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The main purposes of this study were to systematically investigate the impact of 

representativeness and non-representativeness of common-item sets in terms of statistical, 

content, and format specifications in mixed-format tests using concurrent calibration with 

unidimensional IRT models, as well as to examine its robustness to various 

multidimensional test structures. In order to fulfill these purposes, a simulation study was 

conducted, in which five factors – test dimensionality structure, group ability 

distributions, statistical, content and format representativeness - were manipulated. The 

examinees’ true and estimated expected total scores were computed and BIAS, RMSE 

and Classification Consistency indices over 100 replications were then compared. The 

major findings were summarized as follows:  

First, considering all of the simulation conditions, the most notable and significant 

effects on the equating results appeared to be those due to the factor of group ability 

distributions. The equivalent groups condition always outperformed the nonequivalent 

groups condition on the various evaluation indices.  



Second, regardless of the group ability differences, there were no statistically and 

practically significant interaction effects among the factors of the statistical, content and 

format representativeness.  

Third, under the unidimensional test structure, the content and format 

representativeness factors showed little significant impact on the equating results. 

Meanwhile, the statistical representativeness factor affected the performance of the 

concurrent calibration significantly.  

Fourth, regardless of the various levels of multidimensional test structure, the 

statistical representativeness factor showed more significant and systematic effects on the 

performance of the concurrent calibration than the content and format representativeness 

factors did. When the degree of multidimensionality due to multiple item formats 

increased, the format representativeness factor began to make significant differences 

especially under the nonequivalent groups condition. The content representativeness 

factor, however, showed minimum impact on the equating results regardless of the 

increase of the degree of multidimensionality due to different content areas.  

Fifth, the concurrent calibration was not quite robust to the violation of the 

unidimensionality since the performance of the concurrent calibration with the 

unidimensional IRT models declined significantly with the increase of the degree of 

multidimensionality. 
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Chapter 1: Introduction 

Background 

 The multiple-choice (MC) item format continues to be the mainstay of 

standardized testing programs due to its broad content sampling, high reliability, and 

objective and efficient scoring. Meanwhile, in order to fulfill the federal calling for 

“multiple approaches with up-to-date measures of student achievement, including 

measures that assess higher-order thinking skills and understanding of challenging 

content” (U.S. Department of Education, as cited in Kirkpatrick, 2005, p. 3), constructed 

response (CR) items and mixed-format tests which consist of both MC and CR items 

have been earning increasing interest and popularity. The advocates believe that MC and 

CR items both have their own advantages and limitations, and the combination may allow 

the concatenation of their strengths while compensating for their weaknesses. Therefore, 

more and more large-scale testing programs and state assessment systems have embraced 

mixed-format tests. In fact, a survey from Lane (2005) declared that 63% of the state 

assessments contained both MC and CR items. In this study, a mixed-format test refers to 

a test that consists of dichotomously-scored MC items and polytomously-scored CR 

items. Among the examples of using mixed-format tests are the College Board’s 

Advanced Placement (AP) examinations, the National Assessment of Educational 

Progress (NAEP), the Test of English as a Foreign Language (TOEFL), the 

Massachusetts Comprehensive Assessment System, the California’s Learning 

Assessment System, the Indiana’s Performance Assessment for School Success, and the 

Michigan’s High School Proficiency Test.  
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 Partly due to state and federal legislation, especially the authorization of the No 

Child Left Behind Act, the stakes and consequences associated with test scores have been 

more of a concern than ever across all levels of clients, including students, teachers, 

parents, and district principles. High-stakes tests normally require strict test security. One 

of the general practices to ensure test security is to administer multiple test forms on the 

same or different test dates. When multiple test forms are used, an equating process 

should be applied so that examinees’ proficiencies obtained across forms and across 

occasions can be compared on the common scale, which further addresses the fairness 

concern.  

 According to Kolen & Brennan (2004), equating refers to a statistical process that 

is widely used to adjust scores on different forms so that scale scores can be used 

interchangeably. Various equating procedures are available. Classical equating methods 

(e.g., the mean, linear and equipercentile methods) are commonly used in many testing 

programs. Existing literature has offered both theoretical and practical guidance on these 

classical methods (Holland & Doran, 2006; Kolen & Brennan, 2004). Meanwhile, with 

the increasing advancement of item response theory (IRT) and the availability of 

sophisticated computer software, IRT equating methods have become more and more 

appealing. The equating methods that will be implemented in this study are IRT equating 

methods under common-item nonequivalent groups (CINEG) design. IRT equating under 

CINEG design is a multi-step process, which includes item calibration, scale 

transformation and/or raw-to-scale score conversion. These steps have been well 

investigated for dichotomously-scored item only tests and also in recent years have been 

fully extended to polytomously-scored item only tests (see Holland & Doran, 2006; 
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Kolen & Brennan, 2004; Muraki, Hombo, & Lee, 2000 for detailed discussions). 

However, the use of mixed-format tests would greatly complicate the IRT equating 

process and pose a number of new challenges to the IRT equating under CINEG design.  

 One challenge for mixed-format test equating using IRT methods with CINEG 

design is how to extend traditional IRT equating procedures that were originally 

developed for single-format tests to those appropriate for mixed-format tests. As 

mentioned above, IRT equating procedures have been well developed for single-format 

tests. Until recent years, researchers started to extend various IRT equating procedures 

from single-format tests to mixed-format tests and compare the relative performance of 

these extended equating procedures. Detailed literature review of this issue will be 

presented in Chapter Two. However, compared to a large body of comparison studies for 

single-format tests, the studies in this field for mixed-format tests are limited in number 

and in their coverage of the important issues. 

 Another challenge related to mixed-format test equating is brought by the use of 

raters to score items. For mixed-format tests where CR items are included and scored by 

raters, systematic changes in rater judgments from year to year in terms of rater severity 

and leniency may influence the accuracy of equating (Kim & Kolen, 2006; Tate, 1999). 

The task of equating MC-only tests is to disentangle the variation of form difficulty and 

group ability. When mixed-format tests are used and rater effect occurs, it adds another 

source of systematic variations that is intertwined with form difficulty and group ability. 

To adjust and evaluate the impact of rater effects, especially on the accuracy of equating 

results, several studies have been conducted and various statistical procedures have been 

proposed (Fitzpatrick, Ercikan, Yen, & Ferrara, 1998; Linacre, 1988; Tate, 1999, 2000, 
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and 2003). There will be a brief description of several studies about the issue of rater 

effects on mixed-format test equating in Chapter Two. However, it is not the primary 

subject of this study.  

 Multidimensionality is another serious issue associated with mixed-format test 

equating using IRT methods. Multidimensionality could be caused by a variety of reasons 

and it might exist in single-format tests as well as mixed-format tests. However, there is a 

unique source that could lead to multidimensionality in mixed-format tests, that is, the 

use of multiple item formats in a single assessment. Multidimensionality associated with 

item formats could occur when examinees process MC and CR items in different ways 

(Traub, 1993). In other words, if multidimensionality associated with item formats occurs, 

MC and CR items in a mixed-format test that assesses the same content will measure 

examinees’ different proficiencies (Kim & Kolen, 2006). The multidimensionality due to 

item format and especially how it will influence the mixed-format test equating will be 

one of the primary concerns in this study. According to the previous research on 

dimensionality structure underlying mixed-format tests, the findings appeared to be 

mixed and largely varying in different contexts. Unidimensionality exists in some large-

scale operational mixed-format tests, and multidimensionality exists in others. When 

multidimensionality occurs, unidimensional IRT models might no longer be appropriate 

for equating.  In that case multidimensional IRT models for dichotomously-scored and 

polytomously-scored items might be applied. However, since the use of unidimensional 

IRT models is still dominant in most testing programs, it seems to be more valuable for 

this study to focus on the robustness of unidimensional IRT equating methods to various 

dimensionality structures underlying mixed-format tests.  
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 When CINEG design is involved in mixed-format test equating, another challenge 

cannot be ignored, which is the composition of common-item sets. Although there is no 

universal conclusion that has been reached on the impact of the characteristics of the 

common-item sets on test equating (see research findings in Chapter Two for details), for 

MC-only tests, there is a widely accepted opinion that the characteristics of the common-

item sets play an important role and that the common-item set should be a mini version of 

the whole test in terms of content and statistical specifications (Kolen & Brennan, 2004). 

The similar but more complicated scenario occurs when mixed-format tests need to be 

equated under CINEG design. In addition to considering content and statistical 

representativeness of the common-item sets, to develop a proportionally representative 

set of common items for mixed-format tests one has to take the item format effect into 

account. Kirkpatrick (2005) provides a very good example in which CINEG design is not 

even a desirable design to implement in mixed-format test equating in the first place 

because of the impossibility to develop a proportionally representative common-item set. 

So far, very little research has been conducted on the impact of the composition of 

common-item sets on mixed-format test equating. Among them, most of the researchers 

only focused on separate aspect of the common-item set such as whether CR items should 

be included or excluded, not the collective impact of the characteristics of the common-

item sets in terms of content and statistical representativeness as well as mixture of item 

formats on the CINEG equating results. That will be the other primary focus of this study. 

Research Purposes and Questions 

 As described earlier, quite a few challenges exist in mixed-format test equating 

using IRT methods with CINEG design. In this study, the composition of common-item 
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sets under various multidimensional test structures will be the primary concern. Although 

research on the effects of multidimensionality and the composition of common-item sets 

for mixed-format test equating exists and is informative, it still leaves room for 

improvement in our knowledge base. Previous research on multidimensionality (Kim & 

Kolen, 2006; Kirkpatrick, 2005; Sykes, Hou, Hanson, & Wang, 2002; Tate, 2000) only 

simulated data for the correlated-format-specific factorial model. However, the 

underlying test structure could be far more complicated in reality in a way that more than 

one factor could affect an examinee’s correct response to each item and different items 

may require different combinations of factors for an examinee to respond correctly. 

Moreover, the relative influential power of various factors on examinees’ item responses 

could vary. In this case, the multidimensional IRT models might better capture the test 

structure and the results might be generalizable to more realistic situations. However, no 

current research has investigated the impact of more general multidimensional test 

structures on mixed-format test equating. Meanwhile, previous research on the 

composition of common-item sets (Kim & Lee, 2006; Kirkpatrick, 2005; Sykes et al., 

2002; Tate, 2000) only focused on whether to include or exclude CR items in the 

common-item sets. They all assumed content and statistical representativeness of the 

common-item sets. No research has explored the interactive effects of representativeness 

and non-representativeness of content, statistical and format specifications on mixed-

format test equating. 

 There are two main purposes of this study.  First, to systematically investigate the 

impact of representativeness and non-representativeness of common-item sets in terms of 

content, statistical and format specifications on mixed-format test equating using IRT 
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methods. Second, to investigate the robustness of unidimensional IRT equating methods 

under various simulated conditions, especially the multidimensionality due to item format. 

More specifically, this study will attempt to address the following three questions: 

1) In an ideal situation where the unidimensionality assumption is satisfied, what are 

the effects of content, statistical and format representativeness of common-item 

sets on mixed-format test equating?  

2) In hypothetical but possibly practical situations where multidimensionality exists, 

what are the effects of content, statistical and format representativeness of 

common-item sets on mixed-format test equating?  

3) How robust is the unidimensional IRT equating method to the presence of 

different multidimensional situations? 

 In order to address the above research questions, a simulation study will be 

conducted. The three-parameter logistic (3PL) model and the graded response model 

(GRM) will be used to generate and calibrate MC and CR items, respectively. Concurrent 

calibration will be conducted for placing parameters onto a common scale. The factors 

that will be manipulated are dimensionality structure of mixed-format tests, content, 

statistical, and format representativeness, and group ability distributions. Details about 

the simulation study will be presented in Chapter Three. 

Organization of the Study 

 This study will be presented in five chapters. In Chapter One, the background of 

this study as well as the research purposes and questions associated with this study have 

been addressed. In Chapter Two, a review of relevant literature will be presented. The 

review will concentrate on four aspects: the comparison of MC and CR items, the 
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dimensionality differences of mixed-format tests, the equating design components for 

mixed-format test equating, and comprehensive research on mixed-format test equating. 

In Chapter Three, the methodology for this study, especially the simulation design 

employed in this study will be addressed. In Chapter Four, the results of this study will be 

summarized and reported. In Chapter Five, the major findings will be discussed, the 

implications for practice will be addressed, the limitations of this study and some 

suggestions for future research will be provided. 
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Chapter 2: Literature Review 

 This chapter consists of four major sections. In the first section, multiple-choice 

(MC) items and constructed response (CR) items which comprise the mixed-format tests 

considered in this study are defined and their advantages and limitations are compared. 

The second section provides a discussion of relevant literature on the dimensionality 

structure of mixed-format tests. The third section presents and discusses all the equating 

design components employed in this study, which include data collection designs, 

mixture of item response models, and IRT equating methods. Finally, detailed reviews of 

previous comprehensive research on mixed-format test equating, which are suggestive of 

this study, are provided. Each section ends with a short description of relevant factors of 

this study. 

Item Formats in Mixed-format Tests 

 For the purpose of this study, a mixed-format test is defined as a test consisting of 

two item formats in a single assessment. Two general categories of item formats that will 

be used to comprise mixed-format tests in this study are MC and CR items. MC items 

require the examinee to select an answer from a relatively small set of response options 

(e.g., four or five) and are often dichotomously scored. As a competing and 

complementary alternative for MC item format, CR items require the examinee to 

generate his/her own answer rather than selecting among alternative options. CR items 

could be either dichotomously or polytomously scored. However, this study will limit the 

CR items to those polytomously scored. 

 A wealth of research has been devoted to understanding the distinctions between 

MC and CR items from both psychometric and cognitive perspectives. The psychometric 
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research compares these two formats in terms of content coverage, reliability and validity 

evidence, scoring objectivity and efficiency, and so on. The cognitive research 

emphasizes the format distinctions in terms of cognitive skills they can elicit and 

cognitive ranges they might sample. Seven major differences that were typically 

addressed in the literature are summarized in this section. 

 First, MC items allow evaluation of a greater breadth of content coverage in a 

fixed testing time period under limited budget. In contrast, since CR items require 

examinees to spend a certain amount of time generating responses, usually fewer CR 

items can be administered during a particular period. The use of a limited number of 

items usually results in an inadequate sample of the content domain (Kolen, 1999-2000; 

Linn, 1995). Oosterhof (1996) states that when there are only ten or fewer items in a test, 

the content sampled by these items largely determines an examinee’s score. An examinee 

who knows only a small fraction of the content could possibly do well on a test if the test 

items happen by chance to sample content with which the examinee is knowledgeable. 

On the other hand, if the test items sample what the examinee is not familiar with, the 

examinee would perform very poorly. Consequently, it could substantially reduce the 

reliability of the test and hence constrain its generalizability. 

 Second, the scoring of MC items is inexpensive, efficient and objective. In 

contrast, the scoring of CR items nearly always involves a group of judges and requires 

fairly detailed scoring rubrics, which substantially increase the amount of time and the 

cost.  Experimentation with computer based scoring is a current interest of some testing 

firms, although the systems are not widely applied yet.  However, even though the judges 

are well trained, the scoring rubrics are clearly specified, and the scoring processes are 
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strictly monitored, the scoring of CR items is still subjective and may vary across judges 

and occasions. All the efforts intended to help judges score reliably are only moderately 

successful (Bennett, 1993). 

 Third, CR items increase content validity by providing a more direct measure of 

content and skill objectives than MC items do.  In addition, CR items might offer higher 

construct validity than MC items do. MC items, constrained by their nature, are less 

likely to elicit certain types of cognition like divergent thinking. If adequate assessment 

of a construct requires these sorts of cognitions, the construct might be under-represented 

(Messick, 1995). Furthermore, MC items are more susceptible to some test-taking 

strategies, also known as test-wiseness. For example, they are sensitive to a response 

elimination strategy (Burton, 2001), in which examinees could use secondary cues to rule 

out several implausible response options without knowing the correct answer and thus 

increase the probability of guessing right. If test scores partly reflect examinees’ ability to 

use this strategy, then construct-irrelevant variance will be introduced into scores and 

construct validity will be compromised. 

 Fourth, CR items require examinees to generate the answers rather than to choose 

from a set of options, and therefore eliminate the random guessing effect. An examinee 

who has not acquired the necessary knowledge would be unlikely to generate the correct 

response simply by guessing. In contrast, MC items are too vulnerable to guessing, which 

has even been nicknamed by Oosterhof (1996) as the “multiple-guess” format. As a result, 

guessing often leads to an inflated score. 

 Fifth, both MC and CR items could evoke lower-level and/or higher-level 

cognitive skills. MC items are often written to assess the lower-level cognitive skills, 
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such as recognition or recall. However, researchers (Haladyna, 1994, and 1997; Hamilton, 

Nussbaum, & Snow, 1997; Wainer & Thissen, 1993) have demonstrated that MC items 

can also be written to evoke complex cognitions, such as understanding, evaluation, and 

problem solving. On the other hand, CR item format encompasses a wide variety of tasks 

ranging from filling in blanks, sentence completions, short answers, to a multi-page essay 

writing or a multi-step solution to a mathematical problem. Accordingly, the cognitive 

skills elicited by different varieties of CR items vary substantially. Therefore, as Martinez 

(1999) pointed out that characterizing CR and MC as a simple dichotomy disguises the 

diversity of forms and the cognitive demands within these two item formats. 

 Sixth, although MC items can elicit complex cognitions, the range of cognitions 

within the reach of CR items is broader. Martinez (1999) indicated that MC items, by 

design, largely limit the examinees’ behavior so that it is extremely difficult for MC 

items to capture two qualities of response: complex performance and divergent 

production. For example, MC items might assess most aspects of English language 

proficiency such as listening, reading, and even writing, but they cannot directly measure 

examinees’ ability of speaking. Another limitation of MC items is that cognition must 

eventually lead to convergence since a single answer must be chosen from a set of 

alternatives and thus divergent production is excluded. Such cognitive tasks involving 

elaborating creative ideas prompted by a stimulus, or generating original applications of a 

scientific principle, cannot be accomplished via MC items. In conclusion, MC items, to 

some extent, cannot reach the full spectrum of complex cognition represented in CR 

items. 
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 Seventh, CR items may be more useful to facilitate students’ learning and 

teachers’ instruction than MC items. There is some evidence (Snow, 1993) showing that 

students who expect a CR test generally work harder and prepare more than those who 

anticipate a MC test. Furthermore, CR items can elucidate much richer responses than 

MC items. Therefore, CR items might be more helpful than MC items to record students’ 

cognitive trace of their solution processes and provide teachers with more informative 

diagnostic messages about students’ learning errors and misconceptions (Lukhele, 

Thissen, & Wainer, 1994; Martinez, 1999), which would in turn help teachers to realize 

their teaching problems and thereby improve their teaching efficiency.  

Implications 

 Table 2.1 summarizes the distinctions between MC and CR item formats 

discussed above.  

Table 2.1 A Comparison of MC and CR Item Formats 
 

 MC items CR items 
Psychometric Perspective   
    Content sampling in unit time Broad (+) Narrow 
    Reliability Generally high (+) Generally low 
    Scoring Objective, efficient and 

inexpensive (+) 
Subjective, time-consuming 
and expensive 

    Validity Generally low Generally high (+) 
    Robustness to guessing Low High (+) 
Cognitive Perspective   
    Cognitive skills Lower- or higher-level Lower- or higher-level 
    Cognitive range Narrow  Broad (+) 
    Facility in learning and teaching Generally low Generally high (+) 
Note: Features marked with a plus (+) are usually considered to be desirable. 
 
 After expatiating and weighing the desirable and undesirable features of MC and 

CR item formats, one implication can be reached. That is one item format would never be 

superior to another in all respects and for all purposes. Therefore, “sometimes the best 

policy decision will not be a matter of either/or, but of what mixture of item formats will 
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yield the best possible combined effect” (Martinez, 1999, p. 216). The combination may 

allow the concatenation of their strengths while compensating for their weaknesses. In 

the case of MC and CR item formats, the benefits of broader content sampling, high 

reliability, objective and efficient scoring offered by MC item formats can be 

complemented by those of high content and construct validity, robustness to guessing, 

and integrated reach of complex cognitions offered by CR item format. In conclusion, a 

mixture of MC and CR item formats may provide a more appropriate measure of learning 

and teaching. 

 Base upon these arguments, the use of mixed-format tests seems to be more and 

more popular in large-scale testing programs and state assessment systems. In fact, a 

survey from Lane (2005) declared that 63% of the state assessments currently include 

mixed-format tests. Therefore, this study will focus on mixed-format tests, rather than 

single format tests in order to provide meaningful guidance and fulfill the increasing 

needs of better constructing the mixed-format tests and employing common-item non-

equivalent groups design on it. 

Dimensionality Structures among Mixed-format Tests 

 Given the desirable features that the combination of MC and CR items could 

carry, a mixed-format test has been earning increasing interest and popularity in recent 

years. However, a mixed-format test may also introduce additional complexity into the 

test dimensionality. The dimensionality of a mixed-format test has been examined by 

several researchers using approaches that include correlation analysis, factor analysis, and 

the Poly-DIMTEST. The findings appear to be mixed, indicating that dimensionality 
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varies greatly in different contexts. In this section, previous research on the 

dimensionality of mixed-format tests is summarized. 

 Bennett and his colleagues (1990, and 1991) conducted two studies to examine 

the relationship of MC and CR items on the College Board’s Advanced Placement (AP) 

Computer Science examination. In the 1990 study, they assessed the relationship of a 

constrained CR item with both MC and CR items. Confirmatory factor analysis was used 

to test the fit of four different factorial models (three-factor, two-factor, single-factor, and 

null) to two approximately random samples. They found that a single-factor model was 

sufficient for one sample, but a two-factor model hypothesizing separate MC/CR and 

constrained CR factors was required for the other sample. These factors were highly 

correlated. In the 1991 study, they again employed confirmatory factor analysis, and 

compared the data-model fit of the two-factor model hypothesizing separate but 

correlated MC and CR factors with the single-factor model in two random samples. They 

found that 1) In the two-factor model, the disattenuated correlation coefficient between 

two format-specific factors was significantly, but not substantially different from unity; 

and 2) the single-factor model provided a more parsimonious fit than the two-factor 

model did. 

 Several other studies using AP data in the areas of mathematics, computer science, 

chemistry, history, and so on (Lukhele et al., 1994; Thissen et al., 1994; Wainer & 

Thissen, 1993; Wainer, Wang, & Thissen, 1994) investigated the question “how much 

additional or new information about a construct was gained when CR items were added 

to MC items in a single test”. The findings from these studies appear to be inconsistent.  
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 Wainer & Thissen (1993) examined the AP data in seven different areas and 

suggested that when CR items were combined with MC items in a single test, little new 

information was obtained about any of the areas. In other words, these mixed-format tests 

were unidimensional up to the limits of the ability to examine them. This conclusion has 

been supported by Lukhele and his colleagues (1994). They used the three parameter 

logistic (3PL) model for MC items and graded response model (GRM) for CR items to 

examine the amount of information obtained from different item formats on the AP 

Chemistry and AP US History tests. They reached the same conclusion that for both tests, 

adding CR items provided little information beyond what the MC items yielded.  

 Thissen et al. (1994) analyzed the AP Computer Science data that Bennett, Rock, 

& Wang (1991) used, but proposed a different factorial model, in which a general factor 

for all items plus orthogonal factors specific to CR items were assumed. They then 

repeated this general-plus-specific-factors model onto the AP Chemistry test. They 

compared their model to Bennett et al.’s model and concluded that the general-plus-

specific-factor model provided a more parsimonious way to depict the dimensionality of 

mixed-format tests than the format-specific-factor model did. Moreover, they found that 

MC and CR items both heavily loaded on the general factor, which indicated that MC and 

CR items measured the same construct for most part of the tests. However, they also 

found small but significant loadings on the CR-specific factors, which indicated that the 

CR items actually measured something unique from the MC items. Wainer et al. (1994) 

also found the same dimensionality structure in a separate study. 

 Manhart (1996) applied confirmatory factor analysis to compare whether the MC 

and CR science tests measured the same construct. The MC tests they used were the Tests 
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of Achievement and Proficiency (TAP) in science and the CR tests were the TAP 

Performance Assessments for science. Each test was divided into several parcels of items. 

A single-factor model and a two-factor model assuming two correlated format-specific 

factors were compared in terms of data-model fit using chi-square values and 

standardized residuals. The results showed that the two-factor model generally fit the data 

better than the single-factor model. In conjunction with other evidence based on the 

content and cognitive skills analysis of the two tests, he concluded that MC and CR tests 

measured different constructs.  

 Perkhounkova & Dunbar (1999) employed the Poly-DIMTEST procedure in a 

confirmatory way to explore the dimensionality structure of three kinds of achievement 

tests in two subject areas. The three kinds of achievement tests were MC tests 

(specifically, Form M of the Iowa Tests of Basic Skills, ITBS), CR tests (specifically, the 

CR supplement to ITBS), and a test combining both item formats. The two subject areas 

were Language Arts and Mathematics. They also compared the results across two grades, 

grade 7 and 8. The results differed for two subject areas. For Language Arts tests, the 

analysis showed that the MC tests and CR tests possibly assessed the same dimension, 

that is, language achievement. For Mathematics tests, the analysis indicated that both the 

MC test and the mixed-format test were not essentially unidimensional. Moreover, the 

CR test appeared to measure dimensions differing from the MC test.  

 Sykes et al. (2002) used the Poly-DIMTEST procedure and principal factor 

analysis to investigate the effects of multidimensionality due to item format by using data 

from a mixed-format state math field test. The results demonstrated multidimensionality 
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related to item format. The first factor was found to be a common dimension, while only 

MC items loaded heavily on the second factor. 

Implications 

 There has been a steady increase in the use of mixed-format tests in various 

assessment settings. When dealing with mixed-format tests, test developers frequently 

face the need to obtain a meaningful composite score for each examinee. Aggregating 

scores from a mixture of different item formats naturally raises the question about the 

dimensionality of the tests mainly because the traditional IRT applications, including test 

equating and linking, assume unidimensionality. However, a mixture of item formats in a 

single test may increase the chance of violating the unidimensionality assumption 

because it introduces an additional source of multidimensionality. The 

multidimensionality due to mixed item formats, especially about its effect on equating 

will be one of the primary concerns in this study. Previous research on dimensionality 

differences among mixed-format tests is summarized in Table 2.2. 

Table 2.2 Dimensionality Differences among Mixed-format Tests 
 

Unidimensionality Multidimensionality due to Item Formats
Bennett, Rock, Braun, Frye, Spohrer, & Soloway (1990) 

Bennett, Rock, Wang (1991) Thissen, Wainer, & Wang (1994) 
Wainer & Thissen (1993) Wainer, Wang, & Thissen (1994) 

Lukhele, Thissen, & Wainer (1994) Manhart (1996) 
Perkhounkova & Dunbar (1999) 

 Sykes, Hou, Hanson, & Wang (2002) 
  
 Evidence from previous research is equivocal. Many reported that essential 

unidimensionality exists in some large-scale operational mixed-format tests, that is, MC 

and CR items measure nearly the same construct. However, others found the existence of 

multidimensionality due to different item formats in mixed-format tests. In the former 

situation, a single-factor model is expected to be sufficient to capture the only dimension 
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underlying the test. In the latter case, a more general multi-factor model is often 

anticipated.  

Since the test dimensionality structure is one of the crucial factors which will 

influence the composition of common-item sets and the appropriate selection and 

employment of IRT equating methods, these two factorial models will be simulated (a 

single-factor model will be used as a baseline for comparison) and their effects on 

equating will be investigated in this study.  

Data Collection Designs, Item Response Models, and Equating Procedures 

for Mixed-format Tests 

 In this section, the data collection design including the common-item 

nonequivalent groups design, various item response models, and IRT equating procedures 

that will be employed in this study are presented and defined. 

Common-item Nonequivalent Groups Design 

 Three data collection designs are widely used in test equating and scaling. They 

are single group (SG) design, random groups (RG) design and common-item 

nonequivalent groups (CINEG) design (Kolen & Brennan, 2004). In the SG design, the 

same examinees take both test forms X and Y, usually in counterbalanced order. In the 

RG design, examinees are randomly assigned to take either form X or form Y. In the 

CINEG design, there are two usually nonequivalent groups of examinees. One group 

takes form X and the other takes form Y. Form X and form Y have a set of items in 

common. When the score on the common-item set are counted in the examinee’s total 

scores, it is referred to as an internal set. When the score on the common-item set does 

not contribute to the examinee’s total scores, it is referred to as an external set. The 
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CINEG design improves the flexibility upon RG design by allowing nonequivalent 

groups to take form X and Y. Meanwhile, it improves upon SG design by not requiring 

examinees to take both form X and Y. In this study, attention will be restricted to the 

CINEG design with an internal common-item set. 

 For traditional MC-only tests, the crucial step in CINEG design is to develop a 

proportionally representative set of common items which should resemble a mini-version 

of the overall test in terms of content and statistical specifications (Kolen & Brennan, 

2004). This is because the common-item set is the only means to disentangle group 

differences from form differences in CINEG design. Researchers have examined the 

effects of the characteristics of the common-item set, such as the length, content and 

statistical representativeness of the common-item sets on the accuracy of equating and 

concluded that the composition of common-item sets affected equating results. 

 Petersen, Marco, and Stewart (1982) examined the effects of content and 

statistical representativeness on traditional linear equating. They found that differences in 

difficulty between the total test and the common-item set led to greater equating error 

than did moderate disparity in content representativeness of the common-item set. Klein 

and Jarjoura (1985) compared shorter but content representative common-item sets with 

longer but content non-representative common-item sets. They found that the longer, 

non-representative common-item sets produced less accurate equating results than the 

shorter, representative ones did and thus concluded that content representativeness of the 

common-item set was vital to equating accuracy. Cook and Peterson (1987) found that 

inadequate content representativeness of the common-item set created serious problems 

especially when the two examinee groups differed considerably in levels and dispersions 
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of ability. Harris’ study (1991) and Yang’s study (2000) later supported these findings. 

However, Gao, Hanson and Harris (1999) reached somewhat different conclusions. They 

examined the effect of content and statistical representativeness on the CINEG design 

and found that content itself did not greatly impact equating results, but the interaction 

between content and statistical specifications did have effects. Specifically, on one hand, 

if the common-item set was not statistically representative, a content non-representative 

common-item set may produce more equating error than a content representative set. On 

the other hand, if the common-item set was not content representative, a statistical non-

representative common-item set may produce more equating error than a statistical 

representative set. Hanick and Huang (2002) later confirmed Gao et al.’s results that 

content non-representativeness of the common-item set has minimal effect on equating 

accuracy. Furthermore, they found that if the equating plan was “well designed”, 

statistical non-representativeness did not greatly influence the equating results either, 

although larger numbers of discarded items increased equating error. So far, no universal 

conclusions on the effects of the characteristics of the common-item sets on test equating 

have been identified, but there is a widely accepted opinion that the characteristics of the 

common-item sets play an important role in traditional MC-only test equating, such that 

the common-item set should be a mini version of the whole test, especially when 

examinee groups differ considerably in their ability level.  

 The composition of common-item sets is also crucial for successfully equating 

multiple mixed-format tests under the CINEG design. In addition to considering content 

and statistical representativeness of the common-item sets, mixed-format test equating 

has to take item format effect into account, which in turn dramatically increases the 
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complexity and difficulty of developing appropriate common-item sets for mixed-format 

tests. In practice, many practitioners have suggested using only MC items as a common-

item set (Baghi, Bent, DeLain, & Hennings, 1995; Livingston, 1994). The use of MC 

items only as a common-item set could be defensible only when MC and CR items 

measure the same construct(s). If MC and CR items measures somewhat different 

constructs, the use of MC items only as a common-item set might be “dangerous” and 

will lead to serious linking bias. Several researchers therefore advocate that common-

item sets should include the appropriate proportion of MC and CR items in order to make 

the equating reasonably robust to the violation of assumptions (Kim & Kolen, 2006; 

Kirkpatrick, 2005; Sykes et al., 2002; Tate, 2000). Details about these studies will be 

provided in the next section. 

Item Response Models 

 For mixed-format tests, since both MC and CR items are included in a single test, 

it seems intuitive and reasonable that the mixture of dichotomous and polytomous IRT 

models can be applied to estimate parameters. For MC items, dichotomous IRT models, 

such as one, two, and three-parameter logistic models (i.e., 1PL, 2PL and 3PL) can be 

applied. For CR items, polytomous IRT models, such as graded-response model (GRM), 

generalized partial credit model (GPCM), and nominal response model (NRM) can be 

applied. The concepts, assumptions, and features of these models have been well-

documented in many book-length references (Baker & Kim, 2004; Embretson & Reise, 

2000; Hambelton & Swaminathan, 1985; van der Linden & Hambleton, 1996).  

 As Baker and Kim (2004) pointed out, any combination of dichotomous and 

polytomous IRT models can be chosen for the analysis of item responses in the mixed-
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format test. In this study, 3PL/GRM model combination will be used to estimate IRT 

parameters. The same model combination has also been applied in Lukhele et al. (1994), 

Bastari (2000), and Rosa, Swygert, Nelson, & Thissen (2001). 

 The reasons to choose the 3PL/GRM model combination for parameter estimation 

are as follows. For MC items, previous studies have showed great flexibility of the 3PL 

model over the 1PL and 2PL models since the 3PL model enables us to take guessing into 

account. Meanwhile, many well-known assessment programs have applied the 3PL 

model to MC items, such as the National Assessment of Educational Progress (NAEP), 

the Comprehensive Tests of Basic Skills (CTBS), the Armed Services Vocational 

Aptitude Battery (ASVAB), the Law School Admissions Test (LSAT), the Graduate 

Management Admissions Test (GMAT), the Scholastic Assessment Test (SAT), the 

Graduate Record Exam (GRE), and the Tests of English as a Foreign Language (TOEFL). 

Model-data fit for these examples has been proven to be excellent (Hambleton, as cited in 

Bastari, 2000). For CR items, GRM and GPCM are two polytomous IRT models widely-

used and fully-examined. Several studies have been conducted to evaluate the recovery of 

model parameters and to compare the applied results of GRM and GPCM. For example, 

Dodd (1984) has compared and contrasted the Rasch versions of GRM and PCM, and 

found that although the two models were conceptually and mathematically different, the 

applied results were very similar. Maydeu-Olivares, Drasgow, & Mead (1994) compared 

the GRM with the GPCM and found that the model-data fit was equally good. Some 

other studies reached the same conclusion (e.g., Cao, Yin, & Gao, 2007; Tang & Eignor, 

1997). Since neither the GRM nor GPCM consistently exhibits superiority over the other, 

the choice of GRM is basically built upon the previous research conducted by the author 
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in which the SAS code for generating polytomous item response data using GRM has 

been developed and applied. 

IRT Equating Procedures 

 Only IRT equating procedures will be considered in this study. The IRT equating 

procedures typically incorporate three steps. The first step is item calibration, in which 

appropriate IRT models are used to estimate parameters. The second step is scale 

transformation in order to place the estimated parameters from one form onto the baseline 

form scale. The third step is raw-to-scale score conversion if number-correct scores need 

to be reported. In this study, only the first two steps will be investigated. 

 In the item calibration step, as mentioned earlier, the 3PL model will be used to 

estimate MC item responses and the GRM will be used to estimate CR item responses. 

Theoretically, the item parameters for a mixed-format test can be estimated separately by 

format on a one-format-at-a-computer-run basis (a.k.a., format-wise calibration) or 

jointly across formats on an all-formats-at-a-computer-run basis (a.k.a., simultaneous 

calibration). When a common score scale needs to be created and a total test score needs 

to be reported, simultaneous calibration has been recognized as more justifiable than 

format-wise calibration because it provides a statistically optimal way to solve the 

weighting selection problem of the format-wise calibration so that different item formats 

could be placed on the same scale and the performance on different item formats could be 

compared directly (Ercikan et al., 1998; Sykes & Yen, 2000). 

 In the scale transformation step, two alternative procedures – separate calibration 

and concurrent calibration - can be applied for placing IRT parameter estimates on a 

common scale. In separate calibration, the parameters for the two mixed-format test 
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forms are estimated separately in two computer runs. It is then followed by scale 

transformation methods, which can in turn transform the parameter estimates of one form 

to the scale of the other form through a common-item set. The commonly-used scale 

transformation methods for dichotomous IRT models are two moment methods: 

mean/mean (Loyd & Hoover, 1980), mean/sigma (Marco, 1977), and two characteristic 

curve methods: Haebara (Haebara, 1980) and Stocking-Lord (Stocking & Lord, 1983). 

They have also been extended to different polytomous IRT models (Baker, 1992, and 

1993; Cohen & Kim, 1998; Kim & Cohen, 1995). Kim & Lee (2006) also extended these 

four scale transformation methods to mixed-format tests using any mixture of five 

dichotomous and polytomous IRT models: 3PL model, GRM, GPCM, NRM, and MC 

model. In concurrent calibration, the parameters on both forms are estimated 

simultaneously in one run which guarantees that all parameter estimates are on the same 

scale. This is done by combining data from both examinee groups and treating items not 

taken by a particular group as not reached or missing. 

 Considerable attention has been given to the relative performance of concurrent 

calibration and separate calibration with different scale transformation methods. 

Concurrent calibration generally outperformed separate calibration under various 

conditions because it is believed that concurrent calibration makes complete use of the 

available information and may remove some equating errors yielded by potentially 

inaccurate scale transformation procedures that are used by separate calibration. Kim & 

Cohen (1998) used simulation procedures in which dichotomously scored data were 

generated to compare separate calibration with the Stocking-Lord method and concurrent 

calibration using different software. For small numbers of common items, they found that 
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concurrent calibration yielded more accurate results than did the separate calibration with 

Stocking-Lord method. When the number of common items was sufficiently large, 

separate and concurrent calibration yielded similar results. Hanson & Beguin (2002) 

simulated dichotomous response data to compare the relative performance of separate 

calibration (mean/mean, mean/sigma, Haebara, and Stocking & Lord methods) versus 

concurrent calibration. They found that concurrent calibration generally resulted in lower 

error than separate calibration, although not universally so. In separate calibration, the 

two characteristic curve methods yielded more accurate results than the mean/mean and 

mean/sigma methods. Kim & Cohen (2002) simulated polytomous item response data 

and compared separate calibration with the Stocking-Lord method to concurrent 

calibration under GRM. They found that concurrent calibration yielded consistently 

though only slightly more accurate results than separate calibration did.  

 In the above studies, the same unidimensional IRT model which was used to 

generate data was also used to estimate parameters. In other words, in these studies, data 

were simulated to fit the IRT model. Beguin, Hanson, & Glas (2000) and Beguin & 

Hanson (2001) purposefully simulated multidimensional data which did not fit the 

unidimensional dichotomous IRT model. They compared separate calibration with 

Stocking-Lord method to concurrent calibration and found that multidimensionality 

affected the relative performance of separate and concurrent calibration. Estimates from 

the correctly specified multidimensional model generally resulted in less error than those 

from the unidimensional model. In general, unidimensional concurrent calibration 

resulted in slightly less or equivalent total error than separate calibration did. Kim & 

Kolen (2006) also simulated multidimensional data that reflects the format effects in 
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mixed-format tests. They then compared the relative performance of concurrent 

calibration to separate calibration with four scale transformation methods under the 

unidimensional IRT model. They found that concurrent calibration generally 

outperformed separate calibration in terms of linking accuracy and robustness to 

multidimensionality. Therefore, only concurrent calibration is considered in this study. 

Implications 

 IRT equating for mixed-format tests is a very complicated process and includes 

multiple steps, such as designing a data collection, calibrating items using appropriate 

IRT models for each item format, and conducting scale transformation. In each step, the 

design conclusion which will be employed in this study is reached mainly based on 

previous research results and summarized in Table 2.3. 

Table 2.3 Current Research Design Alternatives and Conclusions (in Italic) 
 
Data Collection 

Design 
Dichotomous IRT 

models for MC items 
Polytomous IRT 

models for CR items Calibration Methods 

SG design with 
counterbalancing 1PL model GRM Separate calibration with 

scale transformation methods 
RG design 2PL model GPCM Concurrent calibration 

CINEG design 3PL model NRM  
  

The impact of common-item set configuration has long been recognized and 

emphasized, but recently its importance has been advanced to a very public level by 

being addressed in the presidential speech at NCME annual meeting (Fizpatrick, 2008). 

In CINEG design, the composition of common-item sets is a key step and worth more 

systematic investigation, especially in mixed-format test equating. The common-item sets 

should be proportionally representative of the whole test with regard to the content and 

statistical specifications as well as the mixture of item formats. The impact of these 
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characteristics of the common-item sets on the mixed-format test equating will be another 

focus of this study. 

 Meanwhile, this study will only examine the unidimensional IRT equating 

method and how robust it will be to the various multidimensional test structures. The 

focus on the robustness study is driven by the practical need since the use of 

unidimensional IRT models is still dominant in most testing programs. Therefore, it 

seems to be more valuable for this study to focus on the robustness of the unidimensional 

IRT equating method to various multidimensional structures. 

Comprehensive Research on Mixed-format Test Equating 

 Little research has been conducted on equating and linking for mixed-format tests. 

Existing research on mixed-format test equating has mainly focused on extending various 

linking procedures from single format tests to mixed-format tests and comparing the 

relative performance of these extended linking procedures, and on evaluating the impact 

of rater severity across occasions on the accuracy of equating results. Very few other 

studies investigated the effects of multidimensionality and the composition of common-

item sets on equating. 

 Li, Lissitz & Yang (1999) investigated the performance of the extended Stocking-

Lord method in mixed-format test equating. Furthermore, they examined the impact of 

the proportion of different item formats in a common-item set on the accuracy of 

equating. A simulation study was conducted, in which several other factors such as 

sample size, equating situations, and group ability differences were also manipulated. 

They estimated item parameters by using the 3PL model for dichotomously scored items 

and GPCM for polytomously scored items. They then used the average differences 
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between the true parameters and the corresponding estimates (BIAS) and the root mean 

square errors (RMSE) as the evaluation criterion. The results showed that the BIAS index 

of the recovery linking coefficients across all simulation conditions was close to zero and 

the RMSE index was relatively small, which indicated that the extended Stocking-Lord 

method was able to produce accurate linking for mixed-format tests.  

 Bastari (2000) investigated the effects of six factors on the linking accuracy for 

mixed-format tests under CINEG design. He conducted a simulation study, in which test 

length, proportion of MC and CR items in the whole test, the length of a common-item 

set, sample size, group ability distributions, and scale transformation methods were 

considered. The 3PL/GRM model combination was used to generate and estimate item 

responses. The mean square differences (MSD), bias, variance, and the RMSE based on 

the differences between estimated and true item characteristic curves were used as 

evaluation criteria. The results showed that overall, the recovery of CR item parameters 

was relatively worse than that of MC item parameters, hence resulting in larger linking 

errors. Among all the factors examined, sample size and scale transformation methods 

were most important. Larger sample size and concurrent calibration consistently 

produced less RMSE, less MSD, less bias, and less variance for both item formats. Other 

factors tended to influence the linking accuracy of CR items more than that of MC items. 

But in general, a longer test, larger proportion of MC items in the test, more common 

items, larger sample size, equivalent groups, and concurrent calibration led to more 

effective linking.  

 For tests where CR items are included and scored by raters, which is the typical 

case for mixed-format tests, systematic changes in rater judgments from year to year in 
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terms of rater severity and leniency may influence the accuracy of equating and linking 

(Tate, 1999). Tate and his colleagues (2000, 2003, and 2005) conducted a series of 

studies to investigate rater effect on the accuracy of equating and proposed an equating 

design that incorporates rater effect into the mixed-format test equating. In the proposed 

design, a common-item set was still used to disentangle form difference from group 

ability difference; meanwhile, the same group of raters from second year scored 

examinee response samples for CR items in a common-item set from both first and 

second year in order to disentangle rater effect from group ability difference.  

 Tate (2000) simulated a total of 11 conditions, in which various factors such as 

sample size, group ability differences, proportion of MC items and CR items in the total 

test (30/10, 60/0, 0/20), the length of common-item sets (1/5 and 1/10 of the total test), 

the types of common-item sets (MC+CR, and MC only), and the multidimensionality, 

were manipulated. The 2PL/GRM model combination was used to generate and calibrate 

unidimensional response data, as the two-factor model with separate but moderately 

correlated factors associated with each item format was used to generate 

multidimensional data. To evaluate the robustness of the proposed linking procedure and 

compare it to traditional procedures (in which rater severity was assumed constant), the 

linking coefficients were estimated and compared to the true values to compute the 

estimated bias and estimated standard error. The results showed that the linking error 

yielded by the proposed linking procedure was acceptable. As expected, the longer 

common-item set and/or larger sample size produced more accurate estimates of the 

linking coefficients. Another result that is more relevant to the current study was that the 

use of MC items only in a common-item set yielded satisfactory linking accuracy when 

 30



 
 

 

the test was unidimensional, but resulted in serious linking error when the test was 

multidimensional. In the latter case, the use of proper proportions of MC and CR items in 

a common-item set was more robust to the violation of unidimensionality assumption. 

 Tate (2000)’s conclusions about the composition of common-item sets were later 

partly supported by Sykes et al. (2002). In their study, real data from a math field test of 

large-scale state assessment were used as the data pool, in which there were two 

dimensions one with both item formats heavily loaded on and the other with only MC 

items heavily loaded on. From it, they constructed four operational forms, each 

containing the same set of items but with different combinations of common-item sets. 

Two common-item sets were balanced with items approximately evenly loaded on both 

dimensions (referred to as B1 and B2). The other two sets were unbalanced with items 

heavily loaded on one of each of the dimensions (referred to as F1 and F2). All the 

common-item sets were content and difficulty representative. The 3PL/GPC model 

combination was used to estimate IRT parameters simultaneously. Separate calibration 

with Stocking-Lord method was used to place each of the four operational forms 

separately onto the field test scale. The equating result using the common-item set B1 

was arbitrarily set as the criterion. A weighted mean square difference (WMSD) was then 

computed to evaluate the other three equatings. The results showed that the equating 

using two unbalanced common-item sets resulted in more equating errors than those 

using two balanced common-item sets. Between the two equatings with the unbalanced 

common-item sets, surprisingly, the one with common items heavily loaded on the 

common factor yielded considerably larger discrepancy.  
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 The effects of the composition of common-item sets on mixed-format test 

equating have also been investigated by Kirkpatrick (2005). Both empirical and 

simulation studies were conducted. In the empirical study, he used the real data from a 

large-scale state testing program that utilized mixed-format tests (MC, grid-in and 

restricted response items) in both reading and math subject areas across various grade 

levels. The unidimensionality assumption was met for the data. Two common-item sets 

with similar score points, content and statistical representativeness were selected. The 

only major difference between them was whether or not a restricted-response item was 

included or excluded. The 3PL/2PL/GPC model combination was used to estimate item 

and ability parameters. Separate calibration with Stocking-Lord method was applied to 

place the new form onto the old form scale. And the true score, observed score and 

estimated ability equating were used to obtain final equivalent scores. Three criteria were 

used to demonstrate the differences between equating results using two different 

common-item sets under each equating technique. They are 1) plots of equivalent scores; 

2) the classification consistency using fictional cutoff scores; and 3) the distribution of 

linking coefficients computed by a jackknife-like sampling of the common items. The 

results presented a mixed picture and differed across subject areas and grade levels. The 

general finding showed that equating using the common-item set with a restricted 

response item included or excluded resulted in different equivalent scores. Based on the 

findings from the empirical study, he further conducted a simulation study to investigate 

the effects of the multidimensionality related to item formats on equating results. The 

dimensionality due to item format was quantified as the correlation between two format-

specific factors. The correlation was set as 1.0, 0.8, and 0.5 to represent 
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unidimensionality, low multidimensionality, and severe multidimensionality. The group 

ability difference was also manipulated. The same equating scenario applied in the 

empirical study was also followed in the simulation study. One of the results that was 

most relevant to the current study showed that with different correlations between item 

formats, whether including a restricted response item in a common-item set or not had 

different patterns of differences on equating results. If there was a strong correlation 

between item formats, then the effects of item format alone were minimal. The weaker 

the correlation between item formats (i.e., tend to violate the unidimensionality 

assumption), the stronger the effects of item formats in a common-item set on equating 

results.  

 Kim & Lee (2006) extended four widely used scale transformation methods: 

mean/mean, mean/sigma, Haebara, and Stocking-Lord methods to handle mixed-format 

tests using any mixture of the following five unidimensional IRT models: the 3PL model, 

the GRM, the GPCM, the NRM and the MC model. They then conducted a simulation 

study to compare their performance. In their simulation study, random group design was 

assumed; in which only one mixed-format test was administered to two different groups. 

The 3PL/GPC model combination was used to generate item response data. Further, this 

model combination with simultaneous calibration across formats was employed to 

estimate parameters in the mixed-format test, which guaranteed that the 

unidimensionality assumption held and the model fit the data well. Four factors were 

manipulated in their simulation study: group ability differences, sample size, proportion 

of dichotomously scored (DS) items to polytomously scored (PS) items in the mixed-

format test (10/10, 20/5, 30/2), and the composition of common-item sets (DS+PS, DS 
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only, and PS only). To evaluate the relative performance of the four linking methods 

across simulation conditions, the category characteristic curve criterion was used. The 

results showed that with few exceptions, the characteristics curve methods generally 

produced more accurate linking results than the moment methods. Keeping other factors 

constant, linking using equivalent groups resulted in less linking error than the 

nonequivalent groups linking. Linking using both DS and PS as a common-item set 

usually yielded more accurate results than linking using only DS or PS as a common-item 

set. Furthermore, the comparison between linking using DS only and linking using PS 

only showed that linking using the “dominant” item format in the mixed-format test led 

to lower linking error.   

 Kim & Kolen (2006) further investigated the above extended linking methods 

proposed by Lee & Kim (2006) to see whether they were robust to multidimensionality 

due to item formats in comparison to the concurrent calibration under CINEG design. 

The item parameters of the science assessment from the 1996 NAEP were used as source 

for their simulation study. Multidimensional data were then generated in such a way that 

two correlated format-specific factors were assumed. Other factors investigated were 

three levels of correlation between two factors (1, 0.8 and 0.5), two types of mixed-

format tests (wide-range and narrow-range), and three levels of nonequivalence between 

two groups (group mean = 0, 0.5 and 1). The common-item set was constructed to 

include both MC and CR items proportionally, also to be sufficiently long, content and 

statistical representative. The 3PL/GPC model combination was then used to simulate the 

multidimensional data. Both concurrent calibration and separate calibration with four 

linking methods were used to place the new form onto the old form scale. Finally, the 
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equating results were evaluated using the observed score distribution (OSD) criteria, 

which was based on the difference between the estimated and true OSDs. The results 

showed that the concurrent calibration generally outperformed the separate calibration 

with various linking methods in terms of linking accuracy and robustness to 

multidimensionality due to item formats. Among linking methods, the characteristic 

curve methods resulted in more linking accuracy than the moment methods, regardless of 

the degrees of multidimensionality. However, the differences in linking results using the 

concurrent calibration and separate calibration with the characteristic curve methods were 

small.  

Implications 

 As mentioned in the beginning of this section, only a few studies have been 

conducted in the area of mixed-format test equating. Existing literature in this area is 

mainly concentrated on the following aspects: 1) technical review and extension of 

current linking methods for single item format to the mixture of MC and CR items; 2) 

comparison of relative performance of different linking methods; 3) the new procedure 

proposed to handle the impact of rater severity on the linking accuracy; 4) investigation 

of the effects of several factors (e.g., test length, sample size, group ability distributions, 

the number of common items, and the proportion of MC and CR items in the total test, 

etc.) on the accuracy of mixed-format test equating; 5) examination of 

multidimensionality due to item format on equating results; and 6) evaluation of the 

influence of the composition of common-item sets on equating (Kim & Lee, 2006; 

Kirkpatrick, 2005; Sykes et al., 2002; Tate, 2000).   
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 The composition of common-item sets under the multidimensional test situation 

due to multiple item formats will be of primary concern in this study. Although research 

on the effects of multidimensionality and the composition of common-item sets for 

mixed-format test equating exists and is informative, it still leaves room for improvement 

in our knowledge base. Previous research on multidimensionality (Kim & Kolen, 2006; 

Kirkpatrick, 2005; Sykes et al., 2002; Tate, 2000) only simulated data based on the two-

factor model with correlated format-specific factors. However, as pointed out by Kim & 

Kolen (2006), the underlying test structure could be far more complicated in reality in a 

way that more than one factors could affect an examinee’s correct response to each item 

and different items may require different combinations of factors for an examinee to 

respond correctly. Moreover, the relative influential powers of various factors on 

examinees’ item responses could vary to a different extent. In this case, the 

multidimensional IRT models might better capture the test structure and the results might 

be generalized to more realistic situations. However, no current research investigates the 

impact of this more general multidimensional test structure on mixed-format test equating.  

 Meanwhile, previous research on the composition of common-item sets (Kim & 

Lee, 2006; Kirkpatrick, 2005; Sykes et al., 2002; Tate, 2000) only focused on whether to 

include or exclude CR items in the common-item sets. They all assumed content and 

statistical representativeness of the common-item sets, and furthermore, if both item 

formats were included in the common-item sets, both item formats were constructed 

proportionally representative of the total test. No research has explored the interactive 

effects of representativeness and non-representativeness of content, statistical and format 

specifications on mixed-format test equating. 
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 In all, the current literature does not provide adequate direction for test developers 

in designing mixed-format tests, especially in terms of constructing representative 

common-item sets under different multidimensional test structures for equating purposes. 

This study is intended to contribute useful information to this area of inquiry. 

 37



 
 

 

Chapter 3: Methods 

 The main purpose of this study is to investigate the impact of representativeness 

and non-representativeness of common-item sets in terms of content, statistical and 

format specifications on mixed-format test equating using concurrent calibration with 

unidimensional IRT models and how robust is the procedure under various conditions of 

multidimensional test structure. In order to fulfill this purpose, a simulation study is 

conducted, which not only allows for assessing the effects of factors of interest in the 

ideal situation but also provides true population values that can be used as baseline for 

evaluation. In this chapter, the methodological framework for the simulation study is 

described. It is divided into five sections. The first section specifies the configuration of 

the mixed-format test forms simulated in this study. It is followed by detailed 

descriptions of the factors of investigation. Next, a step-by-step procedure of generating 

response data and conducting quality control is provided. Then the equating scenario is 

described. Finally, the criteria for evaluating the results are presented. 

Test Configuration 

 The mixed-format test simulated in this study is specified to reflect one 

reasonable configuration for a large-scale high-stakes assessment. It considers two test 

forms for equating. 

 Each test form consists of items from two content areas: Content Area 1 and 

Content Area 2 (see examples of the Medical College Admission Test (MCAT), Childs & 

Oppler, 2000). These two content areas are represented by two distinct but correlated 

content factors. Each content area contains one half of the items in the total test, which 
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assumes that each content area occupies the same weight in the total test. In each content 

area, there are both MC and CR items. 

 Test length is an important issue in test configuration to ensure accurate item 

parameter estimation and successful equating (Fitzpatrick & Yen, 2001; Hambleton, & 

Cook, 1983). Bastari (2000) found that the longer the test, the more accurate the equating 

result. Since a mixed-format test is considered in this study, test length is defined in terms 

of both the number of items and the number of score points per item. Therefore, in order 

to ensure that the test length will not be a potential factor influencing equating results, 

each test form in this study is comprised of 54 items including 48 dichotomous MC items 

(0/1) and 6 five-category CR items (0/1/2/3/4), which results in the number-correct score 

of 72 in the total test. Meanwhile, the ratio of MC and CR items in the total test in terms 

of item numbers is 8:1, and the ratio in terms of score points is 2:1. These ratio settings of 

MC and CR items are similar to some state assessments, such as the Florida statewide 

assessment programs and the Arkansas 2002 field test. This arrangement of MC and CR 

items results in 27 items (24 MC items and 3 CR items) per content area. 

 Furthermore, the number of common items to use in CINEG design will also 

influence the equating results (Bastari, 2000; Hanick & Huang, 2002). Kolen and 

Brennan (2004) suggested a rule of thumb regarding the number of common items, that is, 

“a common-item set should be at least 20% of the length of a total test containing 40 or 

more items” (p. 271). To ensure that the number of common items is sufficient for 

accurate equating, 18 common items are used in this study, which represents one third of 

the total test. This proportion of common items was also used by Kim & Kolen (2006). 
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Factors of Investigation 

Test Dimensionality Structure (5 levels) 

Unidimensionality  

The test scenario under this condition is that the test is truly unidimensional and 

measures examinees’ general ability within a certain domain. It further indicates that 

although the test consists of items from two content areas, these two content areas are 

perfectly correlated (ρ=1.0). Meanwhile, various item formats measure the same ability. 

Figure 3.1 demonstrates this unidimensional test structure. 

General                   

MC CR 

 

 

 

Figure 3.1 Unidimensional Test Structure 

Multidimensionality 

A more realistic and general test scenario is described using the multidimensional 

test structure. Under this condition, the test consists of items from two content areas 

within a certain domain and these two content areas are distinct but highly correlated. 

Two content factors (θContent1 and θContent2) are used to represent these two content areas 

and the levels of correlation between them (ρ) are set as 0.9 and 0.75, which are 

reasonably high values as might be found in many real assessments (Bolt, 1999; Childs & 

Oppler, 2000; Wu & Adams, 2006). Meanwhile, a common hypothesis to use a mixed-

format test is that even though MC and CR items are used to assess the same content area, 

they might measure examinees’ different abilities (Traub, 1993). Therefore, in addition to 

two content factors, two orthogonal format factors with one specific for MC items (θMC) 
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and the other specific for CR items (θCR) are introduced. These two format factors are set 

to be orthogonal because they only represent their unique contributions to examinees' 

response above and beyond those attributed by the content factors. Furthermore, the 

relationship between content and format factors is also set to be orthogonal. Figure 3.2 

demonstrates this multidimensional test structure. 
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MC CR MC CR 

CR_F 

ρ=0.9/0.75 

Content 2 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Multidimensional Test Structure 

Figure 3.2 also indicates that an examinee’s correct response to each item is 

determined by both content and format factors. However, different items may require 

different combinations of content and format factors for an examinee to respond correctly. 

Moreover, the relative importance of content and format factors on examinees’ item 

responses is also manipulated through controlling for the item discrimination parameters 

associated with them. More specifically, the magnitude of the item discrimination 

parameters is manipulated using the angle (α) between the multidimensional item 

discrimination parameter (MDISC) and the θcontent-axis (see Figure 3.3). The smaller the 
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angle, the higher the item discrimination parameter for the content factor, and the more 

important is the content factor in responding to the item correctly. The angle of 45 

degrees indicates that the content and format factors are equally important. In this study, 

the content factors are always set to have stronger influence on item responses than the 

format factors do, which is a realistic assumption in practice since the main purpose of 

test construction is to measure examinees’ ability to master content knowledge. Therefore, 

two angle degrees are set: 10° and 35°, in which 10° is in the angle range (0° -15°) 

representing items that highly load on the content factors and 35° is in the angle range 

(25° -40°) representing items that are sensitive to the composite of the content and format 

factors (Min, 2003; Yon, 2006).  

 θFormat

θContent

Items (0° -15°) 
Items (25° -40°) 

Items (45°) 

 

 

 

 

 

Figure 3.3 Demonstration of the relative importance of content and format factors 

 In all, two levels of correlation between content factors and two angle degrees 

yield four conditions of multidimensional test structure. 

Format Representativeness (2 levels)  

 Format representativeness means that the ratio of MC items to CR items in the 

common-item set corresponds to the similar ratio of MC items to CR items in the total 

test in terms of the item number and score points. Two conditions are considered:  
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1. Format representativeness: The ratio of MC items to CR items in the total test is 8:1 

in terms of item numbers and 2:1 in terms of score points. The similar ratios are 

reflected in the common-item set, which results in 16 MC items and 2 CR items.  

2. Format non-representativeness: This study only considers one situation of format 

non-representativeness, in which only MC items are included in the common-item set. 

This is a frequently-used but questionable strategy to construct a common-item set 

especially when mixed-format test equating is applied and the unidimensionality 

assumption is violated. In this case, 18 common items are exclusively MC items.  

Content Representativeness (3 levels)  

 This study adapts the definition of content representativeness proposed by Klein 

& Jarjoura (1985). In the common-item set, “the proportions of items from each content 

area correspond to the proportion of items from those content areas in the total tests” 

(Klein & Jarjoura, 1985, p. 198). Three conditions are considered:  

1. Content representativeness: In this study, two content areas are designed to have 

equivalent weights in the total test. Therefore, in the common-item set, two content 

areas occupy 1/2 and 1/2 as in the total test, which means 9 items per content area in 

the common-item set.  

2. Content non-representativeness (partially under-representative): In the common-item 

set, one content area is partially under-represented, which is a more typical case in 

real assessments. In this study, Content Area 1 occupies nearly 2/3 and Content Area 

2 occupies nearly 1/3 in the common-item set. Therefore, 12 items represent Content 

Area 1 and 6 items represent Content Area 2. 

 43



 
 

 

3. Content non-representativeness (completely under-representative): In the common-

item set, one content area is completely under-represented, which is an extreme case. 

In this study, one content area (Content Area 2) is missing in the common-item set. 

Therefore, 18 items represent Content Area 1 and 0 item represents Content Area 2.   

Format and content representativeness combinations result in the following six 

conditions: 

 Format Representativeness 
(MC:CR=8:1) 

Format Non-Representativeness 
(MC items only) 

Content Representativeness 
(1/2, 1/2) 8:1, 8:1 9, 9 

Partially Under-representativeness 
(nearly 2/3, 1/3) 11:1, 5:1 12, 6 

Completely Under-representativeness 
(1, 0) 16:2, 0 18, 0 

 
Statistical Representativeness (2 levels)  

 Statistical representativeness refers to the average item difficulty in the common-

item set being similar to that in the total test (Gao et al., 1999; Petersen, Marco, & 

Stewart, 1982). For MC items, the computation of average item difficulty is 

straightforward. While for CR items, no research has yet addressed this issue. Therefore, 

in this study, the between category threshold parameters for each category in each item 

(the GRM and corresponding parameters will be discussed in the data generation section) 

are computed as the index of item difficulty for CR items. Two conditions are considered: 

1. Statistical representativeness: The average item difficulty in the common-item set is 

similar to that in the total test. 

2. Statistical non-representativeness: The average item difficulty in the common-item 

set is 0.3 mean difficulty different from that in the total test (See Appendix B and C 

for detailed parameter settings).  
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Group Ability Distributions (2 levels) 

 Two groups of examinees are considered in this study: Group 1 and Group 2. The 

equating is conducted so that ability parameters of examinees in Group 2 are on the 

Group 1 scale. Therefore, the ability distribution of Group 1 is always set as a standard 

normal distribution with mean of 0 and standard deviation of 1. The ability distribution of 

Group 2 could differ from that of Group 1 in terms of the mean and/or standard deviation. 

In this study, only the mean differences are considered and the standard deviations are 

held constant, which is one of the typical treatments in many simulation studies (Kim & 

Kolen, 2006; Kim & Lee, 2006; Kirkpatrick, 2005). Two conditions are considered:  

1. Equivalent groups: It is assumed that the ability distributions of Group 1 and Group 2 

are equivalent, that is, the two groups have the same normal distributions with mean 

of 0 and standard deviation of 1. Although CINEG design does not require the ability 

distributions of two groups to be equivalent, this study still considers the equivalent 

groups as a baseline level, against which the level of nonequivalence is compared.  

2. Nonequivalent groups: It is assumed that the ability distributions of Group 1 and 

Group 2 are not equivalent. Specifically, examinees in Group 2 are more competent 

than those in Group 1. Therefore, the ability distribution of Group 2 has a higher 

population mean of 0.5 but unchanged standard deviation of 1. A difference of 0.5 in 

the mean proficiency between the two groups is chosen because it has been shown to 

be big enough to reflect the effect of group difference on equating (Li & Lissitz, 

2000). 

Implications 

Five factors of investigation can be further categorized into three groupings.  
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First is the test dimensionality structure factor, which has a total of five levels 

with a unidimensional test structure and four multidimensional test structures. It should 

be noted that for the practitioners in the field of test equating, once the test is developed, 

it is not a factor that could be manipulated. 

The second grouping includes the format, content, and statistical 

representativeness. When the CINEG design is applied, these are the three most 

important characteristics in the composition of common-item sets. How to construct a 

most representative and efficient common-item set is one of the top concerns for the 

equating practitioners and should be handled with great caution.  

The last factor of interest is the group ability distributions. Two levels are 

included, either the equivalent groups or the nonequivalent groups. It should be noted that 

the CINEG design itself does not require the use of equivalent groups. As a matter of fact, 

in many operational settings especially in licensure testing, the groups of examinees 

taking different forms are usually not considered to be equivalent. Therefore, the 

composition of common-item sets under nonequivalent groups condition should be 

worthy of more attention. In addition, this factor also cannot be controlled by the 

equating practitioners. 

Data Generation 

 The item responses of examinees in Group 1 taking test form 1 and those in 

Group 2 taking test form 2 are generated separately. For each group under each design 

condition, 3,000 examinees’ responses are simulated using the appropriate IRT models. 

This sample size is chosen as it has been shown to be generous enough to yield accurate 

equating results (Hanson & Beguin, 2002; Kim & Lee, 2004; Kirkpatrick, 2005). 
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 Three steps are followed to accomplish the data generation process and all the 

steps are executed using SAS. Detailed procedure for each step is described as follows: 

Step 1: Ability Parameter Generation 

 To generate examinee ability parameters for Group 1 and Group 2 separately, two 

factors need to be considered: test dimensionality structure and group ability distributions. 

Unidimensional test structure 

 Under the unidimensional condition, one factor (say, θG) affects examinees’ 

responses to both MC and CR items. The examinees’ ability parameters (θG) in Group 1 

are randomly drawn from a standard normal distribution (N(0, 1)) and those in Group 2 

are from pre-specified normal distributions (N(0, 1) for equivalent groups, and N(0.5, 1) 

for nonequivalent groups) which can be achieved from a random normal deviation 

generator (RANNOR) in SAS. 

 In all, a total of two sets of population ability parameters are generated based on 

the distributions shown in Appendix A. 

Multidimensional test structure 

Under the multidimensional condition, the examinees’ ability parameters (say, 

θContent1, θContent2, θMC and θCR) in Group 1 and Group 2 are randomly drawn from a 

multivariate normal distribution with pre-specified mean and variance-covariance matrix. 

The relationship between content and format factors and that between two format factors 

are orthogonal. The correlation between two content factors is set at 0.9 and 0.75. The 

mean difference between equivalent Group 1 and Group 2 is 0 and that between 

nonequivalent groups is 0.5. To obtain the correlated ability parameters, VNORMAL 

CALL command in SAS is used. 
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In all, a total of four sets of population ability parameters are generated based on 

the distributions shown in Appendix A. 

Step 2: Item Parameter Generation 

 Two test forms are generated for equating. Test form 1 consists of a unique item 

set and a set of common items. Test form 2 consists of a different set of unique items 

specific to form 2 and the same common-item set as that in form 1. These three item sets 

(a unique item set for form 1, a unique item set for form 2, and a common-item set) are 

generated separately. 

Test dimensionality structure, format representativeness, content 

representativeness and statistical representativeness all influence the process of 

generating item parameters. 

Unidimensional test structure 

Under the unidimensional condition, the unidimensional 3PL model for MC items 

can be expressed as: 
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where D is a scaling constant (1.7), ai is the item discrimination parameter, bi is the item 

difficulty parameter, and ci is the guessing parameter. The MC items in the unique item 

set for form 1 are generated as follows. The item discrimination parameters (ai) in 

Content Area 1 and 2 are sampled from a log-normal distribution with mean of 0 and 

standard deviation of 0.5 of the logarithm, which is the default distribution setting of item 

discrimination parameters in BILOG-MG. In addition, the range for the item 

discrimination parameters is set from 0.5 to 2.5, which was used by Spence (1996). The 

item difficulty parameters (bi) are sampled from a normal distribution with mean of 0 and 
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standard deviation of 1. In addition, the range for the item difficulty parameters is set 

from -2.0 to 2.0, which was used in many studies (Finch, 2006; Spence, 1996). The 

guessing parameters (ci) are sampled from a beta distribution with α=8 and β=32, which 

was used by Kim & Lee (2006).  

Meanwhile, the unidimensional GRM for CR items can be expressed as: 
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where category j=1, 2,…, J, D is a scaling constant (1.7), ai is the item slope parameter, 

each item has its own ai. bij is the between category threshold parameter of category j in 

item i whose value represents the point on the θ continuum where individuals have a 50% 

chance of responding in or above category j. The CR items in the unique item set for 

form 1 are generated as follows. The item slope parameters (ai) are generated from the 

same log-normal distribution as for the 3PL model (LN (0, 0.5) with the range from 0.5 to 

2.5). Since all the CR items are assumed to have five categories, four between category 

threshold parameter (bij) are sequentially sampled from N(-1.5, 0.2), N(-0.5, 0.2), N(0.5, 

0.2), and N(1.5, 0.2), which was used by Kim & Lee (2006). It should be noted that the 

between category threshold parameters in GRM are always in the ascending order (bi1< 

bi2< bi3< bi4). If the order is reversed, the item parameters will be flagged and re-sampled 

from the normal distributions. 

When the statistical representativeness of the common-item set is satisfied, the 

same item parameter distributions that are used to generate the unique item set for form 1 

are also used to generate item parameters for the common-item set. However, when the 

statistical representativeness is not met, the distributions of item difficulty parameters (bi) 
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in the 3PL model and between category threshold parameters (bij) in GRM for the 

common-item set are shifted in increments of 0.3 over the corresponding parameter 

distributions in the unique item set for form 1. 

The item discrimination parameters and guessing parameters in the unique item 

set for form 2 are generated from the same item parameter distributions as in the unique 

item set for form 1. However, since the purpose of equating is to statistically adjust 

difficulty differences across forms, the distributions of item difficulty parameters (bi) in 

3PL model and between category threshold parameters (bij) in GRM for the unique item 

set for form 2 are shifted in increments of 0.5 over the corresponding parameter 

distributions in the unique item set for form 1, which indicates that form 2 is more 

difficult than form 1.  

 In all, under the unidimensional condition, a total of 12 (2 Format 

Representativeness × 3 Content Representativeness × 2 Statistical Representativeness) 

sets of population item parameters are generated. Detailed item parameter distributions 

and the number of MC and CR items across each item set and each content area under 

each of 12 simulation conditions are illustrated in Appendix B. 

Multidimensional test structure 

Under the multidimensional condition, an examinee’s response to each item is 

determined by two factors (one content factor and one format factor), and different items 

require different combinations of content and format factors for an examinee to respond 

correctly. The multidimensional 3PL (M-3PL) model (Reckase, 1985) for MC items can 

be expressed as: 
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where D is a scaling constant (1.7), θh is the latent ability on dimension h, aih is the 

parameter related to the discriminating power of item i on dimension h, di is the 

parameter related to the difficulty of item i, and ci is the guessing parameter. MDISCi and 

MDIFFi are two parameters derived from M-3PL model. They represent the overall item 

discrimination and item difficulty for item i and thus can be interpreted in the same way 

as those in the unidimensional 3PL model. 
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 In this study, MDISCi and MDIFFi in the unique set for form 1 are generated first. 

MDISCis in Content Area 1 and 2 are sampled from a log-normal distribution with mean 

of 0 and standard deviation of 0.5 of the logarithm1 as that under the unidimensional 

condition. In addition, the range of MDISCis is set from 0.5 to 2.5, which is chosen 

according to the results of empirical studies reported by Ackerman (1988), Doody-Bogan 

& Yen (1983), Spence (1996), and Roussos, Stout, & Marden (1998). MDIFFis are 

sampled from a standard normal distribution with the range from -2.0 to 2.0 which is 

determined based on the previous studies so that it is reasonable for published tests 

                                                 
1 There is no universal agreement on the distribution of MDISCi. However, most of the researchers believed 
that MDISCi follows the lognormal distribution (Finch, 2006; Min, 2003; Spence, 1996; Tate, 2003). 
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(Finch, 2006; Spence, 1996). The values of , , and d1ia 2ia i are then determined using the 

following equations:  

                                                          )cos(1 iii MDISCa α×=                                      (3.6) 

                                                          )sin(2 iii MDISCa α×=                                      (3.7) 

                                                         iii MDIFFMDISCd ×−=                                    (3.8) 

where iα  is the angle between MDISCi and θcontent-axis and takes the values of 10° and 

35°. The guessing parameters (ci) have the same meaning as in the unidimensional 3PL 

model and are sampled from a beta distribution with α=8 and β=32.  

 Meanwhile, the multidimensional graded response model (M-GRM) for CR items 

can be expressed as: 
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where all the parameters have similar meanings to the M-3PL model except for dij, which 

is the parameter related to the between category threshold of category j in item i. The 

same item parameter generation process is followed for CR items in the unique item set 

for form 1 as that for MC items using M-3PL model. MDISCi and MDIFFij (
i

ij

MDISC
d−

= ) 

are generated first. MDISCi follows the same log-normal distribution as for the M-3PL 

model (LN (0, 0.5) with the range from 0.5 to 2.5). Since all the CR items are assumed to 

have five categories, MDIFFij are sequentially sampled from N(-1.5, 0.2), N(-0.5, 0.2), 

N(0.5, 0.2), and N(1.5, 0.2). Then Equations (3.6) and (3.7) along with the same angel 
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degrees (10° and 35°) are used to generate  and , and the equation of 

 is used to generate d

1ia 2ia

ijiij MDIFFMDISCd ×−= ij. 

When the statistical representativeness of the common-item set is satisfied, the 

same item parameter distributions used to generate the unique item set for form 1 are 

used to generate item parameters for the common-item set. However, when the statistical 

representativeness is not met, the means of the distributions of MDIFFi in M-3PL model 

and MDIFFij in M-GRM for the common-item set are increased by 0.3 over the 

corresponding parameter distributions in the unique item set for form 1. 

The MDISCis and guessing parameters in the unique item set for form 2 are 

generated from the same item parameter distributions as in the unique item set for form 1. 

However, the form 2 is assumed to be more difficult than the form 1 by increasing the 

means of the distributions of MDIFFi in M-3PL model and MDIFFij in M-GRM for the 

unique item set for form 2 by 0.5 compared to those in the unique item set for form 1. 

In all, under the multidimensional condition, in addition to the format, content and 

statistical representativeness, two angle degrees between MDISCi and the content factor 

also need to be taken into account, which yield a total of 24 (2×3×2×2) sets of population 

item parameters. Detailed item parameter distributions and the number of MC and CR 

items across each item set and each content area are illustrated in Appendix C. 

Step 3: Response Data Generation 

 Given the item parameters for each test form and the ability parameters for each 

group, applicable IRT models are used to generate appropriate correct response 

probabilities. Then we compare these values of correct response probability to the values 

of the uniform random number in the range (0, 1) to assign the item responses. Different 
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IRT models are used to generate item responses under the various conditions of test 

dimensionality structure. 

Unidimensional test structure 

 Under the unidimensional condition, two sets of population ability parameters and 

12 sets of population item parameters have been generated in Step 1 and Step 2. 

Therefore, a total of 24 sets of examinees’ response data are simulated.  

The unidimensional 3PL model expressed in Equation (3.1) is used to compute 

the probability that an examinee with ability θ correctly responds to MC item i (Pi(θ)). 

Then compare the value of the correct probability (Pi(θ)) to a value of the uniform 

random number (Ui) to generate a dichotomous item response of an examinee with ability 

of θ to MC item i (Ri) based on the following rule: 
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 The GRM requires a two-step procedure. The first step is to estimate operating 

characteristic curves (P*
ij (θ)) using Equation (3.2), which represents the conditional 

probability of an examinee’s response falling in or above a given item category. Once the 

P*
ij(θ) are estimated, the second step is to compute the actual category response curves 

using the following equation, 

                                                                                         (3.10) )()()( *
1,

* θθθ +−= jiijij PPP

They represent the conditional probabilities of an examinee responding to a particular 

category. Then compare the value of the operating probability (P*
ij(θ)) to a value of the 

uniform random number (Ui) to generate a polytomous item response of an examinee 

with ability of θ to CR item i (Ri) based on the following rule: 

 54



 
 

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<≤
<≤
<≤
<≤

<≤

=

)(0         ,4
)()(,3
)()(,2
)()(,1
1)(        ,0

*
5

*
4

*
5

*
3

*
4

*
2

*
3

*
2

θ
θθ
θθ
θθ

θ

ii

iii

iii

iii

ii

i

PU
PUP
PUP
PUP
UP

R  

Multidimensional test structure 

 Under the multidimensional condition, four sets of population ability parameters 

and 24 sets of population item parameters have been generated in Step 1 and Step 2. 

Therefore, a total of 96 sets of examinees’ response data are generated. Compensatory 

multidimensional IRT models (Way, Ansley, & Forsyth, 1988), in which an examinee’s 

high ability on one factor can potentially compensate for deficient or lower ability on the 

other factor, are used to generate response data.  

The M-3PL model expressed in Equation (3.3) is used to compute the probability 

that an examinee with multiple abilities (θcontent and θformat) correctly responds to MC item 

i (Pi(θ)). Then compare the value of the Pi (θ) to a value of the uniform random number 

(Ui) to generate a dichotomous item response to MC item i (Ri) based on the same rule as 

demonstrated under the unidimensional condition. 

 The M-GRM expressed in Equation (3.9) is used to compute the operating 

characteristic curves (P*
ij (θ)), and Equation (3.10) is used to compute the actual category 

response curves (Pij (θ)). Then compare the value of the P*
ij (θ) to a value of the uniform 

random number (Ui) to generate a polytomous item response to CR item i (Ri) based on 

the same rule as demonstrated under the multidimensional condition.  

Procedure for Quality Control 

 Following each step of the data generation process, a strict quality control 

procedure was conducted. Additional SAS codes were written to test whether the 
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generated ability and item parameters follow the pre-specified population distributions. 

Furthermore, EXCEL spreadsheets were created to check whether examinees’ correct 

response probabilities were properly computed and their item responses were correctly 

assigned. 

Equating Scenario 

Following the three-step procedure as demonstrated in the Data Generation 

section, item response data for group 1 examinees taking test form 1 and group 2 

examinees taking test  form 2 are generated. Concurrent calibration is then conducted to 

put the two sets of parameters estimates onto the common scale through the common-

item set. To conduct concurrent calibration, the first step is to combine the response data 

from both groups of examinees and treating items not taken by a particular group as not 

reached or missing. Meanwhile, specify group membership, 1 or 2, in the first column of 

the combined data. Second, pre-select a scale before running the calibration (here, group 

1 examinees’ ability scale), using the common items as the anchor. Then, the 

unidimensional 3PL model is used to calibrate the MC items and the GRM is used to 

calibrate the CR items. The computer program, MULTILOG (Thissen, 1991), is used to 

estimate the parameters of MC and CR items on both forms simultaneously in one run 

which guarantees that all parameter estimates are on the same pre-selected scale. 

Marginal Maximum Likelihood (MML) method is used to estimate item parameters and 

Maximum A Posteriori (MAP) method is used to estimate ability parameters. They are 

default estimation methods in MULTILOG. 

Cautions should be taken on several issues when running MULTILOG. First, 

MULTILOG provides researchers with tools to handle multi-group data as well as mixed-
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format tests. However, MULTILOG is not well suited to conduct non-equivalent groups 

equating via concurrent calibration, because item and ability parameter estimates from 

the two forms cannot be simultaneously placed on the scale for the old group without 

specifying the standard deviation of the population distribution for the new group. The 

population distribution of the new group is rarely known in practical situations. However, 

in a simulation study like the present one, the standard deviation of the population 

distribution for the new group is pre-specified. Then the default arrangement of 

MULTILOG is used in which the mean of the old group is fixed as 0 and the standard 

deviations of both groups are fixed at 1. The mean of the new group needs to be 

estimated. Second, when MULTILOG was used to conduct concurrent calibration, group 

membership was specified in the combined response data. This is an important step 

especially when MAP method is chosen to estimate examinees’ ability parameters from 

nonequivalent groups. Then the MAP estimates for each group will shrink to its own 

distribution mean instead of to the combined group distribution mean. Third, all models 

estimated with MULTILOG except for 3PL model are truly “logistic”, which means that 

there is no D=1.7 scaling factor. However, the 3PL model is estimated in normal metric. 

Therefore, more attention is paid when generating and estimating item parameters using 

the 3PL model and GRM. 

Examples of MULTILOG syntaxes for item and ability calibrations are provided 

in Appendix D. 

Replications 

 Test dimensionality structure, format representativeness, content 

representativeness, statistical representativeness, and group ability distributions are fully 
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crossed, leading to a total of 120 (5 × 2 × 3 × 2 × 2) simulation conditions. Data 

generation and equating process under each condition is replicated 100 times. 

Evaluation Criteria and Data Analysis 

The population parameters of the test form 1 (taken by Group 1) and the test form 

2 (taken by Group 2) are generated based on the same scale. Then in order to fix the 

indeterminacy of the scale and to keep the estimated parameters on the same scale as 

their population parameters, the mean and standard deviation of estimated ability 

parameters in test form 1 (taken by Group 1) are set to their population parameters during 

the calibration. Since the purpose of equating in this study is to put the test form 2 

estimated parameters onto the test form 1 scale, it is expected that in each simulation 

condition, through concurrent calibration, the estimated parameters for the test form 2 

(taken by Group 2) should be on the same scale as parameters for the test form 1 (taken 

by Group 1), which is also the scale for the population parameters. 

The examinees’ expected total scores on all items in form 2 computed using the 

population parameters ( )|( kkXE θ ) are compared with those computed using the 

estimated parameters ( )|( kkXE θ
)

). The )|( kkXE θ can be expressed as: 
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= = =

+=
MC CRn

i

n

i

J

j
kijijkikk PuPXE

1 1 1
)()()|( θθθ

where θk is the ability or ability vector for an examinee k, uij represents the category 

scores, 0, 1, 2, 3, 4. Under the unidimensional condition, equation (3.1) is used to 

compute the )( kiP θ , and equations (3.2) and (3.10) are used to compute the )( kijP θ . 

Under the multidimensional condition, equation (3.3) is used to compute the )( kiP θ , and 

equations (3.9) and (3.10) are used to compute the )( kijP θ . 
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Correspondingly, the )|( kkXE θ
)

 can be expressed as: 
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Since only the unidimensional IRT models are used to calibrate response data, equation 

(3.1) is always used to compute the )( kiP θ , and equations (3.2) and (3.10) are used to 

compute the )( kijP θ . 

Several summary criteria are then used to evaluate the accuracy of the equating 

results: (1) the BIAS; (2) the RMSE (Root Mean Squared Error); and (3) the 

classification consistency. 

The BIAS shows the differences between the average of true expected total scores 

and the average of estimated expected total scores. It can be expressed as 
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Where 3,000 is the number of examinees in each group. The average of the BIASs is 

taken over the 100 replications. The average BIAS indicates the accuracy of the equating 

results as well as the direction. 

The RMSE shows the extent to which the estimated expected total scores match 

the true expected total scores. It can be expressed as  
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                      (3.14) 

The average of the RMSEs is taken over the 100 replications. The smaller the average 

RMSE, the better the equating result is. 
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The classification consistency index is defined as the percentage of time that the 

same decision is reached based on the true scores and the estimated scores. The total 

score range for test form 1 and 2 is from 0 to 72. Two cut scores (24 and 48) are used to 

classify examinees’ performance into three proficiency categories: Basic ([0, 24)), 

Intermediate ([24, 48)), and Proficient ([48, 72]). The classification consistency index 

then can be expressed as P=P00+P11 +P22 (Equation (3.15) as shown in the 3×3 

contingency table below.  

  Estimated scores 
  Basic Intermediate Proficient 

Basic P00 P01 P02

Intermediate P10 P11 P12
True 

scores Proficient P20 P21 P22

 
Then, the average of the classification consistency is taken over the 100 replications. The 

higher the average proportion, the better the equating result is. 

 Plots for the overall BIAS, RMSE and the classification consistency are 

separately drawn to better demonstrate the differences under various simulation 

conditions of interest. Moreover, a series of statistical tests including two sample t tests 

for independent groups and/or analysis of variance (ANOVA) are applied to further 

indicate whether the differences of factors of interest are statistically significant or not. 

Finally, multiple comparison procedure is used if necessary. 
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Chapter 4: Results 

In this chapter, the results from the simulation study described in Chapter Three 

are summarized. The presentation of the results is divided into three sections in response 

to the three research questions proposed in Chapter One. Each section is completed by a 

summary of the findings. For succinctness of presentation, supporting tables of ANOVA 

results not discussed elaborately are provided in Appendix E and F. 

Research Question 1 

To answer research question 1: “In an ideal situation where the unidimensionality 

assumption is satisfied, what are the effects of content, statistical and format 

representativeness of common-item sets on mixed-format test equating using concurrent 

calibration with unidimensional IRT models?”  The unidimensional test structure was 

simulated and then the data generation process was strictly followed as demonstrated in 

Chapter Three. The various evaluation criteria (BIAS, RMSE, and Classification 

Consistency) were computed and compared. 

Table 4.1 presents the average BIAS, RMSE, and classification consistency 

proportion over 100 replications under the unidimensional test structure. There are a total 

of 24 simulation conditions in this category which are presented in a 2 × 2 × 3 × 2 

contingency table. The four factors of investigations are listed using abbreviations, which 

are noted right below Table 4.1. In details, they are Group Ability Distributions (EQ 

represents equivalent groups, and NEQ represents nonequivalent groups.), Format 

Representativeness (FR represents format representativeness, and FNR represents format 

non-representativeness.), Content Representativeness (CR represents content 

representativeness, CPU represents content partially under-representativeness, and CCU 

 61



 
 

 

represents content completely under-representativeness.), and Statistical 

Representativeness (SR represents statistical representativeness, and SNR represents 

statistical non-representativeness.). 

Table 4.1 Evaluation Criteria under Unidimensional Structure 
 

   EQ  NEQ 
   SR SNR  SR SNR 

BIAS -0.95 -1.87  -3.65 -4.39 
RMSE 6.36 6.62  7.03 7.52 FR 

CONSISTENCY 0.74 0.73  0.73 0.71 
BIAS -0.96 -1.84  -3.81 -4.46 
RMSE 6.31 6.50  7.12 7.49 

CR 

FNR 
CONSISTENCY 0.74 0.74  0.72 0.72 

        
BIAS -0.93 -1.83  -3.62 -4.49 
RMSE 6.35 6.59  6.96 7.54 FR 

CONSISTENCY 0.73 0.73  0.73 0.71 
BIAS -1.16 -1.86  -3.84 -4.42 
RMSE 6.32 6.52  7.14 7.46 

CPU 

FNR 
CONSISTENCY 0.74 0.74  0.73 0.72 

        
BIAS -1.01 -1.82  -3.66 -4.50 
RMSE 6.32 6.54  7.01 7.54 FR 

CONSISTENCY 0.73 0.74  0.73 0.71 
BIAS -1.15 -1.82  -3.87 -4.40 
RMSE 6.32 6.51  7.16 7.46 

CCU 

FNR 
CONSISTENCY 0.74 0.74  0.72 0.72 

Note: Group Ability Distributions: EQ – Equivalent groups, NEQ – Nonequivalent groups. 
          Format Representativeness: FR – Format representativeness, FNR – Format non-
representativeness. 
          Content Representativeness: CR – Content representativeness, CPU – Content partially 
under-representativeness, CCU – Content completely under-representativeness. 
          Statistical Representativeness: SR – Statistical representativeness, SNR – Statistical non-
representativeness. 

 
As shown in Table 4.1, all the values of BIAS are negative which indicates that 

the examinees’ true expected total scores are always underestimated. The differences in 

BIAS, RMSE and classification consistency proportion between two levels of the group 

ability distributions are most noticeable. The average values of BIAS, RMSE and 

classification consistency proportion under the equivalent groups condition are about -
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1.43, 6.44 and 0.74, respectively. In contrast, -4.09, 7.29, and 0.72 are the average values 

under the nonequivalent groups condition. Therefore, the equivalent groups condition, on 

average, yields closer to zero BIAS, smaller RMSE and higher classification consistency 

proportion than the nonequivalent groups condition does. The two sample t test for 

independent groups further shows that the differences between these two levels of the 

group ability distributions are statistically significant. Moreover, two levels of the 

statistical representativeness also show large differences in BIAS and RMSE. It seems 

that there are no obvious differences in all three evaluation criteria across various levels 

of the content representativeness and format representativeness. 

Several three-way ANOVAs were conducted to further investigate not only the 

main effects but also the interaction effects among the statistical, content and format 

representativeness factors under the unidimensional test structure. Overall, there are no 

statistically significant two-way or three-way interaction effects on all three evaluation 

criteria. Therefore, later discussion will be limited to the main effects only. In order to 

better explore the patterns underlying the values of evaluation criteria, the main effects 

which are found statistically significant (p-value ≤ 0.05) and practically meaningful 

(effect size ω2 ≥ 0.0099 2) in the three-way ANOVA results (refer to Appendix E for 

more details) are plotted. 

Statistical Representativeness 

 The three-way ANOVA results summarized in Table 4.2 show that compared to 

the statistical non-representativeness condition, the statistical representativeness 

                                                 
2 According to Cohen (1988)’s rule of thumb, the cutoff point for small effect size is set as η2 or ω2 = .0099; 
for medium effect size is set as η2 or ω2 = .0588; and for large effect size is set as η2 or ω2 = .1379. ω2 is 
computed using the following equation: 

)/()))((( SizeEffect 2
totalerrorerroreffecteffect SSMSMSdfSS +−=ω  
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condition generally yields closer to zero BIAS, smaller RMSE, and similar or slightly 

higher classification consistency proportion. Moreover, these differences between the 

statistical representativeness and non-representativeness are statistically significant with 

low to medium effect sizes (range from .033 to .099). There is one exception when 

equivalent groups are studied and the classification consistency proportion is used as the 

evaluation criterion.  

Table 4.2 Three-way ANOVAs: Main Effects of Statistical Representativeness 
under the Unidimensional Test Structure 

 
Simulation 
Condition 

Evaluation 
Criterion 

Mean 
(SR/SNR) 

Standard Error 
(SR/SNR) F Effect Size 

ω2

UNI-EQ BIAS -1.026/-1.842 .05/.05 132.843** .099 
 RMSE 6.329/6.546 .019/.019 63.218** .049 
 CONSISTENCY .735/.737 .001/.001 2.362 - 

UNI-NEQ BIAS -3.741/-4.444 .054/.054 85.090** .066 
 RMSE 7.071/7.500 .036/.036 69.322** .054 
 CONSISTENCY .728/.716 .001/.001 42.063** .033 

Note: UNI – Unidimensional test structure; EQ – Equivalent groups; NEQ – Nonequivalent 
groups 
          SR – Statistical representativeness; SNR – Statistical non-representativeness 
          ** represents statistical significance at p ≤ .01 

 
Figure 4.1 further echoes these findings from a slightly different perspective. It 

graphically compares the statistical representativeness versus non-representativeness 

condition across all the combinations of the content and format representativeness factors. 

It divides the comparisons into three parts. Part (a) compares the BIAS differences. Part 

(b) compares the RMSE differences, and Part (c) compares the differences in the 

consistency classification proportions. In each part, two graphs which represent two 

levels of the group ability distributions are presented side by side to demonstrate the 

substantial differences between the equivalent groups condition and the nonequivalent 

groups condition. The X-axis of each graph specifies two levels of the statistical 

representativeness and the Y-axes specify the values of evaluation criteria. Each line in 
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the graph represents one possible combination of the content and format 

representativeness and is shown in the legend along with the two independent samples t 

test result by using the asterisks to indicate whether the differences between the statistical 

representativeness and non-representativeness conditions are statistically significant or 

not in each case. 
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(c) Classification Consistency 

Note:   * represents statistical significance at p ≤ 0.05;  
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.1 Comparisons of Statistical Representativeness VS. Statistical Non-representativeness 

under the Unidimensional Test Structure 
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Figure 4.1 (a) shows that mixed-format test equating using concurrent calibration 

with unidimensional IRT models (later, shortened as Concurrent Calibration) under the 

statistical representativeness condition consistently yields significantly closer to zero 

BIAS values across all six combinations of the content and format representativeness 

factors than it does under the statistical non-representativeness condition. This finding 

exists regardless of the levels of the group ability distributions. Figure 4.1 (b) shows that 

the RMSE values under the statistical representativeness condition are always 

significantly smaller than those under the statistical non-representativeness condition. 

Figure 4.1 (c) is based on the classification consistency proportions. Two levels of the 

statistical representativeness do not differ a lot when equivalent groups are used. On the 

other hand, when nonequivalent groups are used, concurrent calibration under the 

statistical representativeness condition mostly yields significantly higher classification 

consistency proportions than it does under the statistical non-representativeness condition. 

Content Representativeness 

 The three-way ANOVA results (refer to Appendix E for details) on the 

differences among the content representativeness, the content partially under-

representativeness, and the content completely under-representativeness indicate that the 

concurrent calibration yields no statistically significant differences in BIAS, RMSE, and 

classification consistency proportion among all three levels of the content 

representativeness factor.  

Format Representativeness 

 The three-way ANOVA results (refer to Appendix E for details) on the main 

effects of the format representativeness factor show that with one exception, there are no 
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significant differences between the format representativeness and non-representativeness 

conditions based on the values of BIAS, RMSE, and classification consistency proportion. 

The exception happens when equivalent groups are applied and the classification 

consistency proportion is used as the evaluation criterion. In this case, the average 

classification consistency proportions for the format representativeness and non-

representativeness conditions are .734 and .738, respectively. The main effect of the 

format representativeness is statistically significant with a small effect size of .014. 

Figure 4.2 shows virtually horizontal lines indicating slight not big differences.  
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Note:   * represents statistical significance at p ≤ 0.05;  
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.2 Comparisons of Format Representativeness VS. Format Non-representativeness 

under the Unidimensional Test Structure 

Summary 

 To answer research question 1, truly unidimensional test structure was simulated. 

As described in Chapter Three, under this condition, the test scenario indicates that 

although the test consists of items from two content areas, these two content areas are 

perfectly correlated. Meanwhile, various item formats including MC and CR items 

measure essentially the same ability. Therefore, the expectation for simulation results in 

this scenario is that the content and format representativeness factors will have no to 
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minimum impact on the equating results while the statistical representativeness factor 

might affect the equating results to unspecified degree. The following findings support 

the hypothesis.  

 First, the examinees’ true expected total scores were underestimated through the 

concurrent calibration in this study. 

 Second, under the unidimensional test structure, the factor of group ability 

distributions imposed a most significant impact on the equating results. The equivalent 

groups condition yielded closer to zero BIASs, smaller RMSEs, and higher classification 

consistency proportions compared to the nonequivalent groups condition. 

 Third, under the unidimensional test structure, the statistical representativeness 

condition produced significantly closer to zero BIASs and smaller RMSEs compared to 

the statistical non-representativeness condition. When nonequivalent groups were used, it 

also yielded significantly higher classification consistency proportions. 

 Fourth, with few exceptions, various levels of the content representativeness and 

the format representativeness factors displayed no significant differences under the 

unidimensional test structure. 

 Fifth, there are no statistically and practically significant interaction effects 

among the statistical, content and format representativeness factors. 

Research Question 2 

 To answer research question 2: “In hypothetical but possibly practical situations 

where multidimensionality exists, what are the effects of content, statistical and format 

representativeness of common-item sets on mixed-format test equating using concurrent 

calibration with unidimensional IRT models?”   A total of four multidimensional test 

 68



 
 

 

structures were simulated. Two sources – different content areas and multiple item 

formats – which might cause multidimensionality were manipulated. The data generation 

process described in Chapter Three was strictly followed, and the various evaluation 

criteria (BIAS, RMSE, and Classification Consistency) were then computed and 

compared. 

 Tables and figures are first categorized into four portions based on the four 

multidimensional test structures: 1) the multidimensional structure in which the 

correlation between two content factors is 0.9 and the angle between MDISC and the 

content factor is 10° (later, summarized as Multidimensionality (ρ=0.9, α=10°)); 2) the 

multidimensional structure in which the correlation between two content factors is 0.9 

and the angle between MDISC and the content factor is 35° (later, summarized as 

Multidimensionality (ρ=0.9, α=35°)); 3) the multidimensional structure in which the 

correlation between two content factors is 0.75 and the angle between MDISC and the 

content factor is 10° (later, summarized as Multidimensionality (ρ=0.75, α=10°)); and 4) 

the multidimensional structure in which the correlation between two content factors is 

0.75 and the angle between MDISC and the content factor is 35° (later, summarized as 

Multidimensionality (ρ=0.75, α=35°)). In each of the four multidimensional test 

structures, a total of 24 simulation conditions are included. The layouts and formats of 

tables and figures in each portion are similar to those used in response to research 

question 1. It should be noted that in this section, three evaluation criteria (BIAS, RMSE, 

and classification consistency proportion) will only be compared under each 

multidimensional test structure independently, not across various multidimensional test 
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structures. To answer research question 3, these three evaluation criteria across various 

levels of the test dimensionality structure factor will be compared. 

Multidimensionality (ρ=0.9, α=10°) 

 Table 4.3 presents the average values of BIAS, RMSE, and classification 

consistency over 100 replications under the condition of Multidimensionality (ρ=0.9, 

α=10°).  

Table 4.3 Evaluation Criteria under Multidimensionality (ρ=0.9, α=10°) 
 

   EQ  NEQ 
   SR SNR  SR SNR 

BIAS -1.10 -1.78  -4.01 -4.96 
RMSE 6.45 6.64  7.21 7.84 FR 

CONSISTENCY 0.73 0.72  0.72 0.70 
BIAS -1.03 -1.86  -4.15 -4.99 
RMSE 6.35 6.66  7.30 7.89 

CR 

FNR 
CONSISTENCY 0.73 0.73  0.71 0.70 

        
BIAS -0.95 -1.76  -4.06 -4.99 
RMSE 6.50 6.67  7.18 7.86 FR 

CONSISTENCY 0.72 0.73  0.72 0.70 
BIAS -1.10 -1.89  -4.18 -5.08 
RMSE 6.46 6.63  7.33 7.95 

CPU 

FNR 
CONSISTENCY 0.72 0.73  0.72 0.69 

        
BIAS -1.03 -1.81  -4.14 -4.91 
RMSE 6.47 6.62  7.25 7.78 FR 

CONSISTENCY 0.72 0.73  0.72 0.70 
BIAS -1.11 -1.88  -4.21 -5.07 
RMSE 6.43 6.64  7.35 7.91 

CCU 

FNR 
CONSISTENCY 0.72 0.73  0.71 0.70 

Note: Group Ability Distributions: EQ – Equivalent groups, NEQ – Nonequivalent groups. 
         Format Representativeness: FR – Format representativeness, FNR – Format non-
representativeness. 
         Content Representativeness: CR – Content representativeness, CPU – Content partially 
under-representativeness, CCU – Content completely under-representativeness. 
         Statistical Representativeness: SR – Statistical representativeness, SNR – Statistical non-
representativeness. 
 
 Table 4.3 indicates that the factor of the group ability distribution imposes the 

greatest influence on the equating results, followed by the statistical representativeness 
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factor. It seems that there is little impact of the content and format representativeness 

factors on the equating results. More specifically, the concurrent calibration under the 

equivalent groups condition obviously outperforms that under the nonequivalent groups 

condition on all of the three evaluation criteria. It yields overall negative but closer to 

zero BIAS, smaller RMSE, and higher classification consistency proportion than that 

under the nonequivalent groups condition. The concurrent calibration under the statistical 

representativeness condition also produces overall closer to zero BIAS and smaller 

RMSE. However, the statistical representativeness condition yields similar classification 

consistency proportion as the statistical non-representativeness condition does when 

equivalent groups are used and yields slightly higher classification consistency proportion 

than the statistical non-representativeness condition does when nonequivalent groups are 

applied.  

Next, three-way ANOVAs were conducted to investigate the main and interaction 

effects of the statistical, content and format representativeness factors. The results are 

shown in Appendix E. In general, there are no statistically significant (p-value ≤ 0.05) 

and practically meaningful (effect size ω2 ≥ 0.0099) main effects of the content and 

format representativeness factors, as well as the two-way or three-way interaction effects 

based on the values of BIAS, RMSE and classification consistency proportion. Therefore, 

later discussions and figures will only involve the main effects of the statistical 

representativeness factor. 

Statistical Representativeness 

 Table 4.4 presents the three-way ANOVA results on the main effects of the 

statistical representativeness factor. The results are similar to those under the 
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unidimensional test structure found in Table 4.2. The statistical representativeness 

condition always yields significantly negative but closer to zero BIAS and smaller RMSE 

than the statistical non-representativeness condition does. The differences in 

classification consistency proportion under two levels of the statistical representativeness 

factors are less obvious. When equivalent groups are used, the statistical 

representativeness condition yields .5% lower classification consistency proportion. In 

contrast, when nonequivalent groups are utilized, the statistical representativeness 

condition yields 2.1% higher classification consistency proportion. These two differences 

are both statistically significant, but under the equivalent groups condition one has small 

effect size (.020) while the other, under the nonequivalent groups condition, having 

medium effect size (.084). 

Table 4.4 Three-way ANOVAs: Main Effects of Statistical Representativeness 
under Multidimensionality (ρ=0.9, α=10°) 

 
Simulation 
Condition 

Evaluation 
Criterion 

Mean 
(SR/SNR) 

Standard Error 
(SR/SNR) 

F Effect Size 
ω2

MUL0.9/10-EQ BIAS -1.052/-1.831 .049/.049 127.598** .096 
 RMSE 6.444/6.645 .018/.018 62.139** .049 
 CONSISTENCY .724/.729 .001/.001 23.462** .020 

MUL0.9/10-NEQ BIAS -4.125/-5.000 .051/.051 146.902** .109 
 RMSE 7.270/7.871 .036/.036 138.536** .103 
 CONSISTENCY .718/.697 .001/.001 110.506** .084 

Note: MUL0.9/10 – Multidimensional test structure with ρ=0.9 and α=10°; 
          EQ – Equivalent groups; NEQ – Nonequivalent groups 
          SR – Statistical representativeness; SNR – Statistical non-representativeness 
           ** represents statistical significance at p ≤ .01 

 
Figure 4.3 further confirms these findings. Figure 4.3 uses the same layout as 

those used in Figure 4.1 to compare the statistical representativeness versus non-

representativeness condition across all the combinations of the content and format factors. 
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(c) Classification Consistency 

 
Note:   * represents statistical significance at p ≤ 0.05;  

** represents statistical significance at p ≤ 0.01. 
 

Figure 4.3 Comparisons of Statistical Representativeness VS. Statistical Non-representativeness 
under Multidimensionality (ρ=0.9, α=10°) 

 
Figure 4.3 (a) shows the BIAS differences between the statistical 

representativeness and non-representativeness conditions when the two groups involved 

are either equivalent or nonequivalent. The statistical representativeness condition 

produces significantly closer to zero BIAS compared to the statistical non-

representativeness condition regardless of the group ability distribution factor. Figure 4.3 
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(b) indicates that the RMSE values under the statistical representativeness condition are 

significantly smaller than those under the statistical non-representativeness condition no 

matter equivalent or nonequivalent groups are applied. However, the RMSE differences 

between the statistical representativeness and non-representativeness conditions are larger 

under the nonequivalent groups condition than those under the equivalent groups 

condition which can be proven from the steeper slopes under the nonequivalent groups 

condition. Figure 4.3 (c) depicts the differences of classification consistency proportion. 

Two levels of the statistical representativeness factor show significant differences across 

almost all the combinations of the content and format representativeness factors except 

for the FR-CR combination. Interestingly, the statistical non-representativeness condition 

yields higher classification consistency proportions under the equivalent groups condition. 

For the nonequivalent groups condition, the statistical representativeness condition yields 

significantly higher values. 

Multidimensionality (ρ=0.9, α=35°) 

 Table 4.5 presents the values of BIAS, RMSE, and classification consistency 

under the condition of Multidimensionality (ρ=0.9, α=35°).  As shown in Table 4.5, in the 

comparison of the equivalent versus nonequivalent groups condition, the equivalent 

groups condition keeps outperforming on all three evaluation criteria. In the comparison 

of the statistical representativeness versus non-representativeness condition, the statistical 

representativeness condition yields closer to zero BIAS, smaller RMSE regardless of the 

group ability distribution factor, and higher classification consistency proportion when 

nonequivalent groups are applied. Various levels of the content representativeness factor 

still show few differences on all three evaluation criteria. However, the format 
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representativeness factor starts to impose its influence on the equating results, especially 

when nonequivalent groups are used. Under the nonequivalent groups condition, the 

format representativeness condition produces closer to zero BIAS, smaller RMSE, and 

slightly higher classification consistency proportion compared to the format non-

representativeness condition. 

Table 4.5 Evaluation Criteria under Multidimensionality (ρ=0.9, α=35°) 
 

   EQ  NEQ 
   SR SNR  SR SNR 

BIAS -0.98 -1.42  -4.18 -4.93 
RMSE 6.56 6.60  7.35 7.85 FR 

CONSISTENCY 0.72 0.73  0.72 0.70 
BIAS -1.01 -1.80  -4.71 -5.58 
RMSE 6.54 6.70  7.65 8.28 

CR 

FNR 
CONSISTENCY 0.72 0.73  0.71 0.68 

        
BIAS -0.91 -1.56  -4.18 -5.02 
RMSE 6.54 6.64  7.38 7.93 FR 

CONSISTENCY 0.72 0.72  0.71 0.69 
BIAS -1.03 -1.72  -4.76 -5.63 
RMSE 6.52 6.68  7.71 8.34 

CPU 

FNR 
CONSISTENCY 0.72 0.73  0.71 0.68 

        
BIAS -0.91 -1.64  -4.31 -4.99 
RMSE 6.53 6.74  7.46 7.87 FR 

CONSISTENCY 0.72 0.72  0.71 0.69 
BIAS -0.97 -1.79  -4.85 -5.56 
RMSE 6.46 6.71  7.75 8.25 

CCU 

FNR 
CONSISTENCY 0.72 0.72  0.70 0.68 

Note: Group Ability Distributions: EQ – Equivalent groups, NEQ – Nonequivalent groups. 
         Format Representativeness: FR – Format representativeness, FNR – Format non-
representativeness. 
         Content Representativeness: CR – Content representativeness, CPU – Content partially 
under-representativeness, CCU – Content completely under-representativeness. 
         Statistical Representativeness: SR – Statistical representativeness, SNR – Statistical non-
representativeness. 
 

Three-way ANOVAs were then conducted (refer to Appendix E for more details). 

The results show that in addition to the main effects of the statistical representativeness 

factor, some main effects of the format representativeness factor are also statistically 
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significant (p-value ≤ 0.05) and practically meaningful (effect size ω2 ≥ 0.0099), which 

will be the main focus of the discussion in this portion. 

Statistical Representativeness  

Table 4.6 Three-way ANOVAs: Main Effects of Statistical Representativeness 
under Multidimensionality (ρ=0.9, α= 35°) 

 
Simulation 
Condition 

Evaluation 
Criterion 

Mean 
(SR/SNR) 

Standard Error 
(SR/SNR) 

F Effect Size 
ω2

MUL0.9/35-EQ BIAS -.968/-1.655 .045/.045 116.122** .088 
 RMSE 6.525/6.678 .016/.016 47.732** .037 
 CONSISTENCY .722/.724 .001/.001 3.960* (.003) 

MUL0.9/35-NEQ BIAS -4.497/-5.284 .050/.050 122.197** .088 
 RMSE 7.550/8.087 .036/.036 108.725** .080 
 CONSISTENCY .709/.687 .002/.002 78.038** .060 

Note: MUL0.9/35 – Multidimensional test structure with ρ=0.9 and α=35°; 
          EQ – Equivalent groups; NEQ – Nonequivalent groups 
          SR – Statistical representativeness; SNR – Statistical non-representativeness 
          * represents statistical significance at p ≤ .05; **represents statistical significance at p ≤ .01 

 
 Table 4.6 summarizes the main effects of the statistical representativeness factor 

under Multidimensionality (ρ=0.9, α=35°). The three-way ANOVA results show that 

with one exception, the differences between the statistical representativeness and non-

representativeness conditions are significant with low to medium effect sizes range 

from .037 to .088. The results from the “Mean (SR/SNR)” column indicate that compared 

to the statistical non-representativeness condition, the statistical representativeness 

condition yields negative but closer to zero BIAS, smaller RMSE, and higher 

classification consistency proportion. 

Figure 4.4 is plotted to better demonstrate these differences across all the 

combinations of the content and format representativeness factors. It further supports the 

above findings.  
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(c) Classification Consistency 

Note:  * represents statistical significance at p ≤ 0.05; 
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.4 Comparisons of Statistical Representativeness VS. Statistical Non-representativeness 

under Multidimensionality (ρ=0.9, α=35°) 
 

As shown in Figure 4.4, the statistical representativeness condition consistently 

shows superiority over the statistical non-representativeness condition in terms of BIAS 

(as shown in Figure 4.4 (a)) and RMSE (as shown in Figure 4.4 (b)). As to its 

performance on the classification consistency proportion, it outperforms the statistical 

non-representativeness condition only when nonequivalent groups are applied (as shown 

in Figure 4.4 (c)). It should be noted that when nonequivalent groups are used (right plots 
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in Part (a) – (c)), six lines representing six combinations of the content and format 

representativeness factors are further split into two parts, three overlapping lines under 

the format representativeness condition and the other three under format non-

representativeness condition. These plots are different from those shown in Figure 4.1 

and 4.3 and display a new trend in the comparison of the format representativeness versus 

non-representativeness condition. 

Format Representativeness 

 Table 4.5 and Figure 4.4 above both show that the format representativeness and 

non-representativeness conditions affect the equating results differently especially under 

the nonequivalent groups condition. Table 4.7 further demonstrates this trend by 

providing three-way ANOVA results.  

Table 4.7 Three-way ANOVAs: Main Effects of Format Representativeness 
under Multidimensionality (ρ=0.9, α= 35°) 

 
Simulation 
Condition 

Evaluation 
Criterion 

Mean 
(FR/FNR) 

Standard Error 
(FR/FNR) 

F Effect Size 
ω2

MUL0.9/35-EQ BIAS -1.236/-1.387 .045/.045 5.602* (.004) 
 RMSE 6.602/6.602 .016/.016 .000 - 
 CONSISTENCY .723/.723 .001/.001 .812 - 

MUL0.9/35-NEQ BIAS -4.601/-5.180 .050/.050 66.057** .047 
 RMSE 7.640/7.997 .036/.036 47.749** .035 
 CONSISTENCY .703/.693 .002/.002 16.800** .012 

Note: MUL0.9/35 – Multidimensional test structure with ρ=0.9 and α=35°; 
          EQ – Equivalent groups; NEQ – Nonequivalent groups 
          FR – Format representativeness; FNR – Format non-representativeness 
          * represents statistical significance at p ≤ .05; **represents statistical significance at p ≤ .01 

 
Table 4.7 shows that under the nonequivalent groups condition, the format 

representativeness condition produces negative but closer to zero BIAS, smaller RMSE, 

and slightly higher classification consistency proportion compared to the format non-

representativeness condition. Under the nonequivalent groups condition, the average 

values of BIAS, RMSE and classification consistency proportion for the format 
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representativeness condition are -4.601, 7.640, and 0.703, respectively. While for the 

format non-representativeness condition, they are -5.180, 7.997, and 0.693, respectively. 

These differences are statistically significant at .01 level but with small effect sizes 

(from .012 to .047) compared to the statistical representativeness factor. 
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(c) Classification Consistency 

Note:   * represents statistical significance at p ≤ 0.05;  
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.5 Comparisons of Format Representativeness VS. Format Non-representativeness 

under Multidimensionality (ρ=0.9, α=35°) 
 

 Figure 4.5 compares the format representativeness versus the format non-

representativeness condition using the same layout as that used in the Figure 4.4. The X-
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axes specify the two levels of the format representativeness factor and the lines in the 

figure represent various combinations of the statistical and content representativeness 

factors. It should be noted that Figure 4.5 is displayed to facilitate comparisons between 

the two levels of the format representativeness factor, but the information conveyed in 

this figure is partially redundant to that in Figure 4.4.  

 As shown in Figure 4.5, under the equivalent groups condition (left plots), there 

are seemingly horizontal lines which indicate no significant differences of BIAS, RMSE, 

and classification consistency proportion between the format representativeness and non-

representativeness conditions with one exception. When nonequivalent groups are used 

(right plots), the format representativeness condition exhibits significantly closer to zero 

BIAS, significantly smaller RMSE, and observably higher classification consistency 

proportion across six combinations of the statistical and content representativeness 

factors. 

Multidimensionality (ρ=0.75, α=10°)  

 Table 4.8 summarizes the average BIAS, RMSE, and classification consistency 

proportion over 100 replications under Multidimensionality (ρ=0.75, α=10°). As shown 

in Table 4.8, these evaluation criteria repeat very similar patterns to those found in Table 

4.3 under the condition of Multidimensionality (ρ=0.9, α=10°). First, all the values of 

BIAS are negative which indicates that the examinees’ true expected total scores are 

always underestimated. Second, the concurrent calibration under the equivalent groups 

condition consistently performs better than under the nonequivalent groups condition by 

producing lower absolute value of BIAS, smaller RMSE, and higher classification 

consistency proportion. Third, among three important characteristics of common-item 
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sets, only the statistical representativeness factor shows observable impact on equating 

results in terms of the BIAS and the RMSE; while there are no big differences among 

various levels of the content and format representativeness factors.  

Table 4.8 Evaluation Criteria under Multidimensionality (ρ=0.75, α=10°) 
 

   EQ  NEQ 
   SR SNR  SR SNR 

BIAS -0.93 -1.54  -4.32 -5.06 
RMSE 6.54 6.66  7.48 7.94 FR 

CONSISTENCY 0.72 0.72  0.70 0.68 
BIAS -0.92 -1.75  -4.45 -5.13 
RMSE 6.47 6.70  7.56 8.06 

CR 

FNR 
CONSISTENCY 0.72 0.72  0.69 0.68 

        
BIAS -0.89 -1.76  -4.50 -5.18 
RMSE 6.51 6.70  7.60 8.05 FR 

CONSISTENCY 0.72 0.72  0.70 0.68 
BIAS -1.06 -1.72  -4.50 -5.24 
RMSE 6.52 6.70  7.64 8.15 

CPU 

FNR 
CONSISTENCY 0.72 0.72  0.69 0.68 

        
BIAS -0.96 -1.79  -4.72 -5.34 
RMSE 6.53 6.71  7.74 8.21 FR 

CONSISTENCY 0.71 0.72  0.69 0.68 
BIAS -1.06 -1.78  -4.60 -5.35 
RMSE 6.51 6.70  7.68 8.19 

CCU 

FNR 
CONSISTENCY 0.72 0.72  0.69 0.68 

Note: Group Ability Distributions: EQ – Equivalent groups, NEQ – Nonequivalent groups. 
         Format Representativeness: FR – Format representativeness, FNR – Format non-
representativeness. 
         Content Representativeness: CR – Content representativeness, CPU – Content partially 
under-representativeness, CCU – Content completely under-representativeness. 
         Statistical Representativeness: SR – Statistical representativeness, SNR – Statistical non-
representativeness. 
 

Three-way ANOVAs are then conducted to further examine the main effects and 

interaction effects of the statistical, content and format representativeness factors. The 

results (see Appendix E for details) show that there are no statistically significant 

interaction effects. The main effects of the statistical representativeness factor are mostly 

statistically significant (p-value ≤ 0.05) and practically meaningful (effect size ω2 ≥ 
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0.0099). There are also several significant main effects of the content representativeness 

factor but with very low effect sizes (below .0099). 

Statistical Representativeness 

Table 4.9 Three-way ANOVAs: Main Effects of Statistical Representativeness 
under Multidimensionality (ρ=0.75, α= 10°) 

 
Simulation 
Condition 

Evaluation 
Criterion 

Mean 
(SR/SNR) 

Standard Error 
(SR/SNR) 

F Effect Size 
ω2

MUL0.75/10-EQ BIAS -.969/-1.724 .046/.046 136.875** .102 
 RMSE 6.515/6.695 .016/.016 64.543** .051 
 CONSISTENCY .717/.720 .001/.001 10.038** (.007) 

MUL0.75/10-NEQ BIAS -4.515/-5.217 .050/.050 97.427** .074 
 RMSE 7.615/8.100 .037/.037 87.702** .067 
 CONSISTENCY .694/.681 .001/.001 46.151** .030 

Note: MUL0.75/10 – Multidimensional test structure with ρ=0.75 and α=10°;  
          EQ – Equivalent groups; NEQ – Nonequivalent groups 
          SR – Statistical representativeness; SNR – Statistical non-representativeness 
          ** represents statistical significance at p ≤ .01 
 
 Table 4.9 presents the main effects of the statistical representativeness factor 

under Multidimensionality (ρ=0.75, α= 10°). Overall, the main effects of the statistical 

representativeness factor are statistically significant with small to medium effect sizes 

from .030 to .102. Compared to the statistical non-representativeness condition, the 

statistical representativeness condition yields negative but closer to zero BIAS, smaller 

RMSE, and higher classification consistency proportion. There is one exception when 

equivalent groups are applied and classification consistency proportion is used as the 

evaluation criterion.  

Figure 4.6 confirms the above findings by graphically demonstrating these 

differences between the statistical representativeness and non-representativeness 

conditions across all combinations of the content and format representativeness factors.  

 82



 
 

 

MUL(r=0.75/a=10)_EQ

-6.00
-5.50
-5.00
-4.50
-4.00
-3.50
-3.00
-2.50
-2.00
-1.50
-1.00
-0.50
0.00

SR SNR

BI
AS

=E
ST

-T
RU

E FR_CR**
FR_CPU**
FR_CCU**
FNR_CR**
FNR_CPU**
FNR_CCU**

MUL(r=0.75/a=10)_NEQ

-6.00
-5.50
-5.00
-4.50
-4.00
-3.50
-3.00
-2.50
-2.00
-1.50
-1.00
-0.50
0.00

SR SNR

BI
AS

=E
ST

-T
RU

E FR_CR**
FR_CPU**
FR_CCU**
FNR_CR**
FNR_CPU**
FNR_CCU**

 
(a) BIAS 

MUL(r=0.75/a=10)_EQ

6.00
6.20
6.40
6.60
6.80
7.00
7.20
7.40
7.60
7.80
8.00
8.20
8.40
8.60

SR SNR

RM
S

E

FR_CR*
FR_CPU**
FR_CCU**
FNR_CR**
FNR_CPU**
FNR_CCU**

MUL(r=0.75/a=10)_NEQ

6.00
6.20
6.40
6.60
6.80
7.00
7.20
7.40
7.60
7.80
8.00
8.20
8.40
8.60

SR SNR

R
M

S
E

FR_CR**
FR_CPU**
FR_CCU**
FNR_CR**
FNR_CPU**
FNR_CCU**

 
(b) RMSE 

MUL(r=0.75/a=10)_EQ

0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75

SR SNR

Cl
as

si
fic

at
io

n 
Co

ns
is

te
nc

y

FR_CR
FR_CPU
FR_CCU*
FNR_CR
FNR_CPU
FNR_CCU**

MUL(r=0.75/a=10)_NEQ

0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75

SR SNR

Cl
as

si
fic

at
io

n 
Co

ns
is

te
nc

y

FR_CR**
FR_CPU**
FR_CCU*
FNR_CR**
FNR_CPU**
FNR_CCU*

 
(c) Classification Consistency 

Note:   * represents statistical significance at p ≤ 0.05;  
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.6 Comparisons of Statistical Representativeness VS. Statistical Non-representativeness 

under Multidimensionality (ρ=0.75, α=10°) 
 

Content Representativeness 

 It is worth mentioning (shown in Appendix E) that under the nonequivalent 

groups condition, the main effects of the content representativeness factor on BIAS and 

RMSE are statistically significant but with very small effect sizes (below .0099). The 

values of average BIAS under three levels of the content representativeness are -4.742, -

4.855, and -5.000, respectively, while the values of RMSE are 7.761, 7.857, and 7.955, 
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respectively. The content representativeness condition yields the least BIAS and RMSE 

and the content completely under-representativeness condition produces the most BIAS 

and RMSE. 
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(c) Classification Consistency 

Note:   * represents statistical significance at p ≤ 0.05. 
 

Figure 4.7 Comparisons of Content Representativeness VS. Content Partially Under-
representativeness VS. Content Completely Under-representativeness 

under Multidimensionality (ρ=0.75, α=10°) 
 

As Figure 4.7 (right plots) demonstrated, although the differences among three 

levels of the content representativeness factor are not significant across various 

combinations of the statistical and format representativeness factors, they do show an 
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ambiguous trend when nonequivalent groups are utilized. There are no longer horizontal 

lines in the plots. Instead, lines with slight slopes indicate that the concurrent calibration 

under the content representativeness condition performs best, followed by the content 

partially under-representativeness condition, and the content completely under-

representativeness condition performs worst. 

Multidimensionality (ρ=0.75, α=35°) 

 Table 4.10 displays the values of BIAS, RMSE, and classification consistency 

proportion under Multidimensionality (ρ=0.75, α=35°).  

Table 4.10 Evaluation Criteria under Multidimensionality (ρ=0.75, α=35°) 
 

   EQ  NEQ 
   SR SNR  SR SNR 

BIAS -0.85 -1.61  -4.28 -4.98 
RMSE 6.56 6.66  7.42 7.91 FR 

CONSISTENCY 0.72 0.72  0.71 0.68 
BIAS -0.90 -1.67  -4.79 -5.43 
RMSE 6.51 6.73  7.71 8.20 

CR 

FNR 
CONSISTENCY 0.72 0.72  0.70 0.67 

        
BIAS -0.95 -1.63  -4.36 -5.07 
RMSE 6.56 6.74  7.49 7.96 FR 

CONSISTENCY 0.72 0.72  0.70 0.68 
BIAS -1.06 -1.70  -4.85 -5.52 
RMSE 6.58 6.73  7.78 8.27 

CPU 

FNR 
CONSISTENCY 0.72 0.72  0.70 0.67 

        
BIAS -0.95 -1.69  -4.47 -5.20 
RMSE 6.61 6.74  7.57 8.07 FR 

CONSISTENCY 0.72 0.72  0.69 0.67 
BIAS -1.03 -1.79  -4.87 -5.61 
RMSE 6.57 6.78  7.78 8.32 

CCU 

FNR 
CONSISTENCY 0.72 0.72  0.70 0.67 

Note: Group Ability Distributions: EQ – Equivalent groups, NEQ – Nonequivalent groups. 
         Format Representativeness: FR – Format representativeness, FNR – Format non-
representativeness. 
         Content Representativeness: CR – Content representativeness, CPU – Content partially 
under-representativeness, CCU – Content completely under-representativeness. 
         Statistical Representativeness: SR – Statistical representativeness, SNR – Statistical non-
representativeness. 
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 Table 4.10 indicates the following findings about the comparisons of the group 

ability distributions, statistical, content, and format representativeness factors. First, 

compared to the nonequivalent groups condition, the equivalent groups condition 

performs better on all three evaluation criteria. Second, compared to the statistical non-

representativeness condition, the statistical representativeness condition yields negative 

but smaller BIAS, smaller RMSE regardless of the group ability distributions factor. It 

also produces higher classification consistency proportion when nonequivalent groups are 

applied. Third, no noticeable differences are found among three levels of the content 

representativeness factor. Fourth, when nonequivalent groups are involved, it seems that 

the format representativeness condition outperforms the format non-representativeness 

condition on the BIAS and RMSE. 

Three-way ANOVAs were then conducted to investigate not only the independent 

effects of the statistical, content and format representativeness factors but also the 

combined interactions among these three most important characteristics of common-item 

sets. Detailed tables are presented in Appendix E. No two-way or three-way interactions 

are found statistically significant (p-value ≤ 0.05) and practically meaningful (effect size 

ω2 ≥ 0.0099). Based on the same selection rule, only the main effects of the statistical 

representativeness factor and the format representativeness factor will be discussed next 

in details.  

Statistical Representativeness 

 Table 4.11 summarizes some important results about the main effects of the 

statistical representativeness factor from the three-way ANOVA tables in Appendix E. 

The results show that the concurrent calibration under the statistical representativeness 
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condition, in general, outperforms the statistical non-representativeness condition by 

yielding closer to zero BIAS, smaller RMSE, and higher classification consistency 

proportion when nonequivalent groups are used. These findings are proved to be 

statistically significant with low to medium effect sizes (.052 to .102). 

Table 4.11 Three-way ANOVAs: Main Effects of Statistical Representativeness 
under Multidimensionality (ρ=0.75, α= 35°) 

 
Simulation 
Condition 

Evaluation 
Criterion 

Mean 
(SR/SNR) 

Standard Error 
(SR/SNR) 

F Effect Size 
ω2

MUL0.75/10-EQ BIAS -.957/-1.681 .044/.044 137.201** .102 
 RMSE 6.564/6.730 .014/.014 67.336** .052 
 CONSISTENCY .720/.722 .001/.001 7.041** (.007) 

MUL0.75/10-NEQ BIAS -4.604/-5.301 .048/.048 103.427** .076 
 RMSE 7.625/8.122 .036/.036 96.335** .072 
 CONSISTENCY .698/.676 .002/.002 78.730** .061 

Note: MUL0.75/35 – Multidimensional test structure with ρ=0.75 and α=35°;  
          EQ – Equivalent groups; NEQ – Nonequivalent groups 
          SR – Statistical representativeness; SNR – Statistical non-representativeness 
          ** represents statistical significance at p ≤ .01 
 
 Figure 4.8 graphically plots the differences of BIAS, RMSE, and classification 

consistency proportion between two levels of the statistical representativeness factor 

across all six combinations of the content and format representativeness factors. The 

patterns appear in the figure are consistent with the findings in Table 4.11.  

Figure 4.8 (a) shows that the concurrent calibration under the statistical 

representativeness condition consistently yields significantly closer to zero BIAS values 

than it does under the statistical non-representativeness condition regardless of the levels 

of the group ability distributions. Figure 4.8 (b) shows that the RMSE values under the 

statistical representativeness condition are significantly smaller than those under the 

statistical non-representativeness condition. Figure 4.8 (c) is based on the classification 

consistency proportions. Two levels of the statistical representativeness do not differ a lot 

when equivalent groups are used. On the other hand, when nonequivalent groups are used, 
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the concurrent calibration under the statistical representativeness condition yields 

significantly higher classification consistency proportions than it does under the statistical 

non-representativeness condition. 
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(c) Classification Consistency 

Note:   * represents statistical significance at p ≤ 0.05;  
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.8 Comparisons of Statistical Representativeness VS. Statistical Non-representativeness 

under Multidimensionality (ρ=0.75, α=35°) 
 

Format Representativeness 

 When nonequivalent groups are used and the differences are compared based on 

the values of BIAS and RMSE, the main effects of the format representativeness factor 
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are also found to be statistically significant and practically meaningful under the 

condition of Multidimensionality (ρ=0.75, α=35°). Their F values are 43.142 (sig. value 

= .000) and 29.020 (sig. value = .000), respectively, while their effect sizes are .031 

and .021, respectively.  
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(c) Classification Consistency 

Note:   * represents statistical significance at p ≤ 0.05;  
** represents statistical significance at p ≤ 0.01. 

 
Figure 4.9 Comparisons of Format Representativeness VS. Format Non-representativeness 

under Multidimensionality (ρ=0.75, α=35°) 
 

The main effects of the format representativeness factor are graphically 

demonstrated in Figure 4.9. On the left part of the figure, all the lines representing 
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various combinations of the statistical and content representativeness factors are virtually 

horizontal, which indicates that under the equivalent groups condition, there are no 

significant differences of BIAS, RMSE, and classification consistency proportion 

between the format representativeness and non-representativeness conditions. However, 

the right part of the figure tells a different story. All the lines have slight slopes, which 

indicates that under the nonequivalent groups condition, the format representativeness 

condition exhibits significantly closer to zero BIAS, significantly smaller RMSE, and 

observable but most non-significantly higher classification consistency proportion 

compared to the format non-representativeness condition. 

Summary 

 To answer research question 2, four different multidimensional test structures 

were simulated. As described in Chapter Three, these multidimensional test structures 

attempt to mimic the reasonable test configurations in real assessments. Two main 

sources of multidimensionality were manipulated: different content areas and multiple 

item formats. Two content areas are considered to be distinct but highly correlated by 

setting the correlation coefficients between two content factors at .90 and .75 which are 

realistic high values as found in previous literature. In addition to the content factors, two 

format factors with one representing MC items and the other representing CR items are 

set to be orthogonal by assuming that they only make unique contributions to examinees’ 

responses above and beyond those attributed to the content factors. Furthermore, the 

relative importance of format factors is controlled by the angle (α=10° or 35°) between 

MDISC and content factor in the multidimensional space. Therefore, the initial expected 

findings on the statistical, content and format representativeness factors in this scenario 

 90



 
 

 

are that with the decrease of the correlation coefficient between two content factors 

from .90 to .75, the degree of multidimensionality due to multiple content areas increases, 

and thus the content representativeness factor will increase its influence on equating 

results. Meanwhile, with the increase of the angle α from 10° to 35°, the degree of 

multidimensionality due to various item formats increases, and thus the format 

representativeness factor will impose more impact on equating results. The statistical 

representativeness factor will keep playing an important role like it did under the 

unidimensional test structure. The following findings partially confirm these hypotheses.   

 First, the examinees’ true expected total scores were always underestimated 

through the concurrent calibration in this study. 

 Second, the factor of group ability distributions always imposed most significant 

impact on the equating results. The equivalent groups condition yielded closer to zero 

BIASs, smaller RMSEs, and slightly higher classification consistency proportions 

compared to the nonequivalent groups condition. 

 Third, under all four multidimensional test structures, the statistical 

representativeness condition produced significantly closer to zero BIASs and smaller 

RMSEs compared to the statistical non-representativeness condition. When 

nonequivalent groups were used, it also yielded higher classification consistency 

proportions. 

 Fourth, under all four multidimensional test structures, three levels of the content 

representativeness factor did not show statistically significant and practically meaningful 

differences in the equating results. Only under Multidimensionality (ρ=0.75, α= 10°) and 

when nonequivalent groups were used, did it seem that the content representativeness 
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condition yielded the least BIAS and RMSE and the content completely under-

representativeness condition produced the most BIAS and RMSE. 

 Fifth, with the increase of the relative importance of the format factors compared 

to the content factors on examinees’ item responses (from Multidimensionality 

(ρ=0.90/0.75, α=10°) to Multidimensionality (ρ=0.90/0.75, α=35°)), the format 

representativeness factor made significant differences on all three evaluation criteria 

especially under the nonequivalent groups condition. 

 Sixth, there are no significant and practically meaningful interaction effects 

among the statistical, content and format representativeness factors. 

Research Question 3 

 To answer research question 3: “How robust is the unidimensional IRT equating 

method to the presence of various degree of multidimensionality?”  Three evaluation 

criteria – the BIAS, RMSE, and Classification Consistency - are compared across various 

levels of the test dimensionality structure.  

Table 4.12 One-Way ANOVA: Test Dimensionality Structure 
 

Simulation 
Condition 

Evaluation 
Criterion 

 SS DF F Effect Size 
ω2

EQ BIAS Effect 18.988 4 3.291* (0.002) 
  Error 8647.506 5995   
 RMSE Effect 31.559 4 44.901** 0.056 
  Error 1053.409 5995   
 CONSISTENCY Effect .221 4 170.812** 0.028 
  Error 1.943 5995   

NEQ BIAS Effect 614.309 4 89.702** 0.055 
  Error 10263.982 5995   
 RMSE Effect 307.276 4 89.113** 0.101 
  Error 5167.945 5995   
 CONSISTENCY Effect 1.042 4 172.646** 0.103 
  Error 9.043 5995   

Note: EQ – Equivalent groups; NEQ – Nonequivalent groups 
          * represents statistical significance at p ≤ .05; **represents statistical significance at p ≤ .01 
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 A series of one-way ANOVAs were conducted and the results along with the 

effect sizes are provided in Table 4.12. As shown in Table 4.12, the one-way ANOVA 

results indicate that the differences among various levels of the test dimensionality 

structure are statistically significant with low to medium effect sizes except for the 

comparisons of BIAS under the equivalent groups condition in which the effect size is 

nearly neglectable.  

After the omnibus tests, was the examination of the differences between which 

levels of the test dimensionality structure factor are significant and in what order. 

Hypothetically, it is expected that performance of the concurrent calibration would 

decline as the degree of multidimensionality increases (i.e., the correlation between two 

content factors goes from .90 to .75, and the angle between MDISC and content factor in 

the multidimensional space goes from 10° to 35°). Therefore, although the performance 

of the concurrent calibration under each level of test dimensionality structure factor is a 

concern, the focus in this section is on examining the change in the three evaluation 

criteria with the increase in the degree of multidimensionality.  

Two measures are taken. First, the average values of the BIAS, RMSE, and 

classification consistency proportion, as well as the index η2 which was proposed by Kim 

& Kolen (2006) and is adapted in this study are reported in Table 4.13. The index η2 is to 

reflect the practical significance of differences between the unidimensionality and various 

levels of the multidimensionality. It can be expressed as: 

|
sionalityMultidimenin  Criteria Evaluation

nsionalityin Unidime Criteria Evaluation -sionality Multidimenin  Criteria Evaluation|2 =η

 
In this study, η2 are taken in the absolute value and might be roughly interpreted as the 

proportion of the total equating error explained by the multidimensionality. In general, 
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the smaller the value of η2, the more robust to the degree of the multidimensionality.  

Second, the Turkey HSD method is used to conduct pairwise multiple comparisons. The 

detailed results are presented in Appendix F. But the homogenous subsets are 

summarized in Table 4.13. 

Table 4.13 Evaluation Criteria under the Levels of Test Dimensionality Structure 
 

Simulation 
Condition 

Evaluation Criterion UNI 
 

MUL0.90/10 
(η2) 

MUL0.90/35 
(η2) 

MUL0.75/10 
(η2) 

MUL0.75/35 
(η2) 

EQ BIAS -1.434 -1.442 
(-) 

-1.311 
(-) 

-1.346 
(-) 

-1.319 
(-) 

 Homogeneous Subsets 1 1 1 1 1 
       
 RMSE 6.438 6.544 

(.016) 
6.602 
(.025) 

6.605 
(.025) 

6.647 
(.032) 

 Homogeneous Subsets 1 2 3 3 3 
       
 CONSISTENCY .736 0.727 

(.013) 
0.723 
(.018) 

0.719 
(.024) 

0.721 
(.021) 

 Homogeneous Subsets 1 2 3 5 4 
       

NEQ BIAS -4.093 -4.562 
(.103) 

-4.891 
(.163) 

-4.866 
(.159) 

-4.953 
(.174) 

 Homogeneous Subsets 1 2 3 3 3 
       
 RMSE 7.285 7.570 

(.038) 
7.819 
(.068) 

7.858 
(.073) 

7.874 
(.075) 

 Homogeneous Subsets 1 2 3 3 3 
       
 CONSISTENCY .7219 0.707 

(.021) 
0.698 
(.034) 

0.688 
(.050) 

0.687 
(.051) 

 Homogeneous Subsets 1 2 3 4 4 
Note: EQ – Equivalent groups; NEQ – Nonequivalent groups 
          UNI – Unidimensionality; MUL0.90/10 – Multidimensional test structure with ρ=0.90 and 
α=10°; MUL0.90/35 – Multidimensional test structure with ρ=0.90 and α=35°; MUL0.75/10 – 
Multidimensional test structure with ρ=0.75 and α=10°; MUL0.75/35 – Multidimensional test 
structure with ρ=0.75 and α=35° 
          - represents not applicable because the test result on the evaluation criterion is not 
statistically significant (p-value ≤ 0.05) and practically meaningful (effect size ω2 ≥ 0.0099). 
 

The following findings are found in Table 4.13. First, with one exception, the 

concurrent calibration under the unidimensionality condition yields the closest to zero 

BIAS, the smallest RMSE, and the highest classification consistency proportion as 
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expected. Second, when the degree of multidimensionality caused by various content 

areas increases (i.e., the correlation between two content factors decreases from .90 

to .75), the value of η2 increases which indicates that the robustness of the concurrent 

calibration declines. Third, when the degree of the multidimensionality due to multiple 

item formats increases (i.e., the angle between MDISC and content factor in 

multidimensional space increases from 10° to 35°), the value of η2 increases. The larger 

the value of η2, the less robust the concurrent calibration. There is an exception when the 

classification consistency proportion is used as the evaluation criterion in comparison of 

the Multidimensionality (ρ=0.75, α=10°) and the Multidimensionality (ρ=0.75, α=35°).  

From the homogenous subsets shown in Table 4.13, consistent conclusions can be 

reached. Under the equivalent groups condition, five levels of the test dimensionality 

structures yield no significant differences in BIAS. But under the nonequivalent groups 

condition, there are three homogenous subsets in BIAS. The concurrent calibration under 

Multidimensionality (ρ=0.90, α=10°) is more robust to the violation of the 

unidimensionality assumption than that under the Multidimensionality (ρ=0.90, α=35°), 

the Multidimensionality (ρ=0.75, α=10°), and the Multidimensionality (ρ=0.75, α=35°). 

There are no significant differences among the last three levels of the 

Multidimensionality. The same homogenous groupings are found when using RMSE as 

the evaluation criterion regardless of the group ability distributions factor. When the 

differences of classification consistency proportion are examined, the last three levels of 

the Multidimensionality are further divided. The classification consistency proportion 

under Multidimensionality (ρ=0.90, α=35°) is significantly higher than those under the 

Multidimensionality (ρ=0.75, α=10°) and the Multidimensionality (ρ=0.75, α=35°). The 
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difference between the Multidimensionality (ρ=0.75, α=10°) and the Multidimensionality 

(ρ=0.75, α=35°) is significant when equivalent groups are used but is not significant 

when nonequivalent groups are used. However, it should be noted that all these 

differences in classification consistency proportion among four levels of the 

Multidimensionality are numerically small.  
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(c) Classification Consistency 
Note:   * represents statistical significance at p ≤ 0.05;  

** represents statistical significance at p ≤ 0.01. 
 

Figure 4.10 Comparisons of Test Dimensionality Structures 
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Figure 4.10 graphically compares the values of BIAS, RMSE, and classification 

consistency proportion among the five levels of the test dimensionality structure factor 

across all combinations of the statistical, content and format representativeness factors.  

When equivalent groups are used, the patterns of the test dimensionality structure 

factor for all three evaluation criteria tend to be consistent across all 12 combinations of 

the statistical, content and format representativeness factors by having nearly overlapping 

or very close lines. The values of BIAS in five levels of the test dimensionality structure 

factor show no significant differences. As to the RMSE, the Unidimensionality condition 

always yields the smallest values. With the increase of the degree of multidimensionality, 

the values of RMSE increase. As to the classification consistency proportion, the 

Unidimensionality condition always yields the highest proportions. As the degree of 

multidimensionality increases, the classification consistency proportion generally 

declines. One exception happens, instead of decreasing classification consistency 

proportion from the Multidimensionality (ρ=0.75, α=10°) to the Multidimensionality 

(ρ=0.75, α=35°), it increases.  

Under the nonequivalent groups condition, there are more dramatic patterns, 

which vary largely from one combination of the statistical, content and format 

representativeness factors to another. However, after thorough investigation, general 

patterns can be found. The Unidimensionality condition yields the closest to zero BIAS, 

the smallest RMSE, and the highest classification consistency proportion. Moreover, as 

the degree of multidimensionality increases, the performance of the concurrent 

calibration on all three evaluation criteria declines. In other words, the concurrent 

calibration becomes less and less robust. The greatest inconsistency occurs in the 
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comparison between the Multidimensionality (ρ=0.90, α=35°) and the 

Multidimensionality (ρ=0.75, α=10°), where the degree of multidimensionality cannot be 

determined. 

Summary 

 In response to the research question about the robustness of the concurrent 

calibration, various levels of the multidimensional test structure must be discussed first. 

There are a total of four levels of the multidimensional test structure, which are 

determined by two sources – content areas and item formats. These four levels of the 

multidimensional test structure are as follows: 1) the multidimensional structure in which 

the correlation between two content factors is 0.9 and the angle between MDISC and 

content factor in the multidimensional space is 10°; 2) the multidimensional structure in 

which the correlation between two content factors is 0.9 and the angle between MDISC 

and content factor is 35°; 3) the multidimensional structure in which the correlation 

between two content factors is 0.75 and the angle between MDISC and content factor is 

10°; and 4) the multidimensional structure in which the correlation between two content 

factors is 0.75 and the angle between MDISC and content factor is 35°. These four levels 

of the multidimensional test structure can be sorted in the ascending order of the degree 

of multidimensionality as the Multidimensionality (ρ=0.90, α=10°) shows the lowest 

degree of multidimensionality, followed by the Multidimensionality (ρ=0.90, α=35°) and 

the Multidimensionality (ρ=0.75, α=10°), and the Multidimensionality (ρ=0.75, α=35°) 

shows the highest degree of multidimensionality. The degree of multidimensionality 

between the Multidimensionality (ρ=0.90, α=35°) and the Multidimensionality (ρ=0.75, 

α=10°) is undetermined. 
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 More attention is paid in this study to examining change in the values of BIAS, 

RMSE, and classification consistency proportion as a function of the increase in the 

degree of multidimensionality since it is expected that the performance of the concurrent 

calibration would decline as the degree of the multidimensionality increases. In other 

words, the higher the degree of multidimensionality, the less robust is the concurrent 

calibration. However, there is no universal answer in response to the question “how 

robust is robust enough?” Therefore, all the findings in this section are based on their 

relative comparisons to the unidimensional condition. The findings are as follow. 

 First, in the ideal unidimensional condition in which the unidimensionality 

assumption was met and model fits data well, the concurrent calibration usually yielded 

the closest to zero BIAS, the smallest RMSE, and the highest classification consistency 

proportion. 

 Second, when the degree of multidimensionality caused by various content areas 

increases (i.e., the correlation between two content factors decreases from .90 to .75), the 

robustness of the concurrent calibration generally declines. 

 Third, with few exceptions, when the degree of the multidimensionality caused by 

multiple item formats increases (i.e., the angle between MDISC and content factor in 

multidimensional space increases from 10° to 35°), the robustness of the concurrent 

calibration generally declines. 
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Chapter 5: Summary and Discussion 

 This chapter provides a summary and discussion of this study. It begins with a 

brief restatement of the research questions and a summary of the methodology used in 

this study. This is followed by discussion of the major findings of this study. Then the 

implications for practice, the limitations of this study, and some suggestions for future 

research are provided.  

Restatement of Research Questions 

 As mentioned in Chapter One, the central focus of this study was to 

systematically investigate the impact of representativeness and non-representativeness of 

common-item sets in terms of statistical, content, and format specifications in mixed-

format tests using concurrent calibration with unidimensional IRT models, as well as to 

examine its robustness to various multidimensional test structures. More specifically, this 

study attempted to provide information in response to the following research questions: 

1) In an ideal situation where the unidimensionality assumption is satisfied, what are 

the effects of statistical, content and format representativeness of common-item 

sets on mixed-format test equating?  

2) In hypothetical but reasonable practical situations where multidimensionality 

exists, what are the effects of statistical, content and format representativeness of 

common-item sets on mixed-format test equating? 

3) How robust is the unidimensional IRT equating method to the presence of 

different multidimensional test structures? 

These questions were answered by a simulation study which is briefly 

summarized next. 
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Summary of Methodology 

In this simulation study, the common-item nonequivalent groups (CINEG) design 

was used for data collection. Two forms of a 54-item mixed-format test were used. Each 

test form was comprised of 48 dichotomous MC items and 6 five-category CR items. 

They were then split evenly into two content areas. Furthermore, these two test forms 

shared a set of 18 common items. Two groups each with 3,000 examinees were involved. 

The ability scale of group 1 taking test form 1 was set as a reference scale, and then the 

concurrent calibration was conducted to transform the scale of group 2 taking test form 2 

to the reference scale. The unidimensional three-parameter logistic (3PL) model was used 

to calibrate the MC items and the unidimensional graded-response model (GRM) was 

employed to calibrate the CR items. The computer program MULTILOG was used for 

the test calibration process in each case.  

Five factors were manipulated and they can be categorized into three groupings. 

First was the test dimensionality structure factor. Five levels were considered, which 

included the unidimensional test structure and four levels of multidimensional test 

structure due to the combination of various content areas and multiple item formats. The 

second grouping included the three important characteristics in the composition of 

common-item sets. There were two levels of the statistical representativeness factor, three 

levels of the content representativeness factor, and two levels of the format 

representativeness factor. The last factor of interest was whether the ability distributions 

of two examinee groups were equivalent or not. These five factors were fully crossed 

which resulted in a total of 120 simulation conditions. Each condition was repeated 100 

times. 

 101



 
 

 

To evaluate the accuracy of the equating results under various simulation 

conditions, the group 2 examinees’ true and estimated expected total scores were 

computed. Based upon these scores, the summary indices – BIAS, RMSE and 

Classification Consistency over 100 replications were computed and used for final 

comparisons. Some statistical tests were also conducted to identify the significant 

performance differences of the concurrent calibration among various simulation 

conditions. 

Discussion of Major Findings 

The major findings of this study are discussed as follows. 

First, considering all of the simulation conditions, the most notable and significant 

effects on the equating results among the five factors of investigation appeared to be 

those due to the factor of group ability distributions. The equivalent groups condition 

always outperformed the nonequivalent groups condition on the various evaluation 

indices. This finding is supported by many of the previous simulation studies (Beguin, 

Hanson, & Glas, 2000; Kim & Kolen, 2006; Kim & Lee, 2006; Kirkpatrick, 2005; Li, 

Lissitz, & Yang, 1999; Tate, 2000). One plausible explanation is that the concurrent 

calibration with nonequivalent groups in CINEG design can only utilize common items to 

equate two forms. In contrast, when equivalent groups are utilized in CINEG design, the 

concurrent calibration makes better use of both common items and equivalent groups to 

place the parameters from a new group onto the reference group scale. However, it 

should be noted that the CINEG design itself does not require the use of equivalent 

groups. As a matter of fact, in many operational settings, such as when only one form can 

be administrated per test date due to test security or other concerns, the groups of 
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examinees taking different forms are usually not considered to be equivalent. Therefore, 

the composition of common-item sets under nonequivalent groups condition should be 

worthy of more attention. 

Second, regardless of the group ability differences, there were no statistically and 

practically significant interaction effects among the factors of the statistical, content and 

format representativeness. It indicated that instead of impacting interactively on the 

performance of the concurrent calibration, these three important characteristics of 

common-item sets tended to affect the equating results independently.  

Third, as expected, under the unidimensional test structure, the content and format 

representativeness factors showed little significant impact on the equating results except 

for a few conditions. Meanwhile, the statistical representativeness factor affected the 

performance of the concurrent calibration significantly. This result is determined by the 

nature of the unidimensional test structure. Under this condition, different content areas 

and multiple item formats truly measure the same ability. Therefore, whether content and 

item format are representative to the total test no longer becomes an issue in the 

composition of common-item sets. However, the statistical specification is least 

influenced by the test dimensionality structure and thus it becomes the most important 

characteristic when constructing common-item sets from unidimensional tests. 

 Fourth, regardless of the various levels of multidimensional test structure, the 

statistical representativeness factor showed more significant and systematic effects on the 

performance of the concurrent calibration than the other two important characteristics of 

common-item sets – the content and format representativeness factors. When the degree 

of multidimensionality due to multiple item formats increased (from Multidimensionality 
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(ρ=0.90/0.75, α=10°) to Multidimensionality (ρ=0.90/0.75, α=35°)), the format 

representativeness factor began to make significant differences on all three evaluation 

criteria especially under the nonequivalent groups condition. The content 

representativeness factor, however, showed minimum impact on the equating results 

regardless of the increase of the degree of multidimensionality due to different content 

areas (from Multidimensionality (ρ=0.90, α=10°/35°) to Multidimensionality (ρ=0.75, 

α=10°/35°)). There is no surprise that the statistical representativeness factor consistently 

imposed its impact on the equating results and the format representativeness started to 

become a contributing factor to the performance of the concurrent calibration when the 

two groups were not equivalent and the degree of multidimensionality due to item 

formats further increased. Interestingly, the content representativeness factor did not 

show statistically and practically significant effect on the equating results even when the 

degree of multidimensionality due to multiple content areas increased. This finding is 

inconsistent with several previous research papers (Cook & Peterson, 1987; Harris, 1991; 

Klein & Jarjoura, 1985) in which the content representativeness of common-item sets 

played an important role in the equating for MC-only tests under CINEG design. This 

inconsistency could be attributed to the specific design properties of this simulation study. 

As noted before, in this study, the test consisted of items classified into two content areas 

and the correlation between these two content areas was set at 0.9 or 0.75, which 

represented a realistically strong relationship between the two content areas. The degree 

of multidimensionality caused by highly correlated content areas might not be sufficient 

to invoke the significant effect of the content representativeness factor. Furthermore, the 

effect of the content representativeness factor in the previous study results was explained 
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in terms of the mean performance differences of the nonequivalent groups in various 

content areas (Harris, 1991; Kirkpatrick, 2005; Klein & Jarjoura, 1985). However, this 

study assumed that the mean performance on various content areas is completely parallel 

for two examinee groups. It might also be the reason to cause the inconsistency between 

the results from the current study and previous research.  

Fifth, the performance of the concurrent calibration with the unidimensional IRT 

models declined significantly with the increase of the degree of multidimensionality 

caused by different content areas or multiple item formats, which indicated that the 

concurrent calibration was not quite robust to the violation of the unidimensionality 

assumption. This finding agrees with Beguin, Hanson, & Glas (2000)’s study in which 

they only examined MC tests but found that the performance of concurrent calibration 

was sensitive to the multidimensionality of the data. However, this finding differs from 

that from Kim & Kolen (2006), in which the concurrent calibration was found to be quite 

robust to the violation of the unidimensionality assumption compared to the separate 

calibration. But the evidence also indicated that this robustness of the concurrent 

calibration did not seem to be consistent across various test types.  

Implications for Practice 

With the profession’s recognition of the importance of equating and with the 

steady increase in the use of mixed-format tests in large-scale assessments, mixed-format 

test equating attracts more and more attention and interest especially under CINEG 

design because in practice, the groups of examinees taking a test on different test dates 

are usually not considered simply equivalent from the same population. Under such 

circumstances, equating is conducted through a common-item set which is assumed to 
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provide accurate information about how the two examinee groups differ from one another 

with regard to performance on the total test. If two examinee groups performed equally 

well on the common-item set, but one group taking the new form scored higher than the 

other one taking the old form, it would appear that the new form was easier than the old 

form. Through equating, the scores of examinees taking the new and more difficult form 

would be adjusted accordingly.  

 Given the importance of the information obtained on the basis of the common-

item set, it is a widely held belief that the composition of the common-item set is crucial 

to the CINEG equating practice and a typical common-item set should be a parallel 

miniature version of the total test. More specifically, it is recommended that a common-

item set should be proportionally representative of the total test in terms of content and 

statistical specifications (Kolen & Brennan, 2004). In mixed-format test equating, it also 

should be format representative. However, the reality is far from ideal, and circumstances 

may arise in practice that cause the common-item set to become non-representative. For 

example, because of time and budget limitations, an insufficient number of CR items may 

be included in the common-item set. Or because of a recent change in the current 

knowledge system, an error in the printing of the test booklets, or an unauthorized 

rearranging of the item options, some items have to be removed from the common-item 

set. The removal of some common items might in turn result in the statistical, content, or 

format non-representativeness of the common-item set to the total test. Therefore, the 

research on the composition of common-item sets, especially about which requirements 

of statistical, content and/or format representativeness could be less restrictive, becomes 

helpful. 
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The major contribution of this study is to provide guidance on how to construct an 

“optimum” common-item set in terms of the statistical, content and format 

representativeness for the mixed-format test equating under CINEG design. Here, 

“optimum” means that under a certain practical condition, some requirement(s) in terms 

of the statistical, content and format representativeness should be taken more seriously 

and some other requirement(s) could be relaxed. Before making any decisions for 

constructing a common-item set, it should always be kept in mind that every real testing 

program has its own special properties, thus it is reasonable in practice to avoid blindly 

following the suggestions made below, although these are good initial guidelines. 

Based on the discussion of the major findings of this study, the following two 

pieces of suggestions are recommended for constructing a common-item set in practice.  

 ONE:  When the test forms are constructed to be truly unidimensional, the 

statistical representativeness will be the most crucial characteristic in the composition of 

common-item sets. In other words, when constructing a common-item set, the item 

statistical specification in the common-item set should be as similar as possible to that in 

the total test. The requirements of content and format representativeness could be 

loosened, such as using only MC items in the common-item set. 

 TWO:  More realistically, it is likely that all tests will contain a certain degree of 

multidimensionality, and that this multidimensionality might be caused by many different 

factors. No matter what kind of multidimensional test structure it is, the statistical 

characteristics of common-item sets should remain proportionally representative of the 

total test. Furthermore, when the level of multidimensionality relating to the use of 

multiple item formats is moderate to severe, the common-item set should include both 
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MC and CR items and the proportion of MC and CR items should be roughly equal to 

that of the total test being equated. In addition, requiring the common-item set to mimic 

the content characteristics of the total test may be too restrictive and could be relaxed as 

long as various content areas are moderately to highly correlated with one another.  

 This study also provides information on the robustness of the concurrent 

calibration to various levels of multidimensionality. In general, the concurrent calibration 

with the unidimensional IRT models was not very robust to the violation of the 

unidimensionality assumption and the adequacy of its performance declined with increase 

in the degree of multidimensionality. This finding should ring an alarm bell for the 

equating practice in which the unidimensional IRT equating methods are sometimes used 

without examining the unidimensionality assumption. When multidimensionality exists, 

the use of concurrent calibration with the unidimensional IRT models might bias the 

results and thus the concurrent calibration using multidimensional IRT models should be 

considered. For example, a multidimensional compensatory or non-compensatory model 

could replace the 3PL model for MC items and a multidimensional version of the GRM 

could be used instead of the unidimensional version of the GRM. 

 This study not only has straightforward implications for the equating practice 

such as better selection of common items and equating methods, but also calls for great 

caution when choosing the evaluation criteria. Throughout this chapter, the word 

“optimum” has appeared in quotes. This is to emphasize that all the conclusions reached 

and the implications of this study are based on the specific evaluation criteria used (i.e., 

the BIAS, the RMSE, and the classification consistency). These criteria are among a 

number of criteria that could be used to evaluate the equating accuracy (e.g., Pearson 
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correlation coefficient used by Yang, 2000; moments for examinee ability distributions 

used by Cao, Yin, & Gao, 2007; unweighted and weighted root mean square differences, 

Harris & Crouse, 1993; weighted mean absolute error used by Beguin, Hanson, & Glas, 

2000), with different criteria possibly resulting in different “optimum” common-item sets. 

Overall, the BIAS and RMSE, although having small discrepancies in estimating the 

equating accuracy, agreed with each other in their general pattern of results. The 

classification consistency measure, however, led to somewhat different conclusions about 

the equating accuracy. The differences in classification consistency proportions across all 

the simulation conditions were small. However, even small differences can have policy 

implications depending on how scores are reported, how large the examinee base is, and 

how serious the consequences are associated with decisions based on test scores. In the 

current K-12 state testing setting, many educational tests are used to classify examinees 

into levels of achievement, and stakes associated with the score reporting are usually at 

the highest level for the state policymaking body. Therefore, if the use of different 

evaluation criteria results in different conclusions and suggestions, it will be extremely 

important to select evaluation criteria that suit the state needs, are thoroughly examined 

and have well known features. 

Overall, this study informs the equating practice in many aspects, such as better 

composition of common-item sets, better employment of equating methods and better 

selection of evaluation criteria, which ultimately will lead to a more precise, efficient, and 

fairer testing practice. 
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Limitations and Suggestions for Future Research 

 The above summary and discussion of the results must be kept in perspective, 

keeping in mind the following limitations of this study, which could be inspiration for a 

future research agenda.  

 As with any simulation study, the results are used in an attempt to understand the 

real world. However, real testing problems are far from simple and simulations cannot 

include all features of the real testing environment. In this study, only a small number of 

factors with limited levels were investigated. And many other factors that are often 

believed to affect the equating results were fixed. Among the fixed factors are the sample 

size, the proportion of MC items to CR items in the total test, the length of the common-

item set, the IRT models and the calibration program. For example, the length of the 

common-item set in this study was fixed as one third of the total test to guarantee 

sufficient number for accurate equating. However, previous research found that the 

length of the common-item set interacted with the content representativeness. Meanwhile, 

in many practical settings, repeating large numbers of common items might not be 

possible because of the need to frequently update the item pool and the potential unfair 

advantage to failed candidates who take tests on successive dates. Therefore, future 

research could utilize shorter common-item sets and examine their interaction with other 

characteristics of common-item sets like the statistical, content and format 

representativeness. Also, future research could expand by investigating more levels of the 

existing five factors in this study. For example, this study did not find a significant effect 

of the content representativeness on the performance of the concurrent calibration. One 

plausible reason is that the correlation between content areas was set high, and thus 
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moderate to low correlations could be manipulated to see whether the effect of the 

content representatives will emerge. Moreover, this study only investigated one type of 

statistical non-representativeness, that is, the 0.3 mean difficulty difference between 

items in the common-item set and in the total test. Lower magnitude of the mean 

difficulty difference as well as the variability differences of the difficulty parameter could 

be explored in the future. It may be that if more factors were included in the simulation 

study, more generalizable findings could be obtained, although the complexity of the 

design would have made interpretation that much more difficult. 

 In this study, the multidimensionality was caused by different content areas and 

item formats and the two examinee groups were assumed to perform equally well on both 

content areas and on both item formats. However, in real test administration, the 

performance of two examinee groups is seldom identical. Therefore, future research 

might allow a differential ability in population means and variances on various content 

areas and different item formats. 

 This study only investigated the performance of the concurrent calibration under 

various simulation conditions. However, separate calibration is also widely used in real 

testing programs. One potential benefit of separate calibration is for diagnostic purposes, 

that is, having two sets of item parameter estimates can help to identify possible 

individual item problems (Hanson & Beguin, 2002; Kolen & Brennan, 2004). Moreover, 

concurrent calibration puts more of a burden on the program than separate estimation 

does, which may result in some performance problems. This could especially be true in 

the situations where more than two forms were being equated simultaneously. In separate 

calibration convergence problems seldom occur. All in all, there is insufficient evidence 
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to recommend completely avoiding separate calibration in favor of concurrent calibration. 

Therefore, this study could be expanded in the future to explore the performance of 

separate calibration (at least characteristic curve methods) under various conditions and 

compare it to that of concurrent calibration. 

Next, the complex factorial model for multidimensional test structure assumed in 

this study, although specified to reflect one reasonable configuration for a large-scale 

assessment, should be tested in practice to investigate how closely it mimics the real tests. 

Even so, this factorial model is only one among many possible complex underlying 

factorial structures. In real testing situations, each test has its unique properties and thus 

its underlying factorial structure could vary largely and become even more complex. For 

example, various content and format factor combinations could impose different 

influences on examinee’s correct response to each item, in contrast to the assumption of 

equivalent influences among factor combinations made in this study. Moreover, 

according to the robustness check conducted in this study, when multidimensionality 

exists, the use of concurrent calibration with unidimensional IRT models might bias the 

results and thus the concurrent calibration using applicable multidimensional IRT models 

should be considered. However, multidimensional IRT equating especially for mixed-

format tests is a barely explored area. More systematic investigations should be 

conducted to develop new multidimensional IRT equating methods, and explore their 

characteristics and behavior with different simulation conditions or in real situations. 

 Last but not least,, this study only involved part of the whole equating process. In 

testing programs, raw-to-scale score conversions are often conducted as the final step of 

equating and the resulting scale scores instead of the expected total scores are reported. 
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Thus, test practitioners might be more interested in the impact of different factors on the 

final scale scores. Since weighing and score conversion processes in mixed-format tests 

involve many complicated issues, additional effort in this area should be invested in the 

future. 
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Appendix A 

 
 Group 1 Group 2 
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Note: The order of factors in the multivariate normal distribution is Content 1, Content 2, MC_F, 
and CR_F. 
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Appendix B 
 
Unidimensionality, Format Rep., Content Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 16 a~LN(0, 0.5) 16Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 8 a~LN(0, 0.5) 8Common-item set 
 b~N(0, 1)  b~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 1
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 16 a~LN(0, 0.5) 16Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Rep., Content Rep., Statistical Non-Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 16 a~LN(0, 0.5) 16Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 8 a~LN(0, 0.5) 8Common-item set 
 b~N(0.3, 1)  b~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 1
  b1~N(-1.2, 0.2)  b1~N(-1.2, 0.2)  
  b2~N(-0.2, 0.2)  b2~N(-0.2, 0.2)  
  b3~N(0.8, 0.2)  b3~N(0.8, 0.2)  
  b4~N(1.8, 0.2)  b4~N(1.8, 0.2)  

MC a~LN(0, 0.5) 16 a~LN(0, 0.5) 16Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Rep., Content Partially Under-Rep., Statistical Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 13 a~LN(0, 0.5) 19Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 11 a~LN(0, 0.5) 5Common-item set 
 b~N(0, 1)  b~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 1
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 13 a~LN(0, 0.5) 19Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Rep., Content Partially Under-Rep., Statistical Non-Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 13 a~LN(0, 0.5) 19Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 11 a~LN(0, 0.5) 5Common-item set 
 b~N(0.3, 1)  b~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 1
  b1~N(-1.2, 0.2)  b1~N(-1.2, 0.2)  
  b2~N(-0.2, 0.2)  b2~N(-0.2, 0.2)  
  b3~N(0.8, 0.2)  b3~N(0.8, 0.2)  
  b4~N(1.8, 0.2)  b4~N(1.8, 0.2)  

MC a~LN(0, 0.5) 13 a~LN(0, 0.5) 19Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 2
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Rep., Content Completely Under-Rep., Statistical Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 8 a~LN(0, 0.5) 24Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 16 a~LN(0, 0.5) 0Common-item set 
 b~N(0, 1)  b~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 0
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 8 a~LN(0, 0.5) 24Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Rep., Content Completely Under-Rep., Statistical Non-Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 8 a~LN(0, 0.5) 24Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 16 a~LN(0, 0.5) 0Common-item set 
 b~N(0.3, 1)  b~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 2 a~LN(0, 0.5) 0
  b1~N(-1.2, 0.2)  b1~N(-1.2, 0.2)  
  b2~N(-0.2, 0.2)  b2~N(-0.2, 0.2)  
  b3~N(0.8, 0.2)  b3~N(0.8, 0.2)  
  b4~N(1.8, 0.2)  b4~N(1.8, 0.2)  

MC a~LN(0, 0.5) 8 a~LN(0, 0.5) 24Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 1 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Non-Rep., Content Rep., Statistical Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 15 a~LN(0, 0.5) 15Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 9 a~LN(0, 0.5) 9Common-item set 
 b~N(0, 1)  b~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 0 a~LN(0, 0.5) 0
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 15 a~LN(0, 0.5) 15Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Non-Rep., Content Rep., Statistical Non-Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 15 a~LN(0, 0.5) 15Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 9 a~LN(0, 0.5) 9Common-item set 
 b~N(0.3, 1)  b~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 0 a~LN(0, 0.5) 0
  b1~N(-1.2, 0.2)  b1~N(-1.2, 0.2)  
  b2~N(-0.2, 0.2)  b2~N(-0.2, 0.2)  
  b3~N(0.8, 0.2)  b3~N(0.8, 0.2)  
  b4~N(1.8, 0.2)  b4~N(1.8, 0.2)  

MC a~LN(0, 0.5) 15 a~LN(0, 0.5) 15Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Non-Rep., Content Partially Under-Rep., Statistical Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 12 a~LN(0, 0.5) 18Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 12 a~LN(0, 0.5) 6Common-item set 
 b~N(0, 1)  b~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 0 a~LN(0, 0.5) 0
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 12 a~LN(0, 0.5) 18Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Non-Rep., Content Partially Under-Rep., Statistical Non-Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 12 a~LN(0, 0.5) 18Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 12 a~LN(0, 0.5) 6Common-item set 
 b~N(0.3, 1)  b~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 0 a~LN(0, 0.5) 0
  b1~N(-1.2, 0.2)  b1~N(-1.2, 0.2)  
  b2~N(-0.2, 0.2)  b2~N(-0.2, 0.2)  
  b3~N(0.8, 0.2)  b3~N(0.8, 0.2)  
  b4~N(1.8, 0.2)  b4~N(1.8, 0.2)  

MC a~LN(0, 0.5) 12 a~LN(0, 0.5) 18Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Non-Rep., Content Completely Under-Rep., Statistical Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 6 a~LN(0, 0.5) 24Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 18 a~LN(0, 0.5) 0Common-item set 
 b~N(0, 1)  b~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 0 a~LN(0, 0.5) 0
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 6 a~LN(0, 0.5) 24Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Unidimensionality, Format Non-Rep., Content Completely Under-Rep., Statistical Non-Rep. 
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC a~LN(0, 0.5) 6 a~LN(0, 0.5) 24Unique item set for 
Form 1  b~N(0, 1)  b~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.5, 0.2)  b1~N(-1.5, 0.2)  
  b2~N(-0.5, 0.2)  b2~N(-0.5, 0.2)  
  b3~N(0.5, 0.2)  b3~N(0.5, 0.2)  
  b4~N(1.5, 0.2)  b4~N(1.5, 0.2)  

MC a~LN(0, 0.5) 18 a~LN(0, 0.5) 0Common-item set 
 b~N(0.3, 1)  b~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 0 a~LN(0, 0.5) 0
  b1~N(-1.2, 0.2)  b1~N(-1.2, 0.2)  
  b2~N(-0.2, 0.2)  b2~N(-0.2, 0.2)  
  b3~N(0.8, 0.2)  b3~N(0.8, 0.2)  
  b4~N(1.8, 0.2)  b4~N(1.8, 0.2)  

MC a~LN(0, 0.5) 6 a~LN(0, 0.5) 24Unique item set for 
Form 2  b~N(0.5, 1)  b~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR a~LN(0, 0.5) 3 a~LN(0, 0.5) 3
  b1~N(-1.0, 0.2)  b1~N(-1.0, 0.2)  
  b2~N(0, 0.2)  b2~N(0, 0.2)  
  b3~N(1.0, 0.2)  b3~N(1.0, 0.2)  
  b4~N(2.0, 0.2)  b4~N(2.0, 0.2)  
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Appendix C 
 

Multidimensionality, Format Rep., Content Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item#

MC MDISC~LN(0, 0.5) 16 MDISC~LN(0, 0.5) 16Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 8 MDISC~LN(0, 0.5) 8Common-item set 
 MDIFF~N(0, 1)  MDIFF~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 1
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 16 MDISC~LN(0, 0.5) 16Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Rep., Content Rep., Statistical Non-Rep.  

 Content Area 1 Item# Content Area 2 Item# 
MDISC~LN(0, 0.5) 16 MDISC~LN(0, 0.5) 16Unique item set for 

Form 1   MDIFF~N(0, 1)  
  c~BETA(8, 32) 

Item Set 
MC 

MDIFF~N(0, 1) 
  c~BETA(8, 32) 

 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
 MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
   MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2) MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)   

MC MDISC~LN(0, 0.5) 8 MDISC~LN(0, 0.5) Common-item set 
 MDIFF~N(0.3, 1)  MDIFF~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 1

 

 
MDIFF2~N(-0.5, 0.2) 

 
MDIFF4~N(1.5, 0.2) 

8

 
 MDIFF1~N(-1.2, 0.2)  MDIFF1~N(-1.2, 0.2)  

  MDIFF2~N(-0.2, 0.2)  MDIFF2~N(-0.2, 0.2)  
  MDIFF3~N(0.8, 0.2)  MDIFF3~N(0.8, 0.2)  
  MDIFF4~N(1.8, 0.2)  MDIFF4~N(1.8, 0.2)  

MC MDISC~LN(0, 0.5) 16 MDISC~LN(0, 0.5) 16Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Rep., Content Partially Under-Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 13 MDISC~LN(0, 0.5) 19Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 11 MDISC~LN(0, 0.5) 5Common-item set 
 MDIFF~N(0, 1)  MDIFF~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 1
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 13 MDISC~LN(0, 0.5) 19Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Rep., Content Partially Under-Rep., Statistical Non-Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 13 MDISC~LN(0, 0.5) 19Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 11 MDISC~LN(0, 0.5) 5Common-item set 
 MDIFF~N(0.3, 1)  MDIFF~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 1
  MDIFF1~N(-1.2, 0.2)  MDIFF1~N(-1.2, 0.2)  
  MDIFF2~N(-0.2, 0.2)  MDIFF2~N(-0.2, 0.2)  
  MDIFF3~N(0.8, 0.2)  MDIFF3~N(0.8, 0.2)  
  MDIFF4~N(1.8, 0.2)  MDIFF4~N(1.8, 0.2)  

MC MDISC~LN(0, 0.5) 13 MDISC~LN(0, 0.5) 19Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 2
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Rep., Content Completely Under-Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 8 MDISC~LN(0, 0.5) 24Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 16 MDISC~LN(0, 0.5) 0Common-item set 
 MDIFF~N(0, 1)  MDIFF~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 8 MDISC~LN(0, 0.5) 24Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Rep., Content Completely Under-Rep., Statistical Non-Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 8 MDISC~LN(0, 0.5) 24Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 16 MDISC~LN(0, 0.5) 0Common-item set 
 MDIFF~N(0.3, 1)  MDIFF~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 2 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.2, 0.2)  MDIFF1~N(-1.2, 0.2)  
  MDIFF2~N(-0.2, 0.2)  MDIFF2~N(-0.2, 0.2)  
  MDIFF3~N(0.8, 0.2)  MDIFF3~N(0.8, 0.2)  
  MDIFF4~N(1.8, 0.2)  MDIFF4~N(1.8, 0.2)  

MC MDISC~LN(0, 0.5) 8 MDISC~LN(0, 0.5) 24Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 1 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Non-Rep., Content Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 15 MDISC~LN(0, 0.5) 15Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 9 MDISC~LN(0, 0.5) 9Common-item set 
 MDIFF~N(0, 1)  MDIFF~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 0 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 15 MDISC~LN(0, 0.5) 15Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Non-Rep., Content Rep., Statistical Non-Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 15 MDISC~LN(0, 0.5) 15Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 9 MDISC~LN(0, 0.5) 9Common-item set 
 MDIFF~N(0.3, 1)  MDIFF~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 0 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.2, 0.2)  MDIFF1~N(-1.2, 0.2)  
  MDIFF2~N(-0.2, 0.2)  MDIFF2~N(-0.2, 0.2)  
  MDIFF3~N(0.8, 0.2)  MDIFF3~N(0.8, 0.2)  
  MDIFF4~N(1.8, 0.2)  MDIFF4~N(1.8, 0.2)  

MC MDISC~LN(0, 0.5) 15 MDISC~LN(0, 0.5) 15Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Non-Rep., Content Partially Under-Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 12 MDISC~LN(0, 0.5) 18Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 12 MDISC~LN(0, 0.5) 6Common-item set 
 MDIFF~N(0, 1)  MDIFF~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 0 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 12 MDISC~LN(0, 0.5) 18Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Non-Rep., Content Partially Under-Rep., Statistical Non-Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 12 MDISC~LN(0, 0.5) 18Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 12 MDISC~LN(0, 0.5) 6Common-item set 
 MDIFF~N(0.3, 1)  MDIFF~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 0 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.2, 0.2)  MDIFF1~N(-1.2, 0.2)  
  MDIFF2~N(-0.2, 0.2)  MDIFF2~N(-0.2, 0.2)  
  MDIFF3~N(0.8, 0.2)  MDIFF3~N(0.8, 0.2)  
  MDIFF4~N(1.8, 0.2)  MDIFF4~N(1.8, 0.2)  

MC MDISC~LN(0, 0.5) 12 MDISC~LN(0, 0.5) 18Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Non-Rep., Content Completely Under-Rep., Statistical Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 6 MDISC~LN(0, 0.5) 24Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 18 MDISC~LN(0, 0.5) 0Common-item set 
 MDIFF~N(0, 1)  MDIFF~N(0, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 0 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 6 MDISC~LN(0, 0.5) 24Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Multidimensionality, Format Non-Rep., Content Completely Under-Rep., Statistical Non-Rep.  
Item Set  Content Area 1 Item# Content Area 2 Item# 

MC MDISC~LN(0, 0.5) 6 MDISC~LN(0, 0.5) 24Unique item set for 
Form 1  MDIFF~N(0, 1)  MDIFF~N(0, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.5, 0.2)  MDIFF1~N(-1.5, 0.2)  
  MDIFF2~N(-0.5, 0.2)  MDIFF2~N(-0.5, 0.2)  
  MDIFF3~N(0.5, 0.2)  MDIFF3~N(0.5, 0.2)  
  MDIFF4~N(1.5, 0.2)  MDIFF4~N(1.5, 0.2)  

MC MDISC~LN(0, 0.5) 18 MDISC~LN(0, 0.5) 0Common-item set 
 MDIFF~N(0.3, 1)  MDIFF~N(0.3, 1)  

  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 0 MDISC~LN(0, 0.5) 0
  MDIFF1~N(-1.2, 0.2)  MDIFF1~N(-1.2, 0.2)  
  MDIFF2~N(-0.2, 0.2)  MDIFF2~N(-0.2, 0.2)  
  MDIFF3~N(0.8, 0.2)  MDIFF3~N(0.8, 0.2)  
  MDIFF4~N(1.8, 0.2)  MDIFF4~N(1.8, 0.2)  

MC MDISC~LN(0, 0.5) 6 MDISC~LN(0, 0.5) 24Unique item set for 
Form 2  MDIFF~N(0.5, 1)  MDIFF~N(0.5, 1)  
  c~BETA(8, 32)  c~BETA(8, 32)  
 CR MDISC~LN(0, 0.5) 3 MDISC~LN(0, 0.5) 3
  MDIFF1~N(-1.0, 0.2)  MDIFF1~N(-1.0, 0.2)  
  MDIFF2~N(0, 0.2)  MDIFF2~N(0, 0.2)  
  MDIFF3~N(1.0, 0.2)  MDIFF3~N(1.0, 0.2)  
  MDIFF4~N(2.0, 0.2)  MDIFF4~N(2.0, 0.2)  
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Appendix D 
 
>PROBLEM RANDOM, INDIVIDUAL, DATA = 'D:\Simulation\response.dat',  
         NITEMS = 90, NGROUPS = 2, NEXAMINEES = 6000, NCHARS = 4; 
>TEST ITEMS = (1(1)32), L3; 
>TEST ITEMS = (33(1)36), GRADED, NC = (5(0)4); 
>TEST ITEMS = (37(1)52), L3; 
>TEST ITEMS = (53, 54), GRADED, NC = (5, 5); 
>TEST ITEMS = (55(1)86), L3; 
>TEST ITEMS = (87(1)90), GRADED, NC = (5(0)4); 
>EST NC=3000, IT=10; 
>SAVE; 
>END ; 
5 
01234 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 
1111111111 
22222222222222222222222222222222222222222222222222222222222222222222222222222222 
2222222222 
00000000000000000000000000000000333300000000000000003300000000000000000000000000 
0000003333 
00000000000000000000000000000000444400000000000000004400000000000000000000000000 
0000004444 
00000000000000000000000000000000555500000000000000005500000000000000000000000000 
0000005555 
(1X,4A1,T1,I1,4X,90A1) 
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>PROBLEM SCORE, INDIVIDUAL, DATA = 'D:\Simulation\response.dat',  
         NITEMS = 90, NGROUPS = 2, NEXAMINEES = 6000, NCHARS = 4; 
>TEST ITEMS = (1(1)32), L3; 
>TEST ITEMS = (33(1)36), GRADED, NC = (5(0)4); 
>TEST ITEMS = (37(1)52), L3; 
>TEST ITEMS = (53, 54), GRADED, NC = (5, 5); 
>TEST ITEMS = (55(1)86), L3; 
>TEST ITEMS = (87(1)90), GRADED, NC = (5(0)4); 
>EST NC=3000, IT=10; 
>SAVE; 
>END ; 
5 
01234 
11111111111111111111111111111111111111111111111111111111111111111111111111111111 
1111111111 
22222222222222222222222222222222222222222222222222222222222222222222222222222222 
2222222222 
00000000000000000000000000000000333300000000000000003300000000000000000000000000 
0000003333 
00000000000000000000000000000000444400000000000000004400000000000000000000000000 
0000004444 
00000000000000000000000000000000555500000000000000005500000000000000000000000000 
0000005555 
(1X,4A1,T1,I1,4X,90A1) 
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Appendix E 

Three-Way ANOVA (UNI_EQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 1.245 1 1.245 .830 .363
content .489 2 .245 .163 .850
stats 199.325 1 199.325 132.843 .000 .099
format * content 1.087 2 .543 .362 .696
format * stats 1.260 1 1.260 .840 .360
content * stats 1.337 2 .669 .446 .641
format * content * stats .369 2 .184 .123 .884
Error 1782.543 1188 1.500    
Corrected Total 1987.656 1199     
Note: )/()))((( SizeEffect 2

totalerrorerroreffecteffect SSMSMSdfSS +−=ω  
 

Three-Way ANOVA (UNI_EQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .799 1 .799 3.586 .059
content .182 2 .091 .409 .664
stats 14.081 1 14.081 63.218 .000 .049
format * content .233 2 .116 .522 .593
format * stats .147 1 .147 .659 .417
content * stats .021 2 .011 .048 .953
format * content * stats .018 2 .009 .040 .961
Error 264.606 1188 .223    
Corrected Total 280.086 1199     
 

Three-Way ANOVA (UNI_EQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .007 1 .007 16.780 .000 .014
content .000 2 .000 .509 .601
stats .001 1 .001 2.362 .125
format * content .000 2 5.53E-005 .137 .872
format * stats .000 1 .000 .679 .410
content * stats .001 2 .001 1.775 .170
format * content * stats .001 2 .000 .802 .449
Error .478 1188 .000    
Corrected Total .488 1199     
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Three-Way ANOVA (UNI_NEQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 2.033 1 2.033 1.167 .280
content .178 2 .089 .051 .950
stats 148.198 1 148.198 85.090 .000 .066
format * content .207 2 .103 .059 .942
format * stats 3.994 1 3.994 2.293 .130
content * stats .058 2 .029 .017 .983
format * content * stats .767 2 .384 .220 .802
Error 2069.099 1188 1.742    
Corrected Total 2224.534 1199     
 
 

Three-Way ANOVA (UNI_NEQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .521 1 .521 .655 .418
content .051 2 .025 .032 .969
stats 55.142 1 55.142 69.332 .000 .054
format * content .036 2 .018 .022 .978
format * stats 3.211 1 3.211 4.037 .045 .002
content * stats .086 2 .043 .054 .947
format * content * stats .275 2 .138 .173 .841
Error 944.865 1188 .795    
Corrected Total 1004.188 1199     
 
 

Three-Way ANOVA (UNI_NEQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .000 1 .000 .362 .547
content .001 2 .000 .277 .758
stats .046 1 .046 42.063 .000 .033
format * content .000 2 8.40E-005 .077 .926
format * stats .005 1 .005 4.405 .036 .003
content * stats .001 2 .000 .397 .672
format * content * stats .000 2 .000 .135 .874
Error 1.301 1188 .001    
Corrected Total 1.354 1199     
 

 142



Three-Way ANOVA (MUL ρ=0.9/α=10°_EQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 1.735 1 1.735 1.218 .270
content .242 2 .121 .085 .919
stats 181.745 1 181.745 127.597 .000 .096
format * content .922 2 .461 .324 .723
format * stats .108 1 .108 .076 .783
content * stats .093 2 .046 .032 .968
format * content * stats .545 2 .273 .191 .826
Error 1692.146 1188 1.424    
Corrected Total 1877.537 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=10°_EQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 1 .314 1.599 .206
content .351 2 .176 .895 .409
stats 12.197 1 12.197 62.139 .000 .049
format * content .070 2 .035 .179 .836
format * stats .314 1 .314 1.598 .206
content * stats .299 2 .149 .761 .467
format * content * stats .171 2 .086 .436 .647
Error 233.183 1188 .196    
Corrected Total 246.899 1199     

.314

 
 

Three-Way ANOVA (MUL ρ=0.9/α=10°_EQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .004 1 .004 9.891 .002 .009
content .000 2 7.03E-005 .188 .829
stats .009 1 .009 23.462 .000 .020
format * content 3.58E-005 2 1.79E-005 .048 .953
format * stats .001 1 .001 1.359 .244
content * stats .003 2 .002 4.219 .015 .007
format * content * stats .000 2 .000 .349 .705
Error .445 1188 .000    
Corrected Total .461 1199     
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Three-Way ANOVA (MUL ρ=0.9/α=10°_NEQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 3.074 1 3.074 1.966 .161
content .649 2 .324 .207 .813
stats 229.739 1 229.739 146.902 .000 .109
format * content .052 2 .026 .017 .984
format * stats .016 1 .016 .010 .919
content * stats .594 2 .297 .190 .827
format * content * stats .431 2 .215 .138 .871
Error 1857.907 1188 1.564    
Corrected Total 2092.461 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=10°_NEQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 3.014 1 3.014 3.862 .050 .002
content .080 2 .040 .051 .950
stats 108.106 1 108.106 138.536 .000 .103
format * content .138 2 .069 .088 .915
format * stats .032 1 .032 .041 .840
content * stats .566 2 .283 .362 .696
format * content * stats .136 2 .068 .087 .917
Error 927.052 1188 .780    
Corrected Total 1039.123 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=10°_NEQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .006 1 .006 5.013 .025 .003
content .002 2 .001 .696 .499
stats .135 1 .135 110.506 .000 .084
format * content .001 2 .000 .394 .675
format * stats .000 1 .000 .321 .571
content * stats .003 2 .002 1.238 .290
format * content * stats .001 2 .000 .389 .678
Error 1.453 1188 .001    
Corrected Total 1.601 1199     
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Three-Way ANOVA (MUL ρ=0.9/α=35°_EQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 6.826 1 6.826 5.602 .018 .004
content .130 2 .065 .053 .948
stats 141.494 1 141.494 116.122 .000 .088
format * content .499 2 .249 .205 .815
format * stats 1.817 1 1.817 1.491 .222
content * stats 1.231 2 .615 .505 .604
format * content * stats 1.234 2 .617 .506 .603
Error 1447.567 1188 1.218    
Corrected Total 1600.798 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=35°_EQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 2.54E-005 1 2.54E-005 .000 .990
content .038 2 .019 .130 .878
stats 6.998 1 6.998 47.732 .000 .037
format * content .431 2 .216 1.470 .230
format * stats .400 1 .400 2.727 .099
content * stats .929 2 .464 3.168 .042 .003
format * content * stats .051 2 .026 .175 .840
Error 174.169 1188 .147    
Corrected Total 183.016 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=35°_EQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .000 1 .000 .812 .368
content .000 2 8.99E-005 .350 .705
stats .001 1 .001 3.960 .047 .003
format * content .000 2 7.28E-005 .283 .753
format * stats .000 1 .000 .393 .531
content * stats .002 2 .001 3.311 .037 .006
format * content * stats 9.07E-005 2 4.54E-005 .177 .838
Error .305 1188 .000    
Corrected Total .309 1199     
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Three-Way ANOVA (MUL ρ=0.9/α=35°_NEQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 100.563 1 100.563 66.057 .000 .047
content 1.186 2 .593 .389 .678
stats 186.030 1 186.030 122.197 .000 .088
format * content .098 2 .049 .032 .968
format * stats .237 1 .237 .155 .693
content * stats 1.373 2 .687 .451 .637
format * content * stats .139 2 .069 .045 .956
Error 1808.578 1188 1.522    
Corrected Total 2098.203 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=35°_NEQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 38.128 1 38.128 47.749 .000 .035
content .742 2 .371 .465 .628
stats 86.819 1 86.819 108.725 .000 .080
format * content .068 2 .034 .043 .958
format * stats .808 1 .808 1.012 .315
content * stats 1.046 2 .523 .655 .520
format * content * stats .028 2 .014 .017 .983
Error 948.635 1188 .799    
Corrected Total 1076.276 1199     
 
 

Three-Way ANOVA (MUL ρ=0.9/α=35°_NEQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .029 1 .029 16.800 .000 .012
content .002 2 .001 .588 .556
stats .136 1 .136 78.038 .000 .060
format * content .001 2 .000 .243 .784
format * stats .000 1 .000 .090 .764
content * stats .001 2 .001 .333 .717
format * content * stats .001 2 .000 .239 .788
Error 2.078 1188 .002    
Corrected Total 2.249 1199     
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Three-Way ANOVA (MUL ρ=0.75/α=10°_EQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 1.464 1 1.464 1.172 .279
content 2.803 2 1.401 1.122 .326
stats 170.877 1 170.877 136.875 .000 .102
format * content .148 2 .074 .059 .942
format * stats .070 1 .070 .056 .812
content * stats .193 2 .096 .077 .926
format * content * stats 2.522 2 1.261 1.010 .364
Error 1483.120 1188 1.248    
Total 3836.652 1200     
Corrected Total 1661.197 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=10°_EQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .005 1 .005 .034 .854
content .067 2 .034 .224 .799
stats 9.689 1 9.689 64.543 .000 .051
format * content .045 2 .022 .149 .861
format * stats .117 1 .117 .782 .377
content * stats .008 2 .004 .026 .975
format * content * stats .227 2 .114 .757 .469
Error 178.344 1188 .150    
Corrected Total 188.503 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=10°_EQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .001 1 .001 2.152 .143
content .001 2 .000 1.012 .364
stats .003 1 .003 10.038 .002 .007
format * content .001 2 .000 1.084 .338
format * stats .000 1 .000 .826 .364
content * stats .002 2 .001 2.766 .063
format * content * stats .001 2 .000 .900 .407
Error .398 1188 .000    
Corrected Total .407 1199     
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Three-Way ANOVA (MUL ρ=0.75/α=10°_NEQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .213 1 .213 .140 .708
content 13.401 2 6.701 4.424 .012 .005
stats 147.571 1 147.571 97.427 .000 .074
format * content 1.220 2 .610 .403 .669
format * stats .177 1 .177 .117 .732
content * stats .045 2 .022 .015 .985
format * content * stats .442 2 .221 .146 .864
Error 1799.437 1188 1.515    
Corrected Total 1962.506 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=10°_NEQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .527 1 .527 .654 .419
content 7.479 2 3.740 4.638 .010 .006
stats 70.719 1 70.719 87.702 .000 .067
format * content 1.094 2 .547 .678 .508
format * stats .160 1 .160 .199 .656
content * stats .012 2 .006 .007 .993
format * content * stats .003 2 .001 .002 .998
Error 957.948 1188 .806    
Corrected Total 1037.943 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=10°_NEQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .001 1 .001 .932 .335
content .006 2 .003 2.416 .090
stats .055 1 .055 46.151 .000 .030
format * content .001 2 .001 .573 .564
format * stats 8.28E-006 1 8.28E-006 .007 .933
content * stats .002 2 .001 .837 .433
format * content * stats 2.02E-005 2 1.01E-005 .009 .992
Error 1.405 1188 .001    
Corrected Total 1.470 1199     
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Three-Way ANOVA (MUL ρ=0.75/α=35°_EQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 1.801 1 1.801 1.575 .210
content 2.504 2 1.252 1.095 .335
stats 156.873 1 156.873 137.201 .000 .102
format * content .104 2 .052 .046 .955
format * stats .000 1 .000 .000 .990
content * stats .660 2 .330 .289 .749
format * content * stats .040 2 .020 .018 .982
Error 1358.336 1188 1.143    
Corrected Total 1520.318 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=35°_EQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .012 1 .012 .098 .755
content .739 2 .370 3.021 .049 .003
stats 8.241 1 8.241 67.336 .000 .052
format * content .008 2 .004 .032 .969
format * stats .234 1 .234 1.913 .167
content * stats .001 2 .000 .004 .996
format * content * stats .278 2 .139 1.134 .322
Error 145.393 1188 .122    
Corrected Total 154.905 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=35°_EQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .000 1 .000 .510 .475
content .000 2 6.00E-005 .259 .772
stats .002 1 .002 7.041 .008 .007
format * content .000 2 .000 .479 .619
format * stats .001 1 .001 6.220 .013 .004
content * stats .000 2 8.66E-005 .375 .687
format * content * stats .000 2 5.18E-005 .224 .799
Error .275 1188 .000    
Corrected Total .278 1199     
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Three-Way ANOVA (MUL ρ=0.75/α=35°_NEQ: BIAS) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 60.764 1 60.764 43.142 .000 .031
content 5.905 2 2.952 2.096 .123
stats 145.672 1 145.672 103.427 .000 .076
format * content .345 2 .172 .122 .885
format * stats .052 1 .052 .037 .847
content * stats .226 2 .113 .080 .923
format * content * stats .062 2 .031 .022 .978
Error 1673.252 1188 1.408    
Corrected Total 1886.278 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=35°_NEQ: RMSE) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format 22.249 1 22.249 29.020 .000 .021
content 3.129 2 1.565 2.041 .130
stats 73.859 1 73.859 96.335 .000 .072
format * content .225 2 .113 .147 .863
format * stats .016 1 .016 .021 .885
content * stats .098 2 .049 .064 .938
format * content * stats .012 2 .006 .008 .992
Error 910.828 1188 .767    
Corrected Total 1010.416 1199     
 
 

Three-Way ANOVA (MUL ρ=0.75/α=35°_NEQ: CLASSIFICATION CONSISTENCY) 
 

Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Effect 
Size 
ω2

format .010 1 .010 5.298 .022 .003
content .008 2 .004 2.285 .102
stats .146 1 .146 78.730 .000 .061
format * content .004 2 .002 .998 .369
format * stats .001 1 .001 .724 .395
content * stats .000 2 .000 .124 .883
format * content * stats .001 2 .000 .177 .838
Error 2.199 1188 .002    
Corrected Total 2.370 1199     
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Appendix F 

Multiple Comparisons (Tukey HSD) 
 

Dependent 
Variable 

(I) 
group (J) group

Mean 
Difference 

(I-J) 
Std. Error Sig. 

bias_eq 1.00 2.00 .00756 .04903 1.000 
  3.00 -.12272 .04903 .090 
  4.00 -.08763 .04903 .381 
  5.00 -.11501 .04903 .131 
 2.00 3.00 -.13027 .04903 .061 
  4.00 -.09518 .04903 .296 
  5.00 -.12257 .04903 .091 
 3.00 4.00 .03509 .04903 .953 
  5.00 .00771 .04903 1.000 
 4.00 5.00 -.02738 .04903 .981 

bias_neq 1.00 2.00 .46970(*) .05342 .000 
  3.00 .79801(*) .05342 .000 
  4.00 .77338(*) .05342 .000 
  5.00 .86006(*) .05342 .000 
 2.00 3.00 .32832(*) .05342 .000 
  4.00 .30368(*) .05342 .000 
  5.00 .39037(*) .05342 .000 
 3.00 4.00 -.02463 .05342 .991 
  5.00 .06205 .05342 .773 
 4.00 5.00 .08668 .05342 .483 

rmse_eq 1.00 2.00 -.10665(*) .01711 .000 
  3.00 -.16401(*) .01711 .000 
  4.00 -.16690(*) .01711 .000 
  5.00 -.20961(*) .01711 .000 
 2.00 3.00 -.05736(*) .01711 .007 
  4.00 -.06025(*) .01711 .004 
  5.00 -.10295(*) .01711 .000 
 3.00 4.00 -.00289 .01711 1.000 
  5.00 -.04559 .01711 .060 
 4.00 5.00 -.04271 .01711 .092 
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rmse_neq 1.00 2.00 -.28519(*) .03790 .000 
  3.00 -.53326(*) .03790 .000 
  4.00 -.57246(*) .03790 .000 
  5.00 -.58832(*) .03790 .000 
 2.00 3.00 -.24807(*) .03790 .000 
  4.00 -.28728(*) .03790 .000 
  5.00 -.30314(*) .03790 .000 
 3.00 4.00 -.03920 .03790 .840 
  5.00 -.05506 .03790 .593 
 4.00 5.00 -.01586 .03790 .994 

cons_eq 1.00 2.00 .00939(*) .00074 .000 
  3.00 .01303(*) .00074 .000 
  4.00 .01728(*) .00074 .000 
  5.00 .01518(*) .00074 .000 
 2.00 3.00 .00364(*) .00074 .000 
  4.00 .00788(*) .00074 .000 
  5.00 .00579(*) .00074 .000 
 3.00 4.00 .00424(*) .00074 .000 
  5.00 .00215(*) .00074 .029 
 4.00 5.00 -.00210(*) .00074 .035 

cons_neq 1.00 2.00 .01477(*) .00159 .000 
  3.00 .02395(*) .00159 .000 
  4.00 .03433(*) .00159 .000 
  5.00 .03529(*) .00159 .000 
 2.00 3.00 .00918(*) .00159 .000 
  4.00 .01956(*) .00159 .000 
  5.00 .02051(*) .00159 .000 
 3.00 4.00 .01038(*) .00159 .000 
  5.00 .01134(*) .00159 .000 
 4.00 5.00 .00096 .00159 .974 

*  The mean difference is significant at the .05 level. 
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