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ABSTRACT

Title of Dissertation: COMPUTATIONS WITH GAUSSIAN RANDOM FIELDS

Boris Kozintsev, Doctor of Philosophy, 1999

Dissertation directed by: Professor Benjamin Kedem

Department of Mathematics

An approach to computational problems associated with generation and esti-

mation of large Gaussian fields is studied. Fast algorithms for matrix operations

on circulant matrices are presented, and a connection between such matrices and

covariance matrices of Gaussian fields is established.

Based on this approach, a model for discrete spatial data is introduced, ex-

tending the work of Nott and Wilson (1997). We assume that discrete random

fields are obtained by clipping a stationary zero mean Gaussian random field at

several fixed levels. The model is defined by this set of levels, a choice of a family

of covariance functions for the Gaussian field, and a parameter vector specifying

a particular covariance function within the family.

For this model, the Stochastic Expectation-Maximization algorithm for es-

timating the covariance parameter vector is presented. The algorithm includes



conditional generation of Gaussian fields given that components fall within spec-

ified intervals; this is achieved by the Gibbs sampler - a Markov Chain Monte

Carlo technique.

The precision of the algorithm – understood in terms of the variance of the

resulting estimator of the correlation function – is compared to that of estimat-

ing the parameter directly from the Gaussian data by the Maximum Likelihood

method. For this purpose, the Fisher information matrix in the Gaussian model

is computed, the asymptotic distribution of the MLE estimator of the correlation

parameter is established, and simulations are performed to compare the empirical

variances of the MLE and several SEM estimators (the latter based on various

quantizations) to the variance predicted by the theory, and to each other.
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Chapter 1

INTRODUCTION

1.1 Gaussian Random Fields and Computations

In the study and analysis of spatial data from sciences such as geology, geography,

hydrology, and meteorology, to name a few, a quantity of interest, say z, varies

over a domain D in space according to an unknown function z : D ⊂ Rd → R.

Usually, z is observed only in a small number of locations in D, and inference

about z is then based on a proposed mathematical model for the function z(.).

The stochastic approach to modeling z(.) is to view it as a realization of a

random field. Many examples of successful application of this approach in a

variety of situations are contained in Cressie [15] and Hjort and Omre [30].

Perhaps the most important role in the stochastic approach is played by Gaus-

sian random fields. Many natural phenomena are modeled directly as realizations

of Gaussian fields; in other cases, not the data themselves, but some nonlinear

transformation thereof is assumed normal (for example, de Oliveira et al., [48]).

Even discrete data can be modeled, as shown in Chapter 4 of this thesis, as levels

of some unobserved Gaussian field.

The usefulness of the Gaussian model comes from two directions. First, many
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datasets from the natural sciences display markedly Gaussian characteristics,

probably because of the Central Limit Theorem, or for some other reasons. Sec-

ondly, Gaussian random fields are well known and convenient mathematical ob-

jects, defined completely by their mean and covariance functions.

The Gaussian model is especially practical when we are interested only in a few

locations in D, for example, in cases when values of the field at several locations

are available as observations, and it is desirable to predict (interpolate) the field

at several other locations. Then both observed and unobserved values can be

pooled together in a multivariate Gaussian vector of a reasonable length, whose

distribution immediately becomes known, and further analysis can be carried out

on this vector only, regardless of the size of the original field.

This approach brings no simplification, however, when we are interested in

the values of the field ‘everywhere,’ that is, on some fine grid in D – for exam-

ple, in texture generation and analysis related applications. In such cases, the

multivariate Gaussian vector becomes ‘too long’ to work with, because storage

and computational requirements for dealing with its covariance matrix become

prohibitive. In particular, it is impossible just to generate the Gaussian field on a

large grid using the standard (and, until recently, the only) method for generating

multivariate normal vectors based on Cholesky decomposition of the covariance

matrix.

The last fact is, of course, unfortunate, since being able to generate Gaussian

fields routinely is clearly very important for the search for and evaluation of

models and algorithms.

However, several years ago the possibility of using the so-called circulant em-

bedding technique (known in the field of computational linear algebra) in connec-

2



tion with stationary Gaussian fields was pointed out (Dembo et al. [18], Davies

and Harte [17], Dietrich and Newsam [22], Wood and Chan [63]).

The primary motivation of this thesis is to use this new technique for building

and evaluating a model for discrete spatial data.

1.2 Thesis Synopsis

We now give a synopsis of the thesis chapter by chapter.

Chapter 2 discusses computational linear algebra and lays the foundation for

the rest of the thesis. We introduce two important classes of matrices – block

Toeplitz and block circulant. It turns out that while the former occur naturally in

statistics as covariance matrices of samples from stationary processes over regular

grids, the latter have a unique computational property of being diagonalizable

by the Fourier transform. This simplifies greatly almost any imaginable matrix

operation, such as multiplication, taking the inverse, computing the determinant,

and evaluating quadratic forms. Moreover, storage requirements when working

with n × n circulant matrices are of the order n, rather than n2. Toeplitz and

circulant matrices are related in the sense that a Toeplitz matrix can always be

embedded into a larger circulant matrix in a standard way.

Chapter 3 discusses random processes and fields and explains how circulant

embedding from Chapter 2 can be used for fast and exact generation of large

samples from the Gaussian fields. Also, a method is presented for conditional

generation of such samples given that certain (or all) components fall within

specified intervals. This is necessary for working with the discrete spatial data

model described in Chapter 4.

Chapter 4 describes a modeling device, in which discrete spatial data are

3



treated as a quantized unobserved Gaussian field. Using the technique from

Chapters 2 and 3, the computationally tractable SEM algorithm for estimation of

the model parameters is presented. Examples of the modeled data and estimation

results are provided.

In Chapter 5 we study how much information would be available to us in the

model introduced in Chapter 4, if we had the ‘original,’ non-quantized Gaussian

data. For this purpose we compute the Fisher information matrix and hence

the lower bound on the variance of the estimator. We also find the asymptotic

distribution of the estimator when the grid size becomes large (but we still have

only one realization of the field available as data). We compare this theoretical

variance to the actual variance of the MLE estimator from the Gaussian data as

observed in simulations, and also to the variance of the SEM estimators obtained

from the same data clipped at various numbers of thresholds.

Chapter 6 summarizes the main contributions of this thesis and formulates

possible directions for future research.
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Chapter 2

COMPUTATIONAL PROPERTIES OF

SYMMETRIC BLOCK CIRCULANT

MATRICES WITH CIRCULANT BLOCKS

2.1 Introduction

In this chapter we describe a class of matrices that resemble sparse matrices

in the sense that the matrix-vector multiplication can be computed efficiently,

and that the required storage for them is significantly less than n2. We also

describe algorithms for inverting these matrices, and computing determinants

and quadratic forms. These algorithms will be applied in the next chapters to

the covariance matrices of samples from Gaussian random fields, for generating

such samples and for evaluating their likelihoods.

5



2.2 Toeplitz and Circulant matrices

Definition 11. A matrix T is called Toeplitz if it has constant values along

diagonals:

T =




t0 t1 t2 . . . tn−1

t−1 t0 t1
. . .

...

t−2 t−1 t0
. . . t2

...
. . . . . . . . . t1

t−(n−1) . . . t−2 t−1 t0




Each n× n Toeplitz matrix has at most 2n− 1 different entries. It is defined

completely by its first column and first row.

Definition 2. A matrix C is called circulant if its columns are circular shifts

of the first column:

C =




c0 cn−1 cn−2 . . . c1

c1 c0 cn−1
. . .

...

c2 c1 c0
. . . cn−2

...
. . . . . . . . . cn−1

cn−1 cn−2 cn−3 . . . c0




A circulant n× n matrix has at most n different entries and is determined com-

pletely by its first column (or row): all the consecutive columns (or rows) are

obtained by shifting the first one circularly, that is, in such a way that the last

element becomes first and all the other elements are shifted forward by one.

All circulant matrices are also Toeplitz, but not vice versa.

Block Toeplitz and block circulant matrices are defined similarly, but the

structure applies to blocks rather than to individual entries. In general there is

1In this section we follow Sjöström [56].
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no restriction on the structure of the blocks. However, for the purposes of this

dissertation, we are only interested in block Toeplitz (block circulant) matrices

that also have Toeplitz (circulant) structure within each block.

Symmetric positive definite block Toeplitz matrices with Toeplitz blocks are

important for us because, with the appropriate numbering of the grid sites, such

is the structure of covariance matrices of stationary random fields observed over

regular grids. In particular, an n1 × n2 grid yields an n1n2 × n1n2 covariance

matrix with n1 blocks, each of size n2 × n2.

However, efficient computational methods require a more specialized block

circulant structure. Therefore we embed our block Toeplitz matrices into larger

block circulant ones, as described in the next section.

2.3 Circular embedding

Suppose we want to embed a symmetric block Toeplitz matrix T. Here is its

general form:

T =




T(1) T(2) . . . T(n1)

T(2)T T(1) . . .
...

...
. . . . . .

...

T(n1)T . . . . . . T(1)




7



The n1 different Toeplitz blocks T(i) of size n2 × n2 each look like this:

T(i) =




t
(i)
0 t

(i)
1 t

(i)
2 . . . t

(i)
n2−1

t
(i)
−1

. . . . . . . . .
...

t
(i)
−2

. . . . . . . . .
...

...
. . . . . . . . .

...

t
(i)
−(n2−1) . . . . . . . . .

. . .




, i = 1, . . . , n1

In addition, T(1) has to be symmetric.

We start embedding T into C by embedding each T(i) into a circulant 2n2×2n2

matrix C(i). The first column of C(i) has the same entries as the first column of

T(i), followed by a zero and the inverted first row of T(i) less the first element.

C(i) =




t
(i)
0 . . . . . . . . .

t
(i)
−1 . . . . . . . . .

. . . . . . . . . . . .

t
(i)
−(n2−1) . . . . . . . . .

0 . . . . . . . . .

t
(i)
n2−1 . . . . . . . . .

. . . . . . . . . . . .

t
(i)
2 . . . . . . . . .

t
(i)
1 . . . . . . . . .




=


T(i) ...

... T(i)




This defines the circulant C(i) completely, since all the other columns are the

circulations of the first one. Next we combine the C(i)’s into a block circulant

4n1n2 × 4n1n2 matrix C. As before, we specify the first block column of C only,

8



and the rest of C is obtained by circulation:

C =




C(1)T . . . . . . . . . . . .

C(2)T . . . . . . . . . . . .

. . . . . . . . . . . . . . .

C(n1)T . . . . . . . . . . . .

02n2×2n2 . . . . . . . . . . . .

C(n1) . . . . . . . . . . . .

C(n1−1) . . . . . . . . . . . .

. . . . . . . . . . . . . . .

C(2) . . . . . . . . . . . .




where 0 is a matrix of zeros. By definition, C is block circulant with circulant

blocks, and also symmetric.

In short, to embed a symmetric block Toeplitz matrix T, we embed each of

its blocks T(i) into a circulant C(i), and then combine the resulting C(i)’s into

symmetric block circulant C.

9



This is how C looks like in terms of the original T(i)’s:

C =




T(1) . . . T(2) . . . T(3) . . . . . . . . .

. . . T(1) . . . T(2) . . . T(3) . . . . . .

T(2)T . . . T(1) . . . T(2) . . . . . . . . .

. . . T(2)T . . . T(1) . . . T(2) . . . . . .

T(3)T . . . T(2)T . . . T(1) . . . . . . . . .

. . . T(3)T . . . T(2)T . . . T(1) . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .




We now illustrate circulant embedding on example with n1 = 2 and n2 = 3.

Consider a symmetric block Toeplitz matrix T with two 3× 3 Toeplitz blocks:

T =




1.00 0.30 0.05 0.20 0.10 0.00

0.30 1.00 0.30 0.15 0.20 0.10

0.05 0.30 1.00 0.01 0.15 0.20

0.20 0.15 0.01 1.00 0.30 0.05

0.10 0.20 0.15 0.30 1.00 0.30

0.00 0.10 0.20 0.05 0.30 1.00




=


 T(1) T(2)

T(2)T T(1)


 (2.1)

The blocks are

T(1) =




1.00 0.30 0.05

0.30 1.00 0.30

0.05 0.30 1.00


 T(2) =




0.20 0.10 0.00

0.15 0.20 0.10

0.01 0.15 0.20



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Note that T(1) is symmetric, but T(2) is not.

We show how to embed T into a symmetric block circulant matrix C with

circulant blocks. First we embed T(i)’s into circulant C(i)’s:

C(1) =




1.00 0.30 0.05 0.00 0.05 0.30

0.30 1.00 0.30 0.05 0.00 0.05

0.05 0.30 1.00 0.30 0.05 0.00

0.00 0.05 0.30 1.00 0.30 0.05

0.05 0.00 0.05 0.30 1.00 0.30

0.30 0.05 0.00 0.05 0.30 1.00




C(2) =




0.20 0.10 0.00 0.00 0.01 0.15

0.15 0.20 0.10 0.00 0.00 0.01

0.01 0.15 0.20 0.10 0.00 0.00

0.00 0.01 0.15 0.20 0.10 0.00

0.00 0.00 0.01 0.15 0.20 0.10

0.10 0.00 0.00 0.01 0.15 0.20




Next we arrange C(1) and C(2) into C:
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C =




1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10

0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00

0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00

0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01

0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15

0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20

0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15

0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20

0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30

0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05

0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00

0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05

0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30

0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00




We have constructed C – a symmetric 4n1n2×4n1n2 = 24×24 block circulant

matrix. It has 2n1 = 4 circulant blocks of the size 2n2 × 2n2 = 6 × 6 each and

embeds the original T.

2.4 Storage of Block Circulant Matrices.

One of the important properties of block circulant matrices with circulant blocks

is the fact that, similar to the regular circulant matrices, all the information about

the matrix is contained in the first column. In particular, any other column can

be obtained from the first one as needed. This means that when dealing with a

block circulant matrix with circulant blocks, one only has to store its first column

rather than the whole matrix.

To illustrate the method, consider again the matrix C obtained in the previous
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section. The number of different blocks is k1 = 4, and the block size is k2 = 6.

Suppose we want to obtain, say, the ninth column (the numbering of blocks and

entries within each block starts at zero).

C =




↑ 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10

| 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00

| 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00

⊥ 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01

↑ 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15

⊥ 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20

↑ 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00

| 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

| 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⊥ 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

↑ 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00

⊥ 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00

↑ 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15

| 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01

| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00

⊥ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00

↑ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10

⊥ 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20

↑ 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30

| 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05

| 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00

⊥ 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05

↑ 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30

⊥ 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00




To obtain the ninth column, we must visit blocks of the first column in the

following order: 1, 0, 3, 2. In each block, we must read off entries 3, 2, 1, 0, 5, 4.

For a general number of blocks k1, block size k2, and target column number

i, this transforms to the block ordering from [i/k2] downward (modulo k1), and

within-block ordering from i mod k2 downward (modulo k2).

2.5 Two-Dimensional Fourier Transform.

There are many definitions of the Fourier transform used in the literature and

software packages that differ both in the normalizing constant and the sign in
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the exponent. We use the following definition of the two-dimensional Fourier

transform.

Definition. The two-dimensional Fourier transform of the rectangular n1×n2

matrix A is the matrix B of the same size with the entries

Blm =
1√
n1n2

n1−1∑
g=0

n2−1∑
h=0

Agh exp

(
−2πigl

n1

)
exp

(
−2πihm

n2

)

l = 0, . . . , n1 − 1, m = 0, . . . , n2 − 1

When either n1 or n2 is one, this reduces to the familiar one-dimensional

Fourier transform. From the statistical point of view, this case corresponds to a

random field observed over a n× 1 or 1× n grid, that is, a time series.

The two-dimensional Fourier transform can also be written in the form of

matrix multiplication. Consider an n1n2 × n1n2 matrix F with the entries

Flm =
1√
n1n2

exp

(
−2πi

n1

[
l

n2

] [
m

n2

])
exp

(
−2πi

n2

(l mod n2)(m mod n2)

)

l,m = 0, 1, . . . , n1n2 − 1

Then B is obtained from A as follows:

• write out the entries of A in a n1n2-vector a row-wise; for example, if

A =


1 2

3 4


 ,

then

a =




1

2

3

4



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• compute b = Fa;

• fill in the n1 × n2 matrix B with the components of b row-wise;

The above algorithm is not a recipe for computations; it only illustrates the

connection between the two-dimensional Fourier transform and the matrix mul-

tiplication notation. Computationally, however, the Fourier transform can be

implemented much more efficiently. In the one-dimensional case, the Cooley-

Tukey [13] FFT (fast Fourier transform) algorithm requires n log2 n operations

to transform a sequence of the length n = 2k (the Cooley-Tukey algorithm is

most beneficial when the length of the sequence is a power of 2). The equivalent

matrix times vector multiplication would require n2 operations.

The two-dimensional transform can be thought of as a sequence of one-

dimensional transforms applied first to each row of A and then to each column

of the resulting matrix (or vice versa). Therefore the total number of operations

required for the two-dimensional transform of the n1 × n2 matrix is

n1(n2 log2 n2) + n2(n1 log2 n1) = n1n2 log2(n1n2)

which is smaller than (n1n2)
2 – the number of operations involved in the Ma

multiplication for a general n1n2 × n1n2 matrix M.

Accordingly, we aim to reduce all the computations to multiplications of the

form Fa, and perform this multiplication by the two-dimensional FFT. Namely,

to compute b = Fa, we

• arrange the entries of a in a n1 × n2 matrix A row-wise;

• compute B = FFT(A) by Cooley-Tukey algorithm;
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• write out the elements of the matrix B in the vector b row-wise; then b is

the desired Fa.

The inverse Fourier transform is defined similarly without the minuses in the

exponents:

Definition. The two-dimensional inverse Fourier transform of the rectangular

n1 × n2 matrix B is the matrix A of the same size with the entries

Alm =
1√
n1n2

n1−1∑
g=0

n2−1∑
h=0

Bgh exp

(
2πigl

n1

)
exp

(
2πihm

n2

)

l = 0, . . . , n1 − 1, m = 0, . . . , n2 − 1

The same matrix multiplication approach is applicable, with the matrix FH in-

stead of F, where

FH ≡ F̄T

The normalizing constant 1/
√

n1n2 is chosen in such a way that F is unitary,

that is,

FH = F−1

This also means that if we apply the Fourier transform to A and then apply the

inverse Fourier transform to the result, we get A back.

2.6 Diagonalization of Block Circulant Matrices

with Circulant Blocks.

We discussed the two-dimensional Fourier transform to cite the following theorem,

which for us is the most important property of block circulant matrices.
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Theorem 1 (Nott, Wilson [47]). For a symmetric block circulant n1n2 × n1n2

matrix C with n1 circulant blocks, each of size n2 × n2,

C = FHΛF,

where F is the matrix of the two-dimensional n1 × n2 Fourier transform, and Λ

is the diagonal matrix of eigenvalues of C.

This result gives a practical way of computing the eigenvalues of C. If we

multiply both sides by F, we get

FC = ΛF.

Consider in this equation first columns only:

FC1 = ΛF1,

and note that the first column of F consists entirely of values 1/
√

n1n2. Therefore,

FC1 =
1√
n1n2

λ

and

λ =
√

n1n2 FC1.

Hence we have the following algorithm for computing λ, the vector of eigen-

values of C:

• assemble C1 (the first column of C) in a rectangular n1 × n2 matrix row-

wise;

• take the two-dimensional Fourier transform of this matrix;

17



• multiply the resulting matrix by
√

n1n2;

• read off the product row-wise in a n1n2 -vector λ.

Note that this is in line with our earlier observation that all the information

about C is contained in its first column C1.

To continue with our example, consider again the matrix

C =




1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10

0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00

0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00

0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01

0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15

0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20

0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15

0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20

0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30

0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05

0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00

0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05

0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30

0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00




To find its eigenvalues, we arrange the elements of the first column of C into

a 4× 6 matrix row-wise, apply to it the two-dimensional Fourier transform, and
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multiply the result by
√

24:

Λ =
√

24 FFT




1.00 0.30 0.05 0.00 0.05 0.30

0.20 0.10 0.00 0.00 0.01 0.15

0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.15 0.01 0.00 0.00 0.10




=

=




2.620000 1.890000 0.790000 0.420000 0.790000 1.890000

1.700000 1.353923 0.719282 0.150000 0.580718 1.146077

0.780000 0.610000 0.510000 0.580000 0.510000 0.610000

1.700000 1.146077 0.580718 0.500000 0.719282 1.353923




These are the 24 eigenvalues of C.

2.7 Computations with block circulant matri-

ces.

2.7.1 Determinant.

Once we know the eigenvalues of C, we can easily compute the determinant.

Since F is unitary, |F| = |FH | = 1, so

|C| = |FHΛF| = |FH ||Λ||F| = |Λ| =
n1n2∏
i=1

λi

2.7.2 Quadratic Form.

Suppose that for an arbitrary real-valued n1n2-vector x we want to compute

the quadratic form xTCx. Using the diagonalization theorem, we reduce this to
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another application of the FFT:

xTCx = xT (FHΛF)x = (Fx)HΛ(Fx) = yHΛy =

=

n1n2∑
i=1

|yi|2λi.

Therefore, the algorithm for computing xTCx is as follows:

• compute λ;

• assemble x in a rectangular n1 × n2 matrix X row-wise;

• take the two-dimensional Fourier transform of X, and call the complex-

valued result Y;

• read off Y row-wise in a complex n1n2 -vector y;

• xTCx =
∑n1n2

i=1 |yi|2λi.

2.7.3 The Inverse

Now suppose that we want to invert C. We use the fact that the inverse of the

symmetric block circulant matrix with circulant blocks is also symmetric block

circulant with circulant blocks (Trapp [61], Theorem 6). Therefore it suffices

to find the first column of C−1 only. The process is analogous to finding the

eigenvalues:

C−1 = (FHΛF)−1 = FHΛ−1F (since FH = F−1).

After multiplying both sides by F,

FC−1 = Λ−1F.
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Considering the first columns only,

F(C−1)1 =
1√
n1n2

(1/λ1, 1/λ2, . . . , 1/λn1n2)
T .

Finally, multiplying both sides by FH ,

(C−1)1 = FH

(
1√
n1n2

(1/λ1, 1/λ2, . . . , 1/λn1n2)
T

)
.

Hence we have the following algorithm for obtaining the first column of C−1:

• compute λ;

• invert each component of λ and divide it by
√

n1n2;

• assemble the result in a rectangular n1 × n2 matrix and take the two-

dimensional inverse Fourier transform;

• read off the result of the transform row-wise in a n1n2-vector (C−1)1

2.8 Implementation details.

For actual simulations we use a version of FFT by Frigo and Johnson, called

FFTW (which stands for “Fastest Fourier Transform in the West”). As Frigo

and Johnson write in the introduction to [26],

“In the past, speed was the direct consequence of clever algorithms

that minimized the number of arithmetic operations. On present-

day general-purpose microcomputers, however, the performance of a

program is mostly determined by complicated interactions of the code

with the processor pipeline, and by the structure of the memory.”
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The FFTW is a C library implementing the Cooley-Tukey algorithm [13] for an n-

dimensional Fourier transform designed with this paradigm in mind. It is publicly

available at WWW site [26]. According to the experiments of its authors, the

library typically yields significantly better performance than all other publicly

available DFT software, and, while retaining complete portability, is competitive

with or faster than proprietary codes such as Sun’s Performance Library and

IBM’s ESSL library that are highly tuned for a single machine.

We note two details of FFTW important for this dissertation. First, its defi-

nition of the forward and the backward transform differs from ours in lacking the

normalizing constants in both cases. In particular, this means that applying the

forward and then the backward FFTW will multiply the input by n1n2.

The second comment regards the allocation of the two-dimensional arrays

in C. Our algorithms require frequent conversions from n1n2-vectors to n1 × n2

matrices filled with the entries of those vectors row-wise. If these conversions

where taken literally as copying the entries from one memory location to another,

this would constitute a huge overhead on the algorithms. However, one of the C

memory models, consistent with the FFTW memory usage, is such that the two-

dimensional arrays are in fact long one-dimensional arrays stored row-wise (this

is also known as C row-major order as opposed to the FORTRAN column-major

order). Specifically, if we set

c = (double *) malloc(n1 * n2 * sizeof(double));

we can treat c simultaneously as a long vector and a rectangular matrix obtained

from it row-wise, accessing Cij as c[i*n2 + j], so that no additional transfor-

mation is necessary.
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Chapter 3

GENERATION OF GAUSSIAN RANDOM

FIELDS

3.1 Introduction

In this chapter we discuss algorithms for generating stationary Gaussian random

fields over regular grids, either unconditionally or given that certain (in particular,

all) field values fall within specified intervals. Since many statistical models

for spatial processes are based on transformations of Gaussian fields, being able

to generate such fields is important for doing simulations and studying model

properties. Conditional generation is required, among other applications, for the

EM algorithm in discrete models in setups where the Gaussian field plays the

role of the unobserved data (see next Chapter).

Neither generation problem is simple, particularly when the grid size is large.
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3.2 Gaussian Random Fields

A stochastic process1 is a collection of random variables

{Z(s) : s ∈ D}

indexed over a set D.

The Daniel-Kolmogorov theorem states that to specify a stochastic process all

we have to do is to give the joint distribution of any finite subset {Z(s1), . . . , Z(sn)}
in a consistent way, that is, subject to a condition that for t 6= s1, . . . , sm,

P (Z(si) ∈ Ai, i = 1, . . . , m, Z(t) ∈ R) = P (Z(si) ∈ Ai, i = 1, . . . , m)

In this dissertation we consider random fields. A random field is a particular

stochastic process where the index set D is a subset of R
2.

We say that a random field is (strictly) stationary if its distribution is un-

changed when the origin of the index set is translated. If the distribution is

also unchanged when the index set is rotated about the origin, the field is called

isotropic.

Another, weaker type of stationarity is the second-order stationarity, defined

through the covariance function. In general, for every random field Z we introduce

the mean function

m(s) = E(Z(s))

and the covariance function

r(s, t) = Cov(Z(s), Z(t))

1General theory on stochastic processes appears in Adler [1], Matérn [43], and Yaglom [65].
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If m(s) ≡ µ and if r is a function of s−t only, Z is called second-order stationary.

Similarly, if m(s) ≡ µ and if r depends only on ‖s− t‖, Z is called second-order

isotropic.

In this chapter we consider Gaussian fields, defined by the property that all

finite collections (Z(s1), . . . , Z(sn)) are jointly normal. The distribution of such

a field is completely determined by its mean and covariance functions. Therefore

in this case strict- and second-order properties coincide.

Any function m could be a mean function for some Gaussian process, while

necessary and sufficient conditions on r are symmetry and non-negative definite-

ness :

r(s1, s2) = r(s2, s1)

n∑
i=1

n∑
j=1

αiαjr(si, sj) = E

( n∑
i=1

αiZ(si)

)2

≥ 0

for all n, α1, . . . , αn, s1, . . . , sn (Breiman, [7], Chapter 11). In this chapter we are

interested in stationary Gaussian fields with m(s) ≡ 0.

3.3 Unconditional Generation

3.3.1 Old Methods

Suppose that we want to generate a sample from a zero-mean Gaussian field with

a given covariance function r. To specify the problem completely, we must choose

a finite subset S = {s1, . . . , sn} ⊂ R
2 for which the values Z(si) will be generated.

For small values of n and positive-definite covariance functions, the straight-

forward Cholesky decomposition method (Cressie [15], page 201) can be used.

First, we construct a n×n symmetric positive-definite covariance matrix T with
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entries

Tij = Cov(Z(si), Z(sj)) = r(si, sj),

and the problem reduces to generating a multivariate normal vector

(Z(s1), . . . , Z(sn)) ∼ N(0,T).

(The properties of T follow from the corresponding properties of r.) This is done

by computing the square root of the matrix T by Cholesky decomposition (Press

et al. [51], Chapter 2.9):

T = LLT ,

where L is a lower triangular matrix. This decomposition requires n3/6 multipli-

cations and taking n square roots (which is about a factor 2 better than the LU

decomposition in which the symmetry of T would be ignored). Once we know L,

Z is generated by

Z = Lε,

where

ε1, . . . , εn ∼ N(0, 1) i.i.d.

Indeed, for Z defined in this way,

E(Z) = E(Lε) = LE(ε) = 0

Var(Z) = Var(Lε) = LVar(ε)LT = T

The downside of this simple and powerful method is the fact that to generate a

vector Z of length n we have to deal with the n × n matrix T. For large values
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of n the decomposition of T becomes too expensive, and for even larger n’s it

becomes impossible even to store T.

If we assume stationarity, the so-called spectral (Shinozuka and Jan, [55],

Mejia and Rodrigez-Iturbe [45], Borgman et al. [6]) and turning-bands (Man-

toglou and Wilson [40], Tompson et al. [60]) methods become available. Real-

izations based on the spectral method are obtained by summing a finite cosine

series whose coefficients have uniformly distributed phases and amplitudes pro-

portional to the spectral density function of the process. This summation can be

done by the FFT, so the cost is about n log2 n operations. In the turning bands

approach, fields are generated from appropriately summed line processes. The

cost of this method when l lines of p nodes each are used is nl+lc(p), where c(p) is

the cost of generating the single line realization. Both methods have much more

modest computational requirements than the Cholesky method, at the price of

being approximate.

In recent years, a new method for generating Gaussian fields was developed,

based on circulant embedding (Dembo et al. [18], Davies and Harte [17], Dietrich

and Newsam [22], Wood and Chan [63]). It has its limitations: the covariance

must fall off rapidly, and the grid should be large enough so that the covariance

between points on opposite sides of the grid is negligible. However, within these

limitations the method is both exact and computationally as inexpensive as the

turning bands or FFT method. Therefore the circulant embedding method is our

method of choice; we describe it in detail in the next section.
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3.3.2 Circulant Embedding Method

Suppose that we want to generate a sample from a zero-mean Gaussian field Z

with a given covariance function r over the n1 × n2 grid S = {skj}. The grid is

assumed regular, with fixed steps x and y:

skj = s00 + kyv2 + jxv1, k = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1,

where v1 = (1, 0),v2 = (0, 1).

Note that grid locations are numbered starting at zero. We write Zkj for the value

of Z at the site skj. For the purposes of the method, however, it is more convenient

to assemble the values of Z into a n1n2-vector, and switch to the notation Zi for

the value of Z at the i-th location of the grid enumerated row-wise:

Zi ≡ Z[i/n2],imodn2 , i = 0, ..., n1n2 − 1

The first observation is that under the assumption of regularity of the grid S

and stationarity of the field, the n1n2 × n1n2 covariance matrix T of the n1n2-

vector Z is block Toeplitz with Toeplitz blocks (Zimmerman [66]). Namely, it

consists of n1 different Toeplitz blocks, each of size n2 × n2:

T =




T(1) T(2) . . . . . . T(n1)

T(2)T . . . . . .

T(3)T . . . . . . . . .

...
. . . . . . . . .

T(n1)T . . .




Once we recognize the structure of T, we recall that, as established in the

previous chapter, symmetric block Toeplitz matrices with Toeplitz blocks should
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be embedded into larger symmetric block circulant matrices with circulant blocks

for faster computations. So, we move on to the 4n1n2 × 4n1n2 matrix C which

embeds T, using the standard embedding procedure (see Section 2.3).

To continue, we need to assume that C is non-negative definite. Otherwise,

the algorithm fails, which indicates that the grid is too small or that r does not

fall off rapidly enough with distance. In this case we need to back up and increase

the grid size so that the covariance between the points on the opposite sides of the

grid is nearly zero. Exact results on sufficient conditions for C to be non-negative

definite can be found in Dietrich and Newsam [23].

Let’s assume, however, that C is positive definite (we will have a chance to

verify that later). Now the idea is to generate a 4n1n2-vector

W ∼ N(0,C)

and then extract certain components of W, which, when assembled into a n1n2-

vector Z, will be jointly normal with the required parameters.

First we give the algorithm to generate W.

For the two-dimensional 2n1 × 2n2 Fourier transform matrix F, define

F1 = ReF

F2 = ImF
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Then, by the diagonalization theorem,

C = FHΛF

= (F1 + iF2)
HΛ(F1 + iF2)

= (F1 − iF2)
TΛ(F1 + iF2)

= (F1 − iF2)Λ(F1 + iF2) (F is symmetric, hence so are F1 and F2)

= (F1ΛF1 + F2ΛF2) + i(F1ΛF2 − F2ΛF1).

Equating real and imaginary parts (in fact, C is real), we get

F1ΛF1 + F2ΛF2 = C (3.1)

F1ΛF2 − F2ΛF1 = 0 (3.2)

Now take two independent vectors e1 and e2 with independent components

e1, e2 ∼ N(0,Λ)

and combine them into a complex vector e = e1 + ie2. Recall that λ – the vector

of eigenvalues needed to build Λ – is easily computed by the two-dimensional

FFT of the 2n1 × 2n2 matrix obtained from the first column of C. This is the

point where we check the non-negative definiteness of the C: all the λi’s are

supposed to be non-negative.

Define

w = Fe

= (F1 + iF2)(e1 + ie2)

= (F1e1 − F2e2) + i(F2e1 + F1e2)

≡ w1 + iw2.
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Note again that though we write w = Fe, the actual computation is, in fact, the

two-dimensional FFT of the e re-arranged into a matrix.

We will now show that w1 and w2 are independent realizations of N(0,C).

Obviously they are zero mean normal, so we need only look at the covariance

matrix:

E(w1w
T
1 ) = E(F1e1 − F2e2)(F1e1 − F2e2)

T

= E(F1e1 − F2e2)(e
T
1 F1 − eT

2 F2)

= E(F1e1e
T
1 F1 − F2e2e

T
1 F1 − F1e1e

T
2 F2 + F2e2e

T
2 F2)

= F1E(e1e
T
1 )F1 − F2E(e2e

T
1 )F1 − F1E(e1e

T
2 )F2 + F2E(e2e

T
2 )F2

= F1ΛF1 − F20F1 − F10F2 + F2ΛF2

= F1ΛF1 + F2ΛF2

= C (because of (3.1)).

In the same fashion we can show that

Ew2w
T
2 = C.

To prove independence of w1 and w2 observe that

E(w1w
T
2 ) = E(F1e1 − F2e2)(F2e1 + F1e2)

T

= E(F1e1 − F2e2)(e
T
1 F2 + eT

2 F1)

= E(F1e1e
T
1 F2 − F2e2e

T
1 F2 + F1e1e

T
2 F1 − F2e2e

T
2 F1)

= F1E(e1e
T
1 )F2 − F2E(e2e

T
1 )F2 + F1E(e1e

T
2 )F1 − F2E(e2e

T
2 )F1

= F1ΛF2 − F20F2 + F10F1 + F2ΛF1

= F1ΛF2 − F2ΛF1

= 0 (because of (3.2)).
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which, together with normality, gives independence.

Now that we have a realization of

W ∼ N(0,C),

(in fact, we have two independent realizations), we show how to recover

Z ∼ N(0,T),

which is what we really need.

Recall how the matrix C looks in terms of the original T(i)’s that make up

the T:

C =




T(1) . . . T(2) . . . T(3) . . . . . . . . .

. . . T(1) . . . T(2) . . . T(3) . . . . . .

T(2)T . . . T(1) . . . T(2) . . . . . . . . .

. . . T(2)T . . . T(1) . . . T(2) . . . . . .

T(3)T . . . T(2)T . . . T(1) . . . . . . . . .

. . . T(3)T . . . T(2)T . . . T(1) . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .




We see that one should take the first half of W, divide it into groups of length

n2, and take every other group:

Z = (W0, W1, . . . , Wn2−1,

W2n2 , W2n2+1, . . . , W3n2−1,

. . . , . . . , . . . , . . . ,

W2(n1−1)n2 , W2(n1−1)n2+1, . . . , W2(n1−1)n2+n2−1)
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Then Z ∼ N(0,T).

We go over the algorithm for generating Z, counting operations.

• Obtain the first column of C from the given T and arrange it into a 2n1×2n2

matrix row-wise.

• Take the two-dimensional FFT of this matrix to get λ, the vector of eigen-

values of C, at a cost of 4n1n2 log2(4n1n2) operations.

• Check whether each λj is non-negative; if so, continue. Otherwise the

algorithm fails (increase n1 and n2 and start over).

• For each j = 1, . . . , 4n1n2, generate ε1, ε2 ∼ N(0, λj), combine them in a

complex vector ε = ε1+iε2 and arrange it into a 2n1×2n2 matrix row-wise;

• Take the two-dimensional FFT of this matrix to get complex vector w at

a cost of 4n1n2 log2(4n1n2) operations.

• Consider the real and imaginary parts of w separately and extract the useful

components from each of the two as described above; these are independent

z1, z2 ∼ N(0,T).

Therefore the total cost for generating two independent observations of Z is about

8n1n2 log2(4n1n2), with a storage requirement of 4n1n2 complex numbers. Both

requirements show the overwhelming advantage of this method over the Cholesky

decomposition, as seen in Table 3.1.

Note also that the circulant embedding method produces not just one, but

two independent realizations of Z.

We conclude this section with an example.
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Cholesky decomposition Circulant embedding

“diagonalization” of the

covariance matrix

(n1n2)
3/6 multiplications

and n1n2 square roots

4n1n2 log2(4n1n2)

multiplications

generation of the field
n1n2(n1n2 + 1)/2

multiplications (for Lε)

4n1n2 log2(4n1n2)

multiplications

storage (n1n2)
2 real values 4n1n2 complex values

Table 3.1: Computational requirements for Cholesky decomposition and circulant

embedding methods.
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Let n1 = 2, n2 = 3, and consider a 2×3 grid with stationary (yet nonisotropic)

covariance structure described in Figure 3.1.

0.15

0.3

0.2
0.1

0.01

1.0

0.05

Figure 3.1: Covariance structure used in the example.

If we number our six points in the English reading order, the covariance matrix

T is block Toeplitz with two 3× 3 Toeplitz blocks:

T = {Cov(Zi, Zj)}i,j=1,...,6

=




1.00 0.30 0.05 0.20 0.10 0.00

0.30 1.00 0.30 0.15 0.20 0.10

0.05 0.30 1.00 0.01 0.15 0.20

0.20 0.15 0.01 1.00 0.30 0.05

0.10 0.20 0.15 0.30 1.00 0.30

0.00 0.10 0.20 0.05 0.30 1.00




=


 T(1) T(2)

T(2)T T(1)




This is the matrix T (see (2.1)) from our numerical example in the previ-

ous chapter. We proceed in the way described there, embedding it into C and
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obtaining its 24 eigenvalues:

λ =




2.62000 1.89000 0.79000 0.42000 0.79000 1.89000

1.70000 1.35392 0.71928 0.15000 0.58072 1.14608

0.78000 0.61000 0.51000 0.58000 0.51000 0.61000

1.70000 1.14608 0.58072 0.50000 0.71928 1.35392




.

We see that they are all positive, so C is indeed positive definite and the method

is applicable.

Next we generate 48 mutually independent zero-mean normal variables with

variances λi (two independent realizations for each of the 24 λi’s). They are

combined into a complex 4× 6 matrix, and the two-dimensional FFT is applied

to it:

W1 + iW2 ≡

≡ FFT







N(0, 2.62000) N(0, 1.89000) N(0, 0.79000) N(0, 0.42000) N(0, 0.79000) N(0, 1.89000)

N(0, 1.70000) N(0, 1.35392) N(0, 0.71928) N(0, 0.15000) N(0, 0.58072) N(0, 1.14608)

N(0, 0.78000) N(0, 0.61000) N(0, 0.51000) N(0, 0.58000) N(0, 0.51000) N(0, 0.61000)

N(0, 1.70000) N(0, 1.14608) N(0, 0.58072) N(0, 0.50000) N(0, 0.71928) N(0, 1.35392)




+

+ i




N(0, 2.62000) N(0, 1.89000) N(0, 0.79000) N(0, 0.42000) N(0, 0.79000) N(0, 1.89000)

N(0, 1.70000) N(0, 1.35392) N(0, 0.71928) N(0, 0.15000) N(0, 0.58072) N(0, 1.14608)

N(0, 0.78000) N(0, 0.61000) N(0, 0.51000) N(0, 0.58000) N(0, 0.51000) N(0, 0.61000)

N(0, 1.70000) N(0, 1.14608) N(0, 0.58072) N(0, 0.50000) N(0, 0.71928) N(0, 1.35392)







.

The real and imaginary parts of the result are two independent realizations

of N(0,C).

To recover the useful components from W1 and W2, look at the matrix C

again and note where the entries of the original T are:
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C =




1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10

0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00

0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00

0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01

0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15

0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20

0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30 0.20 0.10 0.00 0.00 0.01 0.15

0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05 0.15 0.20 0.10 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00 0.01 0.15 0.20 0.10 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30 0.00 0.00 0.01 0.15 0.20 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00 0.10 0.00 0.00 0.01 0.15 0.20

0.20 0.10 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.15 0.01 0.00 0.00 0.10 1.00 0.30 0.05 0.00 0.05 0.30

0.15 0.20 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.00 0.30 1.00 0.30 0.05 0.00 0.05

0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05 0.00

0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.15 0.01 0.00 0.05 0.30 1.00 0.30 0.05

0.00 0.00 0.01 0.15 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.20 0.15 0.05 0.00 0.05 0.30 1.00 0.30

0.10 0.00 0.00 0.01 0.15 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.10 0.20 0.30 0.05 0.00 0.05 0.30 1.00




The blocks of T are the four outlined squares. Hence we see that the compo-

nents of W with the numbers {0, 1, 2, 6, 7, 8} (numbering starts at zero) have the

desired N(0,T) distribution. Therefore, the two resulting independent samples

of the field over our 2× 3 grid are
W1

(0) W1
(1) W1

(2)

W1
(6) W1

(7) W1
(8)




and 
W2

(0) W2
(1) W2

(2)

W2
(6) W2

(7) W2
(8)



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3.4 Conditional Generation

3.4.1 The problem

As before, we want to generate a sample from the Gaussian random field, but

this time we impose conditions of the form

Zi ∈ [ai, bi), i ∈ D

The motivation for this problem comes from discrete random fields obtained from

quantized Gaussian fields. Given the discrete image, it is desirable to generate a

Gaussian field that would result in this image after truncation.

First, consider the case of one variable only. Suppose that we want to generate

Z ∼ N(0, 1) given that Z ∈ [a, b). The distribution of Z is then given by the

density

p(z) =
1√
2π

exp

(
−z2

2

)
I(z ∈ [a, b))

Φ(b)− Φ(a)

where I is the indicator function and

Φ(x) =

∫ x

−∞

1√
2π

exp

(
−t2

2

)
dt

Conceptually, the easiest way to generate Z is the rejection method. Namely,

we generate Z ∼ N(0, 1) and then keep it if it satisfies Z ∈ [a, b), and discard

otherwise. However, the rejection method is highly ineffective. For [a, b) away

from the origin, or for a small value of b − a, the number of rejections will be

too large to be practical. Therefore, for one-dimensional generation we use the

Inversion Method (Devroye [20], p. 38):

Lemma 1 If U ∼ Unif(0, 1), then T = µ + σΦ−1(Φ(a−µ
σ

) + U [Φ( b−µ
σ

)−Φ(a−µ
σ

)])

has a N(µ, σ2) distribution, truncated to (a, b), −∞ ≤ a < b ≤ ∞.
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As the dimensionality of Z grows and the number of conditions rises, the re-

jection algorithm becomes even less practical. Attempts to modify the Cholesky

method to accomodate the conditions on Z fail. Indeed, it turns out that inde-

pendent normal εi’s on which the method is based must now be such that

ai ≤
∑

Lijεj < bi

Unfortunately we find generating such εi’s to be as difficult a problem as the orig-

inal one. A similar problem makes it impossible to use the circulant embedding

method.

An up-to-date summary of conditional generation methods appears in Chilès

[11], 1999. Perhaps the most general and straightforward algorithm is sequential

simulation. Namely, we sample Z1 given that it falls between a1 and b1, then

sample Z2 given that it falls between a2 and b2 and given the value of Z1, and

so on up to generating Zn given that it should fall into [an, bn) and given all

the Zi’s, i < n. In principle, the method could be applied to any multivariate

distribution; the Gaussian distribution is the ideal case in the sense that we know

how to calculate the conditional distributions involved (see Ripley [54], p. 99).

For computational reasons (taking into account the size of n), we prefer the

Markov chain Monte Carlo (MCMC) technique, as suggested in Freulon and de

Fouquet [25]. Contrary to sequential simulation, this method is approximate;

however, it is possible to make it utilize the block-circulant structure, and there-

fore we find it more efficient for programming in this context. We now describe

the MCMC method.
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3.4.2 Markov Chain Monte Carlo

Introduction

MCMC originated in the statistical physics literature. The purpose of the method

was integration in high-dimensional spaces, where the computational require-

ments of the standard deterministic techniques make them impractical. Suppose

that given a random vector X with the density p(x) supported on A ∈ R
k we

want to compute the expected value of f(X),

E(f(X)) =

∫
A

f(x)p(x)dx

The idea of the Monte Carlo approach is to replace a statement of the form

“Given ε > 0, one needs N function evaluations to compute
∫

A
f(x)p(x)dx

within ε of the true value.”

with a probabilistic one:

“Given ε1 > 0 and ε2 > 0, one needs M function evaluations to

ensure that with probability at least 1− ε2 the approximate value of∫
A

f(x)p(x)dx is within ε1 of the true value.”

In a sense, the second statement is weaker than the first one; however, this is a

good price to pay for having M � N .

The idea of simple Monte Carlo is to generate independent identically dis-

tributed observations X1, . . . ,Xn from the density p and use (1/n)
∑

f(Xi) to

approximate the integral. The problem with this approach is that it is not clear

how to generate such Xi’s in cases when the density p is non-standard. Therefore

a more sophisticated MCMC method was developed, based on the observation
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that in order for the approximation to work, {Xi} need not necessarily be inde-

pendent. The {Xi} can be generated by any process that, loosely speaking, draws

samples throughout the support of p in the correct proportions. MCMC does this

by constructing a Markov chain having p as its stationary distribution, and gives

an algorithm (in fact, a family of algorithms) for generating such Markov chains

for any p. We use this part of the MCMC technique without intention to evaluate

integrals, but exactly for the sake of approximating distributions, in our case the

truncated multivariate normal.

Various versions of MCMC2

The most general algorithm for constructing a Markov chain with the given sta-

tionary distribution p is the Hastings algorithm (Hastings, [29]). First we select a

proposal distribution q (from which we know how to sample) and a starting value

X(0). At each step i, the next state X(i+1) is chosen by first sampling a candidate

point Y from q(· | X(i)). This candidate point is then accepted with probability

α(X(i),Y) = min

{
1,

p(Y), q(X(i) | Y)

p(X(i)), q(Y | X(i))

}

If the candidate point is accepted, the next state becomes X(i+1) = Y. If the

candidate is rejected, the chain does not move, i.e. X(i+1) = X(i). Under general

regularity conditions it can be proved that the resulting Markov chain will have

the stationary distribution p regardless of the choice of q. However, q affects

the rate of convergence and the mixing – the speed with which the chain moves

around in the support of p after having ‘converged’. The tradeoff is between how

close the shape of the proposal distribution q to that of p is, and how easy it is

to sample from it.

2Our main source on MCMC methodology is Gilks et al. [27].
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Different MCMC algorithms are categorized based on the properties of the

proposal distribution. If q is symmetric, that is, if q(Y | X) = q(X | Y), the

MCMC with this q is called the Metropolis algorithm. Another example would

be the independence sampler (Tierney, [59]), a MCMC algorithm whose proposal

q(Y | X) = q(Y) does not depend on X.

Another variation of the general algorithm is the single-component MCMC –

the original framework proposed by Metropolis et al. [46]. Instead of updating

the whole X en bloc, it is sometimes more convenient and efficient to divide

it into h components X1, . . . ,Xh of possibly different dimensions. Transition

from state i of the chain to state i + 1 consists in this case of updating the h

components X
(i)
k of X(i) one at a time, k = 1, . . . , h. For each component its

own proposal distribution qk is used, and qk may depend on the current state of

this and all the other components. Namely, the candidate Yk is sampled from

qk(· | X
(i+1)
1 , . . . ,X

(i+1)
k−1 ,X

(i)
k , . . . ,X

(i)
h ). The candidate is accepted and replaces

X
(i)
k with probability

α = min


1,

p
(
Yk | X(i+1)

1 , . . . ,X
(i+1)
k−1 ,X

(i)
k , . . . ,X

(i)
h

)
p
(
X

(i)
k | X(i+1)

1 , . . . ,X
(i+1)
k−1 ,X

(i)
k , . . . ,X

(i)
h

)

×
qk

(
X

(i)
k | X(i+1)

1 , . . . ,X
(i+1)
k−1 ,Yk,X

(i)
k+1, . . . ,X

(i)
h

)
qk

(
Yk | X(i+1)

1 , . . . ,X
(i+1)
k−1 ,X

(i)
k ,X

(i)
k+1, . . . ,X

(i)
h

)

 (3.3)

If Yk is not accepted, the k-th component remains the same: X
(i+1)
k = X

(i)
k .

Now we are ready to define the Gibbs sampler, an MCMC technique that we

use for generation of truncated multivariate normal vectors.
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Gibbs Sampler3

For an n-variate distribution p, the full conditionals are defined as the univariate

conditional distributions derived from p when all the variables but one are fixed.

Thus, for X ∼ p, the k-th full conditional is the conditional distribution of the

coordinate Xk given all the other coordinates:

Xk ∼ p(· | X1, . . . , Xk−1, Xk+1, . . . , Xn), k = 1, . . . , n

The Gibbs sampler is a single-component MCMC algorithm, in which X is

divided into univariate components Xk, and all the proposal distributions qk are

full conditionals of X. In this case the expression (3.3) for α reduces to

α = min{1, 1} ≡ 1

so that the proposals in the Gibbs sampler are always accepted. This simplifies

the algorithm, but the Gibbs sampler can be used only if it is possible to sample

from the full conditionals.

Example: Suppose that we want to sample (X,Y, Z) ∼ p(x, y, z) using the

Gibbs sampler. The procedure is as follows:

• Choose X(0), Y (0), Z(0);

• Sample X(1) ∼ p(x | y = Y (0), z = Z(0));

Sample Y (1) ∼ p(y | x = X(1), z = Z(0));

Sample Z(1) ∼ p(z | x = X(1), y = Y (1));

• . . . (do the same replacing 0 by i− 1 and 1 by i)

• For large n, the distribution of (X(n), Y (n), Z(n)) is approximately p.

3The Gibbs sampler is described in detail in Casella and George [10].
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3.4.3 Using Gibbs Sampler to Generate Truncated Gaus-

sian Fields

We now return to the problem of generating a sample from a zero-mean Gaussian

field Z with the given covariance function r over an n1×n2 grid S = {skj}, subject

to the conditions

akj ≤ Z(skj) < bkj (3.4)

−∞ ≤ akj, bkj ≤ ∞.

That is, for each location we specify its own interval for a field value.

In the same way as in Section 3.3.2, we combine Z(skj) in a vector Z of dimen-

sion n1n2. The covariance function r and the grid S together yield a covariance

matrix T. For the same computational reasons as in Section 3.3.2, instead of

generating a truncated Z ∼ N(0,T), we generate a 4n1n2 dimensional vector

W ∼ N(0,C), where C is the block circulant matrix with circulant blocks that

embeds T and then extract the components of W that correspond to Z. In the

process of generation, these components are subject to (3.4), while the others are

left unrestricted.

To implement the Gibbs sampler for W we must identify its full conditionals.

Let

Ik(w) =




1, if Wk does not correspond to any of the Zj’s (i.e., no restriction on Wk),

I(aj ≤ w < bj), otherwise.

Then, for (w1, w2, . . . , wk−1, wk+1, . . . , wn) satisfying the conditions (3.4) on
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Z, the full conditional distribution of Wk is given by

pWk
(w|w1, w2, . . . , wk−1, wk+1, . . . , wn)

∝ pW(w1, w2, . . . , wk−1, w, wk+1, . . . , wn)Ik(w)

=
1

(2π)n/2
√|C| exp

(
−1

2
(w1, w2, . . . , wk−1, w, wk+1, . . . , wn)C−1

× (w1, w2, . . . , wk−1, w, wk+1, . . . , wn)T

)
Ik(w)

∝ exp

(
−dkkw

2 + 2
∑

j 6=k djkwjw

2

)
Ik(w)

∝ exp

(
−
(
w +

∑
j 6=k djkwj/dkk

)2
2/dkk

)
Ik(w),

where djk are the elements of C−1. This shows that

Wk|Wj, j 6=k ∼ N

(
−
∑
j 6=k

djkwj/dkk, 1/dkk

)

restricted to [aj, bj) if Wk corresponds to certain Zj, and unrestricted otherwise.

Recall (Section 2.7.3) that C−1 is block circulant with circulant blocks, as is

C. Therefore its k-th column is found easily from its first column, which, in turn,

is found from the first column of C, so that
∑

j 6=k djkwj is available. Moreover,

because of the structure of C−1, the values along the main diagonal are constant,

so that each dkk is equal to d11 which we know once we find the first column of

C−1.

Thus the problem of generating a truncated Gaussian field is reduced to sam-

pling

W ∼ N(µ, σ2) given W ∈ [a, b)

the method for which is given in Lemma 1 of Section 3.4.1.
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3.5 Simulations

To test the algorithms presented in this chapter, we simulated Gaussian fields

conditionally and unconditionally. In each case, 250 zero-mean Gaussian fields

Z(1), . . . ,Z(250) were generated on a 32 × 32 grid with the isotropic exponential

covariance function

r(s) = eθs, θ = −0.3,

where s is the distance between points. In the conditional case, the points in the

even-numbered columns of the grid were restricted to the interval (0, 1).

The C program was compiled with gcc under Digital Unix on DEC Alpha.

The FFT was performed by the FFTW library (see Section 2.8). Uniform (0,1)

random numbers where generated with the standard drand48 function from the

stdlib library. From those, normal variables where generated by the following

algorithm:

• Generate U1, U2 ∼ Unif(0, 1).

• Define V1 = 2U1 − 1, V2 = 2U2 − 1.

• If r = V 2
1 + V 2

2 > 1, start over.

Otherwise Xi = Vi

√−2 log r/r, i = 1, 2 are independent N(0, 1) variables

([9], p.194).

Inverse normal distribution function required for the Inversion Method (Lemma

1) used for generating truncated univariate normals was computed with the z.c

module written by G. Perlman [50].

For each field, three sequences of 12 points each were recorded as shown on

Figure 3.2.
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Z(1)

(10,21)Z (2)

(10,10) (10,21)

(21,10)

(21,10)

(21,10)

(21,10)

(21,10)

Z (4)
Z (3)

Z (250)

Figure 3.2: Field values at these points where recorded in 250 simulations.

Figures 3.3 and 3.5 show histograms of the 250 realizations of field values at

the first six points of each sequence, for conditional and unconditional simula-

tions respectively. For unconditional simulation, the sample covariance function

estimated from the recorded observations was plotted against the theoretical co-

variance function r (Figure 3.4).
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Figure 3.3: Unconditional generation of Gaussian field. Histograms of 250 real-

izations of the first six points from each of the three sequences (see Figure 3.2)

are presented, with superimposed N(0, 1) density function. Each location of the

field appears close to being N(0, 1) distributed.
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Figure 3.4: Unconditional generation of Gaussian field. Squares, circles, and

triangles represent sample covariances of Z(10,10) with the points in the horizon-

tal, vertical, and diagonal sequences respectively (see Figure 3.2). Hence, the x

coordinates of circles and squares are integers, while those of the triangles are

multiples of
√

2. The solid line is the plot of the theoretical covariance function

r(s) = exp(−0.3s).
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Figure 3.5: Conditional generation of a Gaussian field given that all the points in

the even columns of the grid fall into (0, 1). Histograms of 250 realizations of the

first six points from each of the three sequences (see Figure 3.2) are presented.

The range of the restricted components is correct; unrestricted components have

bell-shaped distributions with positive means and variances smaller than those

in Figure 3.3.
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Chapter 4

DISCRETE IMAGES AS CLIPPED

GAUSSIAN FIELDS

4.1 Introduction

In this chapter we discuss an approach to modeling and estimation in spatial pro-

cesses whose realizations can be represented by color maps with a small number

of colors (in particular, binary images). Examples where this sort of situation

occurs are numerous: a geologic formation composed of several rock types, a part

of an ocean surface made up of ice and water, a contaminated geographic region

with subregions defined as locations where the contaminant concentration sur-

passes certain safety levels, or a quantized rain rate snapshot. In an analogy to

discrete and continuous random fields, we call such images ‘discrete’, as opposed

to ‘continuous color’ or ‘gray-scale’ images. Strictly speaking, any image stored

in a computer is discrete (e.g., 256 shades of gray). However, the distinction is

the same as in the case of regular discrete and random variables.

We model processes resulting in discrete images by clipping stationary zero-

mean Gaussian fields at several levels, called thresholds. By choosing different
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covariance functions and thresholds, we are able to produce a large variety of

textures (See Figures 4.1 - 4.4).

Going the other way, suppose a scientist gives us a single discrete image. We

can estimate the clipping levels by comparing the observed areal fractions to the

quantiles of the normal distribution, make an assumption about the parametric

family of covariance functions in the underlying Gaussian field, and estimate

the parameters. Now we can obtain new images (supposedly having the same

properties as the original one) by generating Gaussian fields with the estimated

parameters, and clipping them at the estimated thresholds. Then we can decide

whether the model is satisfactory asking the scientist how ‘real’ the generated

images look.

Generating similar images will also help to study the algorithms that are used

on the images. The idea is reminiscent of parametric bootstrapping in the sense

that new samples (discrete images) are generated using the estimated parameters

from a given sample (original discrete image) for estimating the variability and

precision of estimators.

In practice some discrete images are actually produced (either by choice or

by the characteristics of the recording device) by thresholding an underlying

process, as in the contaminant and rain rate examples. However, even if there is

no clear physical process producing image, thresholding can still be used in many

situations to model discrete spatial data.

4.2 A TRMM Application

The Tropical Rainfall Measuring Mission (TRMM), was launched on November

27, 1997, by placing in a low earth orbit of 350 km a satellite that is expected to
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collect rainfall and related data for at least three years. It is a joint mission of the

National Aeronautics and Space Administration (NASA) and the National Space

Development Agency (NASDA) of Japan whose goal is to study the effect of

tropical rainfall and the associated energy release on the global atmospheric cir-

culation. Regarding rainfall, TRMM produces instantaneous rain rate snapshots

over large areas, obtained from an array of spaceborne instruments including a

precipitation radar (PR) and the TRMM microwave imager (TMI). The snap-

shots are produced along a swath of width 750 km (TMI) and 220 km (PR). The

problem is to get the monthly mean rain rate over 5◦ × 5◦ boxes. See

http://trmm.gsfc.nasa.gov/trmm_office/index.html

for more details. Now, the TRMM satellite visits random sub-areas of any given

5◦×5◦ box only a few times, perhaps once a day or 30 times during a month. Also,

to render the data more reliable, they are categorized or quantized as explained

by Kedem, Pfeiffer and Short [35]. This means that the data may be viewed

as a collection of discrete spatial images. Consider the area average of one such

image. To estimate the variability of the area average, we can use parametric

bootstrapping as explained above. Namely, we generate from a given discrete

image many discrete images all having the same statistical properties for the

purpose of estimating the variance of the area average of rain rate obtained from

an original discrete image. This can help in the estimation of the space-time

monthly mean rain rate of 5◦ × 5◦ boxes.
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4.3 The model

We view a k-color n1×n2 image X as a realization of a discrete random field taking

k different values 0, 1, . . . , k − 1 over a grid S = {sij}. The field X is modeled

in terms of an unobserved stationary Gaussian field Z with mean zero, variance

one, and covariance function r depending on the vector parameter θ. Then Z

defines X in the following way. For a vector of thresholds c = (c0, c1, . . . , ck), the

field X is a quantization of Z at levels c. That is,

Xi = j whenever cj ≤ Zi < cj+1, j = 0, . . . , k − 1,

where Zi ∼ N(0, 1), Cov(Zi, Zj) = r(si, sj, θ), c0 = −∞, and ck = ∞.

These are some of the commonly used covariance function families (l is the

distance between points where the covariance is computed).

Exponential correlation:

rθ(l) = θlθ2
1 ,

where θ1 ∈ (0, 1) and θ2 ∈ (0, 2].

Matérn correlation:

rθ(l) =




1

2θ2−1Γ(θ2)

(
l

θ1

)θ2

Kθ2

(
l

θ1

)
, l 6= 0

1, l = 0,

where θ1 > 0, θ2 > 0 and Kθ2 is a modified Bessel function of the third kind of

order θ2.
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Rational quadratic correlation:

rθ(l) =

(
1 +

l2

θ2
1

)−θ2

,

where θ1 > 0 and θ2 > 0.

Spherical correlation:

rθ(l) =




1− 3

2

(
l

θ

)
+

1

2

(
l

θ

)3

, l ≤ θ

0, otherwise

where θ > 0.

Figures 4.1 – 4.4 illustrate various three-color patterns obtained by clipping

Gaussian fields with these covariance functions at levels that divide the normal

distribution range ‘equally’: c1 = Φ−1(1/3) ≈ −0.43, c2 = Φ−1(2/3) ≈ 0.43.

Figures 4.5 – 4.8 provide examples of different realizations of discrete fields

with the same θ. More images can be generated online at

http://www.math.umd.edu/~bak/gaussian/generate.cgi

The modified Bessel function for Matérn correlation in Figures 4.3, 4.5, and 4.8

was computed with the rkbesl routine from the SPECFUN FORTRAN package

([12]), translated into C by D. Bindel [5].

4.4 Estimation

Suppose we are given a discrete image and want to estimate the model parameters

c and θ. First of all we estimate the thresholds c if they are unknown. There

is no unique or best way of doing that; our choice is to compare the observed
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Figure 4.1: Three color patterns obtained by clipping Gaussian fields with expo-

nential covariance functions at levels {-0.43, 0.43}. The sizes of the connected

regions increase in θ1 and decreases in θ2.
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Figure 4.2: Three color patterns obtained by clipping Gaussian fields with ra-

tional quadratic covariance functions at levels {-0.43, 0.43}. The sizes of the

connected regions increase in θ1 and decreases in θ2.
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Figure 4.3: Three color patterns obtained by clipping Gaussian fields with Matérn

covariance functions at levels {-0.43, 0.43}. The sizes of the connected regions

increase in θ1 and θ2.
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Figure 4.4: Three color patterns obtained by clipping Gaussian fields with spheri-

cal covariance functions at levels {-0.43, 0.43}. The sizes of the connected regions

increase in θ.
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Figure 4.5: Nine realizations of the tree color field obtained by clipping a Gaussian

field with Matérn covariance function, θ = (20, 2), at levels {-0.43, 0.43}.
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Figure 4.6: Nine realizations of the three color field obtained by clipping a Gaus-

sian field with spherical covariance function, θ = 50, at levels {-0.43, 0.43}.
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Figure 4.7: Nine realizations of the three color field obtained by clipping a Gaus-

sian field with exponential covariance function, θ = (0.9, 1.9), at levels {-0.43,

0.43}.
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Figure 4.8: Nine realizations of the seven color field obtained by clipping a Gaus-

sian field with Matérn covariance function, θ = (10, 2).
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fraction of each color in the image to quantiles of the normal distribution:

ci = Φ−1

(
#{Xj < i}

n1n2

)
, i = 1, . . . , k − 1.

Comparing the given image visually to the known patterns, or based on addi-

tional scientific or physical considerations, we select a parametric family for the

covariance function r. Now the vector parameter θ has to be estimated.

A natural approach to estimation of θ is the EM (expectation-maximization)

algorithm (Dempster et al., [19]) with the complete data Z (unobserved) and

incomplete data X (observed). The EM algorithm starts with an initial estimate

θ(0) and updates it iteratively by the rule

θ(n+1) = arg maxθEθ(n)

(
log L(Z; θ | X)

)
(note that X is a function of Z). It can be shown that at each step of the EM

algorithm the likelihood of θ under the observed data does not decrease. There-

fore it is hoped that the process would converge to the value θ∗ that maximizes

the likelihood of θ under the observed data. In reality, however, the algorithm

only converges to some stationary point of the likelihood, which could be a local

maximum or a saddle point. Convergence theory for the EM algorithm is given

in Wu [64]. Our approach to the convergence problem is discussed in Section 4.5.

Since it is not clear how to compute the conditional expectation involved, we

use a Monte-Carlo EM (MCEM, see McLachlan [44], p. 214) version, in which

the following approximation is used:

Eθ(n)

(
log L(Z; θ | X)

) ≈ 1

s

s∑
i=1

log L(Z(i); θ)

Here {Z(i)} is an ergodic sequence of realizations of the unobserved data, given

X and with the parameter vector fixed at θ(n). Even the version with s = 1 can
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be used with success, in which case the method is called Stochastic EM (SEM,

see Diebolt and Ip, [21]).

Implementation of the Monte-Carlo EM algorithm presents two difficulties.

First, we have to generate Z given (X, θ(n)), and second, we have to evaluate

the likelihood of various θ’s under this Z fast enough to make the maximization

possible.

The problem of generating Z is discussed in Section 3.4. As shown there,

instead of Z, one should generate a larger vector W having a block circulant

covariance matrix C with circulant blocks and then extract Z from W. However,

the matrix C is also highly suitable for computations, in particular, for likelihood

evaluation, contrary to the block Toeplitz covariance matrix of Z. Indeed, since

L(θ | w) = (2π)−n/2|C(θ)|−1/2 exp
(−wTC(θ)−1w/2

)
where n = 4n1n2, the log likelihood of θ under W is given up to an additive

constant by

log L(θ | w) = −0.5
(
log |C(θ)|+ wTC(θ)−1w

)
Here both |C(θ)| and wTC(θ)−1w can be computed by FFT using the technique

of Section 2.7, which turns out to be fast enough for maximization. Therefore,

we abandon Z altogether, and treat W as the unobserved data throughout the

EM algorithm setup. As Nott and Wilson ([47]) point out, replacing Z with W

introduces no additional approximation.

4.5 Convergence and Stopping Rules

The two parameters of the SEM algorithm described above are the number of

SEM steps and the number of Gibbs iterations performed at each SEM step while
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generating W given (X, θ(n)). The choice of both parameters presents a problem.

Cowles and Carlin [14] and Brooks and Roberts [8] give a review of con-

vergence diagnostics for MCMC. Raftery and Lewis [53] suggest methods for

determining the number of steps required for the ‘burn-in,’ and for diagnosing

lack of convergence or slow convergence, based on fitting first- and second-order

Markov models to a sequence of every k-th iterations of the algorithm.

The stopping criterion usually adopted with the EM algorithm is in terms

of either the size of the relative change in the parameter estimates or the log

likelihood. As Lindstrom and Bates [39] emphasize, however, this is a measure of

lack of progress but not of actual convergence. In our case (the SEM algoritm) this

approach is further complicated by the Gibbs component and the approximation

used when computing the expectation step.

In view of these difficulties, to decide on both stopping rules we prefer to

follow a general recommendation contained in the roundtable discussion by Kass,

Carlin, Gelman, and Neal [33] – namely, to make several runs of the algorithm

from different starting points and to look at the trace plots of the components of

θ to confirm that each time they ‘converge’ to the same values.

4.6 Simulations

We have performed two simulations: one estimating the one-dimensional θ in the

spherical family, and another one estimating the two-dimensional θ in the expo-

nential family. In both cases, 32×32 Gaussian images were obtained by the Circu-

lant Embedding method (Section 3.3.2), and clipped at thresholds {Φ−1(1/3), Φ−1(2/3)},
assumed known. Three hundred steps of the SEM algorithm were performed on

the clipped image. At each step, 30 iterations of the Gibbs sampler were used to
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generate W | X, θ(n).

The computational setup was the same as in Section 3.5. For the two-

dimensional log likelihood maximization, a routine by Johnson [31] was used,

which is derived from the Algol pseudocode in [32]. For the single-dimensional

maximization we have used a simpler fminbr routine [36], which implements the

“golden section” procedure combined with the parabolic interpolation, following

[24].

Figures 4.9 and 4.10 show the SEM paths and the true parameter values. The

precision of the estimators is discussed in the next chapter.
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Figure 4.9: Three hundred steps of the SEM algorithm estimating θ from the

32 × 32 image obtained by clipping a Gaussian field with spherical covariance

function at known levels {Φ−1(1/3), Φ−1(2/3)}. The true value is θ = 15. The

“discontinuity” of the SEM path is not uncommon for this setup.
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Figure 4.10: Three hundred steps of the SEM algorithm estimating θ from the

32×32 image obtained by clipping a Gaussian field with exponentional covariance

function at known levels {Φ−1(1/3), Φ−1(2/3)}. The true value is θ = (0.7, 1.3).
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Chapter 5

ESTIMATION FROM THE ORIGINAL AND

FROM THE CLIPPED DATA

5.1 Introduction

We continue to study the model for discrete random fields introduced in the

previous chapter, and investigate how much information about θ is lost by quan-

tization. We do this by comparing the variance of the estimators of θ obtained

from the original Gaussian data Z and from the clipped version X. Estimation

from the Gaussian data has been studied by Kitanidis [37], Kitanidis and Lane

[38], Mardia and Marshall [41], Warnes and Ripley [62], and Mardia and Watkins

[42].

5.2 Estimation from the original (Gaussian) data.

5.2.1 Maximum likelihood estimator

Suppose we have an observation Z of a stationary Gaussian field with mean zero

and the covariance function rθ over a grid S. As usual, Z is a n = n1n2-vector
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obtained by writing down the n1 × n2 image row-wise. Then Z is multivariate

normal, Z ∼ N(0,Tθ). The parameter θ can be estimated from Z by maximum

likelihood:

θ̂ = arg maxθ log L(θ,Z),

where

logL(θ,Z)

= log
(
(2π)−n1n2/2|Tθ|−1/2 exp

(−ZTT−1
θ Z/2

))
= −1

2
(log |Tθ|+ ZTT−1

θ Z) + C (5.1)

and

Tθ =
{
r(si, sj, θ)

}n1n2

i,j=1
.

This solves the estimation problem, since we can maximize log L(θ,Z) numeri-

cally and obtain θ̂. However, we want to explore the precision of θ̂, and therefore

we have to proceed analytically to compute the Fisher information matrix.

5.2.2 Fisher information matrix

Taking derivatives in (5.1) with respect to θj, we get

∂

∂θj

log L(θ,Z) = −1

2

(
Tr

[
T−1

θ

∂Tθ

∂θj

]
− ZT

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
Z

)
. (5.2)

where the following relations (Athans and Schweppe, [2], p. 15 and 28) were

used:

∂

∂θj

|Tθ| = |Tθ|Tr

[
T−1

θ

∂Tθ

∂θj

]
,

∂

∂θj

T−1
θ = −T−1

θ

∂Tθ

∂θj

T−1
θ .
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The second derivatives of log L(θ,Z) can be written in the following way:

E

(
∂2

∂θj∂θk

log L(θ,Z)

)

= E

(
∂

∂θj

(
∂

∂θk

log L(θ,Z)

))

= E

(
∂

∂θj

(
(∂/∂θk)L(θ,Z)

L(θ,Z)

))

= E

(
((∂2/∂θj∂θk)L(θ,Z))L(θ,Z)− (∂/∂θj)L(θ,Z)(∂/∂θk)L(θ,Z)

L(θ,Z)2

)

= E

(
(∂2/∂θj∂θk)L(θ,Z)

L(θ,Z)

)
− E

(
∂

∂θj

log L(θ,Z)
∂

∂θk

log L(θ,Z)

)
.

Since for exponential families we can differentiate under the integral sign, the

first term in this expression is zero:

E

(
∂2

∂θj∂θk
L(θ,Z)

L(θ,Z)

)

=

∫
z∈Rn1n2

∂2

∂θj∂θk
L(θ, z)

L(θ, z)
L(θ, z)dz

=
∂2

∂θj∂θk

∫
z∈Rn1n2

L(θ, z)dz

=
∂21

∂θj∂θk

= 0.

Therefore, using (5.2) we have

E

(
∂2

∂θj∂θk

log L(θ,Z)

)

= −E

(
∂

∂θj

log L(θ,Z)
∂

∂θk

log L(θ,Z)

)

= −1

4
E

((
Tr

[
T−1

θ

∂Tθ

∂θj

]
− ZTT−1

θ

∂Tθ

∂θj

T−1
θ Z

)

×
(

Tr

[
T−1

θ

∂Tθ

∂θk

]
− ZTT−1

θ

∂Tθ

∂θk

T−1
θ Z

))
.
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For any matrix A, it is true that zTAz = Tr(AzzT ), since

zTAz = Tr(zTAz) (a scalar)

= Tr(AzzT ) (trace is invariant under cyclical permutations)

Therefore, we can rewrite the last expression as

E

(
∂2

∂θj∂θk

log L(θ,Z)

)

= −1

4
E

((
Tr

[
T−1

θ

∂Tθ

∂θj

]
− Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ ZZT

])

×
(

Tr

[
T−1

θ

∂Tθ

∂θk

]
− Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ ZZT

]))

= −1

4
E

(
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ ZZT

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ ZZT

]

+ Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ ZZT

]
Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ ZZT

])

Because they are both being linear operations, trace and differentiation commute.

Together with E(ZZT ) = Tθ, this allows us to proceed to

E

(
∂2

∂θj∂θk

log L(θ,Z)

)

= −1

4

(
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ E

(
ZZT

)]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ E

(
ZZT

)]

+E

(
Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ ZZT

]
Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ ZZT

]))
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= −1

4

(
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

+E

(
Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ ZZT

]
Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ ZZT

]))

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− 1

4
E

(
Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ ZZT

]
Tr

[
T−1

θ

∂Tθ

∂θk

T−1
θ ZZT

])

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− 1

4
E

({
ZT−1

θ

∂Tθ

∂θj

T−1
θ ZT

}{
ZT−1

θ

∂Tθ

∂θk

T−1
θ ZT

})

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− 1

4
E

(
n1n2∑
a,b=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

ZaZb

n1n2∑
c,d=1

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

ZcZd

)

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

− 1

4
E

(
n1n2∑

a,b,c,d=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

ZaZbZcZd

)
. (5.3)

To compute E(ZaZbZcZd) we use the following lemma:

Lemma 2 For Z ∼ N(0,T) and any 1 ≤ a, b, c, d ≤ n1n2,

E(ZaZbZcZd) = E(ZaZb)E(ZcZd) + E(ZaZc)E(ZbZd) + E(ZaZd)E(ZbZd).

Proof : Consider the multivariate normal vector (z1, z2, z3, z4) ≡ (Za, Zb, Zc, Zd).

Its moment generating function is given by

M(t1, t2, t3, t4) = E exp(t1z1 + · · ·+ t4z4)
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= exp

(
1

2

4∑
i,j=1

Cov(zi, zj)titj

)

= exp

(
1

2
σ11t

2
1 +

1

2
σ22t

2
2 +

1

2
σ33t

2
3 +

1

2
σ44t

2
4

+ σ12t1t2 + σ13t1t3 + σ14t1t4

+ σ23t2t3 + σ24t2t4

+ σ34t2t4

)
,

where σij = Cov(zi, zj) (see Priestley [52], p. 91). The fourth moment can be

computed by evaluating the fourth mixed derivative of M at zero:

E(z1z2z3z4) =
∂4M(t1, t2, t3, t4)

∂t1∂t2∂t3∂t4

∣∣∣∣
(t1,t2,t3,t4)=0

.

Differentiating, we get

∂M(t)

∂t1
= (σ11t1 + σ12t2 + σ13t3 + σ14t4)M(t).

∂2M(t)

∂t1∂t2
= σ12M(t) + (σ11t1 + σ12t2 + σ13t3 + σ14t4)

× (σ22t2 + σ12t1 + σ23t3 + σ24t4)M(t).

∂3M(t)

∂t1∂t2∂t3
=σ12(σ33t3 + σ13t1 + σ23t2 + σ34t4)M(t)

+ σ13(σ22t2 + σ12t1 + σ23t3 + σ24t4)M(t)

+ (σ11t1 + σ12t2 + σ13t3 + σ14t4)σ23M(t)

+ (σ11t1 + σ12t2 + σ13t3 + σ14t4)

× (σ22t2 + σ12t1 + σ23t3 + σ24t4)

× (σ33t3 + σ13t1 + +σ23t2 + σ34t4)M(t).

∂4M(t)

∂t1∂t2∂t3∂t4

∣∣∣∣
t=0

= σ12σ34 + σ13σ24 + σ14σ23.
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Therefore, switching back to the original notation,

E(ZaZbZcZd) =Cov(Za, Zb)Cov(Zc, Zd) +

+ Cov(Za, Zc)Cov(Zb, Zd) +

+ Cov(Za, Zd)Cov(Zb, Zc),

which concludes the proof of Lemma 2.

The following fact will also be used:

Lemma 3 For any two n× n matrices A and B,

Tr(ABT ) =
n∑

i,j=1

AijBij.

Proof.

Tr(ABT ) =
n∑

i=1

(ABT )ii =
n∑

i=1

n∑
j=1

Aij(B
T )ji =

n∑
i,j=1

AijBij.

We now continue the computation of the Fisher information matrix. The

second term in (5.3) becomes

1

4
E

(
n1n2∑

a,b,c,d=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

ZaZbZcZd

)

=
1

4

n1n2∑
a,b,c,d=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

E(ZaZbZcZd)

=
1

4

n1n2∑
a,b,c,d=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

× (TθabTθcd + TθacTθbd + TθadTθbc) (see Lemma 2)

=
1

4

n1n2∑
a,b=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

Tθab

n1n2∑
c,d=1

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

Tθcd

+
1

2

n1n2∑
a,b=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

n1n2∑
c,d=1

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
cd

TθacTθbd
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(because c and d are interchangeable by symmetry)

=
1

4
Tr

[(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
Tθ

]
Tr

[(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
Tθ

]
(see Lemma 3)

+
1

2

n1n2∑
a,b=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

(TT
θ )a

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
(Tθ)b

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

+
1

2

n1n2∑
a,b=1

(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
ab

(
Tθ

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
Tθ

)
ab

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]

+
1

2
Tr

[(
T−1

θ

∂Tθ

∂θj

T−1
θ

)
Tθ

(
T−1

θ

∂Tθ

∂θk

T−1
θ

)
Tθ

]

=
1

4
Tr

[
T−1

θ

∂Tθ

∂θj

]
Tr

[
T−1

θ

∂Tθ

∂θk

]
+

1

2
Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ

∂Tθ

∂θk

]
.

Substituting this expression into (5.3) establishes the following theorem:

Theorem 2 The (j, k)-th element of the Fisher information matrix for θ in the

model Z ∼ N(0,Tθ) is given by

Mjk = −E

(
∂2

∂θj∂θk

log L(θ,Z)

)
=

1

2
Tr

[
T−1

θ

∂Tθ

∂θj

T−1
θ

∂Tθ

∂θk

]
. (5.4)

5.2.3 Asymptotic normality and efficiency of the maxi-

mum likelihood estimator

Note that Z is a single observation of the field. Therefore, it is not immediate

that θ̂ obtained by the maximum likelihood method is consistent and asymptot-

ically normal (as the grid expands). The properties of the maximum likelihood

estimator for dependent data in the general case are discussed among other places

in Billingsley [4], Bhat [3], Crowder [16], and Sweeting [58].
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Our starting point is the following theorem (Theorem 2 in Mardia and Mar-

shall [41]):

Theorem 3 Suppose that the n-vector Z is a single observation from N(0,Tθ).

The length of θ is p. Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of Tθ,

let λi
1 ≤ λi

2 ≤ · · · ≤ λi
n denote the eigenvalues of ∂Tθ/∂θi, and let λij

1 ≤ λij
2 ≤

· · · ≤ λij
n denote the eigenvalues of ∂2Tθ/∂θi∂θj. Suppose also that the following

conditions hold.

1. limn→∞ λn = C < ∞,

limn→∞ |λi
n| = Ci < ∞,

limn→∞ |λij
n | = Cij < ∞;

2. ‖∂Tθ/∂θi‖−2
F = O(n−

1
2
−δ), for some δ > 0 and for i = 1, . . . , p;

here ‖.‖F denotes the Frobenius matrix norm, ‖A‖F =
√∑

i

∑
j |Aij|2.

3. For all i, j = 1, . . . , p, define

tij = Tr

[
T−1

θ

∂Tθ

∂θi

T−1
θ

∂Tθ

∂θj

]
.

Then we assume the limit

Aij = lim
n→∞

tij√
tiitjj

.

exists and A = (Aij) is a non-singular matrix.

Then the maximum likelihood estimator of θ obtained from Z is asymptotically

normal; that is, θ̂ ∼ N(θ,M−1), where the Fisher information matrix M is given

by (5.4).

Following in part the same paper (Mardia and Marshall [41]), this theorem

can be specialized to our case of a sample from a stationary field over a regular
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grid, and also to the encompassing (in the sense of circulant embedding method)

sample, to give simple conditions on the covariance function rθ. Namely, the

following holds:

Theorem 4 Suppose that r(k, θ) is a covariance function twice continuously dif-

ferentiable in θ. The length of θ is p, and k ∈ Z
2 is a two-dimensional lag. We

fix a regular n1×n2 grid with n = n1n2 points and define Tθ to be the covariance

matrix of a single observation of a stationary zero-mean Gaussian field with the

covariance function r over this grid. We also define Cθ to be the block circulant

matrix encompassing Tθ. Assume that Cθ is non-negative definite and that the

following conditions are satisfied.

1. For all i, j = 1, . . . , p, define

tij = Tr

[
T−1

θ

∂Tθ

∂θi

T−1
θ

∂Tθ

∂θj

]
.

Then we assume the limit

Aij = lim
n→∞

tij√
tiitjj

exists and A = (Aij) is a non-singular matrix.

2. For all i, j = 1, . . . , p, the three following series are absolutely summable:

∑
k∈Z2

|r(k, θ)| < ∞,

∑
k∈Z2

∣∣∣∣ ∂

∂θi

r(k, θ)

∣∣∣∣ < ∞, and

∑
k∈Z2

∣∣∣∣ ∂2

∂θi∂θj

r(k, θ)

∣∣∣∣ < ∞.

Then the maximum likelihood estimators of θ obtained from Z ∼ N(0,Tθ) and

from W ∼ N(0,Cθ) are asymptotically normal; that is, θ̂ ∼ N(θ,M−1), n →∞.
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The Fisher information matrix M is given by (5.4) for estimation from Z, and

by analogous matrix with Tθ replaced with Cθ in (5.4) for estimation from W.

Proof : We will verify the conditions of Theorem 3.

From matrix norm properties, the spectral radii of Tθ and Cθ, that is, λT
n

and λC
n , are no larger than the row sum norms of Tθ and Cθ respectively (Stoer

and Bulirsch [57], p.406, and Golub and van Loan [28], p.56), defined as

‖A‖∞ = max
i

∑
j

|Aij|.

As the grid expands, ‖Tθ‖∞ converges to the sum of |r(k, θ)| over k. There-

fore, lim λT
n < ∞ in condition 1 of Theorem 3 is ensured if rθ is absolutely

summable over Z
2.

Speaking of the encompassing matrix, Cθ, note that all its row sums are equal

because of the circulant structure; therefore it suffices to consider the first row

only. By construction, it consists of the elements of the first row of Tθ (some of

them repeated twice), the elements of the first row of the last block row of Tθ

(some of them also repeated twice), and filler zeros. Therefore,

‖Cθ‖∞ ≤ 4‖Tθ‖∞,

and convergence of λC
n is also ensured.

Similarly, the remaining parts of condition 1 of Theorem 3 hold if ∂r(k, θ)/∂θi

and ∂2r(k, θ)/∂θi∂θj are absolutely summable in k.

Consider now condition 2 of Theorem 3. If we introduce notation

σl,m,i =
∂r((l,m), θ)

∂θi

,

then, in view of the structure of Tθ,

‖∂Tθ/∂θi‖2
F =

n1−1∑
k1=0

(n1 − k1)

n2−1∑
k2=0

(n2 − k2)σ
2
k1,k2,i
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=

n1−1∑
k1=0

n2−1∑
k2=0

(n1n2 − k1n2 − n1k2 + k1k2)σ
2
k1,k2,i

= n1n2

n1−1∑
k1=0

n2−1∑
k2=0

σ2
k1,k2,i − n2

n1−1∑
k1=0

k1

n2−1∑
k2=0

σ2
k1,k2,i

− n1

n1−1∑
k1=0

n2−1∑
k2=0

k2σ
2
k1,k2,i

+

n1−1∑
k1=0

k1

n2−1∑
k2=0

k2σ
2
k1,k2,i.

After dividing both sides by n = n1n2 we get

1

n
‖∂Tθ/∂θi‖2

F =

n1−1∑
k1=0

n2−1∑
k2=0

σ2
k1,k2,i −

1

n1

n1−1∑
k1=0

k1

n2−1∑
k2=0

σ2
k1,k2,i

− 1

n2

n1−1∑
k1=0

n2−1∑
k2=0

k2σ
2
k1,k2,i

+
1

n

n1−1∑
k1=0

k1

n2−1∑
k2=0

k2σ
2
k1,k2,i. (5.5)

We claim that all the terms in the right hand side of (5.5) but the first one

converge to zero as n1, n2 →∞. To show this we use Kronecker’s lemma: if (as)

and (bs) are real sequences with bs →∞, and
∑

s as/bs < ∞, then b−1
s

∑s
j=1 aj →

0 as s →∞.

Since σk1,k2,i is absolutely summable by assumption, so is σ2
k1,k2,i. In particular,

if we set

as = s

n2−1∑
k2=0

σ2
s,k2,i,

bs = s,

then by applying Kronecker’s lemma to the second term in (5.5),

1

n1

n1−1∑
k1=0

ak1 =
1

n1

n1−1∑
k1=0

k1

n2−1∑
k2=0

σ2
k1,k2,i → 0 as n1 →∞.
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After changing the order of the summation, we can analyze the third term in

(5.5) similarly:

1

n2

n1−1∑
k1=0

n2−1∑
k2=0

k2σ
2
k1,k2,i → 0 as n2 →∞.

For the fourth term, we have

1

n1

1

n2

n1−1∑
k1=0

k1

n2−1∑
k2=0

k2σ
2
k1,k2,i

=
1

n1

n1−1∑
k1=0

k1

n2−1∑
k2=0

k2

n2

σ2
k1,k2,i

≤ 1

n1

n1−1∑
k1=0

k1

n2−1∑
k2=0

σ2
k1,k2,i → 0 as n2 →∞.

Therefore, if we take limits on both sides of (5.5), we get

lim
1

n
‖∂Tθ/∂θi‖2

F =
∑
k

σ2
k,i < ∞,

which, upon inversion, shows that condition 2 of Theorem 3 holds with δ = 1/2.

Since

|∂Cθ/∂θi‖2
F ≤ 16|∂Tθ/∂θi‖2

F ,

the same holds for the encompassing sample case.

Condition 3 of Theorem 3 is assumed, which concludes the proof of Theorem

4.

�

Note that in practice, we would normally have Z rather than W as data;

however, we use W for simulations.

The conditions of Theorem 4 are easy to check for the spherical covariance
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function

r(k, θ) =




1− 3

2

(‖k‖
θ

)
+

1

2

(‖k‖
θ

)3

, ‖k‖ ≤ θ,

0, otherwise,

(5.6)

where θ > 0 and ‖k‖ =
√

k2
1 + k2

2. For the first condition, we have

A11 = lim
n→∞

t11√
t11t11

= 1.

The second condition also holds, since in each of the three series there is only a

finite number of non-zero terms. Therefore, from Theorems 2 and 4 we have the

theoretical asymptotic variance for the maximum likelihood estimator of θ:

Var(θ̂) ≈ 2

(
Tr

[
T−1

θ

∂Tθ

∂θ
T−1

θ

∂Tθ

∂θ

])−1

. (5.7)

5.2.4 Simulations

We performed simulations to find out how large n should be in order for (5.7) to

work in the spherical covariance case. As noted above, the block circulant version

(that is, W rather than Z) was used to utilize the matrix factorization described

in Section 2.6.

For the spherical covariance function (5.6),

∂

∂θ
r(k, θ) =




3

2

‖k‖
θ2

(
1− ‖k‖2

θ2

)
, ‖k‖ < θ

0, otherwise.

(5.8)

Obviously, the matrix ∂Cθ/∂θ has the same block circulant structure as Cθ.

Let Λ and M denote diagonal matrices of eigenvalues of Cθ and ∂Cθ/∂θ respec-

tively, and F be the two-dimensional Fourier transform matrix. Then the trace

in (5.7) can be computed as
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Tr

[
C−1

θ

∂Cθ

∂θ
C−1

θ

∂Cθ

∂θ

]

= Tr
[(

FHΛ−1F
) (

FHMF
) (

FHΛ−1F
) (

FHMF
)]

= Tr
[
FH
(
Λ−1MΛ−1M

)
F
]

= Tr
[
Λ−1MΛ−1M

]
=
∑

i

µ2
i

λ2
i

,

because the trace is invariant under orthogonal transformations. As we know, the

eigenvalues λi and µi are readily available as two-dimensional Fourier transforms

of the first columns of Cθ and ∂Cθ/∂θ.

Figures 5.1 and 5.2 show the precision of the approximation (5.7) for various

data sizes. The parameter θ is fixed at θ = 5. The solid line is the graph of the

right hand side computed by the above method. The dotted line was obtained as

follows. For each value of n, 500 independent realizations W from N(0n,Cθ=5)

were drawn (by the Circulant Embedding method described in Section 3.3.2),

from each realization the MLE estimator θ̂ was obtained, and the sample vari-

ance of these 500 estimates was computed. The dotted line connects the sample

variances. We see from Figure 5.2 that starting with the data size of one thousand

points the fit becomes almost perfect.

5.3 Estimation from the clipped data

We now study how much information is lost when we quantize the Gaussian data

and use the SEM algorithm for estimation of θ as in the model introduced in

Section 4.3. We expect the estimation precision to increase with the number of
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Figure 5.1: Variance of the MLE θ̂ as predicted by Theorem 2 and as observed

in simulations. See text for explanation.

quantization levels, and approach in the limit the precision of estimation from

the Gaussian data, described in the previous section.

Two series of simulations were performed. The first one used the same par-

ticular case of the spherical covariance function with the true value of θ = 5. The

second one used Matérn correlation with the second parameter fixed at value 0.1,

and estimated the first parameter (having the true value of 2.1).

In a setup analogous to that of Figures 5.1 and 5.2, for each data vector size

n we generated 250 independent realizations of W ∼ N(0n,Cθ=5). We then
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Figure 5.2: Continued from Figure 5.1.

quantized them at one, two, three, and five thresholds, obtaining binary, three-

level, four-level and six-level discrete vectors respectively. On each of those we

performed 150 steps of the SEM algorithm with 15 Gibbs iterations per step

(see Section 4.4), and in each case recorded θ(150). From these 250 estimates we

computed and recorded the sample mean and variance of the estimates for the

given data size and number of levels, and then moved on to the next data size.

The resulting graphs are shown in Figures 5.3 – 5.6 and in Figures 5.7 – 5.10.

Analyzing the graphs of the mean squared error multiplied by the number of data

points and noting that this graphs appear flat, we conjecture C/n behaviour of
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the MSE.

We also note that transition from the binary to the three-level quantization

produces the largest improvement, and that for large values of n estimators from

all quantizations perform reasonably well.

To compare the precision of different estimators, we consider the ratio of

variances summarized in Table 5.1 and Table 5.2, where θ̂(MLE) is the maximum

likelihood estimate from the Gaussian data, and θ̂(k) denotes the SEM estimate

from the k-level discrete data.

These results are analogous to those for binary time series (Kedem [34], p.

60).
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n Varθ̂(2)/Varθ̂(MLE) Varθ̂(3)/Varθ̂(MLE) Varθ̂(4)/Varθ̂(MLE) Varθ̂(6)/Varθ̂(MLE)

400 37.2 13.6 8.0 6.1

484 36.0 13.0 5.6 2.1

576 17.7 4.5 3.0 1.1

784 18.8 8.4 3.8 2.4

900 21.1 5.7 3.5 2.1

1024 18.5 5.1 3.5 2.3

1156 24.9 6.1 3.9 2.3

1444 20.8 4.3 2.8 1.9

1600 18.6 4.2 3.9 2.2

Table 5.1: Relative precision of estimators, Spherical(5) case. See also Figure

5.4.

n Varθ̂(2)/Varθ̂(MLE) Varθ̂(3)/Varθ̂(MLE) Varθ̂(4)/Varθ̂(MLE) Varθ̂(6)/Varθ̂(MLE)

400 3.9 2.9 2.0 2.0

484 3.7 1.9 1.9 1.4

576 4.3 2.6 2.1 1.7

784 6.7 2.5 2.4 1.6

900 5.3 3.0 1.8 1.4

1024 3.4 2.7 1.4 1.4

1156 4.6 2.4 1.5 1.2

1444 4.5 1.9 1.7 1.3

1600 5.7 2.5 2.1 1.8

Table 5.2: Relative precision of estimators, Matérn(2.1, 0.1) case. See also Figure

5.8.
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the same data clipped at various number of thresholds.
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90



G
G G G G G G G G

2

2

2 2

2 2

2

2

3

3

3

3

3 3 3
3 3

4

4

4

4 4 4 4 4 4

6

6 6
6 6 6 6 6 6

400 484 576 784 900 1024 1156 1444 1600484

0.
0

0.
2

0.
4

0.
6

0.
8

Estimation of Theta in Spherical(5) Correlation

Number of Data Points

S
am

pl
e 

M
S

E
 o

f T
he

ta
 H

at

G MLE from Gaussian
2 SEM from Binary
3 SEM from Three levels
4 SEM from Four levels
6 SEM from Six levels

Figure 5.5: Mean squared error of θ̂ when using MLE from the Gaussian data

and SEM from the same data clipped at various number of thresholds.
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Figure 5.7: Mean of θ̂ when using MLE from the Gaussian data and SEM from

the same data clipped at various number of thresholds.
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Figure 5.8: Variance of θ̂ when using MLE from the Gaussian data and SEM

from the same data clipped at various number of thresholds.
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Figure 5.9: Mean squared error of θ̂ when using MLE from the Gaussian data

and SEM from the same data clipped at various number of thresholds.
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Chapter 6

MAIN RESULTS AND FUTURE WORK

6.1 Main Results

This thesis described a powerful computational approach to spatial data models

that are driven by stationary Gaussian fields over regular grids. The main idea

of the approach is to take advantage of the covariance matrix structure after

improving it (from Toeplitz to circulant) by artificially adding extra unobserved

data points.

The first part (Chapters 2 and 3) provided fast algorithms for doing stan-

dard matrix operations with block circulant matrices (namely, computing the in-

verse, the determinant, the eigenvalues, and matrix times vector products). The

Circulant Embedding method for exact unconditional generation of stationary

Gaussian fields based on the “diagonalization by the FFT” technique is given.

The second part (Chapters 4 and 5) demonstrated how computationally tractable

models can be built around stationary Gaussian fields using the methods of the

first part. This was done in an example of the model for discrete spatial data,

which extends the work of Nott and Wilson [47]. In this model, the discrete data

X is treated as a quantization of the Z-components of an unobserved Gaussian
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vector W, where W embeds an unobserved Gaussian random field Z.

The SEM algorithm for estimation of the vector parameter in the covariance

function of Z was implemented. The idea of the implementation is to approximate

the conditional expectation in the E-step of the EM algorithm with the mean of

the corresponding conditional sample. To obtain such a sample, independent

Gaussian vectors W(i) need to be generated given X, the observed quantization

of the Z-components of W(i). This generation is performed approximately using

the Gibbs sampler (an MCMC method).

The precision of the SEM estimation of the covariance parameter from the

discrete data X was compared to that of the MLE estimation of the same pa-

rameter from the ‘complete’ Gaussian data Z. The Fisher information matrix for

Gaussian data was obtained analytically and compared to the empirical variance

of the SEM estimators observed in the simulations.

In the simulations, we performed the following sequence of steps 250 times

for various data sizes and various numbers of quantization levels.

• Generate a zero-mean Gaussian field Z with the covariance function r(·, θ)
unconditionally using the Circulant Embedding method;

• Quantize Z to obtain a discrete field X;

• Estimate θ from X by the SEM algorithm:

– Start with an arbitrary θ(0);

– Generate W | (X, θ(0)) using the Gibbs sampler;

– Find θ(1) = arg maxθ log L(θ,W) by the numerical maximization;

– . . . (repeat until convergence replacing 0 by i− 1 and 1 by i).
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Thus we obtained sample means and variances of the estimators of θ under various

data sizes and various numbers of quantization levels.

6.2 Future Work

Speaking of the SEM algorithm implementation for the estimation of θ in the

discrete data model (Chapter 4), two issues have led to some criticism of the

EM algorithm. The first concerns the provision of standard errors or the full

covariance matrices of θ̂, since the original EM does not automatically estimate

these. The other common criticism that has been leveled against the EM algo-

rithm is that its convergence can be quite slow. It would be interesting therefore

to study recent techniques (McLachlan and Krishnan [44], Chapter 4) designed

to alleviate these problems.

More generally, the computational methods described in this thesis can be

immediately applied to any spatial model which uses stationary Gaussian fields in

some form. We can modify such a model to be driven not by a usual Gaussian field

(yielding block Toeplitz matrices), but by our encompassing Gaussian structures

with block circulant matrices, perhaps by just ignoring the extra coordinates

introduced during the embedding procedure, in the same way we did when we

changed the unobserved data from Z to W in Section 4.4.

Even if we choose not to do so, we still have obtained a powerful simulating

mechanism. We can now generate many Gaussian surfaces over large regions with

various parameters and feed them into the model, to better study and understand

it and to evaluate the precision of its results. In particular, it would be interesting

to test the BTG model from de Oliveira [48] against, for example, trans-Gaussian

kriging, using the simulated fields as input data.
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