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Abstract

Many researchers have proposed programming languages that sup-
port incremental computation (IC), which allows programs to be
efficiently re-executed after a small change to the input. However,
existing implementations of such languages have two important
drawbacks. First, recomputation is oblivious to specific demands on
the program output; that is, if a program input changes, all depen-
dencies will be recomputed, even if an observer no longer requires
certain outputs. Second, programs are made incremental as a unit,
with little or no support for reusing results outside of their origi-
nal context, e.g., when reordered. To address these problems, we
present AS, a core calculus that applies a demand-driven seman-
tics to incremental computation, tracking changes in a hierarchical
fashion in a novel demanded computation graph. X% also formal-
izes an explicit separation between inner, incremental computations
and outer observers. This combination ensures A programs only
recompute computations as demanded by observers, and allows in-
ner computations to be composed more freely. We describe an algo-
rithm for implementing AS efficiently, and we present ADAPTON,
a library for writing AS-style programs in OCaml. We evaluated
ADAPTON on a range of benchmarks, and found that it provides re-
liable speedups, and in many cases dramatically outperforms prior
state-of-the-art IC approaches.

1. Introduction

Incremental computation (IC), also sometimes referred to as self-
adjusting computation, is a technique for efficiently recomputing
a function after making a small change to its input. A good ap-
plication of IC is a spreadsheet. A user enters a column of data I,
defines a function F over it (e.g., sorting), and stores the result in
another column O. Later, when the user changes I (e.g., by insert-
ing a cell), the spreadsheet will update O. Rather than re-sort the
entire column, we could use IC to perform change propagation,
which only performs an incremental amount of work to bring O up
to date. For certain algorithms (even involved ones [5, 6]), certain
inputs, and certain classes of input changes, IC delivers large, even
asymptotic speed-ups over full reevaluation. IC has been developed
in many different settings [12, 17, 19, 31], and has even been used
to address open problems, e.g., in computational geometry [7].
Unfortunately, existing approaches to IC do not perform well
when interactions with a program are unpredictable. To see the
problem, we give an example, but first we introduce some termi-
nology. IC systems stratify a computation into two distinct layers.
The inner layer performs a computation whose inputs may later
change. Under the hood, a trace of its dynamic dependencies is im-
plicitly recorded and maintained (for efficiency, the trace may be
represented as a graph). The outer layer actually changes these in-

puts and decides what to do with the (automatically updated) inner-
layer outputs, i.e., in the context of the broader application. The
problem arises when the outer layer would like to orchestrate inner
layer computations based on dynamic information.

To see the issue, suppose there are two inner-layer computa-
tions, F(I) and G(I), and the application only ever displays the
results of one or the other. For example, perhaps F(I) is on one
spreadsheet pane, while G(I) is on another, and a flag P determines
which pane is currently visible. There are two ways we could struc-
ture this computation. Option (A) is to define F(I) and G(I) as two
inner-layer computations, and make the decision about what to dis-
play entirely at the outer layer. In this case, when the outer layer
changes I, change propagation will update both F(I) and G(I), even
though only one of them is actually displayed. Option (B) is to cre-
ate one inner layer computation that performs either F(I) or G(I)
based on a flag P, now also a changeable input. When I is updated,
one of F(I) or G(I) is updated as usual. But when P is toggled, the
prior work computing one of F(I) or G(I) is discarded. Thus, under
many potential scenarios there is a lost opportunity to reuse work,
e.g., if the user displays F(I), toggles to G(I), and then toggles back
to F(I), the last will be recomputed from scratch. The underlying
issue derives from the use of the Dietz-Sleator order maintenance
data structure to represent the trace [10, 15]. This approach requires
a rotally ordered, monolithic view of inner layer computations as
change propagation updates a trace to look just as it would had the
computation been performed for the first time.

This monolithic view also conspires to prevent other useful
compositions of inner and outer layer computations. A slight vari-
ation of the above scenario computes X = F(I) unconditionally,
and then depending on the flag P conditionally computes G(X).
For technical reasons again related to Dietz-Sleator, Option (A) of
putting the two function calls in separate inner layer computations,
with the outer layer connecting them by a conditional on P, is not
even permitted. Once again, this is dissatisfying because putting
both in the same inner layer computation results in each change to
P discarding work that might be fruitfully reused.

In this paper, we propose a new way of implementing IC that
we call Composable, Demand-driven Incremental Computation
(CD?IC), which addresses these problems toward the goal of ef-
ficiently handling interactive incremental computations. CD?IC’s
centerpiece is a change propagation algorithm that takes advantage
of lazy evaluation. Lazy evaluation is a highly compositional (and
highly programmable) technique for expressing computational de-
mand as a first-class concern: It allows programmers to delay
computations in a suspended form (as “thunks”) until they are
demanded (“forced”) by some outside observer. Just as lazy eval-
uation does not compute thunks that are not forced, our demand-
driven change propagation (D*CP) algorithm performs no work



until forced to; it even avoids recomputing results that were previ-
ously forced until they are forced again. As such, we can naturally
employ Option (A) for the first example above, and change propa-
gation will only take place for the demanded computation.

To implement D?CP we use a novel form of execution trace
we call the demanded computation trace (DCT), which in practice
we represent as a graph (the DCG). Traced events are demanded
computations, i.e., which thunks have been forced and which input
(reference) cells have been read. Each force event references a sub-
trace of the events produced by running its corresponding thunk.
When an input changes, these events will become inconsistent, but
no changes are propagated immediately. Rather, when a thunk e is
forced, the CD?IC engine sees if it has been executed before, and
attempts to reuse its result after making it consistent (via change
propagation), if needed. Focusing change propagation on thunks
makes prior computations more composable and reusable. For ex-
ample, repeated executions of the same thunk will be reused, as
with standard memoization, even within the same execution. More-
over, because trace elements are self-contained, and not globally
ordered, each can be freely reordered and composed. For exam-
ple, we can do things like map a function over a linked list, swap
the front half and the back half of the list, and change propagation
will update the result in a constant amount of work rather than re-
compute (at least) half of the list. Because our representation is not
monolithic, we can also naturally intersperse inner and outer layer
computations, e.g., to be able to employ Option (A) in the second
example above.

‘We make several contributions in this paper. First, we formalize
CD?IC as the core calculus A% (Section 3), which has two key
features. Following Levy’s call-by-push-value calculus [22], AL
includes explicit thunk and force primitives, to make laziness ap-
parent in the language. In addition, AS? defines a notion of mutable
store, employing a simple type system to enforce its correct usage
for IC: inner layer computations may only read the store, and thus
are locally pure, while outer layer computations may also update it.

We formalize D*CP as an incremental semantics for A (Sec-
tion 4). The semantics formalizes the notion of prior knowledge,
which consists of the demanded computation traces of prior com-
putations. This semantics declaratively specifies the process of
reusing traces from prior knowledge by (locally) repairing, or
patching, their inconsistencies. We prove that the patching process
is sound in that patched results will match what (re)computation
from scratch would have produced. We also give an algorithmic
presentation of patching (Section 5), which makes the order of
patching steps deterministic. We prove that the algorithm is sound
with respect to the declarative semantics.

We have implemented CD?IC in ADAPTON, an OCaml library
for incremental computation (Section 6). ADAPTON provides a
simple API for writing incremental programs and uses an efficient
bidirectional graph-based data structure to realize the DCG and the
D?CP algorithm. Section 7 presents an empirical evaluation show-
ing ADAPTON performs well for a number of interesting patterns
that arise in applications of interactive incremental computations.
For some patterns, ADAPTON is far superior to prior implementa-
tions of incremental computations, to which we compare our ap-
proach in Section 8. ADAPTON is publicly available.

2. Overview

This section illustrates our approach to composable, demand-driven
incremental computation using a simple example, inspired by the
idea of a user interacting with cells in a spreadsheet. Our program-
ming model is based on an ML-like language with explicit primi-
tives for thunks and mutable state, where changes to the latter may
(eventually) propagate to update previously computed results. As
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Figure 1: Sharing: Traces generated for lines 3 and 4.

usual, thunks are suspended computations, treated as values. We
use the type connective U for typing thunks, whose introduction
and elimination forms, respectively, correspond to the thunk and
force keywords, illustrated below.

In addition, we have an outer layer that may create special ref-
erence cells for expressing incremental change; these mutable cells
combine the features of ordinary reference cells and thunks. The
reference cells are created, accessed and updated by the primitives
ref, get and set, respectively, and typed by the M connective. In-
ner layer computations use get to access mutable state; the outer
layer uses ref and set to create and mutate this state.

Now suppose that we have the following (toy) language for the
formulae in spreadsheet cells:
type cell =M formula

and formula = Leaf of int | Plus of cell x cell

Values of type cell are formula addresses, i.e., mutable refer-
ences containing a cell formula. A formula either consists of a lit-
eral value (Leaf), or the sum of two other cell values (Plus). At the
outer layer, we build an initial expression tree as follows (shown at
the upper right of Figure 1):

let 11 : cell = ref Leaf 1 in

let 12 : cell = ref Leaf 2 in

let 13 : cell = ref Leaf 3 in

let pl : cell = ref Plus 11 12 in
let p2 : cell = ref Plus p1 I3 in ---

Given a cell of interest, we can evaluate it as follows:
eval cell — int
eval ¢ = force thunk( case (get c) of
| Leaf x = x
| Plus ¢l c2 = (eval cl) + (eval ¢2)
(* end thunk x) )

This code corresponds to the obvious interpreter modulo the
use of force, thunk and get. As we explain below, the role of
these primitives here is not laziness (indeed, the introduced thunk is
immediately forced); rather, the evaluator uses thunks to demarcate
reusable work in future computations, to avoid its reevaluation. (Of
course, thunks can be used for lazy computation as usual; we just
do not use them in this way here.)

Now suppose we have a function display , whose behavior is to
demand that a given reference cell be computed, and to display the
result of this (integer-valued) computation to the user.

display : M int — unit
Finally, suppose that the user performs the following actions:

let r1 : Mint = ref (inner eval pl) in
let r2 : M int = ref (inner eval p2) in
(* demands (eval pl) x)
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Figure 3: Swapping: Traces generated for lines 7 and 8.

display r2; (* memo matches (eval pl) x)
set 11 « thunk(Leaf 5); (* mutate leaf value x)
display rl; (* does not re—eval p2 x*)
set p2 « thunk(Plus 13 pl);(* swaps operand cells )
display r2; (* memo matches twice x)

Though shown as a straight-line script above, we imagine that the
user issues commands to update cells and display results interac-
tively. In line 1, the user creates a suspended evaluation of the for-
mula of cell pl. Due to the inner keyword, this evaluation, when
forced, will occur at the inner layer, and will thus have the oppor-
tunity to benefit from incrementality. That the computation is not
performed eagerly illustrates how ref is non-standard in our lan-
guage: The contents of reference cells are not necessarily values,
and generally consist of suspended computations.' Line 2 is analo-
gous to line 1: It creates a suspended, inner-layer computation that
evaluates cell p2.

In lines 3 and 4, the user forces evaluation and displays the
results. The computation in line 3 evaluates the formula of cell p1,
which recursively forces the (trivial) evaluation of leaf cells 11
and 12. As we explain below, the computation in line 4 benefits
from memoization: Since cell p2 has a formula that contains cell p1,
it can simply reuse the result computed in the line 3. In line 5, the
user decides to change the value of leaf 11, and (in line 6), they
demand and display the updated result.

Demanded computation graphs. Behind the scenes, supporting
incremental reuse relies on maintaining special dynamic records of
inner layer computations. We call these dynamic records demanded

I This design choice is not fundemental; rather, it simply brings thunks and
reference cells into a close correspondance, in terms of their typing and
evaluation semantics (Section 3).

computation graphs, or simply graphs for short. Figure 1 shows
the maintained graph after evaluating line 3 (the left side) and
then line 4 (the right side, which shares elements from the left
side) in the listing above. (Lines 1 and 2 only allocate ref cells but
otherwise do no computation, so we elide their graphs.) We depict
graphs growing from the bottom upwards; we use a dotted line to
distinguish operations performed at the inner layer from those at
the outer layer.

The graph consists of the following structure. Each graph node
corresponds to a reference cell (depicted as a square) or a thunk
(depicted as a circle). Edges that target reference cells correspond
to get operations, and edges that target thunks correspond to force
operations. Locally, the outgoing edges of each node are ordered
(depicted from left to right); however, edges and nodes do not have
a globally total ordering, but instead only the partial ordering that
corresponds directly to the graph structure. Nodes carry additional
information which is not depicted for purposes of readability: Each
thunk node records a (suspended) expression and, once forced, its
valuation; each reference node records the reference address and its
content (a suspended expression). Additionally, nodes and edges
carry a dirty flag that indicates one of two (mutually exclusive)
states: clean or dirty. We depict dirtiness with pink highlighting.

Programs intersperse computation with incremental reuse that
is triggered by memo-matching previously generated graphs. We
describe how to memo-match inconsistent graphs below. Initially,
there are no inconsistencies, and memo-matching can immediately
reuse previously computed results. We see this in Figure 1 for the
part of the graph created for line 4, which memo-matches the com-
putation of eval pl already computed line 3, depicted with the gray
background. This sort of reuse is disallowed in implementations of
IC that enforce a monolithic, total order of events. For our approach
memo-matching can occur not only within, but also between oth-
erwise distinct inner layer computations, as is the case here. We
generally refer to this pattern as sharing.

Demand-driven change propagation. When a memo-matched
graph contains inconsistencies under the current store, reuse re-
quires repair. Under the hood, the incremental behavior of a pro-
gram actually consists of two distinct phases. Each phase processes
the maintained graph: when the outer layer mutates reference cells,
the dirtying phase sets the dirty flag of certain nodes and edges;
when the outer layer re-forces a thunk already present in the graph,
the propagate phase traverses the graph, from the bottom upwards
and left to right, repairing dirty graph components by reevaluating
dirty thunk nodes, which in turn replace their graph components
with up-to-date versions.

Figure 2 depicts that after executing line 5 the dirtying phase
traverses the graph from the top downwards, dirtying the nodes and
edges that (transitively) depend on the changed reference cell 11
(viz., the thunks for eval 11 and eval pl). Then after execut-
ing line 6, the outer layer re-demands the first result r1, which
in turn initiates propagation. This phase selectively traverses the
dirty nodes and edges in the opposite direction, from the bottom
upwards; it does not traverse clean edges or dirty edges that are not
reachable from the demanded node. This is depicted on the right
hand side of the figure by coloring the traversed edges in blue. No-
tably, neither the thunk eval p2 nor its dependencies are processed
because they have not been demanded. We generally refer to this
pattern as switching (of demand). This sort of demand-driven prop-
agation is not implemented by prior work on IC.

In line 7, as depicted in Figure 3, the outer layer updates p2,
which consequently dirties an additional node and edge. Line 8§ de-
mands the result r2 be redisplayed, which initiates another prop-
agate phase that recomputes the thunk eval p2, but, as shown by
the gray highlights in the figure, is able to memo-match two sub-
components, i.e., the graphs of eval pl (as in the original com-



putation) and eval 13. Following memo-matching, these matched
graph components swap their order, relative to the original compu-
tation. The reuse here is permitted to swap memo-matched compo-
nents as needed since, unlike past work on incremental computa-
tion, CD2IC does not enforce a globally total ordering of compo-
nents. We generally refer to this pattern as swapping.

The next three sections formalize CD?IC, and the following two
describe our implementation and evaluation.

3. Core calculus

This section presents AL, a core calculus for incremental com-
putation in a setting with lazy evaluation. A% is an extension of
Levy’s call-by-push-value (CBPV) calculus [22], which is a stan-
dard variant of the simply-typed lambda calculus with an explicit
thunk primitive. It uses thunks as part of a mechanism to syn-
tactically distinguish computations from values, and make evalu-
ation order syntactically explicit.? AS% adds reference cells to the
CBPV core, along with notation for specifying inner- and outer-
layer computations—inner layer computations may only read ref-
erence cells, while outer layer computations may change them and
thus potentially precipitate change propagation.

As there exist standard translations from both call-by-value
(CBV) and call-by-name (CBN) into CBPV, we intend Afcdd to be
in some sense canonical, regardless of whether the host language
is lazy or eager. We give a translation from a CBV language variant
of A% in the Appendix.

3.1 Syntax, typing and basic semantics for AZ™

Figure 4 gives formal syntax of A%, with new features highlighted.

Figure 5 gives ASY’s type system. Figure 6 gives its basic evaluation
relation as a big-step semantics, which we refer to as basic-A

In this semantics, we capture only non-incremental behavior; we
formalize the incremental semantics later (Section 4) and use the

basic-AS semantics as its formal specification.

Standard CBPV elements. A inherits most of its syntax from
CBPV. Terms consist of value terms (written v) and computation
terms (written e), which we alternatively call expressions. Types
consist of value types (written A, B) and computation types (written
C, D). Standard value types consist of those for unit values ()
(typed by 1), injective values inj; v (typed as a sum A + B), pair
values (vi,v2) (typed as a product A x B) and thunk values thunk e
(typed as a suspended computation U C).

Standard computation types consist of functions (typed by ar-
row A — C, and introduced by Ax.e), and value-producers (typed
by connective F¢ A, and introduced by retv). These two term
forms are special in that they correspond to the two introduction
forms for computation types, and also the two ferminal compu-
tation forms, i.e., the possible results of computations as per the
big-step semantics in Figure 6.

Other standard computation terms consist of function applica-
tion (eliminates A — C), let binding (eliminates F; A), fixed point
computations (fixf.e binds f recursively in its body e), pair split-
ting (eliminates A X B), case analysis (eliminates A 4 B), and thunk
forcing (eliminates U C).

Mutable stores and computation layers. The remaining (high-
lighted) forms are specific to AZY; they implement mutable stores
and computation layers. Mutable (outer layer) stores S map ad-
dresses a to expressions e. Addresses a are values; they introduce
the type connective M C, where C is the type of the computa-
tion that they contain. The forms ref, get and set introduce, access

2The “push” in “call-by-push-value” merely refers to stack-based disci-
pline for passing arguments from caller to callee.

Values v =
Comps e =

x| O | (vi,v2) |inj; v | thunke | a

Ax.e | ev | letx <« ejine, | retv
| fixf.e | f case (v, xj.e1,x2.€2)
| split (v, x;.x2.¢) | force,v | inner e
| refe | getv | setvi,

Value types A;B = 1]|A+B|AxB|UC|MC
Comp.types C,D == A—=C|F A

Comp. layers { ‘= inner | outer

Typing env. r = ¢|Nx:AITf:C|Ra:C
Store S = elS ae

Terminal comps € == Ax.e|retv

Figure 4: Values and computations: Term and type syntaxes.

and update store addresses, respectively. It is somewhat unusual for
stores to contain computations rather than values, but doing so cre-
ates pleasing symmetry between references and thunks, which we
can see from the typing and operational semantics (though mapping
addresses to values would create no difficulties).

The two layers of a A< program, outer and inner, are ranged
over by layer meta variable {. For informing the operational seman-
tics and typing rules, layer annotations attach to force terms (viz.,
force; v) and the type connective for value-producing computa-
tions (viz., F¢ A). A term’s layer determines how it may interact
with the store. Inner layer computations may read from the store,
as per the typing rule TYE-GET, while only outer layer computa-
tions may also allocate to it and mutate its contents, as enforced
by typing rules TYE-REF and TYE-SET. As per type rule TYE-
INNER, inner layer computations e may be used in an outer con-
text by applying the explicit coercion inner e ; the converse is not
permitted. This rule employs the “layer coercion” auxiliary (total)
function (C)* over computation types C to enforce layer purity in
a computation; it is defined in Figure 7. It is also used to similar
purpose in rules TYE-INNER and TYE-FORCE. The TYE-INNER
rule employs the environment transformation |I'|, which filters oc-
currences of recursive variables f from I, thus making the outer
layer’s recursive functions unavailable to the inner layer.

3.2 Meta theory of basic AL

We show that the A< type system and the basic reduction seman-
tics enjoy subject reduction. Judgments I' - Sy ok and T" - T used
below are defined in Figure 7.

Theorem 3.1 (Subject reduction). Suppose that T = S; ok, T
e: C and S, F e |)" Sy;& then there exists T such that T+ T,
Ik S,ok andT'Fé:C

An analogous result for a small-step semantics, which we omit
for space reasons, establishes that the type system guarantees
progress. We show that the inner layer does not mutate the outer
layer store (recall that the inner layer’s only store effect is read-only
access via get), and always that it yields deterministic results:

Theorem 3.2 (Inner purity). Suppose that T + e : (C)™ and

Sike an Sy, € then S; = S».

Theorem 3.3 (Inner determinism). Suppose that T e : (C)™*,
SiFel” 82,8, and S1 e ||" S3;8; then S, = Ss and &, = @é;.
4. Incremental semantics

In Figure 9, we give the incremental semantics of A, It defines
the reduction to traces judgment K;S; + e " S2; T, which is the



TYV-VAR

(Under T, value v has value type A.)
TYV-INJ TYV-PAIR TYV-THUNK TyV-MoD
Tx)=A TyV-unit existsiin{1,2} T Fv:A TFv:A  Thw:A Tke:C MNa)=C
N-x:A r=Q:1 MFinj;, v:A + A ' (viyv2) 1 A1 X Az '+ thunke: U C '-a:MC
(Under T, expression e has computation type C.)
TYE-VAR TYE-LAM TYE-RET TYE-APP TYE-BIND .
rf)=cC Nx:Ake:C FEv:A le:A—C F-v:A e :Fg A Nx:AFe: (C)
ref:C N -Mx.e:A—C MFretv: Fp A kev:C rl—letxhelinez:(C)z
TYE-CASE TYE-SPLIT
foralliin {1, 2} NEv:A X A TYE-FIX TYE-FORCE .
'Ev:A + A LDxi:Aibe:C Lxi:Anx:Ake: C f:Cke:C N=v:U(C)
't case (v, xi.e1,x2.€2) : C 't split (v, x1.x2.€) : C I'fixfe:C I+ force; v : (C)°
TYE-INNER ) TYE-REF TYE-GET TYE-SET
M Ee:(C)™ l-e:C r-v: MC F'vi: MC Fr-w:UC
't inner e : (C)** Tk refe : Foser MC I getv : C

S1 |—6an Sz;é

't set vie—vy @ Fouter 1

Figure 5: Typing semantics of AL

(Basic reduction: “Under S\, computation expression e reduces in n steps to terminal €, producing store S.”)

EVAL-APP EVAL-BIND EVAL-CASE
EVAL-TERM Si ke I Sy Ax.e Si ke " So;rety existsiin{1,2}
) Sy Fealv/x] "S558 S Fealv/x] I S5 @ Sy Feilv/xi] " S8
SkHe ﬂo S;é S] = ey v ~U«n+m S3', é Sl Fletx «— (4] in [} lL"+'" S3;é S] F case (inji V,X|.€],)C2.ez) an Sz; é
EVAL-SPLIT EVAL-FIX EVAL-FORCE woe EVAL-INNER
Sy elvi/xi][va/x] U Sp; e Sy - elfixf.e/f]1 " Sy e SikFell” S8 Skel"S;e
N Split ((V], Vz),xl..Xz.e] U" Sz',é N ﬁXf.e Un Sz',é

EVAL-REF

a ¢ dom(S)
S+ refe iLO S,a:e;ret a

Figure 6: Basic reduction semantics of AS%

(C)l (Fel A)62 = F(z A

A—-C)t=4— (O

S; F force; (thunke) """ Sy; & St innere |" S;é
EVAL-GET
Si(a) =e S el Se

Si+ geta "' S8

EVAL-SET

S+ set a «—thunke iLO S, a:e;ret O

<< (i.e., non-incremental evaluation).

(Under T, context I is a consistent extension.)

I' = Sok| (Under T, store S types okay.)

EXT-CONS SOK-CONS
NeED I Sok
EXT-REFL afresh for I’ S Tka:MC
rer NFEa:C OR-EMP Mke:C
' eok ' S, a:e ok

Figure 7: Auxiliary typing judgements: Layer coercion, context extension and store typing.



Prior knowledge K := ¢|K,T
Traces T = T\ T|t|e
Trace events t = forcei[T] | getl[T]
trm(T) trm(T,-T,) = trm
trm( force§[T] ) = tr (T)
trm( get?(T] ) = trm(T)
trm(é) =¢&
' Kwf (Under T, knowledge K is well formed.)
KWE-CONS
' Kwf
N S[ ok
KWF-EMP S kel Sy T
' ewf 'K, Twf

Figure 8: Traces and prior knowledge

analogue to normal evaluation S; - e |L™ S»; & from Figure 6. The
reduction to traces judgment says that, under prior knowledge K
and store S, expression e reduces to store S and trace 7. We re-
fer to our traces as demanded computation traces (DCT) as they
record what thunks and suspended expressions a computation has
demanded. Prior knowledge is simply a list of such traces. The
first time we evaluate ¢ we will have an empty store and no prior
knowledge. As e evaluates, the traces of sub-computations will
get added to the prior knowledge K under which subsequent sub-
computations are evaluated. If the outer layer mutates the store, this
knowledge may be used to support demand-driven change prop-
agation (D*CP), written K;S F T vprop T2 . These judgements
are instrumented with analytical costs (denoted by n, m and vari-
ants) to count the steps performed, as in the basic reduction se-
mantics. The given rules are sound, but non-deterministic and non-
algorithmic; a deterministic algorithm is given in Section 5.

4.1 Trace structure and propagation semantics

We begin by giving the syntax and intuition behind our notions
of prior knowledge and traces, and then describe the semantics of
change propagation.

Prior knowledge and traces. Figure 8 defines our notions of prior
knowledge and traces. Prior knowledge (written K) consists of a
list of traces from prior reductions. Traces (written T') consist of se-
quences of trace events that end in a terminal expression. Trace
events (written f) record demanded computations. Traced force
events, written force§[T], record the thunk expression e that was
forced, its terminal expression € (i.e., the final term to which e
originally reduced), and the trace T that was produced during its
evaluation. Traced get events get[T] record the address a that was
read, the expression e to which it mapped, and the trace T that was
produced when e was subsequently evaluated. Thus traces are hier-
archical: trace events themselves contain traces which are locally
consistent—there is no global ordering of all events. This allows
change propagation to be more compositional, supporting, e.g, the
sharing, switching and swapping patterns shown in Figures 1 to 3,
respectively.

Figure 8 also defines trm(7') as the rightmost element of trace
T,i.e., its terminal element, equivalent to & in the normal evaluation
judgment. It also defines when prior knowledge is well-formed.

Reduction to traces. Most of the rules of the reduction to traces
judgment at the top of Figure 9 are adaptations of the basic reduc-
tion semantics (Figure 6).

Rules INCR-APP and INCR-BIND are similar to their basic
counterparts, except that they use trm(7’) to extract the lambda or
return expression, respectively, and they add the trace 7; from the
first sub-expression’s evaluation to the prior knowledge available
to the second sub-expression. The traces produced from both are
concatenated and returned from the entire computation.

Rule INCR-FORCE produces a force event; notice that the ex-
pression e from the thunk annotates the event, along with the trace
T and the terminal expression € at its end. Rule INCR-GET sim-
ilarly produces a get event with the expected annotations. Rules
INCR-TERM, INCR-REF, and INCR-SET all return the expected ter-
minal expressions.

Change propagation is initiated in rule INCR-FORCEPROP at an
inner-layer force; importantly, we do not initiate change propaga-
tion at a set, and thus we delay change propagation until a com-
putation’s result it is actually demanded. Rule INCR-FORCEPROP
non-deterministically chooses a prior trace of a force of the same
expression e from K and recursively switches to the propagating
judgement described below. The prior trace to choose is the first of
two non-deterministic decisions of the incremental semantics; the
second concerns the propagating specification, below.

Propagating changes by checking and patching. The change
propagation judgment K;S = T\ ~vp,o, T2 updates a trace 7 to be
T» according to knowledge K and the current store S. In the base
case (rule PROP-CHECKS), there are no changes remaining to prop-
agate through the given trace, which is consistent with the given
store, as determined by the checking judgment S & T +/ (explained
shortly). The recursive case (rule PROP-PATCH) arbitrarily chooses
an expression e and reduces it to a trace T’ under an arbitrarily cho-
sen store S. (This is the second non-deterministic decision of this

semantic specification.) This new subtrace is patched into the cur-

. L h
rent trace according to the patching judgment Ti{e : T'} "~ P

The patched trace 7> is processed recursively under prior knowl-
edge expanded to include T’, until the trace is ultimately made
consistent.

The checking judgement ensures that a trace is consistent. The
interesting rules are CHECK-FORCE and CHECK-GET. The first
checks that the terminal expression € produced by each force is
consistent with the one last observed and recorded in the trace;
i.e., it matches the terminal expression trm(T) of trace T. The
second rule checks that the expression gotten from an address a
is consistent with the current store.

The patching judgement is straightforward. All the rules are
congruences except for rule PATCH-TRUPDATE, which actually
performs the patching. It substitutes the given trace for the existing
trace of the forced expression in question, based on the syntactic
equivalence of the forced expression e.

4.2 Meta theory of incremental semantics

The following theorem says that trace-based runs under empty
knowledge in the incremental semantics are equivalent to runs in
the basic (non-incremental) semantics.

Theorem 4.1 (Equivalence of blind evaluation).
S1Eell" S, Tifand only if Si = e |I" S2; & where & = trm(T)

We prove that the incremental semantics enjoys subject reduction.

Theorem 4.2 (Subject reduction). Suppose that T - Kwf, T’
Siok T e:C and K;S, - e " So;T then there exists T’ such
that T T/, T Sy 0k andT' - trm(T) : C

Finally, we prove that the incremental semantics is sound: when
seeded with (well-formed) prior knowledge, there exists a consis-
tent run in the basic (non-incremental) semantics.
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(Reduction to traces: “Under knowledge K and store S\, e reduces in n steps, yielding S, and trace T”.)

INCR-APP INCR-BIND
trm(7T1) = Ax.ez trm(7;) = rety
| K;SiFe | ST K;Si e I 8T
NCR-TERM K, T1:5: F exlv/x] U™ 85T K, T1;8 F exlv/x] 4" 83T
K:SHe|°s;e K:SiFev"" S:T-T» K;S  Fletx «— ejine; " 83, 71-T
INCR-CASE
exists/in {1, 2} INCR-SPLIT INCR-FIX
K;S1 Feilv/xi] " ST K;S1 Felvi/xilva/xa] I So; T K;S) & elfixf.e/f1 " S2;T
K',S] F case (inj,- V,X1.61,XZ.82) \Un Sz;T K',S] [ Split ((V],Vz),xl .xz.e) iLm Sz',T

K;S) Ffixf.e " Sy T
INCR-FORCEPROP
INCR-FORCE

force, [T1] € K
K;Sitel" ST

trm(T) = & K; S+ forceg, [T1] pop forcet, [T2] INCIX%N'_E‘Z VST
K;Si + force; (thunke) """ Sy; forced|T] K; S+ forceinner (thunke) "' S forceg,m(r,) (12 K;S+ innere |" S;T
INCR-REF INCR-GET
a & dom(S) Si(a) =e K;SiFel"SyT

INCR-SET
K;St+ refe iLO S,a:e;ret a

K;Si - geta " Sy get! [T]

K;S + set a«—thunke iLO S,a:e;ret ()
K;S = T1 A Tz

prop

(Change propagation: “Under K, changes in store S propagate through trace T in n steps, yielding trace T,".)

PROP-PATCH
. n al, ! .l patch
PROP-CHECKS K;Skel" ST Ti{e:T'}
SET

~ T
K, T, SET> ~vop Ts
KSET Ayep T

K;SETi Ao T

Figure 9: Incremental semantics of AS: Reduction (to traces), propagating changes.

(Checking: “Under store S, trace T checks as consistent.”)
CHECK-SEQ CHECK-FORCE CHECK-GET
CHECK-TERM SEFTiy  SET tm(T)=¢ ST/ Sa)=e SFT/
SFey SFT Ty / S I forcez[T] / St getg[T] /
Ti{e : Th} 5" Ty

(Patching: “Patching trace T\ at forces of e with replacement trace T, yields trace T3”.)
PATCH-SEQ
PATCH-TERM

Tie: T3} 25" 1) Dole:15) 25" 10

(T T>)e : T5) 25" 1)1

PATCH-UPDATE
- patch _
ele: Th} '~ @&

(forcel[T1] e : o} 25" forcel [T

PATCH-FORCE PATCH-GET
patch
e # () T1{62 : Tz}

atch
~ T3 T1{62 : Tz} p’\t/> Tll

(getf, [T ez : 72) 5" get, [T7]

(forceZ [T1] Mez : T»} PaKsh forcel! T3]

Figure 10: Incremental semantics of A Patching traces with substituted sub-traces, and checking traces for consistency.



(Schedule: Under S and e, p is nextinT.)

S;e}—Tsc«hsdp

SCHED-SEQ2
SCHED-SEQ1 S;e =T shed
SCHED-TERM S;er T sched e S;eE T sched P
sched sched sched

Sie-¢é ~ o Sier E T T, ~ e S;eT T, ~ p

SCHED-FORCEOK

trm(T) = &

sched

S;ex =T~ p

Sier b force2[T] L p

SCHED-PATCHFORCE
trm(T) #£ &

sched
S;e1 F force2[T] =5 e

SCHED-GETOK

SCHED-PATCHGET S(a) :scehzed
S(a) # e Sser T~ p
Siei - get,, [T] e Syer = gety, [T] sched

K;S =T ~, Tx (Algorithm: determinisitically patches Ty into T».)

ALG-PATCHSTEP

S;el [ T1 Sg\hre;d [}
K:Ske ' ST’
tch
ALG-DONE (force’é‘l [Td ){62 : T/} p,a\/c) Tz
Sie T K,T';S+T, ~yg Ts

K; S+ 1‘Torce‘(;‘l [Th] ~ASE™ Ty

K;SFnggT alg

Figure 11: A deterministic algorithm for patching.

Theorem 4.3 (Soundness). Suppose that T+ K wfT + S| ok Then
K;SiFel” Sy Tifandonly if Si F e " Sz; trm(T)

This theorem establishes that every incremental reduction has
a corresponding basic reduction, and vice versa. This correspon-
dance establishes extensional consistency, i.e., the initial and final
conditions of the runs are equivalent.

5. Algorithmic patching

The incremental semantics given in the previous section is sound,
but not yet an algorithm. In this section, we address one of two
sources of nondeterminism in the semantics: the arbitrary choices
for ordering patching steps in rule PROP-PATCH. In general, some
orders are preferable to others: Some patching steps may fix in-
consistencies in sub-traces that ultimately are not relevant under
the current store. The algorithmic semantics given here addresses
this problem by giving a deterministic order to patching, such that
no unnecessary patching steps occur. The other source of non-
determinism in the semantics arises from rule INCR-FORCEPROP.
The specification allows an arbitrary choice of trace to patch from
prior knowledge; in general, many instances of a forced expres-
sion e may exist there, and it is difficult to know, a priori, which
trace will be most efficient to patch under the current store. We
address this problem in our implementation, given in Section 6.
Figure 11 defines K;S = T1 n,, T2, the algorithmic propa-
gation judgment, which employs an explicit, deterministic patch-
ing order. This order is determined by the scheduling judgment

hed . . . .
Sie = T *=5° p, where e is the nearest enclosing think, and p is

either some thunk e’ or else is o if trace T is consistent.

type 'a thunk
val force : 'a thunk — 'a
val update : 'a thunk — 'a — unit
val make_const : 'a — 'a thunk
val make_thunk : (unit — 'a) — 'a thunk
val memo : (module HashedType with type t = 'arg)
— ("fn — 'arg — 'a) — ((‘arg — 'a thunk) as 'fn)

Figure 12: Basic ADAPTON API

optional thunk p == ofe

The scheduling judgement chooses p based on the inconsisten-
cies of the trace T and store S. Rule SCHED-TERM is the base case;
rule SCHED-SEQ1 and rule SCHED-SEQ2 handle the sequencing
cases where there is a thunk to patch is in the left sub-trace, or not,
respectively. For forces and gets, the respective rules check that the
force or get event is consistent. If so, rules SCHED-FORCEOK and
SCHED-GETOK recursively check the trace enclosed within those
events. rule SCHED-FORCEOK additionally places the thunk asso-
ciated with the enclosed trace as e to the left of the turnstile, since
that is the nearest enclosing thunk for that trace. Otherwise, if the
force or get event is inconsistent, rules SCHED-PATCHFORCE and
SCHED-PATCHGET schedule the nearest enclosing thunk to patch.

Algorithmic change propagation K;Sk Ti ~, T closely
resembles the nondeterministic specification K;S - T m’;rop T,
from Section 4. It gives rules for successively scheduling a thunk
and patching the associated trace 7' into 7>. We note that the root
of the incoming and outgoing trace always consists of a force event
(i.e., forceg, [T1]); this invariant is preserved by the propagation
algorithm, and its use in rule INCR-FORCEPROP, which is the
only evaluation rule that uses this judgement as a premise. The
rule ALG-PATCHSTEP does all the work of the algorithm: it sched-
ules the next thunk e, to patch, recomputes this thunk yielding a
new trace T, patches in the new trace for occurrences of e in the
current trace (force'éI [T1]), and repeats this process, which termi-
nates with rule ALG-DONE. The premise to rule ALG-DONE is
justified by the following lemma, which relates this base case to
the specification semantics:

Lemma 5.1 (No scheduled thunk implies check).
S;e 7% implies SE T +/

The result below says that our algorithmic semantics is sound
with respect to the specification semantics.

Theorem 5.2 (Algorithmic semantics is sound).

IfK;SET, mg,g T, then K;S+ T, r\'grop T

6. ADAPTON: An OCaml Library for
Incremental Computation

We have developed an implementation of CD?IC in an OCaml li-
brary named ADAPTON. Incremental program are written using the
LazyBidirectional module which provides the simple API shown in
Figure 12. The fundamental data type is thunk, which subsumes
the roles of both references M C and thunks U C in A&, The
force function retrieves the value of a thunk, computing or up-
dating its value as necessary, similar to get or force in A<, The
update function replaces the value in a thunk, like set in AS.
The make_const and make_thunk functions construct thunks from
a value or a nullary function, respectively. Finally, the memo func-
tion (whose use is discussed in more detail shortly) creates a mem-
oized constructor from a unary function, given a Hashed Type mod-
ule that describes the type of the argument (used internally to create



memoization hash tables). The thunks constructed by make_thunk
or by constructors created by memo do not contain a value at first.
A thunk’s value is computed by calling the given function when it
is forced, and then the resulting value is cached in the thunk. These
constructors are the counterparts to thunk in AS™.

We find it convenient to unify references and thunks in ADAP-
TON, since get and force as well as ref and thunk are symmet-
rical operations with the same extensional semantics. Furthermore,
OCaml’s type system does not allow us to easily enforce layer sepa-
ration statically. Thus, we chose this unified API to make it simpler
to program with ADAPTON. In ADAPTON, an inner level computa-
tion begins when force is called and ends when the call returns.

There is one semantic difference between AS%? and LazyBidirec-
tional: in A%, memoization occurs at force, whereas in LazyBidi-
rectional, memoization occurs when calling a memoized construc-
tor created by memo. As an OCaml library, ADAPTON cannot com-
pare two expressions for syntactic equality after variable substi-
tution, unlike )\fcdd. Instead, we use memo to manually identify free
variables of an expression as function arguments, and use the values
of those arguments for memoization, i.e., we represent thunk ex-
pressions as functions and free variables of the expression as func-
tion arguments. When a constructor created by memo is called, we
first check a memoization table to see if the constructor was pre-
viously called with the same argument. If so, we return the same
thunk as before; otherwise, we create a new thunk, store it in the
memoization table, and return it. This design choice is equivalent
to deterministically choosing the most recently patched occurrence
of a trace from the prior knowledge in rule INCR-FORCEPROP of
the incremental semantics. To limit the size of memoization tables,
we implement them using weak hash tables, relying on OCaml’s
garbage collector to eventually remove thunks that are no longer
reachable.

In addition to LazyBidirectional, ADAPTON also provides Eager-
TotalOrder, which implements a totally ordered, monolithic form
of incremental computation as described in prior work (in particu-
lar, [3]). There are also two modules, EagerNonlInc and LazyNonlInc,
which are simply wrappers around regular and lazy values, respec-
tively, that do not provide incremental semantics or memoization.
All four modules implement the same API in Figure 12 to make
them easily interchangeable; thus it is straightforward to compare
the same program under different evaluation and incremental se-
mantics using ADAPTON.

6.1 LazyBidirectional Implementation

The LazyBidirectional module implements A using an efficient
graph-based representation to realize the algorithmic patching se-
mantics in Section 5. The core underlying data structure of Lazy-
Bidirectional is the acyclic demanded computation graph (DCG),
corresponding to traces 7. Similar to the visualization in Section 2,
each node in the graph represents a thunk, and each directed edge
represents a dependency pointing from the thunk calling force to
the forced thunk.

The graph is initially empty at the beginning of the execution
of an incremental program, and is built and maintained dynami-
cally as the program executes. Nodes are added when make_const
or make_thunk is called. Nodes are also added when a memo con-
structor is called and a new thunk is created, i.e., when memoiza-
tion misses. Edges are added when force is called, and are labeled
with the value returned by that call. We maintain edges bidirection-
ally: each node stores both an ordered list of outgoing edges that is
appended by each call to force, and an unordered set of incoming
edges. This allows us to traverse the graph from caller to callee or
vice-versa.

As described in Section 2, LazyBidirectional takes advantage
of the bidirectional nature of the graph in the two phases. The

dirtying phase occurs when we update the inputs to the incremental
program, i.e., when we make (consecutive) calls to update. In this
phase, we record calls to update in the graph by starting from the
updated thunk and traversing incoming edges backward through
calling thunks up to thunks with no incoming edges, marking all
traversed edges as “dirty.” These dirty edges indicate intermediate
values in the computation that may potentially change because of
the updated inputs, i.e., they induce a sub-graph of thunks that may
need to be re-evaluated.

The propagate phase performs D*CP, beginning with a call
force on a thunk that contains dirty outgoing edges, i.e., that may
be potentially affected by an updated input. Then, we perform
patching using a generalized inorder traversal of dirty outgoing
edges, re-evaluating thunks if necessary. We check if we need to
re-evaluate the forced thunk by traversing its dirty outgoing edges
in the order they were added: for each edge, we first clean its dirty
flag, then check if the target thunk contains dirty outgoing edges. If
so, we recursively check if we need to re-evaluate the target thunk;
otherwise, we compare the value of the target thunk against the
label of the outgoing edge. If the value is inconsistent, then we
know that at least one of its inputs has changed, so we skip its
remaining outgoing edges and immediately re-evaluate the thunk.
Before doing so, we first remove all its outgoing edges, since some
of the edges may no longer be relevant due to the changed input;
relevant edges will be re-added when the re-evaluation of the thunk
calls force (we store incoming edges in a weak hash table, relying
on OCaml’s garbage collector to remove irrelevant edges). If all the
values of outgoing edges are consistent, we need not re-evaluate the
thunk since no inputs have changed.

The above procedure checks and re-evaluates thunks in the same
order as described in Section 5, but in an optimized manner. First,
the above procedure immediately re-evaluates thunks as necessary
while traversing the graph, whereas the formalism schedules thunks
to patch by repeatedly restarting the traversal from the initially
forced thunk. Second, the above procedure only traverses the sub-
graph induced by dirty edges, which can be much smaller than the
entire graph if the number of updated inputs is small.

One possible concern is the cost of the dirtying phase. How-
ever, we observe that above procedure maintains an invariant that,
if an edge is dirty at the end of a dirtying or propagate phase, then
all edges transitively reachable by traversing incoming edges be-
ginning from the source thunk will also be dirty. Thus, we need not
continue the dirtying phase past dirty edges, in effect amortizing the
dirtying cost across consecutive calls to update. Dually, if an edge
is clean, then all edges transitively reachable by outgoing edges be-
ginning from the target thunk will also be clean, which amortizes
change propagation cost across consecutive calls to force.

7. Empirical Evaluation

We ran micro-benchmarks to evaluate the effectiveness of A in
handling several different interactive computing patterns:

* lazy, which demands only a small portion of the output (just one
item), and makes only simple changes to the input (e.g., adding
or removing a list item or a tree node);

batch, which demands the entire output, and makes only simple
changes as with lazy;

swap, which also demands the entire output, but changes the
input by swapping two portions of the input (e.g., swapping two
halves of a list or two subtrees);

and switch, which chooses between two computations to apply
to a main input based on another flag input, then demands a
small portion of the output (just one item), and toggles the flag
input while making simple changes to the main input.



s *_; EagerNonlnc LazyNonlnc LazyBidirectional EagerTotalOrder

8 5 £ from-scratch incremental from-scratch incremental
é g‘ g time mem time mem overhead mem speed-up mem overhead mem speed-up mem
Sl (s) (MB) (s) (MB) Eager Lazy (MB)| Eager Lazy (MB)||Eager Lazy (MB)| Eager Lazy (MB)
filter le6 0.863 184 0.0000116 96.7 || 0.000035 2.63 264 | 951000 12.8 264|| 12.8 953000 773 |166000 224 773
map || & | 1e6 1.35 184 |0.00000685 96.7 [| 0.0000184 3.61 264 | 1540000 7.80 264|| 8.54 1680000 773 |301000 1.53 773
quicksort || = | 1e5| (] 0.793  35.0 0.0741 18.6 223 23.8 161| 21600 2020 162 53.3 570 2610 245 22.9 2680
mergesort le5 1.04 492 0.346 50.8 572 17.2 380 1010 336 395|| 20.1 60.3 1390| 0.443  0.148 4900
filter le6 1.05 155 0.629 157 12.4 20.7 915 339 2.04 1580|| 115 19.1 773 6.84 4.11 1410
map || = | le6 1.79 232 1.20 232 722 10.8 934 331 221 1600|| 7.35 11.0 806 4.97 3.32 1540
fold(min) 2l1e6|F|| 243 240 143 179 18.3 31.2 1610 7400 4350 1610|| 9.08 155 1410 5260 3090 1440
fold(sum) < 1e6 244 255 1.48 180 18.4 30.5 1630 2700 1640 1630|| 9.22 152 1440 6970 4220 1440
exptree 1le6 0.143 153 0.308 152 613 285 1780 116 248 1780 129 60.1 1480 347 746 1480
filter le6 0.868 155 0.502 157 120 20.7 913 343 199 1580(| 11.0 19.1 773| 0.247 0.143 2710
map || o, | 1e6 142 232 0.894 232 6.63 10.5 934 3.75 236 1600 7.35 11.7 806| 0.394  0.248 2900
fold(min) S l1e6|F|| 192 240 1.04 179 19.6 36.3 1610 872 472 1620 9.49 17.5 1420| 0.226  0.123 6070
fold(sum) Z 11e6 197 255 1.11 180 19.1 34.0 1630 888 501 1640(| 9.60 17.0 1440| 0.228 0.128 6090
exptree le6 0.145 153 0.307 152 590 278 1780 315 667 1780 128 60.6 1480 4.78 10.1 1810
updownl ﬁ 4e4 0.198 15.2 0.0328 8.63 3.60 21.8 734 135 224 121 709 429 987 0.015 0.00247 3710
updown2 E 4e4|7|[0.409 193 0.0326 8.63 1.74 219 734 309 247 119|| 729 915 1930 53.7 428 2120

Legend overhead: *Nonlnc time / from-scratch time speed-up: *Nonlnc time / incremental time mem: OCaml’s GC maximum heap size

Table 1: ADAPTON micro-benchmark results.

The lazy, swap, and switch patterns are some of the patterns de-
scribed in Section 2 that motivated our work, whereas prior work
only addressed the batch pattern.

We implement each micro-benchmark by writing several incre-
mental programs using each ADAPTON module, and measure the
time and memory these programs take to run either from scratch
or incrementally. For lazy, we include standard list-manipulating
benchmark programs from the incremental computing literature—
filter, map, quicksort, and mergesort—and demand only one item
from the output list. For batch, we demand the entire output of fil-
ter and map as well as the two other list programs—fold applying
min and sum—and exptree, an arithmetic expression tree evaluator
similar to that in Section 2. For swap, we use the same programs as
batch. Finally, for switch, we write two programs, updownl and up-
down2, both returning a list sorted in either ascending or descend-
ing order depending on the value of another input: updown1 is the
straightforward implementation that sorts the input list in one di-
rection or the other, whereas updown?2 first sorts the input list in
both directions, then returns the appropriate one.

We compile the micro-benchmarks using OCaml 4.00.1 and run
them on an 8-core, 2.26 GHz Intel Mac Pro with 16 GB of RAM
running Mac OS X 10.6.8. We run 2, 4, or § programs in parallel,
depending on the memory usage of the particular program. For
most programs, we choose input sizes of 1e6 items; for quicksort
and mergesort, we choose 1e5 items, and for updown1 and updown?2,
we choose 4e4 items, since these programs use much more memory
under certain ADAPTON modules. We report the average of 8 runs
for each program using random seeds 1-8, and each run consists
of 250 change-then-propagate cycles or 500 paired cycles (for the
list programs, removing then re-inserting an item; for updownl and
updown2, sorting in each direction).

In our initial evaluation, we observed that EagerTotalOrder
spends a significant portion of time in the garbage collector, well
over half the time for some programs. This issue that has been re-
ported in prior work [4]. To mitigate this issue, we tweak OCaml’s
garbage collector to use a minor heap size of 16MB and major heap
increment of 32MB for EagerTotalOrder.

7.1 Micro-benchmark Results

Table 1 shows our results. For EagerNonlInc and LazyNonlInc, we re-
port the wall-clock time and maximum heap size, as reported by

OCaml’s garbage collector, that it takes to run the program. For
LazyBidirectional and EagerTotalOrder, instead of reporting wall-
clock time, we report overhead, the time it takes to run the initial
from-scratch computation relative to EagerNonlnc and LazyNonlnc,
and speed-up, the time it takes to run each incremental change-
then-propagate cycle, also relative to EagerNonlnc and LazyNon-
Inc. We also highlight table cells in gray to indicate whether Lazy-
Bidirectional or EagerTotalOrder has a higher speed-up or uses less
memory when performing an incremental computation.

We can see that LazyBidirectional is faster and uses less memory
than EagerTotalOrder for the lazy, swap, and switch patterns, which
are some of the patterns that motivated this work. As a sanity check
for lazy, we note that LazyBidirectional is over a million times
faster than EagerNonlInc for map since only one out of a million
input item needs to be processed, and similarly for filter. It is also
quite effective for quicksort and mergesort. Note that mergesort
actually incurs a slowdown under EagerTotalOrder, and also under
LazyBidirectional if more output elements were demanded. This
is due to limited memoization between each internal recursion in
mergesort. Prior work required programmers to manually modify
mergesort to use techniques such as adaptive memoization [4] or
keyed allocation [16] to improve its incremental performance. We
are currently looking into an alternative technique for A% that
employs the concept of functional dependencies [8] from databases
to systematically identify better memoization opportunities.

For the batch pattern, LazyBidirectional does not perform as well
as EagerTotalOrder—at about half the speed. We expected this to be
the case since EagerTotalOrder is optimized for the batch pattern,
and because LazyBidirectional involves a dirtying phase in addition
to a change propagation phase to perform an incremental computa-
tion (as described in Section 6.1), rather than just a change propa-
gation phase in EagerTotalOrder. In the batch pattern, the dirtying
phase becomes an unnecessary cost as all outputs are demanded.
Nonetheless, for all programs LazyBidirectional provides a speed-
up that can still be quite significant in some cases. Interestingly,
LazyBidirectional is faster for fold(min), since changes are not as
likely to affect the result of the min operation as compared to other
operations such as sum.

LazyBidirectional is much better behaved than EagerTotalOrder
in that LazyBidirectional provides a speed-up to all patterns and pro-
grams. In contrast, EagerTotalOrder actually incurs slowdowns in
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Figure 13: Speed-up and dirtying/patching time over varying de-
mand sizes for input size of 100,000

swap and switch, except for exptree and updown2. Due to its under-
lying total ordering assumption, EagerTotalOrder can only memo-
match about half the input on average for changes considered by
swap. It has to recompute the rest.

For updownl in particular, the structure of the computation trace
is such that EagerTotalOrder cannot memo-match any prior com-
putation at all, and has to re-sort the input list every time the flag
input is toggled. updown2 works around this limitation by uncon-
ditionally sorting the input list in both directions before returning
the appropriate one, but this effectively wastes half the computa-
tion and uses twice as much memory. In contrast, LazyBidirectional
is equally effective for updownl and updown2: it is able to memo-
match the computation in updown1 regardless of the flag input, and,
due to laziness, incurs almost no cost to unconditionally sort the in-
put list twice in updown2.

7.2 Evaluating performances over varying demand

LazyBidirectional performs best for small demand size, but the cost
of D?CP gradually becomes more significant as demand size in-
creases. We quantify this effect for quicksort and mergesort using
the same procedure as for the lazy pattern in the previous section,
measuring the impact of increasing demand. We use EagerNonlnc
as the baseline and vary the demand size from one element to 5%
of the output. For comparison, we also measure the speed-up of
EagerTotalOrder as well as the speed-up of LazyNonlnc over Eager-
Nonlnc. Since LazyBidirectional contains two different phases that
update the DCG—a dirtying phase when the input list is updated
and a propagating phase to repair inconsistencies—we additionally
measure the time spent in each phase to understand their relative
costs.

The results are shown in Figure 13. In Figure 13a we see that
the speed-up of LazyBidirectional decreases as demand size in-
creases, whereas the speed-up of EagerTotalOrder is relatively con-
stant across demand size (though there is a minor cost to take each
additional element from the output list). LazyBidirectional becomes

slower than EagerTotalOrder when demanding more than about
1.8% of the output. However, the speed-up of LazyBidirectional re-
mains greater than both EagerNonlInc and LazyNonlInc even when
demanding 5% of the output, thus, there is still an advantage to
using LazyBidirectional, if not as much as EagerTotalOrder.

The speed-up for mergesort is lower but still significant, as
shown in Figure 13b. We omit EagerTotalOrder from this plot
because it incurs a slowdown, as explained in Section 7.1. The
plot shows that LazyBidirectional becomes slower than LazyNonlInc
when demanding more than 4% of the output.

Figures 13c and 13d shows how much time is spent in the
dirtying and propagation phases of LazyBidirectional. As expected,
propagation time increases with demand size, as more computation
has to be performed to compute the output. Also, dirtying is less
costly than propagation, since it does not perform any computation
on thunks; dirtying is significantly less costly for mergesort relative
to propagation as more thunks are re-evaluated than in quicksort.
Interestingly, however, dirtying time increases with demand size.
This is due to the interaction between the amortization of the
dirtying and propagation phases described at the end of Section 6.1.
For a set of input changes, each consecutive change has to dirty
fewer edges as more edges become dirty in the graph. However,
as demand size increases, more dirty edges will be cleaned by
propagation, resulting in more dirtying work for the next set of
input changes.

8. Related Work

Incremental computation via memoization. Memoization, also
called function caching [1, 20, 26, 29], improves the efficiency of
any purely functional program wherein functions are applied re-
peatedly to equivalent arguments. In fact, this idea dates back to
at least the late 1950’s [9, 27, 28]. Self-adjusting computation, dis-
cussed below, uses a special form of memoization that caches and
reuses portions of dynamic dependency graphs of a computation,
as opposed to simply caching their final results.

Our memoization technique is related to that of self-adjusting
computation, in that CD?IC uses memoization to cache depen-
dency graphs. As in self-adjusting computation, and unlike earlier
purely-functional memoization approaches, CD?IC tolerates store-
based differences between the pending computation being matched
and its potential matches in the memo table; change-propagation
repairs any inconsistencies in the matched graph.

Incremental computation via dependence graphs. Incremen-
tal computation has been studied by programming language re-
searchers for decades; we refer the reader to a categorized bibliog-
raphy of early work [30]. Most techniques maintain some represen-
tation of data dependencies as graphs. Self-adjusting computation
adapts the dependence graphs of earlier techniques, introducing
dynamic dependence graphs (DDGs), which are generated from
conventional-looking programs with general recursion and fine-
grained data dependencies [2, 11]. Later, researchers combined
these dynamic graphs with a special form of memoization, making
the approach even more efficient and broadly applicable [3]. More
recently, researchers have studied ways to make self-adjusting pro-
grams easier to write and reason about [12, 13, 24], as well as more
performant, empirically [18, 19].

As discussed in Sections 1 and 2, we make several advances
over prior work in the setting of interactive, demand-driven com-
putations. First, we formally characterize the semantics of the in-
ner and outer layers working in concert, whereas all prior work
simply ignored the outer layer (which is problematic for modeling
interactivity). Second, we offer a compositional model that sup-
ports several key incremental patterns handled poorly or not at all
in prior work. These patterns consist of the following: sharing,



where distinct inner computations share dependency graph com-
ponents; switching, where outer layer demand drives what com-
putations are incrementally updated; and swapping, where the in-
puts and/or computation steps interchange their position, relative
to some prior demand. Past work based on maintaining a single
totally-ordered view of past computation (e.g., all work on self-
adjusting computation) simply cannot handle these patterns.

Ley-Wild et al. have recently studied non-monotonic changes
(viz., what we call “swapping”) and lazy evaluation, giving a for-
mal semantics and algorithmic designs [23, 25]. However, these
semantics still assume a totally-ordered, monolithic trace represen-
tation and hence are still of limited use for interactive settings, as
discussed in Section 1. To our knowledge, these extensions have no
corresponding implementations.

Functional reactive programming. The chief aim of FRP is to
provide a declarative means of specifying interactive and/or time-
varying behavior. Some FRP-based proposals share some common-
alities with incremental computation (e.g., [14, 21]). By virtue of its
declarative nature, FRP makes incremental change implicit, rather
than explicit: it hides mutation and incremental change beneath ab-
stractions for streams, which capture time-varying data.

By contrast, CD?IC explicitly exposes the inner/outer di-
chotomy, and allows the outer layer to perform arbitrary store mu-
tations. Unlike incremental computation broadly, FRP is not chiefly
concerned with asymptotic trends or fine-grained incremental de-
pendencies. Interesting future work may involve investigating how
FRP applications can benefit from CD?IC techniques, and how
CD?IC can benefit from the higher-level abstractions proposed by
researchers studying FRP.

9. Conclusion

Within the context of interactive, demand-driven scenerios, we
identify key limitations in prior work on incremental computation.
Specically, we show that certain idiomatic patterns naturally arise
that result in incremental computations being shared, switched and
swapped, each representing in an “edge case” that past work cannot
handle efficiently. These limitations are a direct consequence on
past works’ tacit assumption that the maintained cache enabling
incremental reuse is monolithic and totally-ordered.

To overcome these problems, we give a new, more composable
approach that naturally expresses lazy (ie., demand-driven) evalu-
ation that uses the notion of a thunk to identify reusable units of
computation. This new approach naturally supports the idioms that
were previously problematic. We executed this new approach both
formally, as a core calculus that we prove is always consistent with
full-reevaluation, as well as practically, as an OCaml library (viz.,
ADAPTON). We evaluated ADAPTON on a range of benchmarks,
showing that it provides reliable speedups, and in many cases dra-
matically outperforms prior state-of-the-art IC approaches.
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A. From CBY into CBPV
cdd

This section presents a call-by-value (CBV) variant of A’ that
shares a close correspondance to the CBPV variant presented in
the main body of the paper. In particular, we present syntax, typing
and reduction rules in a CBV style, which are otherwise analogous
to the CBPV presented in Section 3. We connect the CBV variant
presented here to the CBPV variant of ASY via a type-directed
translation. We show that this translation is preserved by the basic,
non-incremental reduction semantics of both variants: If a CBV
term M translates to a CBPV e, and if M reduces to a value V,
then e reduces to a CBPV terminal & to which value V translates.

CBYV syntax. Unlike CBPV syntax, CBV syntax does not syntac-
tically separate values and expressions; rather, values are a syntac-
tic subclass of expressions. Second, CBV treats lambdas as values.
Finally, since the CBV type syntax is missing an analogue to Fy A,
which carries a layer annotation in AL, we instead affix this layer

. . (
annotation to the type connectives arrow (T, — T2), thunk (U t T1)

and reference cells (M ;). The other differences to the syntax
and typing rules reflect these key distinctions:

CBVvalues V = () |AxM |inj, V| (Vi,Vs) | thunk M
| a

V|x]| MM | letx — M;inM,
| fix /.M | inj, M
| case (M, x;.Mi,x2.Mz) | (M, M,)
| fstM | snd M | forcee M | inner M

CBVterms M =

| ref M | get M | set MM,

CBYV types T u=
| M¢ T

CBVtypingenv. G == ¢|Gux:T|Gf:T|Gya:T

CBVstore S := ¢|S,aM

CBVtyping. Figure 14 gives the judgement for typing CBV terms
under a typing context G and layer £.

CBYV big-step semantics. Figure 15 gives the judgement for big-
step evaluation of CBV terms under a store S.

CBV type-directed translation. Figure 16 gives the judgement for
translating CBV types into corresponding CBPV types. Figure 17
gives the judgement for translating CBV terms into corresponding
CBPV value terms. Figure 18 gives the judgement for translating
CBYV terms into corresponding CBPV value terms. Figure 19 gives
the judgement for translating CBV stores into corresponding CBPV
stores.

Meta theory. We show several simple results:

Theorem A.1 (CBV subject reduction).
Suppose that:

'G1|—31

* G] }_E M:T
* Sl FM ~U, Sz;v
then there exists G, such that G| + G, and

‘GQFSZ
'Gz}—eVIT

Theorem A.2 (CBV typing implies CBPV translation).

comp

G M:tthenGF M:T ¥ Fe:C
“IfGF VitthenGF Vit (TFv:A)

Theorem A.3 (CBPV translation and CBV reduction commute).
Suppose that:

*GFS ~TES

*GH M T rke:C

*SiEM Sy V
then there exists extended contexts T' and G’ with G = G’ and
I+ T such that:

cG'FS~T'ES

GVt e C

cSikel”Sye

{
]\T1+Tz|T|><Tz|T1—>Tz|U€T



(Under G, the store S is well-typed)
CBVTYS-ADDR

GFS
CBVTYS-EMP Gla)=M't  GH M:7
GFe GFS,aM
(Under G at {, the term M has type T)
CBVTY-ABS CBVTY-APP
CBVTY-VAR Gx:tiFe, Mo ?
G(x) =T CBVTY-UNIT 0 GF Mi:T1 > T Gk My:1
Ghrex:t Gre():1 Ghy M1 = T Gre My M: T
CBVTY-CASE
GFeM:Ti + 12
CBVTY-LET CBVTY-FIX CBVTY-INJ Guxi:tibFe M
Gk M1 Gx:Tike M2 Gf:tkeM:T existsiin {1, 2} Gk M:T; Gx:tabke Myt
G k¢letx «— MiinM; : 12 GhrefixfM: T Gheinj, M: 11 +m G k¢ case (M, x;.M1,x2.M3) : T3
CBYTY-THUNK CBVTY-FORCE
CBVTY-PAIR CBVTY-FST CBVTY-SND . )
Gl—leiTl Gl—eleTz G"(MZT]XTZ GF(MZT]XTQ GFeZM'T GF(M:U T
Ghe (M;,My) T x T GhefstM: T, GresndM: T G k¢, thunkM : U2 ¢ G F¢ force, Mt
CBVTY-SET
Y
CBVTY-INNER CBVTY'ADDReZ CBVTY-REF CBVTY-GET . G Fouter My : Mez T
‘G“_innerMZT G(GJIM T GF[M:T G'_ZM:MT G'_outer]\/lZ:Uz"t
G Fouter inner M : t Ghe a:M21 G Fouter Tef M : M° T Ghe getM : T

G Fouter S€t MM, : 1

Figure 14: CBV typing semantics.

SiFM U SV

CBVEVAL-APP
Si M | Sy AeM
33 = Mz lL S4;V2
Sj [ M[Vz/x} lL S();V3

CBVEVAL-VAL

SFVISV

(Under S\, the term M reduces, vielding store S» and value V)

CBVEVAL—LET

. Sl = M] JSZ;\./I
Sz F Mz[vl/x] ~U, S3;V2

CBVEVAL-FIX

SiFMi M, LS Vs

CBVEVAL-CASE
exists/in {1, 2}
SiE M Syinj, Vi
S EMilVi/xil I S5 Va

CBVEVAL-INJ
SiEM U SV
Si inj M | Sz;inji \Y

SiFletx — M;inM; I} S5 Vs

Si - Mlfixf.M/f] 4 S,V
SiHfixf.M | $5;V

CBVEVAL-PAIR .
SiEM SV

) ) QBVEVAL-FST
52 - Mz l} S3',V2

CBVEVAL-SND
S] [ M lL Sz; (V|)V2)
SiFsndM | S Vs

CBVEVAL-INNER
SSiEM U SV
Si + inner M || S,V

CBVEVAL-GET .
S] M lL Sz; a
Sz(a) :M/ Sﬂ—MNLSQ;V
Si - getM |} Sy V

31  case (M,X1.M|,XZ.M2) iJ, S3;V2

SiEM ~U« Sz; (V],Vz)
Sl }—(M1,M2)1LS3;(V|,V2) Sl l—fStMiJ,S.z;Vl
CBVEVAL-FORCE
Si M| Sy; thunk M’
SaFM' SV
Si force, M | SV

CBVEVAL-REF
a ¢ dom(S)
Sk refM || S,a:M; a

CBVEVAL_—SET .
. Sl |— Ml‘\u Sz; a
Sz = Mz lL 53;thunkM
Si - set MM, | S3,a:M; ()

Figure 15: CBV big-step evaluation semantics.



G¥r (The CBV typing context G translates to the CBPV typing context T)
CBV-TRCTXT-VARVAL

CBV-TRCTXT-VARFIX CBV-TRCTXT-ADDR
CBV-TRCTXT-EMP G ot T@) A G ot e G T  emp (C)e
e e Gux: T Mx:A Gf:t¥Nf:C Gya: Mt Ta:(0)
T2 A (The CBV type T translates to the CBPV value type A)
CBV-TRVALTY-THUNK CBV-TRVALTY-REF CBV-TRVALTY-SUM CBV-TRVALTY-PROD
com ¢
CBV-TRVALTY-UNIT T (0) L (o) 2 A w3 A, 2 A ©n 3 A
18 UET@UC Mit & M T|+T2'\@|>A1+A2 T]XTQ"elA|><A2

CBV-TRVALTY-ARROW

e com
T — T O (0)f

[/ v
nonlUu ()"

(The CBYV type T translates to the CBPV computation type C)
CBV-TRCOMPTY-ARROW

CBV-TRCOMPTY-FREE
I
T ’\ia/) A T2 C’O\n”;p (C‘)z val
T~ A
I -
T — T2 CP\n;pA — (C)e T C9\T>p Fe A

Figure 16: CBV types into CBPV types.

GFM:T (Mv:A)

(Under G, the CBV term M translates to CBPV value term v)
CBV-TRVALTM-INJ1

foralljin{1, 2}, ; @ Aj

CBV-TRVALTM-VARVAL existsiin{1, 2}

T'@A CBV-TRVALTM-UNIT GE M:T,»Xﬂ (TFv:A)
GFx:t 8 (THx:A) GFO: 18 TFO:N Grinj, M:7 + 12 (THinj, v: A +A;)

CBV-TRVALTM-PAIR

forall iin{1, 2} CBV-TRVALTM-ABS comp
GFM]ZTi’\(a'L(rl_VZA,‘) G,X:’ﬁ'_(M:Tz’\’)I—;X:A'_e:C

GF (M, My) i1 x 12 (T inj, v: A x A) GFAM: T g’czﬂ[F}—thunk)\x.e:U(AHC))

CBV-TRVALTM-ADDR
CBV-TRVALTM-THUNK T 0P

c
GFeM: Tt Tke:C Gl@)=M'r T@=cC

GFa: Mt (TFa:MC)

G thunkM : U v 2 (I'- thunke: U C)

Figure 17: CBV terms as CBPV value terms.



G, M: 7 LPrre:cC (Under G and ¢, the CBV term M translates to CBPV computation term e)
CBV-TRCOMPTM-APP
com
CBV-TRCOMPTM-ABS GheMy:t OPThe: Fo A
Gx:TiFeM:T, P Tx:Abe: C

¢
GheM T 5T ' The :A—C

¢
GheMM:iT 5T S5°THAve:4A — C Ghe MMy i1, OF Ik letx «— eriney x: C
CBV-TRCOMPTM-LET
GheM; i1 XPThe : Fo A CBV-TRCOMPTM-RET CBV-TRCOMPTM-FIX
G,x:TlFzMz:TzCP\Tpr:AFezic GFV:TE[FFV:A) G,f:'tWM:TCi@pF,f:CFe:C
Gloletx «— MjinMy : T “OP Tk letx < e ines : C Ghe Vit 3P T hretv: Fp A Gy fixfM:1 P I fixfee: C
CBV-TRCOMPTM-INJ
‘e | . ‘e
CBV-TRCOMPTM-VARFIX forall jin{1,2},7; > A; exists /in {1, 2}
P ¢ GreM:T T ke Fy A
Gref:tB°TkF:C Gheinj; M: 1 + 1) “O° T'F letx  einretinj; x: Fo (A +Ay)

CBV-TRCOMPTM-CASE
forall /in{1, 2}

G M: T T he: Fe (A +A4)
G,x:"c,-wM:T3C9$pr,x:A,-Fe,-:C

G k¢ case (M, x;.M,x.M3) : T3 TP T I letx < ein case (x,x1.€1,x2.€2) : C

CBV-TRCOMPTM-PAIR
foralliin{1,2}

G Mt VP Th e Fe 4

Ghke (M,My):1) XT3 LPrr letx; « ejinletx; < epinret (x1,x;) : Fp (A; X A3)

CBV-TRCOMPTM-FST CBV-TRCOMPTM-SND
GheM:t x1 P The: Fy (A; X As) G M:m x T OPThe: Fo (A X Ay)
G fstM: 1) SO T+ letx — einsplit (x, y;.y2.rety;) : Fg A GhesndM: 1, 07 T letx — einsplit (x, y;.y2.rety;) : Fo Ay
CBV-TRCOMPTM-THUNK CBV-TRCOMPTM-FORCE
Gry, M:tPThe:C GreM:U TP re:. F,UC
G by, thunk M : U® 0P I ret (thunke) : Fy, UC G ¢ force, M it 0 ' let.x — ein forcee x : C
CBV-TRCOMPTM-REF CBV-TRCOMPTM-GET
G Mt The:C GheM: Mix VT e: Fy (MC)
G Fouter Tef M : 1 P 1- refe : Fouter 1 GhFy getM 1 20P T letx « ein getx : C
CBV-TRCOMPTM-SET
{ _ comp
G lFouter Mp: U" 1 ~" T e : Fouter (UC)

comp

G Fouter My : Mt 8 I'kEe: Fouter (MC)

comp . .
G Fouter Set MMy : 1 ~" Tk letx; « ejinletx; «— e in set x;«xp : Fouter 1

Figure 18: CBV terms as CBPV computation terms.

GFS~THES (Under G, the CBV store S translates to CBPV store S)

CBV-TRSTORE-CONS
GF$S~TEFS  Gla) = Mix
CBV-TRSTORE-EMP GreM: TP Tke:C

GhFe~THe GFS,aM~TF S ae

Figure 19: CBV stores as CBPV stores.



