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Abstract

In this paper we address the constructive controllability problem for drift-free, left-
invariant systems on �nite-dimensional Lie groups with fewer controls than state dimen-
sion. We consider small (�) amplitude, low-frequency, periodically time-varying controls and
derive average solutions for system behavior. We show how the pth-order average formula
can be used to construct open-loop controls for point-to-point maneuvering of systems that
require up to (p� 1) iterations of Lie brackets to satisfy the Lie algebra controllability rank
condition. In the cases p = 2; 3, we give algorithms for constructing these controls as a
function of structure constants that de�ne the control authority, i.e., the actuator capabil-
ity, of the system. The algorithms are based on a geometric interpretation of the average
formulas and produce sinusoidal controls that solve the constructive controllability problem
with O(�p) accuracy in general (exactly if the Lie algebra is nilpotent). The methodology is
applicable to a variety of control problems and is illustrated for the motion control problem
of an autonomous underwater vehicle with as few as three control inputs.
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1 Introduction

Recent work in nonlinear control has drawn attention to drift-free systems with fewer controls

than state variables. These arise in problems of motion planning for wheeled robots subject

to nonholonomic constraints [22, 23], models of kinematic drift (or geometric phase) e�ects

in space systems subject to appendage vibrations or articulations [12, 13], and models of

self-propulsion of paramecia at low Reynolds numbers [26]. The basic state-space model

takes the form,

_x =
mX
i=1

Fi(x)ui; x 2 <n; ui 2 <; m < n : (1)

It is well known that if the vector �elds Fi satisfy a Lie algebra rank condition, then there

exists a control u = (u1; : : : ; um) that drives the system to the origin from any initial state.

However, unlike the linear setting where the controllability Grammian yields constructive

controls, here the rank condition does not lead immediately to an explicit procedure for

constructing controls. As a result, recent research has focused on constructing controls to

achieve complete controllability [2, 14, 22, 23, 8, 20]. The success of constructive procedures

based on periodically time-varying controls [22, 23, 8, 20] motivates our investigation.

Our interest in this paper is in constructive controllability using periodic forcing of drift-

free, left-invariant systems of the form

_X = �XU; U(t) =
mX
i=1

Aiui(t); (2)

evolving on matrix Lie groups. Here, X(t) is a curve in a matrix Lie group G of dimension

n, U(t) is a curve in the Lie algebra G of G, m � n and fA1; : : : ; Ang is a basis for G.

The Lie bracket [�; �] on the matrix Lie algebra G is de�ned to be the matrix commutator

[A;B] = AB�BA, for A;B 2 G. (For an introduction to matrix Lie groups and Lie algebras

see [6]). The ui(�) are assumed to be periodic functions of common period T . � is a small

parameter (0 < � < 1) such that �ui(�) are interpreted as small-amplitude periodic control

inputs. The set fA1; : : : ; Amg, where (u1; : : : ; um) can be actuated independently, represents

the control authority of the system.

Our goal is to solve the complete constructive controllability problem for systems of the
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form (2) which can be stated formally as:

(P) Given an initial condition Xi 2 G, a �nal condition Xf 2 G and a time tf > 0, �nd

u(t) = (u1(t); : : : ; um(t)), t 2 [0; tf ], such that X(0) = Xi and X(tf ) = Xf .

Our approach is to derive averaging theory for systems on matrix Lie groups of the form

(2) and then to use the average formulas to specify open-loop controls that solve (P), at

least approximately. The controls are designed to drive an average system solution exactly

thereby driving the actual system approximately. Open-loop controls can be used to exploit a

priori knowledge of the system for improved system performance and reduced control e�ort.

Intermittent feedback can then be used in conjunction with the open-loop control to reduce

sensitivity to disturbances. (For related ideas see [4]). Feedback control laws, including time-

varying feedback and discontinuous feedback, have been studied for nonholonomic systems

([5, 25, 9, 27]).

Equation (2) provides a general framework, or normal form, for a class of systems that

includes rigid body motion control problems. For many of these problems, the system con�g-

uration space is globally described by a matrix Lie group making (2) a natural system model.

The Lie group framework then leads to coordinate-free expressions for system behavior and

ultimately to coordinate-free control algorithms. Further, when the systems on Lie groups

are left-invariant, there is a global-ness to our solutions. That is, even if we exploit local

charts to make small maneuvers, the Lie group framework allows us to move all over the

con�guration space without reformulating our control. This is because we can always treat

the current position of the system as if it were the identity in the Lie group.

An important focus of our work is to exploit the Lie group structure to derive formulas

for system response. Speci�cally, we show the utility of area and moment-like expressions in

the controls and structure constants of the Lie algebra. The structure constants enable us

to encode control authority, thus ensuring that our results naturally account for changes in

control authority due to events such as actuator failures. This leads easily to constructive

procedures for on-line adaptation to changes in control authority.
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Averaging is used to describe an approximate solution to (2) that evolves on the matrix

Lie group G, remains close to the actual solution to (2) and gives rise to straightforward

procedures for specifying controls to address (P). Averaging in this context is motivated by

the work of Brockett [3] in which an averaging argument was used to describe the secular

(linear in time) motion of the well-known two-input nilpotent system on <3 often referred

to as the Brockett system. We extend the argument to high-order averages and to systems

on �nite-dimensional Lie groups.

Liu and Sussmann [30, 20] also develop averaging theory to derive approximate tracking

control for drift-free systems. They apply averaging theory to drift-free systems on a manifold

M with highly oscillatory control inputs. Given a trajectory of a suitable \extended" system,

their goal is to �nd a trajectory of the original system that converges to the given trajectory

and use this result to derive approximate tracking controls. We, on the other hand, do not

attempt to address all drift-free systems, but rather take a close look at a class of drift-free

systems, i.e., those of the form (2), and exploit the Lie group framework as described above to

great bene�t. Additionally, while Liu and Sussmann consider high-amplitude, high-frequency

control inputs, we consider small-amplitude, low-frequency control inputs. One approach is

equivalent to the other by scaling time by �. The result is that maneuvers in the Liu and

Sussmann time scale are completed in one unit of time, while in our time scale maneuvers

are completed in O(1=�) units of time. However, our small-amplitude, low-frequency controls

are gentler on the system and avoid signi�cant o�-course excursions.

Murray and Sastry [22, 23] and La�eriere and Sussmann [14] derive control inputs to

exactly steer drift-free systems that can be transformed into a nilpotent form, sometimes

referred to as \chained form". Nilpotency refers to the fact that high-order Lie brackets of

vector �elds are identically zero. Our Lie group framework includes the case of nilpotent

systems. For instance, certain chained-form systems can be represented in the form (2) where

the Lie group G is unipotent, i.e., is upper triangular with ones along the diagonal, and the

Lie algebra G is strictly upper triangular (nilpotent). For these nilpotent systems, our results

provide exact steering controls. The fourth example below illustrates a chained-form system

put in the form of (2).
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There are special cases of drift-free systems that can be controlled exactly where our

methods produce only an approximate solution. For instance, in [31], Walsh and Sastry

describe a method to derive controls to exactly orient a spacecraft with two internal rotors

con�gured about two of the principal axes. In this work, however, large motions are necessary

to reorient the spacecraft. We emphasize that our framework is more general, allowing for a

large class of systems and control input con�gurations and producing controls that keep the

system state relatively close to any desired path. Further, as in [12, 13] our solutions give a

means to compute drifts in system behavior caused by undesirable oscillations. Kinematic

drift of a spacecraft caused by thermo-elastically induced vibrations in 
exible attachments

on the spacecraft is an example, c.f. [12, 13].

To further motivate the Lie group framework we give four examples.

Spacecraft Example: Equation (2) describes the kinematic spacecraft attitude control

problem if we interpret U(t) as the time-dependent skew symmetric matrix of spacecraft

angular velocity such that X evolves on G = SO(3), the special orthogonal group, where

SO(k)
4
= fA 2 <k�kjATA = I; det(A) = 1g:

De�ne X(t) 2 SO(3) to be the curve of rotations that maps a body-�xed orthonormal

coordinate frame into an inertial coordinate frame. That is, xr = X(t)xb, where xb is any

point on the spacecraft described with respect to the body-�xed frame and xr is the same

point expressed with respect to the inertial frame. Then X(t) describes the attitude of the

spacecraft at time t. De�ne ^: <3 ! so(3) where so(3) is the space of 3� 3 skew symmetric

matrices and x = (x1; x2; x3)T by

x̂ =

2
64

0 �x3 x2
x3 0 �x1
�x2 x1 0

3
75 : (3)

Let e1 = (1; 0; 0)T , e2 = (0; 1; 0)T and e3 = (0; 0; 1)T , and de�ne Ai = êi; i = 1; 2; 3. Then

fA1; A2; A3g is a (standard) basis for G = so(3) and X(t) satis�es

_X = X
̂; 
̂(t) =
3X

i=1


i(t)Ai (4)
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where 
 = (
1;
2;
3)
T is the angular velocity of the spacecraft in body-�xed coordinates.

Now suppose angular momentum of the spacecraft is conserved and equal to zero, i.e.,

there is no external torque applied to the spacecraft. Then it is possible to interpret the

components of angular velocity, 
1;
2;
3, as our small-amplitude, periodic controls, e.g.,

�ui = 
i, i = 1; 2; 3. For instance, the angular velocities could be e�ected using internal

rotors. Alternatively, a point mass oscillator appended to the spacecraft could be used to

control angular velocity (c.f. [16]). With this interpretation, equation (4) takes the form

of (2) with G = SO(3), n = 3, and m � 3 is the number of independent actuators. We

note that any control con�guration can be represented by choosing the appropriate basis

for so(3). For example, suppose there are only two independent control inputs de�ned by

�u1 = 
1 + 
2 and �u2 = 
2 + 
3 (and �u3 = 0). Then the system is described by (2) with

fB1; B2; B3g as our basis for so(3) where B1 = A1 +A2, B2 = A2 +A3, B3 = A3. Details of

averaging and constructive controllability applied to the spacecraft can be found in [18].

Unicycle Example: Equation (2) describes the motion planning problem for a unicycle

which rolls without slipping if we interpret U(t) as the appropriate time-dependent matrix

of steering velocity and translational velocity such that X evolves on G = SE(2), the special

Euclidean group, where

SE(k)
4
= f

"
A b
0 1

#
2 <(k+1)�(k+1)jA 2 SO(k); b 2 <kg:

Here, we de�ne X(t) 2 SE(2) to be the planar rigid body transformation that maps a body-

�xed orthonormal frame into an inertial frame so that X(t) describes the position at time t

of the unicycle in the plane and its orientation at time t with respect to an inertially �xed

axis. That is, for xb a point on the unicycle described in terms of body-�xed coordinates

and xr the same point expressed in terms of inertial coordinates, [xr 1]T = X(t)[xb 1]T . In

terms of local coordinates (x; y; �) where (x; y) describes the unicycle's position and � the

unicycle's orientation on a plane relative to the inertial frame, X can be expressed as

X =

2
64
cos� �sin� x
sin� cos� y

0 0 1

3
75 :

Suppose that u1 = _� (steering speed) and u2 = v (rolling speed) are available as controls
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and let

A1 =

2
64
0 �1 0
1 0 0
0 0 0

3
75 ; A2 =

2
64
0 0 1
0 0 0
0 0 0

3
75 ; (5)

and A3 = [A1; A2]. Then fA1; A2; A3g de�nes a basis for se(2), the Lie algebra associated

with SE(2), and X(t) satis�es

_X = �X(A1u1 +A2u2) (6)

where we have assumed small-amplitude controls. Equation (6) is of the form (2) with

G = SE(2), n = 3 and m = 2 and takes the same form as the spacecraft control problem

with two internal rotors. Details of averaging and constructive controllability applied to the

unicycle problem can be found in [18]. There it is illustrated that the controls derived to

steer the unicycle are identical to those derived to control the spacecraft with two internal

rotors as a result of the two systems taking the same form (6).

Underwater Vehicle Example: Equation (2) describes the kinematic motion control prob-

lem for an autonomous underwater vehicle (AUV) if we interpret U(t) as the appropriate

time-dependent matrix of vehicle angular and translational velocities such that X evolves

on G = SE(3) (see [28] for another study of an AUV on SE(3)). In this case, we de�ne

X(t) 2 SE(3) to be the rigid body transformation that maps a body-�xed orthonormal frame

into an inertial frame so that X(t) describes the position and orientation in three-dimensional

space of the underwater vehicle at time t. Let

Ai =

8>>>><
>>>>:

"
êi 0

0 0 0 0

#
i = 1; 2; 3"

0 ei�3
0 0 0 0

#
i = 4; 5; 6:

(7)

Then fA1; : : : ; A6g de�nes a basis for G = se(3), the Lie algebra associated with SE(3).

Now let 
 = (
1;
2;
3)T de�ne the angular velocity of the vehicle and v = (v1; v2; v3)T

the vehicle translational velocity, all with respect to the body-�xed coordinate frame. Then

X(t) satis�es

_X = X(
3X

i=1


i(t)Ai +
6X

i=4

vi�3(t)Ai): (8)

We assume that we can interpret the components of 
(t) and v(t) as controls such that (8)

is of the form (2), e.g., let �ui = 
i; i = 1; 2; 3 and �ui = vi�3; i = 4; 5; 6. In this case
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G = SE(3), n = 6, and m = 6. If there are fewer than six independent actuators, i.e.,

m < 6, then some of the �ui are identically zero. A di�erent choice of basis for se(3) and a

di�erent value of m re
ects a di�erent control authority.

Nilpotent System Example: As described above, systems in chained form can also typically

be put in the form of drift-free, left-invariant systems on matrix Lie groups (2). As an

example, consider the front-wheel drive car which can be transformed (locally about the

origin) into a two-input chained-form system on <4 [23]:

_x1 = v1

_x2 = v2 (9)

_x3 = x2v1

_x4 = x3v1:

This system can be expressed (or embedded) as evolving on the matrix Lie group consisting

of elements of the form

X =

0
BBB@

1 x2 x3 x4
0 1 x1 �
0 0 1 x1
0 0 0 1

1
CCCA

where * is arbitrary. A basis for the (nilpotent) Lie algebra of this group is given by

fA1; A2; A3; A4g = fA1; A2; [A2; A1]; [[A2; A1]; A1]g where

A1 =

0
BBB@

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1
CCCA ; A2 =

0
BBB@

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
CCCA :

Then X(t) satis�es

_X = �X(A1v1 +A2v2) (10)

which is of the form (2) with n = 4, m = 2, where we have assumed small-amplitude

controls. Other two-input chained form systems, such as the kinematic car with k trailers,

can similarly be described in this form (c.f. [16]).

The following is an outline of the remaining sections of this paper. In Section 2, we

state some preliminaries including de�nitions of geometric objects that play a key role in
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the averaging formulas and two local representations of the solution to (2). In Section 3

we prove second and third-order averaging theorems for systems of the form (2). Our main

results are an \area rule" for second-order averaging and a \moment rule" for third-order

averaging. A statement of the general pth-order averaging theorem is given in Appendix

A. By the pth-order average solution X(p), we mean that given a metric d on the Lie group

G, d(X(t);X(p)(t)) = O(�p); 8t 2 [0; b=�]; b > 0. In Section 4, we show how to use the

average formulas for (approximate) constructive controllability by deriving controls that

steer the average solution. The control laws become increasingly complex for increasing

order of averaging, and so we seek to minimize the order of the average solution that we

steer. However, a su�ciently high-order average solution is needed in order to capture the

controllability of the system. We determine pmin where pmin is the smallest p such that

X(p) can be driven from any Xi 2 G to any desired Xf 2 G and show that (pmin � 1) is

equal to the highest number of iterations of Lie brackets used to satisfy the controllability

Lie algebra rank condition. The proof is constructive yielding algorithms that produce

continuous, small-amplitude, low-frequency, open-loop sinusoidal controls. The algorithms

are driven by the structure constants that de�ne the control authority and controllability

of the system. In Section 5 we illustrate the algorithms for two control con�gurations of an

autonomous underwater vehicle. Conclusions are given in Section 6.

The results of this paper can be extended to the setting of abstract �nite-dimensional Lie

groups (c.f. [16]). To keep the notation simple, we stick to the setting of matrix Lie groups.

This is su�cient for our examples.

2 Preliminaries

Our average solutions X(p) depend on the geometric objects described below. We make the

following de�nitions assuming that u(t) is periodic in t with period T :

uav = (uav1; : : : ; uavm)
T ; ~u = (~u1; : : : ; ~um)

T ;

uavi =
1

T

Z T

0
ui(� )d�; ~ui(t) =

Z t

0
ui(� )d�;

9



Uav =
mX
i=1

uaviAi; ~U =
mX
i=1

~uiAi:

So u = _~u and if uav = 0 then ~u is periodic in t with common period T .

Assume that uav = 0 and de�ne Areaij(T ) to be the area bounded by the closed curve

described by ~ui and ~uj over one period, i.e., from t = 0 to t = T . By Green's Theorem we

can express this area as

Areaij(T ) =
1

2

Z T

0
(~ui(�) _~uj(�)� ~uj(�) _~ui(�))d�: (11)

This area can be interpreted as the projection onto the i-j plane of the area enclosed by the

curve (~u1; : : : ; ~um) in one period. De�ne

aij(t) =
1

2

Z t

0
(~ui(�) _~uj(�)� ~uj(�) _~ui(�))d�:

=
Areaij(T )t

T
+ f(t); (12)

where f(t+ T ) = f(t), f(0) = 0. De�ne

mijk(T ) =
1

3

Z T

0
(~ui(�) _~uj(�)� ~uj(�) _~ui(�))~uk(�)d�: (13)

Now consider the closed curve C de�ned by ~ui(t), ~uj(t) and ~uk(t) over one period. Let A be

any oriented surface with boundary @A = C. Then by Stokes' Theorem,

mijk(T ) =
1

3

Z
A
�~uid~ujd~uk � ~ujd~ukd~ui + 2~ukd~uid~uj : (14)

So mijk(T ) as described by (14) can be interpreted as a �rst moment.

The average approximationX(p) will also depend on the structure constants �kij associated

to a given basis for the Lie algebra G. These are de�ned by

[Ai; Aj] =
nX

k=1

�kijAk; i; j = 1; : : : ; n: (15)

We de�ne a depth-� Lie bracket as � iterated brackets, e.g., a depth-one Lie bracket is of

the form [A;B], a depth-two bracket is of the form [A; [B;C]] or [[A;B]; C], a depth-three

bracket is of the form [A; [B; [C;D]]], etc., where A;B;C;D 2 G. A depth-zero bracket is

just an element of the Lie algebra G. We can then de�ne structure constants associated to
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higher depth brackets. For example, we de�ne depth-two structure constants �qijk associated

with basis fA1; : : : ; Ang according to

[[Ai; Aj]; Ak] = [
nX
l=1

�lijAl; Ak] =
nX
l=1

�lij [Al; Ak] =
nX

q=1

nX
l=1

�lij�
q
lkAq =

nX
q=1

�qijkAq: (16)

Skew symmetry of the Lie bracket on G, [A;B] = �[B;A], implies �kij = ��kji. Further,

Areaij(T ) = �Areaji(T ); mijk(T ) = �mjik(T ):

Similarly, the Jacobi identity, [[A;B]; C]+ [[B;C]; A] + [[C;A]; B] = 0, implies

�pijk + �pjki + �pkij = 0: (17)

Further,

mijk(T ) +mjki(T ) +mkij(T ) = 0: (18)

There are well-known controllability results for systems on Lie groups of the form (2),

e.g., [1, 29, 10]. We use [24] as a convenient reference. Let

C = fB j B = [Bk; [Bk�1; [� � � ; [B1; B0] � � �]]]; Bi 2 fA1; : : : ; Amg; i = 0; : : : ; kg: (19)

By Proposition 3.15 of [24], for G a connected Lie group, if G = spanC then system (2)

is controllable, i.e., a solution to (P) exists. We refer to this condition as the Lie algebra

controllability rank condition. If this condition is satis�ed using only up to depth-j brackets,

i.e., k � j in (19), then we say that system (2) is a depth-j bracket system.

Since, in general, there are no explicit global representations of the solution to (2) we

make use of local representations: the product of exponentials representation given by Wei

and Norman [32] and the single exponential representation given by Magnus [21]. We begin

by de�ning the Wei-Norman representation.

Lemma 1 (Wei and Norman) . Let X(t) be the solution to (2) with X(0) = I. Then

9t0 > 0 such that for jtj < t0, X(t) can be expressed in the form

X(t) = eg1(t)A1eg2(t)A2 � � � egn(t)An : (20)
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The Wei-Norman parameters g = (g1; : : : ; gn)
T satisfy

_g = �M(g)u ; for jtj < t0 ; (21)

where g(0) = 0 and M(g) is a real analytic matrix-valued function of g. If G is solvable then

there exists a basis of G and an ordering of this basis for which (21) holds globally, i.e., for

all t, and in that case (21) can be integrated by quadrature. 2

As shown in the work of Wei and Norman, one can express M(g) of (21) in terms of the

structure constants of (2). For kgk small,

M(g) = I + ~�(g) +O(g2); (22)

where the ijth element of ~�(g) is

~�ij(g) =
nX

k=j+1

gk�
i
kj (23)

and O(g2) are higher order terms in the gi.

It is customary to refer to components of g as the canonical coordinates of the second

kind for G. LetW be the largest, connected open neighborhood of 0 2 <n such that 8g 2 W ,

M(g) is well-de�ned. Let � : <n ! G de�ne the mapping

�(g) = eg1A1eg2A2 � � � egnAn (24)

and de�ne V = �(W ) � G. Then, the Wei-Norman formulation provides a local repre-

sentation of the solution to (2) for initial condition X(0) 2 V � G. Now let S be the

largest neighborhood of 0 2 <n contained in W such that 	 = �jS : S ! G is one-to-one.

Let Q = 	(S) � V . Then 	 : S ! Q is a di�eomorphism and we can de�ne a metric

~d : Q�Q! <+ by

~d(Y;Z) = d(	�1(Y );	�1(Z)) (25)

where, for k � k a norm on <n, d : <n �<n ! <+ is given by

d(�; �) = k� � �k: (26)
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As an alternative to using the Wei-Norman representation of solutions to (2), we consider

Magnus' single exponential representation [21]. By Theorem III of [21] under an unspeci�ed

condition of convergence, the solution to (2) with X(0) = I can be expressed as

X(t) = eZ(t) (27)

where Z(t) 2 G is given by the in�nite series (we show terms up to O(�3)):

Z(t) = �
Z t

0
U(� )d� +

�2

2

Z t

0
[ ~U(� ); U(� )]d�

+
�3

4

Z t

0
[
Z �

0
[ ~U(�); U(�)]d�; U(� )]d� +

�3

12

Z t

0
[ ~U(� ); [ ~U(� ); U(� )]]d� + : : : (28)

While the convergence criterion for (28) is not given explicitly in [21], two di�erent

su�cient conditions are provided in [11] and [7], respectively. Karasev and Mosolova [11]

show that (28) converges if Z t

0
kad�U(�)kd� < ln2: (29)

For G a �nite-dimensional Lie group, the convergence condition (29) is equivalent to

Z t

0
k�(�u(� ))kd� < ln2; (30)

where �(�) is an n� n matrix with ijth element �ij(�) de�ned by

�ij(v) =
nX

k=1

vk�
i
kj :

In the case that G = SO(3) and fA1; A2; A3g is the standard basis for G = so(3), it is easy

to compute that �(�u) = �U and so (30) is equivalent to

Z t

0
k�U(� )kd� < ln2:

The convergence criterion given by Fomenko and Chakon [7] takes the form

Z t

0
k�U(� )kd� <

b̂

M
; (31)

where M � 1 is de�ned such that k[A;B]k � MkAkkBk for all A;B 2 G and the universal

constant b̂ is the radius of a disk over which a scalar di�erential equation, de�ned in [7], has

an analytic solution.
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Let �̂ : G ! G de�ne the mapping

�̂(Z) = eZ; Z =
nX
i=1

ziAi: (32)

Let Ŝ be the largest neighborhood of 0 2 G such that 	̂ = �̂jŜ : Ŝ ! G is one-to-one. Let

Q̂ = 	̂(Ŝ) � G. Then 	̂ : Ŝ ! Q̂ is a di�eomorphism and, for d given by (26), we can de�ne

a metric d̂ : Q̂� Q̂! <+ by

d̂(X;Y ) = d(	̂�1(X); 	̂�1(Y )): (33)

Following Lazard and Tits [15] de�ne an admissible norm on G as any norm k � k that

makes (G; k � k) a Banach space and satis�es

k[A;B]k � kAkkBk; 8A;B 2 G:

De�ne B(G; �) = fA 2 G j kAk < �g. Then from Theorem 2.1 of [15], if the connected center

of G, CG0 , is simply connected, then the restriction of �̂ to B(G; �) is one-to-one. Consider a

matrix Lie algebra G � <n�n and the induced matrix �p-norm k � k�p on <n�n. We can always

construct an admissible norm as k � kL
4
= 2k � k�p, since

k[A;B]kL = 2k[A;B]k�p = 2kAB �BAk�p � 4kAk�pkBk�p = kAkLkBkL:

In the case of simply connected CG0, we can take Ŝ = B(G; �) = fA 2 G j kAkL < �g =

fA 2 G j kAk�p < �=2g. The condition on CG0 holds, in particular, for �nite-dimensional Lie

groups with trivial centers such as SO(3); SE(2) and SE(3). Further, for simply connected

Lie groups, we can replace � by 2�, i.e., we can take Ŝ = B(G; 2�). Thus, for all these kinds

of Lie groups, we can be assured that our norm d̂ is well-de�ned on a signi�cantly sized

neighborhood of the identity in G.

We note that for X in a su�ciently small neighborhood of the identity, knowing one local

representation means knowing the other approximately well.

Lemma 2 Given X 2 Q \ Q̂ � G, let g = 	�1(X) and Z = 	̂�1(X). Then g = O(�p) if

and only if Z = O(�p), p � 1. In this case, kgi � zik = O(�2p); i = 1; : : : ; n.
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Proof: The lemma is proved by expanding exponentials and equating the two local represen-

tations.
2

3 Averaging

Classical averaging theory is typically applied to systems evolving on <n. To derive averaging

theory for systems which evolve on Lie groups (2), we apply classical averaging theory to local

representations of (2) and then transfer such estimates to the group level. The theorems in

this section give formulas for the pth-order average solutionsX(p)(t), p = 2; 3. For illustration

we make use of the Wei-Norman product of exponentials representation for p = 2 and the

Magnus single exponential representation for p = 3. The �rst-order average formula can

be derived to be X(1)(t) = X(1)(0)e�Uavt. This describes the e�ect of the DC component

of U(t) on the system. This is useful for control only if m = n. As a result, we focus on

higher-order average formulas which capture Lie bracket motion of the system. A general

pth-order averaging theorem is given in Appendix A. The theorems below require smooth

controls; however, this requirement is relaxed in the appendix where piecewise continuous

controls are su�cient.

We note that these theorems state that the formulas are valid for X(t) in a neighborhood

of the identity of G. However, because system (2) is left-invariant, these theorems actually

give the formulas for the pth-order approximation X(p)(t) to the solution X(t) of (2) for any

initial condition X(0) 2 G. Let XI(t) and X
(p)
I (t) correspond to the actual and approximate

solutions, respectively, of (2) with XI (0) = I 2 G. By left-invariance of (2), X(t) =

X(0)XI (t) and X(p)(t) = X(0)X(p)
I (t) is an O(�p) approximation of X(t).

Theorem 3 (Second-Order Averaging: Area Rule) Consider system (2) on the Lie

group G with Lie algebra G. Assume that U(t) 2 G is periodic in t with period T and

has continuous derivatives up to third order for t 2 [0;1) and assume that Uav = 0. Let

D = fg 2 <n j kgk < rg � S (where r > 0 is chosen as large as possible). Suppose that

X(0) = X0 2 Q. Let g(t) be the solution to (21) with g(0) = g0 = 	�1(X0) = O(�). Let

15



g
(2)
0 = (g1

(2)
0 ; : : : ; gn

(2)
0 )T and de�ne

�wk(t) = �2
t

T

mX
i;j=1;i<j

Areaij(T )�
k
ij + gk

(2)
0 ; (34)

g
(2)
k (t) = �~uk(t) + �wk(t); (35)

X(2)(t) = eg
(2)
1 (t)A1 � � � eg

(2)
n (t)An; (36)

where �kij and Areaij(T ) are de�ned by (15) and (11), respectively. If kg0 � g
(2)
0 k = O(�2)

and if g(2)(t) 2 D, 8t 2 [0; b=�], b > 0, then,

~d(X(t);X(2)(t)) = O(�2); 8t 2 [0; b=�]:

Proof: Recall by (21) and (22) that for small kgk,

_g = �M(g)u = �u+ �~�(g)u+ �O(g2)u:

By second-order classical averaging theory (for details see [16]),

kg(t)� g(2)(t)k = O(�2); 8t 2 [0; b=�]; (37)

where

g(2)(t) = �~u(t) + �w(t)

and �w(t) is the solution to

_�w = �2
1

T

Z T

0

~�(~u(�))u(�)d�; �w(0) = g
(2)
0 : (38)

From the de�nition of ~� (23), the kth component of the vector ~�(~u)u is
mX
i=1

�ki(~u)ui =
mX
i=1

mX
j=i+1

�kji~ujui: (39)

So using integration by parts, the fact that �kij = ��kji, _~ui = ui and the de�nition ofAreaij(T )

(11) we get from substituting (39) into (38) that

�wk(t) = �2
t

T

Z T

0

mX
i=1

�ki(~u(�))ui(�)d� + gk
(2)
0

= �2
t

T

mX
i=1

mX
j=i+1

Z T

0
�kji~uj(�) _~ui(�)d� + gk

(2)
0

= �2
t

T

mX
i;j=1;i<j

1

2

Z T

0
(~uj(�) _~ui(�)� ~ui(�) _~uj(�))d��

k
ji + gk

(2)
0

= �2
t

T

mX
i;j=1;i<j

Areaij(T )�
k
ij + gk

(2)
0 :
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For small enough �, since g(2)(t) 2 D � S then g(t) 2 D � S, 8t 2 [0; b=�]. So by de�nition

of 	, X(t) = 	(g(t)) and X(2)(t) = 	(g(2)(t)), 8t 2 [0; b=�]. The theorem follows by (37)

and the de�nition of ~d, since ~d(X(t);X(2)(t)) = kg(t)� g(2)(t)k = O(�2), 8t 2 [0; b=�]. 2

We show further in the next proposition that the structure constants �kij associated to a

given basis for G are directly related to the Lie brackets of the vector �elds de�ned by the

columns of M(g) evaluated at g = 0.

Lemma 4 Suppose that �w(t) is de�ned by (34). Let [f1 f2 � � � fn] = M(g) where fk is the

kth column of the matrix M(g). Then

�w(t) =
�2t

T

mX
i;j=1;i<j

Areaij(T )[fi; fj]jg=0 + g
(2)
0 : (40)

Proof: By (22) and (23) we have that

fi =

2
66666666666664

Pn
k=i+1 gk�

1
ki +O(g2)
...Pn

k=i+1 gk�
(i�1)
ki +O(g2)

1 +
Pn

k=i+1 gk�
i
ki +O(g2)Pn

k=i+1 gk�
i+1
ki +O(g2)
...Pn

k=i+1 gk�
n
ki +O(g2)

3
77777777777775
:

So for i < j,

[fi; fj]jg=0 =
@fj
@g

jg=0fijg=0 �
@fi
@g
jg=0fjjg=0

= �

2
664
�1
ji
...
�nji

3
775 =

2
664
�1
ij
...
�nij

3
775 :

which by (34) completes the proof.
2

According to Theorem 3, X(2)(t) can be expressed as a product of exponentials where the

exponents have an O(�) periodic term and a secular term (a term linear in t). By (34) the

secular term is proportional to the structure constants �kij and the projected areas Areaij(T )

bounded by the closed curves described by ~ui and ~uj over one period. This interpretation

justi�es calling Theorem 3 an area rule.
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The second-order average formula derived using the single-exponential local representa-

tion for X(t) (as follows from Theorem 9, Appendix A) takes the form:

z
(2)
k (t) = �~uk(t) +

�2t

T

mX
i;j=1;i<j

Areaij(T )�
k
ij + gk

(2)
0 ; (41)

Z(2)(t) =
nX

k=1

zk(t)Ak; X(2)(t) = eZ
(2)(t): (42)

A comparison of the two second-order average formulas shows that z(2)(t) = g(2)(t).

The revealing step in the proof of the single exponential area rule shows that

Z(2)(t) =
�2t

2T

Z T

0
[ ~U;U ](�)d�

=
�2t

2T

Z T

0
[
mX
i=1

~ui(�)Ai;
mX
j=1

_~uj(�)Aj]d�

=
�2t

T

nX
k=1

(
mX

i;j=1;i<j

Areaij(T )�
k
ij)Ak; (43)

This result con�rms that the formulas X(2) are basis independent. Additionally, (43) reveals

how the secular term in the second-order approximation captures the e�ect of the group level

version of depth-one Lie brackets. This e�ect is developed further in Section 4.

Theorem 5 (Third-Order Averaging: Moment Rule) Consider system (2) on the Lie

group G with Lie algebra G. Assume that U(t) 2 G is periodic in t with period T and

has continuous derivatives up to fourth order for t 2 [0;1). Further, assume that Uav = 0

and Areaij(T ) = 0, 8i; j. Let D = fZ 2 G j kZk < rg � Ŝ (where r > 0 is chosen as

large as possible). b is de�ned according to the convergence criterion for (28). Suppose

that X(0) = X0. Let Z(t) be given by (28) with Z(0) = Z0 = 	̂�1(X0) = O(�2). Let

Z
(3)
0 =

Pn
q=1 zq

(3)
0 Aq. De�ne

z(3)q (t) = �~uq(t) +
mX

i;j=1;i<j

�2aij(t)�
q
ij �

mX
k=1

mX
i;j=1;i<j

�3t

T
mijk(T )�

q
ijk + zq

(3)
0 ; (44)

Z(3)(t) =
nX

q=1

z(3)q Aq; X(3)(t) = eZ
(3)(t); (45)

where �qijk and mijk(T ) are de�ned by (16) and (13), respectively. If kZ0 � Z
(3)
0 k = O(�3)

and if Z(3)(t) 2 D, 8t 2 [0; b=�],

d̂(X(t);X(3)(t)) = O(�3); 8t 2 [0; b=�]:
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Proof: By classical averaging theory

kZ(t)� Z(3)(t)k = O(�3); 8t 2 [0; b=�] (46)

where (compare with formulas (28) for Z(t))

Z(3)(t) = � ~U(t) +
�2

2

Z t

0
[ ~U(� ); U(� )]d� +

�3t

4T

Z T

0
[
Z �

0
[ ~U(�); U(�)]d�; U(� )]d�

+
�3t

12T

Z T

0
[ ~U(� ); [ ~U(� ); U(� )]]d� + Z

(3)
0

= � ~U(t) +
�2

2

Z t

0
[ ~U(� ); U(� )]d� +

�3t

3T

Z T

0
[ ~U(� ); [ ~U(� ); U(� )]]d� + Z

(3)
0 : (47)

The second equality is derived by integration by parts.

By de�nition, we have that � ~U(t) =
Pm

q=1 �~uq(t)Aq. Following the steps in (43)

�2

2

Z t

0
[ ~U;U ](�)d� =

nX
q=1

(
mX

i;j=1;i<j

�2aij(t)�
q
ij)Aq: (48)

The third term on the right side of (47) can be expanded as follows:

�3t

3T

Z T

0
[ ~U(� ); [ ~U(� ); U(� )]]d�

=
�3t

3T

Z T

0
[
mX
k=1

~uk(� )Ak; [
mX
i=1

~ui(� )Ai;
mX
j=1

_~uj(� )Aj]]d�

=
�3t

T

mX
k=1

mX
i;j=1;i<j

1

3

Z T

0
(~ui(� ) _~uj(� )� ~uj(� ) _~ui(� ))~uk(� )d� [Ak; [Ai; Aj]]

= �
nX

q=1

(
mX
k=1

mX
i;j=1;i<j

�3t

T
mijk(T )�

q
ijk)Aq; (49)

Therefore, the expression for Z(3)(t) given by (44)-(45) is veri�ed. For small enough �, since

Z(3)(t) 2 D � Ŝ then Z(t) 2 D � Ŝ, 8t 2 [0; b=�]. So by (27) X(t) = eZ(t) = 	̂(Z(t)). The

theorem follows by de�nition of X(3)(t) and d̂.
2

The third term on the right side of (44) is a purely secular term proportional to the �rst

moments mijk(T ) and the depth-two structure constants �qijk associated with choice of basis

for G. This interpretation makes Theorem 5 a moment rule. The average formula is clearly

basis independent.
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Remark 6 Since by (17)-(18) mijk(T ) +mjki(T ) +mkij(T ) = 0 and �qijk + �qjki + �qkij = 0,

nX
q=1

mX
k=1

mX
i;j=1;i<j

mijk(T )�
q
ijkAq =

nX
q=1

mX
i;j=1;i<j

(miji(T )�
q
iji +

mX
k=i+1

(2mijk(T )�mikj(T ))�
q
ijk)Aq:

Substituting this into the area-moment rule (44) incorporates the Jacobi identity and removes

redundant terms. This is signi�cant with regard to constructing controls to solve (P).

4 Constructive Controllability

The strategy that we propose for solving (P) approximately can be summarized in four steps:

1. Choose intermediate target points X1;X2; : : : ;Xr between Xi and Xf so that the \dis-

tance" between successive target points is small.

2. Specify open-loop, small-amplitude, periodic controls that drive X(t) from Xi to the

�rst target point X1 approximately. To do so, specify controls that drive an O(�p)

average approximation of X(t) from Xi to X1 exactly (p to be determined).

3. If desired, apply feedback, i.e., make appropriate modi�cations based on measurement

of the new system state. For example, modify selection of intermediate target points.

4. Repeat steps 2 and 3 for each successive target point (letting the previous target point

be the new initial position) until done.

The fact that we can make a large maneuver by repeating our technique on small steps

relies on the left-invariance of our system. That is, we can always reinitialize at our current

position and identify it with the identity in the Lie group.

In the case of a nilpotent system, Step 2 will drive X(t) from Xi to X1 exactly. This is

a result of the fact that high-order Lie bracket terms are identically zero (i.e., the formula

for Z(t) (28) is a �nite sum), and so an appropriate average provides an explicit solution to

(2). The proof can be found in [16].
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For Step 2, we use the average formulas of the previous section. To determine p consider

the series expansion (28) for Z(t), which can be thought of (locally) as the logarithm of

X(t). One can observe that the O(�p) term of this series is a function of a depth-(p� 1) Lie

bracket. Therefore, one expects that in order to be able to control X(p) as desired, p must

be greater than or equal to pmin where (2) is a depth-(pmin � 1) bracket system, i.e., the

controllability rank condition is satis�ed with up to depth-(pmin�1) brackets. We state this

formally for the cases p = 2; 3. The general pth-order case is given in Appendix A.

Theorem 7 Suppose that system (2) on the connected Lie group G is a depth-(p � 1)

bracket system, p = 2; 3. Then the complete constructive controllability problem (P) can be

solved with O(�p) accuracy using the formulas for X(k)(t), k = 1; : : : ; p, and p is the smallest

positive integer such that this is true.

Proof: The proof is constructive and given in the form of algorithms that synthesize small-

amplitude, low-frequency, continuous, sinusoidal controls. Without loss of generality we

assume that X(0) = Xi = I 2 G and Xf 2 Q \ Q̂ � G is such that gf = (gf 1; : : : ; gf n)
T =

	�1(Xf ) = O(�(p�1)) and Zf =
Pn

i=1 zf iAi = 	̂�1(Xf ) = O(�(p�1)). By Lemma 2 kzf�gfk =

O(2(p � 1)). Therefore, for the order of accuracy of control that we seek, gf and zf can be

used interchangeably.

The algorithms are designed to solve the problem X(p)(tf) = Xf by solving g(p)(tf) = gf

or equivalently Z(p)(tf) = Zf . Multiple sub-steps are used. That is, the time interval [0; tf ]

is divided into subintervals, e.g., [0; tf ] = [t0; t1) [ [t1; t2) [ � � � [ [t��1; t�]; t0 = 0; t� =

tf , and controls speci�ed on each subinterval. Because as assumed above, gf = O(�(p�1))

and zf = O(�(p�1)), we can ensure that the \initial condition" for each subinterval, e.g.,

g(t0), g(t1), g(t2), etc., will be O(�(p�1)), i.e., will satisfy the initial condition requirement

for the averaging theorems. Thus, the appropriate averaging theorem can be applied to

successive subintervals. Our controls will be speci�ed so that the terms uav; Areaij(T ) and

mijk(T ) will take on a single constant value on each subinterval. However, these terms may

take on di�erent values on di�erent subintervals. Thus, for ease of notation we de�ne the

\running total" of the time-varying area terms and moment terms as Areaij(t) and mijk(t),
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respectively. Let Area(r)ij (T ) and m
(r)
ijk(T ) be the values of the area and moment terms,

respectively, during the time interval [tr�1; tr] and suppose that t 2 [t�; t�+1]; 0 � � < �.

Then de�ne

Areaij(t) =
�X

r=1

(tr � tr�1)

T
Area

(r)
ij (T ) +

(t� t�)

T
Area

(�+1)
ij (T ); (50)

mijk(t) =
�X

r=1

(tr � tr�1)

T
m

(r)
ijk(T ) +

(t� t�)

T
m

(�+1)
ijk (T ): (51)

Case (i) p = 2. Let

C(1) = fC j C = Ak or C = [Ai; Aj]; i; j; k = 1; : : : ;mg:

The de�nition of a depth-one bracket system implies G = spanC(1), i.e.,

G = f
mX
k=1

ckAk +
mX

i;j=1

cij[Ai; Aj]; ck; cij 2 <g

= f
mX
k=1

ckAk +
mX

i;j=1;i<j

cij
nX

k=1

�kijAk; ck; cij 2 <g:

Therefore, since
Pn

k=1 gfkAk 2 G, there exist ck; cij 2 <, i; j; k = 1; : : : ;m such that

nX
k=1

gfkAk =
mX
k=1

ckAk +
nX

k=1

mX
i;j=1;i<j

cij�
k
ijAk: (52)

By Theorem 3,

nX
k=1

g
(2)
k (t)Ak =

mX
k=1

�~uk(t)Ak +
nX

k=1

mX
i;j=1;i<j

�2t

T
Areaij(T )�

k
ijAk: (53)

Thus, to �nd controls that produce g(2)(tf) = gf , we equate (52) and (53) and match

coe�cients. That is, we choose uk(t); t 2 [0; tf ]; k = 1; : : : ;m such that

�~uk(tf) = ck; k = 1; : : : ;m and (54)

�2Areaij(tf) = cij; i; j = 1; : : : ;m; i < j: (55)

Then g(2)(tf) = gf so that X(2)(tf) = 	(g(2)(tf)) = 	(gf ) = Xf . Thus, by Theorem 3,

~d(X(tf );Xf ) = ~d(X(tf );X(2)(tf)) = O(�2).

Algorithm 1 below computes uk(t); t 2 [0; tf ]; k = 1; : : : ;m such that (54)-(55) are

met. This is done by recognizing the geometric meaning of the terms Areaij(T ), i.e., that
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Areaij(T ) is the area bounded by the closed curve described by ~ui and ~uj over one period.

In particular, if we choose ~ui and ~uj to be sinusoids that are in phase then Areaij(T ) = 0.

Alternatively, if they are chosen out of phase then Areaij(T ) 6= 0 is a function of the signal

magnitudes and phase di�erence. Based on this reasoning, the �nal values of each of these

terms can be matched independently, i.e., (54)-(55) can be met. The timing can be controlled

by choosing the frequency and amplitudes of the sinusoids appropriately. In Appendix B

we de�ne two algorithm components. The �rst, Component 1(i) steers ~uk, k = 1; : : : ;m to

satisfy (54) with no net change to any Areaij(t) term. The second, Component 1(ii) steers

area termsAreaij(t), i; j; i < j to satisfy (55) with no net change to ~u. In each component the

controls have an initial and �nal value of zero. The algorithm components are like computer

subroutines that are de�ned once and for all and called as necessary.

ALGORITHM 1

Compute ck; cij as follows such that (52) holds. Consider the matrix

�
4
=

2
6666664

�m+1
12 �m+1

13 : : : �m+1
1m �m+1

23 : : : �m+1
2m : : : �m+1

(m�1)m

�m+2
12 : : : : :
: : : : : :
: : : : : :
�n12 �n13 : : : �n1m �n23 : : : �n2m : : : �n(m�1)m

3
7777775
:

Note that � has rank n � m. De�ne the generalized inverse of � to be �y = �T (��T )�1.

Then let 2
66664

c12
c13
...

c(m�1)m

3
77775 = �y

2
664
gfm+1

...
gf n

3
775 ;

ck = gf k �
mX

i;j=1;i<j

cij�
k
ij ; k = 1; : : : ;m:

�S = fk j ckj 6= 0; some j > kg; r = j �Sj
4
= number of elements in �S:

Choose M to be a positive integer such that M � 1=��. Let the period T and frequency !

of the controls be

T =
tf

r(M + 1) + 1=2
; ! =

2�

T
:

Then using the controls de�ned in Components 1(i) and 1(ii), perform the following itera-

tions:
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1. i = 0.

2. i = i+ 1.

3. If i 62 �S go to 5.

4. Apply Component 1(ii) for cij , j = i+ 1; : : : ;m.

5. If i < m� 1 go to 2.

6. Apply Component 1(i) for ck, k = 1; : : : ;m.

Then we are done and ~d(X(tf );Xf ) = O(�2) as desired.

Case (ii) p = 3. Let

C(2) = fC j C = Aq or C = [Ai; Aj]; or C = [[Ai; Aj]; Ak]; q; i; j; k = 1; : : : ;mg:

The de�nition of a depth-two bracket system implies that G = spanC(2), i.e.,

G = f
mX
q=1

cqAq +
mX

i;j=1

cij [Ai; Aj] +
mX

i;j;k=1

cijk[[Ai; Aj]; Ak]; cq; cij; cijk 2 <g

= f
mX
q=1

cqAq +
nX

q=1

(
mX

i;j=1;i<j

cij�
q
ij +

mX
k=1

mX
i;j=1;i<j

cijk�
q
ijk)Aqg

= f
mX
q=1

cqAq +
nX

q=1

mX
i;j=1;i<j

(cij�
q
ij + ciji�

q
iji +

mX
k=i+1

cijk�
q
ijk)Aqg

where the cijk in the last line are a rede�nition taking into account the relations among �pijk

induced by the Jacobi identity (17). Therefore, since Zf 2 G, there exist cq; cij; cijk 2 <;

such that

Zf =
mX
q=1

cqAq +
nX

q=1

mX
i;j=1;i<j

(cij�
q
ij + ciji�

q
iji +

mX
k=i+1

cijk�
q
ijk)Aq: (56)

By Theorem 5 and Remark 6

Z(3)(t) =
mX
q=1

�~uq(t)Aq +
nX

q=1

mX
i;j=1;i<j

(�2aij(t)�
q
ij �

�3t

T
miji(T )�

q
iji

�
mX

k=i+1

�3t

T
(2mijk(T )�mikj(T ))�

q
ijk)Aq: (57)

24



Thus, to �nd controls that produce Z(3)(tf) = Zf , we equate (56) and (57) and match

coe�cients. That is, we choose uq(t); t 2 [0; tf ]; q = 1; : : : ;m such that

�~uq(tf) = cq; q = 1; : : : ;m; (58)

�2aij(tf) = cij ; i; j = 1; : : : ;m; i < j; (59)

�3miji(tf) = �ciji; i; j = 1; : : : ;m; i < j; and (60)

�3(2mijk(tf)�mikj(tf)) = �cijk; i; j; k = 1; : : : ;m; i < j; k: (61)

Then X(3)(tf ) = 	̂(Z(3)(tf)) = 	̂(Zf ) = Xf and so by Theorem 5, d̂(X(tf);Xf ) =

d̂(X(tf );X
(3)(tf )) = O(�3).

Algorithm 2 below computes uq(t); t 2 [0; tf ]; q = 1; : : : ;m such that (58)-(61) are

met. This is done by recognizing the meaning of the geometric terms as in Case (i). In

particular, the termsmijk(T ) and mikj(T ); i < j < k; can be controlled using sinusoids with

1-2 resonance. In Appendix B we de�ne Component 2(ii) which addresses (59) and (60) and

Component 2(iii) which addresses (61).

ALGORITHM 2 Let

� = f� 2 fm+ 1; : : : ; ng j ��ij 6= 0 some i; j 2 f1; : : : ;mg; i < jg: (62)

De�ne 0 < l < (n � m) by l = j�j = number of elements in �. We will assume for the

purposes of the algorithm, without loss of generality, that the basis fA1; : : : ; Ang is chosen

and ordered such that fA1; : : : ; Am+lg is a basis for �+[�;�], where � = spanfA1; : : : ; Amg.

Compute cq; cij; cijk such that (56) holds as follows. Consider the matrix

�
4
=

2
6666664

�m+l+1
121 �m+l+1

122 : : : �m+l+1
12m : : : �m+l+1

1mm �m+l+1
232 : : : �m+l+1

(m�1)mm

�m+l+2
121 �m+l+2

122 : : : :
: : : : : :
: : : : : :

�n121 �n122 : : : : : : : �n(m�1)mm

3
7777775

and the matrix

�
4
=

2
6666664

�m+1
12 �m+1

13 : : : �m+1
1m �m+1

23 : : : �m+1
2m : : : �m+1

(m�1)m

�m+2
12 : : : : :
: : : : : :
: : : : : :

�m+l
12 �m+l

13 : : : �m+l
1m �m+l

23 : : : �m+l
2m : : : �m+l

(m�1)m

3
7777775
:
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Let �
4
= m+ l. Then � has rank n� � and � has rank l. De�ne the generalized inverse of �

to be �y = �T (��T )�1. Let

2
66664

c121
c122
...

c(m�1)mm

3
77775 = �y

2
664
zfm+l+1

...
zfn

3
775 :

De�ne the generalized inverse of � to be �y = �T (��T )�1. Then let

2
66664

c12
c13
...

c(m�1)m

3
77775 = �y

2
664
zfm+1 �

Pm
i;j=1;i<j(ciji�

m+1
iji +

Pm
k=i+1 cijk�

m+1
ijk )

...
zfm+l �

Pm
i;j=1;i<j(ciji�

m+l
iji +

Pm
k=i+1 cijk�

m+l
ijk )

3
775 ;

cq = zf q �
mX

i;j=1;i<j

(cij�
q
ij + ciji�

q
iji +

mX
k=i+1

cijk�
q
ijk) q = 1; : : : ;m:

�Y = fcijk j cijk 6= 0; i < j; i � kg;

�Q = fcijk 2 �Y j i < j < kg; � = j �Qj = number of elements in �Q;

�R = fcijk 2 �Y j k = ig [ fcijk 2 �Y j k = j and ciji 62 �Y g;

�V = fcij j cij 6= 0; i < jg;

�W = fcijk 2 �R j cij 62 �V g; � = j �W j+ j�V j:

Choose M to be a positive integer such that M � 1=��. Let the period T and frequency !

of the controls be

T =
tf

(6� + 3�)(M + 1) + 1=2
; ! =

2�

T
:

Then use the controls de�ned in Components 1(i), 2(ii) and 2(iii) of Appendix B to perform

the following iterations:

1. i = 0.

2. i = i+ 1, j = i.

3. j = j + 1, k = j.

4. k = k + 1. If k = m+ 1 go to 8.
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5. If cijk = cikj = 0 go to 7.

6. Apply Component 2(iii) for cijk and cikj .

7. If k � m� 1 go to 4.

8. If cij = ciji = cijj = 0 go to 10.

9. Apply Component 2(ii) for cij , ciji and cijj.

10. If j � m� 1 go to 3.

11. If i < m� 1 go to 2.

12. Apply Component 1(i) for cq for q = 1; : : : ;m.

Then we are done and d̂(X(tf );Xf ) = O(�3) as desired.

The proof is completed by noting that for 0 < p0 < p and p = 2; 3, the p0th-order average

solution X(p0) captures system behavior that includes only up to (p0� 1) Lie brackets. Thus,

for a depth-(p � 1) bracket system, p = 2; 3, X(p0) cannot be controlled as desired.
2

The arguments of this section are reminiscent of [1], where Brockett works with piecewise

constant controls.

5 Examples

Consider the autonomous underwater vehicle motion control problem described in Section

1. The Wei-Norman equations for SE(3) with our chosen basis for se(3) are

2
666666664

_g1
_g2
_g3
_g4
_g5
_g6

3
777777775
=

2
666666664

sec g2 cos g3 � sec g2 sin g3 0 0 0 0
sin g3 cos g3 0 0 0 0

� tan g2 cos g3 tan g2 sin g3 1 0 0 0
0 �g6 g5 1 0 0
g6 0 �g4 0 1 0
�g5 g4 0 0 0 1

3
777777775

2
666666664

u1
u2
u3
u4
u5
u6

3
777777775
: (63)
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The parameters g1; g2; g3 correspond to Euler-angle type parameters and parametrize the

orientation of the vehicle. The parameters g4; g5; g6 parametrize the position of the vehicle.

AUV with Four Controls: First, suppose that we can control all components of angular

velocity as well as one translational velocity component, i.e., fA1; A2; A3; A4g describes our

control authority. Then, X(t) describes the orientation and position of the vehicle and

satis�es

_X = �X(
4X

i=1

ui(t)Ai); (64)

where fA1; : : : ; A6g is the basis for se(3) de�ned by (7). This system is a depth-one bracket

system since [A3; A4] = A5 and [A4; A2] = A6. We have n = 6, m = 4, and the nonzero

structure constants corresponding to our chosen basis for se(3) can easily be computed as

�3
12 = �1

23 = �2
31 = 1, �6

15 = �5
61 = 1, �6

42 = �4
26 = 1, �5

34 = �4
53 = 1.

Following Algorithm 1, we compute

� =

"
�5
12 �5

13 �5
14 �5

23 �5
24 �5

34

�6
12 �6

13 �6
14 �6

23 �6
24 �6

34

#

=

"
0 0 0 0 0 1
0 0 0 0 �1 0

#
:

�y =

"
0 0 0 0 0 1
0 0 0 0 �1 0

#T
:

Therefore, "
c24
c34

#
=

"
0 �1
1 0

# "
gf 5
gf 6

#
=

"
�gf 6
gf 5

#
;

c12 = c13 = c14 = c23 = 0;
c1 = gf 1 � c24�1

24 � c34�1
34 = gf 1;

c2 = gf 2 � c24�2
24 � c34�2

34 = gf 2;
c3 = gf 3 � c24�3

24 � c34�3
34 = gf 3;

c4 = gf 4 � c24�4
24 � c34�4

34 = gf 4;
�S = f2; 3g; r = 2:

So we choose an integer M � 1=�� and

T =
tf

2(M + 1) + 1=2
; ! =

2�

T
:

Then we apply Component 1(ii) for c24 followed by Component 1(ii) for c34 followed by

Component 1(i) for c1; c2; c3; c4. To reduce the time and energy expended by the controls
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Figure 1: Control Input Signals for AUV Example with Four Controls.

we can instead apply Component 1(ii) just once. To do this let i = 4; j = 2; 3, c42 = �c24,

c43 = �c34 and apply Component 1(ii) to match c42 and c43. In this case we have �S = f4g

and r = 1 so we recompute

T =
tf

M + 3=2
; ! =

2�

T
:

For numerical illustration, let � = 0:1, gf i = 0:1; i = 1; : : : ; 6, and tf = 23. Choose

M = 10, then T = 2, ! = �. Figure 1 shows plots of the corresponding controls �u1, �u2,

�u3, �u4 as a function of time. Figure 2 shows a simulation of the response of the Wei-Norman

parameters g as a function of time. The simulation was produced by numerically solving

the equations (63) using MATLAB. The horizontal dashed lines of Figure 2 represent the

desired �nal parameter value gf . Figure 2 shows that g(tf) � gf = O(�2) and equivalently

Z(tf) � Zf = O(�2) as expected. By the results of Lazard and Tits (see Section 2) for

G = se(3) we can let Ŝ = fA 2 se(3) j kAk�p < �=2g for any �p. From Figure 2 it is clear

that Zf 2 Ŝ and Z(tf ) 2 Ŝ for some choice of �p. Thus, kZ(tf) � Zfk = O(�2) implies

d̂(X(tf );Xf ) = O(�2), i.e., the AUV has been repositioned and reoriented as desired with

O(�2) accuracy.

AUV with Three Controls: Now consider the case when there are only three controls

available, e.g., suppose that due to an actuator failure, the third component of angular
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Figure 2: Response of AUV with Four Controls.

velocity can no longer be directly actuated. We can use our algorithms to adapt on-line by

computing new controls based on the new relevant structure constants. Our new control

authority is de�ned by fA1; A2; A4g and X(t) 2 SE(3) satis�es

_X = �X(u1A1 + u2A2 + u4A4); (65)

which is a depth-two bracket system since [A1; A2] = A3, [A4; A2] = A6 and [[A1; A2]; A4] =

A5. For the purposes of the algorithm, we reorder our basis for se(3) such that A3 , A4

and A5 , A6. The nonzero structure constants associated with this reordered basis become

�4
12 = �1

24 = �2
41 = 1, �5

16 = �6
51 = 1, �5

32 = �3
25 = 1, �6

43 = �3
64 = 1. Further, �6123 = 1. Thus,

n = 6, m = 3, and so by (62), � = f4; 5g and l = j�j = 2. Thus, we get

� = [�6121 �6122 �6123 �6131 �6132 �6133 �6231 �6232 �6233]

= [0 0 1 0 0 0 � 1 0 0];

� =

"
�4
12 �4

13 �4
23

�5
12 �5

13 �5
23

#
=

"
1 0 0
0 0 �1

#
:

c123 = zf 5;
c121 = c122 = c231 = c232 = c233 = c131 = c132 = c133 = 0:

Note that zf5 is based on the original ordering of the basis for se(3) and so it is the coe�cient
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of A6 in the reordered basis. Further,"
c12
c23

#
=

"
1 0
0 �1

# "
zf3 � c123�

4
123

zf6 � c123�
5
123

#
=

"
zf3
�zf6

#
;

c13 = 0;
c1 = zf 1 � (c12�1

12 + c23�1
23 + c123�

1
123) = zf1;

c2 = zf 2 � (c12�2
12 + c23�2

23 + c123�
2
123) = zf2;

c3 = zf 4 � (c12�3
12 + c23�3

23 + c123�
3
123) = zf4;

�Y = fc123g; �Q = fc123g; �R = ;; �V = fc12; c23g;
�W = ;; � = 1; 
 = 2:

So we choose an integer M � 1=�� and

T =
tf

12(M + 1) + 1=2
; ! =

2�

T
:

Then we apply Component 2(iii) for c123, followed by Component 2(ii) for c12, followed by

Component 2(ii) for c23, followed by Component 2(i) for c1; c2; c3. These components will

specify controls u1; u2 and u3. However, u3 is really our original control u4 since it is the

coe�cient of the original A4.

For this particular system we note that the execution of the algorithm is longer than

necessary, i.e., there are steps which have zero net e�ect on the system. Thus, to save time

and energy we eliminate the unnecessary steps of the control algorithm de�ned above. The

total time duration of the parts left out is 9(M + 1)T so we recompute

T =
tf

3(M + 1) + 1=2
; ! =

2�

T
:

For numerical illustration, let � = 0:2; tf = 37 and gf 1 = 0:05; gf 2 = 0:05; gf 3 =

0:04; gf 4 = 0:06; gf 5 = 0:05; gf 6 = 0:05 (recalling from Lemma 2 that for the algorithm

that we can set zf = gf ). Choose M = 5, then T = 2, ! = �. Figure 3 shows plots of the

corresponding controls �u1, �u2 and �u4 as a function of time. Figure 4 shows a simulation

of the response of the Wei-Norman parameters g as a function of time. The horizontal

dashed lines of Figure 4 represent the desired �nal parameter values gf . Figure 4 shows

that g(tf) � gf = O(�3) as expected. We conclude that the AUV has been repositioned

and reoriented as desired with O(�3) accuracy. Reorientation with only roll and pitch

actuators was demonstrated experimentally using this algorithm on an underwater vehicle in

the neutral buoyancy facility of the Space Systems Laboratory at the University of Maryland.

For details see [17].
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Figure 3: Control Input Signals for AUV Example with Three Controls.

6 Conclusions

We have derived average formulas for the solution to (2) and used them to specify small-

amplitude periodic controls that solve the complete constructive controllability problem (P)

approximately (exactly if the system is nilpotent). We have shown that the smallest order

of the average formula su�cient to solve (P) is one more than the number of Lie bracket

iterations needed for the system to satisfy the Lie algebra controllability rank condition. The

results were developed for the pth-order average approximation where p = 2; 3; however, the

general pth-order average theorem is stated in Appendix A. The proof of the controllability

result is constructive and was given in the form of algorithms for generating open-loop

controls. Structure constants, which de�ne the control authority of the system, drive the

algorithms. A change in control authority such as an actuator failure may be described by a

change in structure constants and, thus, can be accommodated on-line using the algorithms.

One might consider the algorithms of this paper to be a \motion script" generator. Thus, a

change in structure results in a change in script.

Averaging theory for systems on Lie groups also holds promise for understanding and

controlling systems with drift. That is, while the algorithms derived in this paper are valid
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Figure 4: Response of AUV with Three Controls.

only for drift-free systems of the form (2), the averaging theory here does not rely on the

drift-free assumption. We have already applied our averaging theory on Lie groups to the

problem of controlling a class of switched electrical networks which can be modelled as

systems on Lie groups with drift [19].

7 Acknowledgements

We would like to thank Roger Brockett for useful conversations on the subject of this paper.

Further, it is a pleasure to acknowledge the helpful and critical comments of W.P. Dayawansa

on an earlier version of this paper.

References

[1] R. W. Brockett, System theory on group manifolds and coset spaces, SIAM Journal of

Control, vol. 10, no. 2, pp. 265{284, May 1972.

[2] R. W. Brockett, Control theory and singular Riemannian geometry, In New Directions

in Applied Mathematics, pp. 13{27. Springer-Verlag, 1982.

33



[3] R. W. Brockett, On the recti�cation of vibratory motion, Sensors and Actuators, vol.

20, no. 1-2, pp. 91{96, 1989.

[4] R. W. Brockett, Formal language for motion description and map making, In R. W.

Brockett, editor, Proceedings of Symposia in Applied Mathematics, pp. 181{193, Provi-

dence, 1990. American Mathematical Society, Volume 41.

[5] J.-M. Coron, Global asymptotic stabilization for controllable systems without drift,

Mathematics of Control, Signals and Systems, vol. 5, no. 3, pp. 295{312, 1992.

[6] M. L. Curtis, Matrix Groups, Springer-Verlag, 2nd edition, 1984.

[7] A. T. Fomenko and R. V. Chakon, Recursion relations for homogeneous terms of a

convergent series of the logarithm of a multiplicative integral on Lie groups, Func-

tional Analysis and its Applications, vol. 24, no. 1, pp. 48{58, January - March 1990,

Translated from Russian.

[8] L. Gurvits, Averaging approach to nonholonomic motion planning, In Proc. IEEE Int.

Conf. Robot. Automat., pp. 2541{2546, Nice, France, 1992.

[9] L. Gurvits and Z. X. Li, Smooth time-periodic feedback solution for nonholonomic

motion planning, In Z. Li and J. F. Canny, editors, Nonholonomic Motion Planning,

pp. 53{108. Kluwer Academic, 1993.

[10] V. Jurdjevic and H. J. Sussmann, Control systems on Lie groups, Journal of Di�erential

Equations, vol. 12, pp. 313{329, 1972.

[11] M. V. Karasev and M. V. Mosolova, In�nite products and T products of exponentials,

Theoretical and Mathematical Physics, vol. 28, pp. 721{729, 1976, Translated from

Russian.

[12] P. S. Krishnaprasad and R. Yang, Geometric phases, anholonomy, and optimal move-

ment, In Proc. IEEE Int. Conf. Robot. Automat., pp. 2185{2189, Sacramento, CA,

1991.

34



[13] P. S. Krishnaprasad, R. Yang, and W. P. Dayawansa, Control problems on principal

bundles and nonholonomic mechanics, In Proc. 30th IEEE Conf. Decision Contr., pp.

1133{1138, Brighton, UK, 1991.

[14] G. La�erriere and H. J. Sussmann, Motion planning for controllable systems without

drift: A preliminary report, Report SYCON-91-4, Rutgers Center for Systems and

Control, June 1990.

[15] M. Lazard and J. Tits, Domaines d'injectivit�e de l'application exponentielle, Topology,

vol. 4, pp. 315{322, 1966.

[16] N. E. Leonard, Averaging and Motion Control of Systems on Lie Groups, PhD thesis,

University of Maryland, College Park, MD, 1994.

[17] N. E. Leonard, Control synthesis and adaptation for an underactuated autonomous

underwater vehicle, IEEE Journal of Oceanic Engineering, 1995, to appear.

[18] N. E. Leonard and P. S. Krishnaprasad, Averaging for attitude control and motion

planning, In Proc. 32nd IEEE Conf. Decision Contr., pp. 3098{3104, San Antonio, TX,

1993.

[19] N. E. Leonard and P. S. Krishnaprasad, Control of switched electrical networks using

averaging on Lie groups, In Proc. 33rd IEEE Conf. Decision Contr., pp. 1919{1924,

Orlando, FL, 1994.

[20] W. Liu, Averaging Theorems for Highly Oscillatory Di�erential Equations and the

Approximation of General Paths by Admissible Trajectories for Nonholonomic Systems,

PhD thesis, Rutgers University, New Brunswick, NJ, October 1992.

[21] W. Magnus, On the exponential solution of di�erential equations for a linear operator,

Communications on Pure and Applied Mathematics, vol. VII, pp. 649{673, 1954.

[22] R. M. Murray and S. S. Sastry, Steering nonholonomic systems using sinusoids, In Proc.

29th IEEE Conf. Decision Contr., pp. 2097{2101, Honolulu, HI, 1990.

35



[23] R. M. Murray and S. S. Sastry, Nonholonomic motion planning: Steering using sinu-

soids, IEEE Trans. Automat. Contr., vol. 38, no. 5, pp. 700{716, 1993.

[24] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-

Verlag, New York, 1990.

[25] J. B. Pomet, Explicit design of time-varying stabilizing control laws for a class of

controllable system without drift, Systems and Control Letters, vol. 18, no. 2, pp.

147{158, 1992.

[26] A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number,

Journal of Fluid Mechanics, vol. 198, pp. 557{585, 1989.

[27] O. J. S�rdalen, Feedback Control of Nonholonomic Mobile Robots, PhD thesis, The

Norwegian Institute of Technology, 1993.

[28] O. J. S�rdalen, M. Dalsmo, and O. Egeland, An exponentially convergent control law

for a nonholonomic underwater vehicle, In Proc. IEEE Int. Conf. Robot. Automat.,

volume 3, pp. 790{795, Atlanta, GA, 1993.

[29] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, Journal of

Di�erential Equations, vol. 12, pp. 95{116, 1972.

[30] H. J. Sussmann and W. Liu, Limits of highly oscillatory controls and the approximation

of general paths by admissible trajectories, In Proc. 30th IEEE Conf. Decision Contr.,

pp. 437{442, Brighton, UK, 1991.

[31] G. C. Walsh and S. Sastry, On reorienting linked rigid bodies using internal motions,

In Proc. 30th IEEE Conf. Decision Contr., pp. 1190{1195, Brighton, UK, 1991.

[32] J. Wei and E. Norman, On global representations of the solution of linear di�erential

equations as a product of exponentials, In Proceedings of the American Mathematical

Society, pp. 327{334, April 1964.

Appendix A

36



In this appendix we state the general pth-order averaging theorem and constructive con-

trollability theorem. The proofs can be found in [16]. The theorems make use of the following

recursive formula given by Fomenko and Chakon [7] for the terms in the in�nite series ex-

pression for Z(t) where X(t) = eZ(t)

Theorem 8 (Fomenko and Chakon) Let � = b̂=M , where M � 1 is a constant such

that k[A;B]k � MkAkkBk; 8A;B 2 G and b̂ is a universal constant. Suppose that U(t)

is a piecewise continuous curve in G and
R t
0 k�U(� )kd� < �. Then Z(t) =

P1
i=1 �

iZi(t) is a

convergent series. The terms Zi(t) are uniquely de�ned by

Z1(t) = T0(t) =
Z t

0
U(� )d�;

(i+ 1)Zi+1(t) = Ti +
iX

r=1

f
1

2
[Zr; Ti�r] (66)

+
X

q�1; 2q�r

k2q
X

P2q

j=1
mj=r; mj>0

[Zm1 ; [Zm2; : : : ; [Zm2q ; Ti�r] : : :]g;

Tk(t) =
Z t

0
[U(�1);

Z �1

0
[U(�2); : : : ;

Z �k

0
U(�k+1)d�k+1]d�k] : : :]d�1:

We note that each term Zi is composed of depth-(i� 1) brackets.

Theorem 9 (pth-Order Averaging: Area-Moment Rule) Consider system (2) on the

Lie group G with Lie algebra G. Assume that U(t) is a piecewise continuous, bounded curve

in G. Let b > 0 be such that
R t
0 kU(� )kd� < �; 8t 2 [0; b], where � is as de�ned in Theorem 8.

Further, assume that U(t) is periodic in t of period T , 8t 2 [0;1). Let p � 1 be an integer.

For p > 1 assume that Tk(T ) = 0, k = 0; : : : ; p � 2, where Tk(t) is de�ned by (66). Suppose

that X(0) = X0 2 Q̂ � G is such that Z0 = 	̂�1(X0) = O(�p�1) if p > 1 and Z0 = O(�) if

p = 1. De�ne

Z(p)(t) =
p�1X
i=1

(�1)i+1�iZi(t) + (�1)p+1�p
t

T
Zp(T ) + Z

(p)
0 ; (67)

X(p)(t) = eZ
(p)(t); (68)

where Zi(t) are de�ned by (66). If kZ0 � Z
(p)
0 k = O(�p) and Z(p)(t) 2 Ŝ, 8t 2 [0; b=�], then

d̂(X(t);X(p)(t)) = O(�p); 8t 2 [0; b=�]: (69)
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Further, for t = NT , N an integer,

Z(p)(NT ) = (�1)p+1�pNZp(T ) + Z
(p)
0 : (70)

Remark 10 Further explicit decomposition of Z(p) into terms like areas and structure con-

stants can be found in [16] imitating the argument for Z(2) in (43) and Z(3) in (49).

Theorem 11 Suppose that system (2) on the connected Lie group G with Lie algebra G is

a depth-p0 bracket system. Let p = p0 + 1. Then the complete constructive controllability

problem (P) can be solved with O(�p) accuracy using the formulas X(r)(t) given by (68) for

r = 1; : : : ; p. Further, p is the minimum positive integer such that this is true.

Appendix B

In this appendix, we present the components used in the algorithms of this paper. The

sinusoidal controls are typically sub-optimal. However, given the chosen sinusoidal structure

of the controls, the amplitudes are selected to minimize energy (integral of sum of squares

of inputs). In the following control laws, if a control component is not explicitly prescribed

it should be set equal to zero.

Component 1(i)

Given: ck, k = 1; : : : ;m, T , ! and current time t0.

Goal: Let t1 = t0 + T=2. We de�ne �uk(t), k = 1; : : : ;m, t 2 [t0; t1], continuous, such that

�~uk(t1) = ck and �uk(t1) = �uk(t0) = 0.

Controls:

�uk(t) =
1

2
ck!sin(!(t� t0)); t0 � t � t1:

Component 1(ii)

Given: cij , for i and j = i+ 1; : : : ;m, T , !, M and current time t0.
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Goal: Let t1 = t0 + (M + 1)T . Let

�i =

0
@ mX
j=i+1

c2ij
�2M2

1
A
1=4

;

�j =
cij

�i�M
; j = i+ 1; : : : ;m:

Specify continuous, zero-mean controls ui(t), uj(t), j = i + 1; : : : ;m, t 2 [t0; t1] such

that �2Areaij(t1) = cij , �ui(t0) = �ui(t1) = �uj(t0) = �uj(t1) = 0.

Controls:

�ui(t) = �i! sin(!(t� t0))
�uj(t) = 0

)
t0 � t � t0 +

T
4
= s1

�ui(t) = �i! cos(!(t� s1))
�uj(t) = �j! sin(!(t� s1))

)
s1 � t � s1 +MT = s2

�ui(t) = �i! cos(!(t� s2))
�uj(t) = 0

)
s2 � t � s2 +

3T
4
= t1

Note that �2Areaij(t1) = �i�j�M = cij and the goal is met.

Component 2(ii)

Given: i < j; cij ; ciji; cijj ; T , !, M and current time t0.

Goal: Let t1 = t0 + 3(M + 1)T and

�i1 =
q

cij
�M

; �i2 =
�

32c2
iji

�2M2

�1=6
; �i3 =

�
32c2

ijj

�2M2

�1=6

;

�j1 =
cij

�i1�M
; �j2 =

2ciji
�i22�M

; �j3 =
�2cijj
�i23�M

:

Specify continuous, zero-mean controls ui(t) and uj(t), t 2 [t0; t1], such that �3Areaij(t1) =

cij, �3miji(t1) = �ciji, �3mijj(t1) = �cijj and �ui(t1) = �ui(t0) = �uj(t1) = �uj(t0) = 0.

Controls:

�ui(t) = �i1! sin(!(t� t0))
�uj(t) = 0

)
t0 � t � t0 +

T

4
= s1

�ui(t) = �i1! cos(!(t� s1))
�uj(t) = �j1! sin(!(t� s1))

)
s1 � t � s1 +MT = s2

�ui(t) = �i1! cos(!(t� s2))
�uj(t) = 0

)
s2 � t � s2 +

3T

4
= s3
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�ui(t) = �i2! sin(!(t� s3))
�uj(t) = 2�j2! sin(!(t� s3))

)
s3 � t � s3 +

T

4
= s4

�ui(t) = �i2! cos(!(t� s4))
�uj(t) = 2�j2! cos(2!(t� s4))

)
s4 � t � s4 +MT = s5

�ui(t) = �i2! cos(!(t� s5))
�uj(t) = 2�j2! cos(!(t� s5))

)
s5 � t � s5 +

3T

4
= s6

�ui(t) = 2�j3! sin(!(t� s6))
�uj(t) = �i3! sin(!(t� s6))

)
s6 � t � s6 +

T

4
= s7

�ui(t) = 2�j3! cos(2!(t� s7))
�uj(t) = �i3! cos(!(t� s7))

)
s7 � t � s7 +MT = s8

�ui(t) = 2�j3! cos(!(t� s8))
�uj(t) = �i3! cos(!(t� s8))

)
s8 � t � s8 +

3T

4
= s9

The condition on Areaij(t) is met during the time interval [0; s3], the condition on miji(t) is

met during [s3; s6] and the condition on mijj(t) is met during [s6; s9].

Component 2(iii)

Given: i < j < k; cijk; cikj ; T , !, M and current time t0.

Goal: Let t1 = t0+6(M +1)T . Let d1 = 2(2
3
cijk+

1
3
cikj)=�M and d2 = 2(1

3
cijk+

2
3
cikj)=�M .

Select

�j1 =
�
d1
6

�1=3
; �i1 =

����� d1�j1
����
�1=2

; �k1 =
d1

�i1�j1
;

�j2 =
�
d2
6

�1=3
; �i2 =

����� d2�j2
����
�1=2

; �k2 =
d2

�i2�j2
:

We specify continuous, zero-mean controls ui(t); uj(t) and uk(t), t 2 [t0; t1], such

that �3(2mijk(t1) � mikj(t1)) = �cijk, �3(2mikj(t1) � mijk(t1)) = �cikj , �ui(t1) =

�ui(t0) = �uj(t1) = �uj(t0) = �uk(t1) = �uk(t0) = 0. Further, Areaij(t1) = Areaik(t1) =

Areajk(t1) = 0.

Controls:

�ui(t) = �i1! sin(!(t� t0))
�uj(t) = 2�j1! sin(!(t� t0))
�uk(t) = �k1! sin(!(t� t0))

9>=
>; t0 � t � t0 +

T

4
= s1

�ui(t) = �i1! cos(!(t� s1))
�uj(t) = 2�j1! cos(2!(t� s1))
�uk(t) = �k1! cos(!(t� s1))

9>=
>; s1 � t � s1 +MT = s2
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�ui(t) = �i1! cos(!(t� s2))
�uj(t) = 2�j1! cos(!(t� s2))
�uk(t) = �k1! cos(!(t� s2))

9>=
>; s2 � t � s2 +

3T

4
= s3

The condition onmijk(t) is met during the time interval [0; s3]. However, the values of miji(t)

and mjkk(t) at t = s3 may be di�erent from their initial condition.

So repeat the controls above replacing t0 with s3, s1 with s4, s2 with s5 and s3 with s6.

Also, replace �j1 by ��j1 and set �uk(t) = 0; t 2 [s3; s6]. During [s3; s6], the original value

of miji(t) is restored. Repeat the controls above again, this time replacing t0 with s6, s1

with s7, s2 with s8 and s3 with s9. Also, replace �j1 by ��j1 and set �ui(t) = 0; t 2 [s6; s9].

Then, during [s6; s9] the original value of mjkk(t) is restored.

Finally, rerun the entire set of controls for t 2 [t0; s9], exchanging the roles of j and k,

augmenting the indices of the time intervals appropriately. Also, replace �i1 by �i2, �j1 by �j2

and �k1 by �k2. Then t1 = s18 and �3(2mijk(t1)�mikj(t1)) = �cijk, �3(2mikj(t1)�mijk(t1)) =

�cikj. Thus, the goal is met.
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