and power decrease
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Figure 6.3: Comparison of the tip vortex geometry for Λ = 0◦ and λ = 8; (a)

θtip = 0◦, (b) θtip = 2◦, and (c) θtip = 4◦.
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Figure 6.4: Comparison of the measured and predicted average thrust coefficient for

unyawed flow as a function of the tip speed ratio for θtip = 0◦, 2◦ and 4◦.
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Figure 6.5: Variation of the predicted average power coefficient for unyawed flow as

a function of the tip speed ratio for θtip = 0◦, 2◦ and 4◦.
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with increasing yaw angle. According to the momentum theory (as shown in Chap-

ter 1), the power output is proportional to the cube of the wind speed normal to the

rotor disk; it can be seen that Cp is reduced by an amount proportional to cos3 Λ.

However, as the wake reorganizes, there is a slight recovery in the power coefficient.

Figure 6.9 shows a comparison of the predicted and measured tip vortex loca-

tions for λ = 6 for the unyawed and yawed cases at a tip pitch angle of θtip = 0◦. It

can be seen that the helical pitch of the tip vortex is higher for λ = 6 as compared

to the λ = 8 case. For Λ = 0◦, the predicted wake is in good agreement with the

measured wake geometry. As the yaw angle is increased to −30◦, the wake develops

asymmetrically, and as seen for λ = 8, the upstream wake positions are slightly

overpredicted. For Λ = −45◦ (see Fig. 6.9(c)), the wake starts to roll up along its

edges, but this effect is limited to last few turns of the wake. A considerable amount

of asymmetry can now be seen in the wake. The comparison between the predicted

and measured tip vortex positions is not quite as good as the Λ = −30◦ case.

For a higher tip speed ratio of λ = 10, the predicted and measured wake

positions are shown in Fig. 6.10. In this condition, the wake behind the turbine is

much more compact with a smaller helical pitch of the tip vortices. The agreement

between measurements and predictions is good, except for the highest yaw angle of

Λ = −45◦. For this case (see Fig. 6.10(c)), the radial displacement of the tip vortex

on the downstream side is overestimated at all wake ages.

The variation of the azimuthally averaged turbine thrust coefficient with yaw

angle and tip pitch angle is shown in Fig. 6.11 for a tip speed ratio of 6. It can be see

that the FVM predicts the thrust coefficient very well for all operating conditions.

As the magnitude of the yaw angle is increased, the thrust coefficient decreases. For

both negative and positive yaw angles, it was found that the turbine thrust was

almost the same, which was well predicted by the FVM.
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Figure 6.6: Comparison of the tip vortex geometry for Λ = −30◦ and λ = 8: (a)

θtip = 0◦, (b) θtip = 2◦, and (c) θtip = 4◦.
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Figure 6.9: Comparison of the tip vortex geometry for a tip speed ratio λ = 6 and

θtip = 0◦; (a) Λ = 0◦, (b) Λ = −30◦, and (c) Λ = −45◦.
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Figure 6.10: Comparison of the tip vortex geometry for a tip speed ratio λ = 10

and θtip = 0◦; (a) Λ = 0◦, (b) Λ = −30◦, and (c) Λ = −45◦.
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6.2 NREL Phase VI Validation

The validation of the wake geometry and thrust coefficients in attached flow,

as discussed in the previous section, provides confidence in the ability of the free-

vortex wake method to predict the unsteady aerodynamic loads on a wind turbine.

In this section, the validation of FVM will be extended to the prediction of the aero-

dynamic loads and performance of a wind turbine over a wider range of operating

conditions. Numerical simulations were performed for the NREL Phase VI turbine.

The comparison was mainly performed for the wind turbine in the upwind configu-

ration, i.e., sequence S in Ref. 91. This test sequence used an upwind rigid turbine

with 0◦ blade cone angle, and with a tip blade pitch angle of 3◦. The wind tur-

bine was maintained at a rotational speed of 72 rpm, and the five-hole probes were

removed to reduce any interference effects. Calculations were performed for wind

turbine operating in unyawed and yawed flow. Table 6.2 gives the main geometric

and operational parameters of the turbine.

Table 6.2: Geometric properties of the NREL Phase VI wind turbine.

Number of blades 2

Airfoil section S809

Rotor radius 5.029 m

Blade taper 2:1

Blade twist Hyperbolic

Rotational speed 72 rpm

In this section, the predicted results obtained for three yaw angles (Λ = 0◦,

30◦ and 60◦) will be shown. A comparison of the net aerodynamic power and tur-

bine thrust is presented first. The comparison is then extended to the azimuthal

variation of the integrated quantities such as turbine torque, root flapwise and edge-

wise bending moments. To show the robustness and capability of the free-vortex
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wake method, azimuthal and spanwise variation of the aerodynamic coefficients (i.e.,

normal force coefficient Cn, leading-edge thrust coefficient Ct and pitching moment

coefficient Cm) are compared against the experimental measurements. Spanwise

and azimuthal variation of the aerodynamic coefficients will be shown for three

wind speeds of V∞ = 5 ms−1, 10 ms−1 and 15 ms−1.

6.2.1 Wind Turbine in Unyawed Flow

In unyawed flow, the wind direction is aligned with the rotational axis of the

turbine and there is no yaw error. This is the simplest case, mainly because there

are no cyclic variations in the airloads and power output. Figure 6.12 shows the vari-

ation of the predicted and measured azimuthally averaged thrust with wind speed

for the unyawed case. Notice that there is good agreement between the predicted

and measured thrust at low wind speeds. As the wind speed increases, however, the

difference between the predicted and measured thrust increases, significantly under-

predicting thrust at wind speeds above 12 ms−1. This difference can be attributed to

rotational boundary layer augmentation and 3D effects. Because of these effects, the

inboard regions of the wind turbine blade experience a delay in stall and enhanced

values of the normal force coefficient. Various stall delay models [36–38] have been

developed to account for the enhanced values of Cn in the post-stall regime. In

this study, the model developed by Raj and Selig [38] will be used. This model is

representative of the general formulation of the stall delay models used in the wind

turbine community.

The Raj–Selig model models the rotational augmentation effects by assuming

that the 3D airfoil are approximately equal to that obtained in 2D wind tunnel data

plus an increment in lift and drag, i.e.,

Cl3D
= Cl2D

+ ∆Cl (6.1)

Cd3D
= Cd2D

+ ∆Cd (6.2)
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Figure 6.12: Comparison of the predicted and measured aerodynamic thrust for

Phase VI turbine in unyawed flow.

where ∆Cl and ∆Cd are increments in the lift and drag. These increments are given

by

∆Cl = fl(Cl,pot − Cl2D
) (6.3)

∆Cd = fd(Cd,pot − Cd0) (6.4)

where Cl,pot = 2π(α − α0) and Cd0 = Cd2D
for α = 0. The factors fl and fd are a

function of the radial location and are given by

fl =
1

2π

[
1.6(c/r)

0.1267

a− (c/r)
d
λ

R
r

b+ (c/r)
d
λ

R
r

](
1− r

R

)
(6.5)

fd =
1

2π

[
1.6(c/r)

0.1267

a− (c/r)
d
2λ

R
r

b+ (c/r)
d
2λ

R
r

](
2− r

R

)
(6.6)

where a, b and d are empirical correction factors. These factors have been modified

to provide a better fit to the experimental data. The variation of thrust with wind

speed in the presence of the Raj–Selig stall delay is also shown in Fig. 6.12. It

can be seen that the predicted thrust coefficients are in very good agreement with

the measurements from the NREL tests for all wind speeds. Even in the post-stall
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region, there is a very small error in the predicted thrust unlike, that found in the

absence of stall delay model.

The predicted power output is shown see Fig. 6.13. The aerodynamic power

output without the stall delay model is found to be in very good agreement with

the experimental measurements. Aerodynamic power agrees well with the measure-

ments in the attached flow region. However, the peak power and the corresponding

wind speed is slightly overpredicted. As the wind speed increases and most of the

blade is operating in the stalled flow, the aerodynamic power output matches the

experimental measurements. It should be noted that the discrepancy in predicted

and measured power is not as significant as was found in the prediction of thrust.

The reason for this is that stall delay is dominant mainly on the inboard sections of

the blade. Torque and hence the power output are proportional to the contribution

of lift multiplied by the radius of the blade sections. This reduces the net effects of

the enhanced lift on power production. Moreover, inplane forces are more dominant

in determining the torque (power) generated by a wind turbine blade.

On the other hand, with the Raj–Selig stall delay model, the maximum power

output is grossly overpredicted. Again, the wind speed corresponding to the peak

power output is 11 ms−1, which is higher than the experimental value (9 ms−1).

However, the aerodynamic power is grossly underpredicted in the post-stall region.

As mentioned previously, the effect of the enhanced lift on power output is not very

significant. In addition, the profile drag is also enhanced according to the Raj–

Selig model, which reduces the net power output. It was also noted by Laino and

Hansen [147] that the empirical correction factors need to be adjusted for the Raj–

Selig stall delay model to achieve a better agreement with the measured power. A

similar conclusion can be drawn for all of the other stall delay model used in the

wind turbine community, which are essentially postdictive. There is clearly a need

to formulate a stall delay model, which models the physics of the flow irrespective

of the blade geometry. Moreover, it will be shown in the next section that the stall
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Figure 6.13: Comparison of the predicted and measured aerodynamic power for

Phase VI turbine in unyawed flow.

delay models are not directly applicable to the prediction of the aerodynamic loads

on a wind turbine operating in yawed flow condition.

Figure 6.14 shows the predicted and measured azimuthal variation of the root

flap bending moment for three wind speeds. Both the strain gauge flap bending mo-

ment (B3RFB) and an estimated aerodynamic flap bending moment (EAEROFB)

as derived from pressure measurements are shown. There is an offset between the

two values, with the estimated value being larger than the strain gauge measure-

ment. The decrease in the estimated flap bending moment at ψ = 180◦ is caused

by the tower shadow effect. As the blade passes in front of the tower, the effective

velocity at each blade sections decreases. This leads to a reduction in the net lift

and torque produced by the blade. In the FVM, the effect of the tower shadow

is modeled as a velocity deficit centered around the azimuth angle of ψ = 180◦ as

described in Section 2.2.5. The net decrease in velocity and the azimuthal span of

the velocity deficit are determined empirically.

The predicted flap bending moment from the aerodynamic loads was found
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to be in good comparison with the estimated flap bending moment EAEROFB for

V∞ = 5 ms−1. For higher wind speeds (V∞ = 10 ms−1 and 15 ms−1), the flap

bending moment was underpredicted. This was found to be consistent with the

underpredicted net thrust for higher wind speeds, and may be because of the absence

of a stall delay model (see later). However, the strain gauge flap bending value

shows a sinusoidal variation because of the elastic deformations of the blade. These

deformations are not modeled in this version of the FVM. The in-plane moment or

the edgewise bending moment is dominated mainly by 1/rev variation because of

the gravitational loads. No estimated values of the in-plane moment were available

from the pressure measurements, so only the strain gauge values are shown. The

predictions and measurements showed good comparisons for the azimuthal variation

of the in-plane moment (Fig. 6.15) at all three wind speeds.

The average value of the aerodynamic torque was predicted accurately (Fig. 6.15).

Again, the decrease in the aerodynamic torque near ψ = 180◦ is caused by the tower

shadow effect. It can be seen that the torque predictions and measurements are also

in agreement at higher wind speeds. This is consistent with the predictions of the

aerodynamic power, as shown previously in Fig. 6.13. The torque measurements

made using a strain gauge on the low speed shaft shows a sinusoidal variation, which

is introduced because of the drive-train shaft degree of freedom. Again, the struc-

tural deformations have not been modeled in this version of FVM, but in principle

these can be modeled by interfacing FVM with a dynamics code like YawDyn [32],

FAST [148,149], or ADAMS [150].

A comparison of the radial variation of Cn and Ct is shown in Figs. 6.17

and 6.18, respectively. The stall delay effect in the inboard regions of the blade can

be clearly seen for higher wind speeds in the measured Cn. There is a considerable

difference between the predictions and the measurements of Cn for (V∞ = 10 ms−1

and 15 ms−1). For V∞ = 5 ms−1, where the turbine is operating in essentially

attached flow conditions, the predicted Cn values are found to be in good agreement
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with the measurements.

The Ct values also compared very well with the experimental measurements

for all wind speeds. For V∞ = 10 ms−1, the loss in the Ct at 0.47R is, however, not

predicted. This sudden loss in suction could be because of the rapid movement of

the flow separation point from the trailing edge to the leading edge of the blade.

It was found that the effect of the rotational stall delay on the leading-edge thrust

coefficient is not very clear. One of the reasons for this, is the difficulty associated

with measuring Ct in the experiment when the flow is stalled. Flow in the post-stall

regime is very unsteady and the number of pressure taps used in the experiment are

limited by physical considerations.

The spanwise variation of the predicted and measured pitching moment co-

efficient Cm is shown in Fig. 6.19. A similar decrease in Cm is observed for V∞ =

10 ms−1 at the same point where Ct decreases. The presence of laminar flow separa-

tion and turbulent reattachment downstream has been cited as one of the possible

explanations for this behavior [151]. The reconstructed Cm from FVM agree well

with the measurements at low wind speeds. However, there is a considerable differ-

ence in the predicted pitching moment coefficients at 15 ms−1.

6.2.2 Wind Turbine in Yawed Flow

Wind gusts and turning the turbine out of the wind to control power in small

wind turbines causes them to operate under yawed flow conditions. The larger wind

turbines usually have yaw control capabilities, but the response time to sudden

changes in wind direction or gusts can lead to at least some time of operation

in yawed flow. The turbine disk yaws with respect to the wind, and the skewed

wake behind the wind turbine causes a non-uniform inflow and unsteady airloads

to be produced on the turbine blades. The power output from the wind turbine

also varies in a periodic manner. Accurately modeling the aerodynamic behavior of

wind turbines in yawed flow is known to be very important to predict their fatigue
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Figure 6.14: Comparison of the measurement and predictions of the azimuthal vari-

ation of the root flap bending moment in unyawed flow for a wind speed of (a)

5 ms−1, (b) 10 ms−1, and (c) 15 ms−1 .
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Figure 6.15: Comparison of the measurement and predictions of the azimuthal vari-

ation of the root edge bending moment in unyawed flow for a wind speed of (a)

5 ms−1, (b) 10 ms−1, and (c) 15 ms−1 .
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Figure 6.16: Comparison of the measurement and predictions of the azimuthal vari-

ation of the LSS torque in unyawed flow for a wind speed of (a) 5 ms−1, (b) 10 ms−1,

and (c) 15 ms−1 .
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Figure 6.17: Comparison of the measurement and predictions of the normal force

coefficient along the span of the blade in unyawed flow for a wind speed of (a)

5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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Figure 6.18: Comparison of the measurement and predictions of the leading-edge

thrust coefficient along the span of the blade in unyawed flow for a wind speed of

(a) 5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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Figure 6.19: Comparison of the measurement and predictions of the pitching mo-

ment coefficient along the span of the blade in unyawed flow for a wind speed of (a)

5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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loads and power output quality.

Performance methods based on the blade-element momentum theory generally

use dynamic inflow models to account for the azimuthal variation in inflow [23,24] as

was mentioned previously in Section 5.3. The dynamic inflow models are based on

the idea of representing the unsteady aerodynamic lag associated with the changes in

turbine thrust or blade pitch. However, some of these inflow models have been shown

to have numerical convergence issues when coupled with the BEM method [152], and

are not universally applicable. On the other hand, the skewed and freely deforming

wake in the FVM inherently accounts for the asymmetry in inflow over the turbine

disk without any additional approximations.

Figure 6.20 shows the variation of the azimuthally averaged aerodynamic

thrust with wind speed for the NREL unsteady aerodynamic experiment and the

FVM predictions for three yaw angles (Λ = 10◦, 30◦ and , 60◦). The agreement

between the predictions and the measurement is very good for low wind speeds. As

the wind speed increases, aerodynamic thrust is slightly underpredicted because of

3D stall delay effects near the inboard regions of the blade. However, notice that

the stall delay effects are not as significant as for the unyawed case. Because of

the unsteady variation of the local blade section angle of attack beyond stall, the

sections undergo dynamic stall, which dominates the flow field under yawed flow

conditions. This can also be seen from the fact that the error in predicting the

turbine thrust decreases with increasing yaw angle. For Λ = 60◦, the difference

between the measured and predicted thrust is almost negligible.

The aerodynamic power prediction was compared against the experimental

measurements, as shown in Fig. 6.21. For the low and moderate yaw angles, the

extracted power is predicted very well for wind speeds up to 8 ms−1. However, as

the wind speed further increases, the aerodynamic power is slightly underpredicted.

The predicted power matches well with the measured power for Λ = 60◦. For

higher wind speeds, the predicted power was found to be in good agreement with
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Figure 6.20: Variation of the aerodynamic thrust with wind speed for the Phase VI

turbine for yawed flow.

the measured power for all yaw angles. The peak power was, however, slightly

underpredicted. Notice that the FVM predicts well the the performance of a wind

turbine in yawed flow, especially for higher yaw angles. This is where the BEM

based methods generally fail or show otherwise poor predictions. BEM methods are

strictly valid only under unyawed flow conditions, and are extended to yawed flow

conditions with some form of dynamic inflow models to account for the asymmetric

loading over the turbine disk. Although there has been some progress in developing

dynamic inflow models for wind turbines [24], these methods need to be refined

further, mainly because they do not apply to the windmill flow state and so their

validity is not guaranteed for all turbine operating conditions [147].

Figure 6.22 shows a comparison of the aerodynamic power prediction with and

without the Raj–Selig stall delay model at a yaw angle of 30◦. It can be seen that the

presence of a stall delay model does not affect the net power output. On the other

hand, the increased drag in the Raj-Selig delay model leads to slight underprediction
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Figure 6.21: Variation of the aerodynamic power with wind speed for the Phase VI

turbine for yawed flow.

of the power output at very high wind speeds. This discrepancy can be improved

by adjusting the empirical factors in the stall delay model. However, these values

are not unique and so need to be adjusted for different turbine configurations and

geometry.

Figure 6.23 shows the comparison of the predicted and measured flap bend-

ing moment for three wind speeds at a yaw angle of 30◦. It can be seen that the

strain gauge root flap moment (B3RFB) shows a mean offset, which is significant for

V∞ = 5 ms−1. However, the predicted values of flap bending moment are in good

comparison with the estimated flap bending (EAEROFB). For higher wind speeds

(V∞ = 10 ms−1 and 15 ms−1), the strong 1/rev found in the flap bending moment

variation is predicted well by the FVM. Strain gauge measurements (B3RFB) con-

tain a 5/rev frequency signal. However, it is not clear where this variation arises

from, because the first flapwise bending frequency of the blade is around 6/rev.

Notice that the flap bending moment is not significantly underpredicted at higher
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Figure 6.22: Comparison of the predicted aerodynamic power with and without the

stall delay model for a yaw angle of Λ = 30◦ for the Phase VI turbine.

wind speeds as was observed in the unyawed case. This is consistent with a small

underprediction of the predicted turbine thrust for Λ = 30◦ for higher wind speeds.

More importantly, it reinforces the fact that dynamic stall is more dominant than

stall delay phenomenon when a wind turbine operates in yawed flow. One of the

major weakness of the present empirical stall delay models is that they do not apply

for unsteady flows, which would always lead to an overprediction of the aerodynamic

forces.

The azimuthal variation of the edgewise bending moment (see Fig. 6.24) shows

a very high frequency (7/rev) signal superimposed on the 1/rev gravity loading,

which is probably because of the first edgewise bending frequency. The magnitude

of the 7/rev load increases with increasing wind speed. However, the mean edgewise

bending moment is still predicted well by the FVM.

Figure 6.25 shows a weak 1/rev variation in the torque measurement LSSTQ-

COR (measured with a strain gauge) at the lower wind speeds, which increases in
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magnitude with increasing wind speed. Again, this 1/rev variation in strain gauge

torque is probably a result of the drive-train dynamics. A sinusoidal variation is

also observed in the EAEROTQ, which is a result of the tower shadow effect. The

FVM predicts the mean value of the torque very well, but does not predict the cyclic

variation.

The spanwise distribution of the aerodynamic coefficients (Cn, Ct and Cm) as

predicted by the FVM is compared with the experimental measurements at an az-

imuth angle of ψ = 0◦. The predicted aerodynamic coefficients show reasonable

agreement with the experimental data. Cn is predicted well over the span of the

blade (see Fig. 6.26) except at the 30%R station for 10 ms−1. Similar observa-

tions can be made for Ct and Cm here. The FVM model does not predict incipient

dynamic stall for V∞ = 10 ms−1, and hence underpredicts Cn and Cm.

The azimuthal variation of the aerodynamic coefficients for different wind

speeds also shows close agreement with UAE data for 5 ms−1 (see Figs. 6.29 through 6.31).

However, for the intermediate wind speed of 10 ms−1, the absence of contribu-

tions from dynamic stall leads to an underprediction of Cn and Cm (see Figs. 6.32

through 6.34). For higher wind speeds (see Figs. 6.35 through 6.37), the critical

condition for the onset of dynamic stall is satisfied over most of the azimuth range,

and excellent agreement is achieved for the Ct and Cm components, while Cn is

underpredicted at the inboard section. Similar level of agreement was achieved for

the larger yaw angles.

6.3 Summary

This chapter has been directed towards demonstrating the capability of the

free-vortex wake model to model the aerodynamics of a horizontal axis wind tur-

bine in a time-accurate manner. Performance and airloads prediction of FVM were

validated against experimental measurements. The emphasis of the first part of this

chapter was to validate the prediction of the wake geometry from FVM. This was
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achieved by comparing wake positions obtained from the wake visualization con-

ducted in DUT on a two-bladed rotor. The wake geometry was predicted well for

all the measured tip speed ratios and tip pitch angles under both axial and the yawed

flow conditions. However, there were slight differences in the predictions at higher

yaw angles. This is in part because of the uncertainty in defining the center of tip

vortices in the measurements because of the diffusion of the smoke with increasing

wake age.

The second part of this chapter was focussed on the validation of FVM against

comprehensive loads and performance measurements that were available from the

NREL Phase VI turbine tests. The numerical predictions of thrust and aerodynamic

power output showed good agreement against the experimental data for attached

and deep stall conditions. During incipient (moderate stall) conditions, the absence

of a 3D stall delay model leads to a slight underprediction of the aerodynamic

power and thrust. The spanwise variation of loads is predicted well at all spanwise

sections except for the inboard sections, where stall delay effects are more dominant.

However, dynamic stall effects dominate the flow field in the yawed flow conditions,

and good agreement was obtained between measurements and predictions. The

unsteady loads on the blade and dynamic stall hysteresis was predicted well for

attached flow and deep stall conditions, respectively. The onset of dynamic stall

under incipient separation conditions was, however, not predicted very well. This

leads to slight underprediction in the azimuthal variation of the normal force and

pitching moment coefficients.
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Figure 6.23: Comparison of the measurement and predictions of the azimuthal vari-

ation of the root flap bending moment for a yaw angle of 30◦ and a wind speed of

(a) 5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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Figure 6.24: Comparison of the measurement and predictions of the azimuthal vari-

ation of the root edge bending moment for a yaw angle of 30◦ and a wind speed of

(a) 5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.

247



 0

 100

 200

 300

 400

 500

 0  60  120  180  240  300  360

T
or

qu
e,

 N
m

Azimuth, deg.

LSSTQCOR
EAEROTQ
FVM

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  60  120  180  240  300  360

T
or

qu
e,

 N
m

Azimuth, deg.

LSSTQCOR
EAEROTQ
FVM

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  60  120  180  240  300  360

T
or

qu
e,

 N
m

Azimuth, deg.

LSSTQCOR
EAEROTQ
FVM

(c)

Figure 6.25: Comparison of the measurement and predictions of the azimuthal vari-

ation of the LSS torque for a yaw angle of 30◦ and a wind speed of (a) 5 ms−1, (b)

10 ms−1, and (c) 15 ms−1.
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Figure 6.26: Comparison of the measurement and predictions of the normal force

coefficient along the span of the blade for a yaw angle of 30◦ and a wind speed of

(a) 5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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Figure 6.27: Comparison of the measurement and predictions of the leading-edge

thrust coefficient for ψ = 0 along the span of the blade for a yaw angle of 30◦ and

a wind speed of (a) 5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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Figure 6.28: Comparison of the measurement and predictions of the the pitching

moment coefficient for ψ = 0 along the span of the blade for a yaw angle of 30◦ and

a wind speed of (a) 5 ms−1, (b) 10 ms−1, and (c) 15 ms−1.
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Figure 6.29: Comparison of the measurement and predictions of the azimuthal vari-

ation of normal force coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at 5 ms−1

and a yaw angle of 30◦.
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Figure 6.30: Comparison of the measurement and predictions of the azimuthal vari-

ation of the leading-edge thrust coefficient for (a) 47%R, (b) 63%R, and (c) 80%R

at 5 ms−1 and a yaw angle of 30◦.
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Figure 6.31: Comparison of the measurement and predictions of the azimuthal vari-

ation of the pitching moment coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at

5 ms−1 and a yaw angle of 30◦.
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Figure 6.32: Comparison of the measurement and predictions of the azimuthal vari-

ation of normal force coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at 10 ms−1

and a yaw angle of 30◦.
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Figure 6.33: Comparison of the measurement and predictions of the azimuthal vari-

ation of leading-edge thrust coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at

10 ms−1 and a yaw angle of 30◦.
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Figure 6.34: Comparison of the measurement and predictions of the azimuthal vari-

ation of the pitching moment coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at

10 ms−1 and a yaw angle of 30◦.
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Figure 6.35: Comparison of the measurement and predictions of the azimuthal vari-

ation of normal force coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at 15 ms−1

and a yaw angle of 30◦.
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Figure 6.36: Comparison of the measurement and predictions of the azimuthal vari-

ation of leading-edge thrust coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at

15 ms−1 and a yaw angle of 30◦.
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Figure 6.37: Comparison of the measurement and predictions of the azimuthal vari-

ation of the pitching moment coefficient for (a) 47%R, (b) 63%R, and (c) 80%R at

15 ms−1 and a yaw angle of 30◦.
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Chapter 7

Summary and Conclusions

Reducing the cost of the wind energy per unit of power produced mandates

an improved and reliable design of wind turbines. This requires the capability

to accurately predict the aerodynamic loads on different components of the wind

turbine. To this end, the present work provides a robust and accurate numerical

method to understand and predict the complex unsteady aerodynamics of a wind

turbine. This chapter presents a summary of the present work and conclusions

drawn from this dissertation.

A time-accurate Lagrangian vortex wake model has been developed for wind

turbine applications. The complex aerodynamic environment of the wind turbines

is described in Chapter 1 with an emphasis on the unsteady nature of the rotor

wake behind a wind turbine. A survey of the existing methodologies available for

predicting the aerodynamic loads on a wind turbine showed several shortcomings.

7.1 Conclusions

A time-accurate Lagrangian vortex wake model was developed and validated

for the modeling the unsteady aerodynamic of horizontal axis wind turbines. Fol-

lowing conclusion have been drawn from this work. The conclusions are divided into

four separate subsection dealing with the different aspects of this work. The first

part focuses on the accuracy and stability of the time-marching numerical method.

The second part deals with the development of the unsteady nonlinear airfoil model

and its coupling with the blade model. Third part focusses on the comparison of
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the blade element momentum (BEM) results against the free-vortex wake method

(FVM) , and the fourth on validating the predictions against experimental measure-

ments.

7.1.1 Numerical Issues: Stability and Convergence

The overall order of accuracy of the numerical solution is governed by the order

of accuracy of the lowest order accurate term. Hence, it is important to analyze the

order of accuracy of both sides of the governing equation to ensure a consistent

order of accuracy. A numerical solution with a higher order of accuracy is also

computationally expensive. For the engineering analysis of wind turbines, there is

a need to carefully evaluate the accuracy of the numerical solution, and to establish

thresholds of discretization that will provide acceptable levels of accuracy while still

containing computational costs. The stability and accuracy of the time-marching

wake algorithm was examined first using a linearized analysis. It has been shown

that because the governing equations are highly nonlinear, a classic linear stability

analysis is insufficient to guarantee a stable algorithm and a convergent solution.

Numerical stability was also analyzed using modified equations and the solution

convergence was then verified through numerical experimentation.

1. A systematic study of the accuracy of the reconstruction of the induced veloc-

ity from helical vortices was performed for a range of values of helical pitch,

number of turns and wake skew angles. The accuracy of the straight-line seg-

mentation approach of discretizing a helical vortex is second-order for different

combinations of pitch, skew and number of turns. A minimum discretization

of ∆θ = 10◦ is required to keep the maximum error in the induced velocity

field less than 10%. To keep the maximum error less than 1%, a discretization

of ∆θ < 2.5◦ is required, which may be less practical for routine engineering

use of vortex wake models.
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2. A vortex ring can be viewed as a special case of helical vortex with its helical

pitch tending to zero. The induced velocity from helical vortices with a helical

pitch p → 0 and scaled by number of turns was shown to reduce to that of a

vortex ring. A vortex ring was found to be a more challenging case to model

accurately using the straight-line segmentation approach than for the helical

vortex. In the case of a vortex ring, the magnitude of the errors in the induced

velocity for a particular level of discretization has been found to be larger

than the corresponding helical vortex. The reconstruction of induced velocity

by straight-line approximation of a skewed helical vortex was also found to

be second-order accurate, and the magnitude of the errors were found to be

comparable to those of the unskewed case.

3. The linear and nonlinear stability of various time-marching methods used in

free-vortex wake methods has been analyzed. The linear stability analysis has

shown that the PCC and PC2B schemes are stable for all values of time dis-

cretization. The Euler explicit and second-order Adams–Bashforth schemes

are unstable for all values of discretization. The fourth-order Adams–Moulton

scheme is stable for values of ωh < 0.7. The fourth-order AM4 scheme pro-

duces the lowest phase error and the Euler explicit scheme has the largest

error. From a linear stability point of view, the AM4 scheme seems to be

the best scheme. However the Adams–Moulton scheme is implicit and com-

putationally very expensive especially for a free-vortex wake analysis. Any

linearization or approximation to make this scheme explicit or semi-implicit

will change the stability and dispersion characteristics of the scheme.

4. Considering the stability and dispersion characteristics as well as the computa-

tional cost, the PC2B algorithm seems to be the ideal scheme. The modified

equation approach showed that the PC2B scheme introduces extra implicit

dissipation that is independent of the velocity gradients. The dissipation term
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in all other schemes (Euler explicit, PCC and Adams–Bashforth) is affected

by the induced velocity field gradients. The presence of the negative velocity

gradients then introduces an anti-dissipation, which has a destabilizing effect

on the developing wake geometry.

5. Numerical experiments were performed for a three-bladed Grumman wind

turbine in the zero yaw condition and 30◦ yawed out of the wind. The Euler

explicit method produces and non-physical unstable wake system. The PCC

scheme showed a modest growth of numerical errors with time, albeit bounded.

The PC2B scheme was found to produce a stable and convergent wake system

free of any types of disturbances.

7.1.2 Nonlinear Airfoil Model

The numerical analysis of the free-vortex wake solution algorithms ensured

that the discretized solution of the rotor wake is an accurate and consistent repre-

sentation of the physical solution. The next step was development and validation

of a modified Leishman–Beddoes (L–B) unsteady stall model for unsteady airloads

predictions on the S809 airfoil. The unsteady stall model was then integrated into a

Weissinger-L type of 3D blade model and comparisons were made against the NREL

parked blade measurements.

1. The reconstruction of the aerodynamic force coefficients, expressed in terms of

the effective trailing-edge flow separation point, was found to be in very good

agreement with the 2D measurements for the S809 airfoil over a wide range of

Reynolds numbers. Even in the deep stall regime, the predicted values of the

normal force coefficient were found to be close to the experimental values. The

leading-edge thrust coefficient is, however, underpredicted as compared to the

experimental values. The discrepancy in the prediction of the leading-edge

thrust coefficient is probably an artifact of the errors introduced because of

264



the sparse number of pressure taps used in the experiment.

2. Good agreement was also obtained between the predictions and the experimen-

tal results for pitch oscillations at several mean angles of attack and reduced

frequencies. The results showed encouraging agreement in predicting the on-

set and consequences of dynamic stall. The model showed slight differences

in the reattachment phase during downstroke, which could be improved. The

model was successful in predicting the dynamic stall characteristics of the S809

airfoil with almost same dynamic time constants as were used in the original

L–B model. It has been shown that with a proper representation of the static

stall characteristics, this model can be used to predict dynamic stall for airfoil

sections typical of those used for wind turbines applications.

3. A comparison between the predicted and measured aerodynamic force coeffi-

cients for both the static and oscillating NREL parked blade measurements

showed a very encouraging agreement. The predicted force coefficients were

also in agreement with the measured values for the attached flow and the post-

stall regime, thus validating the effective integration of the 2D stall model into

the 3D blade model. Three-dimensionality of the unsteady flow on the oscillat-

ing parked blade was represented well and the prediction of the aerodynamic

coefficients over the blade span compared well with the experimental measure-

ments.

7.1.3 Comparison with Blade Element Momentum Methods

Blade element momentum (BEM) methods have been dominant in the wind

turbine industry for the design of wind turbines. Although BEM methods are simple

and fast, they are strictly valid only for a limited range of flow conditions. Their

validity can be extended with additional approximations, which are usually based

on empirical measurements and observations. A comparison of the power output
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and thrust based on BEM and free-vortex model (FVM) has been performed.

1. Good agreement in the power and thrust prediction was observed between the

FVM and BEM methods for low tip-speed ratios (XTSR < 6). For higher

tip-speed ratios, the wake induction factor was found to be very high near the

tip region, where the BEM model failed.

2. It was shown that the corrections for CT at higher axial induction factors may

break down. On the other hand, the FVM showed flexibility for the aerody-

namic analysis of wind turbines in all working states including the turbulent

wake state and the vortex ring state (high TSR).

3. The FVM was shown to be applicable for the aerodynamic analysis of wind

turbines in yawed flow for which BEM method is less applicable without re-

sorting to various types of approximations. It was also shown that the linear

inflow models often used with the BEM theory are probably not applicable

for large yaw angles. The ability of the FVM to capture the time-accurate

behavior of the aerodynamic response of wind turbines (in yawed flow) was

also shown.

4. A universal thrust and power coefficient curve was derived to understand var-

ious flow states of a wind turbine (i.e., normal working state, turbulent wake

state and the windmill brake state). In the vortex ring state, the Glauert

correction was shown to be adequate only when the axial induction factor is

between 0.5 and 1.

7.1.4 Comparison with Experiments

The free-vortex wake method was comprehensively validated against experi-

mental measurements of rotor wakes behind a wind turbines to validate the physics

modeling of the present analysis. Comparisons were made of wake geometry mea-

surements made using flow visualization techniques. Comparisons were also made
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with performance and airloads measurements for the NREL Phase VI wind turbine

to test the predictive capability of the numerical method.

1. The predicted wake geometry was compared against the wake positions ob-

tained from the flow visualization conducted on a two-bladed wind turbine.

The wake geometry was predicted well for all the measured tip speed ratios

and tip pitch angles under both the axial and the yawed flow conditions except

for very high yaw angles.

2. The numerical predictions of thrust and aerodynamic power output showed

good agreement against the experimental data for attached and deep stall

conditions. However, during incipient (moderate stall) conditions, the absence

of a 3D stall delay model leads to an underprediction of the aerodynamic

thrust. But the power output compares well with the measurements.

3. he spanwise variation of loads is predicted well at all spanwise sections except

for the inboard sections, where stall delay effects are more dominant. However,

dynamic stall effects dominate the flow field in the yawed flow conditions, and

good agreement is obtained between measurements and predictions.

4. The unsteady loads on the blade and dynamic stall hysteresis is predicted well

for attached flow and deep stall conditions, respectively. The onset of dynamic

stall under incipient separation conditions is, however, not predicted very well.

5. It was also shown that the stall delay models used in the wind turbine commu-

nity are not applicable in all flow conditions and are essentially post-dictive.

7.2 Recommendation for Future Work

The work done in this dissertation has demonstrated the viability and robust-

ness of the free-vortex wake method for wind turbine applications. Good comparison
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of the performance and airloads was obtained against the experimental measure-

ments for wind turbines tested under controlled conditions. However, this is the

first step in the development of FVM as a tool for the design and analysis of wind

turbines. Following are the recommendations for future work to make this method

more viable for wind turbine design.

1. The free-vortex wake methodology needs to be coupled with a comprehensive

dynamics code like FAST or ADAMS to account for the effects of aeroelastic

coupling. It was seen that the measured azimuthal variation of airloads in-

cluded the effect of the blade and tower vibrations modes. However, in the

present analysis, such deformations are not modeled. A coupled dynamics

and aerodynamics model can remove the deficiencies in the present approach,

which will allow for a comprehensive validation of the airloads predictions from

free-vortex wake model with measured data from NREL Phase VI and similar

experiments.

2. The computation of induced velocity using the Biot–Savart law at each time

step, makes FVM computationally expensive. In this study a discretization of

∆ζ = ∆ψ = 10◦ has been used. However, to better resolve the azimuthal vari-

ation of the airloads because of unsteady effects such as turbulence and tower

shadow, finer discretization needs to be used. This will significantly increase

the computational expense. The computational complexity of the FVM can

be improved by using acceleration techniques such as a Fast Multipole (FMM)

algorithm. The use of FMM techniques can reduce the order of complexity of

a N body problem from N2 to N logN . In addition, modifying the numerical

method to use the capabilities of multiple processors at the same time (parallel

processing), will reduce the computational time.

3. Representation of the rotational stall delay using the present stall delay models

has been shown to be inadequate. The present models are essentially post-
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dictive, and require a priori knowledge of the power and thrust output. There

is clearly a need to develop a stall delay model, which can take into account

the effect of the change of geometry and is valid for all operating conditions.

4. Recent experiments to obtain measurements of wake geometry, airloads and

power output have helped increase the understanding of the wind turbine

aerodynamics. Although, the availability of the high fidelity performance and

airloads measurements have helped validate existing models, much more needs

to be done. Measurements of tip vortex velocity profiles behind the turbine

using LDV or PIV will help in developing and validating more accurate vis-

cous diffusion and stretching models for wind turbines. Flow visualization on

the blade surface will help in unravelling the physics behind the stall delay

phenomenon.
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Appendix A

User Guide

MFW (Maryland Free Wake) uses a time-accurate free-vortex wake method

for predicting the aerodynamics and performance of wind turbines. This code was

originally developed for helicopter applications but has been substantially modified

for its use in modeling wind turbine aerodynamics. This user guide gives a very

brief description on the use of MFW.

A.1 Usage in Unix System

The archive MFW.zip contains the configuration files, which detect the system

configuration and sets up the environmental variables accordingly. To use this in

a unix system read the INSTALL file. To run the code for the first time, do the

following steps:

sh ./configure

sh ./runscript

Once the code is setup for the first time, only sh ./runscript is necessary afterwards to

run the code. There are two executable files in the archive: MFW and PREWAKE.

PREWAKE sets up the correct array dimensions after reading .input files and MFW

is the final executable file necessary for running MFW. Various executable scripts

are also provided in the archive.

• runscript - runs the freewake code after necessary recompilations

• savedata - move all data files to another directory (easy saving)
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• bindir - compiles the code and then copies it (along with necessary input files)

to another directory

A.2 Input Files

Various input files required to run a MFW calculation.

1. user.input - Grid resolutions, method, trim option etc.

2. flight.input - Flight conditions

3. geometry.input - Rotor parameters

4. rotprop.input - Rotor blade properties

5. lbcoeff.input - Parameters for the Leishman-Beddoes dynamic stall model

6. freq.input - Control input perturbations (yaw control etc.)

7. usa.input - Unsteady aerodynamics parameters

8. nwakeopt.input - Near wake parameters

The most frequently used input files are user.input and flight.input. Two other

input files, geometry.input and rotprop.input need to be changed only if computing

for different rotors. The other input files can be left at their default states. A de-

scription of the main input parameters in user.input files and flight.input is given

below. If we need to continue computations from a particular initial solution, three

input files IWGEOM.data, IWG b.data, flap.data are required to start the compu-

tation. This feature can be used to run the simulation for some time, and then

restart it instead of starting from the beginning.
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A.3 Setting up the Analysis

The parameters required to setup the analysis are specified in user.input file.

nw is the number of the trailers used to model the far-wake in the free-vortex

method. The free-vortex wake can be used with multiple trailers to better represent

the aerodynamics of the wind turbine rotor. It has to be kept in mind that the cost

of computation increases with increasing number of trailers. Usually nw =1 or 2 is

usually used.

nfw is the number of iterations. The number of iterations can be obtained by

multiplying required number of revolutions multiplied by the number of blades. ft

is the number of free turns used in the calculation. Because of the truncation of the

wake behind a turbine to a finite number of turns, the wake contracts in the last

few turns. Therefore, periodic boundary conditions are used for last few turns and

bct is the number of boundary turns in the calculation. dp and dz are the values

of azimuthal and wake discretization, respectively.

vn is the exponent used in the Vatistas model as described in Section 2.1.2.

rcb is the initial viscous core radius. dcy is the turbulent eddy coefficient in the

viscous core diffusion model. method specifies the type of analysis used for free-

vortex calculation. A value of method = ’t’ is used for time-accurate simulation

and method = ’r’ represents relaxation wake analysis.

A.4 Operational Input Parameters

The operations parameters for the simulation are specified in flight.input. vinf

is the mean wind speed at hub-height. gamma is the prescribed yaw angle. ct0

is the initial guess for the thrust coefficient. This thrust coefficient is expressed in

helicopter terminology as thrust normalized by ρA(ΩR)2. Tolerance parameters are

specified by cttol , fltol and cqtol. dsigma is used to account for the change in

density with height.
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A.5 Rotor Geometry

Rotor geometry properties are listed in geometry.input file. nr is the number

of rotors. nb specifies the number of blades in the rotor. ns is the number of

spanwise segments used to represent the lifting surface model. asr0 is the shaft

tilt angle. rad is the radius of the blade. flph is the location of the flap hinge

normalized by the rotor radius. For teeter case, the location of the flap hinge is

negative. rcout is the root cut-out radius. om is the rotation speed of the rotor

in rad/sec. Other parameters such as chord and taper in this file can be neglected.

rotgeo is is logical flag, which is used by the subroutine rotor.f for specifying the

blade chord and taper distribution.

A.6 Output Files

MFW output a lot of results, which are stored in different output files. A brief

description of the output files is given below.

1. FWGEOM.dat - MFW outputs the wake geometry data for all azimuth

positions in this file. The columns in this file are rotor number, azimuth

position, coordinates of vortex filaments (x, y, z), circulation of each vortex

filaments and core radius.

2. FW[R,S,T].dat - Three views of wake geometry are stored in these files.

These files only have the position data of the wake elements (x, y, z).

3. timectcq.dat - Thrust and power time histories for the rotor. The columns

in this file are rotor number, azimuthal time, thrust coefficient Ct, power

coefficient Cp, inflow and inertial load.

4. timeflap.dat - This file stores the flapping time histories for each blade.

Again, the columns in this file are rotor number, azimuthal time, flap angle

(blade 1-4), and flapping moment (blade 1-4).
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5. clhist.dat - Lift coefficient Cl time histories at all blade segments. Columns in

this file are rotor number, blade number, azimuthal time, Cl at each segment.

6. lifthist.dat - ClM2 time histories at all blade segments is output in this file.

Rotor number, Blade number, azimuthal time, ClM2 at each segment.

7. VBZ.dat - Inflow through the rotor disk is output to this file.
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