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2.1 High level block diagram of algorithm. At the beginning of each
time-step, the mesh quality is computed and smoothed or re-meshed
if necessary. Next, the domain mesh is extended (using Triangle) to
a box that contains the domain, and the velocity field is extended
everywhere. Then, the time-step is adapted to avoid inverting trian-
gles in the mesh. In addition, a check is made to determine if there
are any topological changes imminent. If there are no topological
changes, then the simulation continues as normal. If there is a topo-
logical change, then the level set method is used to obtain the new
topology. This is followed by a boundary mesh reconstruction step
to better approximate the new domain shape given by the level set
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A mesh triangle (assumed to be shape regular) undergoing deforma-
tion. The velocity field over the triangle is labeled (u, v) and is linear
over the triangle. The values of the x component of velocity are la-
beled u1 and u2 at the points p1 and p2, respectively (with u1 > u2).
As p1 and p2 move in the x direction, their relative distance decreases.
The rate of decrease depends on u1−u2 or actually ∂u

∂x
. This gives an

estimate of the largest time step τ that can be taken before p1 and
p2 cross-over, which is τ < 1/∂u

∂x
. Any larger time-step will cause the

triangle to be inverted. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A domain mesh with its extension to an enclosing box. The interior
mesh is Ω, the shaded region is Ωoutside, and EΩ = Ω

⋃

Ωoutside. The
domain boundary is denoted by Γ and the boundary of EΩ is ΓE. In
Section 2.6.1, the signed distance function to Γ is computed on EΩ,
and is positive over Ω and negative over Ωoutside (i.e. the shaded re-
gion). The zero level set of the distance function corresponds exactly
to the set Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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2.4 Flowchart for determining the time-step. During the simulation a
check is made to determine if updating the mesh vertices with the pre-
vious time-step, and the velocity ~usmooth, will cause any triangles to be
inverted. If not, the algorithm executes the ‘Increase Time-Step’ rou-
tine, which only allows the time-step to increase incrementally from
one simulation step to the next. Otherwise, the ‘Decrease Time-Step’
routine is called, which decreases the time-step until no triangles are
inverted. If the mesh still gets inverted with the minimum time-step,
then there are extremely high gradients in the velocity field. This can
be due to an imminent topological change or a rather extreme velocity
field. In both cases, our algorithm proceeds with executing a topolog-
ical change (see Section 2.6). In this case, the set of inverted triangles
⊤pinch (defined in Section 2.5.1) is determined using the velocity field
~usmooth and the minimum time-step τmin. Note that if the physics pro-
duces velocity fields with high gradients and are notassociated with a
topological change, then it is necessary to choose τmin small enough
to allow the simulation to resolve these situations. . . . . . . . . . . . 16

2.5 Domain with boundaries that are close. The outward pointing normal
vector is ν and is shown in all three figures. In Figure a, the domain
boundary is shown by a thick black line with its extended mesh shown
in two local regions only. In Figure b, the mesh has been ‘inflated’ by
moving all boundary vertices in the normal direction (i.e. along ν).
All interior vertices are moved by using an extension of the normal
vector field on the boundary through a vector Laplace solve. This
causes the triangles in the top ‘thin’ region to become inverted. In
Figure c, the mesh has been shrunk or ‘deflated’ by moving along
the negative normal direction (−ν). This causes the triangles in the
lower ‘thin’ region to become inverted. Therefore, a convenient way
to check for boundaries that are close is to inflate and deflate the
mesh and look for triangles that are inverted. . . . . . . . . . . . . . 17
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2.6 Flowchart for procedure to detect topological change. If a wait pe-
riod is in effect because of a recent topological change within the last
Wτ time-steps (defined in Section 2.5.3), then this routine does not
execute (i.e. all ‘thin’ regions are ignored). If not, then given the
current mesh, the average normal vector at each boundary vertex is
computed and used to define a vector field ~uν on the boundary. The
vector field is extended to the extended mesh EΩ by a vector Laplace
solve and used to inflate and deflate the extended mesh (see Figure
2.5). Any triangles that become inverted from the inflation or defla-
tion step are marked as regions of topological change (i.e. let ⊤pinch

be the set of triangles that become inverted). If ⊤pinch is empty, then
no topological change is imminent and this routine terminates). If
⊤pinch is non-empty, a covering of the ‘pinched’ triangles is produced,
and this routine signals to execute a topological change. . . . . . . . . 19

2.7 A zoom in of a thin region. The normal vectors ν1 and ν2 depicted
here point along the y axis. Hence, the normal vector field ~uν =
(uν , vν) = (0,+1) at p1 and ~uν = (0,−1) at p2. This implies ∇uν ≈ 0
and ∂vν

∂x
≈ 0 in the thin region. And ∂vν

∂y
≈ −2

d
in the thin region, so

|∇~uν | ≈
2

d
also. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 A hypothetical domain with a bump with large curvature. If d is
less than dneck, then the bump will be detected as a ‘thin’ region
because |∇~uν | will be large there. To avoid mistaking the bump for
a topological change, dneck must be chosen sufficiently small in order
to allow the simulation to resolve the bump region. . . . . . . . . . . 21

2.9 Domain with thin regions and local covering. The collection of disks
Cpinch are shown as shaded circles here. The set of points that the
disks cover is denoted Rpinch. This covering region is used in updating
the topology of the mesh in Section 2.6.1. . . . . . . . . . . . . . . . . 21

2.10 Level set function with characteristic curves indicating motion. In
Figure (a), the level set function is a scalar function defined over a
2-D domain. The zero level set is shown as a thick black line and
depicts a domain approaching a topological change (i.e. a pinch).
In Figure (b), a zoom-in is shown of the pinching region with curvy
arrows indicating the flow field. . . . . . . . . . . . . . . . . . . . . . 24

3.1 Initial rectangular domain (first row) and deformed version shown at
a later time (second row). The first column shows a triangular mesh
for the rectangle and the second column shows the domain boundary
and velocity field. The rectangle undergoes extreme distortion under
this flow field. Eventually, the domain becomes very thin in the center
and a topological change is executed (shown in later figures). . . . . . 43
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3.2 Sequences of simulation snapshots for the example given in Figure
3.1. Left column shows the mesh; right column shows the velocity
field. Rows correspond to instants in time. Because of the vortex
flow field, a long neck develops in the central region. See Figure 3.3
for a continuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Continuation of the simulation shown in Figure 3.2 (dneck = 4×10−3)
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Chapter 1

Introduction

This thesis is concerned with introducing a hybrid level set/variational method

for enabling simulations (with Lagrangian grids) of fluid interfaces or free bound-

ary problems involving topological changes (i.e. pinching or reconnection). In the

following sections, we provide some background and motivation for doing this.

1.1 Free Boundary Problems with Large Deformations

Free boundary problems arise in many areas of mathematics and engineer-

ing. Understanding free surface dynamics is important for applications such as

coating flows [5], simulating water wave dynamics for computer graphics [21], and

surface tension/curvature driven flows in micro-fluidic devices such as Hele-Shaw

flow [11], [25]. Other examples involve fluid-structure interactions, such as polymer

filaments in an active flow field [43], interaction of a lipid biomembrane with a sur-

rounding fluid [48], and animal locomotion in a fluid medium [1], [39]. Success in

understanding and simulating free boundary problems would allow design of micro-

scale devices, better understanding of cell-membrane dynamics, and more accurate

simulations of industrial processes.

However, in any application with a moving boundary, the deformation of the

domain is the main obstacle in obtaining a tractable physical model. In addition,
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some of these applications exhibit topological changes (i.e. pinching or joining of

disjoint parts of the interface) and prove even more difficult to model. Examples of

this are budding of lipid bio-membranes [4], droplet pinching in an electro-wetting

device [10], and many other types of fluid flow [16].

One of the difficulties in modeling a topological change is in handling the

disparate length and time scales involved. For example, a pinching droplet may have

two macroscopic pieces connected through a thin microscopic neck that is collapsing.

And the time scale of the neck collapse may be quite small compared to the ‘usual’

time scale of the bulk droplet motion. Furthermore, it is not clear how best to model

the true physics when a topological change is occurring. Some asymptotic analysis

of the behavior of the Navier-Stokes equations has been done for axi-symmetric

fluid pinching [18], [19]. But one can certainly argue that a continuum model is not

adequate and a model which includes atomistic behavior is more correct. Although

recently in [29] and [30] it was shown that adding a stochastic component to the

Navier-Stokes equations was effective in modeling the behavior of nano-fluids in a

non-vacuous environment when compared to a molecular dynamics simulation.

But some applications do not require a detailed understanding of the local

behavior around a topological change. In the electro-wetting device it is enough to

only acknowledge the fact that a droplet has pinched or joined. In this spirit, the

remaining difficulty is in developing a simulation tool that can go through a topo-

logical change in a reasonable way, while properly ‘piecing’ together the continuum

model that governs the rest of the behavior.

In this thesis, we develop a method for piecing together a simulation when a

2



topological change happens. Specifically, we are concerned with simulations that

use an explicit unstructured grid (e.g. a triangulation) for representing the deform-

ing domain. This is the case when the continuum model is implemented through

a finite element method. Our method is able to take a mesh that is deforming (in

a Lagrangian frame), go through a topological change, and continue deforming au-

tomatically without user intervention. Furthermore, our method extends to three

dimensional meshes as long as a high quality local re-meshing and mesh refinement

tool is available.

Before describing the details of this method, we first give a literature survey of

other methods for simulating deforming domain problems and how they go through

topological changes.

1.2 Overview of Simulation Methods

At the numerical analysis and computational level, there are many issues con-

cerned with creating robust and stable numerical methods that capture the physical

model, while allowing for large domain deformations. The methods for handling free

boundary problems are based, in part, on the standard numerical schemes for solving

PDEs, which are Finite Difference (FDM), Finite Element (FEM), and Boundary

Integral Methods (BIM). However, problems that depend on the domain geome-

try, such as curvature driven flows, require special enhancements to the standard

techniques.

One popular method for capturing free surface motion is the level set method
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[36], [37], which advects a scalar field function whose zero level set represents the

interface. The numerical implementation can be done using either FDM or FEM.

Level set methods have the advantage of being completely Eulerian and can auto-

matically handle topological changes, though the physics underlying such changes

is often left ill-understood. In particular, level set methods require a small amount

of diffusion to allow for topological changes to occur. This can cause problems with

mass conservation and requires special handling [20] or refinement [32]. Another

drawback of the level set method, for curvature driven flows, is they typically use an

explicit calculation of the interface curvature which can create numerical artifacts

and noise. Other implicit methods include the phase field method [46], [42], which

uses a diffuse interface model (as opposed to a sharp or explicit interface). Phase

field methods have similar advantages and drawbacks as the level set method.

Alternatively, one can use an explicit representation of the interface (i.e. an

interface mesh) and discretize the PDE using either FDM, FEM, or BIM. FEM

and BIM are generally considered to be better conditioned and more robust than

FDM, because they use an integral formulation. And there exist finite element

and boundary integral methods that take advantage of the intrinsic representation

of the interface [2], [17], [28]. However, one disadvantage to these explicit surface

representations is the computational difficulty in handling large deformations of the

mesh. In two dimensions, it is fairly straightforward to adjust the mesh through

local re-meshing [41] or mesh smoothing [22]. But in three dimensions, it is not clear

what the best methods are for adjusting a mesh as it deforms. Some methods [45]

use elasticity models to modify the mesh, or take an optimization point of view [35],

4



while others [8], [9] use a variational form to minimize the interpolation error to do

local re-meshing. Also, some of this difficulty in 3-D is alleviated with BIM which

requires no bulk interior mesh.

Currently, there are few methods for taking explicit meshes through topological

changes. Some existing methods use ‘surgery’ [13], [14] to cut the mesh. This is a

viable option for pinching in 2-D problems, but the nature of topological changes in

3-D is much more complicated. For example, a thinning neck of fluid could become

very flattened and pinch in the middle leading to a torus like structure with one or

many ‘handles’. In this case, it is not clear how to reconstruct the mesh without a

guide or indication of the new topological state of the domain.

Considering the trade-offs between level set and explicit mesh methods, it is

reasonable to suggest a hybrid approach. This would combine the accuracy of the

explicit mesh methods with the ease of topological transformation of the level set

method. One version of this is given by [3], which forms an explicit representation

at each time step that is coupled with their level set method and is advantageous for

tracking of surface characteristics, such as texture coordinates, for use in rendering

fluid interfaces for computer graphics. Another method [7], not concerned with

topological changes, seeks to create a 3-D tetrahedral mesh of a domain described

by an implicit surface that is defined by the zero level set of a scalar function. The

method we develop in this thesis is a hybrid method and combines some of the

methods listed here. A detailed description follows in Section 2.
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1.3 Outline

The outline of the thesis is the following. In Chapter 2, we describe in detail our

hybrid method. Local mesh adjustments such as mesh smoothing and re-meshing

are discussed in Section 2.2. Section 2.3 describes our method of mesh and velocity

extension. Our time-stepping adaptation method is given in Section 2.4, followed by

our method of detecting topological changes in Section 2.5. The actual topological

change execution is discussed in section 2.6, with the level set method described

in Section 2.6.1 and our optimization method for adjusting the boundary given in

Section 2.6.2.

In Chapter 3, we show numerical experiments to demonstrate our method

for taking triangular finite element meshes through topological changes. The first

example uses a given rotating velocity field and is discussed in Section 3.1. Our

second example involves a MEMS (Micro-Electro-Mechanical System) device that

uses Electro-Wetting On Dielectric (EWOD) to move water droplets by augmenting

surface tension effects. This example exhibits multiple pinching and is described in

Section 3.2. The last example involves surface tension driven flow in a Hele-Shaw

cell with water droplets joining and is given in Section 3.3.

We conclude in Chapter 4 by discussing some of the limitations of our method

along with a comparison of the relevant literature.
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Chapter 2

Algorithm Description

2.1 Overview

The algorithm mainly consists of using a level set update to indicate how the

mesh topology changes when a topological change is imminent. This is followed by

an optimization step that reconstructs the mesh around the region of topological

change by again using the level set function. The main point of the algorithm is

to provide a way for allowing meshes to go through topological changes without

having to make complicated decisions or surgery on the mesh. Even if the physics

of the topological change is well understood, it is not necessarily clear what the

mesh should be after the change. This is especially important in three-dimensions.

Therefore, this algorithm is an answer to the question of how to compute and mesh

through a topological change, but not to the question of modeling the physics of

the change itself.

We give an outline of the algorithm in the following list. Details of each item

are then given in subsections that follow. The first four items are always performed

(or checked) at every step of the simulation, while items 5 and 6 are only performed

to execute a topological change. Also, see the flowchart given in Figure 2.1 for a

high level summary.

• Mesh smoothing and re-meshing. The techniques we use for fixing distorted
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start of time step

smooth or re-mesh
if necessary

current mesh

extend mesh and
velocity field

adapt time-step
look for imminent

topological changes

is there a topological
change?

continue with
simulation

NO

YES

update domain
topology using level

set method

reconstruct boundary to
conform to zero level

set

Execute Topological Change

Figure 2.1: High level block diagram of algorithm. At the beginning of each time-

step, the mesh quality is computed and smoothed or re-meshed if necessary. Next,

the domain mesh is extended (using Triangle) to a box that contains the domain,

and the velocity field is extended everywhere. Then, the time-step is adapted to

avoid inverting triangles in the mesh. In addition, a check is made to determine

if there are any topological changes imminent. If there are no topological changes,

then the simulation continues as normal. If there is a topological change, then the

level set method is used to obtain the new topology. This is followed by a boundary

mesh reconstruction step to better approximate the new domain shape given by the

level set method. 8



elements and remeshing are standard and are briefly discussed in Section 2.2.

• Mesh and velocity extension. As the physical simulation of a moving domain

progresses, the domain mesh and velocity must be extended for later use (see

Section 2.3).

• Time-Step adaptation. The size of the time-steps τ during a simulation are

controlled by the desired accuracy, the amount of shear in the velocity field,

and the time-scale of topological changes. The details are discussed in Section

2.4.

• Detection of imminent topological changes. This requires the user to define

a tolerance, dneck, for how close ‘disjoint’ parts of the boundary have to be

before considering a topological change. In other words, dneck refers to the

minimum thickness of necking regions in the extended domain EΩ (defined in

Section 2.3). This is made more precise in Section 2.5.

• Updating the level set function and mesh topology. Here we use a straightfor-

ward discretization of the level set equation (with local diffusion) and a simple

criteria for updating the mesh topology (see Section 2.6.1).

• Reconstructing the region containing the topological change using a minimiza-

tion approach. This step is meant to correct for errors in the position of the

new surface obtained in the previous step, and is described in Section 2.6.2.

See Appendix A for a list of symbol definitions.
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p1 p2u1 u2

p3

p4

v1

v2

hmin

hmax

x

y

Figure 2.2: A mesh triangle (assumed to be shape regular) undergoing deformation.

The velocity field over the triangle is labeled (u, v) and is linear over the triangle.

The values of the x component of velocity are labeled u1 and u2 at the points p1

and p2, respectively (with u1 > u2). As p1 and p2 move in the x direction, their

relative distance decreases. The rate of decrease depends on u1 − u2 or actually ∂u
∂x

.

This gives an estimate of the largest time step τ that can be taken before p1 and

p2 cross-over, which is τ < 1/∂u
∂x

. Any larger time-step will cause the triangle to be

inverted.

2.2 Mesh Smoothing and Re-meshing

Mesh distortion for a triangular mesh that is moving with a given velocity field

(which comes from the physics being simulated) is directly due to gradients in the

field (i.e. the velocity field has some shear component). This clearly happens when

a topological change is underway. In this section, we show a very basic estimate that

relates the maximal time-step of a mesh update (while preventing mesh distortion)

to the gradient of the velocity.

A diagram of a single triangle in some triangulation is given in Figure 2.2 and
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is assumed to be shape regular (i.e. no skinny triangles). The 2-D velocity field over

the triangle is denoted by ~u = (u, v). Velocity components in the x direction, at

the points p1 and p2, are denoted by u1 and u2, respectively. The points are moving

with those velocities. In addition, we assume that u1 > u2 and the velocity field is

assumed to be linear over the triangle. We want to estimate how large the time step

must be for the point p1 to cross over p2; this will invert the triangle. The relative

distance between p1 and p2 (after moving one step) is given by hmax − τ(u1 − u2),

where τ is the time-step of the mesh update. Hence, if the relative distance becomes

zero, then τ is given by

1

τ
=
u1 − u2

hmax

=
∂u

∂x
,

where the second equality is because u is assumed linear. A similar relation holds

when looking for the time to cross-over of the points p3 and p4:

1

τ
=
∂v

∂y
.

It should then be clear that a conservative estimate (that does not depend on the

size of the triangle) for the maximal time-step which will not cause the triangle to

invert is

τ <
1

|∇~u|
.

Of course, the triangle may be very distorted after updating and will not be shape

regular. Hence, this argument cannot be used for estimating the maximal time-step

unless periodic mesh smoothing or re-meshing is used.

There are various techniques for improving or creating a 2-D triangulation.

In this paper, we make extensive use of the freely available program ”Triangle”
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by Shewchuk [41]. Triangle is able to produce well shaped 2-D meshes of entire

domains quite easily and can also be used for local re-meshing. Whenever the quality

metric [31] of the mesh triangulation deteriorates, we use Triangle to re-mesh the

domain. In addition, we use an optimization method for ”smoothing meshes” (i.e.

for reducing the distortion of triangles in the mesh) that does not require re-meshing

the entire domain. This method [22] moves the vertices of the mesh in an attempt

to optimize the local quality metric of the triangulation [31]. One advantage of this

optimization method is that it is guaranteed not to invert elements. By smoothing,

we are able to delay having to re-mesh the domain.

In addition, to prevent excessive re-meshing or mesh manipulation, we update

the mesh with a velocity field ~usmooth that has minimal shear (i.e. with |∇~usmooth|

minimal). This is done by solving a vector Laplace equation with Dirichlet boundary

condition given by the vector velocity ~u at the boundary

−△~usmooth = 0, Ω, (2.1)

~usmooth = ~u, Γ,

where Ω is the domain and Γ := ∂Ω. Solving the Laplacian guarantees that

|∇~usmooth| will be minimized in the L2 sense [23]. This ensures the boundary will

move with the correct velocity (coming from the physics) and the interior triangles

will be subjected to minimal distortion. It is not necessary to update the interior

vertices of the mesh of Ω with the true velocity. Hence, we take advantage of this

freedom by using a smooth extension of the true velocity. Combining this with local

re-meshing and mesh smoothing gives us a robust way to maintain mesh quality.
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Γ

Ω

ΓE

Ωoutside

Figure 2.3: A domain mesh with its extension to an enclosing box. The interior mesh

is Ω, the shaded region is Ωoutside, and EΩ = Ω
⋃

Ωoutside. The domain boundary is

denoted by Γ and the boundary of EΩ is ΓE. In Section 2.6.1, the signed distance

function to Γ is computed on EΩ, and is positive over Ω and negative over Ωoutside

(i.e. the shaded region). The zero level set of the distance function corresponds

exactly to the set Γ.

2.3 Mesh and Velocity Extension

At each step of the simulation, the domain mesh must be extended beyond

the domain boundary for the following reasons: checking for imminent topological

changes and for solving the level set equation if there is a change (both are discussed

in subsequent sections). In this thesis, the mesh is extended to a rectangular box

that contains the domain mesh, though in principle, the mesh only needs to be

extended a distance of dneck to allow for detection of close boundaries. For clarity

(see Figure 2.3), let Ω refer to the domain which contains a set of triangles ⊤Ω that

define a triangulation (i.e. the domain mesh) and let Γ := ∂Ω (i.e. the boundary

of Ω). Denote the extended domain (i.e. the whole box) by EΩ, with boundary

13



ΓE := ∂EΩ, which contains a larger set of triangles ⊤EΩ with edges that conform

to Γ. And denote the exterior or ‘outside’ domain by Ωoutside := EΩ \ Ω whose

boundary, Γoutside := Γ
⋃

ΓE. The triangle mesh ⊤EΩ for EΩ is produced using the

program Triangle.

Lastly, given a velocity field (coming from the physics being simulated) defined

on Γ, we need an extension of the velocity, denoted ~usmooth = (usmooth, vsmooth), to

Ω and to Ωoutside (i.e. to all of EΩ). This is done by first solving a vector Laplace

equation (see equation (2.1)). Then we solve another vector Laplace equation over

Ωoutside with the same Dirichlet data on Γ and zero Neumann data on ΓE for each

velocity component

−△~usmooth = 0, Ωoutside, (2.2)

~usmooth = ~u, Γ, (2.3)

∂~usmooth

∂ν
= 0, ΓE.

This velocity field will be used in detecting a topological change and for solving the

level set equation.

2.4 Time-Stepping

We adopt a fairly simple method for adapting the time-step. First, the maxi-

mum time-step τmax is set by the desired accuracy. The minimum time-step τmin is

connected with the time-scale of the fastest dynamics of the physical situation being

simulated (i.e. τmin must be chosen small enough to allow the simulation to resolve

large gradients in the velocity field without causing mesh inversion). The algorithm

14



proceeds by finding the largest time-step τ ∈ [τmin, τmax] such that the mesh of the

extended domain (EΩ) can be updated (using ~usmooth from equation (2.2)) without

inverting any triangles. The details are summarized by the flowcharts in Figure 2.4.

2.5 Topological Change Detection

The detection of when to execute a topological change is slightly complicated.

Essentially, one must look for regions where ‘different’ parts of the boundary are

close and collapsing together. Detecting ‘closeness’ is a common problem in col-

lision detection, where the closest point transform or fast marching methods are

used [6], [33]. However, the geometry of the domain is already captured by the tri-

angulation and can be used to look for these ‘thin’ regions (see Figure 2.5). But the

determination of whether boundaries are collapsing depends on the nature of the

velocity field coming from the physics. This can be especially difficult if the velocity

field is becoming asymptotically slow near the point of pinch-off, as in a fluid droplet

(see Chapter 4 for some discussion). Therefore, to avoid this difficulty, if regions of

the domain are ‘thin’, then they are assumed to be undergoing a topological change.

The rest of this section describes how we find these ‘thin’ regions.

2.5.1 Check For Thinness

We check for ‘thinness’ in the following way. First, one defines how thin a

piece of the domain must be, dneck, in order to be considered a topological change.
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Trial_Time_Step := 4 x Time_Step

Time_Step

any inverted
triangles?

NO

YES

Time_Step :=
min(2 x Time_Step, Max_Step)

Output: Time_Step

(increase the
time step)

(do NOT increase
the time step)

(look ahead)

(a) Increasing the time-step.

Time_Step

any inverted
triangles?

NO

YES

Execute Topological
Change

(velocity field has a
high shear rate)

Time_Step :=
max(Time_Step / 2, Min_Step)

Output: Time_Step

Time_Step ==
Min_Step?

NOYES

(b) Decreasing the time-step.

Figure 2.4: Flowchart for determining the time-step. During the simulation a check

is made to determine if updating the mesh vertices with the previous time-step, and

the velocity ~usmooth, will cause any triangles to be inverted. If not, the algorithm

executes the ‘Increase Time-Step’ routine, which only allows the time-step to in-

crease incrementally from one simulation step to the next. Otherwise, the ‘Decrease

Time-Step’ routine is called, which decreases the time-step until no triangles are

inverted. If the mesh still gets inverted with the minimum time-step, then there

are extremely high gradients in the velocity field. This can be due to an imminent

topological change or a rather extreme velocity field. In both cases, our algorithm

proceeds with executing a topological change (see Section 2.6). In this case, the set

of inverted triangles ⊤pinch (defined in Section 2.5.1) is determined using the veloc-

ity field ~usmooth and the minimum time-step τmin. Note that if the physics produces

velocity fields with high gradients and are not associated with a topological change,

then it is necessary to choose τmin small enough to allow the simulation to resolve

these situations.
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ν

ν

(a) Domain with extended mesh

shown locally at the two thin re-

gions.

ν

ν

(b) ‘Inflated’ mesh.

ν

ν

(c) ‘Deflated’ mesh.

Figure 2.5: Domain with boundaries that are close. The outward pointing normal

vector is ν and is shown in all three figures. In Figure a, the domain boundary is

shown by a thick black line with its extended mesh shown in two local regions only.

In Figure b, the mesh has been ‘inflated’ by moving all boundary vertices in the

normal direction (i.e. along ν). All interior vertices are moved by using an extension

of the normal vector field on the boundary through a vector Laplace solve. This

causes the triangles in the top ‘thin’ region to become inverted. In Figure c, the mesh

has been shrunk or ‘deflated’ by moving along the negative normal direction (−ν).

This causes the triangles in the lower ‘thin’ region to become inverted. Therefore,

a convenient way to check for boundaries that are close is to inflate and deflate the

mesh and look for triangles that are inverted.
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Next, we define a vector field ~uν on the boundary of the mesh that is given by the

outward pointing normal vector, ν (see Figure 2.5). For a polygonal boundary, this

is done by computing an average normal at each vertex. Next, this vector field ~uν

is extended to EΩ by solving the vector Laplace equation (2.2). Then, the mesh is

inflated and deflated (see Figure 2.5) by using the following updates:

~xinflate := ~xE +
dneck

2
~uν (2.4)

~xdeflate := ~xE −
dneck

2
~uν (2.5)

where ~xE is the position vector of the mesh vertices in EΩ. Finally, we check for

inverted triangles in both of the meshes defined by ~xinflate and ~xdeflate. Let ⊤pinch

be the set of triangles in EΩ that become inverted due to inflation and deflation

(⊤pinch indicates the thin regions of the domain). See the flowchart in Figure 2.6 for

a summary of these steps.

If there is a thin region, then |∇~uν | (in the thin region) can be estimated by

2/d, where d is the thickness of the neck (see Figure 2.7). By the discussion in the

previous section, the step size needed to invert a triangle in the thin region is given

by τ = d/2. Therefore, if d < dneck then some triangles in the necking regions will

become inverted after inflating and deflating the mesh. The location of the inverted

triangles then indicate regions where a topological change is possible. If there are no

thin regions nor places of high curvature, then |∇~uν | will be much smaller than 2/d,

hence the inflation and deflation steps will not invert any triangles in EΩ. Figure 2.8

depicts why high curvature is bad. If the physical problem being simulated exhibits

regions of high curvature, then it is necessary to choose dneck sufficiently small to
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compute average
normal vector

current mesh

extend normal
vector field

inflate and deflate
mesh

any inverted
triangles?

NO

YES

there is no imminent
topological change

mark the ’thin’ regions
as topological changes

Execute Topological
Change

Figure 2.6: Flowchart for procedure to detect topological change. If a wait period

is in effect because of a recent topological change within the last Wτ time-steps

(defined in Section 2.5.3), then this routine does not execute (i.e. all ‘thin’ regions

are ignored). If not, then given the current mesh, the average normal vector at each

boundary vertex is computed and used to define a vector field ~uν on the boundary.

The vector field is extended to the extended mesh EΩ by a vector Laplace solve

and used to inflate and deflate the extended mesh (see Figure 2.5). Any triangles

that become inverted from the inflation or deflation step are marked as regions of

topological change (i.e. let ⊤pinch be the set of triangles that become inverted). If

⊤pinch is empty, then no topological change is imminent and this routine terminates).

If ⊤pinch is non-empty, a covering of the ‘pinched’ triangles is produced, and this

routine signals to execute a topological change.
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∂vν

∂y
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d
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p2

p2

Figure 2.7: A zoom in of a thin region. The normal vectors ν1 and ν2 depicted here

point along the y axis. Hence, the normal vector field ~uν = (uν , vν) = (0,+1) at p1

and ~uν = (0,−1) at p2. This implies ∇uν ≈ 0 and ∂vν

∂x
≈ 0 in the thin region. And

∂vν

∂y
≈ −2

d
in the thin region, so |∇~uν | ≈

2

d
also.

avoid mistaking these regions for topological changes.

2.5.2 Define Covering Of Pinching Regions

If the set ⊤pinch is empty, then the algorithm stops for the current step of

the simulation (meaning there is no topological change). If it is non-empty, then

we define a covering of the region of topological change in the following way. For

each T ∈ ⊤pinch, we define a disk DT of radius dneck and center coordinate given

by the barycenter of T . Let Cpinch be the collection of disks and let Rpinch be the

region covered by the union of the disks (see Figure 2.9). This will be used later in

updating the level set function and mesh topology.
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ν

d

Figure 2.8: A hypothetical domain with a bump with large curvature. If d is less

than dneck, then the bump will be detected as a ‘thin’ region because |∇~uν | will be

large there. To avoid mistaking the bump for a topological change, dneck must be

chosen sufficiently small in order to allow the simulation to resolve the bump region.

ν

ν

Figure 2.9: Domain with thin regions and local covering. The collection of disks

Cpinch are shown as shaded circles here. The set of points that the disks cover is

denoted Rpinch. This covering region is used in updating the topology of the mesh

in Section 2.6.1.
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2.5.3 Wait Period For Topological Changes

Lastly, we define a certain ’wait’ period for topological changes to happen. In

fluid pinching, it is likely that a thin ‘spike’ will be present after the pinch-off has

occurred. Which means that our method of detecting topological changes would

trigger another change immediately after because of the high curvature region. In

fact, this may cause a sequence of topological changes until the ‘spike’ is completely

eaten away! This is undesirable in some cases, because the natural dynamics may

resolve the ‘spike’ naturally without any extra topological changes occurring. There-

fore, we define a wait period to prevent a spurious sequence of pinches by Wτ , which

is a whole number of time-steps.

This works in the following way. If a topological change is executed, then for

the next Wτ time-steps, the ‘thinness’ criteria is not evaluated in Section 2.5.1. If

there are other regions in the domain that are close to topological change, then those

will not be executed until the wait period is done. An exception to this is allowed in

the time-adaptation scheme in Section 2.4. If the velocity field is very abrupt and

wants to pinch, then the time-stepping scheme will allow for this (see Figure 2.4).

This can happen if the velocity field has a compressive shock in a thin region.

2.6 Execute Topological Change

This part of the algorithm takes the given triangular mesh through a topolog-

ical change. A level set method is used to indicate the topology and domain shape

after the change. The details follow in subsequent sections.
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2.6.1 Update Level Set and Topology

Now that the location of the topological change is known, it is possible to use

the level set method to indicate how the domain topology changes. The main steps

here are

• Compute the signed distance function.

• Convect the distance function with the level set equation.

• Reconstruct the new domain from the updated level set function.

In the next section, we derive the level set equation using characteristics and then

pose it in weak form. Following this, we state the algorithm for getting the new

domain topology after a pinch.

Derivation of Level Set Equation

We first derive the level set equation by tracking characteristics. Consider two

curves that are colliding together from a given velocity field ~u (see Figure 2.10).

The curves are part of a global boundary and are represented by the zero level set

of some scalar function ψ(~x), where ~x is the coordinate position in the plane. The

motion of the two curves can be captured by using the method of characteristics to

obtain a new scalar function whose zero level set corresponds to the new position of

the curves. More precisely, let ~y(t) be the position of a point in the plane at time t,

and suppose the point moves with the velocity field ~u, i.e.

d

dt
~y(t) = ~u(~y(t), t).
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(a) Scalar level set function with zero level contour

in thick black.

(b) Zoom-in of pinching region

with characteristics.

Figure 2.10: Level set function with characteristic curves indicating motion. In

Figure (a), the level set function is a scalar function defined over a 2-D domain.

The zero level set is shown as a thick black line and depicts a domain approaching a

topological change (i.e. a pinch). In Figure (b), a zoom-in is shown of the pinching

region with curvy arrows indicating the flow field.

24



Next, suppose there exists a scalar function φ(~x, t) that is defined for all ~x ∈ EΩ

and t ∈ R, with the property that φ(~x, 0) = ψ(~x) and φ(~y(t), t) = 0 for all t. We

want to know the differential equation that φ(~y(t), t) solves. This is given by taking

the total derivative with respect to time

0 = ∇φ(~y(t), t) ·
d

dt
~y(t) + ∂tφ(~y(t), t) = ∇φ(~y(t), t) · ~u(~y(t), t) + ∂tφ(~y(t), t).

Since the point ~y is arbitrary, the above equation can be re-written as

∂tφ(~x, t) + ~u(~x) · ∇φ(~x, t) = 0, for all ~x ∈ EΩ and all t ≥ 0, (2.6)

which is the level set equation. By finding solutions to (2.6), we are able to track

the positions of the curves as functions of time in an implicit way.

Insert Local Diffusion

Equation (2.6) is linear and well-posed as long as the velocity ~u is smooth [47].

In order to have two boundaries (i.e. curves defined by the zero level set of φ) touch,

it is necessary to have a velocity field that is not Lipschitz [3] (This follows from

standard uniqueness theorems for ODE’s). But in this case, the solvability of (2.6)

is questionable, especially in the case of a topological change. To address this, we

simply add a small diffusion term to the equations that is active only locally on

Rpinch (i.e. the region where the topological change is happening),

∂tφ+ ~u · ∇φ = ∇ · (ε(~x)∇φ). (2.7)

This guarantees that the equation is well-posed since the only possible regions for a

shock are in the covering region Rpinch. In effect, we obtain the ‘viscosity’ solution

[23] of (2.6) which allows for pinching and reconnection of boundaries.
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The local diffusion parameter ε(~x) is defined in the following way. Let θ be a

function of one variable defined by

θ(ξ) =















1 − 2

dneck
ξ, 0 ≤ ξ ≤ dneck

2
,

0, ξ > dneck

2
.

(2.8)

Then we define the variable diffusion as

ε(~x) = ε0θ(dist(Rpinch, ~x)), ~x ∈ EΩ, (2.9)

with ε0 =
d2

neck

τpinch
, where τpinch is the time-step used in going through the topological

change (see the next section). Note that ε0 has the correct units and is chosen by

the following ‘back-of-the-envelope’ calculation.

Let us assume that the domain has a thin region (thickness less than dneck)

and is collapsing together (i.e. pinching). When we solve equation (2.7) in Section

2.6.1, we compute a distance function φ0 (to the domain boundary Γ) for the initial

condition. The maximum value of the distance function at a point ~x0 at time t0 in

the neck region is:

φ0(~x0, t0) =
dneck

2
,

a positive value because we assume the distance function is positive inside the do-

main. In order to guarantee that the neck will pinch using the level set update, the

following inequality must be true

dneck

2
+ τpinch∂tφ(~x0, t0) < 0,

which implies that the updated φ will be negative in the thin region, meaning the

domain will pinch-off there. But by equation (2.7), this gives

dneck

2
+ τpinchε0∆φ(~x0, t0) − τpinch~u(~x0, t0) · ∇φ(~x0, t0) < 0, (2.10)
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where the ε0 is pulled out of the divergence because ε(~x) is constant in the region

Rpinch. Due to the shape of φ0 around the necking region, we have that ∆φ(~x0, t0) <

0. Also, ∆φ(~x0, t0) scales as 1/dneck. Plugging this into (2.10) gives

dneck

2
− τpinch

ε0

dneck

− τpinch~u(~x0, t0) · ∇φ(~x0, t0) < 0. (2.11)

Rearranging this gives

ε0 >
d2

neck

2τpinch

− ~u(~x0, t0) · ∇φ(~x0, t0)dneck, (2.12)

where the velocity term varies over the necking region and could be quite small

near the center of the neck. But also the term ~u · ∇φ, in the case of pinching, will

be positive. Therefore, by choosing ε0 =
d2

neck

τpinch
(conservatively) we guarantee that

any thin regions of thickness less than dneck will pinch-off if the evolution time of

the level set equation is τpinch. The same analysis holds for joining or reconnecting

domains.

The addition of the diffusion term is directly analogous to the methods used

in solving hyperbolic equations by ‘up-winding’, which adds a small amount of

diffusion on the order of the mesh size h. In our computations, we take τpinch = dneck

(note: everything is non-dimensional). This means ε0 = dneck, which is the desired

resolution of our method and is related to the mesh size, since there are only a small

number of triangles present in the necking region. Hence, our method of adding

artificial diffusion is not completely out of line from other techniques for solving

convection equations.

Time-Discrete Level Set Equation
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Next, we need to discretize the level set equation for use in our algorithm. The

time-discrete version of (2.7) using Euler’s method for one time step is

φ1 − φ0

τpinch

+ ~u · ∇φ0 −∇ · (ε(~x)∇φ1) = 0, (2.13)

where the convective term is explicit, the diffusive term is implicit, and a time-step

of τpinch is used. One could also use a higher-order time-stepping scheme here. But

this is not critical since only one step of the level-set equation is used in updating

the topology.

Weak-Formulation

The weak formulation of the level set update equation is now obtained by

multiplying with a test function w, and integrating the diffusion term by parts.

The variational formulation of the problem then reads: Given a velocity field ~u and

initial data φ0, find a new function φ1 ∈ H1(EΩ) such that

1

τpinch

∫

EΩ

(φ1−φ0)w+

∫

EΩ

(~u ·∇φ0)w+

∫

EΩ

ε(~x)∇φ1 ·∇w = 0, for all w ∈ H1(EΩ),

(2.14)

where we have assumed zero Neumann data on the boundary of EΩ (i.e. ΓE).

Rearranging the formulation gives

∫

EΩ

φ1w + τpinch

∫

EΩ

ε(x)∇φ1 · ∇w =

∫

EΩ

φ0w − τpinch

∫

EΩ

(~u · ∇φ0)w, (2.15)

with the given data placed on the right hand side. This weak formulation is dis-

cretized using piecewise linear basis functions for φ0, φ1 and the vector velocity ~u.

The variable diffusion term ε(~x) is accounted for when computing the integrals

through the use of formula 2.9 and quadrature. In addition, we use a different mesh
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of triangles ⊤φ which is a locally refined version of ⊤EΩ where the refinement is

done in the region Rpinch. This is done for improved accuracy in the region where

we need it.

Obtaining the New Domain Topology

The new domain Ω̃ that corresponds to Ω after the topological change has

occurred is given by the following procedure:

1. Let φ0 be the signed distance function to the boundary Γ on the extended

domain EΩ; note that Ω = {~x ∈ EΩ : φ0(~x) ≥ 0}. This embeds the domain

boundary Γ as the zero level set of φ0.

2. Let φ0 be the initial condition for solving the level set equation (2.15) stated

in the previous section. We use a time-step given by τpinch := dneck for com-

puting the update. This gives a new level set function φ1 that defines the new

topology.

3. Let Ω̃ := {~x ∈ EΩ : φ1(~x) ≥ 0} and let Γ̃ := ∂Ω̃. Note that Γ̃ = {~x ∈ EΩ :

φ1(~x) = 0}.

4. Let ~xi denote the barycenter of triangle Ti ∈ ⊤EΩ.

5. Then the mesh of triangles for the new domain Ω̃ is given by the set formula:

⊤
Ω̃

= (⊤Ω

⋃

⊤P ) \⊤N , where ⊤P := {Ti ∈ ⊤EΩ : ~xi ∈ Ω̃
⋂

Rpinch} and ⊤N :=

{Ti ∈ ⊤EΩ : ~xi ∈ (\Ω̃)
⋂

Rpinch}. Hence we obtain the new triangulation by

adding and subtracting triangles from the old mesh ⊤Ω in the local region

29



Rpinch.

Now we define some notation that is used in the next section. Let S
Ω̃

be the set of

triangle sides that make up the boundary of the mesh ⊤
Ω̃
. Let ΓS denote the set of

points in the plane defined by the union of all sides in S
Ω̃
.

2.6.2 Active Contours for Mesh Reconstruction

The boundary of the mesh ΓS will not necessarily conform to the zero level set

of φ1 (i.e. to the new domain boundary Γ̃ after the topological change). Therefore, it

is necessary to adjust the new boundary mesh S
Ω̃

so that it does conform. In Section

2.6.2, we derive a minimization problem that gives us a method for adjusting the

mesh boundary. For notational convenience, we take ΓS to be synonymous with

S
Ω̃

and let Ψ = φ1. In Section 2.6.2, we give the procedure for obtaining the final

boundary and domain mesh.

Shape Minimization Problem

Since the updated level set function Ψ : R
3 → R is available, we can adjust

the boundary mesh ΓS by solving a minimization problem. This can also be done in

3-D for a 2-D surface, which makes this approach attractive. Hence, we will take a

more general point of view and denote by d the ambient dimension. First we define

the ‘cost’ functional that will be minimized,

J(Γ) =

∫

Γ

Ψ2, (2.16)
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where Γ refers to a surface. With this, we want to find a new surface Γ∗ that

minimizes J :

Γ∗ = arg min
Γ
J(Γ). (2.17)

Clearly, the minimum solution is a surface that lies along the zero level set of Ψ.

The surface that minimizes the functional (2.16) is computed by defining an

L2 gradient flow. This is basically a gradient descent method that seeks to move the

surface in a direction that is guaranteed to minimize the cost J . We proceed first

by deriving the shape derivative of the functional J to get the descent direction.

Derive Shape Derivative

Let ~X : Ui → R
d be a mapping, where Ui is a reference domain in R

d−1 and i

is a parameter in a finite set. Next, let ~X satisfy
⋃

i
~X(Ui) = Γ. Hence, ~X(·) = Γ is

a surface parameterization using local charts [12]. Next, let ~ϕ : Γ → R
d be a vector

perturbation and define ~Xǫ := ~X+ ǫ[~ϕ◦ ~X] (with ǫ > 0) to be a new mapping. This

defines a new surface Γǫ := ~Xǫ(·), which is a perturbation of Γ.

Let µ(ǫ) := J(Γǫ) be a scalar function of one variable. By taking ~ϕ to be such

that [~ϕ◦ ~X] has compact support in some local chart Ui, we can write the derivative

of µ(ǫ) in the following form by a change of variables

dµ(ǫ)

dǫ
=

d

dǫ

∫

Γǫ

Ψ2 =
d

dǫ

∫

Ui

(Ψ2) ◦ ~Xǫ|∂s1

~Xǫ × ∂s2

~Xǫ|ds1ds2, (2.18)

where s1 and s2 are the surface parameterization variables, ∂s1

~Xǫ = ∂s1

~X+ǫ∂s1
[~ϕ◦ ~X]

(∂s2

~Xǫ is similar), and (Ψ2) ◦ ~Xǫ means composition of Ψ2 with the mapping ~Xǫ.

The product rule then gives

dµ(ǫ)

dǫ
=

∫

Ui

d

dǫ
[(Ψ2)◦ ~Xǫ]|∂s1

~Xǫ×∂s2

~Xǫ|+[(Ψ2)◦ ~Xǫ]
d

dǫ
|∂s1

~Xǫ×∂s2

~Xǫ|ds1ds2. (2.19)
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- Compute Derivative Terms

Next, we compute the first derivative appearing in the integrand of (2.19).

Since d
dǫ
~Xǫ = ~ϕ ◦ ~X, we have by the chain rule

d

dǫ
[(Ψ2) ◦ ~Xǫ]|ǫ=0 = [(∇(Ψ2)) ◦ ~Xǫ] · [~ϕ ◦ ~X]|ǫ=0 = [(∇(Ψ2)) ◦ ~X] · [~ϕ ◦ ~X], (2.20)

where · denotes the ‘dot’ product of the two vectors.

The other derivative is quite technical, so we will proceed with caution. First,

the result we want is

d

dǫ
|∂s1

~Xǫ × ∂s2

~Xǫ|ǫ=0 = {[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X}|∂s1

~X × ∂s2

~X|. (2.21)

To get (2.21), we start by defining some quantities from differential geometry

[12]. The 1st fundamental form of differential geometry is given by a metric which,

for a 2-D surface, is a 2x2 matrix:

[gij]1≤i,j≤2 =









E F

F G









, (2.22)

where E,F,G are given by the ‘dot’ products

E = ∂s1

~X · ∂s1

~X, F = ∂s1

~X · ∂s2

~X, G = ∂s2

~X · ∂s2

~X, (2.23)

where ~X is the parameterization of the surface Γ, and s1, s2 are the parameterization

coordinates (i.e. ~X = ~X(s1, s2)). The inverse of the matrix is given by

[gij]1≤i,j≤2 =
1

EG− F 2









G −F

−F E









, (2.24)

and of course we have this property,

δj
i =

3
∑

k=1

gikg
kj =

3
∑

k=1

gikg
jk, (2.25)
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δj
i = 1, i = j, (2.26)

δj
i = 0, i 6= j.

Let ω : Γ → R be a scalar function defined on the surface Γ. Then the surface

gradient ∇Γ(·) of ω in local coordinates is defined by

[∇Γω] ◦ ~X =
2

∑

i,j=1

gij∂si
ω̃∂sj

~X, (2.27)

where ω̃ = ω ◦ ~X is in local coordinates.

Recall ~ϕ is a vector perturbation and let ϕk denote the coordinate functions

of ~ϕ (i.e. ~ϕ = (ϕ1, ϕ2, ϕ3)). Let ~̃ϕ = ~ϕ ◦ ~X and ϕ̃k = ϕk ◦ ~X denote the quantities

in local coordinates. As a first step, we will compute the surface gradient of ϕk

[∇Γϕk] ◦ ~X =
2

∑

i,j=1

gij∂si
ϕ̃k∂sj

~X. (2.28)

And we also want the following quantity as well

[∇Γ(Xk ◦ ~X−1)] ◦ ~X =
2

∑

i,j=1

gij∂si
Xk∂sj

~X, (2.29)

where Xk : Ui → R, for k = 1, 2, 3, are the coordinate functions of ~X (i.e. ~X =

(X1, X2, X3)).

Next, we want the ‘dot’ product of the two previous quantities

{[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X} :=
3

∑

k=1

{[∇Γ(Xk ◦ ~X−1)] ◦ ~X} · {[∇Γϕk] ◦ ~X},

(2.30)

=
3

∑

k=1

2
∑

i,j=1

2
∑

p,q=1

gij∂si
ϕ̃k∂sj

~X · ∂sq
~Xgpq∂sp

Xk,

(2.31)
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which is equal to

{[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X} =
3

∑

k=1

2
∑

i,j=1

2
∑

p,q=1

gij∂si
ϕ̃kgjqg

pq∂sp
Xk, (2.32)

by definition (2.22). Using properties (2.25) and (2.26), and noting that ∂si
~̃ϕ·∂sj

~X =

3
∑

k=1

∂si
ϕ̃k∂sj

Xk, we get

{[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X} =
2

∑

i,j=1

gij∂si
~̃ϕ · ∂sj

~X. (2.33)

We write this more explicitly for later use

{[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X} =
1

EG− F 2
·

· [G(∂s1
~̃ϕ · ∂s1

~X) − F (∂s1
~̃ϕ · ∂s2

~X)

− F (∂s2
~̃ϕ · ∂s1

~X) + E(∂s2
~̃ϕ · ∂s2

~X)].

(2.34)

Now, we compute the left hand side of equation (2.21)

d

dǫ
|∂s1

~Xǫ × ∂s2

~Xǫ|ǫ=0 =
d

dǫ
[(∂s1

~Xǫ × ∂s2

~Xǫ) · (∂s1

~Xǫ × ∂s2

~Xǫ)]
1/2|ǫ=0, (2.35)

=
(∂s1

~X × ∂s2

~X)

|∂s1

~X × ∂s2

~X|
·
d

dǫ
(∂s1

~Xǫ × ∂s2

~Xǫ)|ǫ=0. (2.36)

Since d
dǫ
~Xǫ|ǫ=0 = ~ϕ ◦ ~X = ~̃ϕ, we have that

d

dǫ
∂s1

~Xǫ|ǫ=0 = ∂s1
~̃ϕ

d

dǫ
∂s2

~Xǫ|ǫ=0 = ∂s2
~̃ϕ.

Plugging this into (2.35) and applying the product rule gives

d

dǫ
|∂s1

~Xǫ × ∂s2

~Xǫ|ǫ=0 =
(∂s1

~X × ∂s2

~X)

|∂s1

~X × ∂s2

~X|
· [(∂s1

~̃ϕ× ∂s2

~X) + (∂s1

~X × ∂s2
~̃ϕ)]. (2.37)

Before continuing, note that

|∂s1

~X × ∂s2

~X| = (EG− F 2)1/2, (2.38)
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and the following vector identity is valid pointwise

(~a×~b) · (~c× ~d) = (~a · ~c)(~b · ~d) − (~a · ~d)(~b · ~c), (2.39)

where ~a,~b,~c, ~d are 3-D vectors.

Using relations (2.38) and (2.39), equation (2.37) can be simplified

d

dǫ
|∂s1

~Xǫ × ∂s2

~Xǫ|ǫ=0 =
1

(EG− F 2)1/2
[+(∂s2

~X · ∂s2

~X)(∂s1
~̃ϕ · ∂s1

~X)

− (∂s1

~X · ∂s2

~X)(∂s1
~̃ϕ · ∂s2

~X)

− (∂s1

~X · ∂s2

~X)(∂s2
~̃ϕ · ∂s1

~X)

+ (∂s1

~X · ∂s1

~X)(∂s2
~̃ϕ · ∂s2

~X)],

where upon using the definition in (2.23) gives

d

dǫ
|∂s1

~Xǫ × ∂s2

~Xǫ|ǫ=0 =
1

(EG− F 2)1/2
·

· [G(∂s1
~̃ϕ · ∂s1

~X) − F (∂s1
~̃ϕ · ∂s2

~X)

− F (∂s2
~̃ϕ · ∂s1

~X) + E(∂s2
~̃ϕ · ∂s2

~X)].

(2.40)

Now notice that equation (2.40) is almost exactly (2.34). Thus, we get the

result (2.21) that we wanted:

d

dǫ
|∂s1

~Xǫ × ∂s2

~Xǫ|ǫ=0 = {[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X}(EG− F 2)1/2,

= {[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X}|∂s1

~X × ∂s2

~X|.

- Define Shape Derivative

The shape derivative is defined by

dJ(Γ, ~ϕ) :=
d

dǫ
J(Γǫ) |ǫ=0=

dµ(ǫ)

dǫ
|ǫ=0 .
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Combining this with the definition of µ(ǫ) and equations (2.19), (2.20), (2.21), we

get

dJ(Γ, ~ϕ) =

∫

Ui

[(∇(Ψ2)) ◦ ~X] · [~ϕ ◦ ~X]|∂s1

~X × ∂s2

~X|+ (2.41)

+[(Ψ2) ◦ ~X]{[∇Γ( ~X ◦ ~X−1)] ◦ ~X} · {[∇Γ~ϕ] ◦ ~X}|∂s1

~X × ∂s2

~X|ds1ds2,

on the local chart Ui. After mapping back to the surface Γ we get

dJ(Γ, ~ϕ) =

∫

Γ

∇(Ψ2) · ~ϕ+ Ψ2∇Γ( ~X ◦ ~X−1) · ∇Γ~ϕ, (2.42)

where the term ( ~X ◦ ~X−1) is clearly the identity. However, it is common to adopt

the following abuse of notation, and write (2.42) as

dJ(Γ, ~ϕ) =

∫

Γ

∇(Ψ2) · ~ϕ+ Ψ2∇Γ
~X · ∇Γ~ϕ. (2.43)

Define Gradient Flow

The shape derivative allows us to define a gradient flow that will minimize the

cost. We do this by first defining a vector velocity ~V on the surface Γ by

∫

Γ

~V · ~ϕ = −dJ(Γ, ~ϕ), (2.44)

for all ~ϕ ∈ C∞(Γ). We then define a flow by

d

dt
~X(·, t) = ~V (·), ~X(·, t) = Γ(t), (2.45)

which means the surface Γ will move with the velocity ~V .

Semi-Implicit Time Discretization

We solve the gradient flow problem by using a semi-implicit time-discretization.

This is done by setting ~V to ~V n+1 in (2.44) and using a backward Euler method for

36



(2.45). Combining with equation (2.42) gives

∫

Γ

~V n+1 · ~ϕ = −

∫

Γ

∇(Ψ2) · ~ϕ+ Ψ2∇Γ
~Xn+1 · ∇Γ~ϕ, (2.46)

~Xn+1 = ~Xn + α~V n+1, (2.47)

where the superscript is the iteration index and α is the step size to use in updating

Γ at each iteration.

Weak-Formulation

Rearranging slightly, gives the following variational formulation: given ~Xn and

Ψ2, find ~V n+1 ∈ H1(Γ) such that

∫

Γ

~V n+1 · ~ϕ+ α

∫

Γ

Ψ2∇Γ
~V n+1 · ∇Γ~ϕ = −

∫

Γ

∇(Ψ2) · ~ϕ+ Ψ2∇Γ
~Xn · ∇Γ~ϕ, (2.48)

for all ~ϕ ∈ H1(Γ). Given the solution ~V n+1, the new position of Γ is obtained by

equation (2.47). This process is then iterated until the surface Γ reaches a minimum

of
∫

Γ
Ψ2.

This minimization process is quite general and can be applied to the polygonal

curve ΓS. The equations are exactly the same, except Γ is the 1-D curve ΓS, and ~X,

~V , ~ϕ are 2-D vector fields (defined on ΓS) instead of 3-D.

Adjusting the Boundary Mesh

For our computational purposes, equation (2.48) is discretized in space using

piecewise linear ‘hat’ functions over the polygonal boundary ΓS. See [14], [15] for

examples of this kind. We then use the FEM implementation of equation (2.48),

with ΓS as the initial condition, to obtain a new polygonal boundary ΓS that better

approximates the zero level set of Ψ.
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This defines a new set of edges S
Ω̃

(corresponding to ΓS) that defines the

boundary of the final domain mesh ⊤
Ω̃
. This mesh is the final output of the overall

algorithm, and is returned to the main simulation for further time-stepping.

Computing the Final Mesh

Re-distancing

In order to get a ‘good’ flow direction from ∇Ψ2, we need to replace Ψ by a

distance function with the same zero level set as Ψ (i.e. we must re-distance Ψ). This

is because the variable diffusion term in (2.15) causes the scalar function Ψ to be

fairly flat in the topological change region Rpinch. This means ∇Ψ2 does not provide

a good ‘forcing’ direction for the minimization process to follow. Re-distancing is

not a problem, since this only needs to be done locally around Rpinch.

Continuous Approximation of ∇(Ψ2)

Also, in implementing ∇(Ψ2), we actually compute it weakly before starting

the minimization. This is defined by

∫

EΩ

~G · ~w = −

∫

EΩ

Ψ2∇ · ~w, (2.49)

for all test functions ~ϕ with compact support in EΩ (recall that Ψ is defined over

EΩ). Hence, ~G = ∇(Ψ2) in the weak sense. For the discrete problem, ~G and ~w

are piecewise linear functions, defined over EΩ, with zero boundary data on ΓE. In

order to have a satisfactory approximation of ∇(Ψ2) using ~G, we use a mesh for EΩ

that is locally refined in the region Rpinch. This is done by applying a fixed number

of local refinements to the triangulation ⊤EΩ of EΩ, which gives a new triangulation
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denoted ⊤ ~G. When computing the right hand side integral
∫

Γ
∇(Ψ2) · ~ϕ in equation

(2.48), we first replace it by
∫

Γ
~G · ~ϕ. We then use quadrature to interpolate the

piecewise linear function ~G, defined on the triangulation ⊤ ~G, onto the curve Γ which

allows us to compute the integral. As long as the mesh ⊤ ~G is fine enough to resolve

∇(Ψ2) around the local region Rpinch, this will not interfere with the minimization

process too much. In other words, ~G is essentially just given data for the weak form

(2.48).

Local Re-meshing

With the new mesh boundary given, we have to adjust the bulk interior mesh

to account for any inverted elements. This only needs to be done in the region

Rpinch, so is not too expensive. For 2-D meshes, this is done using Triangle.

Lastly, we emphasize that the adjustment only needs to be done in the local

covering region Rpinch. The mesh vertices away from the topological change, which

originally lie along the zero level set of φ0, can be moved directly using the velocity ~u.

Hence, the updated positions of those vertices will lie along the zero level set of φ1 =

Ψ. Therefore, this final mesh adjustment step does not impact the computational

efficiency in a significant way.

An obvious question here is “Why not use the piecewise linear (polygonal)

boundary given by finding the zero level contour (on the mesh ⊤φ) of the updated

level set function φ1 as the new boundary?”. This would certainly give a minimum

of the cost functional J . But there is a problem with this because after updating

the level set function, the new zero level contour will not (necessarily) conform to

the edges of the mesh given by the triangulation ⊤φ on which we computed the level
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set update. This will produce many small edges in some places along the zero level

set curve of φ1. Thus, it is undesirable to use the updated zero level set as the new

domain boundary ΓS because a post-process would need to be done to improve the

mesh quality along the whole boundary, especially in the region Rpinch where we

used a local refinement. Furthermore, a satisfactory mesh is already present around

the mesh away from Rpinch. Hence, we decided to preserve the shape regularity of

the mesh by using our optimization method.
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Chapter 3

Numerical Experiments

We present three simulations to demonstrate the method described in Chapter

2. The first simulation contains no physics and consists of a mesh that is moving with

a prescribed velocity field. The second simulation comes from an application known

as electro-wetting [10], [11], [44], which consists of a Hele-Shaw cell [40], [26] with

the ability to modify surface tension effects through electric fields. These devices

are capable of splitting and merging droplets and have potential applications for

‘lab-on-a-chip’ devices [24], [27]. The third simulation demonstrates reconnection of

droplets in a Hele-Shaw cell due solely to surface tension (no electro-forcing). These

examples are rather extreme, and were chosen to push the limits of our method.

3.1 Rotating Vortices

In this simulation, we prescribe a velocity field ~u = (u, v) of the form

u(x, y) = 2 sin(2πx) cos(2πy),

v(x, y) = −2 cos(2πx) sin(2πy),

which is a two-by-two array of counter-rotating vortices, and the divergence of ~u is

zero. The initial domain shape is a rectangle inside a unit square, shown in Figure

3.1. The vertices of the boundary move with the given velocity field and the rest of

the vertices move by extending the vector velocity on the boundary using a Laplace
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solve (see equation (2.1)). The rectangular mesh undergoes severe deformation due

to the counter-rotating vortices, though the vector Laplace solve does limit the

amount of mesh distortion.

As the domain becomes thin in the middle, and reaches a minimum thickness

of dneck = 4× 10−3, the topological change routine is executed. Figures 3.2 and 3.3,

show time-frames of the pinching process.

In Figure 3.4, we show a closeup of the pinching region depicted in Figure 3.3.

Of course, the dynamics of the flow after the pinch do not change since the velocity

field is prescribed.

In Figure 3.5, we show a comparison of the before and after effects of our

optimization method (from Section 2.6.2) for pinching in the rotating vortex case.

The extreme deformation shown by this example demonstrates the ability

of our method to compensate for mesh distortion and detect thin regions. The

optimization of the mesh boundary is also satisfactory.

3.2 EWOD Pinching

In our next experiment, we use a simulation of an Electro-Wetting On Dielec-

tric (EWOD) device to drive the motion of a water droplet to a topological change

(droplet pinching). The device consists of two parallel plates very close together

with a water droplet squashed in between with air surrounding it. A 3x3 array

of square electrodes is embedded in the bottom plate, which are used for applying

voltages that can change the effective surface tension locally [38]. This allows for
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Figure 3.1: Initial rectangular domain (first row) and deformed version shown at a

later time (second row). The first column shows a triangular mesh for the rectangle

and the second column shows the domain boundary and velocity field. The rectangle

undergoes extreme distortion under this flow field. Eventually, the domain becomes

very thin in the center and a topological change is executed (shown in later figures).
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t = 0.230

t = 0.150

t = 0.070

t = 0.000

Figure 3.2: Sequences of simulation snapshots for the example given in Figure 3.1.

Left column shows the mesh; right column shows the velocity field. Rows correspond

to instants in time. Because of the vortex flow field, a long neck develops in the

central region. See Figure 3.3 for a continuation.
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t = 0.414

t = 0.374

t = 0.332

t = 0.330

Figure 3.3: Continuation of the simulation shown in Figure 3.2 (dneck = 4 × 10−3)

with same format. First and second frames are immediately before and after the

time of pinch-off. Afterwards, the prescribed flow field continues to convect the

vertices of the mesh.
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Figure 3.4: Zoom-in of the pinching region in Figure 3.3 (dneck = 4 × 10−3). All

of the triangles that were in the pinching region Rpinch that have a negative level

set value have been deleted. The second row includes the boundary smoothing step

shown in Figure 3.5.
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(a) Pinched regions before boundary mesh adjustment.
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(b) Pinched regions after boundary mesh adjustment.

Figure 3.5: Comparison of the effect of using our optimization method to smooth the

boundary (dneck = 4 × 10−3 case). The zero level contour of the level set function

(after the topological change) is shown as a thick black curve. The optimization

algorithm acts to smooth or compress the boundary mesh towards the zero level

contour. Here, only five steps of the optimization algorithm were used.
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the ability to force a circular droplet to pinch-off. The initial mesh and electrode

layout is given in Figure 3.6.

Figure 3.7 shows six time-frames of a finite element simulation for the electro-

wetting example given in Figure 3.6. These time-frames show the motion of the

droplet before any topological change take place.

In Sections 3.2.1, 3.2.2, and 3.2.3, we give several snapshots of the simulation

shown in Figure 3.7 at later times, which show the behavior of the topological change

for three different choices of dneck. In all three cases, the initial droplet configuration

and voltage actuation are exactly the same. Yet in each case, we see a change in the

dynamics of the topological change. This allows us to see the effect of the choice of

dneck on the simulated physics.

In Section 3.2.4, we discuss the effects of the different minimum neck sizes

dneck on the velocity field away from the necking region.

3.2.1 EWOD Pinching - dneck = 2 × 10−2

Figure 3.8 shows a sequence of snapshots that is a continuation of the simu-

lation shown in Figure 3.7 with dneck = 2 × 10−2. The dynamics of the topological

change in this example are relatively mild with just a single pinch and no satellite

droplets.

In Figure 3.9, we show a more detailed (zoom-in) view of the dynamics of the

topological change depicted in Figure 3.8.

Figure 3.10 shows the effects of our optimization smoothing algorithm for
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Figure 3.6: Initial circular droplet (first row) in an EWOD device with a ‘necking’

version shown at a later time (second row). The first column shows the finite

element mesh for the domain of the droplet and the second column shows the droplet

boundary and velocity field. The edges of the 3x3 grid of electrodes are depicted by

the light solid lines. The voltage actuation consists of applying 25 V on the left and

right electrodes, and 0 V everywhere else continuously throughout the simulation.

This causes the pressure applied at the left and right sides of the droplet’s liquid-gas

interface to decrease significantly, with a relatively high pressure remaining on the

top and bottom. This causes the droplet to be squeezed in the middle until there

are two ‘bulbs’ of fluid with a neck in between.
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82.3 ms

65.5 ms

48.7 ms

31.9 ms

15.1 ms

0.0 ms

Figure 3.7: Sequence of simulation snapshots for the example given in Figure 3.6.

Left column shows the mesh; right column shows the velocity field. Rows correspond

to instants in time. Low pressure regions on the left and right sides of the droplet

(induced by the voltage actuation) cause the droplet to pull itself apart, because

fluid moves from regions of high pressure to low pressure. As a result, a long neck

develops between two ‘bulbs’ of fluid with the neck becoming thinner. The results of

the topological change are shown in sections 3.2.1, 3.2.2, and 3.2.3 for three different

choices of dneck.
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111.7 ms

110.0 ms

108.4 ms

106.7 ms

105.8 ms

104.2 ms

Figure 3.8: Sequence of simulation snapshots for the case of dneck = 2 × 10−2.

Snapshots are a continuation of those shown in Figure 3.7. Left column shows the

mesh; right column shows the velocity field. Rows correspond to instants in time.

The topological change is rather coarse because of the large value of dneck.
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111.7 ms

110.0 ms

108.4 ms

106.7 ms

105.8 ms

104.2 ms

Figure 3.9: Zoom-in (left-side) of the simulation shown in Figure 3.8 (dneck = 2 ×

10−2) with same format. The neck becomes thinner until its thickness drops below

dneck and triggers the topological change routine of Chapter 2. Immediately following

the pinch, the surface tension forces of the droplet act to smooth out the high

curvature regions of the pinched neck. Eventually, the two droplets come to rest

on the left and right electrode pads. The other pinched region on the right side is

similar.
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adjusting the boundary mesh after the topological change.

3.2.2 EWOD Pinching - dneck = 10−3

Figure 3.11 shows a sequence of snapshots that is a continuation of the simula-

tion shown in Figure 3.7 with dneck = 10−3. The dynamics of the topological change

in this example are different from the previous section. Here we obtain a pinch in

two places and a remaining satellite drop in between the two larger droplets.

In Figure 3.12, we show a more detailed (zoom-in) view of the dynamics of

the topological change depicted in Figure 3.11.

In Figures 3.13 and 3.14, we show an even more detailed (ultra zoom-in) view

of the dynamics of the satellite drop depicted in Figures 3.11 and 3.12.

Figure 3.15 shows the effects of our optimization smoothing algorithm for

adjusting the boundary mesh after the symmetric double pinch.

3.2.3 EWOD Pinching - dneck = 8 × 10−4

For this experiment, we lower the minimum thickness just slightly from the

case in the previous section. This causes the curvature in the pinched region to be

higher, thereby inducing an even larger velocity, which causes the satellite drop to

slam together and pinch again! In this section, we only focus on the dynamics of

the satellite drop (see Figures 3.16 and 3.17) since the rest of the flow is essentially

the same as in Section 3.2.2.

Figure 3.18 shows the effects of our optimization smoothing algorithm for
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(a) Pinched regions (connected to the ‘bulbs’ of fluid) before boundary mesh adjustment.
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(b) Pinched regions after boundary mesh adjustment.

Figure 3.10: Comparison of the effect of using our optimization method to smooth

the boundary (dneck = 2×10−2 case). The zero level contour of the level set function

(after the topological change) is shown as a thick black curve. The optimization

algorithm acts to smooth or compress the boundary mesh towards the zero level

contour. Here, only five steps of the optimization algorithm were used.
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133.37 ms

132.72 ms

132.62 ms

132.51 ms

132.39 ms

132.30 ms

Figure 3.11: Sequence of simulation snapshots for the case of dneck = 10−3. Snap-

shots are a continuation of those shown in Figure 3.7. Format is the same. The

topological change here is different than for the case with dneck = 2 × 10−2. The

neck undergoes what seems to be an instability similar to that shown in [40] for a

Hele-Shaw cell with forcing due to gravity (i.e. this instability has two necking re-

gions). This causes the neck to pinch in two places, which leaves a long thin satellite

drop in the center, which then snaps together. A closeup of the pinching region is

given in Figure 3.12.

55



132.30 ms

132.34 ms

132.38 ms

132.42 ms

132.45 ms

132.50 ms

Figure 3.12: Zoom-in (right-side) of the simulation shown in Figure 3.11 (dneck =

10−3) with same format. The pinching behavior is symmetric with a similar thinning

region on the left side (not shown; see Figure 3.11). After the pinch-off, the surface

tension forces of the droplet act to smooth out the high curvature regions of the

larger and smaller satellite droplets. The evolution of the larger droplet is similar to

that shown in Section 3.2.1. The satellite drop starts to bulge at the ends because

of the high velocities induced by the high curvature there. Figures 3.13 and 3.14

focus on the evolution of the satellite drop.
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132.66 ms

132.62 ms

132.57 ms

132.55 ms

132.53 ms

132.50 ms

Figure 3.13: Ultra zoom-in of the satellite drop shown in Figure 3.11 (dneck = 10−3)

with same format. Because of the high velocities induced by the high curvature

after the pinch-off, the satellite drop rapidly contracts and slams together. This

causes it to deform into a dumbbell shape because of an inertial term in the model

that governs EWOD flow (i.e. there is a ∂t~u term in the model). Simulation frames

continue in Figure 3.14.
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134.38 ms

133.04 ms

132.95 ms

132.87 ms

132.79 ms

132.72 ms

Figure 3.14: Ultra zoom-in of the satellite drop shown in Figure 3.11 (dneck = 10−3);

continuation from Figure 3.13. The dumbbell eventually relaxes into a circular

shape.
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(a) Pinched regions before boundary mesh adjustment.
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(b) Pinched regions after boundary mesh adjustment.

Figure 3.15: Comparison of the effect of using our optimization method to smooth

the boundary (dneck = 10−3 case). The left (right) half of the figure coincides with

the left (right) pinch region (see Figure 3.11). The zero level contour of the level

set function (after the topological change) is shown as a thick black line. The

optimization algorithm acts to smooth or compress the boundary mesh towards the

zero level contour. Here, only five steps of the optimization algorithm were used.
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132.73 ms

132.61 ms

132.56 ms

132.54 ms

132.52 ms

132.49 ms

Figure 3.16: Zoom-in of the satellite drop (same figure format) shown in Figure

3.11, except the minimum thickness is dneck = 8 × 10−4. High velocities induced by

the high curvature after pinch-off cause the satellite drop to rapidly contract and

slam together. The drop continues to deform and pinch again, splitting into two

satellite drops. The sequence of snapshots continues in Figure 3.17.
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136.20 ms

132.87 ms

132.77 ms

132.75 ms

132.74 ms

132.73 ms

Figure 3.17: Continuation of the simulation shown in Figure 3.16 (dneck = 8×10−4).

After the second pinch event, the two smaller droplets deform and move away from

each other. This pinching experiment demonstrates the ability of our method to

track the topology of the evolving droplet through multiple pinches.
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adjusting the boundary mesh after the second topological change (i.e. the second

pinch of the dumbbell).

3.2.4 Bulk Fluid Flow Versus dneck

There is some concern over the effect that dneck may have on the bulk fluid

flow away from the pinch. In this section, we compare velocities in the two main

‘bulbs’ of fluid with respect to varying dneck.

First, we define our region of interest to be the droplet domain that overlaps

the left and right electrodes of the EWOD device (i.e. the electrodes with 25 V

applied; see Figure 3.6). In Figure 3.19, we have plotted the maximum velocity and

average velocity in the region of interest as a function of time, for all three cases of

dneck = 2×10−2, 10−3, 8×10−4. Our goal is to check if there is a significant difference

in these quantities when dneck is varied. This comparison is rather approximate, but

is certainly reasonable for a first glance.

From the data in Figure 3.19, the main discrepancy in the measured velocity

quantities occurs because of the different times of pinch-off for the different minimum

neck sizes dneck. But this discrepancy disappears after about 10-15 ms, after which all

three data plots follow the same trend. This implies that the size of dneck can cause

momentary discrepancies in the droplet evolution at times of topological change,

but that the discrepancies eventually decay. This is reasonable given the sensitive

nature of pinching events, and the significant damping factor that is present in

EWOD driven flow.
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(a) Pinched regions before boundary mesh adjustment.

0.4985 0.5 0.5015
0.506

0.5075

0.509

0.4985 0.5 0.5015
0.494

0.4955

0.497

(b) Pinched regions after boundary mesh adjustment.

Figure 3.18: Comparison of the effect of using our optimization method to smooth

the boundary (dneck = 8 × 10−4 case) for the second pinch event. The zero level

contour of the level set function (after the topological change) is shown as a thick

black line. The optimization algorithm acts to smooth or compress the boundary

mesh towards the zero level contour. Here, only five steps of the optimization

algorithm were used.
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Figure 3.19: Comparison of flow in the ‘bulbs’ (i.e. away from the necking region)

for three different values of dneck. (◦) denotes data points for the dneck = 2 × 10−2

case, (2) denotes data points for the dneck = 10−3 case, (*) denotes data points for

the dneck = 8 × 10−4 case. The maximum velocity for dneck = 2 × 10−2 spikes at

about 108 ms which is about the time of pinch-off in that case (there is no spike for

the average velocity). Both max and average velocity in the other two cases spikes

later (at 133 ms), which corresponds to their delayed pinch-off time. Other than at

the pinch-off times, these velocity quantities appear to follow the same trend.
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But this analysis is very rudimentary and depends on the particular physical

problem being simulated. It is certainly possible to envision a physical situation

in which the size of dneck can drastically affect the results of the simulation. But,

again, this is expected given the (violent) nature of fluid pinching.

3.3 Joining of Droplets by Surface Tension

In this last experiment, we use the EWOD simulation without any electrical

forcing. Hence, the flow is purely due to surface tension. This example shows how

our method deals with connecting or joining droplets. The initial domain shape

(and mesh) is given in Figure 3.20.

Figures 3.21, 3.22, and 3.23 show several time-frames of a finite element sim-

ulation for the surface tension example given in Figure 3.20. As the donut shaped

droplet approaches the smaller drop, the boundary mesh begins to refine because

of our adaptive meshing routine. This is because the mesh is extended at every

time-step using the program Triangle. A thin neck of ‘air’ develops between the two

droplets. Eventually, the thickness of the neck drops below the minimum thickness

of dneck = 10−3 that we set and a topological change is executed.

In Figures 3.24, 3.25, 3.26, and 3.27, we show a closeup of the evolution of the

thin neck of ‘air’. Note how the high curvature regions get smoothed out by the

surface tension effect.

Figure 3.28 shows the effects of our optimization smoothing algorithm for

adjusting the boundary mesh around the cusp region.
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Figure 3.20: Initial ‘donut’ droplet surrounding another smaller droplet (first row),

with a deformed version shown at a later time (second row). The first column

shows the finite element mesh for the domain of the droplet and the second column

shows the droplet boundary and velocity field. Since the larger droplet is not in a

circular shape, the surface tension effect causes it to move such that it minimizes

its boundary length. This eventually forces the donut to come into contact with the

smaller droplet, which causes a topological change (a joining event).
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66.4 ms

43.7 ms

23.5 ms

0.0 ms

Figure 3.21: Sequence of snapshots for the example in Figure 3.20. Left column

shows the mesh; right column shows the velocity field. Rows correspond to instants

in time. The outer droplet slowly deforms because it is only driven by surface

tension (i.e. no electrical forcing is present). As the two droplets come closer, the

boundary mesh in those regions adapts because of the meshing program ‘Triangle’.

The last frame is just before the droplets connect (dneck = 10−3). See Figure 3.22

for a continuation. 67



67.5 ms

66.8 ms

66.6 ms

66.4 ms

Figure 3.22: Sequence of simulation snapshots for the example given in Figure 3.20

(continuation from Figure 3.21 with same format). The first frame is immediately

after the connection. Eventually, the high curvature region gets smoothed out. See

Figure 3.23 for a continuation.
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105.6 ms

76.2 ms

69.8 ms

67.8 ms

Figure 3.23: Sequence of simulation snapshots for the example given in Figure 3.20

(continuation from Figure 3.22 with same format). The final state of the joined

droplet is a circular shape (not shown).
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66.50 ms

66.49 ms

66.40 ms

66.36 ms

Figure 3.24: Closeup of droplet evolution for the example given in Figure 3.20. First

frame is immediately before topological change. When the ‘donut’ shaped droplet

forms an ‘air’ neck with a thickness less than dneck = 10−3, the topological change

routine is executed. After joining, the sharp cusp that is formed proceeds to smooth

itself out because of the surface tension effect. See Figure 3.25 for a continuation.
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66.54 ms

66.53 ms

66.52 ms

66.51 ms

Figure 3.25: Continuation from Figure 3.24 for the ‘Donut’ example. The sharpness

of the cusp begins to be smoothed out. See Figure 3.26 for a continuation.
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66.61 ms

66.59 ms

66.57 ms

66.55 ms

Figure 3.26: Continuation from Figure 3.25 for the ‘Donut’ example. Here, you can

see a small numerical artifact where the boundary ‘bunches’ up on the top part of

the connection region. This is because of inadequate meshing in the cusp region,

which we discuss in Chapter 4. See Figure 3.27 for a continuation.
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66.97 ms

66.84 ms

66.72 ms

66.65 ms

Figure 3.27: Continuation from Figure 3.26 for the ‘Donut’ example. The high

curvature regions continue to be smoothed out. As can be seen, the method we

propose is able to handle this severe topological change.
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(a) Zoom-in of connecting regions before boundary mesh adjustment.
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(b) Zoom-in of connecting regions after boundary mesh adjustment.

Figure 3.28: Comparison of the effect of using our optimization method to smooth

the boundary (dneck = 10−3). The top cusp of the connecting region is shown on the

left; the bottom cusp is on the right. The zero level contour of the level set function

(after the topological change) is shown as a thick black line. The optimization

algorithm acts to smooth or compress the boundary mesh towards the zero level

contour. Here, only five steps of the optimization algorithm were used.
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Chapter 4

Conclusions

We have presented a method for enabling meshes deforming in a Lagrangian

way to undergo topological changes. The method uses a level set formulation to

indicate how the topology changes, and is only used during the time-step of the

topological change. In addition, a mesh smoothing step using a shape differential

optimization technique is used to improve boundary mesh conformity to the zero

level contour of the level set function.

One issue with our method is the need to detect when a topological change

is happening. In some cases, the pre-cursor to the topological change can be quite

smooth and gentle. This can be hard to detect if the velocity field were used to

indicate a topological change. In contrast, our method of looking for ‘thin’ regions is

not ambiguous, but can lead to spurious topological changes if the physical problem

being simulated exhibits a lot of ‘thin’ features. This can be compensated for by

choosing a minimum neck thickness dneck that is smaller than the expected thin

features.

Another issue has to do with resolving the dynamics of topological changes.

For example, in Figure 3.26 one can see the boundary of the droplet start to bunch

up in the region around the cusp because of the high velocities (and gradients)

present. This is also due to the sudden change in mesh size around parts of the
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cusp. A solution for this would be to have an adaptive mesh algorithm that can

accommodate geometric information from the boundary and the PDE solution in

the interior (i.e. the velocity).

More improvements could be made, including having a method to adapt the

mesh boundary (in some sense) when doing the optimization/smoothing step. One

criteria could be to maximize the shape regularity of the boundary mesh (while

smoothing), which is especially important for using our method in 3-D. Other im-

provements include better methods for solving the level set equation, which we

understated in our exposition. This was not critical for our demonstrations, since

we only use one time-step in updating the level set function. However, this may be

more critical for implementing our method in 3-D.

In comparison to the literature, we first look at the work by John Strain [3].

His method is mostly a level set method, with an explicit contouring algorithm for

extracting the interface shape at each time-step. He uses the explicit construction

to improve the calculation of certain geometric quantities and as a better way to

capture the overall geometry of the interface motion. But his method still handles

geometric terms, such as curvature, in an explicit way (which we avoid). And his

method requires an explicit reconstruction at every simulation step, as opposed to

our method which only requires mesh reconstruction when there is a topological

change. Despite this, his method is an interesting option, especially given that he

has shown it to work in 3-D.

Next, we look at Ron Fedkiw’s work in [7]. The application here does not

involve topological changes, but a way to construct tetrahedral meshes of implicit
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surfaces that are represented by the zero level set of a scalar function. Their ap-

plication involves smoothing (or compressing as they say) of an explicit mesh onto

the zero level set (analogous to our smoothing step). The main difference here is

that their method for moving the mesh boundary is not a variational one like ours.

They use the level set function directly, and its gradient, and compute explicitly

the direction for moving the boundary vertices, which is followed by a method for

moving the interior vertices by using elasticity equations or a mass-spring system.

Another related aspect of Fedkiw’s work is in [34], where they introduce the virtual

node algorithm as a way of tracking topological changes of explicit triangular or

tetrahedral meshes. However, their method is not concerned with the correct local

geometry, since they were mainly concerned with solving elasticity equations, as

opposed to surface tension driven flow.

Lastly, it is our hope that our method may be plausible in 3-D simulations.

The level set update and mesh smoothing, in principle, generalize to 3-D. But our

method is dependent on having adequate tools for mesh refinement and manipu-

lation, which are open questions for 3-D problems. Of course, any problem that

has large deformations of an explicit mesh will require good meshing tools anyway.

Hence, our method may be used in those cases.

It should be noted that doing topological changes in 3-D can be quite over-

whelming. It is certainly possible that there are unforseen drawbacks to our method

due to the highly complicated nature of topological changes in 3-D. But this is an is-

sue for any method when solving a problem where the geometry affects the solution

in a significant way.
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Appendix A

Symbol Definitions

On the following page is a list of symbols and definitions used in this thesis.
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Table A.1: Symbol Definitions

Symbol Definition Symbol Definition

Ω computational domain Γ Γ := ∂Ω

Ωoutside outside extension of Ω EΩ EΩ = Ω
⋃

Ωoutside

ΓE Γ := ∂EΩ Γoutside Γoutside := Γ
⋃

ΓE

⊤Ω triangulation of Ω ⊤EΩ triangulation of EΩ

⊤pinch set of triangles in thin region Rpinch subset of EΩ covering thin region

Ω̃ domain after top. change Γ̃ Γ̃ := ∂Ω̃

⊤
Ω̃

triangulation of Ω̃ T refers to a triangle in a mesh

S
Ω̃

bdy. triangle sides of ⊤
Ω̃

ΓS set of points defined by S
Ω̃

S
Ω̃

mesh bdy. after adjustment ⊤
Ω̃

domain mesh after adjustment

~x position coordinate t time

~u vector velocity (u, v) ~u = (u, v)

~usmooth smooth velocity extension ~uν normal vector extension

τ time-step size ν outward normal vector

τmin minimum time-step τmax maximum time-step

τpinch time-step of level set update Wτ wait time after topological change

dneck minimum neck thickness ε0 artificial diffusion, ε0 =
d2

neck

τpinch

φ level set function φ0, φ1 l.s. before and after top. change

⊤φ triangulation for level set eqn. Ψ := φ1 for notational convenience

~X surface parameterization ~ϕ vector perturbation of surface

J(Γ) cost function J(Γ) :=
∫

Γ
Ψ2 dJ(Γ, ~ϕ) shape derivative

~G weak gradient of Ψ2 ⊤ ~G triangulation for computing ~G
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