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In this dissertation, I propose a software-in-the-loop testing architecture that

uses adaptive sampling to generate test suites for autonomous systems based upon

identifying transitions in high-level mission criteria. Simulation-based testing de-

pends on the ability to intelligently create test-cases that reveal the greatest infor-

mation about the performance of the system in the fewest number of runs. To this

end, I focus on the discovery and analysis of performance boundaries. Locations

in the testing space where a small change in the test configuration leads to large

changes in the vehicle’s behavior. These boundaries can be used to characterize

the regions of stable performance and identify the critical factors that affect au-

tonomous decision making software. By creating meta-models which predict the

locations of these boundaries we can efficiently query the system and find informa-

tive test scenarios. These algorithms form the backbone of the Range Adversarial

Planning Tool (RAPT): a software system used at naval testing facilities to identify

the environmental triggers that will cause faults in the safety behavior of unmanned

underwater vehicles (UUVs). This system was used to develop UUV field tests which



were validated on a hardware platform at the Keyport Naval Testing Facility. This

process of developing test cases using simulations and preparing them for deploy-

ment in the field required new analytical tools. Tools which are capable of handling

uncertainty in the vehicle’s performance, and the ability to handle large datasets

with high-dimensional outputs. This approach has applications across a wide range

of domains, including the generation of self-righting plans for unmanned ground ve-

hicles (UGVs) using topological transition graphs. In order to create these graphs,

I had to develop a set of manifold sampling and clustering algorithms which could

identify paths through stable regions of the configuration space. Finally, I intro-

duce an imitation learning approach for generating surrogate models of the target

system’s control policy. These surrogate agents can be used in place of the true au-

tonomy to enable faster than real-time simulations, accelerating the testing process.

These novel tools for experimental design and behavioral modeling provide a new

way of analyzing the performance of robotic and intelligent systems, and provide a

designer with actionable feedback.
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Chapter 1: Introduction

1.1 Motivation

Designing tests is an integral component of developing any software system.

The requirements for autonomous systems are designed around meeting certain ca-

pabilities, such as autonomous manipulation, self-righting, or retro-traverse to a safe

location [1]–[4]. Yet a majority of validation and verification research is focused on

fault detection and robustness [5]–[9] rather than overall performance of the deci-

sion making software. Currently, the primary way of testing an autonomous system’s

ability to complete missions is to use simulations of realistic environments[10]–[12].

However, selecting test scenarios which reveal the full performance envelope of the

system is still an open question.

Prior research into search-based testing for autonomous vehicles has focused

on the development of stochastic optimization techniques to guide tests towards

potential collisions. [13]–[18] All of these prior approaches assume that there ex-

ists some convex function which can be used to find scenarios where the vehicle

transitions from success to failure. In this dissertation I instead assert that the

performance of an autonomous vehicle across the testing space is inherently discon-

tinuous. These discontinuities represent the performance boundaries of the system,
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locations in the testing space where a small change to the test configuration causes

a large change in the vehicle’s actions. Techniques which address both the discon-

tinuous and multi-modal nature of a vehicles performance have, to date, not been

developed.

In order to address this challenge I propose a set of new algorithms for software-

in-the-loop testing of autonomous systems which automatically explore the testing

space for discontinuities in the systems performance. In this dissertation, I introduce

adaptive sampling techniques which explore the test-design space, and discover the

transitions between performance modes. By establishing where these transitions

occur it becomes possible to create sets of focused tests which are used to identify

the transition factors that cause changes in vehicle performance. Techniques for

the automatic generation of test cases in these transition regions have a variety of

applications across the following domains:

• Requirements Design:

Developing requirements for autonomous systems is a recent challenge that

impacts many government and commercial projects.[3], [4], [19], [20] Writing

the physical requirements for a robotic system such as power, mobility, and

reliability is a well understood process. However, developing requirements

for the decision making components of an autonomous system remains an

open question. Developing techniques which can validate the requirements

for tasks such as self-righting will help inform the development of capability

requirements for the autonomous systems.
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• Designing Field Tests: There are few portions of any research and devel-

opment program that are as expensive as designing and executing field tests.

Both the time and expense involved means the number of tests that can be

performed are extremely limited. The current process is to have subject mat-

ter experts hand design vignettes meant to test each behavior of the system

individually. However, it is difficult to predict the emergent behaviors that

occur when multiple competing objectives are active. In addition, any desire

to challenge the system is offset by the desire to avoid costly failures. Thus

the test designers need a thorough understanding of how they can expect the

system to react in a variety of situations [21]. Finally, they need a method of

quantifying the certainty of seeing a specific behavior from the vehicle for a

given test scenario.

• Debugging autonomous software systems: Perhaps the most obvious ap-

plication of adaptive test design debugging the system while the autonomous

system it is still in the design stages. The advantage of the methods intro-

duced in this dissertation are that they allow for the development of delta-test

cases for changes in behavior whereas current techniques only focus on fault

detection. These delta-tests show examples of both intended and unintended

behavior that are invaluable for finding bugs and improving the software.

• Hardware design: Stochastic optimization as a method for generating me-

chanical designs has been gaining traction in recent years, and new methods

for searching across multiple objectives can only push the boundary further.
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It is possible to use the techniques introduced in this dissertation as another

computational design method. For example; a method for computing the self-

righting capabilities of a robot based upon its geometry can be used either by

a human designer or as an objective function of evolutionary algorithms.

There are three major challenges that this work addresses that have not been

addressed previously in this field.

• High dimensional state spaces: Generating meta-models for high dimensional

functions is an open problem. Due to the computational expense involved

with attempting to fit non-parametric models to high dimensional system few

adaptive sampling methods have been applied to systems beyond 3 dimensions.

Before adaptive sampling techniques can be applied to test scenario design, the

algorithms must scale gracefully to an arbitrary number of input dimensions.

• Nonlinear Discontinuous Black-box Systems: The performance surfaces for

autonomous systems are inherently non-linear and discontinuous. Meaning

traditional design of experiments and global regression approaches cannot be

applied. In addition, a blackbox approach means a user cannot make any a

priori assumptions about the underlying function. This limits the amount of

tuning which can perform to the hyper-parameters of the meta-models.

• Objectiveless Optimization: Search-based testing and surrogate optimization

techniques require objective functions that can be complicated to design and

are tailor made for a specific platform and mission. Creating a design process
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that is adaptable to a variety of systems requires algorithms that can utilize

only the pre-existing metrics logged from the simulations.

1.2 Goal and Scope

This dissertation presents novel algorithmic approaches for automatically gen-

erating test scenarios for black-box autonomous systems. The main research issues

addressed are as follows:

i Adaptive generation of challenging scenarios for testing and evaluation of au-

tonomous vehicles: Designing field tests for autonomous unmanned undersea

vehicles (UUVs) is a challenge that has not been addressed before in a for-

mal manner. Tests in the past have been designed as stand-alone vignettes

which test each behavior of the system independently. Traditionally, these are

designed around the physical capabilities of the system. Rather than tests

which explore the capabilities of the decision making software. This was the

motivation behind the Range Adversarial Planning Tool (RAPT). RAPT is a

software suite for simulation-based testing of autonomous vehicles that auto-

matically generates sets of diverse and challenging test scenarios. My approach

does not require custom objective functions, instead searching for discontinu-

ities in the high-level mission criteria of the simulation. I utilize an adaptive

sampling framework that uses a light-weight meta-model that balances explo-

ration, generating diverse test cases , with achieving high resolution in the

areas of interest. I then apply unsupervised clustering techniques to identify
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distinct sets of cases that form the boundary sets that divide regions of stable

performance. These are then returned to the user, along with estimates of the

variable sensitivities, in order to inform the test-engineers so that they can

design more appropriate tests.

ii Design and Execution of Live Field Tests for Autonomous Vehicles: Given a

suite of relevant test scenarios generated via the RAPT framework, the next

logical step is to take those tests and execute them on a hardware platform in

the field. This is a challenge known as the reality gap; where machine learning

results developed in a simulation environment are applied to the real world.

Due to modeling error in the simulation environment and uncertainty during

execution in the field it is not reasonable to expect the exact same vehicle

performance in both environments. Therefore, it is necessary to adapt the

techniques for selecting test cases to account for uncertainty. As well as de-

velop new tools which isolate the behaviors we are attempting to test. Using

distance from a performance boundary as a method for gaging the robust-

ness of a given scenario is one way to gain this assurance. To this end, I

analyzed the performance of the adaptive sampling algorithms on both a syn-

thetic stochastic system and a non-deterministic UUV simulation. From this

analysis I developed algorithms for identifying sub-clusters of specific behav-

iors from the hierarchical scoring structure output by the simulation. From

these I was able to identify test cases which were both informative and repro-

ducible in the field. These test cases were run using an OceanServer IVER
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UUV at the Keyport Naval Test range under adverse conditions. Finally, I

provide a post-test analysis of these results as a case study of the effectiveness

of the RAPT test-generation framework.

iii An Adaptive Sampling Approach for Autonomous Self-Righting Validation:

Robots operating in dynamic, unstructured environments run the risk of tip-

ping over, thus becoming unable to move normally. To restore normal mo-

bility, a computational framework was developed to generate self-righting

plans for arbitrary robot geometries on planar surfaces of arbitrary slope.

However, the previous instantiation of this framework required an exhaustive

search of the configuration space to identify transitions between stable and

unstable states. This restricted its ability to analyze systems with many de-

grees of freedom, since the number of queries required increases exponentially

with dimension. In this dissertation, I propose using adaptive sampling to

query preferentially along discontinuities, enabling the identification of higher

quality transitions using fewer queries. In addition I extend the previously

two-dimensional framework to support high-fidelity models of robots in three-

dimensions. These updates required changing the way I represented the robot

in configuration space (C-Space) and a new adaptive sampling algorithm which

supported constrained sampling along high-dimensional manifolds. To support

the generation of self-righting paths I also developed a set of graph-based clus-

tering techniques for determining the connectivity between stable robot states.

I then compare the resulting transition graphs against those previously val-

7



idated on 1, 2, and 3 degree of freedom robots. Finally, I demonstrate the

techniques working on a high-fidelity model of a Naval bomb-defusal robot

with a 5 degree of freedom manipulator. Which was too complex for the the

previous grid-based sampling method to analyze.

iv Deep Imitation Learning for surrogate meta-models of autonomous vehicles:

Developing surrogate agents which can approximate the behavior of a vehicle’s

control policy can allow for faster generation of results than using the full

autonomy under test. This is of particular use when the full autonomy requires

multiple linked machines to operate or is otherwise restricted to only real-time

operation. Recent advances in neural networks have allowed for deep imitation

learning to be successfully applied to both individuals and teams of agents.

In this work I explore the application of deep imitation learning to replicating

the control policies of autonomous vehicles using only externally observable

features. I demonstrate how these surrogate models can then be applied to

predict performance in unknown scenarios. This study shows that not only are

the performance boundaries of the surrogate agent highly correlated with those

of the actual autonomy but that the distance from the performance boundary is

an excellent measure for determining the accuracy of the surrogate’s behaviors.
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Chapter 2: Literature Review

The validation and verification of autonomous systems has been an active area

of research in the past few years. Particularly, the area of search-based testing, where

optimization techniques are used to generate test-cases for autonomous systems. In

addition, recent advances in meta-modeling techniques are increasing the ability of

test engineers to model and predict the behaviors of complex systems.

This review is divided into four sections. The first addresses the different ap-

proaches that have been applied to software testing. From designing requirements

and testing priorities, to classical design of experiments, and formal methods. The

second addresses other works in the domain of test-case generation for autonomous

vehicles. The third covers the topics of surrogate optimization, meta-model gener-

ation, and adaptive sampling. The fourth covers methods for machine learning and

autonomous planning algorithms.

2.1 Test design

In this subsection I cover traditional software testing approaches. Including

system and requirements design, design of experiments, formal methods, and search-

based testing methods.
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2.1.1 System Design Processes

Industry and government organizations have been working together over the

past decade to develop extensive requirements and test procedures for autonomous

vehicles[3], [4], [19]. This includes establishing standard coding practices, defin-

ing reference architectures for all of the electrical and computational components,

and developing certification testing requirements. However these requirements are

built around an assumption that a human operator will ultimately take control of

the system. No performance and behavioral certification standards yet exist for

autonomous systems. How to validate these systems remains an open question.

Multiple design processes have been proposed to address this challenge[1], [2],

[22]–[26]. What all of these approaches have in common is the approach of identifying

capabilities requirements. Which define certain tasks that the autonomous system

must be able to complete in the designated environment. In addition, they all

provide methods for prioritizing tests based on cost, stakeholder need, and system

coverage.

The Multi-relationship evaluation design (MRED) [1], [2] is an exceptional ex-

ample of a well defined process for relating technology components and capabilities,

identified as techology test level (TTL), with the performance metrics and test re-

sources. For example a TTL-metric pair might represent a single joint and its range

of motion. It then combines the stakeholder preferences, technological maturity, and

operator skill to score each TTL-metric pair. These scores determine the priority of

the test.

10



Fuzzy-logic rule-sets are another popular method for developing and priori-

tizing tests for autonomous systems [22], [26]. Fuzzy logic is attractive in that it

can create continuous functions from sets of logical rules without the user having to

explicitly define the relationships between all the inputs. This allows the designer

to address all of the desired inputs as pair-wise or lower order interactions. Which

aligns with the ways user requirements are defined. One way to assemble these cri-

teria are from the physical requirements and operator requirements [26]. Another is

to rate the priority of each task and sub task of the mission in a hierarchical manner

along with it’s estimated costs and return on investment[22]. In both cases the test

priority is based upon expected impact rather than expected performance.

What all of these formal design strategies have in common is that they provide

methods for identifying the performance criteria of the system and estimate their

priority to the end user. What they lack is a method for actually performing the

validation. This is where test-case generation and software testing techniques come

into play.

2.1.2 Design of Experiments

Design of Experiments (DOE) is a systematic method for determining the

relationships between the inputs and outputs of a system using statistical analysis.

It is primarily used to take complex systems with large numbers of inputs and devise

ways to minimize the number of experiments required to either identify a specific

property of the system or fit a regression model [27]–[30].There are three areas that
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fall into the domain of DOE that are of particular interest to this dissertation;

optimal design, sensitivity analysis, and combinatorial testing.

The goal of optimal design is to create a set of test cases which maximize

the information gained from running the experiments [27], [31], [32]. It is assumed

that the user has no a priori information about the underlying function. These

are typically used for model-fitting purposes and are appropriate for systems with

continuous input and output spaces.

Frequently, optimal design will feed into sensitivity analysis [33], [34] which

identifies the factors which have the greatest impact on the output of the system.

This is also known as analysis of variance (ANOVA) and is an approach I utilize

as part of my mission design process and variable scaling methods in Chapter 3.

The primary drawback of these techniques is that they only model the linear and

second-order interaction effects of variables. As I shall discuss later in this disser-

tation the performance surfaces for autonomous systems are inherently non-linear

and discontinuous with many local effects. This reduces the effectiveness of global

sensitivity modeling techniques.

The most important tool that Design of Experiments provides with regards to

software systems is combinatorial testing [6], [35]–[38]. Applied to systems that have

discrete inputs, combinatorial testing is the process of reducing the entire testing

space by testing non-interacting inputs simultaneously. These are referred to as

orthogonal arrays and are utilized heavily as part of a standard software testing

regime. Frequently the goal when designing a combinatorial test regime is to create

a covering array which, as the name implies, covers all unique permutations that
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satisfies the t-covering property. Which means that all permutations for all t-way

interactions are represented.

2.1.3 Formal Methods

A great deal of recent research in the domain of software validation and veri-

fication has focused on formal methods [39], [40]. Formal methods are any process

where a mathematical model describing the system’s operation is generated and

tested for exceptions which break the specifications. It is explicitly a white-box

testing method that is popular due to the provable guarantees it can provide about

the robustness and reliability of the system. Models that have been used in the

past include finite state machines [41], [42] and process algebras [40]. They can be

utilized to provide coverage guarantees [43], [44] of a testing suite. The drawback of

these techniques is that the resulting model must fully describe the decision mak-

ing process of the software and test engineers must have full access to the model.

Given the increasing complexity of autonomous systems and the black box nature

of proprietary software, these limitations prevent these methods from being applied

to many systems.

Physics based verification is another application of Formal Methods which

instead of modeling the systems software models the kinematics and constraints of

the physical system. It has been successfully applied to provide provable guarantees

of safety [45], [46] for both aircraft [45] collisions and to automatic brake systems in

cars [46]. These techniques work by computing the inevitable collision states of the
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vehicle and validating any proposed trajectory generated by the system to see if they

violate these constraints. The challenge with these approaches is that any trajectory

the vehicle performs must be solved analytically and the proven formulations cannot

support kinematics described by transcendental functions.

While model-checking is primarily the domain of white-box testing it is pos-

sible to apply it to black-box systems using model learning techniques [47]. These

methods continually generate candidate finite-state machines and apply hypothe-

sis checking against the true system to update their model. If counter-examples

are found they update their internal model until it is consistent. These generated

models can then be checked against the formal specifications as executed during

white-box testing.

2.1.4 Combinatorial Testing

There are many methods of performing tests against black-box software sys-

tems but it remains an NP-hard problem. Exhaustive testing for a complicated

system with a large number of inputs is in-feasible due to the shear number of tests

required. Approximate methods such as space-filling designs or pseudo-random

techniques like Monte Carlo testing are often implemented as a quick approach to

validating a system. A more principled approach is to utilize combinatorial testing

[36][37], a method of reducing a large testing-space into a smaller set of orthogonal

tests. Combinatorial tests are designed to detect faults and take advantage of the

fact that 90% of faults are caused by single or two-factor interactions. With faults
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becoming progressively less likely as the number of interactions increase [35].

The problem is that even eliminating higher order interactions the state-space

is still too large to test all permutations. Thus, the focus becomes on not just

generating combinatorial tests but trying to optimize the coverage of the selected

tests [38].

2.1.5 Search-based testing methods

Search-based testing is a meta-heuristic test-case generation technique which

utilizes a fitness function to rate candidate tests and uses global optimization tech-

niques to generate queries that will find faults [38], [48]–[51]. It is applied when the

search space is too large for exhaustive testing but combinatorial testing cannot be

applied. Genetic algorithms are perhaps the most frequently applied approach [50],

[51], followed by particle swarm optimization [38], and pattern search approaches

[52]–[55]. Many of these approaches are used in a white-box testing fashion, and

build their fitness function around whether the test input executes a specific branch

or module of the code [51], [53]. Where as others take a blackbox approach and only

measure the difference in outputs [52], [54]

Mutant-killing tests are one of the benchmark methods for evaluating these

techniques [38], [50], [51], [55]. In this procedure the target program is altered

semantically, for example logical operators will be reversed or erroneous arithmetic

procedures will be added to alter the input and output parameters of a module. A

set of inputs is considered to have ”killed” one of these mutants if it results in a
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different output than the original program. Many search-based testing methods use

these metrics as the fitness function to drive the search. The goal is to generate

suites of inputs that kill the most mutants in the fewest trials.

2.1.6 Test-case Diversity

In addition to finding maximally informative test cases it is also important

to achieve some measure of situation coverage [25] . Which is to say we want to

ensure we have representative cases from a wide variety of situations. This problem

can be broken up into two steps. The first is search approaches which prioritize

coverage as their test-case generation metric. Known as Coverage-Directed test

Verification (CDV) [56], [57] these approaches attempt to apply formal methods to

ensure the tests have fully explored the testing space. This is a combination of a

simulation-based method with formal method definitions for checking properties and

estimating coverage. It has been applied to robotic tasks such as robot to human

object handover [58].

The second step is selecting a diverse set of test scenarios to be executed in

the field. An ideal set of test scenarios will exercise all the autonomy behaviors

(expected and unexpected) in the fewest number of trials. Creating the measure of

diversity typically depends on a selection of distance metrics [59] for the input and

output spaces. Techniques such as Adaptive Random Testing (ART) [60] attempt

to order test cases in such a way that they will exhibit a diverse set of failures in a

single sequence. Optimization techniques using genetic algorithms such as DIV-GA
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[61] randomly generate and optimize groups of test cases with the goal of detecting

the maximum number of faults for a given number of tests.

The majority of these diversity criteria require some way of discerning be-

tween different fault types. In this dissertation I utilize clustering algorithms for

identifying different classes of performance. Applying clustering algorithms has

been a common approach [62] [63], [64] for classifying subsets of scenarios based on

their similarity. Detecting anomalous behavior by searching for successes in clusters

composed primarily of failures has been used to correctly identify coincidental cor-

rectness during fault localization [65] .Several popular clustering methods, including

K-Means, Mean Shift, and Agglomerative Hierarchical Clustering (AHC) have been

applied and compared for categorizing web-application tests and Mean-Shift had a

slight advantage [66] over the other approaches. These research efforts informed the

design of the clustering methods discussed in Chapter 3.

2.2 Testing autonomous systems

Simulation-based testing of autonomous systems has not been explored as

extensively as the field of black-box software testing but has started to receive a

great deal of attention in the past couple years [13], [14], [23], [52], [67]–[69]. In

this paradigm the input to the system is a scenario configuration being executed by

the autonomy, the challenge is discovering scenarios or sets of scenarios which fully

exercise the autonomy’s capabilities and reveal faults in the system.

The approach that is the most closely related to this dissertation is search-
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based falsification. This method of test-case generation utilizes stochastic optimiza-

tion to find cases which violate the systems specification [70]. These research efforts

typically use robustness criteria to drive the search towards areas where the viola-

tions may occur. One area where this has been of particular interest is the study

of aircraft collisions [13], [14], [45], [67], [71]. Validating that autonomous collision

avoidance systems can successfully avoid encounters that will lead to inevitable col-

lision states. While the foundational work has been provable safety through formal

methods [45] a great deal of attention has also been spent on search-based test-case

generation methods [13], [14], [67], [72]. These works parameterize encounters based

on approach angles, velocities and time of arrival. They apply a fitness function that

estimates the probability of collision from the closest point of approach, or use Hsu’s

method for determining collision probability [73]. Then by running simulations of

the encounter against the collision avoidance software they optimize for cases where

collisions occur.

In addition to scenario-generation efforts which parameterize the initial state

of the simulation there are also tools for the testing of temporal properties of hybrid

systems. These include S-TaLiRo [74], Breach [75], and RRT-REX [76]. The S-

TaLiRo toolkit [74] allows users to define their requirements using temporal logical

language. It then turns these requirements into minimal representations and uses a

robustness degree computation to drive a stochastic optimization towards locations

which violate the requirements. It parameterizes the scenario in terms of the input

parameters to the controller and trajectory control points which are then optimized

to find paths which violate the robustness criterion. RRT-REX is a framework
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that leverages notions of coverage to optimize bug-finding performance. It uses an

rapidly-expanding random tree algorithm to select states to test and each rooted

path in the tree corresponds to a partial simulation (a simulation over an abbreviated

time horizon).

The S-TaLiro toolbox has recently been utilized to generate test-scenarios

for autonomous cars [17] where the primary scoring criteria was avoiding collisions

in the event of lane-crossing behavior. This work describes how a parameterized

scenario space can be used to generate test cases guided by stochastic optimization

of a robustness metric based upon a continuous-time signal. This toolbox was used

to test autonomous cars as part of Sim-TAVT [77], a recently published approach

that utilizes a framework and objective similar to those in Chapter 3. This work

uses relative collision speed as the robustness metric and use simulated annealing

to drive the search towards cases where the system just barely fails. This is like the

approach used in [13] for generating UAV collision cases and both works have direct

relations to the approach described in this dissertation.

Another testing strategy is to search for challenging test cases rather than for

falsifying test cases. The concept of a challenging test case, one where it is possible

to succeed but will stress the decision making of the autonomy, has only recently

begun to attract the attention of the research community [69]. It has been applied

to testing obstacle avoidance and navigation of ground vehicles in a 3D environment

[23] and is the basis for many of the aircraft collision generation frameworks [13],

[14], [67]. In each of these cases the conclusion was that the more challenging the

autonomy found the scenario the more useful the collected data was for evaluating
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and improving the system.

Surrogate-based optimization has also been used to generate test scenarios.

Radial basis functions have recently been applied to model distances between cars

and drive a search for collision cases [16]. This study confirmed that surrogate

models could help find solutions faster than Monte Carlo methods but have only

addressed small numbers of runs and a small number of dimensions.

Where my work differs is my decision to eschew the objective functions used

to guide these optimization-based approaches. Instead I make the assumption that

there is no convex function which can be used to drive the optimization and instead

search for discontinuities in the output space of the vehicles performance. The

second difference is that previous falsification methods stop once they have found

a single failure case and further simulations only refine on that result. Since I am

interested in generating a diverse set of test cases my adaptive sampling methods

continue to explore sparsely sampled regions as long as computational resources are

available.

2.3 Optimization, Modeling, and Clustering

In this subsection I address the history of two techniques utilized in this dis-

sertation. Adaptive sampling, which forms the basis of the algorithms used for

generating test cases, and high-dimensional modeling.
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2.3.1 Adaptive Sampling

In this dissertation I am interested in two closely related methods for querying

black-box systems; surrogate optimization and adaptive sampling. Both of these

technologies could be classified under the umbrella of active learning as they are

methods for intelligently choosing queries in order to update an underlying model.

They are utilized in the analysis of complex systems, where taking samples requires

expensive simulation or physical experiments [78]. Where they differ slightly is in

their goal. Surrogate optimization uses the underlying model to drive the search

towards a global optima. Whereas adaptive sampling is generally applied to max-

imize the information gained from the entire queried data-set in order to create as

accurate meta-model as possible.

Adaptive sampling for surrogate model generation has been shown to be com-

petitive with optimized space-filling designs in the design of experiments (DOE)

community for black box systems [79], [80]. The surrogate models are typically

used to aid in the optimization of complex systems where taking samples requires

expensive simulation or physical experiments [78]. This process has been applied

to a variety of optimal design tasks such as manufacturing mold designs [81], [82],

chemical processes [83], or optical trapping [84]. A variety of surrogate optimization

methods such as Kriging (also known as Gaussian processes) [85]–[88] and neural

networks [83] have been used successfully to generate sets of test cases. Kriging

was used in [86] with an information metric based on finding areas of maximum

variance in the test values. The technique of [86] is similar to the one I present in
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Chapter 3. One of the leading methods for adaptive sampling is the LOLA-Voronoi

method [79], [80] which uses local estimates of the gradient along with Voronoi de-

composition to estimate the best regions for subsequent sampling. This study was

shown to reduce the number of samples necessary to minimize cross-validation error

compared to space-filling techniques.

The techniques behind adaptive sampling also can be used to make any sampling-

based planning method more efficient . Trajectory generation tasks which require

complex plans in real-time such as traversing congested harbor traffic [89], liquid

pouring tasks [90], hexapod locomotion [91], or cleaning pliant surfaces [92], [93] all

benefit for using adaptive sampling methods to reduce the total number of compu-

tations.

My work differs from these methods by choosing samples along the system

performance boundary rather than choosing samples that minimize the global er-

ror in the surrogate model. This sampling strategy, querying regions where critical

transitions occur, has been explored before in multiple domains and has been used

to train Radial Basis Functions (RBF) [94], Kriging models [85], [94], and Support

Vector Machines (SVM) [95]. In each of these, the metrics guiding the sample selec-

tion were based on the properties of the underlying meta-model and the selection of

points tailored to improve its accuracy. In these works the surrogate model driving

the search is the final product. Whereas in this dissertation the focus is on obtaining

a diverse set of test-cases.
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2.3.2 High-dimensional modeling

The problem facing many adaptive sampling approaches is their ability to

scale to large numbers of dimensions. This leads to the more general problem

of attempting to model high-dimensional functions or create classifiers for high-

dimensional functions [96]. The general approach is to break the system into a linear

combination of underlying functions of first-order through Nth order. Research has

shown that there are typically few higher order interactions even in high-dimensional

systems[96]. By modeling it as a series of lower interactions it simplifies the modeling

problem.

The underlying function to represent each of the terms varies by application,

from standard polynomials to Radial-Basis functions (RBF)[97] [98] to support vec-

tor machines (SVM)[99]. The challenge of utilizing HDMR methods is that they are

often based around specific sampling schemes designed to maximize accuracy. For

example random sampling (RS-HDMR)[100] assumes a uniform distribution across

the entire state-space while Cut-HDMR [97] performs a pattern search along indi-

vidual dimensions while holding all others fixed. While some adaptive methods have

been developed [99] they don’t deviate far from the other approaches. Unfortunately,

none of these approaches can be directly applied to the problem of discovering the

transition regions of a system.

Instead of attempting to perform a regression on the global performance sur-

face another possible approach is to model the sub-surface that describes the per-

formance boundaries. One approach that has promise is to utilize manifold learning
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to create local-planar approximations [101] in order to encode a higher-dimensional

manifold. This is also similar to geometry based ensemble techniques that have

been applied in the past to describing the decision boundaries of a black-box clas-

sifier. [102] Both of these approaches could be potentially applied to modeling the

performance boundaries of an autonomous system, which is discussed further in the

Future Works section.

2.4 Planning and Control

Many of the techniques within this dissertation have applications beyond test

design and like-wise many algorithms used for planning and control have direct

relationships to this dissertation. In this subsection I will discuss a few research areas

which have direct impact on the topics of this dissertation. The ability to transfer

results from simulation to the real world has relevance to the work in Chapter 4.

Sampling-based planning methods for manipulation tasks are directly related to the

work Chapter 5. Finally I offer a brief background on the field of imitation learning

which is utilized in Chapter 6.

2.4.1 Transfer Learning

Transfer learning is the process of taking a model which was trained in one

domain and applying it to another similar domain which it has never seen before

[103]. The sub-set of transfer learning that is the most relevant to this dissertation is

the problem of transferring between a simulation and the real world. This problem is
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known as the Reality-Gap [104], where the differences between the simulated world

and the real world prevent solutions found via simulation to be directly applied to the

hardware system. The reality-gap poses a major issue for the scenario generation

software proposed in this dissertation. Even if the software is capable of finding

salient test cases in simulation the ability to reproduce those same behaviors on the

real platform is uncertain.

One approach for estimating the transferability of a result is to generate trans-

ferability metrics. Rather than focus on improving their simulation environment pre-

vious studies have searched for ways to estimate their confidence in the simulator

for certain regions of the state space [104]. The approach of creating ”transferabil-

ity” metrics [105] by iteratively alternating between hardware and software runs is

interesting but less useful if, as in our case, the test engineer only has one chance to

run successful field tests.

Another method for overcoming the reality gap is by first identifying which

solutions can be transfered between two simulators [106], [107]. The idea behind

that approach is any controller which cannot handle transfer between simulation

environments with differing fidelity will not be able to handle the transfer to reality.

This could work for our simulation-based testing approach but assumes that multiple

simulation environments are available, which would double the integration costs for

any autonomy under development. One solution to the multiple simulation problem

that has been recently developed has been creating neural network approximations

called World Models [108]. While still a nascent effort these world models could

automatically be generated to create lower-fidelity high-speed simulations. When
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coupled with the imitation learning surrogate agents in Chapter 6 this could be a

potential avenue for making faster-than-real time predictions of vehicle performance.

When transitioning from test design to test execution the ability to recreate

the exact situations which occurred in simulation will be limited by physical and

practical considerations. One solution to this is to use mixed reality frameworks,

which combine live and virtual elements. These simultaneously allow the tester a

wider range of possible scenario configurations while also providing a method of

testing autonomous behaviors on hardware while limiting risk to humans or other

vehicles.[109], [110]. One such framework that is currently being deployed at mil-

itary test ranges was developed under the Safe Testing of Autonomy in Complex,

Interactive Environment (TACE) program [110].Designed to test UAVs, it provides

an infrastructure that allows the user to run field tests with live-virtual constructs

(aka a mixed reality environment). This allows for dynamic additions of mission

elements such as obstacles, other agents, and simulated weather conditions. In ad-

dition a watchdog autonomy monitors the activity of the UAV and will throw an

alert and take over if it makes a mistake that would lead to unsafe behavior (e.g.

collision).

2.4.2 Sampling-based Planning

The motion planning methodology introduced in Chapter 5 falls under the

family of sampling based planning methods, which have proven in the past to be

highly efficient at generating motion plans for high-degree of freedom systems [111].
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The method for generating those random samples can vary, from attempting to sam-

ple more densely near obstacles [112] to using information based methods to identify

where valid trajectories are likely to occur [113]. Our sampling methodology has the

most in common with Probabilistic Road-Map (PRM) techniques which focus on

obstacle regions or boundaries [112], [114], but differs from these in both minor and

major ways. In a minor fashion, a different constraint drives our search, instability,

and we want to collects samples from both sides of the boundary. More important to

our work is that, unlike those techniques, we don’t have a priori knowledge of where

the boundaries of our system are. We must instead infer where these boundaries lie

from querying our simulation.

Motion planning methods for manipulation share the closest resemblance to

our self-righting problem as both are concerned with motions that result in contact

with another object or surface. These motion planners require the application of

constraint-based sampling methods e.g. AtlasRRT [115]or CBIRRT [116]. In these

systems, there are lower-dimensional manifolds where the robot is in contact with

the target object within the larger C-space of the system. One general method for

solving complex sets of contact constraints is CBIRRT2 [117], which has a similar

framework to our own as it constrains motions to specific manifolds and searches

for ”bridges” where it can pass between different manifolds. Unlike these motion

planners, we are attempting to characterize the entire C-Space. In addition, their

approaches have no way of preferentially guiding samples toward the bridges between

manifolds. Our system also contains directional transitions that are not supported

using a bi-directional sampling process.
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Path planners capable of respecting stability constraints have been well studied

in the past [118]. The primary way our approach differs from these is that we are

seeking to exploit the transition from stable to unstable instead of avoiding it. In

our framework, each node in our graph represents an entire region of connected

C-Space where the robot is stable. These regions can easily be explored using PRM

techniques but the edges describing how the robot can transition between them have

not been addressed in prior literature. While direct planning techniques for these

types of discontinuous contacts exist [119] they are currently to expensive to be used

as a local planner for a PRM-based search. In fact for this research we eschew the

use of a local planner entirely. Instead using clustering algorithms to generate our

connectivity graph within and between stable regions.

The self-righting approach we take also bears resemblance to gravity powered

reorientation of convex objects via underactuated manipulators [120][121] [122]. In-

deed, the projection operation we use to ensure our samples fall on the stable man-

ifolds of our system can be defined using the capture regions of polyhedra [120].

While analytical approaches directly define the tipping points for convex hulls, they

unfortunately cannot be applied to our objective of finding the critical thresholds.

This is because our approach depends on changing the shape of the convex hull,

which occurs as the robot moves, rather than manipulating a static geometry. This

coupling of actuation and geometry makes the application of analytical solutions

difficult.
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2.4.3 Imitation Learning

Imitation learning is a rapidly growing field of research [123], especially pop-

ular in the domain of robotic manipulators [124]. It provides an alternative to

the traditional approach of designing motion planners, instead enabling humans to

train robots without being familiar with the details of robot operation. Sometimes

referred to as inverse reinforcement learning [125], in imitation learning a robot at-

tempts to learn a policy that replicates that of its teacher. Rather than directly

copying the initial instructs by rote the goal for this new policy is to allow the robot

to adapt to variations in the environment while still performing the desired task.

There are multiple approaches that can be used to generate predictive models

of an agent’s behavior. Learning the values for a parameterized controller via obser-

vation of a human demonstrator is one such approach [126], [127]. The approach I

take in this dissertation is to build a neural network which takes sensor data as input

and control actions as output [123]. The drawback of this approach to imitation

learning is that while methods which utilize pre-recorded data such as Generative

Adversarial Imitation learning (GAIL) [128] provide compelling results they do not

perfectly replicate the original agents actions. Attempts to create “ghost” agents

has been fairly successful when applied to pre-recorded data of soccer games [129].

However, this was only successful as the ghost agents had not ability to control or

affect the state of the game. When the agent is actually playing the game rather

than only observing and predicting we instead require online methods.

Another area where creating exact models of other agents is of utmost impor-
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tance is Opponent Modeling [130].The goal of opponent modeling is to build models

of the opposing agent which can be used to create plans to defeat their particular

strategy. It has typically been applied to tasks such as poker [131], real-time strat-

egy games [132], and unmanned surface vehicle blocking [133]. This bears a close

resemblance to the goal of creating tests. As in both cases it is critical that these

opponent models effectively capture the failures and faults of the opponent. One ap-

proach of note is the Deep Reinforcement Opponent Network (DRON) [134] which

provides a general method for generating these agents. However, we discovered that

Q-learning methods were not precise enough for our purposes and instead turned to

the related area of behavioral cloning methods.

Behavioral cloning using DAgger was introduced in [135] as a method of di-

rectly replicating a human operator’s control actions. In this work they demon-

strated that expert-level performance could be approached after only 12 annotated

simulations. Since introduced, it has been successfully applied multiple times in

simulation [136]–[138] and on hardware [139]. It has also been applied to learning

from human experts [135], [139] and for encoding more computationally expensive

algorithms such as Model Predictive Controllers [136]–[138]. However, in all of these

cases the scenarios and behaviors were relatively simple, i.e. avoiding obstacles and

tracking ideal trajectories. What has not been addressed before using DAgger is the

effect of autonomous decision-making on a system with multiple behavioral modes.
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2.5 Summary

Despite the wealth of research into the field of black-box software testing de-

veloping tests for autonomous vehicles is still an open problem [3], [4], [19], [21].

Search-based test approaches have been extensively explored as a method for gen-

erating test scenarios and test plans [7], [13], [14], [48]–[53], [55], [68], [71], [73], [85],

[86], [140] however they fall primarily into two categories. The first are methods

for optimizing priority and coverage [22], [43], [50], [51], [53], [55]. These attempt

to characterize the entire test space but require known models of the system which

means they can only be applied for white-box testing. The second are global opti-

mization methods which utilize objective functions that describe the quality of the

mission [13], [67], [69], [141]. These are more appropriate for characterizing black-

box systems but have several drawbacks. The first is that these objective functions

require extensive knowledge of the mission and the software to design. The second

is that global optimization techniques will provide highly refined solutions in a sin-

gle region but won’t explore enough of the space effectively characterize the test

system. My approach solves both these problems by utilizing adaptive sampling to

preferentially explore the space. Instead of requiring an objective function it de-

rives one from high-level mission performance metrics. In addition the approach in

this dissertation differs from traditional adaptive sampling techniques by eschewing

the standard strategy of sampling to maximize global accuracy but instead seek to

maximize resolution in the regions of interest.
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Chapter 3: Adaptive generation of challenging scenarios for testing

and evaluation of autonomous vehicles

The work in this chapter was published in the following venues,

G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated generation of

diverse and challenging scenarios for test and evaluation of autonomous vehicles,” in

Robotics and Automation (ICRA), 2017 IEEE International Conference on, IEEE,

2017, pp. 1443–1450

G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, J. D. Appler, M. H.

Biggins, K. Chiou, M. A. Huntley, J. D. Stewart, and A. S. Watkins, “Delivering

test and evaluation tools for autonomous unmanned vehicles to the fleet,” Johns

Hopkins APL technical digest, vol. 33, no. 4, pp. 279–288, 2017

G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta, “Adap-

tive generation of challenging scenarios for testing and evaluation of autonomous

vehicles,” Journal of Systems and Software, vol. 137, pp. 197–215, 2018

+
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3.1 Introduction

As autonomous vehicles become more complex, understanding how they will

behave in complicated and uncertain environments poses a greater challenge to

both the engineers who the write the underlying code and the testers validating

the system. The software controlling autonomous vehicles comprises many different

integrated software modules. Designers of the system may have expertise in the

individual modules that form the decision-making components, but the complex

interplay that results in the final emergent behavior of the system cannot be easily

characterized or predicted.

For example, consider an unmanned underwater vehicle (UUV) tasked with a

covert survey mission. The multiple subsystems and behavioral modes of the UUV

must work in concert in the presence of competing priorities, i.e. offsetting the risk

of detection when surfacing with the need to localize via GPS. Competing priorities

are of particular concern for long duration missions where the vehicle must transition

among multiple mission objectives [21]. These systems can exhibit a variety of per-

formance modes, which we define as discrete types of behaviors that can be derived

from observable metrics of the mission. For example, colliding with an obstacle, re-

turning home early, or completing the mission successfully are types of performance

modes. It can be difficult to provide guarantees of the system’s decision-making ca-

pabilities without discovering all of the possible performance modes. This requires

both a simulation framework capable of exercising the autonomy realistically [145]

and a suite of tests that provide coverage of the operating space [25].
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(a) Navigation Scenario for Autonomous Sys-
tem

(b) Performance Modes

(c) TS/SS Boundary Pair (d) TF/SS Boundary Pair

Figure 3.1: Example of a simple navigation scenario for an autonomous system (a).
The mission is to travel from the launch point to the goal waypoint and
then back to the recovery point. The testing space consists of the (X,Y)
position of the pentagonal obstacle. The autonomy is scored based on
whether it reaches the goal waypoint and recovery waypoint. This leads
to 4 performance modes: total success (TS) for reaching both way-
points, mission success (MS) for only reaching the goal waypoint, safety
success (SS) for only reaching the recovery point, and total failure (TF)
for reaching no waypoints. The performance mode plot (b) shows the
resulting performance mode for each (X,Y) position of the pentagonal
obstacle. The highlighted dots on (b) illustrate two examples of perfor-
mance boundary pairs (c)(d) that exist in the testing space.
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Within this ideology, a test scenario can be viewed as a single sample of the

entire testing space. One issue immediately encountered is that the number of pa-

rameters in the testing space quickly increases when attempting to simulate realistic

missions. Moving and static obstacles, environmental factors, time constraints, and

mission types are just a few of the different parameters an engineer may wish to vary

as part of his testing regime. As missions and environments become more compli-

cated, the number of parameters that constitute the testing space becomes too large

to test the autonomy software under all permutations, resulting in the familiar curse

of dimensionality. Simulated mission duration could be several hours long and if the

autonomy under test cannot be run faster than real time, the number of samples

will be severely restricted. Therefore, we must carefully select the scenarios that

will be simulated with the goal of obtaining the maximum amount of information

about the autonomy under test.

To do this, we focus our attention on performance boundaries, defined as re-

gions in the testing space where small changes in the scenario result in transitions

between performance modes. The canonical example is how a small change to the

position of an obstacle can cause the system to take a different path and fail to reach

its goal as illustrated in Fig. 3.1. With regards to testing, scenarios that lie along

such performance boundaries are high-value because they evoke behavior and deci-

sion changes made by the autonomy. Due to the black box nature of autonomous

systems, understanding where these transitions occur is key to predicting the per-

formance of the system and is useful for both design, i.e. fixing software bugs,

and validation purposes, i.e. understanding the likelihood of triggering a certain
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behaviors in different regions of the testing space. Furthermore, scenarios that lie

along performance boundaries are also the most sensitive to changes in the system;

thus, they are useful for determining the performance regression between software

versions.

Given the goal of discovering performance boundaries, we can reduce the total

number of runs required by tailoring our scenario generation techniques to prefer-

entially sample in places where performance boundaries are predicted to occur. In

this chapter, we introduce a novel adaptive search technique designed specifically

to find performance boundaries, with a particular focus on the ability of the search

technique to scale to a high number of samples and high number of dimensions.

In addition, we provide a method for identifying performance boundaries in the

resulting data sets through unsupervised clustering techniques.

The remainder of this chapter is organized as follows. In Section 3.2 we dis-

cuss our framework for software-in-the-loop testing. In Section 3.3 we present the

problem formulation and an overview of our approach. In Section 3.4 we discuss

an adaptive sampling approach for generating test scenarios and the objective func-

tion for sampling along the performance boundaries. In Section 3.5 we introduce

a method for identifying performance modes and selecting test scenarios which lie

upon the performance boundary. In Section 3.6 we look at the performance of other

adaptive sampling techniques on synthetic test functions. In Section 3.7 we present

the results of a case study where the testing methodology is applied to a realis-

tic UUV mission. Finally, in Section 3.8 we summarize our findings and introduce

outstanding issues for further research.
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Figure 3.2: A flowchart of the Range Adversarial Planning Tool (RAPT) frame-
work for generating test scenarios. 1) The user defines a mission and
how vehicle performance should be scored. 2) The RAPT simulation
framework manages the launching of runs and parsing of results. 3)
Adaptive search algorithms iteratively generate new scenario states to
be run in simulation based on previous results. 4) Boundary identifi-
cation algorithms cluster the scenarios by performance type and rank
them based on distance to performance boundaries.
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3.2 Background

In this chapter, we introduce a new experimental design process for generating

test scenarios for any autonomous system utilizing software-in-the-loop simulation

and adaptive sampling, which we call the Range Adversarial Planning Tool (RAPT).

The goal of RAPT is to assist test engineers in two regards: (1) To help them

understand the decision-making process of the Autonomy Under Test (AUT) and

(2) to aid in designing the final suite of tests for field testing. This is a simulation-

based testing framework designed to be applicable to any autonomous system. In

this section we give a brief overview of the infrastructure components illustrated in

Figure 3.2. The algorithmic components are discussed in more detail in Sections 3.4

& 3.5.

3.2.1 State Space

The proposed testing process begins with a test engineer selecting which el-

ements of the scenario will be varied during the test generation process. These

elements create a parameterized scenario and their ranges constitute the testing

state space, hereafter referred to simply as the state space. Examples of scenario

elements used in past search-based generation techniques include obstacle configu-

rations for ground vehicles [23], [69], sensor ranges in self-driving car applications

[146], and ranges of relative bearings and distances for aircraft encounters [13], [14].

In our system, the state space is defined by a set of configuration files (known

as state space files) that describe the environmental settings, mission elements, and

38



vehicle parameters. These settings include ranges for different simulation elements

such as the time of day, the number and location of obstacles, different mission types,

etc. The number of variable simulation elements in the state space constitutes its

dimensionality. Individual scenarios which are passed to the simulator are created

based on specific instantiations of each element within their respective state space

ranges.

3.2.2 Score Space

The score space of the autonomy is defined in a similar fashion to the state

space. Because the reasoning component of the AUT is treated as a black box, the

test engineer must specify metrics on which the AUT is scored based on externally

observable attributes. These could include binary metrics such as mission comple-

tion, discrete metrics such as the number of safety violations, or continuous metrics

such as the amount of fuel consumed. While some scoring metrics may produce con-

tinuous values, these can be mapped to discrete behaviors or performance modes

based on threshold values, e.g. waypoint success based upon a reaching specific

distance from the waypoint.

Unlike search-based test generation techniques used in the past, this formu-

lation does not require the user to define an objective function, which are often

difficult to design and require careful tuning of the scoring parameters. The frame-

work supports an arbitrary number of score metrics, however the larger the score

space, the more performance modes that will be identified, potentially diluting a
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search.

3.2.3 Simulation Framework

Our target system under test (SUT) is a simulation of the AUT performing

the mission described in the state space files. It takes scenario states from the test-

generation software as an input and converts those into scenario files that can be

read by the simulator. An external job scheduler manages the transfer of scenario

files, launching of simulations on a computing cluster, and retrieval of results from

completed runs. These jobs are submitted in batches tailored to the size and speed

of the cluster. After the simulation is complete the results are scored and returned

to the test-generation software.

3.2.4 Recommended Test Suite

Once all submitted scenarios have been run, the performance modes are iden-

tified and the test scenarios are ranked based on their distance from the performance

boundaries. In addition we return sets of boundary pairs which represent different

types of performance transitions. For example, one set may contain examples of the

AUT on the boundary between completing and failing its mission, while another

boundary set may contain examples of the AUT on the boundary between success-

fully returning home and running out of battery. Each pair of scenarios across the

boundary has minimal state differences in the scenario, thus providing clues as to

the relevant features that instigated the transition in performance modes.
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3.3 Problem Formulation

What differentiates our process from previous work is the concept of perfor-

mance boundaries. As defined earlier, performance boundaries are regions of the

testing space where the performance of the AUT is uncertain, i.e. small alterations

to the scenario configuration can cause transitions in the AUT behaviors which re-

sult in large performance changes. This section first defines terms that are used

throughout the remainder of the chapter and then provides an overview of the prob-

lem approach.

3.3.1 Definition of the SUT

(i.) The scenario configuration state space X n = [X1, ...,Xn] of n elements. Each

element in the state space vector represents a variable in the environment,

mission, or vehicle parameters with a range of possible values (obstacle posi-

tions, time windows, mission priorities, etc.). The state space in this context

is synonymous with the testing space, i.e. the space of all possible tests that

could be performed based on the parameters specified by the test engineer.

(ii.) A scenario input state is defined as the vector X = [x1, x2, ..xn] where ∀i ∈

n : xi ∈ Xi. The scenario is a specific instantiation of each parameter from

their corresponding state space range. Thus, the state space consists of all

the possible scenario configurations that could be tested. A sample set of N

scenarios states is defined as XN = [X1, .., XN ]. The normalized state vector
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where each x̄i ∈ [0, 1] is defined as X̄.

(iii.) The performance score space Ym of m parameters where each output score

is defined as the vector Y = [y1, y2, ..ym]. Each element in the score vector

represents a performance metric by which the autonomy is evaluated, such as

percentage of fuel consumed or number of waypoints reached. A sample set of

N score vectors is defined as Y N = [Y1, .., YN ]. The normalized score vector

where each ȳi ∈ [0, 1] is defined as Ȳ .

(iv.) A black box system under test (SUT) function F(XN) = Y N . It accepts a set

of N input states XN = [X1, ..., XN ] and returns sample set of N score vectors

Y N = [Y1, ..., YN ]. For our purposes this providing a scenario configuration

as input, running the simulation until completion, and receiving the scoring

metrics against the history of the simulation as output.

(v.) A performance mode is defined as P ⊂ Y m where ∪iPi = Y m and ∀i 6=

j,Pi ∩ Pj = Ø. In other words a performance mode is a category of scores

which represent a distinct type of performance for the system under test.

(vi.) The boundary region Ba,b ⊂ X between performance modes Pa and Pb is

defined as the region where ∀Xi,a ∈ Ba,b, ∃Xj,b ∈ Ba,b s.t. |Xi,a −Xj,a| < Dε

and vice versa. Where the Dε is the width of the boundary region and set of

all boundaries that exist for the SUT in question is referred to as B

(vii.) A boundary pair bij ∈ Ba,b is a set of two samples each of which is the other’s

closest neighbor in a difference performance mode. It is defined as bi,j =
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[Xi, Xj, Yi, Yj] where |Xi − Xj| = Dij < Dε, Xi, Xj ∈ XN , and Yi ∈ Pa,Yj ∈

Pb|a 6= b.

(viii.) The sampled boundary region is defined as Sa,b(X
N , Dε) ⊂ Ba,b where ∀Xi ∈

Sa,b(X
N , Dε), ∃Xj ∈ XN such that |Xi −Xj| < Dε and Xj ∈ Ba,b.

3.3.2 Problem Statement

3.3.2.1 Search Problem

Given a SUT function along with the state space and score space which define

its inputs the search function is defined as follows:

Γ(F ,X n,Ym, N) = LN . (3.1)

Where N is the number of samples allocated to the search. The output, LN , is a

set of labeled samples LN = [XN , Y N ] consisting of the queried states XN and their

respective scores Y N .

Our objective is to generate the set of samplesXN which maximizes the volume

of the sampled boundary regions Sa,b(X
N , Dε) for all boundaries in B for the smallest

possible value of Dε. This region is illustrated in Figure 3.3.

The number of performance modes of the SUT and the mapping from score

to performance mode are not known a priori.
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Figure 3.3: A performance boundary between modes Pa and Pb is shown in the solid
line with the boundary region with width Dε shown in the dashed lines.
Samples from the set XN are illustrated with either a square or circle
depending on their performance mode. The sampled region S(XN , Dε)
is shaded green.

3.3.2.2 Boundary Identification Problem

We formally define the boundary identification algorithm as a function

C(L) = B (3.2)

which accepts a set of labeled samples, LN , and returns the set of identified perfor-

mance boundaries:

B = [B1,2, B1,3, ..., BL−2,L, BL−1,L] (3.3)

where L is the number of identified performance modes and N is the number of sam-

ples in LN . Each boundary Ba,b is the set of samples that borders the performance

modes a and b.
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Figure 3.4: An overview of the adaptive sampling and boundary identification pro-
cess.

Our objective is to successfully identify all samples in LN which exist on the

boundaries between performance modes and provide an estimate of their distance

from the boundary.

3.3.3 Overview of the Algorithmic Approach

The scenario configurations we consider to be the most informative are those

which occur in the transition regions between performance modes, previously re-

ferred to as the performance boundaries. The reasoning behind this claim is that

it is ineffective to test the system in regions of the state space where performance

is constant and known, i.e. scenarios where the system will either almost surely

succeed or almost surely fail. Much more information about the system is gained
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by testing in regions where critical decisions must be made by the autonomy that

result in variable performance. Additionally, the traditional strategy of testing un-

der worst-case conditions does not fully characterize the performance envelope of

the system; there may be failure modes or performance boundaries that occur in

regions other than worst-case conditions that are not immediately apparent. Given

a user-defined state space, X n, and a limited number of queries, N , to the autonomy

simulation, our objective is to find the performance boundaries of the system. As

performance boundaries are where small changes in the state cause a large change

in the score this can also be conceptualized as large gradients or discontinuities in

autonomy performance.

To achieve this goal, the approach presented in this chapter is broken into

two primary phases: search and identification. This cycle for test generation is

illustrated in figure 3.4. During the search phase we utilize an adaptive sampling or

active learning approach to select new test scenarios that are run by the autonomy

simulation. In the nature of adaptive sampling, these new test scenarios are selected

based on the performance score of the autonomy from previous simulations. We use

a new modular adaptive sampling strategy to model the autonomy performance

and preferentially select regions that might indicate performance boundaries. The

high dimensionality of any realistic state space for an autonomy under test makes it

intractable to simply perform an exhaustive spread of simulations. Thus, we have

focused our problem of searching the state space primarily on adequate coverage of

the boundary regions while minimizing the number of simulations.

In the identification phase, the samples generated during the search phase are
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used to identify the performance modes in the resulting data using unsupervised

clustering algorithms. Once test cases have been classified by their performance

mode, the boundaries between performance modes are identified and the tested

scenarios adjacent to boundaries can be used to aid in live test design.

3.4 Search Strategy

3.4.1 Search Problem

As discussed previously, the goal of the search algorithm is to create the highest

quality set of test scenarios given the allocated number of simulations. This involves

creating both an informative and diverse set; the search algorithm must choose

samples in areas that indicate the presence of a performance boundary while also

preventing oversampling by continuing to explore the state space with samples in

untested regions.

Unlike prior works on scenario generation [14], [23], [68] which utilize global

optimization techniques such as genetic algorithms, we take an adaptive sampling

approach. We do so for two important reasons. The first is that the objective

of this dissertation is to fully discover and characterize all possible performance

boundaries, not just the most extreme ones that many multimodal optimization

techniques would produce. The second is that optimization objective functions are

notoriously difficult to design and are typically system dependent. Thus, we focus on

exploiting underlying features of the performance surface to discover the regions of

interest, allowing for a more general approach that does not require domain-specific
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knowledge.

3.4.2 Adaptive Sampling

Adaptive sampling is an iterative process consisting of submitting queries to

the SUT, using the returned scores to generate a meta-model, and then applying

an information metric to the meta-model to generate a new set of queries. This is

an alternative to space-filling designs, such as Latin-Hypercube or Sobol sequences,

which attempt to optimize uniform coverage and density and are precomputed based

upon the size of the state space and the available number of queries. In this chapter

we utilize a generalized framework for adaptive sampling which allows for changing

the underlying meta-models and information metric. This is more formally defined

in Algorithm 1. The adaptive sampling algorithm uses the normalized unit states

X̄ and scores Ȳ for the information metrics.

There are multiple query strategies that can be used for adaptive sampling

including entropy, model improvement, uncertainty, and density. However, all these

strategies were developed for the purposes of maximizing the accuracy of the un-

derlying meta-model, whereas our objective is to generate samples that exist near

performance boundaries. Thus, we have designed our metrics to look for areas with

high gradients that have not yet been sampled. This is similar to the exploration-

exploitation approach of the LOLA-Voronoi algorithm [80] and as such we have

included it as one of our baseline comparisons. The Voronoi tesselation present in

LOLA-Voronoi, however, scales poorly with both the number of samples and input
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Figure 3.5: Plots showing the evolution of the information metrics as samples are
collected for the Custom2D synthetic function. From left to right are
the Gaussian Process meta-model, contour plots show the NNDE and
NNVE values σK and dK , and a contour plot of the information MNNDV .
The model in Batch 1 is only trained on 50 samples, leading large areas
of similar information. The model after Batch 15 has collected 550
samples, leading to more sharply defined predictions of the boundary
regions.

dimensionality. For n points in Rd, it takes O(nlogn + n[d/2]) computational time,

making it infeasible for higher dimensional problems.

We introduce two new meta-model metrics for the purpose of discovering per-

formance boundaries: one which uses a Gaussian Process Regression (GPR) meta-

model and one which uses a k-nearest neighbor technique for density and variance

estimation. As the Gaussian process scales with O(n3) and the k-nearest neighbors

algorithm which scales with O(knlogn), we believe these can offer better scaling

as the number of dimensions and the required number of samples increases. These

meta-model evaluators are defined as M(X) - they take existing samples as inputs

and return the expected information gain of a proposed query as an output.
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The GPR meta-model uses a zero mean function and a Matern-covariance

function [88] with nu = d/2 and isotropic distance measure. Given a proposed

query it returns the mean value µ, the first-order gradient of the mean 5µ, and the

variance of the query σ. The Matern-covariance is proportional to the distance to

the nearest sample; thus, variance in this case makes it an appropriate reflection of

how far away the query is from one of the training samples. The GPR meta-model

evaluator uses the magnitude of the gradient and uncertainty as follows:

MGPR(X̄) = (| 5 µ(X̄)|)g · (σ(X̄))v (3.4)

where g and v are tuning parameters to balance exploration of high uncertainty

regions with high gradient regions.

The Nearest Neighbor Density and Variance (NNDV) evaluator estimates the

local properties of a query using its nearest neighbors. We utilize a k-nearest neigh-

bors density estimate [147] and variance estimate [148] to obtain the predicted vari-

ance σK of the sample and its mean distance dK to its neighbors. The information

is then computed as follows:

MNNDV (X̄) = (σK(X̄))g · (dK(X̄))v (3.5)

where g and v are the same tuning parameters used in the GPR meta-model evalu-

ator. The evolution of this information metric is illustrated in Figure 3.5.

When dealing with systems which have categorical scores, we need to choose
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a different variance measure for our information function. For these systems we

use the ”unalikeability” measure u described in [149]. This metric is 1 when every

element of the set is from a different category and 0 when all elements of a set are

members of the same category. It is defined as follows,

u =
Σi 6=jc(xi, xj)

n2 − n
(3.6)

where

c(xi, xj) = {
1, xi 6= xj

0, xi = xj

(3.7)

In typical adaptive sampling fashion, the meta-model evaluators are used to

select the subsequent batch of samples based on the set of queries with the highest

expected information gain, as outlined in Algorithm 1. Currently our methods re-

train the meta-model evaluator at every iteration. This brings the computational

complexity for the entire search process is O(n
4

L
) for the GPR meta-evaluator search

and O(k n
2

L
logn) for the NNDV meta-evaluator search where L is the number of

samples in each batch. This could be improved in future implementations by utiliz-

ing meta-models which can be iteratively updated with new data instead of being

trained from scratch after each iteration.

3.4.3 Sensitivity Scaling

When applying the search techniques to a realistic SUT with a user-defined

state space, there may be a high number of input states and output scores. Addi-
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Algorithm 1 AdaptiveSearch(SUT,X n,M, N)
Input: A function representing the system under test F , a scenario state space Xn, a meta-model evaluator
M, and a desired number of samples N

Output: A set of labeled samples L
Select a query batch size of L and an initial batch of randomly selected query states XL

0 . In addition,
choose a number of proposed queries, p, to perform per iteration.
for all i ∈ [0, N/L] do
F(XL

i ) = Y Li
concatenate(L, [XL

i , Y
L
i ])

Train M on labeled sample set L
Randomly select a new set of proposed queries Xp : p > L
XL
i+1 = argmaxXL⊂XpM(X̄L)

end for
return L

tionally, the state variables which actually contribute to the output of the system

may be not known a priori. Reducing the range and dimensionality of the state

space can result in a much more efficient and effective search. We can achieve this

by applying sensitivity analysis techniques that search only over the state variables

which contribute to the system output and treat the remainder as independent noise.

This is done by scaling the range of each state based on its input sensitivity. Thus,

states with little importance appear to be identical with regard to the distance

metric while the ranges of highly influential states are magnified to provide a more

focused search.

In this work, state sensitivities are determined by fitting a classification tree

to the data and computing variable importance V I(x) as described in [150]. The

computational complexity of training a classification tree is O(mnlogn) where m is

the number of input features. Thus, while it is a non-trivial calculation, it does not

change the overall complexity of the search algorithm.
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The sensitivity-scaling information metric is given by

Mscaled(X̄) =
1

M

M∑
i=0

MNNDV (X̄ ◦ V Ii(X̄)) (3.8)

where V Ii(X̂) is the vector of variable importance measures for the classification

tree trained on output Ȳi, and M is the number of score outputs. Moving forward

we refer the scaled states as X̂ = X̄ ◦ V Ii(X̄) The effects of applying sensitivity

scaling are discussed in 3.6.3. We refer to this variant as the Scaled Neighborhood

Density and Variance (S-NDV) evaluator.

3.5 Boundary Identification

3.5.1 Scenario selection Problem

The data set of simulation results generated during the search phase can easily

approach hundreds of thousands to millions of runs. Analyzing this data is not a

trivial task - there may be thousands of examples of autonomy behavior that need

to be diagnosed. By clustering scenarios with similar behaviors and identifying the

boundary sets between these clusters, we provide a means for a test engineer to

methodically evaluate the trending behaviors of the system.

The selection of the algorithms used in boundary identification was driven by

two needs. The first is the lack of a priori knowledge of the number of performance

modes. The second is that there are no guarantees about the shape of the perfor-

mance mode clusters. These two facts preclude methods such as k-means clustering
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and Gaussian mixture models from being applied. In addition, preference was given

to techniques that required minimal hyperparameter tuning if given normalized data

sets with similar numbers of samples.

3.5.2 Identifying Performance Modes

The nature of black box testing dictates that we cannot look inside the AUT

decision engine to determine which behavior is executing. Instead, we must use

externally observable metrics and infer changes in behavior from changes in the

performance of the system. Our current approach is to apply unsupervised clustering

techniques to identify the performance modes of the system.

In cases where the autonomy is scored using discrete values, e.g. binary criteria

for mission success and safety success, it is trivial to identify distinct performance

modes from the resulting scores. In these instances, the performance mode is simply

the combination of all the discrete score labels. In order to apply our techniques to

systems which provide continuous outputs, we utilize mean shift clustering [151] on

the score space to identify the performance modes and classify the samples. Once the

samples have been classified with respect to their performance mode, they are then

subjected to DBSCAN clustering [152], a density-based clustering technique which

groups contiguous sets of samples together. These algorithms were selected because

they do not require a priori knowledge of the number of possible classifications or

the landscape of the score space. If the hyperparameters are scaled appropriately

according to the state space and score space, they provide an efficient means of
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identifying performance modes from continuous outputs.

Once samples have been classified by performance mode, the boundaries are

composed by performing a pair-wise comparison between every performance mode

with a differing performance mode. We utilize a k-nearest neighbor detection algo-

rithm to determine the closest neighbor in a differing performance mode for each

sample. Any samples that are within Dε distance of their nearest neighbor in the

differing performance mode are added to the final boundary set, i.e. Dij < Dε. The

final boundary set is then constructed from boundary pairs defined as

Ba,b = [b(a,b),1, ...., b(a,b),k] (3.9)

where a and b signify performance modes Pa and Pb, respectively. The bound-

ary pairs b(a,b),i are composed of points in the sampled set LN and satisfy:

b(a,b),i : Yi1 ∈ Pa, Yi2 ∈ Pb, |Xi1 −Xi2| ≤ Dε (3.10)

This approach is defined further in Algorithm 2.

3.5.3 Boundary Scaling

Similar to Section 3.4.3, high-dimensional system dictate the use of variable

importance scaling during the k-nearest neighbors search and DBSCAN steps of

the boundary identification process. This involves computing X̂N as described in

Section 3.4.3, utilizing X̂Y in place of X̄Y during the DBSCAN clustering, and finally
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Algorithm 2 BoundaryIdentification(L)

Input: A set N of labeled samples L containing the input states XN and output scores Y N

Output: A set of identified performance modes, a collection of boundaries B, and distance estimate vector
D
Let λP be the threshold distance for the flat kernel mean shift function, εC and nmin be the radius and
minimum member parameters for the DBSCAN function. Let Dε be the maximum distance between
two samples to be considered part of a boundary.
P = MeanShift(Y N , λP ), identify the performance modes
for all Pl ∈ P do

Create the set of all states belonging to that performance mode
XPL = Xi|Yi ∈ Pl
Append the new cluster of states CY = [XPL , Y ] to the list of existing clusters
C _ [CY ]

end for
for all CY ∈ C do

Create a set of subclusters for the regions of interest using the DBSCAN algorithm

ĈY = DBSCAN( ¯XPL , εC , nmin)
Append the subclusters to the complete set of clusters

Ĉ _ [ĈY ]
end for
for all ĈY i and ĈY j ∈ Ĉ|Yi 6= Yj do
Dij = knnsearch(X̄Pi , X̄Pj )
Bij = [XPi , XPj , Yi, Yj ]∀XPi , XPj |Dij < Dε

end for
return B

using X̂Y i and X̂Y j during the k-nearest neighbors search. The effects of applying

this scaling on the final boundary pairs are explored further in the case study of

Section 3.7.

3.5.4 Boundary Threshold Criteria

A reasonably complex scenario could contain several dozen input parameters.

This means we will likely only be achieving sparse coverage of the state space even

after applying the adaptive search approach. Special consideration of the distance

threshold, Dε, must then be given to account for changes in number of dimensions,

number of samples, and the number of expected performance modes.

As such, we have added an option to allow for a scaled threshold criteria

based upon the distribution of estimated boundary distances for the entire data set.

Therefore, for systems where the true boundary is unknown, we replace the metric
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(a) 2D UUV Scenario Fuel Levels (b) Custom2D Surface (c) Custom2D Top-Down

(d) 2D UUV Scenario Perfor-
mance Modes

(e) Plates2D Surface (f) Plates2D Top-Down

Figure 3.6: Comparison of the synthetic test functions (b)(e) with results from the
UUV scenario (a)(d) presented in Figure 1. The red lines in the top-
down views (c)(f) represent where the true boundary locations are for
the synthetic functions.
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Dij < Dε with a quantile threshold, where the boundary pairs b(a,b),i are composed

of points in the sampled set LN and satisfy:

b(a,b),i : Yi1 ∈ Pa, Yi2 ∈ Pb, P r[DK < Di] ≤ qB (3.11)

Where qB is the quantile threshold. DK is the estimated boundary distance

for every boundary pair in Ba,b, and Di = |Xi1 − Xi2| is the distance between the

states of pair b(a,b),i. For the results of this chapter, we utilize the 20th percentile as

our quantile threshold.

3.6 Results

3.6.1 Test Systems

Several candidate systems were developed to evaluate the adaptive search and

boundary identification algorithms. The first category of candidate systems was

comprised of mathematical test functions with performance boundaries that were

known a priori. The second category consisted of a simple unmanned undersea

vehicle (UUV) scenario, presented in Section 3.7.

Three synthetic test functions were developed in order to evaluate the algo-

rithms against a known mathematical surface. The intention in designing custom

test functions was to mimic the wide variety of features and boundaries that may

be present in an autonomous system’s performance landscape. The three functions

are as follows:
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(a) Sobol Design (b) LOLA-Voronoi (c) GPR Search (d) NNDV Search

(e) Sobol Design (f) LOLA-Voronoi (g) GPR Search (h) NNDV Search

Figure 3.7: Scatter plots of the different sampling techniques on the Custom2D (top
row) and Plates2D (bottom row) test functions. The 1000 samples taken
are in blue and the true locations of the boundaries are in red.

• Custom 2D - Two input dimensions with one continuous unlabeled output.

It contains peaks, valleys, plateaus and cliffs as features of interest (Figure

3.6(b)(c)).

• Plates 2D - Two input dimensions with one discrete output. There are 5 score

categories, i.e. representative performance modes (Figure 3.6(e)(f)).

• Plates 3D - Three input dimensions with one discrete output. There are 5

score categories, i.e. representative performance modes.

These low-dimensional test functions have the advantage that they are easy

to visualize and have performance boundaries that were known a priori. The per-

formance boundaries were defined as the local maxima of the first derivative of each

respective test function.
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3.6.2 Search Performance on Synthetic Functions

We evaluated the performance of the search algorithms presented in Section

3.4 according to the metrics of Section 5.3.2, i.e. based on their ability to identify

features in the test functions and sample near the performance boundaries. For

comparison, we chose a Sobol sequence design as the baseline space-filling sampling

approach. To compare against the current state-of-the-art in adaptive sampling,

the LOLA-Voronoi sequential design method with a Blind Kriging model was also

included for comparison. The LOLA-Voronoi code is accessible using the SUMO

software toolbox [153] in MATLAB. We compared these methods against our adap-

tive search algorithms using both the GPR-based and NNDV information functions.

We use the following metrics for each of the mathematical test functions: precision,

coverage, convergence, and runtime. The results of these tests are shown in Figure

3.8 and summarized in Table 3.1.

The search methods introduced in this chapter outperformed both the space-

filling approaches as well as the popular LOLA-Voronoi adaptive search in all of the

evaluation metrics with the exception of runtime. This is particularly true in cases

where the boundaries are sharply defined, as in the Plates2D test function. As shown

in Figure 3.7, the GPR-based search concentrated nearly all of its samples in the

regions near the boundaries with minimal cases selected in the uninteresting regions

of small gradient. More importantly, it also managed to obtain near full coverage

of the boundaries in under half the samples of the Sobol space-filling method. The

results are even more pronounced for the NNDV search algorithm, with the added
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(a) Plates 2D

(b) Plates 3D

Figure 3.8: Convergence plots of mean distance, precision, and coverage for the
Plates2D (above) and Plates3D (below) functions
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benefit of shorter runtime as well.

An interesting result of the two-dimensional system is that precision begins

to worsen after the coverage reaches 100%, indicating that the search techniques

saturate the boundary regions and begin exploring the rest of the space. In Figure

3.8, it can be seen that the GPR obtains samples closer to the boundary but sacrifices

precision and coverage. When comparing the 2D test functions with the Plates3D,

it becomes apparent that the added dimension greatly increases the number of cases

necessary to obtain coverage of the boundaries. In two dimensions, the NNDV search

converges in under 1000 samples. However, in three dimensions, more than 10,000

samples are required to reach 90% coverage. The other search methods, meanwhile,

only achieve half of this coverage.

For the given number of samples, the LOLA-Voronoi search did not distin-

guish itself significantly from a space-filling design. One interesting feature of this

method is the periodic effect of increasing and decreasing precision apparent in the

convergence plots. This indicates that the LOLA-Voronoi algorithm has distinct

phases of exploiting the existing model and searching in areas of high gradient vs.

exploration where it tries to spread out its samples as much as possible. This is

likely due to the fact that it was originally designed to minimize global model-

fitting error. The techniques proposed in this chapter have the different objective

of searching for performance boundary regions, resulting in sample sets that con-

centrate on high-gradient regions. Despite the superficial similarities in approach,

the problem of identifying boundary regions in an unknown landscape is something

that traditional adaptive sampling techniques are not tailored to achieve.
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3.6.3 Effects of Sensitivity Scaling

A simple comparison of the search performance between the 2D and 3D test

functions illustrates the challenge posed by higher dimensional landscapes. As in-

troduced in Section 3.4.3, this necessitates the need to scale the state space based

on the sensitivity of each state input. Scaling the input states based on sensitiv-

ity reduces the effects that non-contributing variables (i.e. variables that act as

noise) have on the search process. To evaluate whether sensitivity scaling had the

desired effect, two types of approaches were tested: input screening for removing

non-contributing variables and variable separation for dealing with multiple outputs

with disjoint inputs.

3.6.3.1 Variable Screening

We evaluated the NNDV and S-NDV search strategies against a variant of

the Plates3D synthetic function where additional non-contributing inputs were ar-

tificially added. For example, if four non-contributing variables were added, the

resulting function would be a 7D system, where three of the inputs contributed to

the function output and four of the inputs acted as noise. The GPR-based search

technique was not included in this analysis because it becomes computationally

infeasible in high dimensions and large datasets. Each search was run for 10,000

samples and evaluated for precision and coverage. The results of applying the search

technique on systems with varying numbers of non-contributing inputs (between 0 to

10) can be seen in Figure 3.9. As more non-contributing input states are added, the
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Figure 3.9: Variable importance plot (top) showing the variable senstivity for each
input of the 7D input system. Convergence plots (bottom) showing the
performance of each search method as the number of non-contributing
variables increases.
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Figure 3.10: The variable importance for each of the 4 outputs of the 8 input sys-
tem correctly reveals the relationship between the input and output
variables (above). The effect on precision and coverage for each of the
techniques as number of subfunctions searched simultaneously increases
(below).

NNDV search quickly converges to having similar performance as the space-filling

Sobol design. The S-NDV search suffers a slight decrease in precision (approx.

15%), however, this is minor when compared to the decrease for the NNDV search

(approx 90%). This clearly demonstrates the benefits of using variable screening for

sensitivity-based scaling of the state space. It is possible that performance could

be further improved by completely eliminating non-contributing variables from the

search rather than simply scaling their input range. This extension is being consid-

ered for future iterations of the algorithm.
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3.6.3.2 Variable Separation

In addition to variable screening, the S-NDV algorithm was tested on systems

where all input variables were utilized, however, each input dimension may have

contributed to different output variables. This was done by creating a composite

multiple-input, multiple-output function of several 2D synthetic test functions. The

final system was defined as

fcomposite(x) = [f1(x1, x2), f2(x3, x4), f3(x5, x6), f4(x7, x8)] (3.12)

which results in an 8D input, 4D output function. The search process on the compos-

ite function was executed in four different ways: (1) with each subfunction searched

independently (i.e. 1 output per search), (2) with pairs of subfunctions searched

simultaneously (i.e. 2 outputs per search), (3) with triplets of subfunctions searched

simultaneously, and (4) with all four subfunctions searched simultaneously. The

coverage and precision was computed for each subfunction and the mean for all

subfunctions is shown in the charts in Figure 3.10.

The results are similar to those seen in the previous section. The number

of variables searched simultaneously has no effect on the Sobol design but severely

impacts the NNDV search. While some degradation is seen in the performance of

the S-NDV it still retains improved performance over a space-filling design.
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3.7 UUV Case Study

3.7.1 UUV Mission

As stated previously, the methods of this chapter can be applied to any black

box SUT. In order to demonstrate the ability of our system to discover performance

boundaries in a real system, a case study was performed where the process was

applied to an autonomous UUV software executing a complex mission in a medium

fidelity simulation environment. The state space was designed with input from test

engineers at the Naval Undersea Warfare Center Division Keyport to represent a

realistic testing scenario for a medium-sized UUV.

The UUV was required to complete multiple mission objectives, as well as

comply with all safety criteria. The mission objectives were to follow a set of pre-

determined waypoints, perform station-keeping in a set of three prioritized mission

areas for a given amount of time, and reach a transmission area within a specified

time window. A mission time criteria was also included such that the UUV must

complete all of the mission objectives within an overall mission time window. The

safety objectives were to avoid all obstacles, remain inside of the operational area,

remain outside of a no-go region, and to return home to a recovery point. Addition-

ally, tidal factors were considered by including the mission start time as a variable

parameter. All elements of the mission were known a priori by the autonomy except

for the positions of the obstacles. The mission elements are defined in more detail

in Table 3.2 and illustrated in Figure 3.11.
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The autonomy performance of a scenario was scored based upon criteria that

results in one of four classifications, i.e. performance modes. The first category of

autonomy performance is a total failure (TF) - this is where the UUV fails any of

the safety objectives as well as any of the mission objectives. The second category

is safety success (SS), where the UUV fails any of the mission criteria but passes

all of the safety criteria. Mission success (MS) is where the UUV completes all of

the mission criteria but fails any of the safety criteria. Finally, total success (TS) is

where the UUV completes all of the mission criteria and all of the safety criteria.

The simulation environment and autonomy were developed in-house using the

Johns Hopkins APL Autonomy Toolkit (ATK) [110], [154]. In order to test the

ability of the test generation process to detect performance boundaries, the auton-

omy was specifically designed to have suboptimal decision-making. In this way,

the autonomy would produce a more uniform distribution of the different perfor-

mance modes. The simulated system had a maximum speed of 3 m/s and used a 6

degree-of-freedom transit model for underwater vehicles model derived from [155].

It possessed a sonar with a 100-meter range and 120-degree field of view. The en-

vironment possessed a tidal current that varied based on the time of day between 3

m/s due northeast to 3 m/s due southwest with peaks occurring at 2am and 12pm

respectively. This complex mission required multiple behavioral subcomponents.

ATK computes the current priorities for each behavior at every time step and se-

lects which ones will be executed. When multiple behaviors execute simultaneously

the final desired speed and heading is a weighted sum of all the desired vectors. The

behaviors are as follows.
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• Obstacle Avoidance and Waypoint Navigation - A potential field control law

[154] which always executes with the highest priority.

• No-Go Area Avoidance - Causes all no-go areas to be treated obstacles unless

the vehicle is in emergency return mode.

• Crabbing Navigation - Adjusts the vehicle heading to cancel out the effect of

the current.

• Survey - A behavior that sets the current waypoint inside the next unexplored

mission area and loiters for a predetermined time once it arrives.

• Transmission - A behavior that sets the current waypoint at the surface inside

the transmission area and loiters there until all data is transmitted. This takes

priority over the survey behavior.

• Return behavior - Computes the amount of fuel required to reach the recovery

point and returns home once the mission is complete or it determines it does

not have enough fuel to complete the mission. This overrides the survey and

transmission behaviors. If battery levels are critical, it will also override no-go

area behaviors.

3.7.2 Experimental Setup

For our experiment, the state space consisted of 18 variable parameters: the

start time (1), the transmission window start time and duration (2,3), the latitude

and longitude of the transmission area center (4,5), the latitude and longitude of the

69



no-go region center (6,7), the latitude and longitude of the 3 minor obstacles (8-13),

the latitude and longitude of the 2 barrier obstacles (14-17), and the priority order

for the mission areas (18). These state space parameters gave us representative cases

of input states that have a strong effect on the autonomy, such as the tidal force

imposed by the start time, and input states that have a weak effect, such as the

position of a minor obstacle. The start time was varied in a 12-hour period between

midnight and noon, the transmission window was set to open between 30 minutes

after mission start time to an hour after mission start time with a duration between

30 minutes to an hour. Additionally, the transmission area was set to only vary in

position on the western half of the operational area. The no-go region was set to only

vary in position in the southeastern quadrant of the operational area. The minor

obstacles could be varied in position anywhere in the operational area. The barriers

were constrained to vary in position only within 400 meters of the operational area

vertical centerline. All permutations were included for priority order of the mission

areas.

Using this state space, one million runs were submitted to a computing cluster

in batches of ten thousand using both a Sobol space-filling design and the S-NDV

approach. Of the submitted simulations, we were able to collect 850 thousand valid

runs for the Sobol dataset and 883 thousand valid runs for the S-NDV approach.

The remainder were pruned from the dataset due to parameter settings that cre-

ated invalid scenarios for the autonomy (e.g. placing an obstacle over the recovery

point). The samples generated from each of these searches were then passed to the

boundary identification algorithm where the distance threshold, Dε, was set at the

70



Figure 3.11: Depiction of the UUV mission.

80th percentile of all sample pairs for each boundary. Additionally, the DBSCAN

settings εC and nmin were set at 0.2 and 20, respectively.

The number of possible performance boundaries equals the number of possible

combinations of the performance modes. In this case study, the four possible perfor-

mance modes (TF, SS, MS, TS) produce six unique performance boundaries. Since

we do not have ground truth for the locations of the performance boundaries, we

cannot apply precision, convergence, and coverage metrics to the system. Instead

we look at the metrics of distance from the boundary, distribution of performance

modes, and distribution of the boundary types.

3.7.3 Experimental Results

The results from each of the searches continued the trends seen on the synthetic

test functions. After 850 thousand samples, the S-NDV approach had a more even
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Figure 3.12: Results of the performance mode and boundary distributions for the
Sobol and S-NDV search approaches executed on the UUV mission.

Figure 3.13: Results of the boundary pair distances for the Sobol and S-NDV search
approaches executed on the UUV mission.

distribution of samples from each of the performance modes and boundaries. As seen

in Figure 3.12(a), the most common performance mode (SS) was sampled less while

the rare performance modes (MS and TS) were sampled at a higher rate. This led to

a significant change in the resulting performance boundaries (Figure 3.12(b)), where

the distribution of samples on the most common boundary (SS / TF) decreased by

20% while the distribution of samples on the remaining boundaries grew by at

least 50% (Figure 3.12(c)). This trend indicates that the S-NDV algorithm was

significantly better than a space-filling design at sampling the rare performance

modes where it detected underrepresented boundary regions.
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The S-NDV search was also more capable at sampling closer to the boundary.

A histogram of boundary distances for all samples is shown in Figure 3.13(a). This

plot shows the sample pair distances in the unit space, i.e. the distance after each

input state has been normalized according to its state space sampling distribution.

The mean distance from the boundary has clearly shifted in favor of the S-NDV

search, showing a decrease of around 10%. Although a 10% decrease does not seem

particularly significant, when operating in an 18D space, this distance can be put in

context by considering how this translates to the actual scenario parameters. Table

3.3 illustrates the equivalent of a 0.01 normalized unit distance for several of the

input parameters. It can be seen that this accommodates incredibly large shifts in

both time and obstacle position. Thus, in order for performance boundary scenarios

to be useful to a test engineer, they must be as close together as possible. The overall

lower distance of the S-NDV data set is reflected in the generated boundaries where

each boundary is between 4% to 8% closer than those derived from the Sobol data

set (Figure 3.13(c)) .

3.7.4 Example Boundaries

In this section, we examine a few examples of the boundaries found by our

system in more detail. As part of this research effort, we developed a graphical user

interface for exploring the performance boundaries. This tool allows a user to search

scenarios by their distance to particular boundaries. In addition, it presents visu-

alizations of the scenarios on the boundary pair and a parallel coordinate plot that
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(a) Total Success (Scenario 213394) / Total Failure (Scenario 194005)

(b) Safety Success (Scenario 250888) / Mission Success (Scenario
565496)

Figure 3.14: Example performance boundaries for the UUV mission. The top of
each subplot displays a parallel coordinate plot of the normalized input
states and the relative sensitivity each parameter. The bottom of each
subplot provides visualizations of the scenarios that form the boundary
pair in the context of the UUV simulation.
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shows both the normalized input states of the scenarios and the relative sensitivity

of each input parameter.

In Figure 3.14 we have examples of two boundaries displayed on this GUI:

one Figure 3.14(a) is a transition between a total success and total failure while

Figure 3.14(b) is a transition between mission success and safety success. Each of

these cases demonstrate the major problem with potential field navigation, i.e. get-

ting caught in local minima. While this deficiency is well-known without the use

of performance boundaries, the interesting portion of this analysis lies in determin-

ing whether the boundary is a useful tool for understanding hidden aspects of the

autonomous system’s decision-making process.

In both boundaries, visual inspection shows only minor variation between the

two cases. The parallel coordinate plots show the change within each state input

more clearly. Inputs which were less sensitive, such as the positions of the minor

obstacles (O4, O5, and O6), are allowed to vary more widely while inputs that

are highly sensitive, such as start time and mission area priority, see much smaller

variations.

In Figure 3.14(a), the UUV paths are identical until the vehicle reaches obstacle

3 (O3). At this point, it navigates successfully in Scenario 213394 while in Scenario

194005 it fails to get around the barrier. For a test designer, this may indicate a

situation they will want to avoid so that the test article is not lost in the water.

For an autonomy developer, it can provide insight about which approach angles and

obstacle configurations cause problems for their autonomy that they could fix in

later versions.
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In Figure 3.14(b) the difference in the scenarios is less obvious via visual inspec-

tion. Again, we can refer to the parallel coordinate plot to analyze and diagnose the

performance. In Scenario 250888, the autonomy does not interact with many of the

elements that see high variations, such as the minor obstacle positions and no-go re-

gion. Additionally, elements which are likely to have an impact on the performance,

such as start time and mission area priority, do not change. By eliminating these

factors from the diagnosis, the engineer is left with the transmission area start time

and window length, elements which differ slightly between the two scenarios and are

computed to be highly sensitive. In both scenarios, the autonomy clearly heads to

the transmission region after failing to find a path around the barriers. However, the

shorter time window in Scenario 565496 means that the autonomy makes a decision

to head to the transmission area earlier. Ultimately, this means less fuel is spent

trying to pass the barrier and it is left with enough fuel to complete the mission.

Further analysis of the safety performance in Scenario 565496 shows that while the

autonomy is able to complete all of the mission areas, it is unable to navigate out

of the local minimum made by the no-go region and the barriers. As time and fuel

deplete, the safety protocols of the autonomy force it to travel through the no-go

region in order to make it to the recovery point. This boundary provides valuable

information to the test engineer about how the transmission window affects many

aspects of the autonomous system’s decision-making process.
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3.8 Summary

In this chapter, we introduced a novel methodology for generating challenging,

diverse test cases for an autonomous vehicle based upon discovery and identification

of performance boundaries. The two primary intellectual contributions were a set

of new objective-less adaptive sampling algorithms designed to find performance

boundaries. The first was the NNDV algorithm, which was shown to outperform

both uniform random testing strategies and state-of-the art adaptive sampling algo-

rithms at generating high-resolution samples along performance boundaries. This

adaptive sampling approach does not require the creation of system specific objec-

tive functions. It also specifically designed to handle systems with discontinuous and

non-convex response surfaces. The second contribution was S-NDV Algorithm was

shown to retain performance as the number of dimensions increase. Outperforming

the NNDV algorithm on functions with non-contributing inputs. This allows us to

scale our search to 18 input dimensions where previous methods had only addressed

as many as 6.

The technique of searching for performance boundaries has applications to any

autonomous system and mission. It can easily be adapted to any ground, air, sea-

surface, or space platform and any state space that can be parameterized. In the

next chapter we will discuss the process of applying this test-generation software to

create actual field tests and compare the results on hardware to those predicted by

the simulation.
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Test System Sobol LOLA GPR NNDV
Design Voronoi Search Search

Custom2D Based on 1000 Samples
Precision 6.4% 9.53% 11.6% 19.2%
Coverage 31.76% 49.0% 48.43% 59.2 %
Runtime(sec) 0.791 27.2 2.96 0.645
Convergence 800 800 700 700
Plates2D Based on 1000 Samples
Precision 6.4% 6.58% 11.6% 19.2%
Coverage 31.7% 39.4% 48.4% 59.2 %
Runtime(sec) 0.791 31.9 2.96 0.64
Convergence 1100 960 600 500
Plates3D Based on 3000 Samples
Precision 3.46% 4.22% 7.43% 12.17%
Coverage 1.31% 1.526% 2.64% 4.65 %
Runtime(sec) 0.233 246.0 32.7 2.12
Convergence 26200 N/A 21300 12100

Table 3.1: Comparison of Search Methods
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Element Description
Waypoint A recommended target to pass through. It is not

required for mission success.
Mission Area A 500x500 meter region that the UUV

must enter and remain inside of for a
predetermined amount of time. It must complete
each mission area in the correct priority order.
Completing all mission areas is required for
mission success

Transmission Area A 700x750 meter region that the
vehicle must enter and surface for during
the open transmission time window. Completing
this objective is required for mission success.
Surfacing outside of this time window or region
is a safety failure.

No-Go Area A 400x500 meter region that the vehicle cannot
enter. If the vehicle enters this region it will
receive a safety failure but the simulation
continues.

Obstacle If the vehicle collides with this, it will
receive a safety failure and the simulation ends.
The barrier obstacles are 700x40 meters while
the minor obstacles are triangular and 50 meters
to a side.

Operational Area A 3x3 kilometer region that the vehicle cannot
leave. If the vehicle leaves this region it will
receive a safety failure and the simulation ends.

Recovery Point A target circle with a radius of 15 meters. The
simulation ends when the vehicle reaches this
point. If the vehicle does not reach this point it
receives a safety failure.

Table 3.2: Mission Elements

Start Time Barrier XY Transmission Time Obstacle XY
1636.8 s 152.5 m 783 s 457.12 m

Table 3.3: Example of how a 0.01 unit distance translates to parameters of the state
space
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Chapter 4: Development and Execution of Real World Field Tests

4.1 Introduction

In the previous chapter, we discussed the underlying approach for generating

informative test scenarios where the autonomy software was running in simulation.

The ultimate goal for the RAPT program was to generate scenarios which could

be executed on hardware at a testing range. In this chapter we will cover the

improvements and studies that were necessary to take the simulation-based results

from our RAPT software and turn them into field tests. This includes studying

the robustness of our algorithms to noise and increasing the number of outputs we

consider when finding performance boundaries.

The effective transfer of simulation generated results to the real-world is one

of the biggest hurdles facing the machine learning community. There are many

ways in which errors can be introduced which cause the simulated system to diverge

from the real-world. These include effects such as modeling errors, unaccounted

sources of uncertainty, simulated versus real sensing data, or differences in the way

the hardware platform communicates with autonomy software versus the simulator.

As part of the 2017 development effort we took several steps to account for

the accuracy of our simulation. We performed extensive hydrodynamic testing of
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(a) (b)

Figure 4.1: IVER UUV used for the on-water tests of the autonomous vehicle soft-
ware. These photographs were taken during the hydrodynamic tests
conducted in the Chesapeake Bay.

the vehicle in the Chesapeake bay to ensure our simulation models of the platform

were accurate. This data included dynamic parameters such as buoyancy, drag, and

surge speeds as well as mechanical parameters such as current draw and battery

drain for different motor loads. We created new tidal current files based on data

from oceanographic stations in the proximity of the Keyport test range. Using

averaged data from the months of September and November, when the field tests

were scheduled to occur. Finally, we updated the GPS/INS models to incorporate

realistic drift in the state-estimate of the UUV.

It is our assertion that distance from a performance boundary can be used

as a measure of certainty in vehicle performance. To effectively test a performance

boundary we want to carefully select pairs of tests which straddle the boundary

without being too close together. Therefore, we seek to establish our test generation

software’s ability to accurately identify the performance boundaries in the presence
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of uncertainty. We were primarily concerned with two issues. The first is the ability

of our search and boundary identification algorithms to handle a stochastic system

under test. The second is how do we select tests that will be robust to transfer

effects and how do we anticipate shifts in the systems behavior before we run the

tests on the water.

In this chapter, we will discuss our approach for addressing the problem of

generating scenarios from a non-deterministic simulation and the results of running

tests designed by RAPT in the field. In section 2, we will discuss the results of ap-

plying our search and boundary identification algorithms to probabilistic systems.

In section 3, we introduce sub-clustering algorithms which allow us to quickly re-

trieve and analyze information about any scoring metric of our system. In section

4, we will discuss the test-design process that was utilized to build the test-plan for

the 2017 demonstration. In section 5, we will discuss the results of the 2017 demon-

stration. Finally, in section 6, we present our conclusions for the final demonstrated

performance of the RAPT software.

4.2 Stochastic Systems

There is an inherent level of uncertainty when executing a scenario in the

real world. That uncertainty could be the result of the error in the sensor inputs,

stochasticity in the vehicle dynamics, or random processes inside the autonomy

software. To accurately reflect reality a simulation environment will need to possess

some level of uncertainty as well. Which means in turn that our test generation
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Figure 4.2: (Left) A plot of sensor placement results versus ocean current, indi-
vidual points vary with gaussian noise around a mean function, the red
region indicates the placement error has exceeded mission parameters.
(right top) The probability of the mission failing as current increases,
(right bottom) the performance boundary between success and failure
is indicated by a region of high uncertainty.

algorithms need to be robust against probabilistic effects. In this section we will

discuss the results of applying our test-generation algorithms to an SUT with noisy

output.

4.2.1 Gaussian Noise on Continuous Outputs

First let us consider systems which have continuous outputs that are converted

into a binary score. For example consider a UUV mission to place a sensor at a

specific location where it fails if it places the sensor further than 50 meters away from

its designated target. Let’s assume that the relationship between sensor placement

error and ocean current which can be modeled as a non-linear mean function with

Gaussian noise. An example of this type of system is illustrated in 4.2.

For this sensor placement example we are left with a region where the prob-

ability of failure is increasing from 0 to 1 as the current increases from 3m/s to 7
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Figure 4.3: A scatterplot of the noisy Plates 2D function with boundary width
σ = 0.1. The colored markers indicate the different classes, while the
red lines indicate the true performance boundaries. The grey shaded
region indicates the area within 1 standard deviation of the boundary.

m/s. Unlike the boundaries of the previous chapter in this case there is no sharp

division between classes, instead the boundary is a region where either class could

occur with some probability. We refer to this as a “fuzzy” boundary region. This is

the easiest form of noise for our system to manage as the boundary region remains

a region with high variance in the binary score and samples adjacent to samples

from another class will only occur in the boundary region. In our sensor placement

example this is the region of high variance which occurs between 3-7 m/s.

To determine the effect of continuous noise on the adaptive search process we

created a version of our custom Plates2D function where instead of a sharp bound-

ary between categorical outputs the boundary was a region where two Gaussian
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distributions overlapped. The probability of obtaining a sample of an incorrect per-

formance mode is given by the equation P ( C x) = 0.5 ∗ e(− (d(x)2)/(2 ∗ σ)) where

d(x) is the distance of the sample x from the nearest boundary. An illustration of

this function is shown in Figure 4.3 with the true boundaries shown as red lines

and the standard deviation from the boundary shown as a shaded gray region. The

width of this region was described via the standard deviation σ of these distributions

and was varied between 0 and 0.4. We continue to use the precision and coverage

metrics of the previous chapter. Where a sample is considered to be in the boundary

region if it is within a distance of 0.1 of the boundary’s center. The results of this

experiment are show in 4.4

While the resulting boundary regions are wider than in the original deter-

ministic function the NNDV search successfully samples the correct regions and

returns tighter boundaries than the Sobol set. As boundary width increases the

NNDV search begins to degrade in performance. Once the standard deviation of

the boundary region reaches 0.35 the adaptive search begins sampling in the same

space-filling manner as the Sobol design. At this point the entire search space

becomes probabilistic as all of the performance modes overlap, causing the entire

system to consist primarily of noise. As such, there is insufficient information for the

adaptive search to exploit and defaulting to a global search approach is appropriate.
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Figure 4.4: (Above) Plots comparing the performance of the Sobol and NNDV
search approaches as the width of the performance boundary increases.
(Below). Scatterplots showing the effect of increasing boundary width
on our adaptive search.
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4.2.2 Global Error

The more difficult case to consider is when there is a global probability of

failure across the entire testing space. Rather than uncertainty being localized to

the region around a performance boundary there will be random occurrences of

unexpected behaviors throughout the testing space. The challenge for our system

is differentiating between these outliers and actual performance boundaries. To

demonstrate the effects of global distributions on our algorithms we took the same

Plates2D Custom test function and applied a global error rate to the final categor-

ical score. For this system the probability of receiving a sample with an incorrect

performance mode is P ( C x) = γ . An illustration of this function can be seen in

Figure 4.5

This is the hardest form of noise for our system, as any outlier sample can

create a high variance region which will cause the search to erroneously search that

area. The current iteration of our algorithms will treat an area with high variance

as a boundary even if that variance is the result of probabilistic effects rather than

a change in the boundary. The results of applying increasing levels of global noise

to our system are shown in Figure 4.6.

To demonstrate the effects of global distributions on our algorithms we took

the same Plates2D Custom test function and applied a global error to the final

categorical score. The results of a system with 95% probability of getting a dominant

performance mode and 5% chance of receiving a different mode is shown in Figure

4.6

88



Figure 4.5: Scatter plot of our noisy Plates 2D function with a global noise rate
γ=0.1. Each different colored marker type indicates a different perfor-
mance mode and the red lines indicate the true boundaries of the sys-
tem. Samples from incorrect performance types can be found uniformly
distributed throughout the space.
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Figure 4.6: (Above) Plots comparing the performance of the Sobol and NNDV
search approaches as the global failure rate increases. (Below). Scatter-
plots showing the effects of increasing global noise on our adaptive
search.
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The performance of the adaptive search drops steeply as the failure rate in-

creases from 0 to 10 percent. However despite a decline in precision and coverage

the adaptive search still outperforms the Sobol design for systems with large error

rates. This gives us confidence that our adaptive search techniques are an improve-

ment over space-filling techniques for finding the true boundary regions, even in the

presence of global error.

4.2.3 Uncertainty in the UUV Simulation

To add realistic uncertainty to our UUV simulation we added stochasticity to

the vehicle dynamics, random perturbations of the ocean current, and drift in the

inertial navigation system (INS). To understand how these changes to the simulation

will affect the results produced by our algorithms we must first characterize the

effect this type of noise has on the output of the system. As well as how these

non-deterministic effects impact the behavior of the autonomy.

For our noise characterization tests we generated 40,000 scenarios in a 5-

dimensional state-space where we varied start-time, obstacle position, and no-go

area position. For this study each scenario was run 10 times. The mission objective

was to avoid obstacles and no-go areas and explore two survey areas before return-

ing to the recovery point. The vehicle had the ability to detect obstacles using its

sonar sensors but had to rely on its state estimate to avoid no-go areas and reach

the survey areas. The survey areas were deliberately made small for this test to

increase the overall difficulty. An illustration of a representative scenario run three
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Figure 4.7: Examples of three different runs of the same scenario in the presence of
estimation error and random currents.

different times is shown in 4.7

4.2.3.1 Continuous Noise on Simulation Outputs

It is clear from these examples that the amount of error in the vehicle’s state

estimate is directly responsible for deviations in the trajectory that cause it to

either travel through the shaded no-go area or miss the survey area. The vehicle’s

autonomy software fails to account for this error when performing its path planning

and thus fails under low levels of estimation inaccuracy. The effect of the error is

most strongly in evidence if we plot the relationship between the latitude of the

no-go area with the distance of the closest point of approach, see Figure 4.8. This

relationship has the same properties as our sensor placement example from Figure

4.2. Where there is some underlying function with Gaussian noise. Resulting in the

same type of “fuzzy” boundaries where there is uncertain vehicle performance in

a wide region of the state-space. As we established earlier, these are the types of

boundaries which our system can handle gracefully.
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Figure 4.8: (Left) A plot of closest distance to No-Go Area 1 versus the latitude
of No-GO area 1, individual points vary with Gaussian noise around
some mean function, the red region indicates the vehicle has entered
the no-go area. (right top) The probability of the safety success as the
No-Go areas latitude moves north, (right bottom) the variance of the
safety safety success as the No-Go areas latitude moves north.

4.2.3.2 Inferring Boundary Locations from Variance

Given these results it would be reasonable for us to define the boundary region

as the region where there is high variance in the success and failure scores. However,

despite the scenarios in these regions having high variance in the binary scores they

have relatively constant performance otherwise. All of runs for a single scenario

follow the same general trajectory with small deviations due to estimation error. Our

goal of finding scenarios where the decision-making process of the autonomy changes

sharply is not fully satisfied. The types of scenarios that we are more interested in

discovering are illustrated by another scenario from our data-set, Scenario 35775,

which is depicted in Figure 4.9

In this scenario the vehicle had a 50% chance of either returning home safely
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Figure 4.9: Example of multiple runs for a probabilistic scenario. Small inaccuracies
in the position estimate can cause large changes in when it decides to
return home.

or colliding with an obstacle on the return path. This is a critical location in the

state-space that illustrates the effect of state estimation error on the decision process

of the autonomous vehicle. In one case it believes it has enough fuel to continue the

mission and in the other it believes it lacks the fuel necessary to complete the mission.

As there are no obstacles or no-go areas on the ingress path to the first mission area

we can infer that the decision must only be influenced by the ocean current. As

such we investigated the relationship between start time, which determines the tidal

current magnitude, and the closest point of approach to the survey area. The plot

of this relationship is shown in 4.10 with Scenario 35775 highlighted in Red.

The tidal current in our simulation peaks between the hours of 2am and 3 am

and this is reflected in the data. During these hours there is a sudden jump in the

distance between the survey and the closest point of approach. This is due to the

vehicle determining it lacks the fuel to overcome the current and must return early.

For all other times the vehicle is almost guaranteed to reach the survey area and its
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Figure 4.10: (Left) A plot of closest distance to the mission area versus the start
time offset from midnight, individual points vary with Gaussian noise
around some mean function, the green region indicates the vehicle has
successfully entered the mission area. (right top) The probability of
mission success as start time offset changes, (right bottom) the variance
of mission success as the start time changes.

success or failure depends entirely on the magnitude of the state estimation error.

One issue this scenario illustrates is the problem with using variance as an

indicator of a performance boundary. In Figure 4.10 we compare the variance in

the continuous distance metric values to the variance in the binary mission success

score. Even though the behavior of Scenario 35775 is representative of the type of

behavioral transition we want our system to find, its variance for the binary mission

success metric is actually lower than other regions of the state-space. However, a

spike in the variance of the continuous closest distance metric occurs at Scenario

35775. Aligning perfectly with our desired performance boundaries.
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4.2.3.3 Conclusions on UUV Simulation Uncertainty

Incorporating uncertainty into our simulation in the form of current pertur-

bations and state estimation error has the effect of applying Gaussian noise to the

continuous outputs of our simulation. Since we use binary success criterion to drive

our adaptive search this is expressed as “fuzzy” boundary regions between success

and failure. Given our results for the synthetic systems we can have some confidence

about the ability of our algorithms to find the performance boundaries for the UUV

simulation

The larger issue is whether searching for the performance boundaries of the

binary scores yields the most informative scenarios. As indicated by our results

for Scenario 35775, the performance boundary caused by turning back early could

not be identified by looking at the binary success score. Rather it could only be

discovered if we look at the continuous distance metrics. Therefore, if we were to

instead use the continuous metrics to drive our adaptive search we could potentially

find transitions in the decision making process of the autonomous vehicle.

4.3 Sub-clustering

As discussed in the previous section, binary success criteria are not always the

best indicators of when a change in the vehicle’s behavior occurs. Sometimes it is

better to use continuous metrics such as closest distance to a waypoint or fuel con-

sumed as they are more heavily affected by changes in the vehicle’s trajectory. What

we want is to obtain the boundary information for any score element in the score
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tree without having a priori knowledge of which ones will be important. However, it

is too expensive to compute all of them simultaneously using our previous clustering

technique. Therefore, what we require is a set of analytical tools which allow us to

explore the boundaries for any of our possible scoring metrics. In this section we

will discuss how we developed a hierarchical boundary identification method which

will allow us to quickly compute and retrieve boundary information for any scoring

metric in the simulation.

4.3.1 Definition of Sub-clusters

The key to our new approach is the sub-score tree, a structure which defines

the relationships between binary success criterion such as Mission Success to sub-

scores such as Waypoint Success or Transmission Success. These sub-scores are in

turn computed using continuous data such as the closest distance to a waypoint or

time spent conducting the survey. This hierarchical relationship between sub-scores

and binary criterion is a fundamental part of the sub-clustering process. A diagram

of the sub-score tree for the UUV mission is depicted in Figure 4.11

Each element of the sub-score tree H has two properties, a set of indices H.K

and a set of child nodes H.children. The indices H.K indicate the position of that

score element in the score vector Y .

Using the sub-score tree, it is possible to develop both sub-clusters and sub-

boundaries for our system. We define a cluster V C ⊂ V as the subset of samples in

V which all have the same class c ∈ C. Each of these clusters are composed of a
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(a) Mission Success Tree (b) Safety Success Tree

Figure 4.11: Diagram of the hierarchical score trees for our UUV simulation illus-
trating the first 3 levels of the score tree for both mission success and
safety success.

number of disjoint sub-clusters such that V C = V C
1 , V

C
2 , . . . V

C
n . The cluster V C is

created by applying our algorithms to the score elements at the ith layer of H and

its sub-clusters are created by applying our algorithms to the (i + 1) layer of H.

For example, if we cluster based upon the Mission and Safety scores to create V C ,

then we create its sub-clusters V C
1 , V

C
2 , . . . V

C
n by applying the clustering algorithm

to the next level of scores; Waypoint, Transmission, etc. Finally, we define a sub-

boundary a set of paired samples which lie between two sub-clusters, B(C1,C2) =

{[v1, v2], . . . , [v(n1), v(n2)]} where all members of the boundary are members of V C

and each pair is made up of a member of V C
1 and a member of V C

2 .

The second category of clusters we introduce is the sub-score cluster V k which

is a set created by applying our clustering technique to the kth element of the score

vector. These in turn have a sub-score boundary which we designate as Bk. These

sub-score clusters are our true objective and later in this section we will discuss how
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Figure 4.12: Illustration of the various sub-clusters and sub-boundaries for a simple
three element score tree. (a) The clusters and boundaries for the root
element A, (b) sub-clusters formed by applying our clustering algorithm
to both B&C simultaneously, (c) the sub-score clusters for element B,
(D) the sub-score clusters for element C.

these two types of clusters are related and how each of these are utilized for our

analysis of the UUV simulation.

A diagram showing the different sub-clusters and sub-score clusters for a simple

3 element tree is illustrated in Figure 4.12. In this system the primary clusters are

defined by the root element A, which is computed via an AND operator on the leaf

elements B & C. The sub-clusters provide different ways of sub-dividing the system

using the values of leaf elements. If both B& C are used, Figure 4.12b, the original

parent cluster [A=0] is split into two clusters; [B=0,C=1] and [B=1,C=0]. If we

were to isolate either score element B or C we could create sub-score clusters based

upon their values alone, seen in Figure 4.12c,d.
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Figure 4.13: The 12 element score tree structure of our synthetic system.

4.3.2 Synthetic Sub-score Function

Before we could develop our sub-clustering techniques we required a synthetic

test system which replicated the structure of our target SUT while providing ground

truth of the sub-boundary locations. This would allow us to determine the true

boundaries of the system and allow us to apply our coverage and convergence metrics

to any search against the system. To do this we created a 2 dimensional system

with a score-tree consisting of 12 score elements and three layers. The tree structure

for this system is shown in Figure 4.13. Each cluster in this system could be broken

down into progressively more sub-clusters through a partitioning process. Where

each cluster is broken down based upon the clusters which occur at the next level

of the score tree. From 4 types of clusters based upon the level 1 score elements all

the way to 27 clusters based upon the level 3 elements. A diagram of these clusters

is shown in Figure 4.14.
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Figure 4.14: Example of how our 2D Hierarchical system breaks up into successively
smaller and smaller clusters as we apply our clustering algorithms to
progressively lower levels of the score tree.

As illustrated in Figure 4.14, the more sub-score elements used for clustering

the more sub-clusters are created. Our synthetic system has 4 classes which define

our primary clusters, each of these can be broken into smaller sub-clusters by ap-

plying clustering algorithms to second level of the tree. These sub-cluster can then

in turn be broken down even further by applying a clustering algorithm to the third

level of the tree . An illustration of this process can be shown in Figure 4.15.

Going hand in hand with the concept of sub-clusters is the concept of sub-

boundaries. Sub-boundaries are the divisions between sub-clusters inside of a larger

cluster. In our synthetic system there are 6 primary boundary types based on the

transitions between different classes. Using the sub-clusters of the intermediate

scores we can discover sub-boundaries which exist between the primary boundaries.

Dividing each cluster and sub-cluster into smaller and smaller sets. An example of

this process can be shown in Figure 4.16.
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Figure 4.15: Example illustrating how each cluster of our system is split into smaller
sub-clusters. The [0 1] cluster can be broken up into 2 sub-clusters while
the [0 0] cluster can be broken up to 6 sub-clusters using the Level 2
score elements. These can be broken up further using the Level 3 score
elements.
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Figure 4.16: Example illustrating the sub-boundary process. At each level of the
system the sub-boundaries (color lines) represent the separation be-
tween the sub-clusters at that level and therefore occur in between the
boundaries of their parent levels (gray lines).
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4.3.3 Hierarchical Sub-Clustering

What we want is to obtain the boundary information for any score element in

the score tree without having a priori knowledge of which ones will be important.

However, it is too expensive to compute all of them simultaneously using our previ-

ous clustering technique. In this section we introduce our approach for generating a

sub-boundary structure which can be created more quickly than our prior method

and allows for efficient retrieval of any score boundary. Our new sub-boundary al-

gorithm utilizes the hierarchical nature of the sub-score tree to break the problem

into smaller pieces. Allowing us to create clusters and their boundaries for every

metric in our score tree in a reasonable amount of time. This process is illustrated

in Figure 4.16 where each cluster is broken up into smaller and smaller sub-clusters

by iteratively applying our clustering algorithms.

The algorithm works as follows, the primary clusters of our system are identi-

fied by applying Mean-Shift clustering to the root elements of the score tree . Each

of these clusters is then subjected to clustering using the metrics at the next level

of the score tree. These new clusters are added as children to the parent cluster.

This process is applied recursively until it has reached the bottom of the score tree

or a cluster cannot be subdivided. At each step of the sub-clustering process we use

pair-wise comparison between members of different clusters to identify the boundary

pairs. Since the sizes of these clusters become progressively smaller as the process

continues each child in the sub-boundary tree takes less time to compute than its

parent. This process is described more formally in Algorithm 3.
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Algorithm 3 Subboundaries(X, Y,H)
Input: A set of sampled states X with scores Y and a score tree H
Output: A sub-boundary tree T

Set the sub-score indices K = H.K
Clusterusingtheselectedsub − scores[L,C] = MeanShift(Y (K)), where L is the label vector and C
are the classes.
Create labeled sample set V = [X,Y, L]

Set the sub-clusters for V as V (C1), .., V (Cn)∀Ci ∈ C where ∀li ∈ V Ci = Ci
for all Ci ∈ C do

for all Ck ∈ C, k > i do
Ii = knnsearch(XCi , XCk , 1)
Ik = knnsearch(XCk , XCi , 1)

Create boundary pairs bk = [vj , vl] ∈ B(Ci,Ck) if I(ik)(xj) = xk and Iki(xj) = xl
B.append(B(Ci,Ck))

end for
TCi = Subboundaries(XCi , Y Ci , H.children)
S.append(TCi)

end for
return T = [V,B,C, S,K]

The output of this algorithm is a boundary tree structure. Each level in the

boundary tree relates directly to a level in the score tree. Each node in the boundary

tree contains information about the clusters at that level, the boundaries for those

clusters, the score indices used for clustering, and its child sub-boundary nodes.

4.3.4 Score specific Sub-boundaries

Our objective is to identify the boundaries for every score element in the tree.

However, it is too expensive to apply our original boundary identification algorithm

to every score element simultaneously. Instead, we can use the sub-boundary tree

T, which we computed using our previous algorithm, to reconstruct the boundaries

associated with any scoring element. This means we can retrieve clusters and bound-

aries for any given score element with minimal additional computation. This process

involves searching the sub-boundary tree structure for all sub-clusters which have

the same value for the specified score element. Then merging all of the identified

sub-clusters and sub-boundaries into a single set. Our method for doing so is given
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Figure 4.17: Examples of reconstructed sub-score clusters and boundaries for the
synthetic system.

in more detail in Algorithm 4

Algorithm 4 Reconstruct(T, ys, K)
Input: A sub-boundary tree T , a selected score value ys, and score indices Ks.
Output: A sub-score cluster Vs and sub-score boundaries Bs

[V,B,C, S,K] = T
if K = Ks then

Find yk = nearestNeightbor(ys, Y )
Set Vs = V k where yk ∈ V k
Set Vs = B s.t. ∀bi = [vj , vl] ∈ Bs , either vj ∈ Vs or vl ∈ Vs

else
for all Ti ∈ S do

[Vi, Bi] = Reconstruct(Ti, ys,Ks)
Vs.append(Vi)
Bs.append(Bi)

end for
end if
return [C,B]

An example of reconstructed sub-score boundaries is shown in Figure 4.17. In

this example we use score element 6 and score element 11. The clusters are shown

in red and blue for when the score is 0 or 1 respectively. The different colors in the

reconstructed boundary indicate the different sub-boundaries that were merged in

the reconstruction process.

The sub-boundary technique has been successfully applied to the output of

the UUV simulation. The sub-score tree for the UUV simulation consists of 4 levels

106



Figure 4.18: Example of two sub-score boundaries of the UUV simulation.

with 66 leaf metrics. Using a data-set containing 853K runs generated using NNDV

sampling we were able to identify 153 distinct sub-cluster types. We can then

reconstruct boundaries for any specific leaf metric such as a boundary in No Go

violations or collisions with a specific obstacle as shown in Figure 4.18

4.3.5 Sub-clustering Performance

The key feature of our sub-boundary identification process is that it lets us

discover all the sub-boundaries of the system without significantly increasing the

computational time. To evaluate our new sub-boundary algorithm we took 863K

runs generated by our UUV simulation and ran both our new and old algorithms

against progressively deeper levels of the score tree. The results of this compari-

son are shown in Figure 4.19. Our new algorithm takes approximately 20 seconds

to process a sub-score tree with 4 levels and 66 leaf metrics, which is comparable

to applying our original boundary identification algorithm to 9 metrics simultane-

ously. Attempting to use our original boundary identification technique to all 66-leaf

metrics simultaneously takes approximately 2 hours. Therefore, analyzing all of the

score elements simultaneously using our new approach represents a 200-fold decrease

107



Figure 4.19: Timing comparison of the sub-boundary algorithm and previous algo-
rithm. (Left) Bar chart showing the time to cluster a 30K dataset for
increasing number of sub-scores with the new technique on the far right.
(Right) Line plot showing the time to cluster a dataset for increasing
numbers of samples. The new sub-clustering process is collinear with
the results for clustering 7 scores simultaneously.

in the time compared to our prior approach.

The new sub-boundary algorithm successfully discovers all the boundaries that

exist at all levels of the hierarchical score tree without significantly increasing the

computational time. By applying our new algorithms, we can successfully recon-

struct any sub-score boundary with minimal computational overhead. Even when

we are dealing with data-sets with a large number of dimensions and nearly one

million data-points.

4.3.6 Search Performance in the presence of sub-boundaries

While these sub-boundary techniques can be invaluable for finding previously

unrecognized phenomenon in our system, we often have sparse coverage of these ar-

eas. In Figure 4.20 we show scatterplots of both the boundaries and sub-boundaries

after applying our NNDV search method. One thing that is immediately apparent
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Figure 4.20: Scatterplots of the resulting boundaries from applying the adaptive
search approach to just the root score metrics (Level 1) versus the leaf
score metrics (level 3).

is that the distances between our sub-boundary pairs are large. This is because our

NNDV algorithm is only operating on the root elements of our score-tree. It focuses

all of its samples towards the regions of the root score boundaries and away from

the interior regions where the sub-boundaries exist.

For this reason, our adaptive search approach can be detrimental when at-

tempting to find sub-boundaries. As seen in Figure 4.20 when we apply our NNDV

search to the Level 1 score elements we achieve high resolution sampling of the

primary boundary while also having sparse sampling of the sub-boundaries. This

can also be seen in our UUV example in Figure 20 where the sub-boundary pairs

are somewhat dissimilar due to their distance from one another. This issue can be

relieved by changing our search criterion such that we are searching over the level

3 elements of the score tree as seen in Figure 4.20. However this dilutes the search

and does not work well when we scale the problem to higher dimensions.

What these results indicate is that we should take care when attempting to find

109



sub-boundaries from our NNDV generated data-sets. The low-resolution boundary

pairs we achieve during a search of the root score elements can be used to inform the

test engineer of the existence of the sub-boundary. If we want high-resolution of the

sub-boundaries we must first choose the specific set of sub-scores we are interested

in and then rerun the search using those score-metrics as input.

Therefore, we should consider the test design process to be an iterative ap-

proach with the following steps. First, we perform an adaptive search using the

root score criterion. Second, we apply sub-boundary analysis to find test cases and

boundary types of interest. Finally, we apply a second round of simulations in the

regions of interest to obtain higher resolution of the selected sub-boundaries. This

is the approach we will take in the next section as we discuss our test generation

process.

4.4 Pre-Demonstration Analysis

In this section we will discuss how we applied our RAPT software to design

and develop field tests which were executed in November 2017. We will describe

the platform, how we adapted our mission to ensure successful recovery, analysis of

simulation results, and the test scenario selection process.

4.4.1 Platform Description

The platform used was an OceanServer Iver2 unmanned underwater vehicle,

Figure 4.21. The vehicle is approximately 60 inches in length, has a diameter of
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Figure 4.21: A 3D rendering of the OceanServer Iver2 platform.

Figure 4.22: Diagram of the Phase 3 Mission

6 inches, and weighs approximately 60 pounds. It is controlled via a rear thruster

and four external fins. The navigation sensors include a GPS, a Doppler velocity

log (DVL), a compass, and an inertial measurement unit (IMU).

4.4.2 Mission Description

For this demonstration, the state space consisted of 13 variable parameters:

(1) the start time; (2,3) the transmission window start time and duration; (4,5) the
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latitude and longitude of the transmission area; (6,7) the latitude and longitude of

the no-go region center; (8-11) the latitude and longitude of the 2 barrier no-go

areas; (12) the priority order for the mission areas; and (13) the starting battery

capacity for the IVER. These gave the representative cases of input states that have

a strong effect on the autonomy, such as the tidal force imposed by the start time,

and input states that have a weak effect, such as the priority order of the mission

areas. The start time was varied in a 12-hour period between midnight and noon,

the transmission window was set to open between 30 minutes after mission start

time to an hour after mission start time with a duration between 30 minutes to

an hour. Additionally, the transmission area was set to only vary in position on

the western half of the operational area. The no-go region was set to vary only in

position in the southeastern quadrant of the operational area. The no-go barriers

were constrained to vary in position only within 400 meters of the operational area

vertical centerline. And each scenario assigned a priority order for execution of the

mission areas.

Additional state space element information is in listed in Table 4.1 below:

4.4.2.1 State Space Changes

The changes between the most recent state-space and the mission discussed in

the previous chapter were made to speed up the search process and create scenarios

that would be easier to execute on the water. One of the features of RAPT is the

ability to analyze the contribution of each input variable to the resulting perfor-
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mance modes of the system. We utilized this analysis along with our knowledge of

the platform to make a more focused mission state space which would accurately

represent what could be achieved on-water.

Our first change was to refine the state-space so that it only included elements

which had significant impact on the system’s performance. The original mission

included a shoal obstacle located north of the waypoints, as well as three minor

triangular obstacles. After performing a sensitivity analysis of all input variables,

we concluded that the minor triangular obstacles did not significantly alter the

behaviors frequently enough to justify the an additional 6 scenario parameters. This

also prompted the addition of starting battery capacity as a state-space variable.

Our other changes were made due to constraints imposed by the testing range

and hardware platform. The first was to make the operational area smaller and the

scenario elements closer together. This allowed each scenario to be executed on-

water in under 30 minutes. The second was to replace obstacles with no-go areas.

We did so as there was no way to appropriately implement large obstacles in the

water, and the IVER had no actual sonar sensor for detecting them. Therefore, the

autonomy and simulation were modified to treat no-go areas as obstacles that could

be detected by a simulated sonar sensor. The no-go areas, however, were still scored

as their own category of performance. Also in the event the vehicle traveled into

the no-go area, the simulation would continue the scenario allowing it to play out

and RAPT would penalize the mission during scoring.
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4.4.3 Scenario Generation and Pre-test Analysis

We generated 150k scenarios for the November Keyport Demonstration, allo-

cating 30k to global search and 120k to adaptive search methods. Due to scenarios

either being pruned for being invalid (e.g. no-go area generated on top of a way-

point) or to runs failing on the cluster, only 123k completed successfully and were

available as part of the final dataset.

In this dataset the Mission Success performance mode dominated the scenario

outcomes, with 93% of all scenarios successfully completing the Mission Area and

Transmission Area objectives. In contrast, 57% of all scenarios failed on the safety

criterion. This effect can be seen in Figure 4.23

The ease of the mission can be attributed to the reduced size of the operational

area, which diminished the stress caused by the obstacle configuration and tidal

current on the vehicle. As can be seen in Figure 4.24, the primary input variables

which affected the vehicle’s ability to complete the mission successfully were the

timing of the transmission area and the amount of starting battery capacity. Once

the vehicle had more than 16% battery capacity it nearly always completed the

mission. The only exception was when the transmission window ended so early that

it was impossible for the vehicle to arrive in time.

Although not surprising, it should also be noted that a majority of collisions

occur near the waypoints and on the path between them, Figure 4.26. These result

in scenarios where the mission objectives and the safety criteria create conflicts

between reaching a waypoint and safely avoiding an no-go area. It also implies that
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(a) Performance Mode Distributions

(b) Boundary type Distributions

Figure 4.23: Charts of number of completed runs in the pre-test dataset for each
performance mode (above) and boundary type (below).
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(a) Mission Parameter Response

(b) Individual Parameter Distributions

Figure 4.24: (Above) The estimated sensitivity response for each input variable
on mission success. (Below) Distribution of performance modes for
varying levels of starting battery capacity.
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Figure 4.25: The estimated sub-score response for the safety success criterion

any time an no-go area is placed directly in the desired path the vehicle has a high

probability of colliding.

In essence, this creates a “fuzzy” performance boundary where obstacles closer

to the path result in higher collision probabilities due to deficiencies in the navigation

software, errors in commanding the vehicle, deviations due to current, or inaccuracies

in the estimated position. As scenarios approach the boundary, the uncertainty in

the final score grows, with the scenario achieving either safety success or failure due

to minor deviations in the trajectory, Figure 4.27. Thus, despite the prevalence of

boundary pairs existing on a particular boundary, the majority of boundary pairs

represent only minor variations in a trajectory rather than a change in the autonomy

software’s behavior.
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Figure 4.26: Heatmap showing which no-go area positions were most likely to cause
collisions. Yellow is more probable, blue is less probable. Red markers
indicate the positions of the waypoints. Cooler regions on top of the
waypoints are result of these configurations being marked as “invalid”
scenarios.

Figure 4.27: Example of boundary pair between safety success and failure, illus-
trating the “fuzzy” boundary.
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4.4.4 Scenario Selection

Given the limited number of runs we could perform at the test-range we de-

cided to create a testing suite of 10 scenarios consisting of 5 boundary pairs. Each

boundary was designed to test a different behavior of the system as identified using

our sub-boundary algorithm. We utilized sub-score boundary generation to test

the sub-scores identified as the biggest contributors during the sub-score sensitivity

analysis.

1. Collision with No-Go Area 1. This sub-boundary consists of the vehicle

colliding with No-Go Area 1 when attempting to reach the first waypoint. In simu-

lation if the no-go area was within a certain distance of the obstacle it would neither

avoid the no-go area nor abort its attempt to reach the waypoint.

2. Waypoint 2 Abort. This sub-boundary demonstrates a major shift in the

trajectory the vehicle takes depending on the distance between No-Go Area 3 and

Waypoint 2. If No-Go Area 3 is too close to Waypoint 2 the vehicle will abort,

otherwise it will attempt to reach Waypoint 2 but will collide with the no-go area.

3. Mission Area 1 Abort. This sub-boundary occurs within the individual

mission area metrics and is meant to test how many mission areas will be completed

during a single trial. Depending on the fuel levels and time windows the vehicle will

either complete all the mission areas or abort early and return home.

4. Return to Complete Mission. This sub-boundary occurs when one of the

mission areas has a much later completion time than the others. In one case the

vehicle returns to complete the remaining mission area after traveling to the trans-

119



mission area. In the other it lacks the time and fuel to complete the last mission area

and instead returns to the recovery point. It also included a placement of No-Go

Area 3 that was considered to be particularly difficult.

5. Early Transmission Area. This sub-boundary occurs when the transmission

area is completed before any of the mission areas. This can occur when the trans-

mission window ends very early in the mission. This also results in a more efficient

path which can mean the difference between mission success and failure.

Of all the sub-boundary types these 5 were considered to be the most relevant

to the performance of the system and the most reproducible in the field. The remain-

ing sub-boundaries were primarily permutations of the same behaviors (e.g. mission

areas in different orders, collisions occurring at the same time as a mission abort) or

were results of software faults which were based on non-deterministic effects. While

the latter of these are an important phenomenon to test more thoroughly testing it

in the water would require more time than we were allocated.

4.4.5 Dithering Study Results

As discussed in Section 4.3.6 our search techniques achieve high resolution

sampling along the primary boundaries of our system (Mission Success, Safety Suc-

cess) but low resolution in the interior regions where sub-boundaries occur. This

means that we may have inaccurate estimates of how far our scenarios are from

the desired sub-boundary or that there may even be sub-boundaries which we have

failed to discover. Finally, uncertainty in the execution of the scenario may also
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cause the simulated result to fail to match the real-world test. Therefore we need to

explore the regions of the testing space near our selected test scenarios to ensure that

we understand the level of uncertainty associate with each. As well as determining

whether any of these scenarios exist on previously unidentified sub-boundaries.

To address these concerns we performed a dithering study of the selected

test scenarios. In this study each scenario in the testing suite were dithered with

Gaussian noise to generate an additional 2k scenarios in the neighborhood of test

scenario. We then ran sub-clustering and sub-boundary identification scripts to

identify all possible behaviors that could occur in the region of each boundary pair.

The distances of the test scenarios to the boundaries discovered by the dithering

study are listed in Table 4.2. For each boundary pair we provide the name of the

sub-boundary type and the index for the score-tree element where the boundary

occurs. For example our first boundary pair is a Collision sub-boundary which

occurs on sub-score element 11, the metric which determines whether No-Go Area

1 was violated.

For a majority of the test scenarios we selected the dithering study revealed

they were much closer to a sub-boundary than the original 120k dataset indicated.

Boundary pairs 1 & 5 both resulted in the same sub-boundary type as indicated in

the original set, simply with a closer distance. More concerning was the presence

of previously undiscovered sub-boundaries in the vicinity of the other boundary

pairs. We split these into two categories; orthogonal sub-boundaries and parallel

sub-boundaries.
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4.4.6 Orthogonal Sub-boundaries

Orthogonal sub-boundaries occur when multiple sub-clusters overlap and cross-

ing one sub-boundary does not mean crossing the other. An example of this type

of sub-boundary was found for boundary pair 2. The original sub-boundary we

selected was the Waypoint 2 sub-score, which is element 15 in our sub-score tree.

When we ran the dithering study we found that these test cases were also close

to a Mission Abort sub-boundary, which is element 21 in our sub-score tree. Both

the original boundary pair and the new sub-boundary pairs for these scenarios are

shown in Figure 4.28.

In this example the dithering results indicated that the scenarios were incred-

ibly sensitive to the perceived fuel levels of the system. If the vehicle had sufficient

fuel it would return to complete the mission areas after surfacing in the transmission

zone. Otherwise it would return to the recovery point immediately after transmit-

ting the data. This decision to return to the mission is completely independent from

the decision to abort the waypoint.

We selected this pair to test the sub-boundary caused by abandoning the

waypoint, which still occurs even after the scenarios have been dithered. Therefore

we were able to conclude that even if some bias occurred during test that we would

still testing the correct sub-boundary. Albeit with the possibility that we would see

trajectories similar to Dithering Scenarios (5922) and (89933) rather than the ones

predicted by Scenarios 53451 and 55433.
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Figure 4.28: Example of orthogonal sub-boundaries discovered during the dithering
analysis. The top two scenarios are the original boundary pair while
the bottom two scenarios are the nearest neighbors discovered in the
dithering analysis. While the right-left pairings provide an example of
a Waypoint Abort sub-boundary the top-bottom pairings provide an
example of a Mission Return sub-boundary.

4.4.7 Parallel Sub-boundaries

Parallel sub-boundaries occur when multiple thin sub-clusters border each

other and their boundaries are aligned in the same direction in the state space. This

is the case for boundary Pairs 3 & 4 which were selected to test two highly sensitive

regions of our state-space. Our dithering study revealed that all of these boundary

pairs were particularly close to the intended sub-boundary as well as nearby par-

allel sub-boundaries. Meaning that any bias in the execution of the scenario could

easily push one of these cases across the boundary. The original scenarios and the

dithering generated scenarios for boundary Pair 3 are shown in Figure 4.29

In this example a very small shift in the transmission window length causes

the vehicle to complete anywhere from 1 to 3 of the mission areas. Our objective for

this pair was to test the sub-boundary associated with the Mission Area 1 sub-score,
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Figure 4.29: Example of parallel sub-boundaries discovered during the dithering
analysis. The top two scenarios are the original boundary pair while the
bottom two scenarios are the nearest neighbors discovered during the
dithering analysis. These scenarios show examples from three different
sub-clusters with varying levels of mission success.

which is element 26 in our sub-score tree. The dithering study revealed that not

only is scenario 21063 substantially closer to that sub-boundary than we originally

estimated but that scenario 127386 is adjacent to a parallel sub-boundary for the

Mission Area 2 sub-score, which is element 28 in our sub-score tree.

These results indicate that the vehicle may exhibit behaviors from any of the

sub-clusters represented in the dithering study for this pair. If the vehicle executes

the mission more quickly or slowly than predicted in the simulation we may miss

the sub-boundary entirely. Either testing the wrong sub-boundary, e.g. the mission

area 2 sub-boundary, or both of the scenarios may exhibit the same behavior and

no boundary will be demonstrated at all.

Therefore, in addition to running the selected scenarios for boundary pairs 3

& 4 we also developed modified versions of these scenarios which move the scenarios

further apart in the state space. For boundary pair 3 this involved increasing the de-
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creasing the transmission window length for scenarios 21063 and 127386 respectively.

For boundary pair 4 this involved increasing and decreasing the starting battery for

scenarios 61836 and 134243 respectively. Our test plan called for the unmodified

scenarios to be executed first and if they did not match their predicted behaviors

then the modified scenarios would be used in their place for any subsequent tests.

4.5 Demonstration Results

The Range Adversarial Planning Tool (RAPT) Phase 3 final demonstration

was held in NUWC Keyport from November 14-17, 2017. Using the aforementioned

JHU/APL assets of an IVER2 UUV running the JHU/APL Autonomy Toolkit for

its surrogate autonomy.

The data-set utilized for the final test-plan and analysis consisted of 120,000

RAPT-generated scenarios. We were restricted to only 24 on-water tests for the

field test period and thus were able to select 5 boundary pairs (corresponding test

scenarios on opposite sides of a boundary) from the 120k runs for execution during

the in-water portion of the demonstration. The intention was to run each scenario

twice with backup runs reserved for scenarios where unexpected behaviors occurred.

When the on-water trials were performed at Keyport it was quickly discovered

that the tidal files which were provided had almost no relationship to the actual

currents experienced by the vehicle. In addition the IVER2 executed the scenarios

at a faster speed than was commanded within the simulation. These two factors

taken together meant there was a strong execution bias in the results where the
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vehicle on the water behaved as if the time windows were later and the starting

battery level was higher. Execution bias differs from stochastic effects as it causes

all of the results to shift in a similar fashion. It can be treated as a translation of

all of the performance boundaries in the testing space.

The rest of this section is devoted to a discussion of each of the boundary

pairs.

4.5.1 Boundary 1 - No-Go Collision

This boundary pair tests the vehicle’s navigation ability and how it handles

waypoints near no-go areas and obstacles. In this boundary pair, the vehicle fails

to abort a waypoint that is too close to a no-go area and ultimately violates the

no-go region. This set of runs was an unmitigated success, both confirming the

existence of the boundary and directly replicating the behavior of the simulation.

A side-by-side comparison of the predicted results versus the on-water results are

shown in Figure 4.30

4.5.2 Boundary 2 - Waypoint Abort

This boundary pair demonstrates the threshold at which the vehicle will aban-

don a waypoint due to the positioning of a No-Go Area. During the dithering study

it was discovered that these test scenarios were incredibly close to another orthogonal

sub-boundary, where the vehicle continues the mission after completing the trans-

mission area. Execution bias in the on-water tests caused the vehicle to complete
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Figure 4.30: Boundary Pair 1 plots comparing the simulated result (left) to trajec-
tory executed during in-water tests (right). Multiple blue lines are due
to overlaying the results of all field tests on top of one another.
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Figure 4.31: Boundary Pair 2 plots comparing the simulated result (left) to trajec-
tory executed during in-water tests (right). Multiple blue lines are due
to overlaying the results of all field tests on top of one another.

the mission more quickly and with more fuel than originally predicted. However this

result was anticipated and these results still demonstrate the desired sub-boundary

which occurs for the Waypoint 2 score element. A side-by-side comparison of the

scenarios is shown in Figure 4.31

4.5.3 Boundary 3 - Mission Abort

This boundary pair demonstrates how the transmission window time affects

transmission decisions by the autonomy. In the first scenario, the vehicle has plenty

of time to complete the mission. In the boundary pair, the vehicle must return early

to achieve the transmission window. In both cases the vehicle lacks the battery to

continue the mission after completing the transmission window.
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Figure 4.32: Boundary Pair 3 plots comparing the simulated result (left) to trajec-
tory executed during in-water tests (right). Multiple blue lines are due
to overlaying the results of all field tests on top of one another.

This boundary pair represents one of the cases where the dithering study

indicated the final results would be uncertain. In all cases, the slower speed of the

IVER in the water caused the vehicle to return to the transmission area earlier than

predicted in the simulation. The scenarios designated with an “M” were modified

manually to increase their distance from the boundary to achieve greater robustness.

See Figure 4.32. In the case of scenario 21063, this meant increasing the length of

the transmission window. Conversely, in scenario 127386 this meant decreasing the

length of the transmission window.
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Figure 4.33: Boundary Pair 4 plots comparing the simulated result (left) to trajec-
tory executed during in-water tests (right). Multiple blue lines are due
to overlaying the results of all field tests on top of one another.

4.5.4 Boundary 4 - Mission Return

This boundary pair exercises the decision-making of the autonomy on whether

to complete the mission after executing the transmission area. This is entirely

determined by the starting battery level which is very close for both scenarios in

the boundary pair. This boundary pair is incredibly close in all inputs, giving a

good estimate of the threshold but also introducing risk due to noise and execution

bias. A side-by-side comparison of the simulated result versus the on-water result

is shown in Figure 4.33.

In this case execution bias cause the results to shift away from what was

previously predicted. Since this possibility was predicted during our dithering study
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of the selected runs we created a set of modified scenarios which are designated with

an “M” in Figure 4.33 where the amount of fuel for scenario 13423 was reduced.

However we underestimated the sensitivity of this boundary to both the transmission

time and the starting fuel level and while the modification did move scenario 13423

to the correct side of the sub-boundary which we were testing it returned earlier

than was predicted in the original simulation.

4.5.5 Boundary 5 - Transmission First

This boundary pair demonstrates vehicle behavior that will attempt the trans-

mission area before completing all mission areas but always after the waypoints. In

one scenario, this means that the vehicle achieves a total success since completing

the transmission area first is the most fuel efficient. In the other, it fails the mission

since there is not enough fuel to complete two full transits of the operational area.

We were only able to perform a single run of this boundary due to unsafe weather

conditions. This single pair managed to perfectly replicate the simulation results. A

side-by-side comparison of the simulated result versus the on-water result is shown

in Figure 4.34.

4.5.6 Demonstration Results Discussion

For all the scenarios tested we were able to successfully predict the behavior

either during the initial search or during the dithering study. The execution bias

meant that the performance boundaries predicted by the dithering study were exe-
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Figure 4.34: Boundary Pair 5 plots comparing the simulated result (left) to trajec-
tory executed during in-water tests (right). Multiple blue lines are due
to overlaying the results of all field tests on top of one another.
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cuted instead of those predicted by the 120k dataset. For boundary pair 2 this meant

that the behavior being tested, aborting a waypoint, was still executed correctly but

the remainder of the trajectory executed on water differed from the simulation re-

sult. For boundary pairs 3 and 4 this execution bias meant that both scenarios

would fall on the same side of the performance boundary. In order to account for

this difference we had to manually adjust the scenarios to start with less fuel in

order. Once this adjustment was made the original boundary was confirmed.

4.6 Discussion

Our objective for Phase 3 of the RAPT program was to demonstrate a TRL

6 system which could be deployed at NUWC Keyport and be used to generate test

scenarios for in-water execution. At the November 14th -17th demonstration at Key-

port we completed all of our stated objectives. We have successfully transitioned the

software to Keyport and all components of test generation suite, simulation software,

surrogate autonomy, and database are functioning as expected. This software was

used to generate test scenarios which demonstrated different types of performance

boundaries. These test scenarios were successfully executed in-water and validated

the results of the simulation in that all the targeted behaviors were exhibited. Each

of the research areas described in this Chapter contributed to this success.

There are several challenges which we encountered for the scenario generation

and execution portions of the demonstration that are likely to occur in other do-

mains. The first is a noisy performance surface which can throw off a search and
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boundary identification process if the noise is too high. Despite this we were not

only able to identify meaningful boundary cases but many of these cases were even

closer to the boundary than originally predicted. The second was the transition of

simulation results to in-water tests. Differences in both the dynamics and behavior

of the hardware can skew the performance of the vehicle as was seen with the slower

speeds on the IVER. However, by using a combination of highly refined sampling in

the region of the selected tests and using sub-boundary analysis to identify a greater

variety of performance modes we were able to predict the possible variations before

execution in-water. As such we were able to execute the tests with confidence and

the vehicle’s performance on water aligned with our predictions.

The RAPT software suite achieved all of its objectives for a challenging prob-

lem, with the additional benefit of lessons learned that will guide our future efforts.

The first lesson is that we should expect some amount of bias in the execution of

our scenarios in-water. Developing an automatic way to identify and apply this bias

to our predictions as we execute our tests would be a useful tool. The second is

that there are many complex behaviors that can occur and identifying them requires

careful processing of not just safety success and mission success but also all score

metrics. Using a second pass of highly resolved tests and sub-boundary analysis was

key to allowing us to predict changes in the autonomy’s behavior before executing

tests in-water.

This software suite is not just a tool for generating test scenarios but also a

framework for analyzing the results and understanding the system under test. The

software we delivered contains the tools and functions we found most useful for
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both designing tests and processing the results. It is our hope that the users of the

RAPT software suite will take the time to explore the capabilities of our software

and understand that test design is an iterative process. The RAPT software suite

enables not just the identification of relevant test cases but also provides information

that can be used to design better tests, guiding a test engineer to the relevant regions

of the state-space.

4.7 Summary

In this chapter, we took the framework introduced in chapter 3 and demon-

strated the tests it generated could successfully be replicated in the field. There

are two critical contributions that were necessary to complete demonstration. First,

we established that our adaptive sampling algorithms were robust to the effects of

uncertainty in the system under test. Second, we introduced a new sub-clustering

algorithm which can identify boundary regions for a large number output dimensions

simultaneously. Increasing the number of simultaneous outputs from 2 to 66.

Finally, this was the first study where search-based testing techniques were

utilized to generate field tests. All prior research in this domain have stuck to

strictly to simulation and only speculated on the possibility of transitioning to the

real system. We not only predicted the behavior prior to execution on water but

were able validate the existence of the performance boundaries on the hardware

platform. The software has now been deployed at NSWC Keyport and will be used

to design more UUV test suites in the future.
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Element Description

Waypoint
A recommended target to pass through if not constrained by
other factors like no-go areas or time.
It is not required for mission success.

Mission Area

A 500x500 meter region that the UUV must enter and remain
inside for a predetermined amount of time.
It must complete each mission area in the correct priority order.
Completing all mission areas is required for mission success.

Transmission Area

A 700x750 meter region that the vehicle must enter
and surface for the open transmission time window.
Completing this objective is required for mission success.
Surfacing outside of this time window or transmission area is
a safety failure.

Large No-Go Area
A 400x500 meter region that the vehicle cannot enter.
If the vehicle enters this region it will
receive a safety failure but the simulation continues.

No-Go Barrier
If the vehicle collides with a barrier, it is considered a safety failure.
The barrier areas are 700x40 meters.

Operational Area
A 3x3 kilometer region that the vehicle cannot leave.
If the vehicle violates the boundary, it will receive a safety failure
and the simulation ends.

Recovery Point
A target circle with a radius of 15 meters.
The simulation ends when the vehicle reaches this point.
If the vehicle does not reach this point, it receives a safety failure.

Table 4.1: State Space Element Details

Boundary Pair
Original

Boundary
Distance

Original
Boundary

Type

Scenario
ID

Dithering
Boundary
Distance

Dithering
Boundary

Type
1 0.259 Collision 65315 0.101 Collision (11)

(11) 71349 0.256 Collision (11)
2 0.340 Waypoint 55433 0.050 Mission Return (21)

(15) 53451 0.042 Mission Return (21)
3 0.247 Mission Abort 21063 0.050 Mission Abort (26)

(26) 127386 0.042 Mission Abort (27)
4 0.2526 Mission Abort 21063 0.052 Mission Abort (35)

(35) 127386 0.073 Mission Abort (35)
5 0.2950 Transmission 112122 0.054 Transmission (8)

(8) 145263 0.073 Transmission (8)

Table 4.2: Dithering Results
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Chapter 5: Adaptive Sampling as a validation method for UGV self-

righting

5.1 Introduction

While much effort has been devoted to tip-over avoidance [156], robots oper-

ating in unknown, dynamic environments are likely to experience tip-over at some

point during their operational lifetime. As most robots require a particular orien-

tation for mobility, a single tip-over event can result in mission failure if the robot

is unable to recover. Therefore, the ability to self-right is imperative for mission

critical applications such as military [157] or law enforcement [158] operations, ur-

ban search and rescue (USAR) [159], [160], and planetary surface exploration [161].

Further, a tool that can independently assess and verify a robot’s ability to self-

right under various circumstances could be extremely valuable for agencies seeking

to design, evaluate, and/or compare robots for such critical missions.

Previous approaches for self-righting have typically used hand-designed trajec-

tories for specific robot morphologies [162]–[164]. These plans use a combination of

active reorientation (i.e. using their actuators to push them into unstable configura-

tions), followed by passive rolling to complete proper reorientation. Controlling the
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Figure 5.1: Overview of the stability framework. (a) Illustration of a robot with a
single arm and 1 DOF tipping over (b) A state plot of the robot where
blue markers represent states in C-space and magenta arrows showing
where transitions occur. (c) A Node plot is created by compressing the
stable regions of the state space into nodes and their transitions into
edges.

impact of a polygonal object and a plane has been solved for a variety of dynamic

conditions [165] but has not been explored as a potential path for self-righting. Fi-

nally, while there are a variety of general motion planners that consider stability

constraints, it has been to prevent tipping rather than to exploit it [118], [156].

What has not been addressed in prior research is a general motion planner which

can handle the type of hybrid locomotion seen in self-righting plans.

Therefore, we seek to develop a general framework which supports the gen-

eration of self-righting plans for any robot morphology which can be defined using

a rigid body model. Further, we want the capability to quantify any given robot’s

ability to self-right under varying circumstances. Rather than focusing on determin-

ing a single optimal self-righting trajectory between two states, we want to discover
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how much of the robot’s configuration space (C-Space) is capable of self-righting.

This would allow the retrofit of existing or future robots while also providing insight

to improve future designs.

To achieve this goal, we build upon a previously developed framework [166] for

generating self-righting road-maps, which was successfully applied to robots with 1,

2, and 3 degrees of freedom [167] in a 2-dimensional environment. This sampling-

based approach has similarities to Probabilistic Road-maps (PRM)[168], a popular

motion-planning approach that builds a graph of the connected regions of C-space

through the use of a constraint checker and local planner. Where the self-righting

framework differs is its focus on finding and exploiting unstable transitions between

stable regions of C-space thereby creating hybrid directional graphs which encode

the necessary motions for both active reorientation and passive rolling.

The issue with prior approaches is that both grid-based sampling and random

sampling are insufficient to find the critical transitions of the system. As the number

of degrees of freedom (DOF) increase, the number of samples required to search

the space at the same resolution increases exponentially. Lowering the resolution

can lead to incorrectly identifying the transitions and failing to properly estimate

the motion necessary to initiate the transition. Therefore, we require two new

technologies to support a sampling-based framework for self-righting. The first

is a technique that provides high resolution samples in the critical regions where

transitions occur while only sparsely sampling the stable regions of C-space. The

second is a graph generation technique that can both identify the stable regions of

C-Space and the transitions between them.
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In this chapter, we introduce new methods of adaptive sampling and generating

connectivity graphs of the configuration space. These are based upon algorithms

we had previously developed for identifying critical testing cases for underwater

vehicles. [142] These techniques bias sampling towards regions of the system where

sharp transitions in the output occur, allowing us to achieve higher resolution in

the areas of interest while not wasting samples in areas that have already been

characterized. Using these algorithms, we are able to address some of the scaling

issues we encountered in the prior self-righting approach [166].

However, neither of the previous approaches could be directly applied to the

analysis of robotic morphologies in three-dimensions. Achieving our objective of

analyzing high-fidelity robot models in 3D required three critical changes in our

approach: (1) We had to update our framework to support 3D dynamics and high-

resolution robot models, (2) We needed a new method for identifying connected

regions of configuration space, and (3) we had to change our query generation process

to support constrained sampling of manifolds in high dimensional space. The final

result of these improvements is a system which can take a 3D rigid body model of any

robotic system and generate a self-righting transition graph spanning C-space using

significantly fewer queries than previous grid-based or random-sampling approaches.

5.2 Self-Righting Framework

In this section we describe the self-righting framework initially developed in

[166] as well as how it was updated to work with our new simulation and sampling
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method. This framework evaluates the self-righting capability of a robot by creating

a state space map and analyzing its connectivity. To create the map and identify

transitions, the framework iterates through all possible joint configurations (previ-

ously using grid-based sampling with uniform resolution), determining the convex

hull of the robot for each configuration. Since we assume sloped planar ground,

only points on the convex hull of the robot can contact the ground. Identifying the

convex hull produces a list of faces, which we define as the body rotations required

to align that face with the ground normal. We then assess the stability of each face

by determining whether the robot’s center of mass would be located between the ex-

tents of the support face, if the robot were resting on the given face. A visualization

of this assessment can be found in Fig. 5.1(a,b). The red dot is the robot’s center

of mass, and the extents of the support face are the vertical dotted lines. When the

robot’s center of mass is no longer contained by the the support polygon in state A,

it transitions to state B.

By iterating through all possible joint configurations and faces, transitions

where a face changes from stable to unstable (or ceases to exist on the convex hull)

are identified. When a face is found to be unstable, the resulting stable face on which

the robot would come to rest is determined. Next, sets of continuously stable states

whereby the robot remains supported on the same face are grouped into “nodes”.

These nodes form a directed graph with edges corresponding to transitions. An

example of these graphs is depicted in Figure 5.1(c). Since most robots are sensitive

to physical shocks, we chose the change in potential energy across a transition as

the cost metric for the node graph. In this manner, we are able to generate path
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plans using the usual tools, and also assess the robot’s ability to self-right for various

ground angles by examining the reachability of the goal from the rest of the graph.

Further, this analysis can be performed a priori using large computational resources,

but be distilled into directed graphs with low memory requirements and requiring

little computational resources for on-board use.

For this work we had to improve this framework in two significant ways. The

first is that in the original framework, the contact face was described as a pair of

unique vertices. However this proved to be insufficient for our purposes. As the

collision geometry for the robot became more complex, it could potentially have

thousands of unique faces which, in addition to number of joints, causes the search

of this space to become intractable. To solve this, we no longer track unique faces,

but rather query states based on body angle and find the face most nearly parallel

to the ground given that body angle. This allows us to treat nearby faces as similar

for the purposes of guiding our search.

The second change is that the original framework marked any states that were

adjacent in the grid search and on the same resting face as connected. Since the

number of possible resting faces were small and easily computed, these also suf-

ficed for identifying the nodes of the system. However, due to the varying distance

between states in our adaptive search, we needed an unsupervised method for iden-

tifying connectivity between states. We also needed methods for identifying the

nodes of our system given our use of continuous body angles to describe the faces

of the convex hull. Thus we developed new clustering algorithms for identifying the

manifolds of the system and the boundaries between them.
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5.3 Problem Formulation

In section 5.2, we discussed our general framework for analyzing a robot’s

ability to self-right based on connectivity among regions of continuous stable states.

Note: throughout this chapter we define stability to mean quasi-static stability. The

robot is quasi-statically stable whenever the center of gravity is within the bounds

of the support polygon and the robot has zero angular velocity. Here we define the

problem more formally for the purposes of our adaptive search method.

5.3.1 Definition of terms

(i.) The robot joint state space Θm defines the range of possible joint configurations

for a robot with of m degrees of freedom. A joint state is defined as θ ∈ ΘM

(ii.) The robot body angle state φ ∈ SO(3) which defines the orientation of the

base frame for the robot. We define Zθ = [φθ,1, ..., φθ,k] as the set of body

angles for a convex hull with k different faces. This hull is defined by robot’s

collision geometry for the joint configuration θ. In addition, we denote a set

of body angle sets ZN = [Zθ1 , ..., ZθN ].

(iii.) A robot configuration state is defined as the vector x = [θ, φ] where φ ∈ Zθ.

This is the combination of a joint configuration and body angle which is given

to the stability analysis function. We denote the configuration space-space

as x ∈ X = [Θ, SO(3)]. We denote a set of configuration states as XN =

[x1, ...xN ].
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(iv.) A robot stability function F(XN) = [Y N ,WN ]. It accepts a set of N estimated

states XN and returns sample set of N output stability vectors Y N , as well as

N output information vectors WN . The binary stability output yi ∈ [0, 1] has

a value of 0 when the state xi is unstable and 1 if it is stable.

(v.) We define the information vector as WN = [φNS , φ
N
R , Z

N ]. Where φNS are

starting body angles; φNR are resting body angles; and ZN defines the convex

hull faces for each state. These are discussed in more in Section 5.4.2.

(vi.) A node is a region of continuous stability on an m dimensional manifold in the

configuration state space Rm+3 where m is the number of joints. Two states x1

and x2 are members of the same node if they exist on the same manifold and

there exists a path between them where all points along the path are stable.

(vii.) A robot transition graph GN , where each node in the graph represents a

continuous region of stability and each edge represents a transition between

these regions.

5.3.2 Problem Statement

Our problem is: given a robot stability function F and the state space X ,

generate the transition graph G that groups regions of continuously connected stable

states as nodes and tracks the transitions between them as edges. From this we can

determine how many of the possible starting states can reach the desired upright

home state xhome.
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Our goal is to demonstrate two primary improvements over the previous frame-

work. The first is to improve sampling efficiency over the base-line grid approach.

This will be measured using the following metrics.

Query Efficiency. This is measured as the number of queries to the simulator

required to fully explore the system.

Edge length. This is measured as the distance in joint space between a pair

of states. It represents the minimum amount of actuation necessary to move

between those states.

Transition Energy. This is defined as the amount of potential energy lost

by the robot when it enters an unstable state and tips over. It is measured by

the change in height of the center of gravity and is a measure of the physical

shock inherent in the transition.

Our second goal is to show that this framework can be used for self-righting

in three-dimensions for robots models with a high number of facets and degrees of

freedom. We will demonstrate this by applying our system to a high-fidelity model

of an actual bomb-defusing robot with 5 DOF. For this case-study, we measure

the effectiveness of the search and the resulting transition graph on the following

metrics; the number of samples for each search method, the percentage of states

which can reach the home state of the robot, and the mean total transition energy

required to reach the home state. This last metrics is the sum of the transition

energies for all edges in the graph between the starting state and home state. A

146



lower total transition energy means less powerful impacts as the robot tips over

during the self-righting process.

5.4 Approach

5.4.1 Overview of Approach

Our objective is to discover all node transitions with the same or better resolu-

tion as the previous grid-based approach, while utilizing fewer queries to the simula-

tor. Our approach iterates upon adaptive sampling techniques originally developed

to generate test scenarios for autonomous vehicles [142]. This framework breaks

the problem into two steps; adaptive sampling and boundary detection. During the

adaptive sampling step we try generate queries and submit them to the system in

an attempt to maximize samples in the transitional regions of the system. During

the boundary detection step we attempt to cluster the contiguous regions of stable

C-space and identify how they are connected via unstable transitions.

The states where the convex hull formed by the robot has a face resting on

the ground exist on a discrete set of m dimensional manifolds in Rm+3 space. For

maximum efficiency we only want to submit queries to the system along these man-

ifolds. However, we do not know a priori the number or shape of these manifolds.

In addition we require a way to extract clusters of samples that share the same

manifold in order to generate our transition graphs.

To achieve this, we have adapted both of our techniques to use additional

information output by the simulation. The first is that our stability function does
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not return results for the queried states. Instead, it returns a set of starting states

along with the outputs of the simulation for those starting states. Any starting state

which does not result in a face of the convex hull resting on the ground is rotated onto

the closest face to the ground plane. This step is similar to a projection operation

[169] which is commonly used for sampling motion plans with constraints. This

allows us to utilize estimates of the manifolds as inputs to our system and and the

stability function will attempt to correct any error in our estimate so we still receive

an output as if we had submitted a valid manifold state. A valuable feature as it

reduces the total number of times we must compute the convex hull for potential

joint angles.

Our second change is to utilize save all convex hulls that have been computed

with each query. We use these to create a set of all known combinations of joint

states and body angle states for our clustering algorithms. Creating a larger set of

points which can be used for manifold identification than using the queried states

alone.

Our final change is to account for the fact our C-space is defined in joint angles

and body angles. We adapt our distance metrics to be the cosine distance between

two states, defined as distcos = |cos(x0)− cos(x1)|.

We take this approach rather than using more standard manipulation motion

planners such as AtlasRRT or CBiRRT2 [115][117] for two reasons. The first is that

these algorithms do not provide any bias that would lead it to discover the ”bridge”

or transitional states between the manifolds of the system. The second is that we

are attempting to achieve a global road-map rather than simply plan between two
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selected states.

5.4.2 Robot Stability Function

We developed a 3d simulation environment which uses the MATLAB Robotic

System Toolbox to simulate the dynamics of the rigid-body on a sloped planar sur-

face. The collision geometry of the robot is defined using Unified Robot Description

Format (URDF) to define the rigid-body properties and STL files to define meshes

of each individual link.

This simulation takes a robot joint configuration and body angle and outputs

the valid faces of the convex hull formed by that configuration and whether the

input body angle is stable. We are only interested in body angles which have the

possibility of stability, which are those where a face of the convex hull is in contact

with the ground. To ensure this, we ”snap” the robot to the nearest face of the

convex hull before simulating the dynamics and only consider stability from this

state.

To turn this simulation into a queryable function for our adaptive sampling

methods we need to wrap it such that it could accept a vector of states XQ as input

and return as output a sample set L = [X, Y,W ] where X is the vector of starting

states that were utilized by the simulation, Y is the the vector of binary stability

values for each of the starting states in X, and W is a vector containing information

about the starting pose, ending pose, and convex hull. This allows us to use an

adaptive sampling approach as if we had a system with Rm+3 inputs and a binary
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Algorithm 5 StabilityFunction(X)

Input: A set of states XQ

Output: A set of samples L
[Θ,ΦQ] = XQ

for each θi ∈ Θ do
Compute vertices for the robot Pi = RobotModel(θi)
Compute vertices and face normals for the convex hull [PCi, VCi] = ConvexHull(Pi)
Compute body angle set Zθ,i = V ec2Euler(VCi)
Find φS,i ∈ Zθ,i which minimizes dist(φi, φS,i)
Rotate the robot such that its body angle is φS,i
Simulate dynamics until the robot is stable
Set φR,i as the final body angle
X_xi where xi = [θi, φS,i]
Y_yi, where yi = (distance(φS,i, φS,i) ≤ εφ)
W_wi where wi = [φS,i, φR,i, Zi]

end for
return L = [X,Y,W ]

output and automatically corrects for any error in our estimate of the position of

the valid manifolds. The formal definition for this function is given in Algorithm 5.

5.4.3 Adaptive Sampling

Adaptive sampling is an iterative process consisting of submitting queries to

the system, using the returned outputs to generate a meta-model, and then applying

an information metric to the meta-model to generate a new set of queries. The

typical application of adaptive sampling is to minimize error between the meta-

model being built and the true system. However, our goal is to generate samples

along the transitions between the stable manifolds of our system.

Here, we tailor our adaptive sampling framework from [142] to our new system

in several ways. This new approach is described in Algorithm 6. First, we assume

that the test function F outputs feedback as to the starting states and their stability

values. Therefore, instead of constructing our labeled data set from our queries XQ,

we instead construct it from the starting states X ′ output by F . The second change
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Algorithm 6 AdaptiveSampling(F ,X , N)
Input: A function F , a state space X , and a maximum number of queries N
Output: A set of labeled samples L = [XN , Y N ,WN ]

Randomly sample a set of initial queries X0 ∈ X from a uniform distribution
Evaluate initial queries [XN , Y N ,WN ] = F(X0)
while size(X) < N do

Train M on [X,Y ]
XC = generateCandidates(X , X,W )
[I, σ, V ] =M(XC)
Remove xi ∈ XC where σi = 0 and Vi < rmax
Remove xi ∈ XC where σi > 0 and Vi < rmin
if XC = ∅ then

BREAK
end if
Set XQ to the n elements of XC with the highest I
[X ′, Y ′,W ′] = F(XQ)
Concatenate samples, XN‖X ′, Y N‖Y ′, WN‖W ′

end while
return L = [XN , Y N ,WN ]

is that we have made the generation of the candidate states XC into a modular

component that allows us to use a domain specific algorithm tailored to F . The

third change is that while we are still driving our search using the binary stability

output Y , we allow additional information to be saved in the vector W . Finally, we

introduce cutoff conditions of minimum and maximum resolution [rmin, rmax] of the

search. The search ends when all volumes that lie upon the transition boundary are

smaller than the maximum resolution, and all other volumes are smaller than the

minimum resolution.

We utilize interchangeable meta-model evaluators designated as M for se-

lecting which candidate states XC to select as queries. A meta-model evaluator

trains a meta-model of the function F (X) = Y using all previously labeled samples

[XN , Y N ]. It then computes an information gain metric I along with a density V

and variance σ for all candidates states. Currently we utilize a K-Nearest Neighbors

Density and Variance (NNDV) estimation method, which was designed to sample

the transition regions of systems. The procedure for the NNDV evaluator,MNNDV ,
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Algorithm 7 generateCandidate(X , X,W )
Input: A state space X , a set of known states X, and their respective body information W
Output: A set of candidate states XC

[Θ,Φ] = X
[ΦS ,ΦR, Z] = W
Train convex hull meta-model Π(Θ, Z)
Generate random set ΘC ⊂ Θ
ZC = Π(ΘC)
XC = [θi, φj ], ∀θi ∈ ΘC and ∀φj ∈ ZCi
return XC

is as follows:

1 Input a set of sampled states [XN , Y N ], and query states XQ

2 Find the K nearest neighbors in XN using cosine distance

3 Compute variance for each state σi = V ar(Y K
i )

4 Compute volume for each state Vi = max(|Xi −XK
j |)

5 Compute information I = α ∗ σ + β ∗ V

6 return [I, σ, V ]

We use α and β as weights to tune the search. A high α biases the search

towards sampling regions with high variance, exploiting the evaluator’s estimate of

where the boundary is likely to occur. A high β biases the search towards sampling

regions with high volume, exploring regions that have not been sampled before.

As mentioned in the beginning of the section we do not know the number

or shape of the Rm manifolds a priori. There is no known analytical representa-

tion for many types of constraint manifolds (including pose constraints) and the

high dimensional C-spaces of most practical robots make representing the manifold

through grid-based sampling sampling prohibitively expensive.[117]. While we can
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Algorithm 8 TransitionGraph(L)

Input: A sample set L = [XN , Y N ,ΦNS ,Φ
N
R , Z

N , JN ]
Output: A transition graph GN

Create set of all known states XZ

Create graph G0 = gabrielGraph(XZ)
Set Y Z = Y N (nearestNeighbor(XZ , XN ))
Create GS ⊂ G by removing all nodes where yi = 0
Create set of clusters [L,LZ ] = stronglyConnected(GS)
Create transition edges ET
Convert ET = {[i, j]} into EL = {[li, lj ]}
Remove duplicates from EL, keeping the lowest energy edges
return GN = (L,EL)

compute the location of the manifold for any given joint state θ, it requires cal-

culating the convex hull which is computationally expensive. This means we must

estimate where the manifolds are when generating our candidate states XC and rely

on the projection step within F to correct for any error in our estimates.

Past efforts for constrained sampling have researchers in the past have created

parametric or piecewise continuous models of the manifolds [170] [115] to drive

their search. Here we do the same, by training a meta-model of the convex hull

function Ẑθ = Π(θ), which takes a vector of joint angles and returns a set of the

predicted body angles of the convex hull faces. To minimize computational overhead,

we selected a nearest neighbor classifier for Π such that Π(θi) = Zj where θj is

the nearest neighbor to θi in ΘN . We more formally describe this component in

Algorithm 7

5.4.4 Graph-based Clustering

In our previous work [142] we developed a boundary identification technique

which relied upon Mean Shift clustering to find the performance modes of the target

system. However, that algorithm is not appropriate for identifying contiguous stable
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regions of C-space. Therefore, we developed a novel set of graph-based clustering

algorithms. The purpose of these is to identify the stable manifolds that represent

the resting faces of our system, then identify the transitions between them to create

our self-righting graph. This is analogous to the connection step of the PRM process,

except we are eschewing the use of a local planner to generate validated connections

between states and instead using trying to determine connectivity via identification

of the manifolds.

In order to identify the manifolds of our system we utilize all known valid

points that are identified in our generated map [ΘN , ZN ] to create XZ where XZ
ij =

[θi, φj]∀θi ∈ XN ,∀φj ∈ Zi. This gives a significantly denser set of points of which

our labeled states XN is a subset, filling in the regions where the adaptive search

explored more sparsely.

We then construct a Gabriel graph of these points. The criterion for two points

xi, xj ∈ X being connected via a Gabriel graph are d(xi, xj) ≤
√
d2(xi, xk) + d2(xj, xk)

and d(xi, xj) ≤ dmax where k 6= i, j and xk ∈ X. We select dmax as our maximum

edge length criterion. This requirement removes any outliers and prevents connec-

tions between parallel manifolds.

Once we have our initial Gabriel graph G0, we assign each the stability values

in Y N to each node in XN . We then assign values to the remaining elements in XZ

based upon their closest neighbor in XN . Next we create the subgraph of stable

states GS by removing all nodes where Y Z = 0. Finally, we identify all strongly

connected regions L in the subgraph and assign each a unique label li ∈ L to form

our clusters, with LZ being the label for each node in G.
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These clusters constitute the nodes of our transition graph. The next step is to

generate the directional edges of our transition graph which are unstable transitions

between the continuously stable nodes. We do this by creating ET = {[i, j]} where

xi = [θi, φi,S], xj = [θi, φi,R] ∀xi, xj ∈ XN s.t. yi = 0. In other words connecting

each unstable state in XN to the node representing its final resting state.

For the transition graph we want to compress each strongly connected region

in G0 into a node and use the edges in ET to define the transitions between them.

We do this by converting ET = {[i, j]} into EL = {[li, lj]}, replacing the node

indices with their cluster labels. As this can create duplicate edges between nodes,

we remove all duplicates except the one with the lowest transition energy. This

leaves us with the final graph GN = (L,EL). The full process is detailed Algorithm

8.

The advantage of using graph-based clustering instead of using a local planner

to perform edge checks is a reduction computational time. To compare these two

techniques we created a simple local planner which checks the linear path between

two states for stability. We then applied the PRM algorithm for connecting states in

C-space using our linear local planner.In Table 5.1 we show the results for applying

both techniques to sample sets generated our 1,2, and 3 DOF robots.
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Gabriel Clusters PRM

# of states Time (sec) Time (sec)

1DOF 443 0.162 2.34

2DOF 1,686 1.5809 33.44

3DOF 16,964 481 2,249

Table 5.1: Comparison of computational time between our Gabriel clustering
method versus graph generation using PRM edge checking

5.5 Results

5.5.1 Comparison with Previously Validated Results

The self-righting framework was previously validated on three systems con-

sisting of 1, 2, and 3 degrees of freedom (DOF) [167]. In this section, we compare

the results of applying our newly introduced search techniques to those previously

published. For each system, we measure the number of queries to fully explore

the space, the mean distance between boundary pairs, and the mean energy of the

identified transitions.

The systems tested consist of a 1 DOF system with a single shoulder joint

attached to a massless arm (Fig. 5.2A), a two DOF system with a shoulder joint

and elbow joint with a fifth of the robot’s mass residing in the arm (Fig. 5.2B), and

a three DOF system that is identical to the two degree system but has an additional

flipper located in-line with the front wheels (Fig. 5.2C). The 1 DOF robot was

run with a ground angle of 20 degrees, while the physically realized 2 and 3 DOF
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(a) 1DOF (b) 2DOF (c) 3DOF

Figure 5.2: Illustrations of the 1, 2, and 3 DOF robots

(a) Number of Queries (b) Length (c) Energy

Figure 5.3: Comparison of the three search methods for the validated systems

robots were analyzed for a ground angle of 0 degrees. As the previous study only

considered the dynamics in a two-dimensional plane, we fixed the roll and yaw to

zero in our simulation for the comparison.

For comparison, the grid search was run at 1 degree resolution for the 1 and

2 DOF system, and 3 degree resolution for the 3 DOF system. The results of this

comparison are shown in Figure 5.3.

For all of the systems, both the grid and adaptive searches resulted in the same

node transition graphs which had been previously validated on hardware. See Figure
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(a) 1DOF (b) 2DOF

Figure 5.4: State plot comparing the grid search and adaptive search. The black
lines indicate the samples generated from grid search; the blue mak-
ers indicate stable samples and red markers indicate unstable samples
queried by the adaptive search.

5.1c for a visualization of the 1DOF graph. The adaptive search technique required

an order of magnitude fewer queries to fully explore the system. For the 2 DOF

system this reduced the total simulation time from 550 seconds to 75 seconds, with

the additional time attributed to computational overhead. As seen in Figure 5.4, the

adaptive search was successful at preferentially sampling near the boundary regions

between nodes while minimizing the number of samples in the interior regions.

The higher resolution in the transition regions meant it was able to identify

boundary pairs that were closer together. Which meant more confidence about the

actual transition point. These pairs also had a lower transition energy, in other

words less energy had to be dissipated due to impact with the ground. These

qualities mean that we could potentially reduce the number of samples required

even further if we are willing to accept higher impact transitions that are associated

with lower resolution in the transition regions.
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5.5.2 Case Study: AEODRS Increment 1 Robot

Figure 5.5: Illustration of the 5 DOF robot model. Its degrees of freedom are (1)
Shoulder Yaw, (2) Shoulder Pitch, (3) Elbow angle, (4) Wrist rotation,
(5) Jaw Angle

As this improved framework now supports the analysis of three dimensional

models we were interested in how these techniques would apply to a robot where

both rolling and pitching is part of the self-righting process. For this purpose, we

selected a robot from the Advanced Explosive Ordnance Disposal Robotic System

(AEODRS) family of platforms. AEODRS is a US Navy-sponsored effort to create

open standards for bomb defusal robots. The ability to self-right is one of the

many requirements of the final system [171]. The Increment 1 robot is illustrated

in Figure 5.5 and has a manipulator arm with 5 degrees of freedom. It has a total
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of 9 degrees of freedom if its wheels and gimbaled camera system are included but

neither of those are considered part of the self-righting process for this study. Of

the 5 degrees of freedom provided by the manipulator and end effector we were able

to show that only 3 of these (shoulder pitch, shoulder yaw, and elbow angle) are

necessary for self-righting. We analyzed the robot as a 1, 2, and 3 degree of freedom

system. As proceeding to any higher dimensions using the grid search required more

computational time than we could reasonably allow. The 1DOF version only utilizes

shoulder pitch, and the 2DOF version utilizes shoulder pitch and shoulder yaw. In

both of these configurations, the elbow was locked at full extension (180 degrees).

For all of these analyses, we only considered a ground angle of zero, allowing the

effects of yaw in the body angle to be ignored.

The results of applying our algorithms to AEODRS robot are shown in Fig-

ure 5.6. However in this case we did not actually run the grid-search as it would

have been prohibitively expensive. Instead we used the manifold meta-model gener-

ated by the adaptive search to estimate the number of queries required by the grid

search to achieve the same transition resolution. As with the previous validations,

the adaptive sampling search proved to be significantly faster at generating the tran-

sition graph. This is not surprising as the previous-grid search approach required

a number of queries equal to ||Zθ|| ∗ (π/r)m, where ||Zθ|| is the average number of

unique faces for a single joint angle and r is the sampling resolution. For the com-

plex geometry of the AEODRS robot most configuration states had approximately

200 unique faces. Combine this with the exponential number of samples required as

the number of joint angles increases and it becomes immediately apparent that grid-
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sampling cannot be applied beyond 2 or 3 dimensions. For example at 4 dimensions

a grid-search with 5 degree resolution would take over a month to complete. What

is interesting is that the adaptive sampling approach does not exhibit the same ex-

ponential growth at 4 and 5 dimensions. This is primarily due to the fact that the

wrist and gripper jaws have almost no effect on the self-righting capability of the

robot. Thus the adaptive sampling method was able to ignore those dimensions to

a large degree and still create the appropriate self-righting path.

In addition, we discovered that 78% of states were self-rightable for the 1

DOF system and 100% of states were self-rightable for 2 DOF and above. However,

when all three joints were utilized, we could find a stable transition directly to

the upright configuration from almost any state as indicated in Figure 5.6b as the

transition energy drops to nearly zero. The states for the 1 DOF setup are shown

in Figure 5.7. It is immediately apparent there are 1 dimensional manifolds in the

3 dimensional space. Where the robot undergoes both changes in roll and pitch as

the shoulder joint moves.

5.6 Summary

In this chapter, we introduced a simulation-based framework for evaluating

the self-righting capabilities of a robot in a 3-dimensional environment. The pri-

mary intellectual contributions were a manifold constrained NNDV search and new

methods for graph generation. By using adaptive sampling we achieved the same

or better resolution of the transitional regions as the prior work with an order of
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(a) Number of Samples (b) Energy

Figure 5.6: Charts showing (a) the number of samples required to fully explore the
AEODRS C-space and (b) the resulting mean transition energy it takes
to reach the home state for increasing degrees of freedom

magnitude fewer samples. This is a critical factor in our ability to scale the system

up to systems with higher degrees of freedom, as the number of samples required

scale exponentially as the number of dimensions increase.

In addition, our graph-based clustering methods for identifying contiguous re-

gions of stable space were more computationally efficient than the PRM approach of

validation using a local planner. They also support our new approach of representing

our system as stable manifolds in C-Space which can be reached through unstable

transitions. The result was an increase both the number of degrees of freedom and

number of geometry facets for the robot models. Significantly increasing the fidelity

of the robot models which could be verified.

Our test system for this study assumed a quasi-static model for robot stability

and the simulator used a coefficient of restitution of 1. The black-box treatment
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(a) Stability Plot (b) Transition plot

Figure 5.7: Scatter plots for the 1DOF AEODRS robot with only the shoulder joint
actuated. (left) An isometric view showing how stable states in blue and
unstable states in red. (right) A top down view with red arrows showing
transitions between nodes.

of the simulation by the sampling algorithms means we can change these assump-

tions by updating the model in our simulator. Similarly, it would be straightforward

to add additional complexity to the simulation environment in the form of rugged

terrain. Two aspects for future work that will require changes to the framework

are torque limits and dynamic limb motions. Torque limits can cause our assump-

tion of full bi-direction connectivity within the stable manifolds to break down,

requiring an additional step to be applied to generate valid road-maps within these

manifolds. Dynamic limb motions have been addressed by previous research into

individual transitions but add an extra level of dimensionality which is not currently

incorporated into our planner.
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Chapter 6: Accelerated Testing and Evaluation of Autonomous Ve-

hicles via Imitation Learning

The work in this chapter was published in the following venues,

G. E. Mullins, A. G. Dress, J. D. Appler, P. G. Stankiewicz, and S. K. Gupta,

“Accelerated testing and evaluation of autonomous vehicles via imitation learn-

ing,” in Robotics and Automation (ICRA), 2018 IEEE International Conference

on, IEEE, 2018

6.1 Introduction

Correctly predicting how an autonomous vehicle will behave in new scenarios

is an unsolved problem within the testing and evaluation community. Evaluat-

ing blackbox autonomy software via simulation-based testing requires an enormous

amount of runs to provide assurances about the system’s behaviors and decision-

making processes [25].

One way of reducing the number of required runs is to intelligently select

experiments via adaptive sampling methods that utilize a surrogate model of the

System Under Test (SUT).

In our previous work [142], we detailed an adaptive sampling framework that
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identifies critically ranked test scenarios for evaluation of autonomous vehicles. How-

ever, even when intelligently selecting test scenarios, the dimensionality of a realistic

testing space (i.e. obstacles, missions, environments, etc.) can quickly require mil-

lions of simulations to be run. In addition, predicting the performance of untested

scenarios through traditional classification techniques is limited due to the highly

nonlinear performance landscape of autonomous systems.

Imitation learning [123] methods aim to mimic the behaviors and actions of the

agent under observation. In the past, imitation learning has primarily been viewed

as a replacement or supplement for reinforcement learning [128], [173], where the

goal is to develop an optimal behavior by starting from a known expert policy. For

this chapter, we are interested in the subdomain of behavioral cloning [123], where

the imitator learns policies that replicate the target agent as closely as possible,

even if those behaviors are sub-optimal. Thus, just as physics-based models are

used to approximate physical systems, we aim to use behavioral cloning techniques

to approximate the “brain” of the system, i.e. its decision-making processes and

behavioral modes.

In this chapter we introduce a new method for generating test scenarios for

autonomous vehicles by utilizing imitation learning surrogates to guide an adaptive

search. Our approach iteratively trains an imitator agent that is then used in place of

the real agent in simulation. Over time it generates increasingly accurate predictions

of scenario performance as seen in Figure 6.1. These predictions are then used to

estimate where performance boundaries may exist for the both the real and surrogate

agents. The remainder of the chapter is organized as follows. In Section 6.2 we
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Figure 6.1: In this example scenario the imitator (blue line) rapidly converges to the
expert agent’s path (red line) despite never experiencing this scenario
during training.

discuss the problem of scenario generation for autonomous systems. The problem

formulation is given in Section 6.3. In section 6.4 we describe the imitation learning

problem and the Q-DAgger algorithm. In Section 6.5 we describe our autonomous

underwater vehicle (AUV) target expert and scenario. In Section 6.6 we provide

the results of replicating the AUV’s navigation behaviors. Finaly, in Section 6.7 we

summarize our findings and discuss future work.

6.2 Test Generation Process

Test scenario generation techniques aim to identify inputs that will trigger

specific behaviors in an autonomous agent. Often, this focuses on environments

that will trigger a fault or violation of the system’s requirements. In this section we
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will quickly review the work in Chapter 3 in generating challenging and diverse test

scenarios for autonomous vehicles and how this approach can be augmented with

imitation learning.

6.2.1 Performance Boundaries

In attempting to characterize the performance landscape of an autonomous

system, we previously introduced the concept of performance boundaries [142].

These are transitional regions in the testing space where small changes in scenario

parameters cause large changes in system performance. In our prior work we outlined

methods for identifying scenarios in the regions of these performance boundaries.

As an example, Figure 6.2 illustrates a simple performance boundary on a simulated

autonomous agent, where a small change in the position of the pentagonal obstacle

means the difference between obstacle avoidance and a collision.

Identifying performance boundaries in a testing space is useful not only for

better characterization of the performance landscape, but also for providing an

estimate for the certainty of the vehicle’s performance. In other words, the outcome

of scenarios that lie near performance boundaries are less robust than those that lie

away from the performance boundaries. Another purpose for boundary identification

is that they can serve as delta-tests to infer which environmental factors trigger

specific performance modes or decisions by the autonomy.
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6.2.2 Range Adversarial Planning Tool

To address the problem of discovering challenging test scenarios with minimal

simulations, we developed the Range Adversarial Planning Tool (RAPT) [142]. This

simulation-based framework accepts a testing space, generates and runs scenarios

within the testing space in simulation, and ultimately provides a ranked test suite

to be executed on hardware. The test generation algorithms within RAPT can be

broken into two phases: adaptive search and boundary identification.

To mitigate the high dimensionality of a realistic testing space, the adaptive

search phase intelligently generates the scenarios that are run in simulation. Dur-

ing this search, scenarios are chosen so as to achieve a balance between exploring

the full testing space while also preferentially selecting scenarios near the inferred

Figure 6.2: Example of a performance boundary - a small change in x1 results in
a new trajectory (blue line) that now avoids collision (i.e. a change in
performance).
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performance boundaries.

The second phase of test generation within RAPT is boundary identification.

Here, we use adjacency clustering of the resulting scenario set from the adaptive

search to identify pairs of scenarios which straddle performance boundaries. Scenario

pairs that lie closest to the boundary are ranked and delivered to the test engineer

for evaluation. The end result is a set of test scenario pairs which represent areas

of vehicle performance uncertainty, where the source of performance change can be

inferred from the scenario difference across the boundary pair.

6.2.3 Surrogate Agent Accelerated Generation

Given the expense of running simulations against the expert agent, we have de-

signed a modified architecture that will allow us to identify the performance bound-

aries by using a surrogate imitator agent. Under this framework, instead of directly

querying the expert system, the RAPT software generates results using the imitator

agent running in a faster-than-real-time simulation. This results in a set of scenarios

which describe the performance boundaries of the system. Subsequently, because

these scenarios have high performance uncertainty, they are then run against the

expert agent to validate the results. This process is summarized below.

1. Use expert to train imitator [50-100 runs]

2. Use imitator to discover performance boundaries [6000 runs]

3. Run expert against predicted performance boundaries [100 runs]
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4. Return the set of performance boundaries confirmed by the expert

The proposed framework would reduce the number of runs required by the

expert agent from several thousand to a few hundred. The remainder of this chapter

will explore whether an imitator agent is accurate enough to enable this proposed

framework. In particular, we want to answer the following questions.

• Can we train an imitator agent that exhibits similar performance modes and

boundaries as the expert?

• How many annotated trajectories are required to train the imitator agent?

6.3 Problem Formulation

In this section we will define the terminology used throughout the rest of

the chapter. First, we will provide our definitions of terms required to describe

the imitation learning process. Then we will discuss how this relates to our target

problem of test scenario generation.

6.3.1 States and Policies

In this chapter we will use the common conventions of defining the state of our

world as s ∈ S with the agent capable of taking actions a ∈ A. The state transition

function is defined as δ(a, s) = s′ where s′ ∈ S is another valid state.

A trajectory T M = {s0, ..., sM−1} in this context is the sequence of states of

length M that is created by running the action set AM = [a0, ..., aM−1] through the

state transition function.
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Given a state s, we are capable of taking an observation ψ(s) = f where f is

some set of features in the world that the agent is capable of sensing or has a priori

knowledge (e.g. maps or mission objectives).

A policy π(f) = a is a function that maps observed features into actions.

Finally we define a simulator as a function Φ(π, s0) = [T M ,AM ] which takes

an initial state and policy and generates a trajectory by continuous execution of the

policy and state transition function si+1 = δ(si, π(ψ(si))) until it reaches a terminal

state s ∈ Sterminal or reaches an end time Mmax.

6.3.2 Imitator Policy

Imitation learning is the process of training the policy π such that it closely

replicates the performance of original expert policy π∗. During training we designate

the imitator policy as πi to indicate the current iteration of the training process.

The imitator policy is trained on the training set Dk = [Fk,Ak], which is the

combined feature history and action history for k simulations, where the feature

history F = ψ(T )is defined as the state history passed through the observation

function. We denote L(D) as the loss function of π with respect to π∗ for all states

in D.

6.3.3 Scenarios and Mission Performance

Here we define a scenario input state as the vector X = [x1, x2, ..xn]. Each

element in the state space vector represents a variable in the environment, mission,
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or vehicle parameters (obstacle positions, time windows, mission priorities, etc.).

We assume the scenario configuration state X is related to the initial world state s0

by some scenario generator function K(X) = s0.

The performance score is defined as the vector Y = [y1, y2, ..ym]. Each ele-

ment in the score vector represents a performance metric by which the autonomy is

evaluated, such as percentage of fuel consumed or number of way points reached.

For each mission there is an evaluator function Z(T ) = Y which takes the

simulation history and returns the performance scores for that trajectory and sce-

nario.

The performance boundaries of a system are defined as a set of paired scenarios

Bπ = [(X1,a, X1,b), ..., (Xn,a, Xn,b)] where Xi,a and Xi,b are each the others nearest

neighbor to the other for which Yi,a 6= Yi,b.

6.3.4 Objectives and Metrics

Our unique objective in the field of imitation learning is to determine whether

the simulated imitator agent results in the same performance mode as the expert.

To measure this we will be using the following accuracy metrics of the imitator

agent’s behaviors.

• Score Error: 1
N

∑N
i=1 ||Z(Φ(π, si)))− Z(Φ(π∗, si)))||

• Path Error: 1
N

∑N
i=1

∑M
j=1 ||si,j,π − si,j,π∗||

In addition, we are interested in determining if the performance boundaries

of the imitator agent are accurate enough (compared to those of the expert) to
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be used to guide test selection. To measure this we also introduce the following

boundary-based metrics.

• Boundary Accuracy: 1
N

∑N
i=1 δB(xi) where δB(Xi) = 1 when Xi ∈ Bπ∩Bπ∗

and 0 otherwise

• Distance Error: 1
N

∑N
i=1 ||DBπ(xi) − DBπ∗(xi)|| where DBπ is the distance

from scenario xi to its closest neighbor in Bπ.

6.4 Imitation Learning

It is generally accepted that training a controller using only pre-recorded data

will not lead to a stable policy. The primary limitation of this approach is that any

error in the learned policy can lead to states not seen in the training set, ultimately

leading to unstable behavior.

This problem can be solved by utilizing online-learning, where the imitator is

allowed to control the vehicle while the expert records the correct control actions

for all states in the trajectory. This technique, known as DAgger [135] and has seen

recent success in several behavioral cloning applications.

Often, the optimal trajectories for an autonomous vehicle involve long periods

of constant velocity and heading. Because state information and control actions are

used to train the imitator, these periods dominate the training sets. Under these

circumstances, a network can minimize loss by always returning the same velocity

command regardless of the state. To avoid this we have modified the method for

aggregating the training set such that it over-samples the major decision points of
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the trajectories and under-samples the majority of null control actions. Instead

of aggregating the entire data-set we only retain the worst predictions from D.

This is similar to the EP-Opt procedure used to train robust reinforcement learning

policies [174]. We refer to this method as Q-DAgger which is defined in more detail

in Algorithm 9.

Algorithm 9 Q-Dagger
Create initial dataset D0 from a set of k scenarios running π∗

Train π0 from D0

for i ≤ N do
Generate dataset D′i from a set of k scenarios running πi
Create annotated dataset Di by running π∗ against D′i
Compute Qε = ε-percentile of L(D)
Select Dε = τj : L(τj) ≤ Qε
Aggregate D = Di ∪ Dε
Update policy πi = PolicyUpdate(πi−1,D)
i++

end for

By applying quantile down-sampling, we not only achieve our goal of over-

sampling the decision points of the trajectory, but also significantly reduce the

amount of training samples used during each update step. This allows Q-DAgger to

update the policy much faster than if each full epoch was performed with all collected

data. The network architecture is shown in Table 6.1. The network contains 400

input nodes, two hidden layers of size 150 and 50, and an output layer for predicted

trajectory. We used a mean squared error loss function and ADAM [175] algorithm

for optimization.
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Layer Type Size Activation

Input 400 Relu

Fully Connected 150 Sigmoid

Fully Connected 50 Sigmoid

Output 2 N\A

Table 6.1: Neural Network Architecture

The imitator network was implemented in Tensorflow and executed on a ma-

chine with an NVIDIA 980 GTX GPU. This allowed us to generate control actions

for a given state significantly more quickly than our prior autonomy solutions. We

had two prior controllers which we used for the comparsion. The first was a model

predictive controller (MPC) which used non-linear optimization to generate high-

fidelity trajectories and was implemented in C++. The second was a UUV Auton-

omy which used a tangent bug controller [176] which was implemented in Matlab. A

comparison of the computational speed for each of these methods is shown in Table

6.2.

Controller Type Time (sec) per 100 Evals

Model Predictive Controller 5.87

UUV Autonomy 0.487

Imitator Network 0.00421

Table 6.2: Comparison of Controller Speeds
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Figure 6.3: Flowchart outlining the autonomous vehicle testbed used for imitation
learning.

6.5 Autonomous Vehicle Testbed

6.5.1 Testbed Framework

To enable the application of Q-DAgger to a real system, we propose the

platform-agnostic autonomous vehicle testbed of Figure 6.3. This testbed is com-

posed of a front-seat computer which runs a low-level autopilot and a back-seat

computer which runs the decision-making software of the autonomy. Separating

these systems allows us to directly intercept the communications between the front-

seat and back-seat, ultimately giving the testbed access to perceptual information

and control commands. We can then either let the expert’s commands be passed

directly to the front-seat or send imitator commands instead.
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6.5.2 Mission Description

While the methods of this chapter are applicable to autonomous systems of

all domains, we focus our experimental results here as a case study on the under-

water domain. An OceanServer IVER [177] autonomous underwater vehicle (AUV)

was selected as the system under test. This platform was chosen because it con-

forms to the framework of Figure 6.3 and is widely used in the underwater robotics

community. While the training and validation of our imitation learning framework

is performed here in simulation, the autonomy software being studied is the same

version that we utilize on the hardware platform.

The mission scenario applied to this vehicle, Figure 6.4, contains a launch lo-

cation, a mission waypoint, and a recovery point. While traversing the mission area,

the agent must avoid obstacles and monitor its remaining battery. If at any time

the system believes it cannot achieve both the mission waypoint and the recovery

waypoint, it will abort the mission and return to the recovery. The testing space

Figure 6.4: Example UUV mission scenario
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within this mission consists of the (X,Y ) position of each obstacle as well as the

starting battery level, resulting in a seven-dimensional testing space.

The performance of the vehicle is evaluated by how much of the mission it

completes. Successfully reaching only the mission waypoint is scored as a Mission

Success (MS), while successfully reaching only the recovery point is scored as a

Safety Success (SS). Completing both objectives is scored as a Total Success (TS),

and completing neither is scored as a Total Failure (TF).

6.5.3 Feature Space and Action Space

Our simulated vehicle model uses a 3-degree of freedom hydrodynamics model

typical of torpedo-shaped Unmanned Underwater Vehicle (UUV)s (surge, sway, and

yaw). The simulated autopilot turns desired vector commands into low-level control

actions (rudder angle, thrust) and is outfitted with a sensor package including an

Inertial Navigation System (INS) and SONAR. We convert these sensor inputs and

a priori information about the environment into the following features:

• ffuel measures the remaining battery percentage.

• fmap = [d̄xway, d̄yway, d̄xrec, d̄yrec] contains the relative vectors from the vehicle

to the mission waypoint and recovery waypoint.

• fsonar = [r0, ....r360] contains SONAR readings subject to 100 meters of range

and 360 degrees of coverage with 1 degree resolution.

We transform all of these features into the vehicle’s local frame (x aligned in surge),
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then normalize all outputs to a range of [-1,1]. Finally, we concatenate all of these

to get our final feature vector. fj = [ffuel,j, fmap,j, fsonar,j]

The actions of the system are the desired speed and heading commands rep-

resented as a vector relative to the vehicle’s local frame, a = [dxdes, dydes]. These

are similarly normalized such that 0 <= ||a|| <= 1, where an action of magnitude

one represents maximum velocity.

6.6 Results

6.6.1 Experimental Setup

In this section we analyze the results of the trained imitator agent on the AUV

simulation of Section 6.5. We populate our initial training set D0 with 5 trajectories

generated by the expert policy π∗. Following this initial training set, subsequent

training sets Di are generated using 5 additional trajectories from the imitator policy

πi. We trained the imitator policy for 50 iterations with each iteration consisting

of 5 randomly generated scenarios, leading to 250 unique scenarios in total. All

simulations were run and the neural networks were trained on a workstation with a

Intel Xeon E5-2600 processor, 32 GB of RAM, and a Nvidia 980 GTX GPU.

In our first set of experiments we measure the performance of the imitator

policy on two metrics: path error and score accuracy. As defined mathematically

in Section 6.3, path error is the mean error between all (X,Y ) locations of the ex-

pert trajectory and the imitator trajectory. When these trajectories have different

lengths, the shorter trajectory is extended by repeating the last position. Score
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accuracy measures the ability of the imitator to correctly achieve the same perfor-

mance mode (MS, SS, TS, TF) of the real agent. The results of these criteria were

compared for Q-DAgger, DAgger, and a standard multilayer perceptron controller

trained using supervised learning as a naiv̈e baseline.

In our second set of experiments we explored how well the imitator policy

performed in the boundary regions, in terms of both its accuracy in predicting the

correct performance modes and how the boundary locations changed between the

expert and imitator. For these experiments we only present the results for the

Q-DAgger(50) agent.

6.6.2 Prediction Accuracy

While all of the imitator policies achieved at least 97.5% accuracy at predict-

ing individual control actions by the first iteration, this was due to the fact that a

majority of the control actions simply involved tracking a straight path. The critical

actions such as obstacle avoidance maneuvers and transition from the mission way-

point to the recovery points make up only a small fraction of the overall trajectory.

This means the regression loss during training is not an accurate predictor of how

the imitator will perform at replicating the target behaviors. This is reflected by

the performance of the baseline supervised learning algorithm in Figure 6.5.

By comparison, the DAgger family of algorithms performed substantially bet-

ter. As can be seen in Figure 6.1, these algorithms required minimal training itera-

tions in order to achieve accurate predictions of both trajectories and performance
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Figure 6.5: Comparison of standard supervised learning with DAgger and Q-DAgger
at 50th percentile and 75th percentile downsampling.

Figure 6.6: The imitator (blue line) is able to reproduce the paths of expert (red
line) for multiple different performance modes
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modes. All of these techniques generally converged to an average of 85% overall pre-

diction accuracy for replicating the correct performance mode. The models tended

to converge after 15 iterations, meaning only 50-75 annotated trajectories were re-

quired to achieve reasonable performance. The detailed results from our experiments

are documented in Table 6.3.

The reader should note that the Q-DAgger methods introduced in this chapter

converge slightly more quickly than standard DAgger, but in the end the result is

comparable. The true benefit of the Q-DAgger method is the increase in training

speed over standard DAgger. The total training time to complete 40 iterations

was 7 hours and 41 minutes for DAgger whereas the Q-DAgger(50) training time

was 2 hours and 32 minutes. This is due to the fact that the Q-DAgger method

managed to discard up to 75% of all training data while retaining the same predictor

performance. This strongly indicates that a vast majority of trajectory information

is not important to the training process.

Supervised Dagger Q-Dagger

Metrics (50) (75)

Run Time 6h 12m 7h 41m 2h 32m 2h 12m

Score Accuracy 6% 85% 84% 81%

Path Error (m) 525m 70m 61 m 87m

Table 6.3: Comparision between imitation learning methods
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6.6.3 Predicting Multiple Behaviors

One of the primary objectives of this work was determining if our system could

encode multiple behaviors in an imitator policy. Three of the primary performance

modes resulting from these behaviors are depicted in Figure 6.6. We are particularly

concerned with how well the algorithms learn failure modes such as the collision

mode depicted. To determine how well the imitator was learning each of these

behaviors, the resulting performance modes for the expert system were compared to

the predicted performance mode by the imitator in the form of a confusion matrix

(Figure 6.7). In other words, this matrix shows the success of the imitator system

in predicting the same performance mode that the expert system experiences.

Figure 6.7 reveals that the imitators had the most difficulty predicting SS

cases, i.e. predicting when the autonomy should abort the mission and return early.

They also tended to trend towards safety failure, indicating the imitator agents

experienced collisions slightly more often than the true agent. While this is not

unexpected from the overall imitator accuracy, it is useful to know what behaviors

the imitators may have trouble replicating. Overall this data confirms that they are

able to learn all the major performance modes of the expert.

6.6.4 Performance Boundary Accuracy

In addition to measuring our ability to predict the correct performance mode,

we are also interested in how well the performance boundaries predicted by the

imitator agent align with those of the true agent.
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Figure 6.7: Confusion Matrix for the Q-DAgger(50) showing performance accuracy
of the imitator for each of the performance modes.

For this comparison, we created a validation set of 5000 scenarios using a

Sobol space-filling design. We then extracted the performance boundaries of both

the expert agent and each of the imitator agents using the techniques from our

previous work [142]. For this study, we did not include the baseline agent trained

using only supervised learning as it did not have sufficient performance for the

experiment. We computed the error in boundary distance prediction and looked at

the correlation between the performance boundary regions and the locations where

incorrect behaviors occurred.

We discovered that 86.8% of the imitator performance boundary regions were

the same as the boundaries of the true system. The mean error in boundary distance

prediction was 0.0096. The shift in performance boundaries between the true system

and the imitator agent for a 2D slice of the testing space is shown in Figure 6.8.

From these results we can have high confidence that any scenario that is near the

performance boundary of the imitator agent is also in the vicinity of the performance
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boundary for the true system.

Additionally, we can see that that nearly all of the scenarios (95%) where inac-

curate behaviors occur are in the vicinity of the boundary regions, shown in Figure

6.8 by plotting the cases where the imitator did not have the same performance as

the expert.

These results lead to two useful conclusions. The first is that the locations of

the performance boundaries of the imitator agent are sufficiently accurate to support

the approach discussed in Section 6.2.3. Using only 250 training scenarios where the

expert system was in the loop we were able to locate the performance boundaries

of a system that previously required 6000 simulations by the expert. The second

conclusion is that the high correlation between prediction error and the location of

the imitator’s performance boundaries means that proximity to the boundaries can

be used as a confidence measure regarding the imitator’s behavior. Ultimately, this

informs the user where additional runs by the expert system may be required.

6.7 Summary

In this chapter, we explored the application of imitation learning to the cre-

ation of surrogate agents for validation of autonomous vehicles in simulation. The

first intellectual contribution was a demonstration that the Q-DAgger imitation

learning algorithm can successfully train a surrogate agent to accurate replicate

multi-objective UUV behaviors. The second is a demonstration that an imitation

network is hundreds of times faster than the original controller, significantly increas-
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Figure 6.8: Comparison of the performance boundary regions of the imitator (blue)
versus the expert (red) for a 2D slice of the scenario space. White regions
represent areas of stable performance for both agents. The black dots
are scenarios where the imitator performance mode does not match that
of the expert.

ing the rate at which runs can be performed.

Behavioral cloning using DAgger can successfully create surrogate agents which

accurately encode both the decision-making of the real agent and its resulting perfor-

mance landscape. A single multilayer perception architecture is capable of not only

learning a regression of the control actions, but can also encode multiple mission-

level behaviors. By utilizing a shallow network we maximize the rate at which pre-

dictions can be made. Additionally, by applying percentile down-sampling as part

of our Q-DAgger algorithm we can reduce the time it takes to train the imitation

agent.
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Chapter 7: Conclusions

This chapter presents the expected intellectual contributions of this disserta-

tion and the anticipated benefits to the larger community. Further research direc-

tions to continue addressing the presented issues and questions are also discussed.

7.1 Intellectual Contributions

The main intellectual contributions include the following:

7.1.1 Automatic generation of challenging and diverse test scenarios

for autonomous vehicles

This dissertation introduces a novel approach of using adaptive sampling to

discover and identify the performance boundaries of an autonomous vehicle. This

study posits that scenarios that lie upon these boundaries are the most informative

test cases for characterizing the behaviors of an autonomous system. As applied

in Chapter 3 and 4 this testing approach can be used to discover the performance

boundaries of an autonomous robot completing a complex mission with multiple

competing objectives. More generally the contributions from this work are as follows,
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• An adaptive sampling algorithm, NNDV, which outperforms all standard base-

lines for the task of finding performance boundaries. This newly introduced

technique generates tests which are both close to the performance boundaries

and provide good coverage of the boundary regions. The NNDV algorithm

does not require a system specific objective function like prior optimization

based algorithms, enabling it to be applied to a wider range of system. It also

is robust to discontinuities and noise in the output of the simulation.

• An unsupervised clustering approach that uses pair-wise metrics to identify

transitions in scattered data-sets with an arbitrary number of dimensions.

This approach describes the transition regions of a system by identifying pairs

of cases that belong to different performance modes. As it is a density based

technique it requires almost no-tuning or a priori knowledge of the distribution

of the data or the size of the state-space. The output is a set of transition pairs

categorized by the type of performance boundary they describe and sorted by

predicted distance from the boundary.

• A scaled neighborhood density and variance estimation algorithm, S-NDV,

which scales the neighborhood calculations of the NNDV algorithm based upon

variable importance. This algorithm significantly reduces the impact of non-

contributing inputs and allows the search to remain focused as the number of

input dimensions increase. Outperforming non-scaling methods when applied

to systems with a large number of dimensions. Where as prior research in

search-based testing only focused on 2 to 6 dimensions I demonstrated the
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new algorithm can search over 18 dimensions.

• Hierarchical clustering algorithms for analyzing high-dimensional outputs. I

demonstrated that this technique can extend the maximum of number of out-

put dimensions for the system from 2 to 66. This approach was predicated

on the development of a hierarchical scoring method and is well suited to

many autonomous vehicle missions. By combining hierarchical scoring with

the sub-clustering algorithms it is possible to cluster and analyze dozens of

different output metrics simultaneously. By using these methods an engineer

can quickly select the scoring criterion that are most likely to reveal perfor-

mance boundaries caused by changes in the decision making process of the

system.

• The first study where test scenarios for an autonomous vehicle which were

generated via search-based testing and then executed in the field. All prior

research into search-based test generation methods have been restricted to

simulation environments. I was able to validate performance boundaries on the

hardware platform despite large amounts of execution error and uncertainty.

Demonstrating the test scenario generation process I developed is capable of

creating actionable field tests.

These contributions are combined to create RAPT, A modular software tool-

box for adaptive sampling and performance boundary identification of black-box

systems. The modular nature of this toolbox means that a designer can experiment

with a variety of search methods, including commercial products such as SUMO
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[79]. In addition, the toolbox is designed for easy integration with a variety of simu-

lation environments and software components. Beyond the simulation environments

discussed in this dissertation plug-ins currently exist for a variety of standard op-

timization test functions [178], the MATLAB Robots System Toolbox [179], and a

UGV simulation for reinforcement learning via PROPS [180]. It is capable of being

complied as as a standalone tool and is currently being installed at the Keyport

Underwater Testing Facility (Technology Readiness Level of 6).

7.1.2 Adaptive sampling framework for generating self-righting paths

for generic robot geometries

The algorithms introduced in this dissertation have applications to any system

where the transition regions hold special significance. In Chapter 5 I extend the work

performed in Chapter 3 to sample along constrained manifolds in a high-dimensional

configuration space. Specifically I demonstrate how the adaptive sampling frame-

work can be integrated with a simulation which verifies stable and unstable UGV

configurations as a method for generating self-righting plans. This effort resulted in

the following contributions,

• A manifold-constrained version of the NNDV adaptive sampling algorithm.

This algorithm allows us to search the C-space of a ground robot for locations

where it transitions from stable to unstable. This search method offers an order

of magnitude reduction in the number of simulations required to generate self-

righting graphs for ground robots.
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• A continuity-based clustering method for identifying contiguous performance

regions. This algorithm utilizes Gabriel graph connectivity to establish when

samples should be connected as members of the same cluster. Allowing us

to create self-righting graphs from scattered data, which was not supported

by prior frameworks. It also is faster than edge checking techniques used in

traditional PRM generation.

• An improved simulation-based framework for validating the self-righting capa-

bilities of ground robots. This removes the need to simplify the robot models

to two-dimensional models with dozens of facets and instead utilize full res-

olution three-dimensional models with thousands of facets. When combined

with the adaptive sampling algorithm it enables the analysis of robots with

greater degrees of freedom. Allowing users to perform validation on realistic

systems without simplifying assumptions.

These techniques were successfully applied to generate self-righting graphs for

robots with arbitrary morphologies. Previously, only a grid-based sampling method

had been successfully applied to compute these topological graphs. By applying

new adaptive sampling algorithms I can both reduce the amount of time it takes

to generate graphs with similar resolution by an order of magnitude. Making it

possible to apply this method to robots with significantly higher degrees of freedom.

Finally, all of these new improvements enable the analysis of robot models in three-

dimensions. Improving upon the previous approaches which were only capable of

analysis in two-dimensions.
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7.1.3 Deep imitation learning for creating surrogate agents

Surrogate behavioral meta-models make it possible to perform fast predic-

tions of an agent’s performance in unknown scenarios. In Chapter 6 I developed

a deep imitation learning framework and demonstrated how it can be applied to

autonomous unmanned systems. It was successfully applied to a single agent UUV

navigation mission and was able to model multiple behaviors using a single MLP

network. These models run significantly faster than the original autonomy con-

trollers, allowing for faster simulations. In addition, these models were leveraged

as a method for predicting scenario similarity that can be applied to the scenario

generation process discussed in Chapter 3.

In short, this study lead to the following contributions.

• A Q-Dagger imitation learning algorithm which can successfully train a surro-

gate agent which accurately replicates a UUV autonomy with multi-objective

behaviors. Previous behavioral cloning efforts had only demonstrated success

at learning simple obstacle avoidance and waypoint strategies. The imitator

network learned additional policy decisions such as when to turn back when it

was low on fuel and when the true agent would collide with an obstacle. This

allows for greater predictive ability than had been demonstrated to this point.

• A several orders of magnitude increase in the speed of the surrogate agent over

the autonomy under test. The shallow MLP network is sufficiently accurate

to replicate the behavioral modes of the autonomy while being up to 100
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times faster than even the optimized implementations. This will allow for

greater number of simulations to be performed and faster identification of the

performance boundaries.

• A new quantile data-aggregation (Q-DAgger) algorithm which reduces the

computational time required to perform imitation learning. This algorithm

works by reducing the training set to only those samples which maximize the

loss of the imitator network. This helps bias the training set towards the

important decision points of the trajectory. This algorithm trains in fewer

iterations than the original DAgger algorithm while also taking significantly

less computational time to train.

These advances offer a new approach for predicting the performance bound-

aries of autonomous vehicle software using an imitation agent. The performance

boundaries of the imitator agent prove to be co-located with the performance bound-

aries of the actual system. Thus an estimate of boundary distance generated by the

imitator system can be taken with relative confidence. In addition most of the in-

accurate behaviors between the imitator and true system occur at the boundary

region. Allowing boundary distance to be used as a stand-in for imitator prediction

confidence.

7.2 Anticipated Benefits

This dissertation covers the problems of efficiently generating test-cases for

autonomous vehicles using adaptive sampling and surrogate models. It introduces a
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novel search-based testing approach which eschews typical hand-designed objective

functions in favor of finding performance boundaries across all behavioral modes.

This framework has been developed as a MATLAB toolbox which is deployed at

government test-ranges. In addition, it provides a method for generating transition

graphs for hybrid systems. Which has many applications including the ability to

verify a ground robot’s ability to self-right. These techniques have been successfully

demonstrated on systems with random effects, indicating they can be used to cover

either uncertainty in system performance or stochastic decision making processes.

Finally, this work explores the problem of generating surrogate agents which can be

used in place of the real system for faster prediction of performance.

7.3 Future Work

7.3.1 Meta-modeling and Manifold Learning

The NNDV algorithm introduced in Chapter 3 was selected because it provided

similar performance to Gaussian Process Regression but with substantially better

scaling. The choice to prioritize training time over accuracy was driven by the faster-

than-real time performance of the UUV simulation. As time spent training a meta-

model was potentially time that could have been spent running more simulations.

This coupled with the difficulty of fitting meta-models to the high-dimensional non-

linear state-space meant that efforts for developing better meta-modeling strategies

were dropped. Yet there are many cases where having accurate meta-models would

be beneficial for providing assurances of reliability and accelerating the search of
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the system.

In particular, many autonomous vehicle simulators are not capable of running

faster than real-time. Limiting the amount of runs which can be performed even

with high powered computing resources. When this is the case having strong meta-

modeling techniques which can guide surrogate optimization approaches will be crit-

ical. Manifold learning techniques which can describe the performance boundaries

of the system could simultaneously drive the search and provide stronger assurances

for the volume of space where stable performance can be expected. The one ben-

efit a slower simulation provides is that there is more time to train a meta-model

while awaiting results. Opening up the possibility of using methods which are more

expensive to train, such as artificial neural networks. It is my strong recommenda-

tion that any follow-up to the work in this dissertation explores more accurate and

advanced meta-modeling approaches.

7.3.2 Testing Adaptive and Learning Systems

The verification and validation of learning systems is still an open problem.

Verifying the performance of autonomous vehicles capable of learning will require

advances in formal methods. In particular, the development of proofs capable of

showing that the entire policy space that the autonomous system can occupy will

never violate its operational requirements. Additionally, many of the autonomous

vehicles of the future will likely be highly complex systems consisting of neural net-

works, model predictive controllers, and rule-based behaviors. Potentially making
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white-box and grey-box testing entirely infeasible. Current research efforts are cur-

rently concerned with proving a single safe controller as safe then developing it as a

watchdog mechanism the regulates the behavior of the learning system, rather than

attempt to verify the entire policy space directly.

Therefore, evaluating these systems will require black-box testing and falsi-

fication approaches. All of the adaptive search and optimization approaches for

developing testing scenarios discussed in this dissertation make the assumption of a

static policy. Applying these strategies to a learning system will require a better un-

derstanding of how a learning system will adapt its policy as it is presented with test

scenarios. In the development of this dissertation I performed experiments where

the RAPT software was applied to a vehicle capable of reinforcement learning. Dur-

ing these experiments I discovered that depending on the method of generating the

tests was highly influential on the policy that was learned by the vehicle. However,

the effects were highly dependent on the initial scenario distribution, how samples

were selected from that distribution, and the final target testing distribution. To the

point where different testing strategies could create either a more robust system or

one that fails to converge. More research is required on establishing these relation-

ships between the training data, the testing regime, and the resulting learned policy.

This will necessitate development of new problem definitions for what it means to

test a learning autonomy and new frameworks for simulation-based testing.
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7.3.3 Imitation Learning and World Modeling

The imitation learning approach discussed in Chapter 6 was incredibly suc-

cessful at encoding the behaviors of a target UUV controller. This work acts as an

effective proof of concept for using surrogate agents for simulation-based testing,

but a great deal of additional research is required before a real test-bed can be de-

veloped. The first problem that needs to be addressed is extracting relevant features

from raw sensor data streams. In Chapter 6 the features were hand-designed and

directly fed to the surrogate agent from the simulation. This approach works when

the designer is familiar with the autonomy, mission, and simulation but require a

perception component be designed specifically for that system. In order to apply

the proposed framework to a wide variety of black-box systems it will be necessary

to automatically identify the sensor data which is being utilized by the autonomy

and turn it into features to feed to the imitator network.

Another intriguing area of research is creating surrogate simulators using neu-

ral networks. Surrogate agents alone enable faster than real-time operation as they

can be directly integrated with the simulator and run on the same computer. This

allows the engineer to bypass issues software-in-the-loop testbeds have with the syn-

chronization of multiple processes across several computers. However, the surrogate

agent is still limited by the speed of the simulator itself. By creating a surrogate

simulation using deep network world modeling [108] it may be possible to run ap-

proximate simulations orders of magnitude faster than the original simulation. In

addition, surrogate simulations may make it easier to isolate and run sub-simulations
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on specific trajectory segments that are identified as interesting. There are many

questions that will need to be addressed about whether the latent space of the auto-

encoder is expressive enough to capture the true state or if recurrent networks are

capable of describing complex dynamical systems.
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