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Abstract

We present a computational method for solving a class of boundary-value problems in Sturm-Liouville
form. The algorithms are based on global polynomial collocation methods and produce discrete represen-
tations of the eigenfunctions. Error control is performed by evaluating the eigenvalue problem residuals
generated when the eigenfunctions are interpolated to a finer discretization grid; eigenfunctions that
produce residuals exceeding an infinity-norm bound are discarded. Because the computational approach
involves the generation of quadrature weights and discrete differentiation operations, our computational
methods provide a convenient framework for solving boundary-value problems by eigenfunction expansion
and other projection methods.

1 Introduction

Eigenfunction expansions are used to solve time-dependent, linear, nonhomogeneous boundary value prob-
lems. The method is simple and intuitive to implement, and the eigenfunction and eigenvalues frequently
have physically meaningful interpretations. Eigenfunctions also provide a natural basis for trial function
expansions when used in conjunction with the Galerkin and other projection methods to solve nonlinear
problems. This approach can be further extended to include problems defined in complex, two- and three-
dimensional physical domains when the eigenfunctions are computed numerically (see, e.g., [1]). In this
paper, we present a set of computational procedures for generating eigenvalues and discrete representations
of eigenfunctions, and discuss the relationship between these computational procedures and the implemen-
tation of eigenfunction expansion and other projection methods.

The class of second-order, regular, Sturm-Liouville problems to be solved is defined by

d d d
xai(x)%<m p@ )diﬁ)+q( )d_¢ +9(@)p =N z € (0,1). (1)
The solutions ¢ (z) are subject to boundary conditions
dl/)( ) + b (0) + dlflil) +bip(1) = 0,
dlfl( ) +dy(1) + dlflio) +dop(0) = 0. @)
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Therefore, Dirichlet, Neumann, mixed, periodic, and semiperiodic boundary conditions can be satisfied. The
eigenvalue problems are considered regular [2] in the unit interval if

1. p(z) > 0, v(z) > 0, and g(x) <0 for z € (0,1);
2. 1/p(z), q(z), and v(z) are locally integrable near the endpoints.

We will consider cases where v(z) has one or more finite jump discontinuities.

The format of the Sturm-Liouville problems to be solved (1) was chosen to reflect the form commonly
encountered when solving boundary-value problems generated from conservation equations describing the
transport of mass, momentum, or energy in engineering modeling problems. In this form, p(x) can represent
a spatially-dependent diffusivity, ¢(z) the contribution of a convective flux, g(z) a spatially nonuniform
potential or heat transfer rate, and v(z) a nonuniform capacitive term. The exponent « is related to the
problem symmetry: a = 0 for slabs, & = 1 for cylindrical geometries, and o = 2 for spherical geometries.
Specific examples will be presented later in the paper.

Considerable research has been devoted to the numerical solution of second-order Sturm-Liouville problems
(e.g., [2, 3, 4, 5]). The focus of this paper is development of a simple-to-use, MATLAB-based Sturm-Liouville
problem solver in the form of computational modules that specifically take into account the interplay between
eigenfunction generation and implementation of the eigenfunction expansion methods. Our approach was
motivated by the need for computational methods that produce discretized eigenfunctions, adjoint eigen-
functions, eigenvalues, and discretized representations of the weight functions defining (adjoint)eigenfunction
orthogonality to simplify implementation of weighted residual methods in engineering system simulation and
control applications.

2 Discretized Function Representation

Our numerical approach is based on representing the eigenfunctions in spatially discretized form, using
Lagrangian interpolation for computing inter-point eigenfunction values. This approach provides flexibility
in representing eigenfunctions that can take polynomial, trigonometric, Bessel, or other special function form.
Furthermore, if the M-point discretized set of N eigenfunctions is written as the array ¥M> the discrete
transformation array ¥ will be composed of columns corresponding to each eigenfunction v, (z) evaluated
at the discretization points x,,. This simplifies reconstruction of discretized state variables approximated by
eigenfunction expansions, i.e., if the trial function expansion

N
W0 = 3 (b (z)
n=1

is used to approximate the state variable u(z,t), the discretized equivalent reduces to simple matrix multi-
plication uM*1 = GMXNaNx1 where u,,(t) = u(Tm,t).

Eigenfunctions computed as the nontrivial solutions to (1) satisfying boundary conditions (2) will be orthog-
onal with respect to weighted inner product

(i), 5 () = /0 i) () W(a)a® da
with "
W(z) = v(z) exp { [ vt aw) oty dx'} .

Therefore, the projection of the discretized state variable u(x,t) onto the eigenfunctions is computed as the
matrix operation

anzg U U Wi Wy, n=1,...,N or a=Pu
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with P;; = ¥; ;w;W;. The quadrature weights, computed from the term-by-term product w,,W,,, are
composed of the discretized weight function W, defining the eigenfunction orthogonality and the quadrature
weights w,, representing the discrete approximation to the differential element x*dz. We do not include the
geometry factor z¢ in the definition of W since the former is included in the quadrature weight array w
discussed in the following section.

3 Collocation Points and Quadrature Weights

We have chosen to fix the discretization end point locations as 1 = 0 and zp; = 1, and set the interior points

as the roots of the (M — 2)-degree Jacobi polynomial J((Jbofg)l )(:17), where « is the geometry factor in (1).

The roots are distinct, are all located inside the unit interval [6], and are spaced in such a manner that the
discretization point density increases towards each end of the interval. This choice of discretization points
forces the residual generated by the projection of an arbitrary function onto the collocation points to have as

its primary component the function J((Jbofg)l )(:c), giving an excellent approximation to a true projection onto

the first (M — 3)-degree Jacobi polynomials [7]. This choice also guarantees that the quadrature weights w,
used to compute

/1 f(z) z%dz = wTf
0

where f = [f(x1),..., f(zar)]T, result in exact integral evaluations when the degree of polynomial f(z) is
less than ¢ = 2M — 3, where M is the total number of collocation points, including the endpoints.
Accurate and efficient algorithms for determining the Jacobi polynomial roots and the associated quadrature
weights w have been developed (e.g., [8, 9]); however, these algorithms can be modified to improve their
numerical accuracy and efficiency, and to take advantage of vectorized computational operations [10]. In the
first step of our algorithm, points are placed in the unit interval at locations that approximate the spacing
of Jacobi polynomial roots of degree significantly higher than M (we use the extrema of a (3M — 1)-degree
Chebyshev polynomial because they can be computed explicitly). Then, J((i/fofg)l )(ac) is evaluated at these
points using the recursive formula that generates these polynomials; the subintervals of different signs are
identified and linear interpolation is used to determine zero-crossing estimates. The polynomial derivatives
are computed at these estimated root locations and are used as part of the first step of the Newton-Raphson
iterations used to compute the root location vector x.

The Gauss-Lobatto quadrature method generates quadrature weights w defined by

CuK;
dx
where Py(z) = vail(iv —z;), K; = 1/(a+1) for i = 1 and K; = 1 for i # 1. The coefficient Cyp is
computed indirectly from the known value of the sum of the quadrature weights to find
1

(a+1) 275, Kj/(dPas () /d)>

This avoids computing Cps directly from its definition [8, 11], which can be difficult for large M. Details
regarding the quadrature weight formula derivations and numerical methods developed to overcome addi-
tional computational limitations can be found in [10]. We have found that accurate computations can be
performed using over M = 500 discretization points.

W;

Cu =

4 Discrete Differentiation Operations

Having defined the discretized function representations and derivation of the quadrature arrays, we differ-
entiate the interpolation polynomials explicitly to obtain accurate, discrete, differentiation operations. The
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eigenfunctions are represented in discretized form in terms of the trial function expansion

M
Yn(x) = Z il ()

m=1

where the [,,,(z) are the building block polynomials of the Lagrange interpolation polynomial

17 @) _
L () H(xm_x‘), m=1,...,M. (3)
f#m ’

Because the Lagrangian interpolation polynomials [;(x) are continuous and differentiable, explicit formulas
for derivatives of functions represented by these trial function expansions up to order (M —1) can be obtained
that are valid at all z,,,, m=1,..., M.

In the discrete-ordinate formulation of the Lagrange interpolation function-based collocation method, dif-
ferentiation is a matrix operation, i.e., di,, /dr = A1), where the elements of the matrix are defined by
A;; = dlj(z;)/dz, i,j = 1,2,---, M. The terms in each array are computed by directly differentiating the
interpolation equations, and the values of the nodal polynomial derivatives at the M discretization points x
are computed with the recurrence formulas derived by Michelsen and Villadsen [8].

As an alternative to direct computation of the discretized Laplacian operator B from the interpolation for-
mulas (using asymptotic values for the operator at the origin for cylindrical and spherical geometries to
eliminate the numerical singularity caused by the 1/x® term), the discretized operator can be constructed
from matrix operations involving A. In fact, the Laplacian operator in slab geometries is simply the prod-
uct B = AA to within truncation errors in the computational procedures. This is made possible by the
polynomial interpolation: because any (M — 1)-degree polynomial can be represented exactly in terms of
the discretized interpolation functions, its derivatives will exist entirely in the space spanned by the first
M Jacobi polynomials, therefore, no accuracy is lost in the discrete-ordinate formulation of the collocation
method.

5 Eigenfunction and Eigenvalue Computations
The A, and v, are computed as the eigenvalues and eigenvectors of an array defined by the discretized

form of (1). In the first step of this procedure, the discretized functions v, p, q, and g, together with the
first-order differentiation array A are used to discretize (1) to obtain

A
T A A+ ( 2+ qm> A+ = Ay + gLy = LOV2XM (4)

Um Um TmUm

for m = 2,...,M — 1, where A,, denotes the mth row of array A, and I is the identity matrix. We note
that the singularity at the origin for a # 0 does not affect (4).

The boundary conditions then are used to define a linear relationship between the values of i(x) at the
interval endpoints

(aAq + b1 + a1 Ay + 011y )Yy = 0, (5)
(CAM + dIy + coAy + doIl)’l/J = 0. (6)

These equations are solved for ¥ (z1) and ¥ (zps) in terms of the interior node values and this relationship
is used to transform (4) into homogeneous form J(M=2)x(M=2) = After computing the M — 2 eigenvalues
and eigenvectors of J, the endpoint values of the discretized eigenfunctions that satisfy the boundary con-
ditions are computed using (5,6). This gives the matrix of discretized eigenfunctions ¥M*(M=2) " adjoint
eigenfunctions ®@M*(M=2) and eigenvalues AM—2)x(M~=2)
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These discretized eigenfunctions will be orthogonal with respect to a properly weighted inner product; to
normalized the eigenfunctions, the weight W is determined by first computing M quadrature weights w
and points X corresponding to the geometry factor & = 0. Then, the weight functions at x = 0 are set to
W1 = v(z1) and Wyq, = 1/v(z1) and the following, two-step procedure is used to compute the remaining,
discretized weight function values. In the first step, the integrand v(x)q(x)/p(z) defined over each subinterval
0 <z < x,, is interpolated to the points x,,X. The discrete weight functions are computed in the second

step of this process as
M
Wi, = vy exp {Zwm@k/m} ,

k=1
and
M
Wad,,, = exp {— Z@kf)k@c/ﬁk} /Vm.
k=1
This two-step procedure is repeated for each point on the original grid x,,. We note that both W,,, = v(z.,)
and Wy, = 1/v(zy), m =1,..., M if g(z) = 0. The discretized weight function Waq is not computed if

U, = 0 for any m.
The normalized eigenfunctions are computed from

where W, is the mth (column) discretized eigenfunction. The discretized adjoint eigenfunctions are com-
puted as the term-by-term product of each discretized eigenfunction ¥,, with weight function W, and are
normalized using W q.

5.1 Error control

After the eigenvalues and discretized eigenfunctions are computed, a grid X twice as fine as the original grid
x is computed to estimate the the residuals produced when the eigenfunctions 1, are substituted into the
eigenvalue problem (1), now discretized on the finer grid (c.f., [12]). The eigenfunctions ¥ are interpolated
to this finer grid, using the Lagrange interpolation functions. Because it is computationally difficult to
use the interpolation polynomials directly in cases of high-degree discretizations, we use Neville’s algorithm
[13] and other computational techniques that avoid direct evaluation of high-degree Jacobi polynomials for
interpolation [10].

After the discrete first-order differentiation array A and quadrature weights W are computed for the finer
grid, we discretize the original eigenvalue problem (1) to obtain a discretized operator similar to (4). We
note that while L is not defined at the interval end points, it is a function of the eigenfunctions evaluated at
the endpoints.

We then compute the normalized infinity norm of the residual function defined by the finely-discretized
eigenvalue problem . A

[ — At

A search is performed over the indices 1 > m > M —2 using interval bisection to determine the eigenfunctions
that exceed an error condition defined by R, < errtol; typically, we use errtol = 0.001 and find that roughly
half of the eigenfunctions fail this test. All of the rejected eigenfunctions correspond to the largest-magnitude
eigenvalues.

m
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6 Computational Examples

We have implemented the collocation-based Sturm-Liouville problem solving procedure as part of a MATLAB-
based set of computational tools for solving boundary-value problems by the method of weighted residuals
[10]. The eigenvalue, eigenfunction, and weight arrays are generated by the function

[Av ‘1’7 (Pv W7 Wad] - sl(’geom’, A7X7 a,b,c,d,w,v,p,q,g, errtol,al,bl,co,do).

The output consists of the eigenvalues A, discretized, orthonormal eigenfunctions ¥, adjoint eigenfunctions
®, discretized weight function W used to define the orthogonality of the eigenfunctions, and discretized
weight function Woq corresponding to the adjoint eigenfunctions. Input includes the problem geometry
factor “geom” (geom=’slab’ corresponds to o = 0; geom="disk’ to @ = 1; and geom=’sphe’ to a = 2),
and the differentiation, collocation point, and quadrature arrays, A, x, and w, respectively. The remaining
parameters correspond directly to the terms in (1) and (2) or should be otherwise self-explanatory.

The differentiation, collocation point, and quadrature arrays are computed with the physical-domain defini-
tion function

[x,w,AB, Q] = pd('geom’,M).

This function also computes the discretized set of M Jacobi polynomials Q, a discrete transformation array
used for spectral filtering in one of the examples presented in this paper. We chose to split the functions in this
manner since the quadrature and differentiation arrays are used in other operations during an eigenfunction
expansion solution procedure, and the discretization points are required for plotting results and discretizing
the functions v, p, g, and g.

The following examples either compare computed eigenfunctions and eigenvalues to results that can be
evaluated exactly, or compare computed results with previously published solutions. In the latter cases, the
accuracy of most of our results match previously published results to the reported accuracy.

6.1 The Sinc Functions

We consider the problem of computing nontrivial solutions to

1 d [  dy 9

i 2Vl —

x® dz {x dm] v

subject to dy(0)/dz = 0 and either (1) = 0 or di(1)/dz = 0. For the case a = 2, the numerically computed
eigenfunctions can be compared to the exact eigenfunctions (consisting of the spherical Bessel functions of
the first kind of order 0)

sin A\,

Ym(7) = ———Cny

X

and eigenvalues \,, = mm, with C,, = v/2 for the Dirichlet problem. For the no-flux boundary condition
case, the eigenvalues must be computed as solutions to Acos A — sin A = 0 and the normalization coefficient
is

c 1 sin2),] Y2

" [2 4\, ] '

Numerical computation of the eigenvalues and eigenfunctions begins with calling pd.m to define the physical
domain discretization points, quadrature weights, and differentiation array. Then, the first call to sl.m
shown below generates the solutions corresponding to the Dirichlet problem and the second, the Neumann
problem:

[x,wx,dx]

= pd(’sphe’,40);
[lamD psiD] =

s1(’sphe’,dx,x,1,0,0,1,wx);
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Figure 1: The eigenfunctions for Laplace’s equation in a sphere for Dirichlet (left) and Neumann (right)
boundary conditions; circles indicate points from the exact solutions. A total of 40 discretization points were
used.

[lamN psiN] = s1(’sphe’,dx,x,1,0,1,0,wx);

For M = 40, the function sl.m produced 14 eigenfunctions for the Dirichlet problem with a maximum
eigenvalue error magnitude of 1.37 x 10~8; for the Neumann problem 16 eigenfunctions were produced using
the default error tolerance setting. Representative eigenfunctions are plotted in Fig. 1 together with their
respective eigenvalues.

6.2 The Graetz-Nusselt Problem

Heat transfer in a Newtonian fluid flowing through a circular tube with a laminar flow profile leads to the
eigenvalue problem
1d { dip

_ 2

subject to di(0)/dz = 0 and (1) = 0. The eigenfunctions v (z) represent those radial temperature profiles
where the radial conductive heat transfer is balanced exactly by streamwise convection [7, 14]. In this
problem, a = 1 and v(z) = —2(1 — 2?) and the eigenfunctions will be orthogonal with respect to inner
product weight function z(1 — 2%). We note that the singularity at # = 1 does not pose a problem because it
is located at the boundary. The first three eigenvalues match previously reported results [7]; eigenfunctions
and corresponding eigenvalues are presented in Fig. 2. We observe no visible or computational difficulties in
the neighborhood of = 1. The results shown in Fig. 2 were computed by

[x,wx,dx] = pd(’disk’,40);
v = -2%(1-x.72);
[lam psi] = s1(’disk’,dx,x,1,0,0,1,wx,v);

6.3 Non Self-Adjoint Problems

When modeling the temperature profile of a steel sheet-forming process involving multiple-zone heating
[15], the sheet temperature profile can be modeled by a boundary-value problem with terms accounting for
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Figure 2: The eigenfunctions and corresponding eigenvalues of the Graetz-Nusselt problem for M = 40.
Computed results agree with eigenvalues published in Villadsen and Stewart (1967) to the reported accuracy.

thermal conduction, radiant heating, conductive cooling to the surrounding gas phase, and the movement of
the sheet relative to the heating lamps and rollers. The linear eigenvalue problem relevant to this simulation
and control problem can be written as

2y dy
dx? qu g

subject to di(0)/dx = 0 and di(1)/dz = 0. We consider the case where ¢ and g are constant over x € (0, 1)
with values chosen as ¢ = 10 and g = 20; this creates a challenging computational problem because of
the dominance of the convective term (g di)/dx) relative to thermal conduction. The eigenfunctions will be
orthogonal with respect to weight W = e~ %*; additional checks of the computed solutions are provided by
the first eigenfunction 1; = /10/(1 —e~19) and A\; = —g = —20. Computed results are shown in Fig. 3.
For M = 50 and the default error tolerance setting, 22 eigenfunctions were produced.

The utility of the discretized weight arrays are demonstrated by evaluating the accuracy of the array of
weighted inner product computations

Ipl = <¢7Q/)>W Ip2 = <1;b7 ¢)> IP3 = <¢)7 ¢>Wad

which would all give the identity matrix if performed exactly. The function wip.mis a weighted inner product
subprogram described in [10].

Yv=Xxp z€(01)

[x,wx,dx] = pd(’slab’,50);
[lam psi phi W W_ad] = sl1(’slab’,dx,x,1,0,1,0,wx,1,1,-10,-20);

Ipl = wip(psi,psi,W.*wx);
Ip2 = wip(psi,phi,wx);
Ip3 = wip(phi,phi,W_ad.*wx) ;

In all of the cases above, we found the maximum magnitude off-diagonal element of the inner production
computations was I, ; = 2.76 x 10~° which is sufficient for a typical process control simulation application.
Further reductions in these errors can be produced by increasing M.
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Figure 3: The eigenfunctions (left), adjoint eigenfunctions (right) and corresponding eigenvalues of the
metal-slab heating problem for M = 50.

6.4 Periodic Boundary Conditions

In Vanden Berge and co-workers [5], modified finite difference methods were developed as an accurate solver
of periodic and semi-periodic Sturm-Liouville problems. One test case considered in the cited work consisted
of

1 d*y

FE — 7T3J32(1 — Ji)w = _)‘¢
(scaled to the unit interval) subject to the periodic boundary conditions 1(0) = (1) and dy(0)/dx =
di(1)/dz. For the case of M = 50, we present our results in Fig. 4. These results are computed by the

function calls

[x,wx,dx] pd(’slab’,80);
v = -pi”2; g = pi~3*x."2.*%(1-x);
[lam psi] = s1(’slab’,dx,x,0,1,1,0,wx,v,1,0,g,[]1,0,-1,-1,0);

The eigenvalues computed with our collocation algorithm match the nineteen eigenvalues listed in [5] exactly
to the reported accuracy; additionally, we have found that relatively accurate eigenvalues can be computed
with significantly fewer discretization points, e.g., M = 40.

6.5 Coffey-Evans Equation

As a more severe test of the computational techniques, we consider the Coffey-Evans equation used as a test
case by Pruess and Fulton [2]

1 d*¢ 2 2

o (26 cos 2mx + B7 sin” 2mx)y) = — A\
with 1(0) = (1) = 0 after shifting and scaling to the unit interval. Representative results are shown in
Fig. 5 for M = 160. We note that this fine discretization level was required to resolve the eigenfunction
details; converged eigenvalues matching the results published in [2] could be achieved with significantly fewer
points.
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Figure 4: The eigenfunctions and corresponding eigenvalues of the periodic Sturm-Liouville problem test
case for M = 50.

6.6 Square-Well Potential

As the final example, we consider the radial Schrédinger equation with a square-well potential function V' (x)

in the unit interval 2
ld 2
13 V(z)p = -\

with V(x) = 1000 for || > 1/4 and V(x) = 0 otherwise. The boundary conditions are 1(0) = (1) = 0.
This problem was devised to test the stiff boundary-value problem solver created by Lee and Greengard [16].
The discontinuous V' (z) presents the most severe computational challenge to our discretization method. For
example, using M = 60, we see significant differences between the eigenvalues computed by our techniques
(Fig. 6, left) compared to results published in [16], where A1 23 = 2.95446,5.90736,8.85702 in the cited
reference.

The oscillatory behavior of the eigenvalue convergence can be traced directly to the collocation approxima-
tion of the discontinuous potential function. The collocation-point spacing results in twice the number of
collocation points in the region where V' (z) # 0 relative to the central region where V(z) = 0. As collocation
points are added, two will fall into the V' # 0 region resulting in eigenvalues larger in magnitude than the
converged values, followed by a point falling into the central region, resulting in computed eigenvalues smaller
in magnitude than the converged values.

The convergence behavior can be improved using a spectral filtering technique [17]. To implement this
method, we first project the discontinuous potential function onto the Jacobi polynomials orthogonal to
the polynomial defining the roots X (used in the eigenfunction error control step); a second-order Fourier-
space filter is then used to smooth the interpolated potential function, and this smoothed function is then
interpolated to the original discretization grid x. As seen by the solid curves of Fig. 6 (right) the oscillations
in the eigenvalue plots are diminished considerably, and computational experiments show that the eigenvalues
converge to the values reported in [16].

7 Conclusions

One of the factors that motivated developing the numerical techniques discussed in this paper was to
have available a set of computational modules that simplify the implementation of eigenfunction expan-
sion and other projection methods applied to a range of engineering simulation problems. This approach
consists of using the subprograms described in this paper as a simple and flexible method for generating
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Figure 5: The eigenfunctions and corresponding eigenvalues of the Coffey-Evans problem for M = 160.
Additional eigenvalues are shown, including one of the triplets characteristic of this problem.

spatially discretized representations of eigenfunctions to be used as the globally defined basis functions
representing solutions to boundary-value problems. The subsequent implementation of eigenfunction ex-
pansion, Galerkin, collocation, or other projection methods and the analysis of the computed solutions
is simplified by the differentiation arrays, quadrature weights, and discretized weight functions produced
by the MATLAB-based pd.m and sl.m subprograms. These and related functions can be obtained from
http://www.ench.umd.edu/software/MWRtools.

These methods primarily have been used for simulation of chemical vapor deposition reactors and other unit
operations in semiconductor device fabrication [18] and model reduction studies [19, 20]. In the latter, the
eigenfunction expansion methods are instrumental for identifying optimized trial functions for reduced-basis
discretizations as well as in the implementation of nonlinear Galerkin methods [21] for the reducing the
dynamic degrees of freedom in discretized boundary-value problems. We have also found educational appli-
cations for our numerical methods [22], where the utility stems from the reduction of details of numerically
implementing the methods of weighted residuals.
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