Power Minimization under QoS Constraints

Jennifer L. Wong', Gang Qu* and Miodrag Potkonjak!
fComputer Science Department, University of California, Los Angeles, CA 90095
tElectrical and Computer Engineering Department,
University of Maryland, College Park, MD 20742

Abstract

QoS has been often addressed in multimedia, video, and networking research communities,
but rarely in the design community. Our goal is to introduce the first system design technique
for comprehensive quality-of-service (QoS) low power synthesis. Specifically, we study how to
efficiently exploit the trade-off between the system cost and energy consumption in real-time
systems that address packet-based multimedia transmission and processing. We first introduce
a system of techniques that minimizes energy consumption of stream-oriented applications
under two main QoS metrics: latency and synchronization. Specifically, we study how multiple
voltages can be used to simultaneously satisfy hardware requirements and minimize power
consumption, while preserving the requested level of QoS, in this case satisfying latency and
synchronization requirements.

We have developed a provably optimal polynomial time off-line algorithm for multiple volt-
age scheduling of single and multiple processes. The off-line algorithm provides lower bounds
on achievable power minimization and can be used as a starting point for the development
and evaluation of an on-line approach. The effectiveness of the algorithm is demonstrated on
a number of multimedia benchmarks.

1 Introduction

In the last decade, low power synthesis and optimization techniques have received a great deal of
attention. A variety of techniques have been proposed for all steps of synthesis and compilation.
The combination of new logic families and circuits, smaller feature sizes, more power efficient ar-
chitectures, power-aware CAD tools, power-sensitive compilers and low power dynamic run-time
policies resulted in a dramatic increase in energy efficiency. However, the power requirements
of new product generations has been constantly challenging the limits of battery capacities. An
illustrative example of the technology or application power trends is the evolution of the wireless
phone. The first generation of wireless phones is analog, the second is digital, which is currently
prevailing. A mezzanine generation of wireless phones with microbrowsers have just emerged. The
imminently pending third generation includes powerful Internet access. After that the next gen-
eration will include numerous new features encompassing streaming media. Laptops with wireless
modems already provide this type of service. The analysis of communication and digital signal
processing requirements indicates that each wireless phone generation increases computational
requirements by at least two orders of magnitude. Therefore, a need for new power minimization
techniques has been constant in wireless communications.

The most popular mobile low power applications, such as audio and video, are stream-oriented.
The nature of these applications imposes a need for addressing QoS requirements under energy
constraints. Until now, this problem has not been addressed. Our goal is to develop a spectrum of

techniques and algorithms which minimize energy consumption under the most important stream-
ing media QoS metrics, latency and synchronization. Specifically, we study how to use multiple
voltage technologies to simultaneously satisfy hardware requirements (storage space and process-
ing speed) and minimize the power consumption, while preserving the requested level of QoS in
terms of latency and synchronization. The main result of the paper is a provably polynomial time
off-line algorithms for multiple voltage scheduling of single and multiple processes. The algorithm
orders and assigns packets of streaming media in such a way that energy consumption is mini-
mized, while storage requirements are satisfied. The algorithm is dynamic programming-based
and can be used for compile time scheduling of movies and audio or as starting point for the
development of on-line algorithms for the same task.

2 Related Work

Our research results can be viewed in the context of two areas of related work: low power modeling
and optimization, and quality of service.

Mainly due to a need for mobile applications, in the last decade low power research has
attracted a great deal of attention. Both power modeling and optimization have been addressed
on many levels of the synthesis process [12]. More recently, a number of researchers proposed
the use of multiple voltages in order to reduce power consumption [5, 13, 16]. Furthermore,
several variable voltage techniques have been reported [4, 8, 17]. Also, several industrial multiple
voltage low power designs have been reported. The common denominator in all the efforts has
been that the operations on the critical path are scheduled at higher voltage and therefore are
executed faster and other operations are scheduled on a lower voltage and therefore the energy
consumption is reduced. Another popular approach to power minimization is dynamic power
management which aims to reduce the power consumption of electronic systems by selectively
shutting down idle components [2, 11]. From one point of view our work can be interpreted as a
combination of these two techniques, multiple voltages and system-level power management.

The first QoS requirements, such as bounded delay, guaranteed resolution or synchronization
have been conducted in the network and real-time operating systems (RTOS) communities. The
most sound and practically relevant QoS model in the networking community was proposed by
R. Cruz [7].The model assumes periodic segmentation of time. During each period each process
receives a task of generally varying complexity. The cumulative sum of tasks for a process forms
a demand curve imposed on the system. The system serves the task sequentially by allocating
resources during each time period to one of the processes. The cumulative sum of the processed
data forms a service curve. The main conceptual result in RTOS literature was presented by
Rajkumar et al. [14]. They introduced an analytical approach for satisfying multiple QoS di-
mensions under a given set of resource constraints. They proved that the problem is NP-hard
and developed an approximation polynomial algorithm for the problem by transforming it into
a mixed integer programming problem [15]. Comprehensive survey of QoS research in these two
areas is given in [1]. Recently, the first efforts in QoS, and in particular synchronization during
the system design process has been reported in the design automation literature [10].

3 Preliminaries

In order to make the presentation self-sufficient, in this section we outline the used abstraction and
models for power consumption, latency, synchronization and context switch overhead. Although
we do not use the Demand-Supply model for modeling streaming processes due to the limitations
of this model, [6] we provide in detail a summary of the model. There are two main reason for the
detailed treatment of this model. The first reason is to provide a suitable framework for defining

key QoS metrics: latency and synchronization. The second is to discover the key trade-off in a
very suitable framework.

One of the main components of power consumption is the switching power. The switching
power can be modeled as P =« - C, - Vd2d - f, where « - C', is the effective switching capacitance.
Switching power is the dominating factor in power consumption. The greater throughput comes
with the cost of higher voltage. The gate delay of the circuit is defined as T = k(Vyq/(Vaq — Vi)?)
where k is a constant [3].

We assume the design operates using multiple voltage supplies and that the voltages change
instantaneously with no overhead. These changes in voltages are assumed to happen only at the
beginning or the end of a time unit. Furthermore, we assume that the voltage units are selected
in such a way that the use of two consecutive voltages, v;&wv;, on two consecutive points is more
effective than the use of voltages v;&wv; 1, due to the fact that power as a function of voltage is
convex.

The Demand-Supply model for QoS was developed by Cruz et al. [7]. The model addresses the
burstiness of QoS while handling resource allocation. This model assumes periodic segmentation
of the time dimension. During each period each process receives a task of generally varying
complexity. The cumulative sum of tasks for a process can be depicted as a demand curve
imposed on the system. The system serves the task sequentially by allocating resources during
each time period to one of the processes. The cumulative sum of the processed data forms a
supply curve. While the DS-Curve explains many of the QoS metrics, such as latency, backlog,
and synchronization, the key problem with this DS-Curve is that its representation of QoS for a
small period can be large. The demand curve measures the burstiness of the service requirement.
The service curve guides the resource allocation with QoS guarantees. Backlog is defined as the
amount of demand that cannot be processed at that time point, and must then be carried over
to the next time unit. The backlog in the QoS model is represented by the difference between
the vertical positions of the demand curve and the service curve. Latency is the time between
when the demand for a task arrives, and when it is processed. This is shown in the model by
the horizontal difference between the demand curve and the service curve at any given vertical
position.

A process is a program which assumes that it has independent use of the CPU. A process
is long, in the sense that it consists of many tasks. These tasks are processed at periodic mo-
ments.With each task we associate a processing time and a storage requirement. Note that
periodicity is not reducing the generality of our formulation because the tasks of the process
could have a requirement of zero. Although in general there is no correlation between processing
time and storage, a special case exists when there is a linear relationship. Since this important
special case is often of interest, we treat it separately. Finally, note that satisfying all latency
implicitly implies that the throughtput requirements are also satisfied.

A context switch is the time overhead which is incurred by a multitasking kernel when it
decides to process different tasks. The amount of context switching time dramatically depends on
the processor. For a DSP processor the context switch time is fairly low, around 10 cycles, while
for a RISC processor it is much higher, approximately 100 cycles. For our off-line algorithm,
we assume that there is no context switch time. If we considered the off-line algorithm with
context switches it would be an NP-complete problem and therefore would not be possible to
solve optimally.

Synchronization is the timing relationship between interacting media, which is one of the most
important metrics for QoS, such as jitter and burstiness. The synchronization of two processes can
be seen in the DS-Curve (Figure 1). The figure displays two tasks, 71 & 72, and their corresponding

D,S
Ta Not Synchronized
4 Latency 2 ' T
7
L [y ’
1
i Latency 1 !
N I) N T2
i
- - [/
b
i ’ .
.
I — Tisr y
1
L . Top /
N Tip /! *
, .

-/] . / Tos
i ’ [—
o /- R Synchronized
A — .

) A L N |

[B B 11 L

Time

Figure 1: Latency and synchronization in the DS model.

service (dotted lines) and demand curves (solid lines) for the two tasks. We say that 7 & 7o are
synchronized when both 7 & 79 are serviced at the same time. The latency is the time between
when the demand arrives and when it is processed. The amount in which tasks 71 & 79 are not
synchronized is the difference between the latencies.

Note that the DS-Curve model is actually not an accurate abstraction of the media data
delivery process [6]. The major limitation is that during delivery the initial periodic nature of
tasks can be made either highly dense or very sporadic in short time intervals. Nevertheless, there
is an easy way to make the DS-Curve model adequate. Essentially all that is needed to consider
all tasks which arrive during our time unit (eg. in the case of MPEG 40ms) as a single task is to
create a new tasks which has processing time and storage requirements equal to the sum of the
processing times and storage requirements of all tasks which have arrived.

4 Off-line Optimal Algorithm

In this section, we formulate the off-line QoS low power problem and present our optimal algo-
rithm. We have one processor that can operate at multiple supply voltages. The goal is to service
multiple processes with minimal energy consumption and the minimal amount of memory while
meeting various QoS requirements.

4.1 Problem Formulation
A process consists of a segence of tasks. With each task ¢;, we associate

e a;: The arrival time, the time when a task is generated from the process and makes the
CPU request;

e p;: The time needed to complete this task at the nominal voltage v;.;

e s;: The storage demand which is the minimal amount of memory to store this task on its
arrival.

Tasks may have QoS requirements such as latency and synchronization. Latency (or deadline)
d; is the time that task ¢; has to be served after its arrival, that is, the actual finish time of task
t; must be earlier than a; 4+ d;. Synchronization measures the interaction among tasks in different
processes. We say that task ¢; from one process and task ¢; from another are k-synchronized if
the difference of their finishing times is within & CPU units. We denote this by syn(t;,t;) < k.

The variable voltage processor has multiple supply voltages among which it can switch. The
processor’s processing speed varies as the voltage changes, so will be the actual execution time
for a task to receive its required amount of service. Suppose a task needs one CPU unit at the
nominal voltage v,.r, then the execution time to accumulate the same amount of processing at
voltage vgq is given by [3]:

(Uref - Ut)2 Vdd 1
' 2 (1)
Uref (Udd 'Ut)

where v; is the threshold voltage. We consider only the switching power which is proportional to
the square of supply voltage.

Given n processes 71, 72, - -+, 7™, each 7% consists of a sequence of tasks t’f, t’;, --+. A schedule is
a set consisting of the starting time, finishing time, and the voltage level for each task. A schedule
is feasible if the processor starts each task after its arrival, finishes it before the latency constraint,
and satisfies all the synchronization requirements. The quality of a schedule is measured by its
energy consumption and the memory requirement. Since these two metrics are non-comparable
to each other, we introduce the concept of competitiveness. We say two schedules are competitive
if neither outperforms the other in both energy consumption and memory requirement. We

formulate the problem as:

On a processor with multiple voltages, for a given set of processes, find all the feasible
competitive schedules.

We make the following assumptions:

Tasks in the same process have to be executed and completed in the FIFO fashion;
A task’s processing demand p; is proportional to its storage demand s;;
The memory occupied by a task can be partially freed, but only at the end of a CPU unit!;

Ll e

The processor can instantaneously switch the supply voltage, but only at the beginning of
each CPU unit.

We show how to find all feasible competitive solutions for a single process. Suppose the
reference voltage v,..; = 0.8v, and there are two different voltage levels vy; = 3.3v and v, = 1.8v.
From equation (1), we approximate the processing speeds are to be 3 and 10 at v, and vy,
respectively. Consider a process with six tasks, ¢y, t1,--- ,t5. For simplicity, we further assume
that task ¢; arrives at time 4, and they don’t have deadline constraints. Finally, we assume that
the processing and memeory requirement are 4, 7, 12, 3, 5, and 1 respectively for the six tasks.

We want to determine the voltage that we will use for each unit time, such that the energy
consumption is minimized. We developed a dynamic programming based algorithm to achieve a
polynomial run-time.

Table 1 shows the instant memory requirement at the end of each unit time, which is the
minimal amount of memory required to store all the arrived but unfinished tasks. The table
uses the time (in terms of CPU units) that the processor is operating at v, and vp; to label
the horizontal and vertical axises respectively. For example, entry (7,) is the minimal memory
requirement after running at vp; for ¢+ CPU units and at v, for j units. Obviously this amount
depends on when we use v, and when we raise to vp;. Consider entry (1,1), whose content is the
storage we need at the end of the second unit of time after we use v, for one unit of time and
vp; for the other. We can either apply vp; in the first unit and v, in the second unit, or start at
vy, and switch to vy; after one CPU unit. In the first case, since task #y’s processing demand is 4
and we are able to process 10 at vp;, we will finish ¢y, free the memory, and wait for ¢;; then at
V], in the next unit of time, we can finish 3 out of the 7 units of processing demand from ¢;; now
t9 is coming, we need a total of (7 — 3) + 12 = 16 units of memory to store ¢; and ts.

!Memory can be partially freed means that, for instance, if half of the processing demand is fulfilled at the end
of one CPU unit, then we are able to free half of the space used to store this task. Our proposed algorithm can be
easily modified when this is not allowed.

0 1 2 3 4 5 6 7 8 9 10 11
0[4] S[I7 171017 [14[11[8]5] 2] 0]
1 7|12[12[14[10] 7] 4] 1[0
2[12] 5] 7] 5 0
35 5[1[0
4 5[1[0
5[1] 0
60

Table 1: Memory occupied by the unfinished tasks.

In the second case, we can only finish 3 out of the 4 processing demand of task ¢g by the end
of the first unit of time due to the slow processing speed at v;,; however, after raising the voltage
to vp; during the second unit, we are able to finish both the remaining of #; and entire #;; the
storage for tasks tg and t; are freed and therefore when to arrives, we only need 12 units of storage
to store this new task. Thus, we fill entry (1,1) with 12, the smaller storage requirement of the
two different strategies.

Let m(i,j) be the content of entry (4,7). We can reach this entry from entry (i — 1,7) by
applying vy; or from its left neighbor (4,7 — 1) by applying v;,, hence we have:

’ITL(Z,_]) = min (Si+j —+ max (O,m(z - 17]) - Sphi)a
Siyj +max (0,m(i,j — 1) — spy,)) (2)

where sp;, and spp; are the processing speed at vy, and wvp; respectively. The inner max is
introduced to enforce that excess processing resource cannot be used for future work. We build
Table 1 based on formula (2), where every row ends with an entry of 0 meaning that there are no
tasks left.

While m(i, j) gives the minimal storage requirement at the instant ¢ + j, we may have used
more storage already before this time. We further denote M (3, j) as the minimal amount of storage
that has been used up to time 7 + j after running ¢ units of time at vp; and j at vj,. Considering
the voltage being used in the (i + j)-th unit, we observe that if we use vy;, we can finish at most
max(m(i—1,7), spp;) and need a storage of s;4;+max(0,m(i—1,7) — spp;). Moreover, previously
we have already required a storage at the amount of M (i — 1,7). This implies that

M (i, j) > max(M(i —1,7), si+; + max (0,m(i — 1,5) — spp;) (3)

Similar inequality holds if we use v;,, therefore we have
M(Zaj) = mln(maX(M(z - 17j)7 Si+j —+ max (07 ’ITL(Z - 17]) - Sphi)a
ma‘X(M(iaj -]-)7 Si+j —+ max (07 m('La] -]-) - Splo)) (5)

Based on the recursive formulas (2) and (4), we calculate M (i,7)’s and store them in Table
2, where the last entry of the i-th row gives the minimal storage requirement to complete all the
tasks by using vy; for exactly ¢ units.

The power consumption at vp; = 3.3v is 1, then the power consumption at v, = 1.8v is 0.1
from our power model. Unlike the storage requirement, energy consumption is path independent.
I.E., it depends on the total number of CPU units that we have used v, and vp;, not the voltage
at every individual time unit. For instance, if we have used wvp; for 2 units and v, for 4 units,
then the total energy consumption is calculated as 1 x 2+ 0.1 x 4 = 2.4.

Table 3 gives the memory requirements and total energy consumptions by different scheduling
policies, where (4,7) in the first row indicates a schedule that uses vp; for 7 units and v, for j
units. Clearly from this table, we see that there exist three competitive optimal solutions, (4,2),

0 1 2 3 4 5 6 7 8 9 10 11

0 4 8 |17 |17 (19|19 | 19 | 19 | 19 19|19|19|
1 7112 (12 | 14 |19 | 19 |19 | 19 | 19

2112 (12|12 | 14 | 14 | 14

3112 |12 | 12 | 14

412 | 12 | 12

5|12 | 12

6| 12

Table 2: Memory requirements by different schedules.

M 12 12 12 14 14 19 19
E 6.0 5.1 4.2 3.3 2.5 1.8 1.1

| 160]6GH][42][3B3)]25] 18]011)]
|
|

Table 3: Memory and energy for different schedules

(2,5), and (0,11). They consume different amount of energy and require different amount of
memory. We can then choose the one that fits our preference of memory and energy, and retrieve
the actual schedule (i.e., the voltage for each CPU unit) by a simple backtracking approach.

4.2 Optimal Off-line Algorithm

Figure 2 shows the algorithm of finding all the competitive optimal solutions for multiple processes.
A schedule in this case has to determine, for each CPU unit, which process to be executed and
at which voltage level.

Definitions: Assuming that there are m processes and k different voltages, we have m -k choices:
running the ith process at voltage v; (1 <i <m,1 <j <k). A state S = (e1, -+ ,em;ur, -+ ,ug)
means that the ith process has been allocated e; CPU units, and the processor has been working at
voltage v; for u; CPU units. Notice that > 1", e; < Z?Zl uj and the equality holds if and only if
at any time, there exists unfinished process(es). We say state S = (e1,- -+ ,em;u1, - ,ux) precedes
S = (), s epiul, ey uy) ifd)el > e i)l > ug i) Y3 e — e < 1, & iv) E?Zl uj — uj =
1. If S precedes S, we say that S’ follows S. Define Prev(S) = {S’ : S'precedes S}, and
Nexzt(S) = {S': S € Prev(S")}. A state S is reachable if Prev(S) # ¢. A final state is a state
when all processes’ requests aresatisfied. A schedule is a sequence of states {S1, So,-- } such that
S; € Prev(S;41) and all processes’ processing loads are satisfied at the final state.

The off-line optimal algorithm consists of three phases. First, we build an m x k dimensional
table which stores the minimal memory requirements for different schedules. For example, when
there is only one process and two voltages, then we will have a table like Table 2. Step 1 computes
the Negt set for the initial state Sy, if all m processes require CPU at the beginning, then this set
will have m x k elements. Steps 2-4 makes all the states in Next(S)) reachable, since they are all
one move away from the initial state Sy. We denote the set of reachable states by S. Steps 5-18
build the table recursively until there is no reachable state. We keep all the reachable states in a
queue, we calculate the Next set for the head of the queue (state S) in Step 15, delete S from the
queue and put all elements of Nezt(S) into the queue in Step 16. When we compute Nezit(S), we
consider all the timing requirements, for example, if process ¢ has a deadline at the end of next
CPU unit and its remaining process requirement can be fulfilled only when we use the highest
voltage, then Nezt(S) will contain only one state, which assigns the current CPU unit to process
1 and apply the highest voltage. Because all other schedules will fail to meet process ¢’s deadline.
The memory requirement for each state is calculated using formulas similar to (2) and (4).

Input: m processes with their arrival time, processing load, and other timing requirement
(deadline, synchronization, etc.); k different supply voltages.
Output: All competitive pairs of memory requirement and energy consumption,
and one schedule for each such pair.
Algorithm:
Phase I: Configuration for all states.
1. Compute Nezt(So) for the initial state So;
2. for each S € Nezt(So)
{ Prev(S) = So;
S=8US;}
while (S # ¢)
{foreach S€ &
{ current_max_memory for state S = oo;
for each S" € Prey(S)

bt

® N> o

9. { calculate the max_memory requirement if S follows S’;
10. if (max_memory < current_max_memory)
11. { current_max_memory = max_memory;
12. current_previous_state = S'; }
}

13. max_memory for state S = current_max_memory;
14. previous_state for S = current_previous_state;

}
15. Compute Nezt(S);
16. S =S U Next(S) — S;
17. for each S’ € Next(S)
18. Prev(S") = Prev(S")U S; }

Phase II: calculation for energy consumption.

19. for each final state S

20. calculate the energy_consumption for S;

21. compute all the competitive final states F;

Phase III: determine one schedule for each competitive state.

22. for each competitive state S = (e1, - ,€m;u1, - ,ux) € F
23. { index =1= Z?:l Uj;

24. Sindex = S;

25. while (index # 0)

26. { 8" = previous_state for Sindex;

27. index = index - 1;

28. Sindex = S'; }

29. report the schedule (So, S1,---,S) for S; }

Figure 2: Algorithm for all off-line competitive schedules.

From the table built in the first phase, we can easily see the total memory requirement for
each schedule, which is the value at its corresponding final state. In Phase II, we calculate their
energy consumption. Recall that the energy consumption is path-independent. Let P; be the
power for voltage v;, then for final state S' = (e1,- -+ ,ep;u1, - ,ug), all schedulers with this final
state will consume energy in the amount of £ = Z?Zl Pj-u;. So for each final state, we associate
with the pair (M, E), the memory requirement and the energy consumption. Recall also that two
final states S and S’ are competitive if i) M < M' and E > E', orii) M > M' and E < E'.

In the third phase, we find a schedule for each competitive final state. We achieve this by
using backtracking as shown in Steps 23-29. The existence of state S’ in Step 26 is guaranteed
by the way in which we build the memory requirement table in Phase 1. Therefore, we have:
Theorem 4.1: The algorithm in Figure 2 finds all the feasible competitive schedules.

We analyze the complexity of the algorithm, for a fixed processor that has k supply voltages
to execute m processes, in terms of the total processing demands. Suppose that we need X CPU

tasks 1-voltage | 2-voltages | 3-voltages | 4-voltages
1 1 35.3% 45.6% 51.9%
2 1 41.8% 49.4% 54.3%
3 1 47.6% 53.0% 56.6%
5 1 52.9% 56.3% 58.7%
6 1 55.7% 58.5% 60.2%
8 1 57.2% 59.9% 60.7%
10 1 57.9% 60.8% 61.1%
average N/A 49.77% 54.79% 57.64%
median N/A 52.9% 56.3% 58.7%

Table 4: Energy savings by off-line algorithm using multiple supply voltage assuming 3.3V nominal
voltage with the same amount of energy.

units to service all the processes at the reference voltage. In Phase I, we essentially fill in the
entries of an m X k dimensional table (Table 2 is an example with m = 1 and k = 2), where entries
along dimension < 7,7 > represent the storage requirements when the i-th process is processed
with the j-th voltage. If the i-th process needs X; ; units under the j-th voltage, when all the
other m x k — 1 dimensions are fixed, the number of entries we need to fill along this dimension
will be X, ;, which is in the order of O(X). Since the table is m x k dimensional, and the cost for
computing each entry is constant, the run-time in Phase I will be O(X™F).

The calculation of energy consumption in Phase II takes constant time for each final states.
According to how many units we have run at the reference voltage, it is clear that we will have at
most X different final states (c.f. Table 2 for an example). Thus, the cost here is O(X). In the
last phase, we determine a feasible schedule for each competitive final states by backtracking. In
step 27, we move one entry closer to the starting point, and the total number of steps we need is
also in the order of O(X). Therefore, we have:

Theorem 4.2: If we need X CPU units to service all the processes at the reference voltage,
the run-time of the proposed algorithm is O(X™F).

5 Experimental Results

We used six streaming applications [9] to establish the effectiveness of the approach: 1JG JPEG
encoder and decoder, MSG MPEG encoder and decoder, CCITT G.721 encoder, and PGP en-
cryption and description module.

The results of the off-line algorithm for energy saving is displayed in Table 4. We normalized
the results to the case of 1-voltage at 3.3V, and use the same memory requirement from these
results as the basis for the other tests. We performed test on the cases with 1, 2, 3, and 5 tasks.
In the case of 2-voltages we used 3.3V and 1.8V, while for the case of 3-voltages we applied. 3.3V,
1.8V, and 1.0V. For the final case, 4-voltages, we applied 3.3V, 2.4V, 1.8V, and 1.0V for testing.
In column 1, we have the number of tasks and the average values. The remaining columns show
the percentage of energy savings for 2, 3, and 4-voltage. Our results show a 47.6% energy saving
over the 1-voltage when using 2-voltages and the same amount of memory and 3 tasks. On average
the energy savings increases with the number of voltages, but at a low rate.

6 Conclusion

We have developed an optimal polynomial-time algorithm for power minimization of streaming
media applications under QoS requirements and hardware constraints using multiple voltages.
The algorithm is flexible in the sense that it can address a variety of dual-primal QoS problem
formulations as well as a variety of QoS dimensions, including latency, throughput and synchro-

nization. In addition, algorithm can be generalized to solve the initial problem under assumption
that a user specified drop rate is not exceeded. The algorithm is practically fast in the sense that
large instances of the problems can be solved rapidly.

References
[1] C. Aurrecoechea, et al. A survey of QoS architectures. Multimedia Systems, vol.6, no.3, pp. 138-151, 1998.
2] L. Benini, A. Bogliolo, G.A. Paleologo, G. De Micheli. Policy optimization for dynamic power management.
g g Yy y g

IEEE Transactions on CAD, vol.18, no.6 , pp. 813-833, 1999.

[3] A.P. Chandrakasan, S. Sheng, R.W. Brodersen. Low-power CMOS digital design. IEEE Journal of Solid-State
Circuits, vol.27, no.4, pp. 473-484, 1992.

[4] A.P. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven signal processing: an approach for energy
efficient computing. ISLPED, pp. 344-352, 1996.

[5] J. Chang, M. Pedram. Energy minimization using multiple supply voltages. Int’l Symposium on Low Power
Electronics and Design, pp. 157-162, 1996.

[6] E. Chang and H. Garcia-Molina. Medic: Memory and disk cache for media servers. IEEE Int’l Conference on
Multimedia Computing and Systems, pp. 493-499, 1999.

[7] R.L. Cruz. Quality of Service Guarantees in Virtual Circuit Switched Networks. IEEE Journal on Selected
Areas in Communications, vol.13, no.6, pp. 1048-1056, 1995.

[8] K. Govil, E. Chan, H. Wasserman. Comparing algorithms for dynamic speed-setting of a low-power CPU.
ACM Mobile Computing and Networking, pp. 13-25, 1995.

[9] C. Lee, et al. MediaBench: a tool for evaluating and synthesizing multimedia and communications systems.
International Symposium on Microarchitecture, pp. 330-335, 1997.

[10] G. Qu, M. Mesarina, M. Potkonjak. System Synthesis of Synchronous Multimedia Applications. Intl. Sympo-
sium on System Synthesis, pp. 128-133, 1999.

[11] Q. Qiu, M. Pedram. Dynamic power management based on continuous-time Markov decision processes. Design
Automation Conference, pp. 555-561, 1999.

[12] J. M. Rabaey, M. Pedram. Low power design methodologies Kluwer Academic Publishers, 1996.

[13] S. Raje, M. Sarrafzadeh Scheduling with multiple voltages. Integration, The VLSI Journal, vol.23, no.1, pp.
37-59, 1997.

[14] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model for QoS management.
Proceedings. IEEE Real-Time Systems Symposium, pp. 298-307, 1997.

[15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Practical Solutions for QoS-based Resource Allocation
Problems. Proceedings. The 19th IEEE Real-Time Systems Symposium, pp. 296-306, 1998.

[16] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, et. al. Automated low-power technique exploiting multiple
supply voltages applied to a media processor. IEEE Journal of Solid-State Circuits, vol.33, no.3, pp. 463-472,
1998.

[17] M. Weiser, B. Welch, A. Demers, S. Shenker. Scheduling for reduced CPU energy. USENIX Operating Systems

Design and Implementation (OSDI), pp. 13-23, 1994.

10

