
TECHNICAL RESEARCH REPORT

The MDLe Engine: a Software Tool for Hybrid Motion Control

by D. Hristu-Varsakelis, P.S. Krishnaprasad, S. Andersson,
F. Zhang, P. Sodre, L. D'Anna

CDCSS TR 2000-8
(ISR TR 2000-54)

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CDCSS/cdcss.html

The MDLe Engine: a Software Tool for Hybrid Motion Control�

D. Hristu-Varsakelisy, P. S. Krishnaprasadz, S. Anderssonz, F. Zhangz , P. Sodrexand L. D'Annax

fhristu, krishna, sanderss, fuminz, sodre, ldannag@glue.umd.edu

University of Maryland,

College Park, MD 20742

Abstract

One of the important but often overlooked practical challenges in motion control for robotics and
other autonomous machines has to do with the implementation of theoretical tools into software that
will allow the system to interact e�ectively with the physical world. More often than not motion control
programs are machine-speci�c and not reusable, even when the underlying algorithm does not require any
changes. The work on Motion Description Languages (MDL) has been an e�ort to formalize a general-
purpose robot programming language that allows one to incorporate both switching logic and di�erential
equations. Extended MDL (MDLe) is a device-independent programming language for hybrid motion
control, accommodating hybrid controllers, multi-robot interactions and robot-to-robot communications.
The purpose of this paper is to describe the \MDLe engine", a software tool that implements the MDLe
language. We have designed a basic compiler/software foundation for writing MDLe code. We provide a
brief description of the MDLe syntax, implementation architecture, and functionality. Sample programs
are presented together with the results of their execution on a set of physical and simulated mobile robots.

1 Introduction

The signi�cant volume of work produced to date on various aspects of intelligent machines has arguably not
yet resulted in a workable, uni�ed framework that e�ectively integrates features of modern control theory
with reactive decision-making. This is due in part to the scope and diÆculty of the problem, in part to our
incomplete understanding of the interaction between individual dynamics and the environment as well as
interaction between machines, and in part to the limited expressive power of current models. Consequently
it is not surprising that most, if not all, software tools that allow one to incorporate discrete logic and
di�erential equation-based control laws into a program that will interact with the environment, result in
hardware-speci�c code that is diÆcult to maintain and not reusable without modi�cations.

The need for a \standard" language for motion control is becoming urgent as modern control theory is
challenged to address hybrid control systems of increasing complexity with embedded and/or distributed
components (robots, groups of vehicles, smart structures, and MEMS arrays). One approach to such a
language began over a decade ago with the the \Motion Description Language" developed in [3, 4, 5] which
provided a formal basis for robot programming using behaviors and at the same time permitted incorporation
of kinematic and dynamic models of robots in the form of di�erential equations. The work in [13, 11, 12] (upon
which this paper builds) extended the early ideas to a version of the language known as \extended MDL" or
MDLe. Language-based descriptions of control tasks use abstractions for simple low-level control primitives
and compose such abstractions into programs which - by construction - have at least some chance of being
universal. A programming language suitable for motion control should be able to encode hybrid controllers,

�This research was supported in part by a grant from the National Science Foundation Learning and Intelligent Systems
Initiative Grant CMS9720334, by the Army Research OÆce under the ODDR&E MURI97 Program Grant No. DAAG55-97-
1-0114 to the Center for Dynamics and Control of Smart Structures (through Harvard University), and by the OÆce of Naval
Research under the ODDR&E MURI97 Program Grant No. N000149710501EE to the Center for Auditory and Acoustics
Research.

yMechanical Engineering
zElectrical and Computer Engineering and Institute for Systems Research
xComputer Science

1

allowing for \classical" di�erential equation-type control interrupted by reactive decision-making. In order
to manage complexity and allow one to write reusable programs the language should support hierarchical
levels of encoding with programs put together from simpler programs, all the way down to hardware-speci�c
functions.

Our purpose here is to describe a set software tools that enables the rapid development of motion control
programs which will operate across machines. For other relevant work on layered architectures for motion
control see [7], [6], [2], [9], [13] and references therein.

The paper is structured as follows: In the next section we give a brief summary of the MDLe formalism,
structure, and syntax. Section 3 discusses some of the implementation details of the MDLe engine, the
software which interprets and compiles MDLe programs. Section 4 describes two multi-robot motion control
tasks together with the MDLe programs that code those tasks and the results of their execution.

2 The MDLe language

In the following we give a brief outline of MDLe's syntactic structure and features. For a more complete
description see [4, 13]. We have in mind that there is an underlying physical system (this paper will consider
robots as an example) with a set of sensors and actuators for which we want to specify a motion control
program. At the lowest level is the so-called kinetic state machine (see Fig. 1) [13], a biologically-motivated
abstraction [1] between atoms (the simplest elements of MDLe) and continuous-time control. A kinetic state
machine is governed by a di�erential equation of the form

_x = f(x) +G(x)u; y = h(x) 2 R
p

(1)

where x(�) : R
+
! R

n
, u(�) : R

+
� R

n
! R

m
and G is a matrix whose columns gi are vector �elds in R

n
.

Each MDLe atom is an evanescent �eld de�ned on space-time. Here \space" refers to the state-space or
output space of a dynamical system. The lifetime of an evanescent �eld is at most T > 0 and will be reduced
by an interrupt. More speci�cally, an atom is a triple of the form � = (U; �; T), where U is as de�ned earlier,

� : R
k
! f0; 1g is a boolean interrupt function de�ned on the space of outputs from k sensors, and T 2 R

+

denotes the value of time (measured from the time an atom is activated) at which the atom will \time out".
To evaluate the atom � means to apply the input u to the kinetic state machine until the interrupt function
� is \low" (0) or until T units of time elapse, whichever occurs �rst. We note that T is allowed to be 1.
The input u could be an open loop command or could be given by a feedback law of the type u = u(t; x).

T
a

Tb

T
p

ξp

ξb

ξa

U (t, x)

x (t) = f (x) + G (x) U
⋅

SENSORS

PREPROCESSOR

S (t)

KINETIC STATE MACHINE

I

I I

Figure 1: The kinetic state machine (from [13])

A set of atoms can be composed into a string with its own interrupt function and timer. Such strings
are called behaviors. For example, one could use the atoms �1 = (u1; �1; T1); �2 = (u2; �2; T2) to de�ne
the behavior b = ((�1; �2); �b; Tb). Evaluating b means evaluating �1 followed by �2 while the interrupt
function �b is \high" and less than Tb units of time have elapsed. Behaviors themselves can be used to form

2

higher-level structures (partial plans) which in turn can be nested into plans, etc. An example of a plan
made from the behavior b and a new atom, might be: plan1 = ((b; (u3; �3; T3)); �p; Tp). Using this LISP-like
syntax, MDLe allows for arbitrarily many levels of nested atoms, behaviors, plans, etc. MDLe programs can
contain loops, e.g. b = ((�1; �2)

n; �b; Tb) denotes the execution of the string (�1; �2) n times. Though MDLe
strings are written in a sequential manner the order of execution of atoms in a program does not have to
coincide with their order of appearance in that program. This is a consequence of allowing for interrupts
(triggered by external or internal events) as well as loops and it gives MDLe signi�cant expressive power.
In particular any hybrid automaton can be easily represented by an MDLe program with atoms encoding
\cells" where the system evolves according to a di�erential equation and with the interrupt functions derived
from the automaton's transition rules. A more complete description of MDLe's features will be included in
the �nal version of this paper.

Of course, we are interested in programs that will run on physical hardware. The interface between the
kinetic state machine and the hardware is of necessity hardware-speci�c. This interface, called the \virtual
robot" (described in the next section), is charged with translating individual atoms into hardware-speci�c
machine code. The virtual robot encapsulates all hardware-speci�c functions (e.g. low-level code that
interfaces to sensors and actuators) and should be thought of as a device driver for motion control.

3 Reusable motion control programs: The MDLe Engine

One of the driving ideas behind MDLe is the construction of a framework for autonomous robot control and
motion planning that separates the user from the low level implementation details of a speci�c robot. With
this in mind we have developed the MDLe engine, a software package implementing an MDLe interpreter,
scheduler, and compiler written in C/C++ and currently running under Linux. Figure 2-a shows the block
diagram. Programming in MDLe consists of a sequence of four steps:

� writing MDLe code (not unlike the examples in the previous section).

� translating the code to C/C++ and providing \hooks" for hardware-speci�c device drivers that will
execute each atom.

� Creating a number of threads for sensing, actuation and computation and scheduling the execution of
those threads in the CPU.

� Compiling the resulting C/C++ program into executable code.

In the following we give brief descriptions of each of these components.

Virtual
Robot

Scheduler

Language
Interpreter

MDLe code

KSM
Sensors
Robot

Time
Compile

Robot

Run
Time

Turn Break 1 Turn Break 2

Thread 2

Thread

Thread
Unregistered

Thread 1
Registered

Registered

Scheduler

Figure 2: (a) Block diagram of the MDLe engine and (b) Timing diagram in multi-threaded mode

3

3.1 The MDLe interpreter

Under MDLe plans are built from a dictionary of behaviors and behaviors from an alphabet of atoms. A
C/C++ template is provided for the user to develop new interrupts, atoms, and behaviors to add to the
dictionary. Plans are speci�ed in a text �le using the MDLe language. MDLe code is Lisp-like and details
the elements from the dictionary that comprise the behaviors, partial plans, and plans the user would like
the robot to follow. See section 4.1.1 for sample MDLe code. The language interpreter reads the MDLe code
and generates a corresponding C/C++ �le. This code is compiled and linked with supporting libraries into
the �nal executable �le.

3.2 The virtual robot

The virtual robot establishes the device-independent nature of MDLe. The virtual robot translates MDLe
control commands and data gathering queries into robot-dependent function calls. This module separates
the MDLe engine from the hardware layer of the particular robot being used and allows the user to create
plans in an abstract manner. Plans that accomplish the same task can then look the same on di�erent robots;
only the virtual robot need change. The virtual robot module parses an MDLe program and for each atom
\hooks" the machine-speci�c functions (control law and interrupt) required to execute it. Of course, this
means that one must provide a library of all such low-level functions that the MDLe program will require.
The standardized structure of atoms allows us to use a C/C++ \template" so that low-level functions can
easily be put in the format required by MDLe. The user need only provide pointers to functions which
evaluate the control u, interrupt function and value of timer.

3.3 The scheduler

One of the essential features of the MDLe approach is the use of timers and interrupts to enable real time
interaction between the robot and its environment. The task of the scheduler is to ensure that the atoms,
behaviors, and plans are executed for their speci�ed time intervals and are interrupted under the speci�ed
conditions. It is easy to see that prompt response of the MDLe system to interrupts is essential; it is of
little use for the robot to sense an imminent collision if it is not able to modify its behaviors swiftly enough.
However we are limited by the real time properties of the hardware and operating systems that make up the
robot and our goal has been to make MDLe as real time as possible under the system limitations.

The tasks of the various software components are divided based on the complexity of the calculations
involved and the speed of response requirements. These tasks are then scheduled as either registered (high
priority) or unregistered (low priority) processes. The user has the freedom to select which atoms, behaviors,
and partial plans will have high priority. Typical registered processes include direct wheel control, time
critical atoms (such as open loop controls or real time feedback control laws), and data critical actions (such
as obstacle avoidance). Unregistered processes normally involve high level complex processing of data and
include for example, sound localization algorithms, map making algorithms, and target tracking.

3.3.1 Registered processes

The scheduler explicitly controls the timing of the registered processes. It initiates a time slice, referred to
as a turn, and passes CPU control to the threads associated with the registered processes. Each such process
completes its task and then noti�es the scheduler.

The scheduler is also responsible for sharing data between all processes, registered and unregistered.
Once all registered processes have completed their tasks the scheduler ends the turn and begins the turn

break. During the turn break the scheduler calls a callback function for each registered process and for each
unregistered process that has requested it (see section 3.3.2 below). These callback functions broadcast data
to the other processes. In this scheme, then, data is only transferred between processes during the turn
breaks. At all other times the tasks run independently.

As the callback functions do nothing more than write a data variable, the turn breaks take a negligible
amount of time with respect to the run time of the registered processes tasks. The length of a turn is then
determined by the execution time of the registered threads. To ensure near real time operation only tasks
that can be run in fast sequential steps should be put into a registered process.

4

The scheduler can be run either in single- or in multi-threaded mode. In the single thread approach each
registered process is run in sequence and the length of the turn is given by the sum of the time for each
registered process to complete. In the multi-threaded approach each registered process runs as a separate
thread and the length of the turn is given by the maximum time among the registered threads (assuming the
overhead imposed by the operating system to achieve multi-threading is negligible with respect to the threads
themselves). While the multi-threaded approach adds complexity to the implementation it is necessary to
achieve the best performance.

The decision not to use �xed length time slices was driven in large part by the hardware we operate on.
Since the robot control system has very di�erent time scales for I/O, sensing, and control the synchronization
issues of a �xed length policy can become quite complex. While our method cleanly handles these di�erent
times scales it does have an obvious disadvantage; it is at best pseudo-real time. Turn lengths are highly
dependent on the particular registered processes. If there are too many critical processes or if any of them
require extensive execution time the turn lengths will become unacceptably long. The user is responsible for
keeping the registered threads as few and as computationally light as possible. As long as the design of these
processes is done properly the control loop times in critical atoms can be guaranteed despite the pseudo-real
time nature of our approach.

3.3.2 Unregistered processes

The unregistered processes run independently of the scheduler and therefore do not a�ect the timing of the
critical tasks. Since these processes are independent of the scheduler, however, they cannot simply publish
their data to the registered threads because that can only be done during a turn break and the unregistered
processes do not know when that event occurs. This problem is handled by providing each unregistered
process with an update function that registers a callback function with the scheduler and then blocks the
process until the next turn break. At the next turn break the callback function is run by the scheduler,
the update function publishes its data to the other processes, the callback function is removed from the
scheduler, and the process is unblocked. Similarly, since processes can only read each other's data at turn
breaks unregistered processes need a special procedure to get outside information. This is done through an
auxiliary callback function that is run by the scheduler at each turn break.

Figure 2-b illustrates the scheduling scheme in the multi-threaded mode. During the �rst turn multi-
ple registered processes are run simultaneously and the scheduler thread sits dormant. After the longest
registered thread has completed its task the �rst turn break begins. As described above, during the turn
break the scheduler runs the callback functions of the registered processes and any unregistered processes
that have requested it. When the scheduler has completed its tasks the next turn begins. The diagram
clearly shows the dependence of the turn length on the run time of the registered threads. The unregistered
threads run independent of the turns unless they want to share data with the other processes. In the diagram
the unregistered thread blocks itself at some point after the �rst turn break and waits until the scheduler
has published all the data before becoming active again. The additional delays in the diagram represent
operating system overhead for handling the thread switching.

4 Experiments

This section describes a pair of experiments involving a set of coordinated mobile robots. We brie
y discuss
the motion control task to be performed, give the MDLe programs that implemented that task and show
the results of the programs' execution.

The robots used are di�erentially driven wheeled vehicles out�tted with an array of sonar and touch
sensors. The robots are connected through a wireless Ethernet network. While the actual robot controls
are the left and right wheel commands, the MDLe atoms were written in terms of the heading and forward
controls to allow more intuitive design. As described in Sec. 3 above the virtual robot layer converted the
MDLe commands to wheel controls.

5

4.1 A multi-robot motion control task: learning minimum length paths

Consider a group of vehicles operating on a remote environment without thee bene�t of a map describing
the terrain. The group has found a (possibly circuitous) path between two �xed locations via exploration
and must now �nd the minimum length path between these points. In [8, 10] a cooperative algorithm known
as \local pursuit" is discussed.

Figure 3: Group of vehicles (a) with Decentralized communication (b)

Local pursuit is an iterative, decentralized algorithm which requires interactions only between neighboring
vehicles. Communication needs are thus kept to a minimum. No centralized controller is needed to \guide"
the vehicles. According to this strategy a \leader" vehicle departs the starting location and travels towards
the target along an initial (suboptimal) path. The next vehicle follows the leader while being followed by
another vehicle, etc. It can be proved that the sequence of iterated paths taken by the vehicles converges to
a path whose length is locally minimum.

In the following we describe this algorithm, discuss how it was implemented under MDLe, and present
the results of our experiment.

We implemented the local pursuit algorithm on a trio of mobile robots, using MDLe to describe the
collective task. A coordinate frame was �xed in the room where the robots were located. Starting at the origin
one of the robots (designated as the leader) followed a pre-determined path to the goal at (3:75m; 0:75m).
The second robot followed the leader using the local pursuit algorithm. The third robot followed the second.
Each robot was separated 0:5m from the next. When the robots reached the end they moved o� the goal
point to allow the next robot to complete its path. Once all robots had completed their routes they reversed
their order, with robot three taking on the lead role, retracing its path to the origin and robots two and one
following in local pursuit. We chose to measure length on the plane using the usual Euclidean metric so that
the shortest path was simply a straight line.

4.1.1 An MDLe program for local pursuit

To implement the local pursuit algorithm under the MDLe framework several atoms and behaviors were
designed and a module to share state information among the robots was created. In the following the robots
are designated Ri, i = 0; 1; 2; 3; 4; where R0; R4 indicate NULL connections, u = (uf ; u�)

0 indicates the
vector of forward and heading controls, bumpHit is an interrupt that �res when any bumper on the robot is
depressed, p; p0 indicate the lab frame coordinates at the current time and at the start of the atom, behavior,
or plan, and �; �0 indicate the heading at the current time and at the start of the atom, behavior, or plan.

6

The following is a list of atoms, behaviors and plans that implemented the pursuit algorithm. The actual
MDLe code is syntactically similar to the format used below except that interrupt and timer values are used
as arguments with each atom/behavior/plan name (as in the example of Sec.2). Here we choose to present
them in tabular form; the �nal copy will include a listing of the actual MDLe code. We are interested in the
device-independent language so the implementation of hardware-speci�c routines that implement sensing or
control operations is not discussed here.

ATOM Control law Interrupt Timer Comments

antFoll(Ri) u = k @g

@s
bumpHit 1 g: geodesic to Ri

k: constant gain s: arclength

path(�le) u = u(t) bumpHit 1 u(t): read from �le

pr(d,v,T) uf = v u� = 0 x = x0 + d T sec d: meters v: m/s

rotate() uf = 0 u� = k(� �) � = �0 + 1 k: constant gain

stop ur; ul = 0 - 1 -

sync(to,T) ur; ul = 0 link to to ready T sec -

BEHAVIOR Atom List Interrupt Timer

trnarnd rotate(1800) bumpHit 10 s

mvO�End(i) stop;sync(Ri�1,5);pr(0.5,0.25,2);sync(Ri+1 ,5) bumpHit 1

mv2End(i) sync(Ri+1,5);sync(Ri�1,5);pr(0.5,0.25,2) bumpHit 1

mvO�Strt(i) stop;sync(Ri+1,5);pr(0.5,0.25,2);sync(Ri�1 ,5) bumpHit 1

mv2Strt(i) sync(Ri�1,5);sync(Ri+1,5);pr(0.5,0.25,2) bumpHit 1

PARTIAL

PLAN Behavior and atom list Interrupt Timer

�rstPath sync(R2,5);path(�rstRte);mvO�End(1) bumpHit 1

lead2Strt sync(R2,5);path(lastPath);mvO�Start(3) bumpHit 1

lead2End sync(R2,5);path(lastPath);mvO�End(1) bumpHit 1

fol2End(i) mv2Strt(i);sync(Ri+1,5);antFoll(Ri�1) bumpHit 1
mvO�End(i);sync(Ri�1,5)

fol2Strt(i) mv2End(i);sync(Ri�1,5);antFoll(Ri+1)) bumpHit 1
mvO�Strt(i);sync(Ri+1,5)

PLAN Partial plan list Interrupt Timer

�rstRob �rstPath;(trnarnd;fol2Strt(1);trnarnd;lead2End(1))n�1 bumpHit 1

middleRob (fol2End(2);trnarnd;fol2Strt(2);trnarnd)n bumpHit 1

lastRob (fol2End(3);trnarnd;lead2Strt(3);trnarnd)n bumpHit 1

where n is the number of times the robots should shuttle between the end points.

4.1.2 Results

As predicted, each follower traveled less distance than its leader, e�ectively shortening the path between the
origin and the target. Once at the target location, the robots followed each other back to the origin, further
reducing the total length traveled. Figure 4 shows the paths traveled by the �rst (leader) and second robots
during seven successive trips between the origin and the target. The curve highlighted with small circles
indicates the initial path. As expected, the iterated paths approached a straight line.

4.2 Motion planning with limited sensing: sharing sensors

Consider a group of vehicles moving in a cluttered environment. Each vehicle is equipped with a set of sensors
(in our case sonar) with which it can gather data about its environment. Because activating a vehicle's sonar
can lead to erroneous measurements being made by nearby vehicles, only one vehicle may activate its sensors
at any one time. We designed a decentralized, greedy policy which will allow the vehicles to accomplish
their assigned tasks in a safe and eÆcient manner. According to our policy, a token is passed among the
robots, so that only the robot currently in possession of the token is allowed to turn on its sensors. Each
robot calculates a complexity value which re
ects the density of objects near the robot, the rate at which

7

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

Iterated Paths − Robot 1

X (m)

Y
 (

m
)

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

Iterated Paths − Robot 2

X (m)

Y
 (

m
)

(a) (b)

Figure 4: Iterated paths created by \following": (a) �rst and (b) second robots.

the environment is changing, and the length of time since it last had the token, and broadcasts this value
over a wireless network. The robot with the largest complexity value wins the token.

4.2.1 Experiment description

We performed a simulation to investigate the feasibility and performance of the greedy policy by giving
three simulated robots the task of moving to a goal point through a cluttered and unknown environment.
Each robot ran in an identical but separate workspace. Sensor data was used to update a picture of the
local environment and the robot controlled itself to the point in the unoccupied region of the sensed area
closest to the �nal goal. While the sensors were disabled the robot continued to move towards the last known
intermediate goal. If the goal was reached before the robot got the token it paused until more data could be
gathered. Simple proportional feedback on both the heading angle and the position was used on each robot
to control to the goals.

4.2.2 An MDLe program for sonar-sharing

To implement this experiment a module to handle the token was created and a single new atom was designed
to implement the robot controller. Some atoms designed in the local pursuit experiment were reused.

ATOM Control law Interrupt Timer Comments

navigate(pg) uf = kkpg � pk
2 bumpHit 1 k: constant gain

u� = k� �: angle to pg

BEHAVIOR Atom list Interrupt Timer

bnav(i) sync(Ri+1,5);sync(Ri�1,5);navigate(goal) bumpHit 1

PLAN Behavior list Interrupt Timer

robotNav1 bnav(1) bumpHit 1

robotNav2 bnav(2) bumpHit 1

robotNav3 bnav(3) bumpHit 1

4.2.3 Results

As expected all three robots were able to navigate to the goal position without colliding with any of the
obstacles. Figure 5a shows the environment the robots moved in and the paths each of them followed. Notice

8

(a) (b)

Figure 5: (a) Robot paths (c) Token passing

that the paths are not exactly the same. Since the robots are still allowed to move when they do not have
the token the actual data for each is di�erent and thus the intermediate goal points are not identical. Figure
5b gives a sample of the token passing during the run. The presence of \dead times" is due in part to
network latencies and in part to delays in individual robot processes from picking up the token because of
the computational complexity of the simulation.

5 Conclusions

This paper reported on the development of an MDLe compiler which allows one to implement "device
independent" motion control programs on physical hybrid systems. Our MDLe engine is a software tool that
allows the user to write programs which accommodate switching logic, di�erential equations, hierarchically
structured programs, and interaction with hardware. MDLe programs are composed using LISP-like syntax,
from a dictionary of \atoms". Atoms are themselves composed from a control law, an interrupt function, and
a timer where the last two give the termination conditions for the control law. The MDLe engine translates
a program into C/C++ and compiles it to hardware-speci�c executable code. Hardware-speci�c routines
for actuation and sensing are linked at compile time so that MDLe programs are in principle portable. Of
course the performance of an MDLe program depends on the hardware capabilities of the machine which
is attempting to execute that program. In general, atoms will require interaction with some (or perhaps
all) available sensors and actuators. Depending on the complexity of the data and the control law, varying
amounts of pre-processing might be required (for example, an on-board camera supplies an image out of
which a few bits of information must be extracted). For this reason we have provided for spawning several
threads within an atom in order to meet that atom's communication and computational needs. Scheduling
of those threads is turn-based and time-critical control/sensing code fragments may be scheduled at a higher
priority. Clearly, the ability of an atom to respond quickly to an interrupt will depend on the computational
complexity of that atom.

We described two motion control programs involving hybrid control systems (autonomous mobile robots)
along with the MDLe programs that implement them and showed the results of their execution. Future
work is directed towards the development of a real-time version of MDLe under RTLinux as well as a set
of graphical programming and veri�cation tools. We believe that the
exibility and device independence of
MDLe make it a useful tool for hybrid control and we plan to make our software available shortly via the
World Wide Web.

9

References

[1] N. Bernstein. The Coordination and Regulation of Movement. Pergamon Press, 1967.

[2] B. M. Blumberg and T. A. Galyean. Multi-level direction of autonomous cratures for real-time virtual
environments. In SIGGRAPH Proceedings, pages 47{54, 1995.

[3] R. W. Brockett. On the computer control of movement. In Proceedings of the 1988 IEEE Conference

on Robotics and Automation, pages 534{540, April 1988.

[4] R. W. Brockett. Formal languages for motion description and map making. In Robotics, pages 181{93.
American Mathematical Society, 1990.

[5] R. W. Brockett. Hybrid models for motion control. In H. Trentelman and J. C. Willems, editors,
Perspectives in Control, pages 29{51. Birkhauser - Verlag, 1993.

[6] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and

Automation, 2(1):14{23, 1986.

[7] R. A. Brooks. Intelligence without reason. Technical Report A.I. Memo No. 1293, MIT, 1991.

[8] A. M. Bruckstein. Why the ant trails look so straight and nice. The Mathematical Intelligencer,
15(2):59{62, 1993.

[9] D. Hristu. Optimal Control with Limited Communication. PhD thesis, Harvard University, Div. of
Engineering and Applied Sciences, 1999.

[10] D. Hristu. Robot formations: Optimizing path length on uneven terrain. In IEEE Mediterranean

Conference on Control and Automation, 2000.

[11] V. Manikonda, J. Hendler, and P. S. Krishnaprasad. Formalizing behavior-based planning for nonholo-
nomic robots. In Proceedings 1995 International Joint Conference on Arti�cial Intelligence, volume 1,
pages 142{9, August 1995.

[12] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. A motion description language and a hybrid
architecture for motion plannning with nonholonomic robots. In Proceedings 1995 IEEE International

Conference on Robotics and Automation, volume 2, pages 2021{8, May 1995.

[13] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. Languages, behaviors, hybrid architectures and
motion control. In J.C. Willems J. Baillieul, editor, Mathematical Control Theory, pages 199{226.
Springer, 1998.

10

