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Abstract

In this paper we address the constructive controllability problem for drift-free, left-
invariant systems on finite-dimensional Lie groups with fewer controls than state dimen-
sion. We consider small (¢) amplitude, low-frequency, periodically time-varying controls and
derive average solutions for system behavior. We show how the pth-order average formula
can be used to construct open-loop controls for point-to-point maneuvering of systems that
require up to (p <1) iterations of Lie brackets to satisfy the Lie algebra controllability rank
condition. In the cases p = 2,3, we give algorithms for constructing these controls as a
function of structure constants that define the control authority, i.e., the actuator capabil-
ity, of the system. The algorithms are based on a geometric interpretation of the average
formulas and produce sinusoidal controls that solve the constructive controllability problem
with O(€P) accuracy in general (exactly if the Lie algebra is nilpotent). The methodology is
applicable to a variety of control problems and is illustrated for the motion control problem
of an autonomous underwater vehicle with as few as three control inputs.
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1 Introduction

Recent work in nonlinear control has drawn attention to drift-free systems with fewer controls
than state variables. These arise in problems of motion planning for wheeled robots subject
to nonholonomic constraints [22, 23], models of kinematic drift (or geometric phase) effects
in space systems subject to appendage vibrations or articulations [12, 13], and models of
self-propulsion of paramecia at low Reynolds numbers [26]. The basic state-space model

takes the form,

z=> Fi(z)u;, z€R", w,eR, m<n. (1)
1=1

It is well known that if the vector fields F; satisfy a Lie algebra rank condition, then there
exists a control u = (uy,. .., Ur) that drives the system to the origin from any initial state.
However, unlike the linear setting where the controllability Grammian yields constructive
controls, here the rank condition does not lead immediately to an explicit procedure for
constructing controls. As a result, recent research has focused on constructing controls to
achieve complete controllability [2, 14, 22, 23, 8, 20]. The success of constructive procedures

based on periodically time-varying controls [22, 23, 8, 20] motivates our investigation.

Our interest in this paper is in constructive controllability using periodic forcing of drift-

free, left-invariant systems of the form

X = XU, U(t)= iAiui(t), (2)

evolving on matrix Lie groups. Here, X(t) is a curve in a matrix Lie group G of dimension
n, U(t) is a curve in the Lie algebra G of G, m < n and {4i,...,A,} is a basis for G.
The Lie bracket [-,-] on the matrix Lie algebra G is defined to be the matrix commutator
[A,B] = AB<BA, for A, B € G. (For an introduction to matrix Lie groups and Lie algebras
see [6]). The u;(-) are assumed to be periodic functions of common period T'. € is a small
parameter (0 < € < 1) such that eu;(-) are interpreted as small-amplitude periodic control
inputs. The set {4,..., An}, where (uq,...,un) can be actuated independently, represents

the control authority of the system.

Our goal is to solve the complete constructive controllability problem for systems of the



form (2) which can be stated formally as:

(P) Given an initial condition X; € G, a final condition X; € G and a time t; > 0, find
u(t) = (u(t), ..., um(t)), t € [0,¢y], such that X(0) = X; and X(¢;) = X;.

Our approach is to derive averaging theory for systems on matrix Lie groups of the form
(2) and then to use the average formulas to specify open-loop controls that solve (P), at
least approximately. The controls are designed to drive an average system solution ezactly
thereby driving the actual system approzimately. Open-loop controls can be used to exploit a
priors knowledge of the system for improved system performance and reduced control effort.
Intermittent feedback can then be used in conjunction with the open-loop control to reduce
sensitivity to disturbances. (For related ideas see [4]). Feedback control laws, including time-
varying feedback and discontinuous feedback, have been studied for nonholonomic systems

([5, 25, 9, 27]).

Equation (2) provides a general framework, or normal form, for a class of systems that
includes rigid body motion control problems. For many of these problems, the system config-
uration space is globally described by a matrix Lie group making (2) a natural system model.
The Lie group framework then leads to coordinate-free expressions for system behavior and
ultimately to coordinate-free control algorithms. Further, when the systems on Lie groups
are left-invariant, there is a global-ness to our solutions. That is, even if we exploit local
charts to make small maneuvers, the Lie group framework allows us to move all over the
configuration space without reformulating our control. This is because we can always treat

the current position of the system as if it were the identity in the Lie group.

An important focus of our work is to exploit the Lie group structure to derive formulas
for system response. Specifically, we show the utility of area and moment-like expressions in
the controls and structure constants of the Lie algebra. The structure constants enable us
to encode control authority, thus ensuring that our results naturally account for changes in
control authority due to events such as actuator failures. This leads easily to constructive

procedures for on-line adaptation to changes in control authority.



Averaging is used to describe an approximate solution to (2) that evolves on the matrix
Lie group G, remains close to the actual solution to (2) and gives rise to straightforward
procedures for specifying controls to address (P). Averaging in this context is motivated by
the work of Brockett [3] in which an averaging argument was used to describe the secular
(linear in time) motion of the well-known two-input nilpotent system on $* often referred
to as the Brockett system. We extend the argument to high-order averages and to systems

on finite-dimensional Lie groups.

Liu and Sussmann [30, 20] also develop averaging theory to derive approximate tracking
control for drift-free systems. They apply averaging theory to drift-free systems on a manifold
M with highly oscillatory control inputs. Given a trajectory of a suitable “extended” system,
their goal is to find a trajectory of the original system that converges to the given trajectory
and use this result to derive approximate tracking controls. We, on the other hand, do not
attempt to address all drift-free systems, but rather take a close look at a class of drift-free
systems, i.e., those of the form (2), and exploit the Lie group framework as described above to
great benefit. Additionally, while Liu and Sussmann consider high-amplitude, high-frequency
control inputs, we consider small-amplitude, low-frequency control inputs. One approach is
equivalent to the other by scaling time by e. The result is that maneuvers in the Liu and
Sussmann time scale are completed in one unit of time, while in our time scale maneuvers
are completed in O(1/¢) units of time. However, our small-amplitude, low-frequency controls

are gentler on the system and avoid significant off-course excursions.

Murray and Sastry [22, 23] and Lafferiere and Sussmann [14] derive control inputs to
exactly steer drift-free systems that can be transformed into a nilpotent form, sometimes
referred to as “chained form”. Nilpotency refers to the fact that high-order Lie brackets of
vector fields are identically zero. Our Lie group framework includes the case of nilpotent
systems. For instance, certain chained-form systems can be represented in the form (2) where
the Lie group G is unipotent, i.e., is upper triangular with ones along the diagonal, and the
Lie algebra G is strictly upper triangular (nilpotent). For these nilpotent systems, our results
provide exact steering controls. The fourth example below illustrates a chained-form system

put in the form of (2).



There are special cases of drift-free systems that can be controlled exactly where our
methods produce only an approximate solution. For instance, in [31], Walsh and Sastry
describe a method to derive controls to exactly orient a spacecraft with two internal rotors
configured about two of the principal axes. In this work, however, large motions are necessary
to reorient the spacecraft. We emphasize that our framework is more general, allowing for a
large class of systems and control input configurations and producing controls that keep the
system state relatively close to any desired path. Further, as in [12, 13] our solutions give a
means to compute drifts in system behavior caused by undesirable oscillations. Kinematic
drift of a spacecraft caused by thermo-elastically induced vibrations in flexible attachments

on the spacecraft is an example, c.f. [12, 13].
To further motivate the Lie group framework we give four examples.

Spacecraft Ezample: Equation (2) describes the kinematic spacecraft attitude control
problem if we interpret U(t) as the time-dependent skew symmetric matrix of spacecraft

angular velocity such that X evolves on G = S0(3), the special orthogonal group, where
SO(k) 2 {A € R***|ATA = I, det(A) = 1}.

Define X(t) € SO(3) to be the curve of rotations that maps a body-fixed orthonormal
coordinate frame into an inertial coordinate frame. That is, z, = X(t)zs, where z; is any
point on the spacecraft described with respect to the body-fixed frame and z, is the same
point expressed with respect to the inertial frame. Then X(¢) describes the attitude of the
spacecraft at time ¢. Define ": 2 — 50(3) where 50(3) is the space of 3 x 3 skew symmetric

matrices and z = (1, T, z3)7 by

0 STy T
I3 0 Ty . (3)
Lo T 0

8>
Il

Let e; = (1,0,0)%, e5 = (0,1,0)T and e3 = (0,0,1)7, and define A; = ¢;, 2 = 1,2,3. Then
{Ai1, Ay, A3} is a (standard) basis for G = so(3) and X (¢) satisfies
3

X =XQ, Q@)= Qt)A, (4)

=1



where Q = (041, Q,,Q3)7 is the angular velocity of the spacecraft in body-fixed coordinates.
Now suppose angular momentum of the spacecraft is conserved and equal to zero, i.e.,
there is no external torque applied to the spacecraft. Then it is possible to interpret the
components of angular velocity, 1,5, 3, as our small-amplitude, periodic controls, e.g.,
eu; = ;, 2 = 1,2,3. For instance, the angular velocities could be effected using internal
rotors. Alternatively, a point mass oscillator appended to the spacecraft could be used to
control angular velocity (c.f. [16]). With this interpretation, equation (4) takes the form
of (2) with G = SO(3), n = 3, and m < 3 is the number of independent actuators. We
note that any control configuration can be represented by choosing the appropriate basis
for so(3). For example, suppose there are only two independent control inputs defined by
eu; = Oy + Oy and euy = Q2 + Q3 (and eus = 0). Then the system is described by (2) with
{B1, B,, B3} as our basis for so(3) where B; = A; + Ay, By = Ay + Az, B3 = A;. Details of

averaging and constructive controllability applied to the spacecraft can be found in [18].

Unicycle Ezample: Equation (2) describes the motion planning problem for a unicycle
which rolls without slipping if we interpret U(¢) as the appropriate time-dependent matrix
of steering velocity and translational velocity such that X evolves on G = SE(2), the special

Euclidean group, where

A b

SE@)é{l01

]e%“““““%AeSO@Lbe%ﬂ.

Here, we define X(t) € SE(2) to be the planar rigid body transformation that maps a body-
fixed orthonormal frame into an inertial frame so that X(¢) describes the position at time ¢
of the unicycle in the plane and its orientation at time ¢ with respect to an inertially fixed
axis. That is, for z; a point on the unicycle described in terms of body-fixed coordinates
and z, the same point expressed in terms of inertial coordinates, [z, 1]7 = X (¢)[zs 1]. In
terms of local coordinates (z,y, ) where (z,y) describes the unicycle’s position and 8 the

unicycle’s orientation on a plane relative to the inertial frame, X can be expressed as

cosd &sinf |z
X =| sinl cosf |y
0 0 |1

Suppose that u; = 6 (steering speed) and uy = v (rolling speed) are available as controls



and let

0 <10 0 0|1
Ay={1 00|, A4,=|00]|0], (5)
0 00 0 0]0

and A; = [A1, As]. Then {A;, A, A3} defines a basis for se(2), the Lie algebra associated
with SE(2), and X(t) satisfies

X = eX(A1u1 + Ag’dg) (6)

where we have assumed small-amplitude controls. Equation (6) is of the form (2) with
G = SE(2), n = 3 and m = 2 and takes the same form as the spacecraft control problem
with two internal rotors. Details of averaging and constructive controllability applied to the
unicycle problem can be found in [18]. There it is illustrated that the controls derived to
steer the unicycle are identical to those derived to control the spacecraft with two internal

rotors as a result of the two systems taking the same form (6).

Underwater Vehicle Ezample: Equation (2) describes the kinematic motion control prob-
lem for an autonomous underwater vehicle (AUV) if we interpret U(t) as the appropriate
time-dependent matrix of vehicle angular and translational velocities such that X evolves
on G = SE(3) (see [28] for another study of an AUV on SE(3)). In this case, we define
X(t) € SE(3) to be the rigid body transformation that maps a body-fixed orthonormal frame
into an inertial frame so that X(¢) describes the position and orientation in three-dimensional

space of the underwater vehicle at time ¢. Let

é; o] .
— 1=1,2,3
4 0000 0
0 Jems ) ys6
000] 0 PEESD

Then {Aj,..., As} defines a basis for G = se(3), the Lie algebra associated with SE(3).
Now let Q = (€y,€,,Q3)T define the angular velocity of the vehicle and v = (vy,vq,v3)T

the vehicle translational velocity, all with respect to the body-fixed coordinate frame. Then

X (t) satisfies

=1

3 6
1=4
We assume that we can interpret the components of (¢) and v(¢) as controls such that (8)

is of the form (2), e.g., let eu; = Q;, + = 1,2,3 and eu; = v,_3, ¢ = 4,5,6. In this case



G = SE(3), n = 6, and m = 6. If there are fewer than six independent actuators, i.e.,
m < 6, then some of the eu; are identically zero. A different choice of basis for se(3) and a

different value of m reflects a different control authority.

Nilpotent System FEzample: As described above, systems in chained form can also typically
be put in the form of drift-free, left-invariant systems on matrix Lie groups (2). As an
example, consider the front-wheel drive car which can be transformed (locally about the

origin) into a two-input chained-form system on ®* [23]:

Iill = W

Iilg = V3 (9)
Iilg = TU1

Ii14 = I3V1.

This system can be expressed (or embedded) as evolving on the matrix Lie group consisting

of elements of the form

1 g XT3 T4

10 1T = =
X - 0 0 1 Iq
0 0 0 1

where * is arbitrary. A basis for the (nilpotent) Lie algebra of this group is given by
{A1, A2, A3, As} = {A1, Az, [Az, Ad], [[A2, Ad], Ar]} where

0 00O 01 00
0 010 0 00O
A=loo0o01 ] % o000
0 00O 0 00O
Then X(¢) satisfies
X = EX(Al’Ul + Ag’Ug) (10)
which is of the form (2) with n = 4, m = 2, where we have assumed small-amplitude

controls. Other two-input chained form systems, such as the kinematic car with £ trailers,

can similarly be described in this form (c.f. [16]).

The following is an outline of the remaining sections of this paper. In Section 2, we

state some preliminaries including definitions of geometric objects that play a key role in



the averaging formulas and two local representations of the solution to (2). In Section 3
we prove second and third-order averaging theorems for systems of the form (2). Our main
results are an “area rule” for second-order averaging and a “moment rule” for third-order
averaging. A statement of the general pth-order averaging theorem is given in Appendix
A. By the pth-order average solution X®) we mean that given a metric d on the Lie group
G, d(X(t), X®)(t)) = O(e?), Vt € [0,b/€], b > 0. In Section 4, we show how to use the
average formulas for (approximate) constructive controllability by deriving controls that
steer the average solution. The control laws become increasingly complex for increasing
order of averaging, and so we seek to minimize the order of the average solution that we
steer. However, a sufficiently high-order average solution is needed in order to capture the
controllability of the system. We determine p.;, where png, is the smallest p such that
X(®) can be driven from any X; € G to any desired X € G and show that (pmin <1) is
equal to the highest number of iterations of Lie brackets used to satisfy the controllability
Lie algebra rank condition. The proof is constructive yielding algorithms that produce
continuous, small-amplitude, low-frequency, open-loop sinusoidal controls. The algorithms
are driven by the structure constants that define the control authority and controllability
of the system. In Section 5 we illustrate the algorithms for two control configurations of an

autonomous underwater vehicle. Conclusions are given in Section 6.

The results of this paper can be extended to the setting of abstract finite-dimensional Lie
groups (c.f. [16]). To keep the notation simple, we stick to the setting of matrix Lie groups.

This is sufficient for our examples.

2 Preliminaries

Our average solutions X(®) depend on the geometric objects described below. We make the

following definitions assuming that u(t) is periodic in ¢ with period T
— T ~ (5
Ugy = (Uavis- -y Uavm) 3 @ = (T1,y-.-,Um) ,

1 4T ¢
Ugu; = —/ w(7)dr, U(t) = / u(7)dr,
T Jo 0



Ua'u = ZuaviAiy l:] = Z’&"LA'L
=1 =1

So u = % and if ugy, = 0 then @ is periodic in ¢ with common period T.

Assume that u,, = 0 and define Area,;j(T') to be the area bounded by the closed curve
described by %, and 4, over one period, i.e., from ¢ = 0 to ¢ = T'. By Green’s Theorem we

can express this area as

Areas(T) = ; / o) &i;(0)i(o))do. (11)

This area can be interpreted as the projection onto the i-7 plane of the area enclosed by the

curve (Ui, ..., %) in one period. Define

wilt) = 5 [ (@(0)is(0) &is(o)is(o))do
Area;(T)t ), (12)

where f(t 4+ T) = f(t), f(0) = 0. Define

mige(T) = 3 / o) Si;(o)i(o))in(o)do. (13)

Now consider the closed curve C defined by 4;(t), 4;(¢) and GUg(t) over one period. Let A be
any oriented surface with boundary 0A = C. Then by Stokes’ Theorem,

1
A
So m;;x(T') as described by (14) can be interpreted as a first moment.

The average approximation X will also depend on the structure constants assoc1ated

to a given basis for the Lie algebra G. These are defined by
[Ai,Aj] = Z,fjAk, ’i,j: 1,...,’)’L. (15)

We define a depth-u Lie bracket as p iterated brackets, e.g., a depth-one Lie bracket is of
the form [A, B], a depth-two bracket is of the form [A, [B, C]] or [[4, B], C], a depth-three
bracket is of the form [A,[B,[C, D]|], etc., where A, B,C,D € G. A depth-zero bracket is

just an element of the Lie algebra G. We can then define structure constants associated to

10



higher depth brackets. For example, we define depth-two structure constants 87, associated
with basis {Ay,..., A,} according to

n

[[AHA ] Z; Z]Al7Ak] Z; i] AlaAk ZZ; i]; ?kA - ZegjkAq (16)
=1

=1 =1 g=11=1

Skew symmetry of the Lie bracket on G, [4, B] = &[B, A], implies , ;. = Further,

h=ek
Areai(T) = <Areay(T), miw(T) = <mu(T).
Similarly, the Jacobi identity, [[A, B],C|+ [[B, C], A] + [[C, 4], B] = 0, implies
Orix + Oos + Ori; = 0. (17)
Further,

Miji(T) + mei(T) + mui(T) = 0. (18)

There are well-known controllability results for systems on Lie groups of the form (2),

e.g., [1, 29, 10]. We use [24] as a convenient reference. Let
C= {B | B = [Bk7 [Bk—h [ ) [31730] o ]]]7 B; e {Ala' : '7Am}7 1=0,.. 7k} (19)

By Proposition 3.15 of [24], for G a connected Lie group, if G = spanC then system (2)
is controllable, i.e., a solution to (P) exists. We refer to this condition as the Lie algebra
controllability rank condition. If this condition is satisfied using only up to depth-; brackets,
ie., k <jin (19), then we say that system (2) is a depth-j bracket system.

Since, in general, there are no explicit global representations of the solution to (2) we
make use of local representations: the product of ezponentials representation given by Wei
and Norman [32] and the single ezponential representation given by Magnus [21]. We begin
by defining the Wei-Norman representation.

Lemma 1 (Wei and Norman) . Let X(t) be the solution to (2) with X(0) = I. Then
dto > 0 such that for [¢| < to, X(¢) can be expressed in the form

X(t) — (A1 g2(0) A2 | ogn(t)An (20)

11



The Wei-Norman parameters g = (g1,..., )" satisfy
g=€eM(g)u, for|t|<to, (21)

where g(0) = 0 and M(g) is a real analytic matrix-valued function of g. If G is solvable then
there exists a basis of G and an ordering of this basis for which (21) holds globally, i.e., for
all ¢, and in that case (21) can be integrated by quadrature. a

As shown in the work of Wei and Norman, one can express M(g) of (21) in terms of the

structure constants of (2). For ||g|| small,

M(g) =1+ ¢&(g) + O(g%), (22)

where the 77th element of E(g) is
Ei(9) = D b ki (23)
k=3+1

and O(g?) are higher order terms in the g;.

It is customary to refer to components of g as the canonical coordinates of the second
kind for G. Let W be the largest, connected open neighborhood of 0 € £" such that Vg € W,
M(g) is well-defined. Let ® : R™ — G define the mapping

@(g) — eglAl engz . eg’n.A'n. (24)

and define V = ®(W) C G. Then, the Wei-Norman formulation provides a local repre-
sentation of the solution to (2) for initial condition X(0) € V C G. Now let S be the
largest neighborhood of 0 € ®™ contained in W such that ¥ = ®|, : § — @ is one-to-one.
Let @ = ¥(S) C V. Then ¥ : § — @ is a diffeomorphism and we can define a metric
d:QxQ — R, by

d(Y,Z) = d(¥ 1Y), ¥7Y(2)) (25)

where, for || - || a norm on R”, d: £* x K™ — R, is given by

d(a, ) = [la <] (26)

12



As an alternative to using the Wei-Norman representation of solutions to (2), we consider
Magnus’ single exponential representation [21]. By Theorem III of [21] under an unspecified

condition of convergence, the solution to (2) with X(0) = I can be expressed as
X(t) = %® (27)
where Z(t) € G is given by the infinite series (we show terms up to O(e?)):
t e gyt .
2(t) = ¢ Ulrydr + 5 [[0(),U(r)dr
0 0
3

w1106, U@)de, U(mar + [

[O(7), [U(), U())Jdr +... (28)

While the convergence criterion for (28) is not given explicitly in [21], two different
sufficient conditions are provided in [11] and [7], respectively. Karasev and Mosolova [11]

show that (28) converges if
t
/ ladey (| dr < In2. (29)
0

For G a finite-dimensional Lie group, the convergence condition (29) is equivalent to

t
[ 1A (eu(r))ldr < 1n2, (30)
0
where A(+) is an n X n matrix with ¢jth element A;;(-) defined by
Aij(’U) = Z’Uk, ;CJ
k=1

In the case that G = SO(3) and {4, 42, A3} is the standard basis for G = so0(3), it is easy
to compute that A(eu) = €U and so (30) is equivalent to

t
/ 1eU(7)||dr < In2.
0
The convergence criterion given by Fomenko and Chakon [7] takes the form

[10)lar < -, (31)

where M > 1 is defined such that ||[4, B]|| < M||A]|||B|| for all A, B € G and the universal
constant b is the radius of a disk over which a scalar differential equation, defined in [7], has

an analytic solution.

13



Let ® : G — G define the mapping

$(2)=¢?, 7= zA. (32)
=1

Let S be the largest neighborhood of 0 € G such that ¥ =9 g S — @ is one-to-one. Let

Q= \il(g) C G. Then ¥ : § — ( is a diffeomorphism and, for d given by (26), we can define

ametrica?:@x@a?fh_ by

d(X,Y) = d(¥71(X), ¥7(Y)). (33)
Following Lazard and Tits [15] define an admissible norm on G as any norm || - || that
makes (G, || - ||) @ Banach space and satisfies

114, B]I < lA[llIB]l, vA,Beg.

Define B(G,p) ={A € G | ||A|l < p}. Then from Theorem 2.1 of [15], if the connected center
of G, Cgq,, is simply connected, then the restriction of $ to B(G, ) is one-to-one. Consider a
matrix Lie algebra G C R"*" and the induced matrix p-norm || - || on £**". We can always

construct an admissible norm as || - || 2 2|| - ||, since
114, Bl = 2[4, Blllz = 2||AB < BAl| < 4[| Al||| Bll = [ All]| B|.

In the case of simply connected Cg,, we can take § = B(G,7) = {A € G | ||A|lp < 7} =
{A € G |||A|lz < 7/2}. The condition on Cg, holds, in particular, for finite-dimensional Lie
groups with trivial centers such as SO(3), SE(2) and SE(3). Further, for simply connected
Lie groups, we can replace m by 27, i.e., we can take S = B(G,2r). Thus, for all these kinds
of Lie groups, we can be assured that our norm d is well-defined on a significantly sized

neighborhood of the identity in G.

We note that for X in a sufficiently small neighborhood of the identity, knowing one local

representation means knowing the other approximately well.

Lemma 2 Given X € QNQ C G, let g = ¥1(X) and Z = U~1(X). Then g = O(e) if
and only if Z = O(€P), p > 1. In this case, ||g; &z = O(e®), 1 =1,...,n.

14



Proof: The lemma is proved by expanding exponentials and equating the two local represen-

tations. 0

3 Averaging

Classical averaging theory is typically applied to systems evolving on ™. To derive averaging
theory for systems which evolve on Lie groups (2), we apply classical averaging theory to local
representations of (2) and then transfer such estimates to the group level. The theorems in
this section give formulas for the pth-order average solutions X®)(¢), p = 2, 3. For illustration
we make use of the Wei-Norman product of exponentials representation for p = 2 and the
Magnus single exponential representation for p = 3. The first-order average formula can
be derived to be X(M)(¢) = X(1)(0)eV=rt, This describes the effect of the DC component
of U(t) on the system. This is useful for control only if m = n. As a result, we focus on
higher-order average formulas which capture Lie bracket motion of the system. A general
pth-order averaging theorem is given in Appendix A. The theorems below require smooth
controls; however, this requirement is relaxed in the appendix where piecewise continuous

controls are sufficient.

We note that these theorems state that the formulas are valid for X (¢) in a neighborhood
of the identity of G. However, because system (2) is left-invariant, these theorems actually
give the formulas for the pth-order approximation X(®)(¢) to the solution X(¢) of (2) for any
initial condition X(0) € G. Let X;(t) and X§p)(t) correspond to the actual and approximate
solutions, respectively, of (2) with X;(0) = I € G. By left-invariance of (2), X(t) =
X(0)X;(t) and X®)(¢) = X(O)X§p)(t) is an O(€?) approximation of X(t).

Theorem 3 (Second-Order Averaging: Area Rule) Consider system (2) on the Lie
group G with Lie algebra G. Assume that U(t) € G is periodic in ¢ with period T" and
has continuous derivatives up to third order for ¢ € [0,00) and assume that U,, = 0. Let
D={ge®R||g|l <r} CS (where r > 0 is chosen as large as possible). Suppose that
X(0) = Xo € Q. Let g(t) be the solution to (21) with g(0) = go = ¥™1(X,) = O(e). Let
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g = (a1, 925)T and define

t m
wg(t) = €2 — Z Area;;(T), i ko4 ko (2) (34)
T 2
Z,J_ 71<J
9(t) = etn(t) + welt), (35)
X@(t) = 704 9O (36)
where , ”- and Area;;(T) are defined by (15) and (11), respectively. If ||go <:>g02)|| = O(e?)

and if g®)(t) € D, Vt € [0,b/€], b > 0, then,

d(X (1), XD(1)) = O(e2), Ve [0,b/e].

Proof: Recall by (21) and (22) that for small ||g]|,
g = eM(g)u = eu+ e€(g)u + €O(g*)u.
By second-order classical averaging theory (for details see [16]),
lg(t) <@ ()| = O(¢*), Vte[0,b/e, (37)
where
g®)(t) = ea(t) + w(t)

and w(t) is the solution to

=2l [T do. w(0) = o
—e L ["Haolo)o, 5(0) = of” (39)
From the definition of & (23), the kth component of the vector E(ﬂ)u is
St =3 Y (39)
=1 =1 j=1+1

= <

7_71,7

So using integration by parts, the fact that %; = u; and the definition of Area,;(T")

71]

(11) we get from substituting (39) into (38) that

1
—/ Zﬁkz )dU‘|‘gk(2)
- E_ZZ/ 7]1 )d0‘|‘gk()
1= 1] 2+1
= en > 5 [ (aso)io) wuo)is(o))do, b+ g
Tz] 1z<J 2 !
1
= €— Z Area;;(T) ,” + gk (2).
T1j=1;i<j
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For small enough ¢, since g(3)(t) € D C S then g(t) € D C S, Vt € [0,b/€]. So by definition
of U, X(t) = ¥(g(t)) and XP®)(t) = ¥(g(3)(¢)), V¢ € [0,b/€]. The theorem follows by (37)
and the definition of d, since d(X(t) X)) = |lg(t) 9@ ()| = O(e?), Vt € [0,b/€]. =

)
(

We show further in the next proposition that the structure constants associated to a

7zj

given basis for G are directly related to the Lie brackets of the vector fields defined by the

columns of M(g) evaluated at g = 0.

Lemma 4 Suppose that w(¢) is defined by (34). Let [f1 fo -+ fu] = M(g) where f is the
kth column of the matrix M(g). Then

E m
= ? Z Area” fz;fJ”g 0 ‘|'9(2)- (40)
=13
Proof: By (22) and (23) we have that

> kh=it1 9k Ilcz + 0(92)
SR i1 Gk i D+ O(g?)

f'i: 1+Zk 1.-|—1gk7]'€1.—|—0( 2)
D k= z+19k7 ki ( )

S heit1 9% 1 +0(g%)

So forz < j,
0f; 0f;
[fﬁ fj”g:O = 6—;|g:0fi|g:0 <:}6—g|g:0fj|g:0
1 1
b 1) )17
) _7711 ? ’:L7
which by (34) completes the proof. 0

According to Theorem 3, X(2)(¢) can be expressed as a product of exponentials where the
exponents have an O(¢) periodic term and a secular term (a term linear in ¢). By (34) the
secular term is proportional to the structure constants , and the projected areas Area;;(T)
bounded by the closed curves described by @, and ﬂj over one period. This interpretation

justifies calling Theorem 3 an area rule.
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The second-order average formula derived using the single-exponential local representa-

tion for X(t) (as follows from Theorem 9, Appendix A) takes the form:

z,(cz)(t) = elg(t Z Area;;(T), 3; ko gk(z) (41)
2,7=152<3
AQIS Z (1) Ar, XO(t) = 270, (42)

A comparison of the two second—order average formulas shows that 2(3)(¢) = ¢(3)(¢).

The revealing step in the proof of the single exponential area rule shows that

2t T .
Z0)(1) = ;—T [T, U](c)do
0

- T[iai(a)Ai,Zﬁj(a)Aj]da
2t n

= 7 2 i Areai;(T), &) Ax, (43)

k=1 2,5=1;<3
This result confirms that the formulas X (%) are basis independent. Additionally, (43) reveals
how the secular term in the second-order approximation captures the effect of the group level

version of depth-one Lie brackets. This effect is developed further in Section 4.

Theorem 5 (Third-Order Averaging: Moment Rule) Consider system (2) on the Lie
group G with Lie algebra G. Assume that U(t) € G is periodic in ¢ with period T" and
has continuous derivatives up to fourth order for ¢ € [0,00). Further, assume that U,, = 0
and Areay(T) = 0, Vi,j. Let D = {Z € G | ||Z|| < r} C § (where > 0 is chosen as
large as possible). b is defined according to the convergence criterion for (28). Suppose
that X(0) = Xo. Let Z(¢) be given by (28) with Z(0) = Zo = ¥~1(X,) = O(¢?). Let
Z(3) = a1 zqg?’)Aq. Define

_ m m m E3t
Z3() = eiig(t) + Y. fay(), L. Y —min(T)0L, + 2, (44)
2,7=152<3 k=112,7=12<3
Z3)(1) Z 34, XO(t) = 200, (45)

where 67, and mg;(T) are defined by (16) and (13), respectively. If ||Zo <:>Z((,3)|| = O(é%)
and if Z®)(t) € D, Vt € [0,b/€),

d(X(2), X)) = O(e®), Vte[0,b/d.
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Proof: By classical averaging theory
1Z(t) ©2P(8)] = O(*), Vie[0,b/¢] (46)

where (compare with formulas (28) for Z(¢))

ZONt) = 2 / T)]dr + % OT[/OTW(U);U(U)]da, U(r)]dr
34 :
Tk [ (7)7[U(7)7U(T)]]dT+Z§,)
= e[}(t)‘|‘ E5/0 [ﬁ(T),U(T)]dT—I- ;—;, A [[7(7)7[[7(7)7U(T)]]d7—|-Z(()?’)_ (47)

The second equality is derived by integration by parts.

By definition, we have that e[?(t) = > ooy €lig(t)Aq. Following the steps in (43)

000 =3 S Cale), ), (48)

g=1 3,j=15<g

The third term on the right side of (47) can be expanded as follows:

et [T - ~
3_T [U(7), [U(7),U(r)]dr
= kX:uk 7) A, Z (T)Ai;z_:'&j(T)AdeT
— Ei Z 3/ (7)) ik (7)dT[Ag, [As, Aj]]

=11,7=152<3J
€3t
= @Z(Z Z 7 maie(T)05k) Ag, (49)
g=1 k=11,7=1;1<73
Therefore, the expression for ZG)(¢) given by (44)-(45) is verified. For small enough e, since
Z®)(t) e D C §then Z(t) € D C 8, Vt € [0,b/€]. So by (27) X(t) = €7 = ¥(Z(t)). The

theorem follows by definition of X)(¢) and d. 0

The third term on the right side of (44) is a purely secular term proportional to the first
moments m;x(T) and the depth-two structure constants ngk associated with choice of basis
for G. This interpretation makes Theorem 5 a moment rule. The average formula is clearly

basis independent.
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Remark 6 Since by (17)—(18) m”k(T) + kaZ(T) + mk”(T) =0 and ngk + 0;1]“ + HIZ” = 0,

Y30 mp(ME A =D D (mu(T)0 + > (2mu(T) Smu(T))0%) Ag.
g=1k=112,7=12<3 g=11,5=1;2<g k=1+1

Substituting this into the area-moment rule (44) incorporates the Jacobi identity and removes

redundant terms. This is significant with regard to constructing controls to solve (P).

4 Constructive Controllability

The strategy that we propose for solving (P) approximately can be summarized in four steps:

1. Choose intermediate target points X7, X»,..., X, between X, and Xy so that the “dis-

tance” between successive target points is small.

2. Specify open-loop, small-amplitude, periodic controls that drive X (t) from X; to the
first target point X; approzimately. To do so, specify controls that drive an O(€?)
average approximation of X (¢) from X; to X; ezactly (p to be determined).

3. If desired, apply feedback, i.e., make appropriate modifications based on measurement

of the new system state. For example, modify selection of intermediate target points.

4. Repeat steps 2 and 3 for each successive target point (letting the previous target point

be the new initial position) until done.

The fact that we can make a large maneuver by repeating our technique on small steps
relies on the left-invariance of our system. That is, we can always reinitialize at our current

position and identify it with the identity in the Lie group.

In the case of a nilpotent system, Step 2 will drive X (¢) from X, to X; ezactly. This is
a result of the fact that high-order Lie bracket terms are identically zero (i.e., the formula

for Z(t) (28) is a finite sum), and so an appropriate average provides an explicit solution to

(2). The proof can be found in [16].
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For Step 2, we use the average formulas of the previous section. To determine p consider
the series expansion (28) for Z(¢), which can be thought of (locally) as the logarithm of
X(t). One can observe that the O(€?) term of this series is a function of a depth-(p <1) Lie
bracket. Therefore, one expects that in order to be able to control X®) as desired, p must
be greater than or equal t0 pmin where (2) is a depth-(pmin < 1) bracket system, i.e., the
controllability rank condition is satisfied with up to depth-(pmin <1) brackets. We state this

formally for the cases p = 2,3. The general pth-order case is given in Appendix A.

Theorem 7 Suppose that system (2) on the connected Lie group G is a depth-(p < 1)
bracket system, p = 2,3. Then the complete constructive controllability problem (P) can be
solved with O(€P) accuracy using the formulas for X(¥)(¢), k = 1,..., p, and p is the smallest

positive integer such that this is true.

Proof: The proof is constructive and given in the form of algorithms that synthesize small-
amplitude, low-frequency, continuous, sinusoidal controls. Without loss of generality we
assume that X(0) = X; =7 € G and X; € QN Q C G is such that 95 = (97,---,97,)7 =
WHXy) = O(eP D) and 77 = 1, 25,4 = UH(Xy) = O(eP D). By Lemma 2 |12y <5g5l] =
O(2(p ©1)). Therefore, for the order of accuracy of control that we seek, g7 and z; can be

used interchangeably.

The algorithms are designed to solve the problem X®)(¢;) = X by solving ¢®)(t;) = g4
or equivalently Z(®)(t;) = Z;. Multiple sub-steps are used. That is, the time interval [0, #/]
is divided into subintervals, e.g., [0,t7] = [to,¢1) U [t1,t2) U -+ U [tu_1,tu], to = 0, t, =
ts, and controls specified on each subinterval. Because as assumed above, g; = O(e®~1))
and zy = O(e(”_l)), we can ensure that the “initial condition” for each subinterval, e.g.,
g(to), g(t1), g(t2), etc., will be O(eP~1), i.e., will satisfy the initial condition requirement
for the averaging theorems. Thus, the appropriate averaging theorem can be applied to
successive subintervals. Our controls will be specified so that the terms ug,, Area,;;(T) and
mk(T) will take on a single constant value on each subinterval. However, these terms may
take on different values on different subintervals. Thus, for ease of notation we define the

“running total” of the time-varying area terms and moment terms as Area;;(¢) and m,;x(2),
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respectively. Let Area( )(T) and m( )(T) be the values of the area and moment terms,

respectively, during the time interval [¢,_;,¢,] and suppose that ¢t € [t,,t,41], 0 < v < p.
Then define

Y (t, Str1) , (t ) v
Area;j(t) =) %Ar aEJ)(T) + TAT@CLEJ—H)(T), (50)
r=1
“ (tr <:}tr—l) T (t <:>tl’) v
mage(t) = 3 mi(T) + e m (D), (1)

Case (i) p = 2. Let
CO={C|C=A,0r C=[A;, 4], 4,5,k=1,...,m}.
The definition of a depth-one bracket system implies G = spanC(V), i.e.,

g = {Z CkAk ‘I’ Z cz] A1.7A ] Ck,cij E §}e}

2,7=1

= Z CkAk ‘|‘ Z c1,_7 Z ) ”Alm Ck, CU € §R}

2,7=152<3 k=1

Therefore, since >5_; g5 Ar € G, there exist cg,ci; € R, 2,7,k =1,...,m such that

ngkAk = Z cr A + Z Z Cij, U (52)
k=11,5=1;:<7
By Theorem 3,
m 2t
Zg t)A = Z etr(t)Ar + Z Z ?Area”(T), fjAk. (53)
k=11,5=1;:<7

Thus, to find controls that produce g(®)(t;) = g, we equate (52) and (53) and match
coefficients. That is, we choose ug(t), ¢t € [0,t4], k= 1,...,m such that

eir(ty) =ck, k=1,...,m and (54)

€ Area;(ty) = cij, 4,5 =1,...,m, 1 < j. (55)

Then ¢®)(t5) = g5 so that X®)(t;) = (g3 (¢4)) = ¥(g;) = Xy. Thus, by Theorem 3,
d(X(t5), X5) = d(X(t5), XO)t5)) = O(*).

Algorithm 1 below computes ug(t), t € [0,t7], & = 1,...,m such that (54)-(55) are

met. This is done by recognizing the geometric meaning of the terms Area;;(T), i.e., that
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Area;;j(T) is the area bounded by the closed curve described by @; and @, over one period.
In particular, if we choose 4; and 4, to be sinusoids that are in phase then Area;;(T") = 0.
Alternatively, if they are chosen out of phase then Area;;(T) # 0 is a function of the signal
magnitudes and phase difference. Based on this reasoning, the final values of each of these
terms can be matched independently, i.e., (54)-(55) can be met. The timing can be controlled
by choosing the frequency and amplitudes of the sinusoids appropriately. In Appendix B
we define two algorithm components. The first, Component 1(i) steers g, £ = 1,...,m to
satisfy (54) with no net change to any Area;;(t) term. The second, Component 1(ii) steers
area terms Area;;(t), 1,7, < j to satisfy (55) with no net change to 4. In each component the
controls have an initial and final value of zero. The algorithm components are like computer

subroutines that are defined once and for all and called as necessary.
ALGORITHM 1

Compute ¢, ¢;; as follows such that (52) holds. Consider the matrix

m+1 m+1 m+1 m+1 m+1 m+1
) 12 ) 13 3 1m ) 23 9 2m ) (m=1)m
m—+2
) 12
y =
n n n n n n
’ 12 ’ 13 0 1m » 23 v 2m ) (m=1)m
Note that , has rank n <m. Define the generalized inverse of , to be , T = T(,, 7)1
Then let
C12
13 gfm-l—l
= t .
b . b
gf
C(m—1)m "

m
_ k _
Ck = Gfp, < Z Cijy 55s k= 1,...,m.
2,7=152<3

S={k|ck #0, somej >k}, r=]|5| 2 number of elements in S.
Choose M to be a positive integer such that M > 1/me. Let the period T and frequency w

of the controls be
tf 27T'
T = = —.
M+ +12 T

Then using the controls defined in Components 1(i) and 1(ii), perform the following itera-

tions:
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1. 2 =0.

2.1 =1+ 1.

3. If 1 ¢ S go to 5.

4. Apply Component 1(ii) for ¢;j, 7 =2+ 1,...,m
5. If 1 <m &1 go to 2.

6. Apply Component 1(i) for ¢x, k=1,...,m

Then we are done and d(X(t;), X;) = O(¢?) as desired.
Case (ii) p = 3. Let

C® ={C|C=A,0rC=[A;A], or C =[[A;, Aj], A, q,%,5,k=1,...,m}.
The definition of a depth-two bracket system implies that G = spanC(®, i.e.,

g = {Z cghq + Z ciilAi, Al + D cinllAs, Ajl, Arl, g iy ciji € RY

2,7=1 2,7,k=1

= {Z ch + Z Z Cijs 'LJ + Z Z c’LJkH'LJk }
g=1 2,7=1;2<3 k=11,5=1;:<7

= {Z ch + Z Z C’Lj7 '(i]j + C’LJ’L 'LJ'L + Z C’LJkH'LJk)A }
g=12,3=15<g k=i+1

where the c;;; in the last line are a redefinition taking into account the relations among 6},

induced by the Jacobi identity (17). Therefore, since Z; € G, there exist ¢, ¢ij, cij € R,

such that
Zf - Z chq —I_ Z Z c"j) 1‘,1] —I_ c’LJ’L 'LJ'L —I_ Z C’LJkH'LJk)A (56)
g=112,3=13<J k=i+1
By Theorem 5 and Remark 6
m n m e3t
ZC)(t) Z eig(t)Ag+ Y, D (faiit), & & maii(T)0%
g=11,7=1;2<3
™ 3
& kZ 7 (2miie(T) &mis(T))055) A (57)
2+1
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Thus, to find controls that produce Z()(¢;) = Z;, we equate (56) and (57) and match
coefficients. That is, we choose u,(t), t € [0,tf], ¢ = 1,...,m such that

€lg(ts) =cq, ¢g=1,...,m, (58)

Ea;(ty) =cy, 1,5=1,...,m, 1 <j, (59)

Emgi(ty) = €ciji, 1,5 =1,...,m,1<j, and (60)

€ (2min(ts) ©mir;(ts)) = Scijn, 4,7, k=1,...,m, 1 < 7, k. (61)

Then XO)t5) = ¥(ZC)Nt5)) = ¥(Z;) = X; and so by Theorem 5, d(X(t4),X;) =

d(X(t5), XP(t5)) = O(*).

Algorithm 2 below computes uy(t), t € [0,t7], ¢ = 1,...,m such that (58)-(61) are
met. This is done by recognizing the meaning of the geometric terms as in Case (i). In
particular, the terms m;;x(7T") and m;(T), ¢ < j < k, can be controlled using sinusoids with
1-2 resonance. In Appendix B we define Component 2(ii) which addresses (59) and (60) and
Component 2(iii) which addresses (61).

ALGORITHM 2 Let
E={¢c{m+1,...,n}|,5 #0somes,j€{l,...,m}, i <j}. (62)

Define 0 < [ < (n <m) by [ = |Z| = number of elements in Z. We will assume for the
purposes of the algorithm, without loss of generality, that the basis {Ay,..., A,} is chosen
and ordered such that {A;, ..., A1} is a basis for A+[A, A], where A = span{A4,,..., A,}.

Compute ¢y, ¢;j, ¢ijr such that (56) holds as follows. Consider the matrix

Hm-l—l-l—l Hm-l—l-l—l Hm-l—l-l—l Hm-l—l-l—l Hm-l—l-l—l Hm-l—l-l—l
121 122 s 12m s 1mm 232 c (m—l)mm
0m—|—l—|—2 0m—|—l—|—2
A 121 122
0=
n n n
on. on, . . . O 1y
and the matrix
m+1 m+1 m+1 m+1 m+1 m+1
) 12 » 13 s 9 1lm y 23 ) 2m ) (m=1)m
m—+2
> 12
y pu—
m-+l m-+l m-+l m-+l m-+l m-+l
) 12 » 13 et 9 1m y 23 et 9 2m o (m—-1)m
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Let « 2 m + [. Then 6 has rank n <« and , has rank [. Define the generalized inverse of §
to be 6t = HT(HHT)_l. Let

C121

zf
C192 m+I+1
— gt :
zf
C(m—1)ymm "
Define the generalized inverse of , to be , f =, T(, 7)1, Then let
C12 m m-+1 m m+1
ci3 21 S b=t (Cibi ki i)
_ 1 :
— . )
m C.agm+l m Cogm+l
c zfm_|_l <Z>Eid:1;i<j(cuz€iji + Ek:i—l—l c’LJke'ijk )
(m-1)m

m m
= .9 L e _
Cq = 2fg < > (e b+ D cnbiy) g=1,...,m.
1,7=1;2<3 k=it+1

Y = {cijn | cijp #0, 1 < j,7 < k},
Q={cprcY |i<j<k}, B=|Q=number of elementsin Q,
R={cpcY|k=1}U{crcY |k=jandcy €Y},
V ={ejle; #0,i< i}
W={cp€R|c; ¢V}, 6§=[W[+]|V].
Choose M to be a positive integer such that M > 1/me. Let the period T and frequency w

of the controls be
B 17 2

(68 +38)(M +1)+1/2’ T
Then use the controls defined in Components 1(i), 2(ii) and 2(iii) of Appendix B to perform

the following iterations:

1. 2=0.

2.1=141,7 =1

3.5=7+1, k=3

4. k=k+1. Ifk=m+1 go to8.

26



5 I Cisk = Cikj — 0 go to 7.

6. Apply Component 2(iii) for ¢;;x and c;x;.

7. If E <m &1 go to 4.

8. If Cis = Cij; = Cij5 = 0 go to 10.

9. Apply Component 2(ii) for ¢;;, ¢iji and c¢;jj.

10. If ; <m <1 go to 3.

11. If e < m &1 go to 2.

12. Apply Component 1(i) for ¢, for ¢ =1,...,m.

Then we are done and cz(X(tf),Xf) = O(€®) as desired.

The proof is completed by noting that for 0 < p’ < p and p = 2,3, the p'th-order average

solution X(®) captures system behavior that includes only up to (p' <1) Lie brackets. Thus,

for a depth-(p < 1) bracket system, p = 2,3, X®) cannot be controlled as desired.

a

The arguments of this section are reminiscent of [1], where Brockett works with piecewise

constant controls.

5 Examples

Consider the autonomous underwater vehicle motion control problem described in Section

1. The Wei-Norman equations for SE(3) with our chosen basis for se(3) are

9
P
gs
9a
gs
9o

SEC ga COS g3
sin g3
<tan gz cos g3
0
gs
<95

£>sec go 81N g3
cos g3
tan g, sin g3

Y6
0

94

27

0
0
1

gs

<94
0

OO R O OO

O O O o O

— oo @ oo

U1
U2
Us
Uy
Us
Us

(63)



The parameters g1, g2, g3 correspond to Euler-angle type parameters and parametrize the

orientation of the vehicle. The parameters g4, g5, ge parametrize the position of the vehicle.

AUV with Four Controls: First, suppose that we can control all components of angular
velocity as well as one translational velocity component, i.e., {A;, A3, A3, A4} describes our
control authority. Then, X(¢) describes the orientation and position of the vehicle and

satisfies
4
X = eX(Zui(t)Ai), (64)
=1

where {A;, ..., Ag} is the basis for se(3) defined by (7). This system is a depth-one bracket
system since [A3z, As] = As and [A4, A3] = As. We have n = 6, m = 4, and the nonzero

structure constants corresponding to our chosen basis for se(3) can easily be computed as

Following Algorithm 1, we compute

5 5 5 5 5 5

— »12 213 14 223 24 34

’ - 6 6 6 6 6 6
»12 213 14 23 24 34

~[ooo0o0 0 1
(o000 &l 0]
. foooo o 177
" Tlo000 ol 0]

R
cas | |1 O 9re | | 955 |’
€12 = C13 = C14 = Ca3 = 0,

C1 = g5, < Caa, ;4 < C34, :134 = 39fq

Ca = g5, Coa, 34 < C34, :234 = G9fs

€3 = g3 <>C24, 34 < C34, 24 = 9f3,

C4 = G54 <C24,y 34 < C34, 34 =954

S=1{2,3}, r=2.

Therefore,

So we choose an integer M > 1/me and

tf 2T
T= =T
oM+1)+1/2 YT T

Then we apply Component 1(ii) for cq4 followed by Component 1(ii) for cz4 followed by

Component 1(i) for ¢1,¢a,c3,ca. To reduce the time and energy expended by the controls
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Figure 1: Control Input Signals for AUV Example with Four Controls.

we can instead apply Component 1(ii) just once. To do this let : =4, 7 = 2,3, cso = Seaa,
ca3 = ©c34 and apply Component 1(ii) to match cs; and cs3. In this case we have S = {4}
and » = 1 so we recompute

tf 27

w

T=—7 _ _
M +3/2’ T

For numerical illustration, let ¢ = 0.1, g, = 0.1, 2+ = 1,...,6, and ¢y = 23. Choose
M = 10, then T' = 2, w = 7. Figure 1 shows plots of the corresponding controls eu;, €us,
€us, €uy as a function of time. Figure 2 shows a simulation of the response of the Wei-Norman
parameters g as a function of time. The simulation was produced by numerically solving
the equations (63) using MATLAB. The horizontal dashed lines of Figure 2 represent the
desired final parameter value g;. Figure 2 shows that g(¢;) <g; = O(€?) and equivalently
Z(ty) ©Z; = O(€?) as expected. By the results of Lazard and Tits (see Section 2) for
G = se(3) we can let § = {A € se(3) | ||All < 7/2} for any p. From Figure 2 it is clear
that Z; € S and Z(ty) € S for some choice of 5. Thus, |Z(ts) & Zs|| = O(€*) implies

d(X(tf),Xs) = O(€®), i.e., the AUV has been repositioned and reoriented as desired with

O(€?) accuracy.

AUV with Three Controls: Now consider the case when there are only three controls

available, e.g., suppose that due to an actuator failure, the third component of angular
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Figure 2: Response of AUV with Four Controls.

velocity can no longer be directly actuated. We can use our algorithms to adapt on-line by

computing new controls based on the new relevant structure constants. Our new control

authority is defined by {A1, A2, A4} and X(t) € SE(3) satisfies

X = eX(u1A1 + ’U,2A2 + ’U,4A4), (65)

which is a depth-two bracket system since [A;, As] = Az, [A4, As] = Ag and [[A1, As], A4] =
As. For the purposes of the algorithm, we reorder our basis for se(3) such that A; & Ay

and As < Ag. The nonzero structure constants associated with this reordered basis become

5 6 5 _ 3

712_724_741:17716:751:17732_725:17723:724:1' Further,@fzg,:l. Thus,
n =6, m =3, and so by (62), = = {4,5} and | = |=| = 2. Thus, we get
b = [0$21 0?22 9?23 0?31 0?32 9?33 0331 0332 0333]
:[001000<:>100],
_ | st2 13 sas|_ |1 00
’ , 52 113 133 00 «1|°
€123 = Zfg,
Cl21 = Cigz = Ca31 = Ca32 = C233 = Ci31 = C132 = C133 = 0.

Note that z4, is based on the original ordering of the basis for se(3) and so it is the coefficient

30



of Ag in the reordered basis. Further,

C12 _ 1 0 Zf3 @012301}23 _ Zf3
C23 0 <l Zfg <C1230353 ©2fe |
C13 — 0,
c1 = 2§y (12, 15 + €23, 33 + C1230133) = 244,
C3 = 25, ©(Ci2, 15 + 023, 53 T C1238353) = 25y,
C3 = 2f, <=>(012_, 32 T cas, 33_+ 012395’2_3) = Zfgp
}f = {craa}, Q@ ={cizs}, R=10, V = {cna, a3},
W=0, =1, y=2.
So we choose an integer M > 1/me and
t 2
T = ! , w= il
12(M+1)+1/2 T
Then we apply Component 2(iii) for ¢;a3, followed by Component 2(ii) for ¢;3, followed by

Component 2(ii) for cy3, followed by Component 2(i) for ¢;, ¢z, c3. These components will
specify controls uy,us and uz. However, us is really our original control u,4 since it is the

coefficient of the original A,.

For this particular system we note that the execution of the algorithm is longer than
necessary, i.e., there are steps which have zero net effect on the system. Thus, to save time
and energy we eliminate the unnecessary steps of the control algorithm defined above. The
total time duration of the parts left out is 9(M + 1)T so we recompute

iy 2T

s(M+1)+1/22 YT T

For numerical illustration, let ¢ = 0.2, t; = 37 and gy, = 0.05, g5, = 0.05, gy, =
0.04, g¢, = 0.06, g7, = 0.05, gy, = 0.05 (recalling from Lemma 2 that for the algorithm
that we can set zy = g7). Choose M = 5, then T' = 2, w = 7. Figure 3 shows plots of the
corresponding controls eu;, euy and euy as a function of time. Figure 4 shows a simulation
of the response of the Wei-Norman parameters g as a function of time. The horizontal
dashed lines of Figure 4 represent the desired final parameter values gs. Figure 4 shows
that g(t5) ©g; = O(€®) as expected. We conclude that the AUV has been repositioned
and reoriented as desired with O(e®) accuracy. Reorientation with only roll and pitch
actuators was demonstrated experimentally using this algorithm on an underwater vehicle in
the neutral buoyancy facility of the Space Systems Laboratory at the University of Maryland.
For details see [17].
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Figure 3: Control Input Signals for AUV Example with Three Controls.

6 Conclusions

We have derived average formulas for the solution to (2) and used them to specify small-
amplitude periodic controls that solve the complete constructive controllability problem (P)
approximately (exactly if the system is nilpotent). We have shown that the smallest order
of the average formula sufficient to solve (P) is one more than the number of Lie bracket
iterations needed for the system to satisfy the Lie algebra controllability rank condition. The
results were developed for the pth-order average approximation where p = 2, 3; however, the
general pth-order average theorem is stated in Appendix A. The proof of the controllability
result is constructive and was given in the form of algorithms for generating open-loop
controls. Structure constants, which define the control authority of the system, drive the
algorithms. A change in control authority such as an actuator failure may be described by a
change in structure constants and, thus, can be accommodated on-line using the algorithms.
One might consider the algorithms of this paper to be a “motion script” generator. Thus, a

change in structure results in a change in script.

Averaging theory for systems on Lie groups also holds promise for understanding and

controlling systems with drift. That is, while the algorithms derived in this paper are valid
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only for drift-free systems of the form (2), the averaging theory here does not rely on the
drift-free assumption. We have already applied our averaging theory on Lie groups to the
problem of controlling a class of switched electrical networks which can be modelled as

systems on Lie groups with drift [19].
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In this appendix we state the general pth-order averaging theorem and constructive con-
trollability theorem. The proofs can be found in [16]. The theorems make use of the following
recursive formula given by Fomenko and Chakon [7] for the terms in the infinite series ex-

pression for Z(t) where X(t) = eZ(®)

Theorem 8 (Fomenko and Chakon) Let § = /M, where M > 1 is a constant such
that [|[4, B]|| < M| Al|||B||, VA,B € G and b is a universal constant. Suppose that U(t)
is a piecewise continuous curve in G and [ ||eU(7)||[d7 < 6. Then Z(t) = 32, €Z,(t) is a

convergent series. The terms Z;(¢) are uniquely defined by

L) =To(t) = [ UG,

(4 1)Zn(t) = Tt Y A:12,Ti) (66)

r=1

+ Z k2q Z [Zml7 [Zmy AR [Zm2q7 T’i—r] .o ]}7

q>1, 2¢<r Ejil mj=r, m; >0

Tu(t) = /Ot[U(Tl), /O”[U(Tz),..., /0 U (71 )dros1)drs] . . Jdm.

We note that each term Z; is composed of depth-(¢ <1) brackets.

Theorem 9 (pth-Order Averaging: Area-Moment Rule) Consider system (2) on the
Lie group G with Lie algebra G. Assume that U(¢) is a piecewise continuous, bounded curve
in G. Let b > 0 be such that f{ [|[U(7)||dr < §, Vt € [0, ], where § is as defined in Theorem 8.
Further, assume that U(t) is periodic in ¢ of period T', V¢ € [0,00). Let p > 1 be an integer.
For p > 1 assume that Tx(7T) =0, £k =0,...,p <2, where Ti(t) is defined by (66). Suppose
that X(0) = Xo € Q C G is such that Zo = ¥~1(X,) = O(¢¢1) if p > 1 and Zo = O(e) if
p = 1. Define

p—1

S t
z¥(t) = Z(@l)ZHEZZi(t)Jr(‘i’l)erlEprp(T)Jch()p), (67)
1=1
X®)(1) = 2P0 (68)

where Z,(t) are defined by (66). If || Zo <:>Z((,p)|| = O(€?) and ZP)(t) € S, Vte [0,b/¢€], then
d(X(8), XP(t) = O(), Vi € [0,b/e]. (69)
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Further, for t = NT, N an integer,

ZO(NT) = (1PN Z,(T) + 25, (70)

Remark 10 Further explicit decomposition of Z(®) into terms like areas and structure con-

stants can be found in [16] imitating the argument for Z(2) in (43) and Z( in (49).

Theorem 11 Suppose that system (2) on the connected Lie group G with Lie algebra G is
a depth-p’ bracket system. Let p = p’ + 1. Then the complete constructive controllability
problem (P) can be solved with O(e?) accuracy using the formulas X()(¢) given by (68) for
r=1

,--.,p. Further, p is the minimum positive integer such that this is true.

Appendix B

In this appendix, we present the components used in the algorithms of this paper. The
sinusoidal controls are typically sub-optimal. However, given the chosen sinusoidal structure
of the controls, the amplitudes are selected to minimize energy (integral of sum of squares
of inputs). In the following control laws, if a control component is not explicitly prescribed

it should be set equal to zero.

Component 1(i)

Given: ¢, k=1,...,m, T, w and current time %,.

Goal: Let ¢t; = to + T/2. We define eug(t), k = 1,...,m, t € [to, 1], continuous, such that
€lr(t1) = ¢ and eug(t1) = eug(to) = 0.

Controls:

1
eug(t) = §ckwsin(w(t Sto)),  to <t <t

Component 1(ii)

Given: ¢, forvand y=2+1,...,m, T, w, M and current time t,.
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Goal: Let ¢ty =to+ (M + 1)T. Let

1/4
m C,sz
o, = ( Z 7.(.2M2) ,

j=itl
Cij o
o = oy 7=21+1,....,m.
Specify continuous, zero-mean controls u;(t), u;(t), 7 =+ 1,...,m, ¢t € [to, 1] such

that e€2Area;;(t1) = cij, eui(to) = eui(t1) = euj(to) = euj(ty) = 0.

1

Controls:
eu;(t) = auw sin(w(t <o) T
<t < = =

eu;(t) =0 fost=toty =5
eu;(t) = auw cos(w(t < s1)) B
eu;(t) = ojw sin(w(t < s1)) sist< st MT =s,
eu;(t)

)

= ayw cos(w(t & s2)) } 2 <t<s+ L=t

Note that e?Area;;(t1) = czo;m M = ¢;; and the goal is met.

Component 2(ii)

Given: ¢ < j, ¢, Ciji, Cijj, 1, w, M and current time %o.

Goal: Let ¢ty =to +3(M + 1)T and

i 32c2.. | 1/® 32¢2..\ /8
P J Qg = iji Qi = i3]
21 xM? 22 T2 M2 ) 23 T2M2 )
. _ Cij . _2¢iji . T2¢j
Q5 = o wM? Qjy = aéwM’ Qj3 = ai§7rM'

Specify continuous, zero-mean controls u;(t) and u;(%), t € [to, t1], such that €2 Area,;(t1) =

Cijy €€mgji(t1) = Sciji, €mys(t) = S5 and eug(t1) = eui(to) = euj(tr) = euj(to) = 0.

Controls:
eu;(t) = oy wsin(w(t <to)) T
<t < — =
eu;(t) =0 to_t_t0+4 51
eu;(t) = ayw cos(w(t < s1))

(t)
<t< _
euj(t) = o wsin(w(t ©s1)) s <t<s; 4+ MT = s,

1w cos(w(t < sy)) } 6y <1< 5yt g s
- = 4



eu;(t) = azw sin(w(t < s3)) T
<t < — =
eu;(t) = 204w sin(w(t < s3)) 33_t_33—|—4 54

(
eui(t)) a;ow cos(w(t <s4)) 60 <1< 54t MT — s

euj(t) = 2a;,w cos(2w(t < s4))

) = ayw cos(w(t < ss5))
() = 2a;,w cos(w(t ©s5))

)
)
ui(t):2aj3ws1n w(t <536 )) }
)

37T
35§t§35+I:36

m

T
<t < — =
eu;(t) = oyaw sin(w t<:>36 S6 St set T

(
))—204]3wcos 2wt<:>37 6y <4< 574+ MT — sg

a;zw cos(w(t < s7))

(1) = 2a;,w cos(w(t < ss)) T
<t< 3T _
eu;(t) = ayaw cos(w(t < sg)) sg <t < s+ 1 So

The condition on Area;;(t) is met during the time interval [0, s3], the condition on m,j;(t) is

met during [ss, s¢] and the condition on m;;;(¢) is met during [se, sg].

Component 2(iii)

Given: : < j <k, ¢ijk, Cikj, 1, w, M and current time t.

Goal: Let t; =tg+6(M +1)T. Let d; = 2( Cijk + 3 Lein;)/mM and dy = 2( Cijk+ 3 2cin;)/TM.

Pj1 = (%)1/37 Pi1 = (

Pis = (%2)1/37 Piz = (

We specify continuous, zero-mean controls u;(t), u;(t) and ug(t), t € [to,t1], such

Select
d

1/2
) Pk1 — 4 )
Pjq Pi1Pjq

1/2
) ) Pka = ~d2

d

Pjs PiaPiy "

that € (2m(t1) & mixi(t)) = Scige, €(2miki(t) Smi(t1)) = Scing, eui(ty) =
eu;(to) = eu;(t1) = eu;(to) = eur(t1) = eug(to) = 0. Further, Area,;;(t1) = Areax(t:) =
Area(t1) = 0.

Controls:

eu;(t) = piywsin(w(t <o) T
euj(t) = 2pj,wsin(w(t Sto)) to <t <ty+ = S1
eur(t) = pryw sin(w(t o))

eu;(t) = piyw cos(w(t < s1))
euj(t) = 2pj wcos(2w(t < s1)) 51 <t< s +MT = s,
eur(t) = pryw cos(w(t <s1))
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eu;(t) = piyw cos(w(t & s2)) 3T
euj(t) = 2p; wcos(w(t & s3)) 89 <t < 59+ o4 =%
eur(t) = pryw cos(w(t < s2))

The condition on myjk(t) is met during the time interval [0, s3]. However, the values of m;;;(¢)

and m,x(t) at ¢t = s3 may be different from their initial condition.

So repeat the controls above replacing ¢y with s3, s; with s4, s; with sy and s3 with sg.
Also, replace p;, by ©p;; and set eug(t) = 0, t € [s3,s6]. During [s3, s¢], the original value
of m;;(t) is restored. Repeat the controls above again, this time replacing ¢y with se, s1
with s7, s, with sg and s3 with sg. Also, replace p;; by <p;, and set eu;(t) =0, t € [se, S9].

Then, during [se, s9] the original value of mx(¢) is restored.

Finally, rerun the entire set of controls for ¢ € [to, 89|, exchanging the roles of j and &,
augmenting the indices of the time intervals appropriately. Also, replace p;; by pis, pj, by pj,
and pg; by pry. Then t; = s15 and €3(2myx(t1) ©ma;(t1)) = Scijk, €(2migi(t1) ©mie(ty)) =

&g Thus, the goal is met.
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