
Signed Exe
utables for LinuxLeendert van Doornleendert�watson.ibm.
omIBM T.J. Watson Resear
h CenterYorktown, NY Ger
o Ballintijn �ger
o�
s.vu.nlVrije UniversiteitAmsterdam, The NetherlandsWilliam A. Arbaugh ywaa�
s.umd.eduUniversity of MarylandCollege Park, MDJune 4, 2001CS-TR-4259Abstra
tWe des
ribe the design and implementation of signedexe
utables for Linux, whi
h provide the followingstrong integrity guarantees: the inability to tamper withexe
utables and the inability to add new unauthorizedexe
utables. Unlike other implementations, ours 
oversstati
ally and dynami
ally linked exe
utables as well asexe
utable s
ripts. In addition, we redu
ed the over-head of signature veri�
ation to almost zero by 
a
hingthe su

essful veri�
ation results. The negligible over-head enables signature veri�
ation to be used as a basi
building blo
k for other appli
ations of whi
h some aredes
ribed in this paper.1 Introdu
tionThe ability to authenti
ate the originator of a network
onne
tion and verify the integrity of the transmitteddata are 
onsidered the basi
 building blo
ks of se-
ure distributed systems. When it 
omes to exe
utable�les on su
h a system, we appear to be satis�ed withmu
h weaker integrity guarantees, even though exe-
utables should be 
onsidered part of a se
ure founda-tion as well. Hen
e, exe
utables must be authenti
ated�This work was done as part of an internship at IBM's T.J.Watson Resear
h Center.yPortions of this work were funded by an IBM Fa
ulty Fel-lowship.

and prote
ted against integrity atta
ks. This is 
onve-niently a
hieved by digitally signing them.Signed exe
utables have a number of interestingproperties. They prevent intruders from repla
ing ex-e
utables with unsigned versions that have a ba
kdoorinstalled in them, they allow system administrators todetermine what exe
utables their users run and, if sodesired, restri
t the exe
ution of them- essentially pro-viding mandatory a

ess 
ontrol.We have implemented digitally signed exe
utablesfor the Linux operating system. While the 
on
ept ofa signed exe
utable is a straightforward one, the imple-mentation of it in a real system raises many interestingand unanswered questions. Among these are how toe�e
tively deal with:� Dynami
ally linked exe
utables.� Exe
utable s
ripts, and� Performan
e.Our system performs the digital signature 
he
k byaugmenting the a
tivation pro
ess. Before a binary�le is exe
uted, an embedded signature is veri�ed andwhen it is valid the binary is exe
uted. This me
hanismis easy to implement for stati
ally linked exe
utables.Dynami
 exe
utables, unfortunately, are problemati
in this model be
ause they load and run additional 
odeafter veri�
ation. That is, what is veri�ed is a sub-set of what is running. We solve this problem by theintrodu
tion of delegation 
erti�
ates and make sure1



the signed portions of the exe
utables verify the dy-nami
ally loaded 
ode before exe
uting it. A similarte
hnique is used for exe
utable s
ripts.In order to ensure widespread adoption, the signa-ture veri�
ation must have an almost negligible per-forman
e overhead. In our system we a
hieve this byintrodu
ing a signature 
a
he whi
h 
ontains the re-sults of all previous valid signature veri�
ation 
he
ks.On
e an exe
utable has been veri�ed su

essfully, thisresult is 
a
hed and future veri�
ations are skipped-provided the �le has not been modi�ed. This 
a
hedramati
ally redu
es the performan
e overhead of oursystem.In the next se
tion, we dis
uss the issues involvedin using digital signatures and the guarantees our sys-tem provides. Se
tion 3 des
ribes the implementationof our system: stati
 and dynami
ally linked signedexe
utables, signed exe
utable s
ripts, and the signa-ture 
a
he. Se
tion 4 dis
usses some of our experien
eswith signed exe
utables and in
ludes performan
e mea-surements. Se
tion 5 des
ribes a number of useful ap-pli
ations our work and is followed by a future workdis
ussion in Se
tion 6. Related work is des
ribed inSe
tion 7.2 Design IssuesIn the design of our system we were primarily fo
usedon providing the following two integrity guarantees:� Prevent the modi�
ation of authorized exe
uta-bles, and� Prevent the addition of unauthorized exe
utables.Central to these guarantees is the notion of an exter-nal, possibly o�-line, authorization pro
ess that deter-mines whether an exe
utable is allowed to be exe
utedon a given set of systems. The exa
t nature of this pro-
ess is outside the s
ope of this paper. In this paper,we are primarily 
on
erned with the implementation ofthe enfor
ement me
hanism.In our system we opted for digitally signing individ-ual exe
utables rather than using extended �lesystemattributes [8℄ or a signature database. The use of ex-tended attributes has the advantage that it allows all�les to be signed (i.e., 
on�guration �les, databases,C programs), but has the disadvantage that it doesnot work on �lesystems that do not support extendedattributes or remote �le systems. Remote �lesystemsare espe
ially problemati
 sin
e we need an additionalme
hanism to ensure that the remote server is present-ing the true extended attributes. In addition, the im-plementation overhead for extended attributes is 
on-

siderable, and we wished to keep our implementationlimited to a small set of 
hanges.The use of a signature database has the advantagethat it does not require the modi�
ation of the exe-
utable itself, but has the disadvantage that it needsto be updated every time a new exe
utable is added ormodi�ed. The entire database has to be signed whi
hrequires invoking the authorization pro
ess on everyupdate. The other disadvantage is that the systemadministrator has to manage two separate �les, the ex-e
utable 
ontent and its signature, instead of one.In our system, we atta
hed the signature to the exe-
utable 
ontent. This has the advantages that we onlydeal with a single 
ontainer, and the implementationrequires only a small number of kernel modi�
ations.To permit 
exibility, we added attributes to the signa-ture, and rather than inventing our own formats usedstandards as mu
h possible. Hen
e we use ELF [9℄ forour exe
utable binaries, the PKCS#7 [10℄ format forstoring our signatures, and the X.509 [21℄ format forstoring publi
 key 
erti�
ates.Our system ensures its integrity guarantees for ex-e
utables at load time. It does not provide prote
tionagainst run-time atta
ks su
h as 
ode inje
tion atta
ks(e.g., bu�er over
ows). These should be handled at adi�erent level.The 
urrent implementation of the system is vul-nerable to two atta
ks. The �rst atta
k repla
es thepubli
 key used to verify signatures with a new pub-li
 key known by the atta
ker. The atta
ker thenre-signs some of the binaries he/she is interested in.This atta
k is possible sin
e we 
urrently use a �le,/et
/
ertifi
ate, to store the publi
 key. This at-ta
k 
an be 
ountered by using a se
ure boot me
ha-nism, as des
ribed in Se
tion 5.The se
ond atta
k is an overwrite or downgrade at-ta
k. In this atta
k, the ha
ker has gained a

ess toa ma
hine and 
opied, for example, the 
urrent signedversion of the ftp daemon, say wuftpd. After a monthor so, when the next wuftpd bug is dis
overed, the sys-tem administrator installs a new and improved signedversion of the ftp daemon. The atta
ker now repla
esthe new signed version with the older signed version,whi
h has the known bug and for whi
h the atta
kerpresumably 
an exploit. This atta
k is undete
ted byour 
urrent system sin
e it does not keep any state onindividual �les.Preventing this kind of atta
k either requires 
re-ating a new key-pair and resigning all exe
utables orkeeping a signed revo
ation list. Sin
e this list willgrow arbitrarily, revo
ation re
ords 
annot be deleted,we need to purge the list by 
reating a new key and re-sign all exe
utables. None of this is supported by our



Program header table

ELF Header

Segment 1 (text)

. . .

Segment 2 (data)

Section header table
(optional)Figure 1: ELF obje
t �le format (exe
ution view).
urrent implementation.3 ImplementationWe implemented the signature 
he
king for exe
utablesusing the ELF format [9℄. The Exe
utable and Link-ing Format (ELF) standard, des
ribes the stru
ture ofobje
t �les. It distinguishes three types: exe
utable�les, shared obje
t �les, and relo
atable �les. Ourwork fo
uses on the �rst two types sin
e relo
atable�les are not used in program exe
ution{ only duringprogram 
reation. The ELF format is a 
onvenient im-plementation vehi
le sin
e it allows extensions to thebasi
 format. Adding signatures to other formats, su
has COFF or a.out, is possible but requires a 
ertainamount of shoehorning. Our 
urrent kernel only sup-ports the ELF format so that appli
ations 
annot by-pass the signature veri�
ation me
hanism.All ELF obje
t �les follow the same general stru
-ture. This stru
ture distinguishes two views of an ob-je
t �le: linking, and exe
ution. Sin
e we deal withsignatures on a per exe
utable granularity, we are in-terested only in the exe
ution view. In the exe
utionview, an ELF obje
t �le 
onsist of four parts, as shownin Figure 1: a general ELF header, the program headertable, a sequen
e of segments, and an optional se
tionheader table. The general ELF header gives global in-formation on the obje
t �le, like its type and intendedplatform. The program header table lists the segments,and provides their 
hara
teristi
s, su
h as the type ofsegment, size, and o�set. The segments 
ontain thea
tual 
ode and data that will be loaded into memorywhen the exe
utable is started. The �le ends with theoptional se
tion header table that stores informationused during program 
reation.For our signature 
he
king implementation, we in-trodu
e a new type of ELF segment: the signature seg-ment. This segment 
ontains the digital signature of

OBJECT IDENTIFIER signedData // 
ontent typeINTEGER 1 // versionOBJECT IDENTIFIER md5 NULL // digest algorithmOBJECT IDENTIFIER data // 
ontent typeINTEGER 3 // versionOCTET STRING // key identifier68 78 2A 64 3D E2 50 47 B7 E7 90 94 21 F9 F5 FFB6 94 D2 BFOBJECT IDENTIFIER md5 NULL // digest algorithmOBJECT IDENTIFIER rsaEn
ryption NULL // en
ryption algorithmOCTET STRING // signature data0E 64 20 D1 2D 23 0F 26 61 B1 86 39 02 8F 12 270F CA 97 0A B0 A2 C2 5E E5 7D 4F 3D DA 96 39 B962 7F 1D 60 70 64 7F CE B2 D6 62 F4 74 61 CD 68F2 A2 FB A3 03 5F 7F 6A 66 88 C6 6B 4B 6F 70 E581 11 C8 35 DE D2 B4 6A EF 9F AE 76 CC DB 74 ADD7 85 6A EC 64 A9 2A 5A F9 19 5E E1 EA 67 B1 12EC C4 7A 30 B8 4F 99 40 A5 F7 68 62 C5 CB DE BBBD 64 3E F6 29 C2 45 09 01 C3 63 51 81 36 B7 DAFigure 2: Simpli�ed dump of /bin/ls's (CMS) signa-ture.those parts of the exe
utable that are used during exe-
ution. More spe
i�
ally, the signature 
overs the ELFparts listed below:� ELF header.� All program headers.� All loadable segments, and� The interpreter segment.The rationale behind signing these ELF portions isdes
ribed in the se
tions below.We use the PKCS#7 [10℄ format for our digital sig-natures implementation. A human readable exampleof su
h a signature is shown in Figure 2 whi
h is takenfrom the /bin/ls program. We 
hose the PKCS#7format sin
e it is extensible, allowing us to store extrainformation in the future. It is also useful that it is awell-known format with publi
ly available implemen-tations, allowing us to implement our system qui
kly.The signature is 
reated using the MD5 se
ure hashfun
tion and the RSA en
ryption s
heme [13℄. How-ever, given the possible weaknesses of MD5 [4℄, we ex-pe
t to use a di�erent se
ure hash algorithm in thefuture, e.g. SHA1.3.1 Stati
ally Linked Exe
utablesThe a
tual signature veri�
ation is performed duringthe exe
ve() system 
all. During this system 
all thememory image of the 
urrent pro
ess is dis
arded, anda new memory image is 
reated using the exe
utable



�le, given as a parameter. When exe
ve() is 
alled bya pro
ess, the kernel �rst determines the a
tual binaryformat of the spe
i�ed exe
utable. On
e determined,a loader for the spe
i�
 binary format is 
alled{ in our
ase that is the ELF binary loader.The ELF loader 
ontinues the loading pro
ess by�rst loading the general ELF header and then the pro-gram header table. A s
an of the program header ta-ble indi
ates whi
h segments are needed to 
reate thenew memory image. These segments are marked asloadable. The Linux kernel does not a
tually load theloadable segments into memory, but instead uses thekernel's memory mapping 
apabilities. Mapping theloadable segment into the pro
ess' memory is more ef-�
ient, be
ause it results in loading only those pagesthat are a
tually used. After the segments are loaded,the kernel returns 
ontrol to the pro
ess at the startaddress spe
i�ed in the general ELF header.To se
ure the exe
ution of an exe
utable �le, weneed to sign those se
tions of the �le that 
an a
-tually in
uen
e its exe
ution. For a stati
ally linkedexe
utable that in
ludes the general ELF header, theprogram header table, and the loadable segments. Apotential atta
ker 
annot interfere by modifying, 
re-ating, or deleting segments, without also invalidatingthe exe
utable's signature.Signature veri�
ation is straightforward in the 
aseof stati
ally linked exe
utables. It 
onsists of 
om-puting the se
ure hash fun
tion over the general ELFheader, program header table, and loadable segments,and using the publi
 key to verify the out
ome. Thepubli
 key used during signature veri�
ation was al-ready loaded from the /et
/
ertifi
ate �le duringkernel initialization.A slight problem arises when the veri�
ation fails.Sin
e the original memory image has been dis
arded,there is no running program to return an error 
ode.We de
ided to let the pro
ess die on a signal to allowits parent pro
ess to noti
e the error 
ondition.An important assumption that we made is thatan exe
utable 
annot be 
hanged during exe
ution.Sin
e the veri�
ation o

urs prior to exe
ution, thereis the possibility that an atta
ker might 
hange the ex-e
utable �le while it is in use. This is parti
ularly im-portant in the presen
e of demand loaded exe
utables.Writing to the exe
utable �le after it is veri�ed, mightallow unveri�ed 
ode to be introdu
ed when pages arereloaded from the exe
utable by the virtual memorysystem.Normally, this is not a problem sin
e the kernel doesnot allow an exe
utable to be 
hanged during exe
u-tion. This requirement 
an, however, only be enfor
edfor �les on a lo
al �lesystem. Files on a remote �lesys-

tem, su
h as NFS, 
an be 
hanged without the lo
alkernel being aware of it. The only way to avoid thisproblem is to a
tually load the exe
utable prior to ver-i�
ation. This way a lo
al 
opy is made of the 
ontentsthat 
annot be 
hanged after veri�
ation.3.2 Dynami
ally Linked Exe
utablesThe exe
ution model for a dynami
ally linked exe-
utable adds two steps to the stati
 one. As in 
ase fora stati
ally linked exe
utable, the kernel begins withloading the general ELF header and program headertable. The exe
ve() system 
all identi�es a dynam-i
ally linked exe
utable when it �nds an interpretersegment in the program header table. The interpretersegment stores the path to the dynami
 linker, usually/lib/ld.so on Linux.After mapping the loadable segments, the kernelalso maps the dynami
 linker into the pro
ess' memoryimage. The kernel then passes 
ontrol to the dynami
linker, allowing it to load some or all of the dynami-
ally linked libraries. The dynami
 linker is either anexe
utable or shared obje
t �le. Note that the dynami
linker is a
tually part of the pro
ess' memory image.The 
ontent of a pro
ess' memory image is deter-mined by three sour
es: the exe
utable, the dynami
linker, and the dynami
ally linked libraries. To ensurethe proper 
reation of the memory image, we must signthe loadable segments from these sour
es. But, we alsomust sign the interpreter segment and the linking infor-mation used by the dynami
 linker. This informationis stored in the dynami
 segment.The signature veri�
ation o

urs immediately afterthe segments are mapped. For dynami
ally linked ex-e
utables, this means that the kernel must verify boththe exe
utable, and the dynami
 linker must verify thedynami
ally linked libraries. This results in the veri�-
ation of dynami
ally linked libraries in user spa
e.The addition of the interpreter segment to the listsof segments requiring signing is a simple extension ofthe stati
 exe
utable veri�
ation model. There is, how-ever, no need to add the dynami
 segment to the signa-ture 
he
k sin
e it is always lo
ated inside another load-able segment, and is thus 
overed by the fa
t that wesign all loadable segments. If an exe
utable or sharedobje
t �le would have a separate dynami
 segment,that segment would need to be signed and veri�ed aswell.3.3 S
ript Exe
utablesFor s
ript exe
utables, we use the same indire
tion stepas used for dynami
ally linked libraries. When a s
ript



inode number

device number

device number

inode number

device number

inode number

writing
Open for

. . .

Kernel signature cache

After verification

add

check

Before verification
destroy

Figure 3: Kernel signature 
a
he operations.is started, the kernel sear
hes for a binary loader, asusual. However, when the kernel determines that theexe
utable �le is a
tually a s
ript, it loads the s
riptinterpreter instead, giving the s
ript as parameter. Theinterpreter will then load and interpret the s
ript. Tosupport s
ripts we must modify the s
ript interpreter toverify the signature of the s
ript. The s
ript interpreterthen performs a role similar to the dynami
 linker.S
ript exe
utables do pose several problems. The�rst problem is that we need signature veri�
ationfun
tionality in every s
ript interpreter. This 
an leadto a rapid in
rease in the number of pla
es where signa-tures are veri�ed, 
ompared to the base solution whereonly the kernel and the dynami
 linker performed the
he
k. A se
ond problem is that s
ripting languagesfrequently allow user input as exe
utable 
ontent. This
ontent is not signed, and will thus allow the exe
utionof arbitrary 
ode.3.4 Signature Ca
heSignature veri�
ation unfortunately signi�
antly slowsthe startup time of programs. Sin
e all segments are
ompletely loaded to 
ompute the se
ure hash fun
-tion, the performan
e gain of dynami
 loading of exe-
utables is lost. To avoid this loss of performan
e, weneed to avoid the signature veri�
ation when possible.The signature a
tually does not need to be 
omputedevery time it is exe
uted. If the kernel knows it hasveri�ed an exe
utable �le before, and 
an determinethat the �le has not 
hanged afterwards, it 
an simplyreuse the previous result. This is, in fa
t, a signature
a
he{ amortizing the veri�
ation 
ost a
ross multipleinvo
ations.The kernel uses the signature 
a
he to asso
iate averi�
ation result with an exe
utable �le. When thekernel is about to verify an exe
utable �le, it looks inthe 
a
he for a previous result, and after verifying anexe
utable �le the results are stored in the 
a
he. Thekernel does, however, need to know that an exe
utable�le has 
hanged sin
e its veri�
ation result needs to

be purged from the 
a
he when that happens. Thismeans we have to 
he
k every potential �le 
hange.Sin
e this implies 
he
king every write() system 
alland a signi�
ant performan
e degradation, we 
hose tosimply look at the open() 
all. When a �le is openedfor writing, its signature will be purged, as shown inFigure 3.Remote �lesystems also pose a problem for the sig-nature 
a
he. Sin
e the kernel 
annot see all the
hanges made to a �le on a remote �lesystem, it 
anpotentially 
a
he a veri�
ation result while the �le hasbeen modi�ed. For this reason, the signature 
a
he 
annot be used with remote �lesystems.A se
ond problem is that a signature 
a
he 
an onlybe e�e
tive if its results are a
tually reused. This isnot a problem for the kernel, but sin
e the dynami
linker runs in user spa
e, it 
an not trust the veri�
a-tion results of the dynami
 linkers in other pro
esses.A simple way to avoid this problem is to let the kernelperform the a
tual signature veri�
ation, and presentthis fun
tionality to a pro
ess via a new system 
all.This new system 
all, verify(), takes an open �le de-s
riptor as argument and validates it's signature andreturns the result. If the signature is valid, it is alsoadded to the 
a
he. This way the dynami
 linker doesnot have to verify a signature itself{ it simply asks thekernel. This is straightforward for both exe
utable andshared obje
t �les sin
e they all share the ELF format.S
ripting languages �t less well in this model, and theirresult is 
urrently not 
a
hed.4 Performan
eWe measured the performan
e of our system using a setof sample appli
ations that are indi
ative for a devel-opment system. Table 1 summarizes the performan
emeasurements of our system under a typi
al appli
a-tion load. We measured the exe
ution time in threesituations: the signature veri�
ation turned o�, thesignature veri�
ation enabled but the signature 
a
hedisabled, and the both signature veri�
ation and 
a
heenabled. The �rst measurement gives an indi
ation ofthe original performan
e while the later two show theimpa
t of signature veri�
ation and the impa
t of the
a
he.The system we used for our measurements 
onsistedof a 900MHz Athlon with 128MB memory runningRedHat 6.2 and a 2.2.16 Linux kernel. For our im-plementation we tried to reuse as many available 
om-ponents as possible. For signature veri�
ation in thekernel, we used the RSAREF [19℄ library and modi-�ed the existing ELF loader. These modi�
ations weresmall and 
onsisted only of 482 lines of 
ode.



Program Unveri�ed Veri�ed Veri�ed+Ca
hels / 1261 31799 1243sh /dev/null 2710 58084 2670g

 hw.
 294634 522311 294634vi -
 :q 4377 49389 4359Table 1: Appli
ation exe
ution time (in �se
).Program Unveri�ed Veri�ed Veri�ed+Ca
heboot to login prompt 20 35 21Table 2: Exe
ution time (in se
).The overhead for signature veri�
ation (without the
a
he) is signi�
ant1, in some 
ases even 96% of theexe
ution time is due to signature 
he
king. This over-head disappears 
ompletely as soon as we introdu
e thesignature 
a
he{ sin
e no veri�
ation is required witha 
a
he hit. The fa
t that signed exe
utables with asignature 
a
he are slightly faster than unveri�ed ex-e
utables is a 
urious result. While the numbers arewithin the margin of error they might be 
aused bysome as yet unexplained prefet
h e�e
t within the VMsubsystem.Table 2 shows the impa
t of signature veri�
ationduring the system bootstrap pro
ess. The performan
enumbers are 
onsistent with the previous results andshow that the overhead with a signature 
a
he be
omesnegligible.5 Appli
ationsThe signed exe
utables des
ribed in this paper form thebuilding blo
ks for a number of interesting appli
ationsand extensions. In this se
tion we will look at four ofthem. They in
lude: se
ure boot, system administra-tion, 
apabilities, and appli
ation identi�
ation,Se
ure boot [1℄ is a pro
edure whereby the initialprogram loader (usually the BIOS) veri�es the signa-ture of the bootstrap loader before it a
tually exe
utesit. In turn, the bootstrap loader will verify the signa-ture of the operating system kernel before bootstrap-ping it. Our work is a logi
al 
ontinuation of this se
urebootstrap pro
ess. Where the se
ure boot pro
edureguarantees that only appropriately signed kernels arestarted, our work extends this by guaranteeing thatonly appropriately signed appli
ations are exe
uted.Integrating signed exe
utables with a se
ure bootme
hanism prevents an atta
k on the root 
erti�
atethat is used by the kernel to verify the signatures. In1Part of this overhead is due to the use of RSAREF ratherthan an optimized implementation of RSA.

our 
urrent system the root 
erti�
ate is stored in awell-known �le, /et
/
ertifi
ate, whi
h 
ould po-tentially be repla
ed by an atta
ker with a di�erent 
er-ti�
ate. When using se
ure boot, the bootstrap loaderwould pass the 
erti�
ate to the kernel or verify thatthe one stored in the �lesystem is valid before a
tuallybooting the kernel. Another way to prevent this atta
kis to store the 
erti�
ate on a token su
h as a smart-
ard, but this too requires a se
ure boot me
hanism toensure that the 
erti�
ate is a
tually used.The se
ond use of signed exe
utables is for systemadministration. Signed binaries 
an be used to 
ontrolwhat the user is permitted to exe
ute on a system. It iseasy to imagine multiple pro�les su
h as, a web server,a �rewall, a developer ma
hine, or a se
retary ma
hine.Ea
h exe
utable would be 
lassi�ed into the groups itbelonged. These groups would then be stored as sig-nature attributes in ea
h exe
utable. At boot up, theadministrator would spe
ify the desired domain andthe ma
hine would only exe
ute the binaries belongingto that group. For example, a se
retary would be ableto exe
ute a mail 
lient and an oÆ
e suite, but notthe C 
ompiler, Perl, or any other system utility. A�rewall would be even more restri
tive. The advantageof using signature attributes is that a single softwaredistribution suÆ
es for many di�erent uses and hen
esimpli�es the maintenan
e job for the administrator.An alternative appli
ation of this me
hanism would beto enfor
e software li
enses without having to keep dif-ferent software distributions.Closely asso
iated with tagged attributes is the tag-ging of 
apabilities. Rather than storing the setuidor setgid properties of an exe
utable in the �lesystemthey 
ould be stored in the signature attributes. Thiswould prevent a potential atta
ker from marking pro-grams setuid sin
e that would require the possession ofthe o�-line se
ret key used to sign the binaries.So far we have used digital signatures as a way toauthenti
ate an exe
utable to the kernel. They 
an



also be used to identify themselves to other appli
a-tions. This is espe
ially useful for remote appli
ationswhere the 
lient wants to establish the identity of theserver. A remote server 
an present its digital signa-ture as proof of this. Of 
ourse, this in itself is not suf-�
ient, it has to be signed by the kernel it is running onin order to show that the server is not spoo�ng the 
er-ti�
ate. This works re
ursively. We also need to knowthe authenti
ity of the kernel whi
h requires the boot-strap loader to vou
h for it. This requires authenti
ityguarantees for the bootstrap loader and therefore re-quires a se
ure boot me
hanism. Eventually this leadsto a PKI with a shared root between the 
lient and theserver from whi
h trust is a
quired.The appli
ation identi�
ation me
hanism lets a
lient enfor
e to whi
h version of the server it wishes to
ommuni
ate, on whi
h version of the operating systemit runs, and whi
h version of the �rmware it uses. Thisis espe
ially useful in the area of se
ure 
ryptographi

opro
essors [20℄ that are used to store highly sensitivedata. It is 
ru
ial for a 
lient to reliably establish trustin a server running on these devi
es before 
ommittingdata to it. In fa
t, knowing what server is 
urrentlyrunning on the devi
e is often not suÆ
ient. Depend-ing on the type of appli
ation, additional informationabout what else is running on the devi
e and what ranin the past may all be used by the 
lient to determineits trust in the devi
e.6 Future WorkIn the previous se
tion we des
ribed a number of ap-pli
ations that all use the signature me
hanism as abasi
 building blo
k. In this se
tion we look at moreimmediate future work.In our 
urrent system we do not sign and verify ker-nel modules. In
luding these in our system is straight-forward and uses the same delegation me
hanism weuse for shared libraries and s
ripts. Kernel modules areloaded and relo
ated by a separate program, insmod,before the prepared module image is mapped into thekernel address spa
e. To verify kernel modules we needto enhan
e insmod to verify the module's signature be-fore pro
essing it.The redire
tion of standard input into a s
ript raisesseveral problems with only two possible solutions. The�rst potential solution eliminates redire
tion from allauthorized interpreters. And, the se
ond requires thatea
h IO stream begins with an authorized signature.Unfortunately, both solutions prevent the use of the
ommand line or on the 
y s
ripts. While this willannoy the system administrators, this fun
tionality vi-olates one of our design prin
iples{ preventing the ex-

e
ution of unauthorized 
ode. As a result, we will beimplementing the se
ond solution whi
h, fortunately,maps 
losely with the approa
h already taken with in-terpreted s
ripts.7 Related WorkIntegrity 
he
king for appli
ations has a long history,but it is only re
ently that pro
essor performan
e hasbe
ome suÆ
ient to support the use of publi
 key 
ryp-tography within the kernel. In this se
tion, we presentba
kground information on the related work to our ef-fort.7.1 Lo
usThe �rst to propose the use of integrity 
he
ks basedon message authenti
ation 
odes and digital signatureswere Pozzo and Gray in 1986 and 1987 [18, 17, 16℄.Their goal was to prevent viruses, and they imple-mented their system as part of the Lo
us distributedoperating system. The idea was to pla
e a digital sig-nature on ea
h appli
ation. The kernel then took theresponsibility for validating the signature. If the sig-nature did not mat
h, then the appli
ation was notexe
uted. Thus a virus 
ould infe
t a �le, but it 
ouldnot propagate- essentially 
utting o� the viruses ve
tor.Unfortunately, the 
omputing power available to Pozzoand Grey at that time was not suÆ
ient to support theuse of publi
 key 
ryptography. As a result, the initialprototype only used the UNIX 
rypt fun
tion to 
re-ate a four byte �ngerprint for ea
h \signed" �le. Theauthors re
ognized that su
h a me
hanism was insuf-�
ient, but the inadequa
y of pro
essing power at thetime prevented a more robust solution. Fortunately,the 
omputing power now exists su
h that a me
hanismas proposed by Pozzo and Grey is now possible. But,Pozzo and Grey only addressed the problem with amonolithi
 kernel. They never addressed issues su
h askernel modules, shared libraries, nor shell redire
tion.Pozzo and Grey did, however, identify that the useof signatures on exe
utables 
ould implement a strongform of a

ess 
ontrol.7.2 TripwireTripwirer
provides an ex
ellent means for ensuring theintegrity of a �lesystem [12, 11℄. It has been used foryears by many sites to su

essfully dete
t the e�e
ts ofintrusions, i.e. the modi�
ation of binaries and/or 
on-�guration �les. Unfortunately, Tripwire's fundamental
aw is that it relies on the validity of the operating



system, the Tripwire binary, and the database of sig-natures. If any of these items is modi�ed to providein
orre
t results to hide mali
ious 
hanges, then theanalysis by Tripwire is suspe
t and likely to produ
efalse negatives [7, 6℄. Another major short 
oming ofTripwire is that it does not perform its integrity 
he
ksin real time, i.e. prior to the �le or appli
ation be-ing used. As a result, the 
ompromise of a site 
ouldbe missed up to the length of time between Tripwire
he
ks. While Tripwire does perform fun
tions beyondthe work des
ribed this paper, e.g. integrity prote
tionfor non-exe
utable �les, the drawba
ks to Tripwire re-main signi�
ant.7.3 AEGIS KernelA pre
ursor to this work was a signed exe
ution proto-type produ
ed by one of the authors while employed bythe U.S. Department of Defense [2℄. Modi�
ations weremade to the SunOS 4.X kernel tree so that the integrityof a �le was veri�ed prior to exe
ution. The prototypeused RSA, MD5, and a simple 
erti�
ate format ap-pended to the end of a.out �les. In 1995, the SunOSprototype was ported to FreeBSD where the 
on
eptof a veri�
ation 
a
he was introdu
ed to amortize theveri�
ation 
ost. Both prototypes identi�ed the numer-ous issues with interpreted s
ripts, shared libraries, andloadable kernel modules, but neither prototype imple-mented a solution.7.4 IBM 4758The IBM 4758 se
ure 
ryptographi
 
opro
essor [20℄uses a signed pa
kaging me
hanism to load exe
utablesinto the devi
e. The pa
kage is signed by a developerkey whi
h was generated by the developer and signedo�-line by the IBM root key. This root key is only usedby the 
ard to verify the developer signature, whi
hexe
utable 
an be loaded is 
ontrolled by the developerkey. The signing information on the exe
utable is usedin a me
hanism 
alled outgoing authenti
ation whi
his an initial version of appli
ation identi�
ation. Thelater still requires further study, espe
ially in the areaof dynami
 kernels and multiple devi
e owners.7.5 Authenti
odeMi
rosoft 
urrently uses several types of integrity
he
king. First, they have pla
ed digital signatureson devi
e drivers for Windows 2000 and before thatWindows 98 [15℄. The windows kernel will not loada driver without a valid signature. While this feature
ould be viewed as a se
urity feature, its implementa-tion was probably more of a 
on�guration management

issue, i.e. prevent the loading of unapproved drivers sothe ma
hine doesn't 
rash. Finally, Mi
rosoft imple-ments a 
ode signing me
hanism entitled Authenti
odethat pla
es a digital signature on A
tiveX 
ontrols [14℄.The signatures on the 
ontrols are used in 
onjun
tionwith lo
al poli
y to determine if the 
ontrol will beexe
uted, or ignored. In essen
e, providing a limitedform of mandatory a

ess 
ontrol as in the early Javase
urity ar
hite
ture [3℄.7.6 Java Code signingThe signing of Java appli
ations and applets initiallyonly supported an all or nothing approa
h to a

ess
ontrol as in Authenti
ode. Appli
ations on the lo
al�lesystem were 
ompletely trusted with or without asignature. Remote 
ode was untrusted unless it 
on-tained a valid signature. The 
urrent se
urity ar
hi-te
ture for Java, however, provides for a �ne graineda

ess 
ontrol me
hanism [5℄. In the 
urrent se
urityar
hite
ture, a lo
al poli
y �le determines what, if any-thing, resour
es appli
ations and applets 
an a

ess.The poli
y 
an, for instan
e, allow only those appli
a-tions signed by 
ertain publi
 keys to a

ess lo
al �les.8 Con
lusionsWhile integrity has long been a desirable property fornetwork and distributed se
urity e�orts, it has, for themost part, been ignored within modern operating sys-tems. The result is that add-on me
hanisms su
h asTripwire were employed by a large set of users requir-ing strong integrity guarantees. We believe that su
hintegrity me
hanisms belong in the kernel and below{for on
e integrity is lost, it 
an not be easily regained.One of the may reasons why strong integrity guaranteesare not present in modern operating systems is the in-
orre
t per
eption that su
h me
hanisms in
ur a largeperforman
e penalty. We have shown in this work thatsu
h beliefs are misguided, and that through the useof a signature 
a
he strong integrity guarantees 
an beprovided with only a negligible performan
e penalty.A
knowledgmentsWe would like to thank Peter Gutmann for helpful 
om-ments on the paper. The authors are working towardsa publi
 release of the software des
ribed in this paper.Referen
es[1℄ W. Arbaugh, D. Farber, and J. Smith. A Se
ure andReliable Bootstrap Ar
hite
ture. In 1997 IEEE Sym-



posium on Se
urity and Priva
y, pages 65{71. IEEE,1997.[2℄ W. A. Arbaugh. Signed exe
ution. OÆ
e of IN-FOSEC Resear
h and Te
hnology Program Status Re-view, February 1994.[3℄ D. Dean, E. W. Felten, and D. S. Walla
h. Java Se
u-rity: From HotJava to Nets
ape and Beyond. In 1996IEEE Symposium on Se
urity and Priva
y, pages 190{200. IEEE, 1996.[4℄ H. Dobbertin. Cryptanalysis of MD5 Compress, May1996. Presented at the rump session of Euro
rypt `96.[5℄ L. Gong. Inside Java 2 Platform Se
urity: Ar
hi-te
ture, API Design, and Implementation. Addison-Wesley, 1999.[6℄ Hal
ife. Bypassing Integrity Che
king Systems. InPhra
k, volume 7. 2600, September 1997.[7℄ Hoglund. Windows rootkit. http://www.rootkit.
om.[8℄ IEEE. POSIX 1003.1e Draft Standard, A
-
ess Control Lists, O
tober 1997. Withdrawn,http://www.guug.de/ winni/posix.1e/download.html.[9℄ Intel. Tool interfa
e standard portable formats spe
i�-
ation (version 1.1), O
tober 1993. Intel order number241597.[10℄ B. Kaliski. PKCS #7: Cryptographi
 Message Syn-tax (Version 1.5). In Internet Request for Comments(RFC) 2315. Mar
h 1998.[11℄ G. Kim and E. Spa�ord. Experien
e with Trip-wire: Using Integrity Che
kers for Intrusion Dete
tion.In System Administration, Networking, and Se
urityConferen
e III. USENIX, 1994.[12℄ G. H. Kim and E. H. Spa�ord. The Design and Im-plementation of TRIPWIRE: A File System IntegrityChe
ker. Te
hni
al Report TR-93-071, Departmentof Computer S
ien
e, Purdue University, November1993.[13℄ A. J. Menezes, P. C. Van Oors
hot, and S. A. Van-stone. Handbook of Applied Cryptography. CRC Press,1997.[14℄ Mi
rosoft. Authenti
ode Te
honology. Mi
rosoft's De-veloper Network Library, O
tober 1996.[15℄ Mi
rosoft. Authenti
ode Signing of Devi
e Drivers.Presentation at Mi
rosoft Professional DevelopersConferen
e, September 1997.[16℄ M. M. Pozzo and T. E. Gray. An Approa
h to Con-taining Computer Viruses. Computers and Se
urity,6(4):321{331, August 1987.[17℄ M. M. Pozzo and T. E. Gray. A Model for the Contain-ment of Computer Viruses. In 1989 IEEE Symposiumon Se
urity and Priva
y, pages 312{318. IEEE, 1989.[18℄ M. M. Pozzo and T. E. Grey. A Model for the Contain-ment of Computer Viruses. In 1986 Aerospa
e Com-puter Se
urity Conferen
e, pages 11{18, 1986.[19℄ RSA Laboratories. RSAREF r
: A Cryptographi
Toolkit for Priva
y-Enhan
ed Mail, 1994.[20℄ S. Smith and S. Weingart. Building a High-Performan
e, Programmable Se
ure Copro
essor. InSpe
ial Issue on Computer Network Se
urity, vol-ume 31, pages 831{860. Elsevier, 1990.

[21℄ X.509. ITU-T Re
ommendation X.509 (1997 E): In-formation Te
hnology - Open Systems Inter
onne
tion- The Dire
tory: Authenti
ation Framework, June1997.


