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Abstract
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In this dissertation, we address the problem of developing efficient VLSI al-
gorithms and architectures for discrete sinusoidal transforms in real-time appli-
cations for video communication systems. The major difficulty of this problem
is that the resulting architectures should compute a huge amount of data at very
high speed for real-time video applications and match the requirement of VLSI
architectures, regularity, modularity and locality. In traditional FFT based algo-
rithms, the serial data is buffered and then transformed using the FFT scheme.

We propose a “time-recursive” approach to perform transforms that merge
the buffering and transform operations into a single unit. The transformed data
are updated according to a recursive formula, whenever a new datum arrives.

Therefore the waiting time is completely eliminated. The unified lattice and IIR



architectures for time-recursive transforms are proposed. The resulting architec-
tures are regular, modular, and have only local interconnections and are better
suited for VLSI implementations. There is no limitation on the transform size
N and the number of multipliers required for computing the DCT by lattice and
ITR structures are 6 N —8 and 2N — 2 respectively. In the case of dual generation
of the DCT and DST by IIR structure, only 1.5N multipliers are required for
each transform on average. The throughput of this scheme is one input sample
per clock cycle.

We also apply the time-recursive approach to multidimensional separable
transforms. The resulting d-dimensional structures are fully-pipelined and con-
sist of only d 1-D transform arrays and shift registers for computing a d-D DXT.
The delay time due to transpositions of the conventional d-D transforms is elim-
inated in our approach. It is shown that the architecture is optimal in the sense
that the number of the multipliers used is minimum and both speed and area
are asymptotically optimal.

The VLSI implementation of the lattice module based on the distributed
arithmetic is also described. The chip can dually generate the DCT and DST
simultaneously. It has been fabricated under 2um double-metal CMOS technol-
ogy and tested to be fully functional with a throughput rate 14.5-MHz and a

data processing rate of 116Mb/s.
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Chapter 1

Introduction

The field of signal processing has developed dramatically over the last several
decades owing to applications in such diverse fileds as speech, image, and video
communication, biomedical engineering, acoustics, sonar, radar, seismology, con-
sumer electronics, and many others. Discrete sinusoidal transforms such as
discrete cosine transform (DCT), discrete sine transform (DST), and discrete
Hartley transform (DHT), discrete Fourier transform (DFT), Lopped Orthogo-
nal Transform (LOT), and Complex Lapped Transform (CLT) are powerful tools
in many applications of signal processing. Due to the advances in ISDN network
and high definition television (HDTV) technology, high speed transmission and
processing of speech, image and video signals become very desirable. Therefore,
many computational tasks involved with digital signal transmission and process-
ing require real-time operations. Real-time operation means the speed of the
computational tasks can match the signal sampling or transmission rate. Clearly
the high computational rates required in HDTV systems cannot be achieved by
general-purpose parallel computers because of severe system overheads. The

only way to meet the high computational rates of real-time signal processing is



by developing special-purpose architectures which exploit the regularity, recur-
siveness, and locality of the signal processing algorithms. In this dissertation,
we focus on developing real time VLSI algorithms and architectures for discrete
sinusoidal transforms for video applications.

The organization of the rest of this Chapter is as follows. The applications
and techniques involved in video communication are described in Section 1.1. We
describe the significances and applications of various transform coding schemes
in Section 1.2 and review the evolution of the algorithms and architectures of
these transforms in Section 1.3. The motivation for using time-recursive ap-
proach for achieving real time computation of these discrete transforms is given
in Section 1.4. In Section 1.5, we give an overview of the results that we use
from the time-recursive concept to handle the following signal processing tasks:
unified one-dimensional lattice structures for discrete sinusoidal transform, two-
dimensional DCT lattice structures with application to HDTV systems, optimal
unified architectures for discrete sinusoidal transform, and VLSI implementation
of the dual generated DCT and DST lattice structure. We conclude with the

dissertation organization in Section 1.6.

1.1 Standards on the video coding systems

With the advances in technologies such as video compression, telecommunica-
tion, consumer electronics, the era of digital video has arrived. This new tech-
nology accelerates the availability of video applications such as digital laser-disc,
electronic camera, videophone, videoconferencing, image and interactive video

tools on computers, HDTV, and multimedia systems.



Unlike the digital audio technology of the past few decades, the data involved
with still or motion pictures are so huge that data compression is inevitable.
Compression methods are based on the nonlinearity of human vision which is
more sensitive to energy with lower spatial frequency. Hence pictures can be
lossly encoded with much less data than the original image without significantly
decreasing the quality of the reconstructed image. For still images, data com-
pression exploits correlation in space and for video signals, in both space and
time. It is hard to distinguish a reconstructed image that was encoded with a 20:1
compression ratio from the original. Video data, even after compression at ratios
at 100:1, can be decompressed with close to analog videotape quality. Among
many transforms, the DCT is most widely used in speech and image processing
for data compression. This is due to its better energy compaction property and
its near optimal performance which is closest to that of the Karhunen-Loeve
Transform (KLT) among many discrete transforms for highly correlated signals,
especially for the first order Markov process [22, 1, 4].

When we develop high data compression schemes to reduce transmission/storage
capacity, we also require sophisticated picture coding technology to integrate
the whole system performance. In order to make the signals in different sys-
tems be compatible, standards for picture coding are strongly required. Three
digital video standards that have been proposed are the Joint Photographics
Experts Group (JPEG) standard for still picture compression; the Consultative
Committee on International Telephony and Telegraphy (CCITT) Recommenda-
tion H.261 for video teleconferencing; and the Moving Pictures Experts Group
(MPEG) for full-motion compression on digital storage media [31, 94, 93, 91].

The JPEG baseline algorithm is based on the transform coding approach.



The source image is divided into non-overlapping blocks of 8 x 8 pixels which
is then transformed using the 8 x 8 two-dimensional DCT. The resulting 2-D
DCT coeflicients represent the frequency content of the given block where most
of the energy concentrate near the zero-frequency or direct current term. Next,
the DCT coefficients are quantized. Following quantization, the coefficients are
zigzag scanned to arrange in the order of ascending frequency. Then, the dc and
low frequency coeflicients are encoded by using Huffman-style coding schemes.
There is another DCT-based JPEG algorithm called the extended system which
provides higher compression performance through arithmetic coding. The third
mode of JPEG coding is the independent function which untilizes a 2-D Differen-
tial Pulse Code Modulation technique. The DCT-based algorithms can achieve
higher compression ratio but are lossy. The spatial prediction algorithm has
lower compression performance compared with the DCT-based algorithm[31].

The CCITT Recommendation H. 261 specifies a method of communication
for videoconferencing and videophone [31] It is also known as the p*64 standard
because the data rate on the communication channel is p times 64-kb/s, where
p is a positive integer in the range 1 to 30. For p=1, then low-quality video
signal for use in picture phones can be transmitted over a 64-kb/s line. If p=30,
a high quality video signal for teleconferencing can be transmitted over a 2-
Mb/s line. The CCITT H.261 encoder is a hybrid coder which combines motion
compensated interframe prediction with the DCT.

The MPEG standard is designed for motion picture coding for digital stor-
age media whose data throughput rate is 1.5Mb/s. A hybrid coding scheme
known as, the motion compensated interframe prediction and DCT, is also used

in MPEG. The prediction scheme not only predicts from the past but also from



the future. There are three function associated with prediction: forward mo-
tion compensation, backward motion compensation, and interpolative motion
compensation.

From the discussion of these standards mentioned above, we observe that
the DCT is a very important technique in video signal processing. Due to the
high data rate in the video communication systems, special-purpose chip sets are
required to perform real-time computation and match the computation speed.
For example, the HDTV system proposed by General Instrument Corporation
require a video data rate at 14.38Mb/s[30]. In this dissertation, we propose a
promising DCT architecture which can achieve the high speed requirement of

the HDTYV system:s.

1.2 Significances and applications of various
discrete sinusoidal transforms

The DCT is the most popular transform coding used in data compression. Other
discrete sinusoidal transforms, like the DST, DHT, DFT, LOT, and CLT are also
very effective in many signal processing applications.

Jain in [5] show that the performance of the DST approaches that of the KLT
for a first-order Markov sequence with given boundary conditions, especially
for signal with low correlation coefficients [5, 6]. Rose, Heiman, and Dinstein
proposed a new image coding method for low bit rates which is based on alternate
use of the DCT and DST on image blocks. This procedure achieves the removal
of redundancies in the correlation between neighboring blocks, as well as the

preservation of continuity across the block boundaries.



In 1983, Bracewell introduced the DHT [2] which uses a transform kernel
similar to that of the discrete Fourier transform (DFT), except that it is a real-
valued transform. Therefore, it is simpler than the DFT with respect to the
computational complexity [7]. Like the DCT and DST, the DHT has found
many applications in signal and image processing [2, 3, 53, 57].

The lapped orthogonal transforms introduced by Cagsereau, Staelin, and
Jager with the basis functions upon which the signal is projected are overlapped
for adjacent blocks. The LOT can reduce the artifacts near block boundaries
which are generated by traditional block transform for low bit rate coding [76].
The CLT introduced by Young and have good performance in the application of

the motion estimation[62].

1.3 Evolution of the algorithms and architec-
tures

Since the introduction of DCT, many algorithms have been proposed to improve
the computation speed and to reduce the hardware complexity. These algo-
rithms can be classified into the following categories: (1) indirect computation,
(2) matrix factorization, (3) recursive computation, and (4) systolic structure
implementation. The indirect computation [8, 9, 10, 11, 12] applies the existing
fast algorithms in the DFT or the Walsh-Hadamard transform to the DCT. It
is not particularly efficient because the inherent properties of the DCT are not
exploited. The matrix factorization [13, 15, 85, 55] decomposes the DCT into
multiplications of many sparse matrices, therefore the numbers of multiplica-

tions and additions can be substantially reduced. The recursive computations



[45, 7] calculate higher-order DCT coefficients from lower-order ones, but their
signal flow architectures need global communication which is not suitable for
VLSI implementation. By using the recursive properties effectively, this kind of
DCT algorithms has fewer multipliers and adders, while additional multiplexers
are required. As for the systolic structure implementation [46, 69, 56], it uses
existing systolic architectures for the DFT or other transforms to implement the
DCT in a systolic manner. But some of the methods require that the number of
samples of the signal must be decomposed into mutually prime numbers. Like
the DCT, many fast algorithms have been proposed to improve the performance
of the DST, DFT, and DHT [3, 48, 49, 5, 6]. Basically, they can be classified into
the same ways as those of the DCT and similar advantages and disadvantages

can also been found.

1.4 Motivation

In this section we first briefly describe the requirements of special-purpose ar-

chitectures for real-time signal processing [77, 78].

1. Simplicity, modularity, and regularity of design: This is an
important factor in VLSI design because this will greatly reduce the

design time and cost.

2. Parallel and pipelined processing: The degrees of parallelism and
pipelined structures determine the concurrency and throughput of the

system.

3. Communication: Local and regular communication for data flow

determine the cost and efficiency of VLSI implementation.



Fast and efficient algorithms to implement transform coding schemes have been
of interest for the past decade. Most of the algorithms proposed are focused on
reducing the computational time and hardware complexity by assuming that all
the input signals are available at the same time. However, in the high speed
image system such as HDTV, digitized images are available in a sequential or
stream fashion. Waiting for data to become ready will slow down these algo-
rithms. Moreover, the architectures of these algorithms require global communi-
cation, that is, they need more wire connections, which increase the complexity
of the circuitry and reduce the system performance.

In real-time signal processing applications, especially in speech/image com-
munications and radar/sonar signal processing, input data arrive serially. In
traditional fast algorithms (such as the FFT), the serial data is buffered and
then transformed using the FFT scheme of complexity O(N log N)[60]. Buffer-
ing the serial data requires O(N) time. The goal of this dissertation is to study
a novel architecture that merges the buffering and transform operations into
a single unit of total hardware complexity O(N). Unlike the FFT, this ar-
chitecture has only local interconnections and is better suited for VLSI imple-
mentations. It is important to note that the proposed architectures generate
time-recursive transforms, not just block transforms, i.e., the transform of the
N points [2(t+1),2(t +2),...,z(t + N)] is generated one clock cycle after the
transform of [z(t),z(t+ 1),...,2(t + N — 1)] is generated. To generate time-
recursive transforms, the traditional fast algorithms based architectures require
O(logN) time using O(N log N) hardware, while the architectures we propose
require only a constant time with O(NN) hardware. Time-recursive transforms are

currently gaining widespread use in motion estimation, video signal processing,



and in reducing blocking effects in data compression.

1.5 Main contribution

We propose a “time-recursive” approach to perform transform coding on a real
time basis. The transformed data are updated according to a recursive formula,
whenever new data arrive. Therefore the waiting time required for other al-
gorithms is completely eliminated. Based on this new idea, several significant
results are developed and are summarized as follows.

This is the first unified algorithm proposed that can be used to compute
all the discrete sinusoidal transforms. We also discover the fundmental dual
generation properties between these transforms.

A new unified parallel lattice architecture for the DCT/DST/DHT/DFT/LOT/CLT
that are useful in image processing is derived. Here ”unified” architecture means
that different transforms can be computed using the same structure. We reduce

the number of multipliers from % *InN to 6N — 8 for 1-D DCT. Moreover,
the resulting architectures are regular, modular, locally-connected and suitable
for VLSI implementation. From the speed point of view, this unified architec-
ture can obtain the the transform results immediately whenever a new datum
arrives. Therefore, the system throughput rate is highly increased and is better
than others for matching the high speed requirement of video communication
systems. The other unique contribution of this architecture is that there is no
constraint on the size of the image.

Data processed in image and video signal processing are two-dimensional(2-

D) information. The drawback of the conventional 2-D transforms is the delay



time due to a operation called ”transposition”. We derive a new time-recursive
parallel 2-D DCT structure which can eliminate the transposition time. The
system is fully-pipelined with throughput rate N clock cycles for N x N successive
input data frame. The conventional 2-D DCT systolic array’s throughput rate is
2N 41 clock cycles. The basic building block of this architecture is the unified
architecture just described, therefore it presevers all the advantages mentioned
above.

Although the number of multipliers of our lattice structure is a linear func-
tion of IV, while that of the others is O(/N In(N)). The number of multiplier of
the lattice structure is larger than others when N is small. We further derive a
direct IIR structure that can reduce the number of multipliers of 1-D DCT from
6N —8 to 2N —2. In the time-recursive lattice architecture, two transforms called
the dual generated pairs, are obtained simultaneously. The unified direct IIR
structure is more suitable for applications where only one transform is required.
We also provide a theoretical justification for the fact that any discrete transform
whose basis functions satisfy the Fundamental Recurrence Formula has a second-
order autoregressive structure in its filter realization. We also demonstrate that
dual generation transform pairs share the same autoregressive structure. We
extend these time-recursive concepts to multi-dimensional transforms. The re-
sulting d-dimensional structures are fully-pipelined and consist of only d 1-D
transform arrays and shift registers.

In addition to theoretical derivations, the implementation of these algorithms
into workable VLSI chips is also an important part of this thesis. The VLSI
implementation of the lattice module based on the distributed arithmetic is

also described. This is the first chip that can dually generate the DCT and
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DST simultaneously. It has been fabricated using 2um double-metal CMOS
technology and has been tested to be fully functional with a throughput rate

14.5-MHz and a data processing rate of 116Mb/s.

1.6 Organization

In this thesis we present unified parallel algorithms and architectures for real
time computation of the time-recursive discrete sinusoidal transforms.

In Chapter 2 we develop unified parallel lattice structures that can dually
generate the DCT and DST simultaneously as well as the DHT are developed.
This structure can compute the DCT and DST simultaneously and immediately
whenever the input data arrives. The architecture is regular, modular, and
without global communication. Besides, there is no limitation on N and the
total number of multipliers is a linear function of N. This makes it very suitable
for VLSI implementation and real time video signal processing.

In Chapter 3 we develop a new real-time parallel 2-D DCT lattice structure
which is fully-pipelined with throughput rate N clock cycles for N x N successive
input data frame. The 2-D DCT architecture is module, regular, and requires
only two 1-D DCT blocks which can be extended directly from the 1-D DCT
and and no transposition is required.

In Chapter 4 an optimal unified architecture that can efficiently compute
the DCT, DST, Hartley, Fourier, Lapped Orthogonal, and Complex Lapped
transforms for a continuous input data stream is proposed. This structure uses
only half as many multipliers as the lattice structure.

In Chapter 5 the VLSI implementation of the lattice module is described. The

11



chip has been fabricated using MOSIS facilities under 2um CMOS technology
and the chip can be operated at 14.5MHz.
In Chapter 6 we summarize the results obtained in this dissertation and

suggest some directions for future research in this area.
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Chapter 2

Parallel Lattice Structures

The problems of unified efficient computations of the DCT, DST, DHT, and
their inverse transforms are considered. In particular, a new scheme employing
the time-recursive approach to compute these transforms is presented. Using
such an approach, unified parallel lattice structures that can dually generate
the DCT and DST simultangously as well as the DHT are developed. It is also
shown that the DCT, DST, DHT and their inverse transforms share an almost
identical lattice structure. The lattice structures can also be formulated into pre-
lattice and post-lattice realizations. Two methods, the SISO and double-lattice
approaches, are developed to reduce the number of multipliers in the parallel
lattice structure by 2N and N respectively. The trade-off between time and
area for the block data processing is also considered. The concept of filter bank

interpretation of the time-recursive sinusoidal transforms is also discussed.
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2.1 Introduction

Transform coding has found lots of applications in image, speech, and digital
signal transmission and processing. Due to the advances in ISDN network and
HDTYV technology, high speed transmission of digital video signal becomes very
desirable. Among many transforms, the discrete cosine transform (DCT), dis-
crete sine transform (DST), and discrete Hartley transform (DHT) are very
effective in transform coding applications to digital signals such as speech and
image signals.

In this Chapter, we propose unified time-recursive lattice structures that
can be used for the discrete orthogonal transforms mentioned above, i.e., the
DCT, DST, and DHT. We consider the orthogonal transforms from a time-
recursive point of view instead of the whole block of data. We do so because in
digital signal transmission, data arrive serially. Also, many operations such as
filtering and coding are done in a time-recursive way. Based on this approach,
the resulting architectures are almost identical for the DCT, DST, and DHT, and
their inverses. Our structures decouple the transformed data components, hence,
there is no global communication needed. Besides, the number of multipliers in
these structures is a linear function of N, so they require fewer multipliers than
most other algorithms when N is large. Therefore, our architectures are very
suitable for VLSI implementation. One of the important characteristics of these
structures is that the transform size N can be any integer, which is not the case
for most of the fast algorithms for discrete transforms which do have certain
constraints on N. Another important result is that based on the time-recursive
approach, the dual generation properties of the DCT, DST, and DHT, as well

as some related inverse transforms, can be obtained.
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The rest of the Chapter is organized as follows. In Section 2.2, the dual
generation of lattice structures for the DCT and DST with the time-recursive
approach is considered. The inverse discrete cosine transform (IDCT) and inverse
discrete sine transform (IDST) based on the lattice structures are discussed in
Section 2.3. In Section 2.4, the time-recursive lattice structure for the DHT
is presented. All the above time-recursive properties are derived by updating
the time index by one. With block data processing, the time index is updated
by more than one. The detailed effects and results of block data processing
are discussed in Section 2.5. Denormalized methods to reduce the number of
multipliers in those lattice structures are considered in Section 2.6. Then we
compare these kinds of lattice structures with other architectures in terms of the
number of multipliers and adders in Section 2.7. The synthesis bank structures
based on the time-recursive concept is discussed in Section 2.8. Finally, we give

the conclusion in Section 2.9.

2.2 Dual Generation of DCT and DST

We will show an efficient implementation of the DCT from the time-recursive
point of view as an alternative to find fast algorithms through matrix factoriza-
tions or convert the DCT to DFT, Whiéh can be implemented on various existing
architectures. Focusing on the sequence instead of the block of input data, we
can obtain not only the time-recursive relation between the DCT of two succes-
sive data sequences, but also a fundamental relation between DCT and DST. In

the following, the time-recursive relation for the DCT will be considered first.
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2.2.1 Time-Recursive Discrete Cosine Transform

The one-dimensional (1-D) DCT of a sequential input data starting from z(t)
and ending with z(t LN - 1) is defined as
20 (k) HE? m[2(n —t) + 1]k
Xc(k,t) = —~ E z(n) cos 5N

n=t

k=01,...,N—1, (2.1)

where

L ifk=0o0rk=N,
Clky=1{ V2

1  otherwise.

Here the time index ¢ in X,(k,¢) denotes that the transform starts from z(t).
Since the function C(k) has a different value only when k = 0, we can consider
those cases that C(k)’s equal one (i.e. k =1,2,..., N —1.) first and re-examine
the case for k = 0 later on. In transmission systems data arrive seriesly, therefore
we are interested in the the 1-D DCT of the next input data vector [z(t+1), z(t+

2),...,z(t + N)]. From the definition, it is given by

9 N m[2(n—t—1)+ 1]k
=N 2
X (k,t+1) ~ ngt;H z(n) cos [ SN ] : (2.2)
This can be rewritten as
— rk - . [k
X.(k,t+1) = Xc(k,t+1)cos (W) + X,(k,t+1)sin (—N-) , (2.3)
where
— 2 X [7[2(n — t) + 1]k]
k _ = P 3
X.(k,t+1) Nn___;“:c(n)cos - 5N | (2.4)
and
— 9 N _ [#2(n - t) + 1]k]
t = . .
Xs(k,t+1) v ngt;.l z(n)sin - 5N (2.5)

As we can see, a DST-like term X,(k,t+ 1) appears in (2.5). This motivates us

to investigate the time-recursive DST.
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2.2.2 Time-Recursive Discrete Sine Transform

There are several definitions for the DST. Here we prefer the definition proposed
by Wang in [49]. The 1-D DST of a data vector [z(¢),z(t + 1),...,z(t + N — 1)]

is defined as

t4N-1 <2(n —
Xs(k,t) = ZCJ’Vﬂ z_:t z(n)sin [ El 2;’) + l]k} ,

k=1,..,N. (2.6)

Note that the range of k is from 1 to N. Again, we consider those cases that

D(k)’s equal one first, i.e.

N1 [W[z(n — )+ ch |

Xs(k,t)_—_% 3 e(n)sin — (2.7)

The DST of the time update sequence [z(t 4 1), z(t +2),...,z(t + N)] is given by

2 .| 72(n—t—=1)+ 1]k
Xs(k,t+1) = —N—n:zt;l z(n)sin [ 5N }
= X,(k,t+ 1) cos (%) — Xc(k,t +1)sin (%k) . (2.8)

Here the terms X (k,t + 1) and X(k,t + 1) that are used in (2.3) to generate
X (k,t+1) appear in the equation of the new DST transform X,(k,t+ 1) again.
This suggests that the DCT and DST can be dually generated from each other.

2.2.3 The Lattice Structures

From (2.3) and (2.8), it is noted that the new DCT and DST transforms X (k, ¢+
1) and X,(k,¢ + 1), can be obtained from X.(k,t + 1) and X,(k,¢ + 1) in the
lattice form as shown in Fig. 2.1. The next step is to update X,(k,t + 1) and

X,(k,t+ 1) from the previous transforms X.(k,t) and X,(k,¢). We notice that
X.(k,t) and X.(k,t+ 1) have similar terms except the old datum 2(¢) and the
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Xc(k,t+1) T.(2) X (kot+ 1)

o

r,(2)

~T,(2)

Xk, t+1) I, (2) X (k,t+1)

Te(n)=cos{mkn/2N), T5(n)=sin(1Tkn/2N)

Figure 2.1: The lattice module.

incoming new datum z(t + N) Therefore X.(k,t+ 1) and X,(k,t + 1) can be
obtained by deleting the term associated with the old datum z(¢) and updating

the new datum z(¢{ + N) as

4= 050 o0 (5) on ()
+a(t+ V) (5 cos [@ﬁvﬂ}
= Xe(b8) + [~a(t) + (=) s(t + W) () cos <%) Y
and
Xa(k,t+1) = X, (k,t) - a(t) (‘JQV) o (%)

+z(t+ N) (%) sin [71'(2];7—]\,—%—1)_@]
2 nk

= X,(k,t) + [—m(t) + (=1)Fz(t + N)] (N) sin ('27\7) . (2.10)
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From (2.3), (2.8), (2.9), and (2.10), the new transforms X.(k,¢41) and X,(k, ¢+
1) can be calculated from the previous transforms X.(k,t) and X,(k,¢) by adding
the effect of input signal samples z(t) and z(¢ + N). This demonstrates that the
DCT and DST can be dually generated from each other in a recursive way. The
time-recursive relations for the new transforms X (k,t+ 1) and X, (k,t + 1) as

well as the previous transforms X.(k,t) and X,(k,t) are given by

Xt 1) = {Xulk) 4 [a0)+ (-0Fst0+ M) () cos () ot
N {Xs(’“’t) + o)+ (1 ae+ V)] () s (%) } sin()(2.1)

and
X,(k,t+1) = {Xs(k,t) + [-x(t) + (=1)Fz(t + N)] (]—i—) sin (%) } COS(%

— {Xc(k,t) + [—x(t) + (=1 (t + N)] (—;——) cos (%) } sin(%)(.?.l?)

Now, let us consider the cases for k¥ = 0 in the DCT and k& = N in the DST
respectively. According to (2.1), the 1-D DCT of the time-update input vector
[z(t+1),2(t+2),..2(t+ N)] for k=0 is

X0, +1) = Tv?'"\/i S a(n). (2.13)
n=t41

The relation of X.(0,7+ 1) with the old transformed datum X.(0,t) is

X.(0,¢+ 1) = X.(0, 1) [—2(t) + z(t + N)]. (2.14)

2
N2
And, the time-recursive relation between the new transforms X (N,¢ + 1) and

the previous transforms X (N, t) is

XN+ = s 3 (-1

= X,(N, 1) + N_2f§ [—(t) + (~)¥a(t + V)] . (2.15)
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The complete time-recursive lattice modules for (£ = 0,1,2,.., N —1.) are shown
in Fig. 2.2. It consists of a NV + 1 shift register and a normalized digital filter
performing the plane rotation. The multiplications in the plane rotation can be
reduced to addition and substration for £ = 0 in the DCT and £ = N in the
DST respectively. The following illustrates how this dually generated DCT and
DST lattice structure works to obtain the DCT and DST with length N of a
series of input data [z(t),z(t + 1),..,z(t + N — 1),2(t + N),...] for a specific k.
The initial values of the transformed signals X (k,t—1) and X,(k,t — 1) are set
to zero; so are the initial values in the shift register in the front of the lattice
module. The input sequence [z(t),z(¢ + 1),...] shifts sequentially into the shift
register as shown in Fig. 2.2. Then the output signals X.(k,t) and X,(k,1),
k=0,1,..., N —1, N, are updated recursively according to (2.11), (2.12), (2.14)
and (2.15). After the input datum z(¢ + N — 1) shifts into the shift register,
the DCT and DST of the input data vector [z(t),z(t 4+ 1),...,z(t+ N — 1)] are
obtained at the output for this index k. It takes IV clock cycles to get the X (k,t)
and X,(k,t) of the input vector [z(t), z(t+1),...,z(t+ N—1)]. Since there are N
different values for k, the total computational time to obtain all the transformed
data is N? clock cycles, if only one lattice module is used. In this case, the delay
time and throughput are the same N? clock cycles.

A parallel lattice array consists of N lattice modules can be used for parallel
computations and it improves the computational speed drastically as shown in
Fig. 2.3. Here we have seen that the transform domain data X (k,t) have been
decomposed into N disjoint components that have the same lattice modules with
different multiplier coefficients in them. In this case the total computational

delay time decreases to IV clock cycle. It is important to notice that when the

20



e (kit)

7 -1
l L@ X (k,t+1)
H(L+N) + >[> >
- -1 2/NYT.()
. ¢ L@

N 2/, L@
+ >[> >
X, (k. 1)
L@

x(t+1)

x(t)

7 ~1
)(S (k,t)
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Figure 2.2: The lattice structure for the DCT and DST with coefficients C'(k)’s
and D(k)’s, k =0,1,2,....,N -1, N.
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Figure 2.3: The parallel lattice structure for the DCT and DST.
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next input datum z(¢+ N) arrives, the transformed data of the input data vector
[z(t+1),z(t + 2),...,z(t + N)] can be obtained immediately. Likewise, it takes
only one clock cycle to generate the transformed data of subsequent inputs. That
is, the latency and throughput of this parallel system are N and 1 respectively.

It is obvious that this lattice structure is quite different from the signal flow
graph realization obtained from the fast DCT algorithms [13, 15]. Since there is
no global communication and the structure is modular and regular, it is suitable
for practical VLSI implementation. The most interesting result is that this
architecture can be applied to any value of N. From this point of view, it is
more attractive than existing algorithms. In fact, most algorithms [73, 69] are
limited to the sequence length N which either must be power of 2 or must be
decomposable into mutually prime numbers. In addition, this lattice structure
reveals some interesting properties of the DCT and DST, i.e., the DCT and
DST can be generated simultaneously. The DCT is near optimal to the KLT
transform in highly correlated signals, while the DST approaches the KLT in
signals with low correlation coefficient. As we are able to obtain the DCT and
DST at the same time, this lattice structure is very useful especially when we
do not know the statistics of the incoming signal. Furthermore, we can use a
single lattice module with only 6 multipliers and 5 adders to recursively compute
any N-point DCT and DST simultaneously. To obtain the transformed data in
parallel, we need N lattice modules. As mentioned before, it is suitable for
VLSI implementation since all the modules have the same structure except the
0’th module which can be simplified as shown in Fig. 2.2. This parallel lattice

structure requires 6N — 4 multipliers and 5N — 1 adders.
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2.3 Inverse Transforms

2.3.1 Time-Recursive IDCT

According to the definition of the DCT in (2.1), the IDCT for the transform
domain sequence [X(t), X(t+1),..., X(t+ N —1)] is

t+N-1

9N
n—O,l,...,N—l. (2.16)

The coeflicients C(k)’s are given in (2.1). From the time-recursive point of view,

the IDCT of the new sequence [X (¢+1), X(¢+2), ..., X (¢ + N)] can be expressed

i m(2n+1)(k—t-1)
(n, C(k—1t—1)X(k)cos . 2.17
e B

Similar to the previous sections, we can decompose (2.17) into

zo(n,t+1) = To(n, t+1) cos [ﬁ;;__l)} +Z4s(n, t+1) sin [W—@%\T—l)} , (2.18)
where
(n,¢+1) :r;]:lc —t — 1)X (k) cos [”(2” J;\),(k_t)} . (2.19)
and
Tas(n,t +1) :r;ii Clk—1t—1)X(k)si [ 7(2n +22(k_t)] . (2.20)

In order to be a dually generated pair of the IDCT given in (2.16), we define the

auxiliary inverse discrete sine transform (AIDST) as

t+N-1

Z Ok - )X )Cos[ﬂ‘(Qn—}‘l)(k—t)},

Tas(n,yt) = Z C(k —t)X(k)sin l SN
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Although this definition utilizes the same sine functions as the transform kernel,
it is not the inverse transform of the DST. To differentiate it from the IDST,
we call this the AIDST. Comparing to the IDST defined in (2.26) , we observe
that the AIDST has the special coefficients C(0) = —\}—5 associated with the first
term, while the IDST with the last term. The AIDST for the data sequence
[X(t+1),X(¢t+2),...,X(t+ N)] can be written as

N . [r(@n+1)(k—t—1)
Zas(m, 1) = Clk—t—1)X(k)sin . 2.22
(i 1) = 3, Okt =X (R)sin [FEEHEZIZI] (o

By using the trigonometric function expansions, z,,(n,¢ + 1) becomes

Tas(n,t+1) = Tyy(n, t+1) cos [E(QQL;—Q} —Tc(n,t+1)sin [3(22%11)] . (2.23)

Lattice Structure for IDCT

- Combining (2.18) and (2.23), we observe that the IDCT and the AIDST can
be generated in exactly the same way as the dual generation of the DCT and
DST. Therefore, the lattice structure in Fig.2.1 can be applied here except that
the coefficients must be modified. Since the coefficients C (k)’s are inside the
expression in the inverse transform, the relation between z(n,t) and T (n,t+1)
will be different from what we have in the DCT. Equations (2.16) and (2.19) as
well as (2.20) and (2.21) have the same terms for k € {t +2,¢4+3,....t + N —1}.

After adding the effects of the terms for k = ¢ and k = ¢ + 1, we obtain

Zoln, t+1) = zu(n, £) — %X(t) + (% _ 1) cos [

w(2n + 1)

5N ]X(t+1), (2.24)

and

Tas(n,t 4+ 1) = 2445(n, t) + (=1)"X(t + N) + (—\% - 1) sin [Mi;j\—;tl—)] X(t+1).

(2.25)
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Figure 2.4: The lattice structure for the IDCT and AIDST.

The complete lattice module for the IDCT and AIDST is shown in Fig.2.4.
This IDCT lattice structure has the same lattice module as that of the DCT
except for the input stage where one more adder and one more multiplier are
required. The procedure to calculate the inverse transformed data is the same.
Therefore, this IDCT lattice structure has the same advantages as that of the
DCT. To obtain the inverse transform in parallel, we need N such IDCT lattice
modules where TN multipliers and 6 N adders are required. Again, we see that
the numbers of adders and multipliers are linear functions of N. Here we should
notice that to obtain the inverse transform of the original input data sequence,
for example, [2(0), z(1), z(2),...,2(N — 1)] and [z(N),z(N + 1),...,z(2N — 1)],
it is sufficient oﬁly to send the transformed data:corresponding to these two
blocks, i.e., [X(0),X(1),...,X(N —1)] and [X(N),X(N + 1),..., X(2N — 1)]

respectively, although we have all the intermediate transformed data. Then by
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applying the time-recursive algorithm mentioned above, we obtain the original
data after X(N — 1) and X (2N — 1) arrive, the intermediate data obtained by

the inverse transform are redundant.

2.3.2 Time-Recursive IDST

From the definition of the DST in (2.6), the IDST for the transform domain
sequence [X(t + 1), X(t + 2),..., X(t + N)] is given by

jasiy 7(2n -
z(n,t)= 3 D(k—t)X(k)sin[ (2 ;\),(k t)},
k=t+1 .
n=01.,N—1 (2.26)

The coefficients D(k)’s are given in (2.6). Analogous to Section 3.1, we define

the auxiliary inverse discrete cosine transform (AIDCT)

t+N B
Zacn,t) = Y D(k— )X () cos [’f(?" +1)(k t)} |
k=t+1 2N
n:O,l,...,N——l, (2'27)

which is the dually generated counterpart of the IDST. The IDST and AIDCT
of the new sequence of transformed data [X (¢ + 2), X (¢t +3), ..., X (¢t + N + 1)]

are given respectively by

Za(n,t+1) = WXVIH D(k —t — 1)X(k)sin [”(2” * 1;(Nk —i- 1)] ,  (2.28)
k=t+4+2
and
Tae(n,t + 1) = t+§j+l D(k — t — 1) X (k) cos [”(2” + 1;(Nk il 1)} . (2:29)
k=t+2

Same as before, we can decompose (2.28) and (2.29) to

2n+1)

_ 7( 2n +1)
S 7t 1 = S 7t 1
zs(n,t+1) =T4(n,t + )cos[ 5N

} —Fo(n,t+1)sin [”(—QN—} , (2.30)
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Figure 2.6: The post-lattice structure for the IDST and AIDCT.

signals are added at the end of the lattice. From now on, we call this lattice
structure a post-lattice module and the previous ones as pre-lattice modules.
This post-lattice module needs 7 multipliers and 7 adders, less than required for
the corresponding pre-lattice module. A parallel post-lattice structure, which
generates N transformed data simultaneously, requires TN multipliers and 7NV
adders. All the forward and inverse transform pairs mentioned above have pre-
lattice and post-lattice structures. Not all post-lattice structures are superior
to their pre-lattice counterparts in the hardware complexity. For example, the

IDCT and AIDST post-lattice form can be expressed as

Cas(n,t+1) = cos [ﬁg%ri)] Zas(n, ) — sin [ﬁgg_;_l)] ze(n, 1)

~(ggsin | “5 D x00
m(2n + 1)] ,

+(—=1)"X(t + N) cos [ oN

(2.38)
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and

zo(n,t+1) = cos [77_(_2;1_]\—,{-_12] z.(n,t) + sin [ﬁ?;—N—H—)} Tqas(m,t)
(f) cos [”(2;‘; ”J X(t) - X(t+1) + (% C)X(t+1)
+(—1)"sin [-(—2;‘]~V+—1)] X(t + N). (2.39)

This post-lattice module has 9 multipliers and 7 adders which are more than its
pre-lattice realization. As to the DCT and DST, the post-lattice form can be

expressed as

Xe(k,t+1) = cos (?—VIE) X.(k,t) + sin (FNE) Xs(k,t)

and

Xy(kt+1) = cos(’]’\f)X(k t) - sm<;)X(k )

2 Tk k
._(N)sln (2N) [—:z:(t)-l—(—l) :c(t+N)] . (2.41)
In this case, the pre-lattice and post-lattice modules have the same numbers of

multipliers and adders.

2.4 Discrete Hartley Transform (DHT)

According to Bracewell’s definition of the DHT in [2], the data sequence z(n)

and the DHT transformed data X (k) have the following relation

Xu(k,1) = _”%1 Jeas (Qﬂ'k(n—t))

n==t ' N
t+N-1 -
= —1- > z(n) [cos (27%(; )) + sin (———————Qﬂk(; U)] ,
n=t
k=0,1,..,N —1. (2.42)
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The DHT uses real expressions cos(ﬂn—tl) + sm(ﬂ]\?——tl) as the transform

kernel, while discrete Fourier transform (DFT) uses the complex exponential
expression exp(n—rkﬁ,ﬂ) as the transform kernel. Because the kernel of the
DHT is a summation of cosine and sine terms, we can separate them into a

combination of a DCT-like and a DST-like transforms as follows:

Xh(kvt) = XC(k’t) + Xs(kat)a (2'43)
where
, t+N—1 whln — 1)) ]
Xe(k,t) = % Z;t z(n) {cos (2—16(‘;\,—0) ) (2.44)
and
t+N-1 ak(n — )\ ]
_ z_jt [ - (2—-’-“.(N—Q) . (2.45)

The X,(k, ) is the so-called DCT-I and the X,(k, ) is the DST-I that are defined
by Yip and Rao in [51]. Since the DHT can be decomposed into the combination
of the DCT-I and DST-I, the dual generation of both for the DHT is thus possi-
ble. The DCT-I and the DST-1 of the data sequence [z(t+1), 2(t+2), ..., z(t+N))
are

Xo(kt+1) == tiN z(n) cos 27rk(n;[t——1)' ,

n—t+l

(2.46)

and

t+N TS
Xo(k,t 1) = Z ) sin (27rk(nNt D . (2.47)

N, S |
The new transforms Xc(k,t + 1) and Xs(k,t + 1) can be further expressed as

Xo(kyt+1) = Xo(h, £ +1) cos (sz> + Xo(k,t + 1)sin (2;’“) o (248)
and

. — k —
Xs(k,t+1) = X (k,t + 1) cos (2%) — X (k,t +1)sin (%{/i) , (2.49)
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Figure 2.7: The lattice structure for the DHT for k =1,2,..., N — 1.

where
Ec(k,t-i—l) = — ti]:v z(n) cos (27rk(]:zr ))
n—.t+1
= Kk t) + 5 [o(0) + 2t + )], (2.50)
and
Es(k,t—l— 1) = — til:\f ) sin (2—7”{6—(:]%—_1)—)
n—t+l

The lattice module for the DHT for £ = 1,..., N —1 is shown in Fig. 2.7 and Fig.
2.8. From Fig. 2.7, we can see that the numbers of multipliers and adders are
less than those of the dual generation of the DCT and DST. The total numbers
of multipliers and adders in the parallel DHT lattice architecture are 5N — 4 and

5N — 3 respectively.
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Figure 2.8: The lattice structure for the DHT for k& = 0.

2.5 Block Processing

All the time-recursive discrete transforms derived above are based on the block-
size-one update which means the time index is updated by one. That is, at each
iteration only the effect of one old datum is removed and the information of one
new datum is added. We are interested in the relation between the area-time
complexity (AT') and block size. This motivates us to discuss the effect on the

lattice structure when the block size is increased.

2.5.1 Block Processing of time-recursive DCT and DST

We begin the discussion of block processing with the block-size-two update. Here
we assume the time index ¢ in (2.1) is zero for simplicity, and we will use this in

the following discussions. As before, the transformed data X.(k,2) and X,(k,2)
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are defined as the DCT and DST of the input vector [z(2), z(3),...,z(N),z(N+

1)]. That is,
X.(k,2) = Z:;:v(n) {”[2(” )+ ”’“}, (252)
and
i T[2(n —
X,s(k,2) = 2_;2 z(n) sin{ 1 2]3) + 1]k} . (2.53)

To obtain X (k,2) from X.(k,0) and X,(k,2) from X;(k,0) directly, we can
rewrite X (k,2) and X,(k,2) as

X.(k,2) = X.(k,2) cos (%) + X ,(k,2)sin (#) : (2.54)
and
Xs(k,2) = X,(k,2) cos (2—]’%@) — X.(k,2)sin (#) : (2.55)
where
X (k,2) = ng(n) cos [W]
= X.(k,0) + [—2(0) + (=1)*z(N)] cos (%)
H—2(1) + (=1)a(N + 1)] cos (5%’“) , (2.56)
and
X,(k,2) = Igw(n) sin l?d?%l_)_@]
= X,(k,0) 4+ [—z(0) + (=1)*z(N)]sin (%)
+[—2(1) + (=1)*z(N + 1)} sin (5)’2%’“) : (2.57)

The lattice module for the block-size-two update is shown in Fig. 2.9. There are

two more multipliers in the lattice, i.e., the total number of multipliers is eight.
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Figure 2.9: The lattice structure for block-size-two operation on the DCT and

DST.

To obtain the transformed data in parallel, we need N such lattice modules.
The latency for this kind of parallel structure is N/2 and the total number of
multipliers is 8 V. Since there is no complex communication problem in the
lattice structure, the area-time complexity (A7) can be approximated by the
product of the number of multipliers and the time latency, plus the area-time
complexity of the adders, which is o(mlog(m)) for adding m data. Next, let
us consider the more general case for the block-size-m update, where m ranges
from one to N. The 1-D DCT and DST of block-size-m update are to obtain
the transform of [z(m),z(m + 1),...,2(N 4+ m — 1)] directly from the transform
of [z(0),z(1),...,z(N — 1)]. We have

Xc(k,m) = zm:— z(n) cos m[2(n ;;Vn) + 1]k , (2.58)

n=m
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and

X, (k,m) = +z;”:_lx<n>sin [”[2(" ;;‘H”kl. (2.59)

Applying the same procedure in the case of block-size-two update, we can write

(2.58) and (2.59) as

X.(k,m) = X.(k,m) cos ("Z'“) X,(k,m)sin (%’1’3) , (2.60)
and
X,(k,m) = X,(k,m) cos (mka) — X (k,m)sin (m;k) . (2.61)
where
N+4m~1 x(2n
X (k,m) = ; z(n) cos [%]
= Xc(k',VO) - 2 z(n) cos (W)
N4+m-1 w(2n
+ Z_]:v z(n) cos [%}'\_‘}})ﬁ]
= Xc(k,o)
+mz:%[-—x(n) + (=1)*2(N + n)] cos [W} , (2.62)
and
- Nim-1 . |72+ 1)k
Xs(k,m) = ; z(n) sin [T}
= X,(k,0)— mz:% z(n)sin [ZQZ—N_'—_——%}
— B3 z(n)sin (2n+ Dk
& o[
= X.(k,0)
+2[—$(n) + (=1)kz(N + n)]sin [W(QLQ;Q—IE} . (2.63)
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Figure 2.10: The lattice structure for block-size-m operation on the DCT and
DST.

Combining those input terms with same cosine and sine multiplier coefficients
together, we can obtain the lattice module for block size m as shown in Fig.
2.10. To obtain the transform data X (k) in parallel, N lattice modules of Fig.
2.10 are required. The total number of multipliers of the parallel structure is
(4 + 2m)N, the total number of adders is (3m + 2)N, and the throughput is
1. The area-time complexity due to multipliers and adders are (4 4+ 2m)N and
(3m+2)N log((3m+2)N) respectively. Denote AT'm as the area-time complexity
of the block-size-m update, then ATm = (44+2m)N+(3m+2)N log((3m+2)N).
For example, ATl = 6N + [5N log(5N)] and AT2 = 8N + [8N log(8N)]. In the
limiting case of the block-size- N update, i.e., we move a whole block of the input
data sequence, ATN =~ (4 + 2N)N + 3N?log(3N?). In general, the area-time

product gets smaller as block size m decreases. We found that when m = 1, the
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minimum AT complexity is achieved.

2.6 Multiplier-Reduction of the lattice struc-
ture

In the VLSI implementation, the number of multipliers is an important factor to
the cost and complexity of the system. In this section, we develop two methods
to reduce the number of multipliers in our parallel lattice structures. The first
scheme makes use of a series input series output (SI1SO) approach and 2N
multipliers can be saved; the trade-off is that the latency and throughput is
increased. The second approach, which reconstructs the structure into a double-

lattice realization, saves N multipliers and the latency remains intact.

2.6.1 SISO Approach

Let us consider this problem through a general lattice structure as shown in Fig.
2.11. Denote the output and input data at time ¢ as (X.(¢), Xs(t)) and (21, zst)
respectively, where the input and output have the following relations

Xc(t) - [Xc(t — 1) + I‘lxct] Fg + [Xs(t - ].) + F3$st] F4,

Xs(t) = [Xs(t - 1) + Fgwst] Fz - [Xc(t - 1) + Flmct] F4. (264)

By dividing both equations by I'y, we have

X))/ Ta = [Xe(t—1)+ Tz T2 /Ty + [Xs(t — 1) + Fazg,

X,(t)/Ts = [Xo(t — 1)+ swg] Ta/Ts — [Xo(t — 1) + Tuze] . (2.65)

The lattice structure manifesting the above relations is shown in Fig. 2.12.

It is noted that only four multipliers exist in this structure and the outputs
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Figure 2.12: The model of multiplier-reduction.
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obtained differ from the original one by a factor I'y. To examine the effect of
this multiplier reduction on the recursive operation from X.(1) to X .(N), we

start with the derivation from ¢ = 1. That is

Xc(l)/F4 = [XC(O) + I‘lwcl] I‘Z/Fél + [Xs(o) + I‘3517.5‘1] ’

Xs(l)/]:‘4 = [XS(O) + Fgﬂ'}sl] FQ/F4 — [XC(O) + Fll'c]] . (266)
Fort =2

Xc(2)/[Ts = [X.(1) 4+ Tizea]To/Ty + [X,(1) + Tszss] ,

X,(2)/Ts = [Xs(1) + Tazso] Ty /T — [Xo(1) + T12.a)]. (2.67)

Because the outputs at time t = 1 are X,(1)/T'y and X,(1)/Ty, Xc(1) and X,(1)
at (2.67) should be replaced by X (1)/Ty and X(1)/Ty. To keep the above

equations valid, we can multiply both equations by 1/I'y as shown

XA(2)/T] = [Xc(1)/Ty+ (T1/Ta)zer) T2 /Ty + [X,(1)/T4 + (T3/T4)ws2] ,
X,(2)/T; = [Xo(1)/T4 + (Ts/T4)zs) T2/T4

— [Xs(1)/Tq + (T1/T4) 2] - (2.68)

The coefficients of the input multipliers are I'; /T’y and '3 /Ty, instead of T'; and
I's at time ¢ = 1, and the output sare X,(2)/T% and X,(2)/T%. For t = N, the

recursive equations become

I

X(N)/TY = [Xo(N = 1)/T¥ 4 (Dy/T)aay] T2/T
+ [ Xo(N = 1)/ 4+ (Ta/TY o] ,
X, (N)/TY = [X,(N = 1)/ + (Ts/TY V)z.n| T /Ty

- [Xc(N —1)/Ti 4+ (Fl/rﬁv—l)%N] : (2.69)
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From the above derivations, we observe that the two multipliers can be re-
moved by using variable multipliers in the input stage where the coeflicients
(T1,T1/Ty4,..,T1/T¥ 1) and (T3, T3/Ty,..,[3/T¥ 1) are stored in shift registers.
The structure is shown in Fig. 2.13. The output can be obtained by multiplying
the factor I'Y. This kind of rearrangement does not save multipliers. However,
for N such lattice structures, the number of multipliers can be reduced by using
variable multipliers at the output stage and the coefficients for each stage I'} (z),
1 =0,1,2,..,N — 1, are stored in the shift registers. Fig. 2.14 shows the final
structure where the total number of multipliers is 4N + 2. This means that the
number of multipliers for N parallel such lattice structures is reduced from 6N
'to 4N +2. The tradeoff is that 2NV + 2 shift registers are required and the latency
becomes 2N instead of N. Also, this resulting structure is a SISO system, while
the original parallel structure is a STPO system.

For example, the variable-multiplier method derived above can be applied
to the lattice structure of the DCT and DST. There are no multipliers needed
for t = 0, therefore the module remains the same. For ¢t = 1,2,.., N — 1, the
multiplier-reduced lattice structure is shown in Fig. 2.14, where the coefficients
are I'y = cos(kn/2N), T'y = cos(kx/N), I's = sin(kx /2N), and Ty = sin(kr/N).
The total number of multipliers is 4N —2 and the latency for this ST.S0 structure
1s 2N.

It is readily seen that the SISO approach for multiplier reduction is in fact a
denormalization of the orthogonal rotation in the lattice. It is well-known that
the orthogonal rotation is numerical stable so that the roundoff errors will not
be accumulated. However, the denormalized lattice does not have such a nice

numerical property in finite-precision implementation, i.e. the roundoff errors
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Figure 2.13: The multiplier-reduced lattice module. -
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Figure 2.14: The complete parallel multiplier-reduced lattice structure.
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may continue to accumulate and lower the signal-to-noise ratio. This effect can
be minimized by giving enough register length such as double precision in the
implementation. Also, we note that since I'y < 1, 'Y could be very small. Not
enough precision may result in bad numerical accuracy when I'Y is multiplied
at the output stage. Thus, the registers that store I'Y do need enough precision
to avoid the accuracy problem. The problems addressed here are consequences

of the tradeoff between complexity and performance.

2.6.2 Double-lattice Approach

Generally, a post-lattice structure has the following forms
X(k) = T3Xo(k=1)+TuX,(k— 1) + Diza,
Xs(k) = ToX,(k—1)—T4Xc(k—1)4 Tszy. (2.70)
Based on the relationships shown below
FoXe(k—1)+ Ty X(k—1) =
S {02+ D)Xk = 1)+ Xk = D] + (T2 = DXk — 1) = X (k= D]},

2
(2.71)

and

PoXs(k—1) =Ty Xo(k—1) =ToX,(k—1) + Ty X (k — 1) — O, X.(k — 1)
= %{(FQ + T)[Xo(k— 1)+ X;(k—1)] — (T2 — T)[Xe(k — 1) — X, (k - D]}

—o04 X, (k — 1), (2.72)
Xc(k) and X(k) can be rearranged in the following manner

X(k) = 3(T 4 Xk = 1) + X, (k — 1) (2.73)
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1
2
+F1$ck

+5(T2 = P)[Xe(k — 1) = X,(k —1)]
1
=3 {t1 + 2} + "1z,
(k) = 5(T+ D)Kok~ 1) + Xo(k — 1) (2.74)
—5 (s = Tk = 1) = X,(k = 1]

—2F4Xc(k - 1) + F3wck

_ % (11 = 12} — 2T X, (k — 1) + Tszop. (2.75)
where
t1 = (Fy + T [X.(k — 1) + X(k — 1)], (2.76)
and
12 = ([ = Ty)[Xe(k — 1) — X,(k - 1)]. (2.77)

The operational flow graph of (2.73) is illustrated in Fig. 2.15. Instead of
calculating the outputs from (2.70) directly (that requires 6 multipliers and 4
adders), the first lattice adds and subtracts X.(k — 1) and X,(k — 1), then
multiplies the results by I'y + I'y and I’y — I’y respectively. The results are called
t1 and t2 as defined in (2.76) and (2.77). The second lattice adds and subtracts
t1 and {2 again, then divides the results by 2, which can be achieved by right
shifting. Finally, we complete the computations by adding the inputs I';z.x and
Pszer — 2Ty X (k — 1). This reconstruction can save one multiplier. A parallel
post-lattice structure with N lattice modules requires 6 N multipliers and 4N
adders. As for this reconstructed parallel structure, only 5N multipliers and
TN adders are needed. This approach can be applied to all the parallel post-

lattice structures of different orthogonal transforms. In:general, this parallel
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Figure 2.15: The double-lattice form of the post-lattice realization.

double-lattice structure can save N multipliers, but requires 3N more adders.

The latency is N clock cycles and the system remains SIPO.

2.7 Comparisons of Architectures

From the previous discussions, we see that the proposed unified parallel lattice
structures have many attractive features. There are no constraints on the trans-
form size N. It dually generates the two discrete transforms DCT and DST
simultaneously. Since it produces the transformed data of subsequent input vec-
tor every clock cycle, it is especially eflicient for systems with series input data
such as communication systems. Further, the structure is regular, modular,
and without global communication. As a consequence, it is suitable for VLSI

implementation.
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LiuChiul | LiuChiu2 | chen [14] Lee[2] Hou[5]
et. al.
No. of 6N —4 | 4N NlIn(N) (N/2)In(N) | N —1
Multipliers —3N/2 +4
latency N 2N N/2 HIn(N)+ O(3N/2)
(In(V) - 1)

limitation | no no powerof 2 | power of 2 | power of 2
on N
commun. | local local global global global
I/0 SIPO SISO PIPO PIPO SIPO

Table 2.1: Comparison of different DCT algorithms

Here, we would like to compare our lattice structures of the DCT and DST
with those proposed in [13, 15, 7]. The architecture in [13] uses the matrix
factorization method which is a representative of fast algorithms. In [15], an
improved fast structure with fewer multipliers is proposed. Hou’s architecture
in [7] uses recursive computations to generate the higher order DCT from the
lower order one. The characteristics of these structures are discussed in the
introduction. A comparison regarding their inherent properties is listed in Table
2.1. To be clear, the quantitative comparisons in terms of the parameters, which
are the numbers of multipliers, adders, and the latency, are given in Table 2.2,
Table 2.3, and Table 2.4.

The lattice architecture with six multipliers in the module as shown in Fig.

2.2 is called Liu-Chiul structure, the one in Fig. 2.14 is called Liu-Chiu2, and
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NO | Liuchiul | LiuChiu2 | Chen | Lee | Hou
8 | 44/2 32/2 16 |12 |7

16 |92/2 64/2 4 |32 |15
32 |188/2 | 128/2 116 |80 |31
64 |380/2 |256/2 |202 |192 63

Table 2.2: Comparision of the number of multipliers

NO | Liu-Chiul | Liu-Chiu2 | Chen | Lee | Hou
8 39/2 39/2 26 29 |18
16 | 79/2 79/2 74 81 |41
32 | 159/2 159/2 194 | 209 | 88
64 | 319/2 319/2 482 513 | 183

Table 2.3: Comparision of the number of adders

NO | Liu-Chiul | Liu-Chiu2 | Chen | Lee | Hou
8 8 16 4 6 13
16 |16 32 6 10 |21
32 |32 64 8 15 |44
64 |64 128 10 21 |73

Table 2.4: Comparision of the latency
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the parallel structure with the double-lattice modules as shown in Fig. 2.15 is
called Liu-Chiu3. The structure in Liu-Chiul has 6 N — 4 multipliers, 5N — 1
adders, and the latency is N. There are 4N multipliers, 5N — 1 adders, and
the latency is 2N in the structure of Liu-Chiu2. The number of multipliers is
reduced by the order 2NV in the expense of doubling the latency and the data flow
becoming SIS0. The Liu-Chiu3 architecture has 5N multipliers and 7N adders
and the latency is NV clock cycles. From these Tables, it is noted that the number
of multipliers in our architectures is higher than that of others when N is small.
This is due to the dual generation of two transforms structure which is compatible
with Lee’s. Since the numbers of multipliers and adders of our structures are
on the order N, our algorithms have fewer multipliers and adders than those
proposed in [13, 15]. Although Hou’s algorithm has the fewest multipliers, his
architecture needs global communications and the design complexity is mu of
other structures can not start until all of the data in the block arrive.

A comparison for our DHT structure based on the lattice module in Fig. 2.7
and different DHT algorithms [52, 69] is listed in Table 2.5. The architecture
in [52], a representative fast algorithm, is developed base on the existing FFT
method. Chaitali-JaJa’s algorithm in [69] decomposes the transform size N
into mutually prime numbers and implements them in a systolic manner. Their
structure needs extra registers and the latency is higher than others. It is easy
to see that our structure is better than others in terms of hardware complexity

and speed.
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Liu-Chiu | Sorenson[23] | Chaitali-JaJa[18]

No. of 4N NIn(N) N1+ N2
Multipliers —3N +4

Adders 5N —2 3N In(N) 4N
—3N 4+ 14 ++v/N1

latency N NlIn(N) N1+ N2
limitation | no power of 2 N = N1xN2,
on N N1,N2 are m.p.
commun. | local global local

I/0 SIPO PIPO SISO

Table 2.5: Comparision of different DHT algorithms,*m.p. means "mutual

prime”.
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2.8 Filter Bank Interpretation

Multirate digital filters and filter banks find applications in communications,
speech processing, and image compression. There are two basic types of filter
banks. An analysis bank is a set of analysis filters Hi(z) and N-fold decimators
which split a signal into N subbands. A synthesis filter bank (the right part
of Fig. 2.16) consists of N synthesis filters Fj(z) and N-fold interpolators,
which combine N signals into a reconstructed signal X(n). As described in Sec-
tion 2, the time-recursive approach decomposed the transformed domain data
into N different components. If we are interested in the block-size- N transform
and perform the N-fold decimation in the outputs of every lattice modules, the
analysis bank is simply the series-input-parallel-output filter bank described in
Fig. 2.16. Under this condition, the analysis bank is equivalent to perform a
transformation and the synthesis bank to perform an inverse transformation on
successive blocks of N data samples. In this section, we describe how to employ

the time-recursive concept to generate the synthesis banks based on the DCT,

DST and DHT.

2.8.1 Synthesis bank structure based on DCT

To perform the inverse transform in the synthesis bank, we feed the DCT trans-
formed domain components X, (k) into the synthesis modules and combine all
the outputs of every synthesis modules to produce the original input sequence

zc(n). That is, the synthesis bank performs the following inverse DCT operations

zo(n) = kz__j C (k) X, (k) cos ["’“(%Ql . (2.78)
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Figure 2.16: The filter bank structure.
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Since in the synthesis bank different transform components are sent to indepen-
dent synthesis modules, we therefore focus on a specific transform component.

Denote T.(n, k) as the output signal generated by a specific synthesis module

Z.(n, k) = C(k)X.(k) cos F’i@ﬂﬂ] .

- (2.79)

The time-recursive concept can be applied here to update Z.(n, k) recursively.
Use the result in section 2.3.1 that IDCT and AIDST can be generated from
each other recursively and denote Z,,(n, k) as the auxiliary inverse sine transform
generated by a specific synthesis filter. We can obtain the following recursive-

generated relations for Z.(n, k) and T,s(n, k) as

Zo(n + 1, k) = C(k)X.(k) cos [”k[z(” 1)+ 1]}

2N

= T.(n, k) cos (%) — Tas(n, k) sin (%) , (2.80)

and

Tas(n + 1, k) = C(k) X.(k) sin l

Tqas(n, k) cos (%) + Z.(n, k) sin (%—) . (2.81)

(2.80) and (2.81) suggest that the ZT.(n + 1,k) and Z,5(n + 1,k) can be dually

wk[2(n 4+ 1) + 1]]
2N

generated from the previous values Z.(n, k) and T,s(n,k) in a lattice form as

shown in Fig. 2.17. Because the initial values for z.(0, k) and z,,(0, k) are

Z.(0,k) = X.(k) cos [%] , (2.82)
and
T,45(0, k) = Xo5(k) sin [%] , (2.83)
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Figure 2.17: The synthsis bank structure of the DCT.

this means that the z.(n + 1, k) and z4s(n+ 1, %) can be generated by sending a
sequence with X.(k) as the first element followed by N — 1 zeros into the input
of the synthesis module. This is exactly the up sampling procedure required in
the synthesis bank structure. The Z,;(n, k) output is reset every N clock cycles.
The synthesis module diagram for the DCT is plotted in Fig. 2.17. The inverse

transform is obtained by summing all the outputs of the synthesis modules.

2.8.2 Synthesis bank structure of the DST and DHT

In this section, we apply the same approach mentioned in the previous section
to the DST and DHT. The results are summaried as below. By using the dual

generation concept, the operation of the synthesis module for the DST is

Zy(n + 1, k) = D(k)X, (k) sin [”km” 1)+ 1]]

2N
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- Tk | _ . [k
= F,(n, k) cos (—2—]—\,—) + Toe(n, k) sin (2—N—> , (2.84)

and

Taeln +1,K) = D(R)X, (k) cos [”kmnzjvl) : l]l

= Toe(n, k) cos (%) — Zy(n, k)sin (%) . (2.85)

Because D(k) and C(k) have the same values for k =1,2,...,N—1 and D(N) =
C(0). Therefore, the structure of the synthesis modules for the DST are the
same as that for the DCT except for £ = N.

As for the DHT, the IDHT is defined as

on(n) = Izg_oth(k)cas (27;\’,“")

- S (5] ()]

n=01.,N-1. (2.86)

Again, we separate them into a combination of a DCT-like and a DST-like
transforms as follows:

zh(n) = &.(n) + 5(n). (2.87)
The operation of the synthesis module for the DHT is generated from #.(n) and

the #5(n) by the following relation

Ze(n + 1, k) = &.(n, k) cos (2—;{[]6—) — Zs(n, k) sin (%) , (2.88)
and
Zs(n+1,k) = &5(n, k) cos <#) — %e(n, k) sin (2—]7:[]2> . (2.89)

To obtain the IDHT z(n), we must sum up both of the outputs of the synthesis

modules. It is noted that the multiplier coefficients in the synthesis module for

the DHT is different from that of the DCT and DST.
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2.9 Summary

In this Chapter, unified time-recursive algorithms and lattice structures that
can be applied to the DCT, DST, DHT and their inverse transforms, are con-
sidered. In fact, there are various forms of sin and cosine transform pairs, (the
DCTI/DSTI, DCTII/DSTII, DCTIII/DSTIII, DCTIV/DSTIV, and Complex
Lapped Transform(CLT)) as mentioned in [51, 62]. They also have their time-
recursive lattice realizations. The procedures to attain the lattice structures of
different transforms are similar and the resulting STPO lattice structures differ
only in the multiplying coefficients and the inbut stage. All the transform pairs
have their pre- and post-lattice realizations that differ in that the input signals
are added in the front and the end of the lattice respectively. The hardware
complexity of the pre-lattice realizations and their post-lattice counterparts de-
pends on the definitions of the transforms and it cannot be readily determined
which one is better. The number of multipliers in all the parallel lattice struc-
tures is a linear function of the transform size N and the latency is N clock
cycles. Two methods, the SISO and double-lattice approaches, are developed
to reduce the number of multipliers for the parallel lattice structures. The SIS0
approach can reduce 2N multipliers and the latency becomes 2N. The double-
lattice approach can reduce N multipliers and the latency remains intact. From
the discussion of the block processing, it is noted that the area-time complexity
is efficient when the block size m is small, especially when m = 1. All the result-
ing parallel structures are module, regular, and only locally connected. Further,
there is no constraint on the transform size N. It is obvious that the design
complexity of these structures is relatively low compared with other algorithms.

The characteristics of these algorithms are suitable for processing series input
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data since the transformed data for sequential input can be obtained every clock
cycle. Therefore, it is very attractive to VLSI implementations and high speed
applications such as HDTV signal coding and transmission.

Since the orthogonal rotation is the major operation in the lattice, it is noted
that such rotation can be easily implemented using CORDIC (COordinate Ro-
tation DIgital Computer) [58, 59] which is known as an efficient method for the

computation of orthogonal rotations and trigonometric functions.
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Chapter 3

Two-Dimensional DCT Lattice

Structures

The two-dimensional discrete cosine transform (2-D DCT) has been widely rec-
ognized as the most effective technique in image data compression, especially
for high-speed video processing applications, such as “HDTV.” In this Chapter,
we propose a new fully-pipelined architecture to compute the 2-D DCT from a
frame-recursive point of view. Based on this approach, two real-time parallel
lattice structures for successive frame and block 2-D DCT are developed. These
structures are fully-pipelined with throughput rate N clock cycles for a N x N
successive input data frame. These are the fastest pipelined structures known
so far. Moreover, the resulting 2-D DCT architectures are modular, regular,
and locally-connected and require only two 1-D DCT blocks which are extended
directly from the 1-D DCT structure without transposition. It is therefore very
suitable for VLSI implementation for high speed HDTV systems. We also pro-
pose a parallel 2-D DCT architecture and a new scanning pattern for HDTV
systems to achieve higher performance. The VLSI implementation of the 2-D

DCT wusing distributed arithmetic to increase computational efficiency and re-
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duce round off error is also discussed.

3.1 Introduction

It is well known that block coding based on the two dimensional (2-D) DCT
produces highly compact 2-D transformed coefficients on the spatial domain
[44]. By applying appropriate bit allocations and entropy coding schemes, i.e.,
variable length coding and run length coding [41, 36], the bit rate of the HDTV
systems can be greatly reduced [29, 36]. Because of the hardware limitations in
practical applications, only small transform block size (typically 8 by 8 or 16 by
16) is used.

Many 2-D DCT algorithms have been proposed to reduce the computational
complexity and to increase the operational speed. These algorithms can be di-
vided into two groups, the row-column method and the direct 2-D method. The
row-column method computes the 2-D DCT by applying the one-dimensional
(1-D) DCT on the rows (or columns) of the input data frames, storing the trans-
formed results in an intermediate matrix, transposing the matrix, and performing
the 1-D DCT again on the columns (or rows) of the transposed matrix. The 2-
D DCT, then, is decomposed into two 1-D DCTs. Since there exist many 1-D
DCT algorithms, there are also many realizations for the row-column methods.
The performance of a specific row-column method depends on the realization
of the 1-D DCT algorithm. The classification of the 1-D DCT algorithms and
their comparisons are given in [17]. The systolic array approaches, which are
assumed to be fully-pipelined, also employ the row-column method in the 2-D

DCT realization [15, 18]. Therefore, the fully-pipelined operation is impaired
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since the second DCT can not start until the transposition of the first transform
coefficients finishes.

The direct 2-D method, in contrast to the row-column decomposition method,
is a complete 2-D approach. Duhamel and Guillemot [80] proposed two direct
2-D methods, the indirect and direct polynomial transforms (PT) for the 2-D
DCT. Vetterli [79] used the indirect PT approach for 2-D DCT to map the N
by N DCT into a real N by N DFT followed by a number of rotations, and
the real N by N DFT can be realized by using PT. The direct PT for the
2-D DCT is shown to be more effective than the indirect approach [20], but
the procedure for a general implementdtion is complicated. It has also been
shown [79] that these kinds of direct 2-D methods are more efficient than the
row-column methods. However, due to their simplicity in hardware realization,
row-column decomposition methods are still widely adopted in implementing the
2-D DCT chips [43, 29].

All the approaches mentioned above do have a common requirement: the
availability of all the data in the processing 2-D block. This may not be true for
the real-time data transmission systems such as HDTV systems. To eliminate
the waiting time for the data to arrive, a time-recursive processing concept can
be exploited, i.e., the result is adaptively updated when a new datum arrives.
Once all the data arrive, the result is completely available. One of the most
important issues here is to design a real-time VLSI system that is compatible
with the data transmission speed. In this paper, we show that frame-recursive
architecture is a feasible solution. Liu and Chiu [17] proposed new unified parallel
lattice structures for time-recursive 1-D orthogonal sinusoidal transforms. These

transforms are decoupled into N independent lattice modules, hence, there are
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no global communications in the structure. Moreover, every lattice module is
regular and modular and has the same architecture. The number of multipliers
of the lattice structure for the best case in [17] is 4N. Therefore, it is very
suitable for VLSI implementation.

In this Chapter, we propose a new architecture for the 2-D DCT by employing
the frame-recursive concept on the successive input frames. It is a direct 2-D
method and the transposition in the row-column method is eliminated. Because
the system requires only two 1-D lattice DCT module arrays, the hardware
complexity of this system equals that of the row-column method for series rows
(or columns) input frame. All the components needed in the architecture are
independent lattice modules and shift registers. The total number of multipliers
required for an N by N 2-D DCT is 8N. There is no limitations on the transform
size N and the structure can be easily extended to any number N, including
the prime numbers. This is a rather promising architectures either from speed
or hardware point of view. Since the system is modular, regular, and fully-
pipelined, it is very suitable for high speed video signal transmission. We show
that by employing distributed arithmetic technique in hardware implementation,
the system performance is further improved. For the HDTV applications, very
high operating speed is achieved by using parallel processings and appropriate
scanning arrangements.

We organize the rest of the Chapter as follows. In Section 3.2, the algorithm
to achieve the 2-D DCT using the frame-recursive manner is proposed. It is
shown that we can dually generate a 2-D discrete sine-cosine transform (DSCT)

simultaneously. The architectures for calculating moving frame 2-D DCT and

block 2-D DCT are discussed in Section 3.3. Comparisons of different 2-D DCT

62



algorithms are given in Section 3.4. In Section 3.5, we consider the application
of our 2-D DCT block architecture to the high speed HDTV system. Finally,

the conclusion is given in Section 3.6.

3.2 Dual Generation of 2-D DCT and DSCT

In this section, we describe a new architecture for 2-D DCT that requires only two
1-D DCT arrays. Focusing directly on the 2-D transformed signal and applying
the frame recursive approach, we can derive not only the frame recursive relation
of two successive frames of the 2-D DCT, but also the dual generation properties
between the 2-D DCT and 2-D discrete sine-cosine transform (DSCT). Here
the DSCT serves as an auxiliary transform which supports the time-recursive

computations of the 2-D DCT.

3.2.1 Frame-Recursive 2-D Discrete Cosine Transform

The N x N 2-D DCT {X.(k,l,t): k,1=0,1,...., N — 1.} of an N x N 2-D data
sequence {z(m,n):m=1tt+1,..,t+ N —-1;n=0,1,..., N — 1.} is defined as

t+N-1N-1 212 —
X,(k,Lt) = %C(k)C(Z) > Z_%x(m,n)cos[ £l 21\?“]]"] (3.1)

7(2n + 1)I
cos | ——=—| -

Here the time index t in X.(k,[,t) denotes that the transform starting from the
t’th row of the 2-D data sequence {z(m,n):m =0,1,2,...;n=0,1,..., N — 1.}
as shown in Fig. 3.1. In the following, we call X,(k,[,t) the 2-D DCT of the t’th
frame of the 2-D data sequence z(m,n). To derive the time-recursive relations

between the successive data frames, let us start by considering the 2-D DCT of
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x(0,0) |x(0,1) X(O,N-1)
X(1,0) X(1,1) X(1,N-1)
x(2,0) x(2,1) X(2,N-1)
x(3,0) Ix(3,1) X(3,N-1)
X(t,0) XL, 1) X(t,N-1)
XIN=1,0) [ x(N-1,1) XIN-1,N-1)
X(N,0) X(N, 1) X(N,N=-1)

X(N+1,0)] x(N+1,1) X(N+1,N-1)
X(L+HN-1,0) [x(t+N-1,1) X(t+N-1,N-1)

Figure 3.1: The 2-D successive data frame.
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the #’th frame data sequence,

t+N 1N-1 (2 —
Xo(k,1,t) = 4 g_:_t 1;)96 cos[ (2 2;)+1)k} (3.2)

o [w(m;; 1)1] .

Instead of focusing on X.(k,[,t) and utilizing various techniques to reduce the
computational complexity. We will consider the 2-D DCT sequence of the (¢ +

1)’th frame, which is

Xc(k,l,t+1) = O(k c() tiv szl ) cos [W[Q(m ~;1~\—7— 1) + 1]k]
m=t+1 n=0
s [%l ' (3.3)

By using trigonometric function expansions on cos [ﬂﬂ%ﬁuﬂ]ﬁ], (3.3) can be

rewritten as

_ wk - . [7k
Xk, l,t+1) = X, cos (-]—V—> + X,esin (—J—V—) , (3.4)
where
N N1 m[2(m —t) + 1)k 7(2n + 1)1
X. -——C c() ;Hn}% cos[ 5N ]cos[ 5N ],
(3.5)
and

- _ 4 N Nl . [ 7m[2(m—t) + 1]k 7(2n + 1)l
Xse = NzC(k)C(l) m§|.1 nZ:% z(m,n)sin [ 5V ] Cos [——Z—Nm—} :

(3.6)

We can view the term sin [”[2(7”2;\?“%] cos [”(2;];','1)1] in (3.6) as a new trans-

form kernel, and define a N x N 2-D discrete sine-cosine transform (DSCT)
sequence {X,.(k,0,t) : k = 1,2,....,N;1 = 0,1,..., N — 1.} of the 2-D data se-
quence {z(m,n) :m=1{,t+1,.,.N+t—-1;n=0,1,...,N—1.} as

Xk Lt) = -50(®CW) Y. Y o(m,n)sin [”[Q(m;;)“]k] (3.7)

m=t n=0
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2N
Here we extend the definition of C'(k) to C(N) and define C(N) = % Similarly,

- cos [M} ,

we are interested in the 2-D DSCT of the (¢ + 1)’s frame. According to the

definition, it is

Xk Lt +1) = ~CHRICQ) 3 amyn) (3.8)
m=t+1 n=0
sin lw[?(m —t—1)+ 1]k] cos [7('(27’& + 1)1}
2N 2N
— k - . [7k
= X, Cos (7\/'—> — X.sin (—N—) , (3.9)

where the terms X, and X, used in (3.4) to generate X,(k,[,t+1) appear again.
This suggests that the 2-D DCT and 2-D DSCT can be dually generated from

each other.

3.2.2 Lattice structures for frame-recursive 2D-DCT

We will show in this section that 2D-DCT can be generated by using two lattice
arrays. From (3.4) and (3.8), it is noted that the new 2-D DCT and DSCT
transforms can be obtained from the intermediate values X, and X,. in a lattice
form as shown in Fig. 3.2. A similar relation also exists in the dual generations
of the 1-D DCT and 1-D DST [17]. The intermediate data X, and X, differ
from the original signal X.(k,[,t) and X,.(k,[,t) only in the ¢’th row and the
(t + N)’th row of the input data frames. So, the intermediate data X, and X,.
can be obtained from X.(k,[,t) and X,.(k,[,t) by removing the #’th row of the
transformed data and updating the (24 V)’th row of the transformed data. That
1s,

X = Xo(k, 1) - %C(k)(f(l) E‘lw(tv”) cos [W—(&;jvﬂ)l} co (%)

=0
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X (k,1,0)

8. (kD
X(0,1,0)
X0,1,1)
& (k)4 j'>—>
(2A2N)
X N, T)
& (k1) —=(t j'>->
, ~(2WZN)
X< N,1,0)

Figure 3.2: The lattice module of lattice array II.
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N-1 l,f(gn + 1)1] cos [w(?N + 1)k

4
+3ECRCWM) X 2t + Nyn) cos | == 5N ]@3-10)

n=0

and

X0 = Xoo(k, 1,8) — %C(k)c(l)%lm(t,n) cos [M} sin (ch)

Pt 2N 2N
4 = r(2n+ I . [7(2N + Dk
— (3.11
+N2C(k)C(l)7;):c(t+N,n)cos [ 5N sin 5N (3.11)
These two equations can be further simplified as
X, = X.(k,1,1) + 6.k, [, 1) 2 C (k) cos [ E (3.12)
= Xl 1) 4 Bl 1) O (k) cos  230) -
and
X, = Xoolk, 1)+ 8uk, L, t)2C (k) sin | (3.13)
sc — 8cC ey [+ b N sm 2N 9 *
where
2 N1 A w(2n + 1)l
0.(k,1,t) = —]-V—C'(l) TLZ:% [(—1) z(t+ N,n) — w(t,n)] cos [——QN— . (3.14)

By substituting X. and X in (3.12) and (3.13) into the updated transformed
signal X (k,l,t+1) and X,.(k,1,t+1) in (3.4) and (3.8), the relation between the
updated transformed signal and previous transformed signal for k = 1,2,.., N—1
are represented in a lattice form as shown in the upper part of Fig. 3.2. Since
the multiplications can be reduced to addition and subtraction for k£ = 0 in the
2-D DCT and k£ = N in the DSCT respectively, these two cases can be simplified
as shown in the lower part of Fig. 3.2. What is worth noticing is that é.(k,1, )
in (3.14) is the 1-D DCT of the data vector which is the difference between the
parity of the ¢’th row and (t+ N)’th row of the 2-D input sequence. As described
in [17], é:(k,l,t) can be generated in a lattice form as shown in Fig. 3.3. We

call this as lattice array I (LAI) and that in Fig. 3.2 as lattice array 1] (LAII).
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X.(,0

77!
L@ X (Lte 1)
+ —D >
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(2/NILM
Xs(l,t+l)
L(n)=cos(nm k/2N) & ’D -
T (n)=sin(n T k/2N) L@
71
X (1,0
1=1,2,..,N-1,
X.(0,0) -
Z
X (0,t+1)
c
1nput—>(+§ {>->
(AZN)
1=0
Xg(N,t+1)
-input="&
- (2/2N)
771
Kg(N,t)
1=N

Figure 3.3: The lattice module of lattice array 1.
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Comparing these two structures, we observe that these two lattice modules have
the same architecture except that LAI feedbacks the outputs directly through
a delay stage to add with the inputs.

The 2-D DCT and DSCT are produced by applying input data frames to
LAIs which generate the 8.(k,[,t). After obtaining the 6.(k,,t), the updated
transformed signal can be obtained recursively by feeding é.(k,{,¢) into the lat-
tice array II. We observe that the 2-D DCT can be obtained by using two 1-D
DCT lattice arrays. It will be shown in the next section that the 2-D DCT
obtained by this time-recursive approach is fully-pipelined and no transposition
is required. This is because that by using the frame-recursive approach, we start
from the transformed 2-D DCT directly and avoid calculating the 2-D DCT in-
directly from the 1-D DCT. Our architectures are efficient since it is a direct
2-D approach. This method can also obtain the 2-D DCT and 2-D DSCT si-
multaneously. In contrast to processing the input 2-D data sequence by rows,
the input data can be updated by columns. Tn this case, 2-D DCT and 2-D dis-
crete cosine-sine transform (DCST) are dually generated, and all other results

are similar and can be easily derived.

3.3 Architectures of Frame-Recursive Lattice

2D-DCT and 2-D DSCT

The fully-pipelined parallel lattice structures for successive frame and block 2-D
DCT and DSCT are described in this section. As we know, most of the 2-D
DCT architectures are implemented by the row-column decomposition method

[25, 24, 26]. It is due to the fact that the architectures of most fast direct 2-
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D algorithms are usually irregular and globally connected, therefore it is not
practical for VLSI implementation. Another reason is that it is beneficial to
generate a 2-D DCT system from existing 1-D DCT circuit rather than to build
a new multiplier-saved 2-D DCT architecture which may not be compatible with
the 1-D DCT system. By using the frame-recursive method, the 2-D DCT can be
implemented by 1-D DCT lattice arrays which are regular, modular and suitable
for VLSI implementation. So the difficulties mentioned above are avoided. We
will discuss two architectures, the moving frame 2-D DCT architecture and the
block 2-D DCT architecture. The moving frame 2-D DCT architecture is used
to calculate the 2-D DCT of sequential frames. For example, the 2-D DCTs
of the 0’th frame, first frame, second frame and so on. The block 2-D DCT
architecture computes the 2-D DCT of an N x N input data matrix for every

N frames, i.e., the 0’th frame, the N’th frame, the 2N’th frame and so on.

3.3.1 The Moving Frame 2-D DCT Architectures

The moving frame 2-D DCT architectures generate the 2-D DCT of successive
input frames. From the frame-recursive concept derived in section 3.2, the 2-D
DCT recursive lattice structures can be constructed according to (3.4), (3.8), and
(3.14). Although the intermediate values é.(k,[,t) in (3.14) are functions of both
k and [, it is noted that the effect due to the index k is equivalent to sign changes
in the input data sequences. Using this property, we will show two approaches,
the pre-matrix method and the post-matrix method, to implement the moving

frame 2-D DCT architectures. The pre-matrix method will be discussed first.
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The Pre-Matrix Method

In this method, the intermediate values of 8.(k,,t) are realized directly from
(3.14). As we can see, the index k in (3.14) affect only the sign of the new input
data sequence. Thus, there are only two possible input sequence combinations:
{z(t+ N,n) — z(t,n)} and{ —z(t + N,n) — z(¢,n)}. The resulting pre-matrix
moving-frame 2-D DCT architecture is shown in Fig. 3.4 which includes a cir-
cular shift matrix I, two adders, two LAIs, one LAII, and two circular shift
arrays and shift register arrays. Except for the LAI, LAII, and adders, all other
components are shift registers. We will describe the functions of every blocks
first, then demonstrate how the system works.

The circular shift matrix I (CSM1I)is an (N+1)x N shift registers connected
as shown in the upper part of Fig. 3.5. When a new input datum z(m,n) arrives
every clock cycle, all the data are shifted in the way as indicated in Fig. 3.5.
Both of the first elements in the ¢’th row and (¢t + N)’th row are sent to the
adders for summation and subtraction as shown in Fig. 3.4. The pre-matrix
architecture contains two LAIs which includes N lattice modules as shown in
Fig. 3.3. The upper and lower LAIs execute the 1-D DCT on the rows of the 2-D
input data for the even and odd transformed components k respectively. Because
the length of the input vector is N and only the discrete cosine transformed data
are needed, the 1-D DCT transformed data 6.(k,[,t) generated by the LAIs are
sent out every N clock cycles [17]. Due to the time-recursive approach used, the
initial values X.({,t) and X;(I,t) in the LAIs (see Fig. 3.3) are reset to zeros
every N clock cycles.

The circular shift array in the middle of the system is an NV x 1 shift register

array as shown in Fig. 3.6. This special shift register array loads an N x 1 data
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Figgre 3.4: The pre-matrix moving frame 2-D DCT architecture.



x(m,n) —mm X(N,N-1) X(N, 1) | x(N,0)
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Circular Shift Matrix |
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Figure 3.5: The circular shift matrix (CSM) T and II.
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Figure 3.6: The circular shift array (CSA).

vector from the LAI every N clock cycles, then it will shift the data circularly
and send the data to the LAII every clock cycle. There are three inputs in
LAII, é:(k,1,t), X.(k,1,t) and X,(k,[,t), where the 8.(k,[,t) comes from the
circular shift array, and X.(k,[,t) and X,(k,[,t) from the shift register arrays
located behind the LAII. We divide the LAII into two groups: the LAIIl .,
and LAIl,;. Each includes N/2 lattice modules as shown in Fig. 3.2. The
LAII e, contains only those lattice modules for even transformed components
k, while LAII, 44 contains only the odd lattice modules. It should be noticed
that this system contains two LAI and only one LAII. The shift register array
contains 2N x N registers. Their operations are shown in Fig. 3.7.

The following is to illustrate how this parallel lattice structure works to obtain
the 2-D DCT and DSCT of 2-D input successive frames. All the initial values of

the circular shift matrix I (CSMI), circular shift array, and shift register array
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Figure 3.7: The Shift Register Array.

are set to zeros. The input data sequence z(m,n) sequentially shifts row by
row into the (N 4+ 1) x N CSMI. First we calculate the difference between the
t’th row and the (¢ + N)’th row data vector of the CSMI. The two resulting
combinations of the input sequences, z(t+N,n)—z(t,n) and —z(t+N,n)—z(t,n)
forn =0,1,2,..,N — 1, are used as the input sequences for the lattice array Is,
which consist of 2/V lattice modules to calculate the 1-D DCT for {z(t + N,n) —
z(t,n)} and {—z(t+ N,n)—=(¢,n)}. The upper LAI is for the even transformed
components k and the lower one for odd k. Suppose the data of the input vectors
arrive serially per clock cycle, it takes N clock cycles to obtain the é.(k,1,t) for
both of the input sequences. At the N’th cycle, the N transformed data 8.(k, 1, )
are loaded into the circular shift arrays, C'S A, which will shift circularly and send
the data out of the register into the LAITI for different £ components every clock
cycle. In LAII, X (k,l,t+1) and X,.(k,!,t+1) are evaluated according to (3.4)
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and (3.8). Since LAIlyen, and LAII,44 have only N/2 modules, every 8.(k, 1, )
is floating for N/2 clock cycles. It is noted that a specific 2-D transform data
Xc(k, 1, t +1) and X,(k,1,t + 1) are updated recursively every N clock cycles
from X,(k,!,t) and X,.(k,!,t). Therefore the outputs of the LAII are sent into
the shift register array (SRA) where data are delayed by N clock cycles. Each
SRA contains N/2 shift registers each with length N. The data in the rightest
registers are sent back as the X.(k,[,¢) and X,.(k,,t) of LAII. At the N? clock
cycle, the 2-D DCT and DSCT of the 0’th frame are available. After this, the
2-D transformed data of successive frames can be obtained every N clock cycles.

We observe two interesting results in the pre-matrix method. First, both
LAI and LAII can be viewed as filter banks. It is because every lattice module
itself is an independent digital filter with different frequency components k,! =
0,1,...,N — 1. Moreover, all the lattice modules in this architecture have the
same structure. Second, the system requires 3 1-D DCT array and is fully
pipelined with throughput rate N clock cycles. From the above discussion,
transposition for the row-column decomposition method is unnecessary in this
realization. According to the -l-D DCT architecture proposed in [17] (Liu-Chiu2
architecture), the total multipliers required in the 2-D DCT is 12N and total
number of adders is 15N. Due to the goal to pipe out the results every N clock
cycles, it requires three 1-D DCT structures in the system. We will show how to
use only two 1-D DCT lattice arrays to attain the results at the same throughput

rate in the post-matrix method.
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The Post-Matrix Method

The intermediate value 6.(k,,t) in (3.14) can be rewritten as

N1 7 (2n
5.k, 1,) = (~1)F=0() > aft+ Ny cos [%%lﬂ]
2 = m(2n 4+ 1)I
-—-N-C(l) ;:% z(t,n) cos [Tl
= (-1)*X.(t + N, 1) — X.(8,0). (3.15)

That is, we can calculate the 1-D DCT of the ¢’th row and (¢ + N)’th row of the
input frame individually, then perform the summation later on. Qur approach
is to send the input sequence z(m,n) row by row directly into the LAI. It takes
N clock cycles for the LAI to complete the 1-D DCT of one row input vector,
then the array sends the 1-D DCT data in parallel to the CSMII as shown in
Fig. 3.8. The operations of CSMII are shown in the lower part of Fig. 3.5.
At the output of the CSMII, the 1-D transformed data of the (¢t + N)’th row
and t’th row are added together according to (3.15) depending on the sign of
the k components (see Fig.3.8). Then the results are sent to C'SAs, LAII, and
S RAs, whose operations remain intact as in the pre-matrix method. The whole
structure is demonstrated in Fig. 3.8. Therefore, by transforming the input data
first, we can implement the 2-D DCT by using only two 1-D DCT lattice arrays
and retain the same pipeline rate. The total numbers of multipliers and adders

needed for the post-matrix method are 8N and 10N respectively.

3.3.2 The Block 2-D DCT Architecture

In most image processing applications, the 2-D DCT are executed block by block
instead of in successive frames [35, 37]. We will show how to apply the frame-

recursive concept to obtain the block 2-D DCT. It will be easier to understand if
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Figure 3.8: The post-matrix moving frame 2-D DCT architecture.
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we use an example to show how to obtain the 0’th frame 2-D DCT in the post-
matrix moving frame 2-D DCT architecture. Recall that the CSMII in Fig. 3.8
is used to store the transformed data X,(¢,[) of the previous input row vectors.
Since the 0’th frame is the first input data frame, all the values in the CSMII
are set to zeros. Corresponding to (3.15), this means that the second terms
X,(t,1) are zeros. When the (N —1)’th row data vector ( the last row of the 0’th
frame) arrive, the 2-D DCT of the 0’th input data frame is obtained. During
this initial stage, the 2-D DCT of the 0’th frame obtained by the moving frame
approach is equal to the block 2-D DCT of the 0’th frame. Therefore, if we want
to compute the 2-D DCT of the N’th frame, then all the values in the CSMII
are resetting to zeros when the first datum in the N’th data frame (i.e. z(N,0))
arrives. That is, we can obtain the block 2-D DCT by reset the values of the
CSMII every N? cycles. This means that the CSMII in Fig. 3.8 is redundant

and the second terms X.(¢,[) in (3.15) are zeros. So, the intermediate value of

8c(k,1,t) can be rewritten as

N-1 T(2n
§.(k, 1,¢) = (—1)'%0(1) > a4 N,m) cos [—(-2—2-]3—-1—)5} . (3.16)

The block 2-D DCT architecture is shown in Fig. 3.9. Corresponding to our
frame-recursive algorithm, we obtain another block of input data every N? clock
cycles. Note that this is also the total time required for all the N? data to arrive
in a transmission system.

The following is an example to calculate block 2-D DCT for the 0’th frame.
When row data vectors arrive, the LAI performs the 1-D DCT on them. Every
N clock cycles, after the last datum of each row (m, N —1) is available, the LA
completes the 1-D DCT for every row and sends the N 1-D DCT transformed

data to the two length-N C'SAs. The upper CSA translates the intermediate
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Figure 3.9: The block 2-D DCT architecture.
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value 6.(k,1,t) to the lattice array Il.,.,, as do the lower C'SA except that the
signs of the output of the C'S A are changed before being sent to the lattice array
IT,44. The operations of the lattice array 11 and the SRA are the same as those
in the previous methods. As we can see, the hardware complexity of our block
2-D DCT architecture is as simple as the row-column methods. Moreover, our

system can be operated in a fully pipelined manner.

3.4 Comparisons

Since most of the 2-D DCT algorithms proposed are based on manipulating
N X N block signals, we compare only the 2-D block architecture as described
in section 3.2. with other algorithms. The block 2-D DCT architecture is a
fully-pipelined serial input parallel output (S1PO) system with throughput rate
every N clock cycles and in terms of hardware complexity, it requires only two
1-D DCT architectures without transpositions. It is attractive, therefore, not
only for its efficiency in term of system throughput but also for its hardware
simplicity and regularity.

In the following section, the comparisons between our 2-D DCT block struc-
ture and those of others are based on the number of multipliers, adders and
speed. For the sake of clarity, we divide the algorithms into two groups: parallel
input parallel output (PIPO) and serial input parallel output (S7PO). The fast
algorithms presented by Vetterli and Nussbaumer [9, 79], Duhamel and Guille-
mot [80], and Cho and Lee [55] belong to the former class. Vetterli’s algorithm
[79] mapped the 2-D DCT into a 2-D cosine DFT and sine DFT through a

number of rotations, and the 2-D DFT are computed by Polynomial Transform
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(PT) methods [79]. Vetterli’s method can reduce the number of multipliers more
than 50% in comparison to the row-column method based on Chen’s algorithms
[13] and has a comparable amount of additions . Duhamel et al [80] present a
PT-based algorithm which uses the direct DCT approach. This direct PT 2-D
DCT method provides a 10% improvement in both the numbers of additions and
multiplications compared to Vetterli’s result [79] but it requires complex com-
putations. Cho and Lees’ algorithm is a direct 2-D method which employs the
properties of trigonometric functions. The number of multipliers are the same
as that of Duhamel’s, but the structure is more regular, and only real arithmetic
is involved. Up to now, the best results for the first PI PO systems in terms of
the number of multipliers are (N? + 2N + 2), which were obtained by Duhamel
and Guillemot, as well as by Cho and Lee. But assuming that all the N2 input
data arrive at the same time is not practical in communication systems. The
data waiting time is N? which is always neglected in these approaches.

The systolic array approaches proposed by Lee and Yasuda [15], Ma [18],
and Liu-Chiu belong to the STPO method. Lee-Yasuda presented a 2-D systolic
DCT/DST array algorithm based on an IDFT version of the Goertzel algorithm
via Horner’s rule in [15]. The latest systolic array algorithm for 2-D DCT was
proposed by Ma [18], where he showed two systolic architectures of 1-D DCT
arrays based on the indirect approach proposed by Vetterli-Nussbaumer [79],
then he exploited the 2-D DCT systolic array by using the features of the two
1-D DCT systolic arrays. This method requires (N + 1) 1-D DCT structures
and the total number of time steps is (N? + 2N + 2) [18]. We call the block
2-D DCT structure shown in Fig. 3.9, based on the Liu-Chiu2 module [17],

Liu-Chiu2D. This needs only two 1-D DCT, and the total time steps are N2.
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R-C method | Duhamel | Cho-Lee | Ma Ours
on Chen et al.
No. of 2N?In(N) N? N? 4N 8N
multipliers | —6N?/2+8N | +2N +2 | +2N +2 | +N + 1
Throughput | N+ 2N N 2N+1 | N
transposition
Limitation | power power power no no
on N of 2 of 2 of 2
Commun. global global global local local
I/0 PIPO PIPO PIPO SIPO | SIPO
Approach indirect direct direct indirect | direct

Table 3.1: Comparisons of different 2-D DCT algorithms.

The comparisons regarding their inherent characteristics are given in Table 3.1.
In addition, the quantities comparisons in terms of the number of multipliers
and adders are given in Table 3.2 and Table 3.3. In general, the STPO method
is more workable in hardware implementations. Our structure requires fewer
multipliers than Ma’s structure and is highly regular, systematic, and uses only

local communications. In addition, this lattice 2-D DCT architecture can be

generated from the 1-D DCT lattice array without modifications.

3.5 Applications to the HDTYV systems

In recent years, the focus of video signal processing research has been concen-

trated on high-definition television (HDTV) which will become future standard
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NO | row-column method | Duhamel[15] | Cho-Lee | Ma [7] | Liu-Chiu2D
bsed on Chen in[2] | et al. [10]

8 256 96 96 288 64

16 | 1408 512 912 1088 128

32 | 7424 2560 2560 4224 256

64 | 37376 12288 12288 16640 | 512

Table 3.2: Comparisions of the number of multipliers.

No | row-column method | Duhamel[15] | Cho-Lee | Ma [7] | Liu-Chiu2D
bsed on Chen in[2] | et al. [10]

8 | 416 484 466 432 78

16 | 2368 2531 2530 1632 158

32 | 12416 12578 12738 6336 318

64 | 61696 60578 42461 24960 | 638

Table 3.3: Comparisions of the number of adders.

85




for the next generation television [40]. According to CCIR Recommendation 601,
the bit rate for transmitting an uncompressed digital HDTV is about 1Gbps.
This bit rate is too high even for broadband ISDN (BISDN) [40]. Furthermore,
video signals contain a great deal of redundancy when psychological and visual
effects are considered. To make HDTV systems practical, bit rate reduction
and data compression are indispensable. In the past decades, many studies have
been conducted on differential pulse code modulation (DPCM), subband coding,
and transform coding (especially DCT) to achieve bit rate reduction [42, 38, 43].
The DCT has obtained most attention due to its diverse attractive features. The
DCT approaches the statistical optimal transform, Karhunen-Loeve Transform
(KLT), which minimize the mean square errors, for highly correlated signals [1].
Additionally, the DCT has superior energy compaction properties for transform
coding. Many HDTYV systems based on the DCT coding schemes show satisfac-
tory speed and promising performance [29, 35, 36, 30, 41, 42, 34]. A commonly
used encoder configuration of the DCT based source coding is shown in Fig. 3.10
[41, 34]. The DCT is performed on the 2-D video signals with block size 8 x 8,
which is widely used due to its acceptable SNR and implementation complexity
[41]. .

Although there is no uniform standard for HDTV, the interlaced mode with
1080 active lines per frame, 30Hz frame frequency, and 2:1 interlaced ratio is
presently under widely investigations due to its reasonable data rate [32]. With
an assumption of coding each pel (luminance and chrominance ) with 2 bits, the
bit rate required for transmission of the video signal under interlaced modes is
119.232 Mbits/s which satisfies the requirement of 140Mbits/s H4 hierarchy level

[29], and allows sufficient margin for error protection and auxiliary data. The
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Figure 3.10: System diagram of the DCT based HDTV coder.

4:2:2 YUV signals are obtained from RGB signal by A/D converters and coordi-
nate rearrangements. The intrafield 2-D DCT is used for data compression. The
transformed signal is processed by an entropy encoder, which is usually combined
with the run-length coder and variable length encoder. The run-length coder can
reduce the bit-rate by coding every sequence of zeros with a single codeword.
The variable length coder encodes the DCT coefficients with a variable length
code adapted to their probability density function (pdf) distribution.

Most of the 2-D DCT implementations are based on the row-column decom-
positions methods. Although fast algorithms exist for the 1-D DCT, the second
1-D DCT cannot start until all the first 1-D DCTs are completed. To speed up
the operations, one method is to in parallel execute the first 1-D DCT. For the
8 x 8 case, there are 8 1-D DCT blocks to perform the first transform simul-

taneously. Assuming that each signal is 10-bit long, in order to to satisfy the
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Figure 3.11: The block diagram of the DCT encoder.

precision, then the total number of bits required in the input is 640 bits, which is
not practical in the circuit realizations. From this point of view, our serial input
2-D DCT system is more practical in hardware implementations. Moreover, if
the speed of the circuit components, such as the ROM and adder, is high enough,
our 2-D DCT system can be executed as fast as the sample clocking rate.
Although our 2-D DCT implementations are effective, transforming a video
frame of 1080 x 1920 still requires intensive computations. Therefore, we de-
signed a 2-D DCT architecture suitable for the HDTV system to achieve higher
performance. The block diagram of the 2-D DCT encoder is shown in Fig. 3.11,
where five 2-D DCT chips are included. Five chips were used because the ratio
of pixel numbers per line for luminance signal Y and color difference signals U
and V is 4:2:2. As the sampling frequency of HDTV is very high, the pixels of
Y are divided into four groups, in order to carry out DCT in parallel. Addition-
ally, the color difference signal Y and U are switched alternatively to another

DCT coder. The scanning processor shown in Fig. 3.11 is used to divide the
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signal into four luminance components and one color difference component. The
outputs of the 2-D DCT transformed data are sent to the entropy encoder in
parallel or through multiplexers. Since the transform block size is 8 x 8, we
divided the frame into 135 x 240 blocks and 240 channels as shown in Fig. 3.12.
The 2-D DCT are executed on each channel whose scanning pattern is shown in
Fig. 3.12. This scanning pattern reflects the fact that our system is based on
row by row scanning order and is fully pipelined. Thus, such a scanning method

would maximize the system throughput.

3.6 Summary

In this Chapter, we propose a new 2-D DCT algorithm based on a frame-recursive
approach. The resulting 2-D DCT architectures can be obtained by using only
two 1-D DCT arrays, at the same time, the transposition procedure is elim-
inated. It, therefore, does not have the drawback of the row-column decom-
position method in which a transposition is needed between the first and the
second 1-D DCT. In addition, this algorithm generates the 2-D DCT and the
2-D DSCT or the 2-D DCST simultaneously. There are two methods, the pre-
matrix method and the post-matrix method, to realize the moving frame 2-D
DCT architecture. From the post-matrix method, the block 2-D DCT architec-
ture is developed. These architectures are fully-pipelined with throughput rate
N clock cycles for an N x N input frame. As to the hardware complexity, the
structures contain two 1-D DCT arrays, each with N lattice modules which are
modified normal form digital filters with different multiplying coefficients. The

total number of multipliers required in the system is 8 N. Because of the regular-
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ity and efficiency of the systems, they are very suitable for VLSI implementation
for the high speed HDTV systems.

Many HDTYV systems based on the DCT coding shows satisfactory speed and
promising performance since the DCT has superior energy compaction property.
However, most of the 2-D DCT portion of the HDTV systems are still imple-
mented by row-column decomposition methods. To speed up the throughput, the
first DCT operation in the row-column method has to be performed in parallel,
while it is not practical in circuit realizations because of the hardware complex-
ity. In view of these facts, our serial input 2-D DCT system is more feasible
in HDTV applications. The parallel 2-D DCT architecture and the scanning
pattern proposed in Section 6 can process the video data in real time and elim-
inate the waiting time in the DCT codings so that the system performance can
be maximized. Consequencely, our real-time parallel and fully-pipelined 2D-
DCT structure is very attractive in high speed transmission system where every

arrived data can be processed immediately.
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Chapter 4

Optimal Unified IIR Architectures

An optimal unified architecture that can efficiently compute the Discrete Cosine,
Sine, Hartley, Fourier, Lapped Orthogonal, and Complex Lapped transforms for
a continuous input data stream is proposed. This structure uses only half as
many multipliers as the previous best known scheme [17]. The proposed archi-
tecture is regular, modular, and has only local interconnections in both data and
control paths. There is no limitation on the transform size N and only 2N — 2
multipliers are needed for the DCT. The throughput of this scheme is one input
sample per clock cycle. We provide a theoretical justification by showing that
any discrete transform whose basis functions satisfy the Fundamental Recurrence
Formula has a second-order autoregressive structure in its filter realization. We
also demonstrate that dual generation transform pairs share the same autore-
gressive structure. We extend these time-recursive concepts to multi-dimensional
transforms. The resulting d-dimensional structures are fully-pipelined and con-

sist of only d 1-D transform arrays and shift registers.
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4.1 Introduction

Discrete sinusoidal transforms play significant roles in various digital signal pro-
cessing applications, such as spectrum analysis, image and speech signal pro-
cessing, computer tomography, data compression, and signal reconstruction[22,
60, 68, 51]. Among different discrete sinusoidal transforms, the discrete cosine
transform (DCT)[69, 85, 55, 56], the discrete sine transform (DST)[49, 56], the
discrete Hartley transform (DHT)[52, 53, 48, 69], and the discrete Fourier trans-
form (DFT)[73, 60] are widely used because of their efficient performance[51, 7,
3, 9, 11]. Recently, the Lapped Orthogonal Transform (LOT)[70], and the Com-
plex Lapped transform (CLT)[62] were introduced for transform coding with
significantly reduced blocking effects and for motion estimation.

In real-time signal processing applications, especially in speech/image com-
munications and radar/sonar signal processing, input data arrive serially. In tra-
ditional FFT based algorithms, the serial data is buffered and then transformed
using the FFT scheme of complexity O(N log N)[60]. Buffering the serial data re-
quires O(N) time. In this Chapter, we describe a novel architecture that merges
the buffering and transform operations into a single unit of total hardware com-
plexity O(N). Unlike the FFT, this architecture has only local interconnections
and is better suited for VLSI implementations. It is important to note that the
proposed architectures generate time-recursive transforms, not just block trans-
forms, i.e., the transform of the N points [z(t + 1),z(t + 2),...,z(t + N)| is
generated one clock cycle after the transform of [z(t),z(t+1),...,z(t+ N —1)]
is generated. To generate time-recursive transforms, the traditional fast algo-
rithms based architectures require O(logN) time using O(N log N) hardware,

while the architectures we propose require only a constant time with O(N') hard-
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ware. Time-recursive transforms are currently gaining widespread use in motion
estimation, in video signal processing, and in reducing blocking effects in data
compression.

We have shown in [17] that when discrete transforms are performed on seg-
ments of a continuously incoming data stream, transforms can be realized by a
unified lattice structure with a data throughput rate of one input sample per
clock cycle. This architecture is regular, modular, and free of global intercon-
nections. Unlike the many fast algorithms for DFT, DCT, and DHT, there is
no constraint on the transform size N. Table 2.1 [17] summarizes a comparison
of the time-recursive approach with other well-known fast algorithms. A time-
recursive lattice 2-D DCT structure with applications to the HDTV systems is
also given in [65]. This 2-D DCT structure requires only two 1-D DCT blocks
and is fully-pipelined with no transposition.

In this Chapter, we describe an optimal unified filter structure, which pre-
serves the advantages of the lattice architecture, while reducing the hardware
complexity in half. In the time-recursive lattice architecture, two transforms
called the dual generated pairs, are obtained simultaneously. The unified fil-
ter structure is more suitable for applications where only one transform is re-
quired. We develop a systematic approach to derive the time-recursive unified
filter architecture for any discrete transform. We show that all the resulting
unified filter architectures have a similar second-order autoregressive structure
with minimum number of multipliers. A theoretical basis for this fact is pro-
vided. We also demonstrate that the time-recursive concept can be generalized
to multi-dimensional transforms by using only the one-dimensional transform

architecture and simple shift registers. An area-time complexity analysis is also
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provided to show that the proposed approach is asymptotically optimal in speed
and area.

The rest of this Chapter is organized as follows. The unified lattice structure
for sinusoidal transforms is described in Section 4.2. The derivation of the opti-
mal unified filter structure from the transfer function of the discrete sinusoidal
transforms is discussed in Section 4.3. The architectures of the inverse discrete
sinusoidal transforms based on the IIR filter realization are presented in Sec-
tion 4.4. In Section 4.5, the characteristics of these architectures are discussed
from a theoretical point of view. The unified architectures for time-recursive
based multi-dimensional discrete sinusoidal transforms are discussed in Section

4.6. Finally, we give a conclusion in Section 4.7.

4.2 Lattice Structure for Discrete Sinusoidal
Transforms

The time-recursive approach has been shown to be efficient in both hardware and
computational complexity for the computation of discrete sinusoidal transforms
(DXT), (such as the DCT, DST, and DHT), for time series input data stream
[17]. In this section, we will extend this approach to the problems of computing
the transforms DFT, LOT and CLT and we provide a unified view of lattice
structures for time-recursive approach.

Denote the discrete sinusoidal transform DXT of a data sequence of length
N [z(t),z(t+1),...,z(t+ N —1);t=0,1,2,...] at time ¢ as

t+N-1

X(k,t)=C(k) Y. z(n)Pus(k),k=0,1,..,N -1, (4.1)

n=t
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where P,_;(k) are transform basis functions and C(k) are constants used for
normalization. It was shown in [17] that most discrete sinusoidal transforms
have dual generated pairs. That is, the lattice structure used for generating one
transform automatically generates its dual. For example, the dual of the DCT
is the DST. Both the transform and its dual have similar updating relations.
Let us denote the dual generated pairs by X,.(k,t) and X,s(k,¢). Then, the
time-recursive relation between X, (k,t) and X,(k,t + 1) can be obtained by
eliminating the effect of the first term of the previous sequence and updating the
effect of the last term of the current sequence. In general, the dual generation
properties between the transform pairs X,.(k,t) and X,,(k,t) are given by the

following equations [17]:

Xoolkyt+1) = e(){[Xuclk,t) + [2(t + N)(=1)* — 2(£)] D] T

+ [Xaa(h, 1) + [o(t + N)(-1)F = @)D T} (42)
and

Xoo(byt+1) = f(E){[Xea(k,t) + [2(t + N)(=1)* — 2()] D] T

- [ch(kat) + [w(t + N)(_l)k - w(t)]Dc] Fs}a (43)

where D, and D, are the associated cos and sin transform kernels of the DXT
with fixed index n. Coeflicients e(k) and f(k) depend on the definition of the
transforms and are always equal to one except for the two transforms LOT and
CLT. That is, two transforms can be dually generated from each other in a lattice
form as shown in Fig. 4.1. Here, we will briefly describe the definition of the

DFT, LOT, and CLT and state the equations corresponds to (4.2) and (4.3).

t+N-1
Xf(k,t):——\/l—j—v— > :c(n)exp{—j2(n—-t)%k}, E=01,... N—1 (4.4)
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Figure 4.1: The universal lattice module.
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DCT/DST DHT/DFT | LOT/CLT

. | cos(nk/N) cos(2rk/N) | cos(r/2N)
T, | sin(rk/N) sin(2rk/N) | sin(r/2N)
D. | C(k)\/&cos(nk/2N) | \/% T(—1)4-

exp —jfi sin(r /4N)
D, | C(k)\/Zsin(rk/2N) | 0 VE(=1)

exp —j0i cos( /4N)
e(k) | 1 1 exp j 260
f(k) |1 1 exp j20;

Table 4.1: Coefficients of the Lattice structure for the DXT

The Complex Lapped Transform (CLT) [62] of 2N samples [z(t—N+1), z(t—
N+3),...,z2(z+N- 3)] is defined as

;D % +1)(n — t —t
Xar(k,t) = — Z z(n)exp{— j( + 1)(n )W}cos (n )W,
VN nmto(N-1) 2N 2N
k=0,1,...,N—1. (4.5)

The Lapped Orthogonall Transform (LOT) [70, 62] of 2N samples [z(t — N +
3ha(t—N+2),...,2(t+ N — 1) is defined as

\/'Z::(tN(N 1) () cos (2k+12)1(\;1—t)1r cos (n t)?r +ay,
k=0,2,...,(N —2),even part of the CLT
VESHTD | a(n)sin Gtz cop mtir 1 g

k=1,3,...,(N —1),0dd part of the CLT
(4.6)

-Xlot(k7 t) = {
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where ax = Bux = 0, except for ap = —(v/2 — 1)/(2v/2), and Bun-1) =
(=1)"+3 .
Since the LOT is obtained from the even and odd value of k, we focus on the
discussion of the dual generation for the CLT only. Define an Auxiliary Complex
Lapped Transform (ACLT) of 2V samples [¢(t— N +3),z(t—N+2),...,z(z+
N — 1)) as

2

R A, (2k+D(n—t)r, . (n—t)7
Xalbt) = o= % am)ep—EE =0Ty, (108
n=t—(N—%
k=0,1,...,N—1. (4.7)

Then, the CLT and ACLT can be dually generated from (4.2) and (4.3) with
the corresponding coeflicients listed in Table 4.1. All the transforms mentioned
above can be realized by a lattice structure as shown in Fig. 4.1. This lattice
structure is a modified normal form digital filter. Table 4.1 lists the coefficients

in the unified lattice structure for different transforms. Here 8, associated with

the LOT/CLT equals Z&tlr,

4N

4.3 Optimal Time-Recursive Architectures

4.3.1 'Transfer Function Approach

Input data arrive serially in most real-time signal processing applications. If we
can view the transform operation as a linear shift invariant (LSI) system which
transforms the input sequence of samples into their transform coefficients, then
it is similar to a filtering operation. The general approach to tackle a digital filter
problem is to look at its transfer function. The transfer functions of the DXT can

be derived using several approaches. We will derive them from the unified time-
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recursive lattice structures as shown in Fig. 4.1. The time difference equations *

for the dually generated pairs are
Yook(t) = €(R) {Tec [DeB(t) + Yoep(t = 1)] + Ts [Da(t) + yaop(t — 1))} (4.8)

and

Yosk(t) = (k) {Te [DsZ(£) + Yas k(t — 1)] = Ts [De(t) + ekt — 1]}, (4.9)

where

#(t) = (=D)fz(t + N) — 2(2), (4.10)

and Yz (t) and y,,x(t) corresponds to X,.(k,t) and X,4(k,t) in (4.2) and (4.3).

The z transform deduced from the above difference equations are

Yoek(2) = e(k) { (DT + DLy X (2) + ToYaos(2)z ™" + LYoo (2)27 ) (4.11)
and

Yoo s(2) = f(k) {(DsTc = D.T,) X (2) + De¥a(2)27! = D Yaer(2)2 71} (4.12)

Yzs k(2) can be expressed in terms of Yy x(z) and X(z) as

— f(k){(Dch - DCFS)X(Z — FSY;:c,k(Z)Z_l}

Y;vs,k(z) 1_ f(k)I‘Cz"l ) (4'13)
it follows that the transfer function for Xf)ﬁ% is given by
—1)* — 2=N) (e(k)[D.T. + D,T,] — e(k)f(k)D.z!
P Gt ICC) |- e®fph
T—(e(k) + J(R)Toe™ + (R (k)22
Similarly, the transfer function for Xf)zﬁ(%l is given by
—1)k - N KD,I'. — D.I',] — e(k)f(k)D 2!
Ho () < LED =) Uo | = ey B)D)

T (e(k) + J(R)Tez T + c(R)F (R)=2

!The time index t is an integer parameter.

100



From Table 4.1 and the transfer functions derived above, the transfer functions

of different discrete sinusoidal transforms are given by

92 N rk 1—2z71
Hy(z) = \/;O(’ﬂ (1 ==77) ( m) (1-2 (( )2 ; +277)

(4.16)
2 k -N rk L+e7)
Hy(z) = — No(k) ((——1) —z ) (sm ﬁ) (1 - (c(os _) 21 +Z_2>a
(4.17)

1 cos 2Zk _ gip 2k _ -1
Hy(z)= —=(1-27N N N , 4.18
h( ) /N ( ) (1—2(COS 2}7\\}14:) z-1 4 2~2 ( )

_ 1 N COS2]1{,k+]SIH%%-E—Zl
Hf(z)_TN(1—z )(1—2(cos Y gy (4.19)

Because the size of the input data is 2NV in the CLT, the updating vector is

2N

1 — 22N instead of 1 — 2VV. The transfer function is obtained by substituting the

corresponding coefficients in Table 4.1 to (4.8), resulting in

1 (sin LN) el? (1 + eﬂez‘l)
H, = (1—-272N —1)k+1 = 20
#(2) ( ) \/NJ( ) 1 — 7202 (cos -21;\7) z71 1402 :
0 2k +1)m

4N

It follows that for the LOT,
Hio1e(2) = evenpartof{H..} (4.21)
Hioto(z) = oddpartof{H..}. (4.22)

We know from (4.1) that the transfer functions of these transforms are of finite
impulse response. Hence, the poles in the denominator will be cancelled by the
zeros of ((—1)* — z=) in the nominator. We observe that when the updating

vector (1 — z7%) is factored out, the basic structure of all the transforms is
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N1 X (k,t)
) X

- D1 N2
* <+ ’_< I‘—
ze" 7!
: D2

Figure 4.2: The universal IIR filter module.

composed of a FIR and an IIR filter with a second order denominator and a
first order numerator, i.e. we are using an IIR filter to realize a FIR filter.
This realization can greatly reduce the hardware complexity compared with the

implementation consisting of FIR structures.

4.3.2 The Unified IIR Filter Architectures

From the transfer functions derived above, we observe that the DXT can be real-
ized using a single universal filter module consisting of a shift register array and
a second order IIR filter. This structure is depicted in Fig. 4.2. The coefficients
of the universal IIR module for different transforms are listed in Table 4.2.

We note from (4.16) and (4.17) that the DCT and the DST share the same
denominator and can be simultaneously generated using an IIR filter structure

with three multipliers as depicted in Fig. 4.3. Compared with the lattice struc-
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n | D1 D2 N1 N2
DCT N | 2cos(zk/N) |1 C(k)/2 —C(k)\/2
cos(k/2N) cos(rk/2N)
DST N | 2cos(xk/N) |1 ~C(k)1\/2 —C(k)\/2
sin(rk/2N) sin(wk/2N)
DHT N | 2cos(2rk/N) | 1 V& leos(2rk/N) | /L
—sin(2rk/N)]
DFT N | 2cos(2rk/N) | 1 V& leos(2rk/N) | /%
+j sin(2nk/N)]
CLT 2N | exp j26; exp j4; | sin(r /4N)? sin(r/4N)
2 cos(m /2N) exp 0 cos(r /4N)
(=1)*
exp j40;

Table 4.2: Coefficients of the universal IIR filter structure for the DXT.
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Jem T xc(k’t)

x(t) + *

Z [Z_] x LI NSE

Figure 4.3: The IIR filter structure for the DCT and DST.

ture for the DCT and DST[17], the IIR realization requires only half as many
multipliers. The difference is that the IIR structure implements the denominator
of the transfer function in the direct form, while the lattice structure implements
the poles in the normal form. From (4.18) and (4.19), we also observe that a
single unified filter structure can be used to generate both the DHT and the
DFT. This structure is depicted in Fig. 4.4.

The transfer function derived in (4.21) is in complex form. The IIR filter
architecture for the LOT and the CLT is shown in Fig. 4.5.

We will show in the following how to realize the CLT using real operations.

The definition of the CLT in (4.5) can be rewritten as

1 N1 2k +1)(2n + )7 (2n + D)
k=0,1,...,N —1. (4.23)
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JrmnN Ic(4)

X(t) Re X (k1)

Jan L ImX ¢ (k,t)

Figure 4.4: The IIR filter structure for the DHT and DFT.

sirm/2y) exp! ¥ X (kD)

.

x(1)

j49
(-1)kcos(n/4N) sin(m/4N) exp

SN

j40,

exp

Figure 4.5: The IIR filter structure for the LOT and CLT.
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Transforms multipliers | adders

DCT 2N —2 3N +2
DST 2N —2 3N +2
DHT 2N 3N +1
DFT 3N -2 3N +1
LOT* AN AN
CLT* 4N AN

DCT and DST | 3N —3 4N +2

DHT and DFT | 3N —2 4N +1

Table 4.3: Number of multipliers and adders for different transforms with IIR

filter realizations(Here * denotes complex operations).

If we define another transform with basis functions only length N,

1 J(2n 4+ 1)kx
n - - e ———— .2 -
ok v &XP 5N (4.24)

1
= ADCTw = j - DSTw},  nk=0,1,..,N — 1.

then the CLT can be expressed in the form of [62]

N-1

Xeal) = 51 3 o)l — tgern) (4.25)
(=08 X 20t + b,
n=N

This leads to the CLT architecture as shown in Fig. 4.6, in which the ¢,,, are
generated by using the DCT and DST dual generating circuit as depicted in Fig.
4.3. The number of multipliers and adders required for these IIR filter structures

are summarized in Table 4.3.
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Figure 4.6: The IIR filter structure for real operation of the LOT and CLT.
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o™ M(1)
prd — M(2)
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= -
-
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& -
=
9
<D
- |
—J M(N-2)
| + - M(N-1)
to odd module

Figure 4.7: The parallel IIR filter structure for 1-D DXT.

The architecture to generate 1-D DXT is depicted in Fig. 4.7. This parallel
structure consists of a shift register array of size N, two adders, and N IIR
filler modules. Two sets of inputs z(t + N) — z(t) and —z(¢t + N) — z(t) are
generated for the even and odd filter modules respectively. When a new datum

z(t) arrives, a new set of transform coeflicients are obtained in O(1) time, i.c.,

the throughput rate is O(1).

4.4 Architectures for Inverse Transforms

Inverse transforms are important in retrieving original information in digital

communication systems. The inverse DHT and DFT are given by

=)

:I:h(n,t) = —

VN

t+N-1

3 X (k)cas (Zn

k=

n=0,1,..,N~1.

1 t+N-1

-’L’f(n,t)=ﬁ Y. Xi(k)exp{j2n

k=t
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We observe that the transfer function of the inverse DHT(IDHT) is exactly the

same as its forward transform. The transfer function of the inverse DFT(IDFT)

is given by
1 cos 2k _ g5in 2Tk _ ;-1
H = —_(1=2"N N N , 4.28
s(2)= \/N( ‘ )( 1 —2cos 2zl 4 272 (4.28)

which is same as (4.19) except that the imaginary part is negated. Therefore,
the IDHT and IDFT can be realized by using the same architecture as those
depicted in Fig. 4.4 except that we have to add an inverter at the output of the
ImX;(k,t).

The inverse DCT and DST (IDCT and TDST) are defined as follows:

9 tN-1 — D
¥ Ol Xk cos [(H%)(’“ Nt) ] (4.29)
n=01,.. N—1. (4.30)
t+N D
2y(n,1) = kzlc — )X, (k) sin [(“%)(kzz\f) } (4.31)
n=0,1,. N=1. (432

Because C(k) is inside the transform, the architectures require some modifica-

tion. Since C'(k) =1 except for k = 0 or k = N, we can rewrite (4.29) as

T sty o+ D] 1B B v

We observe that the first part of the above equation is of the same form as that
of DCT except for the leading constant coefficients C'(k). Hence, the transfer
function of the IDCT is that of the DCT plus one delay term specified as follows

Hic(z) = \/% ((_1)"’ — Z_N) cos ;]]\cf (1 - Zc(is';_\?—zz_—_l)-i_ 2_2) (4.34)

ﬂ/%(\/g ~ 1)z~ W-1)
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X (K, t) k Jarmn I (1)

Jon o -

Figure 4.8: The IIR filter structure for the IDCT.

This implies that the IDCT can be implemented by using the same architec-
ture as the DCT and adding the compensated term \/%-(\/g — 1)X(t). The

architecture is shown in Fig. 4.8.

Similarly, the IDST can be rewritten as

Hl . [r@n+1)(k—1) 2 1
zs(n,t) = k) sin —(H/=—-1DX N —1§4.
) =5 xwyein [TEREDEZO] 4 SR L pxies v - 1

whose transfer function is

Hi(z) = —]%— ((—l)k - z"N) sir17r—]c (=27 + %(\/g— 1)
" (4.36)

The architecture for IDST is shown in Fig. 4.9.
The Inverse Complex Lapped Transform (ICLT) [62] of samples [ X (¢), X (t +
1),.,.X(Et+N—-1),X(t+N),...,. X(t+ 2N —1)] is defined as

1 t+N-1
vk ) = 57 30 (X () + X (k= 1) (4.37)
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Figure 4.9: The IIR filter structure for the IDST.

20+ 1)(k = t)7,
5N '

+(=DF(X(k+ N)+ X(k+ N —1))] exp{j(

The architecture of the IDCLT is depicted in Fig. 4.10. From the previous

derivation, we see that the inverse transforms can be obtained by using the same

architectures of the forward transforms with one additional branch of multiplier.

4.5 Theoretical Basis

The basis functions of all the discrete sinusoidal transforms mentioned above
corresponds to a set of orthogonal polynomials. One of the important charac-
teristics of orthogonal polynomials is that any three consecutive polynomials are

related by the Fundamental Recurrence Formula [71] given by

Pu(k) = (k = cx) Pz (k) = AnPaca(k). (4.38)
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filter module

x(k) /2
block_m x(k+1\;®_’?_’. DCT and DST + >

block_m x(k) (-I)k
x(k+1)#

Figure 4.10: The IIR filter structure for the IDCLT.

The discrete transforms discussed in the previous section satisfy a simpler ver-
sion of the recurrence relation. More precisely, the parameters ¢, and ), are
independent of n and the basis function P,(k) is periodic in n and % of period

N. In these cases, the Fundamental Recurrence Formula can be rewritten as

P.(k) = (k—c)Po_1(k)—=AP,—2(k), n=0,1,.,N-1, k=0,1,2,.., N-1.
(4.39)
For different discrete sinusoidal transforms, the corresponding parameters k, ¢, A

in the Fundamental Recurrence Formula are stated in Table 4.4.

Lemma 1 For all discrete transforms whose basis funclions satisfy the Fun-
damental Recurrence Formula (4.39), the z-transform of the basis functions
{P.(k)} can be expressed as a rational function with a second order denominator

that is the characteristic equation of the Fundamental Recurrence Formula.
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DCT DST DHT DFT CLT
k|2 cos(tk/N) |2 cos(2rk/N) | 2exp j26;
cos(rk/N) | -2 cos(2rk/N) | 2 cos(r/2N)
c 0 0 0 0 0
o1 1 1 1 exp —j46;
P cos(rk/2N) | sin(rk/2N) | 1 1 1
Py | R ~P, cos(2rk/N) | cos(2nk/N) | exp j20;
sin(2rk/N) | —j sin(27k/N) | cos(x /2N)
Py_1 | (=1)*Po (=1)**'P | Py P_y (1)
sin(r /2N)
exp J20x
Py | B P 1 1 (—1)%4

Table 4.4: Corresponding coeflicients in the Recurrence Formula for different

DXT.
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Proof: Since any P, (k) depends only on the previous two terms, the first two
polynomial terms, P_;(k) and P_y(k), uniquely specify the entire set of basis
functions.

Apply z transform on index n to both sides of (4.39),

P(z,k) = Nj‘; 2P, (k) (4.40)
. Jg{(k — )2 Py_1 (k) — Az Po_o ()}
= (k= )[Py(k) + 27! Ng 2Py (k) — 27N Py_y (k)] —
AP_y(k) + 271 Py (k) + 272 ]i_j: 2P, (k)]

A=2"NPy_y(k) — =N+ Py, (k)]

= (k= )27 P(2,k) — Az 72 P(2, k) + [(k — ¢)P_1(k) — AP_y(k)]
~2"N[(k — ¢)Px_1(k) — APy _3(k)]

=z P_y (k) + AN Py (k)

k=1,2,.,N—1.

Factoring out P(z, k), we obtain

2T OINP (k) — Pu(k)e= VD — APy (k)2" + Pok)2?

P(z,k) = N (b=t 22 (4.41)
_ 2*(Po(k) — Py (k)2) — X2(P_y(k) — Py_y(k)z"N)
A—(k—c)z+2? '

Because of the second-order recurrence relation, the denominators of the z-
transform of the basis functions are second-order polynomials in z.

The characteristic equation of the Fundamental Recurrence Formula (4.39) is
obtained by solving the homogeneous solutions of the difference equation (4.39).

The homogeneous equation is given by

P(z,k) = (k — ¢)P(z, k)" — AP(z,k)z72. (4.42)
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Combining both sides of the equation, we have
Pz, k)22 (A= (k—c)z + 2*) = 0. (4.43)

Since P(z, k) dose not equal to zero, we have that (A — (k — ¢)z + 2?) equals to
zero and hence the characteristics equation is (A — (k — ¢)z + z?), which is the
denominator. 0

The transfer function of the discrete transforms (DXT) is derived from (4.1),

that can be rewritten as
N-1
X(k,t)=C(k) > z(n+t)Py(k),t =0,1,2,.... (4.44)
n=0
Performing the z-transform on the index ¢ on both sides of the above equation,
we have

Hx(z) = C(k)z-w—l)]i‘:jznpn(k)=0(k)z-<N-l>P(z~1,k) (4.45)

n=0

which is the z-transform of the basis orthogonal polynominals with index z re-
placed by 2! and multiplied by C(k)z==1. That is, the transfer function of
the discrete transform can also be expressed as a rational function with a second

order denominator

) (/\PN—l(k) - PN(k)Z_l - )\P—l(k‘)z_N + Po(k)z_(N'H))
A=(k—c)z7t+2z72)

H,(2) = C(k (4.46)

Here we illustrate another way to derive the transfer function of the discrete
sinusoidal transforms. Substituting the coefficients listed in Table 5 to (4.46),

we obtain the transfer functions derived in Section 4.3.1.

Lemma 2 To compute the discrete sinusoidal transforms time recursively, we

have to factor out the updating component (1 — z™N) or (1 4 2=N) in the filter
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realization. There exists an updating component (1 + z~N) or (1 — 27N) in the
nominator of the transfer function of the discrete sinusoidal transform, if and
only if the boundary conditions of the basis function satisfy Py = £Py and
Py =+Py_;.

Proof: If the updating vector can be realized by (1 + z=V) or (1 — z~V), then
the nominator of (4.46) must contain the factor (1 + 2~") or (1 ~ 2~"). That

is, the nominator can be expressed as
APy_1(k)—Prn(k)z = AP_1 (k)2 N+ Po(k)z~ N+ = (1427N)(a+b27Y), (4.47)

since it is a (—NN — 1) degree polynominal. Expand the right side of the above

equation, we have

APy_1(k) = Py (k)z™! = AP (k)= +P0(k)2_(N+1) =a+bz taz™V £bz"N Y

(4.48)
it follows that
a = FAP_y(k) = \Py_1(k) (4.49)
b = +Py(k) = —Py(k),
and
Po(k) = +Py(k) (4.50)

P_i(k) = FPyoa(k).
This proves the necessary condition. If Py = £ Py and P-y = +Py_1, then the
nominator in (4.46) becomes \
APyn_1(k) — Pn(k)z™t — AP_1(k)z~N 4 Py(k)z~(N+1) (4.51)
= FAP_y(k) £ Po(k)z™* — AP_y(k)z~N + Po(k)z~V+1)

= (1 £ 27M)(APs (k)" F AP_4()),
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which means the nominator contains the factor (1 £ 2z~). O

Lemma 3 All the transforms that satisfies Lemma 1 and Lemma 2 can be re-
alized by an updating FIR filter with transfer function (1 — z7N) or (1 + z7N),
and an IIR filter with second order denominator and first order nominator whose

coefficients are dependent on A, (k — c), Po and P_;.

Proof: If Lemma 1 and 2 are satisfied, the transfer function can be expressed

(14 2Ny APy_y — Pyz71)
(A=(k—c)z"t +272)

Therefore, the transform can be realized by the filter structure as shown in Fig.

H,(z) = C(k) (4.52)

4.2. The coefficients are

D1 = (k—c¢) (4.53)
D2 = )\

N1 = APy

N2 = —Py.

a
Lemma 3 implies that if a transform can be computed time-recursively, a maxi-
mum of four multipliers required to realize the transform. Fig. 4.2 shows a good

example of this case.

Lemma 4 For the discrete sinusoidal transforms, the roots of the characteristic

equation belong to the set of the root of (1 & 27N).

Proof: Since the discrete sinusoidal transform is FIR in natural, the roots of the

denominators should be cancelled by the zeros of the nominator. In general, the
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roots of the denominator are complex conjugate poles because of (k—c)*—4X < 0.
Therefore, the poles should be cancelled by the zeros of the (1 & 2~V), and the

roots of the denominator

(k—c)£/(k—c)?—4)

21,22 = o € (4.54)
expa% n=0,.,.N-1,2N=1

exp ZEHD =0, N~ 1,2 = —1.
O
All the discrete sinusoidal transforms list in Table 4 satisfies Lemmas 1 through
4. Therefore, these transforms can be computed time recursively and can be
realized by a FIR filter with transfer function (1 & 2~V) and an IIR filter with
second order polynominals. These facts support the results obtained in Section

3 and 4.

Lemma 5 If two transforms can be dually generated, then they share the same

autoregressive model in their IIR filter structure.

Proof: The basis polynomial p, and g, of the dual generated transform pairs

satisfy the following equations
Pn = Dxcpn—l + stQn—l (455)
n = Dz‘ch—l - stpn—l-

Since py, and g, are dually generated and from (4.56), they have the same char-

acteristic equation. That is

I—-Az'=0, (4.56)
where
-D.’L‘C D.'L‘S
A=
_Dzs Dmc
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As shown in Lemma 1, the roots of the denominators are the roots of the char-
acteristics equation. Since p, and g, have the same characteristic equation, they
have the same denominator. Hence, both transform have identical poles, and as

a result, the same autoregressive filter form. O.

Example 1 The DCT and DST are dual generated transform pairs and share

the same second order denominator.

As shown in [17], the DCT and DST satisfy

cos [”(2(”;]?“)]“] ~ cos [%k} cos [—————”(2’;;1)’“] (4.57)
[(2( 1) 1)k] —Sir[l [gf ] Sil[l [(7;(22;1\;:{]
m{2in+ 1)+ T . | mdn 4+
! 2N = NN
22524

it follows that

wk
D, = —1, 4.
cos [N] (4.58)
. |7k
D, = —sin [—N—] .

From (4.56), the poles are the root the following equation 1 — 2 cos [%’3] z7h 4

27?2 = 0, which is the same as the characteristic equation derived from the

Lemma 1. This is why the DCT, DST and DFT, DHT share the same second
order autoregressive structure. From Lemma 3, it is noted that a maximum
of 4N multipliers is required to realize the transform. Due to the fact that

A =1 and Py = +Py_; for the case of the DCT and DST, we can see that

2N multipliers for the DCT and DST is minimum for this realization. Based on

119



Lemma, 5, we can combine the denominator together for the dual generation of
DCT and DST. This gives an average 1.5N multipliers to realize the DCT or

DST. We believe that this is the best we can achieve for real time computation.

4.6 Time-Recursive Multi-dimensional Trans-

forms

Multi-dimensional transforms provide powerful tools for multi-dimensional sig-
nal processing. Some of the important applications are in the areas of signal
reconstruction, speech processing, spectrum analysis, tomography, image pro-
cessing, and computer vision. Specifically, in multispectral imaging, interframe
video imaging, and computer tomography, we have to work with three or (higher)
dimensional data. It is difficult to generalize the existing fast 1-D algorithms to
3-D or higher dimensional transforms. However, our time-recursive concept can
be easily extended to multi-dimensional transforms resulting in architectures
that are simple, modular, and hence suitable for VLSI implementation. Since
the 3-D DCT is very useful in processing interframe video imaging data, we first
describe the filter architecture for the 3-D DCT, and then generalize it to any

multi-dimensional discrete sinusoidal transform.

4.6.1 Time-Recursive Structures for 3-D DCT

The basic concept of time-recursive computation is to compute the new transform
at time (¢ + 1) based on the transform at time ¢. The operations can be divided
into two parts, one consists of computing the difference of the input data between

time ¢ and (¢ + 1) and the other consists of performing the recursive updating.
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Looking at the basic architecture of computing 1-D DXT as shown in Fig. 4.2,
the basic structure consists of three components: shift registers, adders, and IIR
arrays. The shift register is used to store the input data from z(¢) to z(¢t + N);
adders are used to compute the difference between data z(¢) and z(¢+N) and the
IIR arrays are used to perform the computation recursively. We will show that
the d-D DXT can be computed by using d blocks consisting of shift registers,
adders, and filter arrays, each performing the time-recursive computation along
a dimension.

For 1-D time-recursive DXT, the input data window is moved one sample
at a time. That is, the input data vector at time ¢ is given by the vector
[z(t),...,z(t+ N — 1)], and at time (¢ + 1) the input data consists of the vector
[z(t+1),...,z(t+ N)]. The time-recursive relation for the 2-D transforms is based
on updating the input data row by row [65]. A 2D-DCT for HDTV application
based on the lattice structure as considered in [65]. The input data sequences for
time-recursive 3-D transforms are as shown in Fig. 4.11. Here, we assume that
input data is updated frame by frame in the third axis nj, that is, the range of the
input data z(ni,ne,n3)is {ny =0,---,N—1;ny =0,---,N—1;n3 =0,1,2,....}.
We call the input data frame z(nq,n2,t) for a specific index ¢ as the #th frame

input data. The 3-D DCT of the tth frame input data is defined as
—1 N-1t+N-1

XC.’B(k'l, kg, k3, t) = C(kl k‘3 Z Z Z nl, na, n3 (459)

n1=0no=0 nz=t
. COS 7['(2”1 -+ 1)]{11 cos 7!'(2722 + 1)k2 oS 7l'[2(713 - t) + 1]k3
2N 2N 2N

The 3-D DCT of the (¢+1) frame input data {n; =0,--- ,N—=1;n; =0,---,N—

Ling=t+1,..,t+ N.}is

N-1 N-1 t+N

Xa(ky ko kst +1) = C(k)C(k)Clhs) 3 3 Y a(ny,na, n3)

71 =0 ny;=0 nz=t+1
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Figure 4.11: The input sequence of the time-recursive based 3-D transforms.
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(4.60)

+ COS ON

:7r(2n2 + 1)k‘2
2N
. cos 7r[2(n3 —;]:r 1) + 1]]{73} .

P7r(2n1 + 1)]61]

+ COs

The concept of time-recursive approach is to update the 3-D DCT of the (¢ + 1)

frame input data based on X 3(k1, k2, k3, t). The time-recursive relations between
the 3-D DCT X (ky, k2, ks, t + 1) of the (¢ + 1)th input frame and the 3-D DCT

Xes(ki, ko, ks, t) of the (t)th input frame are

Xea(ky, k2, ks, t+ 1) (4.61)

2 ks k
= [Xca(kl,kg,kg,t) + Xalks, ko, tal 5:C (kg)cos(;r ~ )] cos (l-?’->

2 ks | . k
+ [Xczs(kl, kg, k3,t) + Xc"’ [kl, kg,tA]NC(kg) s1n( 72rN )l Sin <.7r_?i) .

Here we introduce another 3-D transform X,(k1, ko, k3,t) defined as

N-1 N-1t+N-1

Xczs(klak%k&t) = ( k2 C(k3) Z Z Z n11n27n3 (462)

m_O n2_0 na=t
cos 71'(2711 + 1)k1
2N

cos 7(2ng + 1)k,
2N

sin [W[2(n3 —1)+ 1]k3] .

2N
A similar relation exists between the updated transform X2,(k1, ks, k3,¢+1) and

the previous transform X2,(k, ks, k3, t), that is

Xes(kyy ko, ks, t + 1) (4.63)
ks k
= [Xc2s(k1,k2, k‘3, ) + Xc2 [kl,kg,tA] C(kg,) sm( ON )} COs ("‘NE)
k
_ lXcs(kl,kz, ks, t) + Xz [y, kg,tA] C/(ks) cos(= 3)] sin (%’“3) ,
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where ta in Xz [k1, k2,ta] implies that the input data (Here we denote as A(t +
N, 1)) of the 2-D DCT are based on difference of two frames and A(t + N, 1) is

given by
A(t+ N,t) = (=1)*2z(ny, na, t + N) — z(n1,n9, 1), (4.64)

which is a 2-D data frame obtained from the difference between the (¢ + N)th
and the tth input data frames as shown in Fig. 4.11. This is the first part of
the time-recursive computation. The 2-D DCT X (ky, ko, A(t + N, t)) can be

rewritten as

XC2(k1,k2,A(t + N,t)) (465)

N-1 N-1 w(2n, °1
= (=1)*C(ki)C(kz) 30 37 w(m,ma,t+ N)cos [ﬁﬁi&]

n1=0 npy=0

. oS 7'('(2712 + 1)](32
2N

N-1 N-1 7(2n, X
C)C(k) Y 3 a(ny, o, t) cos [—92—;1—)13]

n1=0n2=0

- cos [w(2n2 + 1)k2} .

(4.66)

2N

The above equation suggests that the 2-D DCT of each frame can be computed
first and store it in a shift register array of size (N + 1) x N2. The difference
between the 2-D DCT of the ¢th frame and (¢ + N)th frame is then computed.
Equations (4.62) and (4.64) indicate that the 3-D DCT can be generated by
feeding the 2-D DCT of the updating vector into a lattice module as shown
in Fig. 4.12. The size of the shift register in the lattice module is N? because
for a specific k3 there are N? values (ky = 0,..,N — 1;k; = 0,..,N — 1) to be
updated. A similar updating relation exists for the 2-D DCT and the 1-D DCT
[65]. The number of shift registers in the lattice module for 2-D and 1-D DCT

are N and 1 respectively. In fact, any d-D DCT can be obtained from the 1-
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Figure 4.12: The lattice module.

D DCT by repeated application of equations (4.62) and (4.64). Therefore, the
time-recursive 3-D DCT lattice structure consists of three lattice arrays which
are used to produce the 1-D, 2-D and 3-D DCT individually. The 3-D DCT
can be implemented using either the lattice or the filter structures as described

below.

Lattice 3-D DCT architecture

The architecture of the frame-recursive lattice 3-D DCT is depicted in Fig. 4.13.
It consists of three Lattice Array Blocks (LABO, LAB1, and LAB2) whose con-
figurations are depicted in Fig. 4.14. The lattice array LABIi consists of a shift
register array, two adders, and a lattice array; the shift register array is of size
(N +1) x N' and is used to store the intermediate values. The function of the

adders is to update the effect of the new data and eliminate the effect of the

125



X(k1,k2,k3)

X g N N —
N N N
Lattice .
Array Lattice Array Lattice Array
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Figure 4.13: The architecture for the frame-recursive 3-D DCT.

previous data. The structure of the lattice array is shown in Fig. 4.12. The
difference between different lattice arrays is only in the number of delays in the
feedback loop. There are N delay elements in the ¢th lattice array.

The operation of this architecture can be viewed as follows. Input data is
scanned row by row and frame by frame and sent to the first module LABO
which generates the 1-D DCT of each row on every input frame. When the
last datum of each row is available, the 1-D DCT of each input row vector is
obtained. These N 1-D DCT transformed data are loaded in parallel into the
second module LAB1 every N clock cycles. The LAB1 module is used to generate
the 2-D DCT of each data frame. After N? clock cycles, when the last datum of
the each frame arrives, the 2-D DCT of each frame is available. These values are
loaded in parallel into the LAB2 module to generate the 3-D DCT recursively.
The difference between the 2-D DCT of the parity of the (¢ + N)th and ¢th
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Figure 4.14: The structure for Lattice Array Blocks.
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frame is used as the input to the LA2 module. There are N? shift registers in
the feedback loop of LA2 to store the transformed data of each frame. It takes
N? cycles to finish updating a new 3-D block and this is the period required
to obtain a new 2-D DCT data block. It is easy to verify that the system is
fully-pipelined.

In applications where only block multi-dimensional transforms are required,
the above architecture can be simplified. Intermediate values stored in the shift
registers are not necessary. The purpose of the shift registers required is to store
the current data obtained from filter arrays, hence its size is reduced to N* for
Lattice Array Block . Since the updating is unnecessary, the two adders can be

eliminated. The lattice block 3-D DCT structure is shown in Fig. 4.15.

ITR 3-D DCT architecture

We have seen in Section 4.3 that the lattice structure can be realized as directly
as a digital filter by considering the transfer function of each lattice module.
This approach is used to convert the time-recursive lattice 3-D DCT structure
into its direct form configuration. The only difference between lattice and IIR
3-D DCT architecture is that the lattice array ¢ is replaced by direct form filter
array ¢. The direct form of the lattice module in Fig. 4.12 is depicted in Fig.
4.16. The size of the shift register in direct form realization is the same as that
of lattice modules. The configuration of the direct form filter 3-D block DCT is

depicted in Fig. 4.16.
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Figure 4.16: The configuration of the direct form filter 3-D block DCT.

4.6.2 Time-Recursive Structures for Multi-Dimensional

DXT

In this section, we generalize the time-recursive concept to any multi-dimensional
DXT and derive the fully-pipelined block structures. Denote by [z(1y,t)] the
input data file at time ¢, and by [z(n},t 4 1)] the data file at time (¢ + 1) which
is obtained by shifting [z(r},t)] in a direction of one of the axes of 1y by one
unit. For simplicity, let us assume that the data file is shifted in the direction

of the last axis, nq. The d-dimensional DXT of the input data file [z(ny, )] is

defined as
R N—-1 N-1 t+N -1 .
Xxa(kg,t) = Z e Z z(1ig, t) P, (ka), (4.67)
n1=0 ny=0 ng=t
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Here, we assume that the transform kernel Py, (kq) is separable?. That is
Piy(Fa) = Py (k1) Pay (k2) - - - Pag(ka)- (4.68)

From the analysis in Section 4.6.1, we see that the updated transform )(Xd(k_:i, t+

1) is related to the previous transform X ya(kq,t) by the following equation [65]:
Xyx (kayt +1) = { Xya(ka,t) + Xpama[Facy, At + N, )] Di(k) } T (k), (4.69)

where A(t + N, t) is the difference between the data files at time ¢ and (¢t + N ),
and D, (k) and T';(k) are coefficients that depend only on the transform kernel
and index k. The above equation indicates that the d-dimensional DXT can
be updated recursively using the previous transformed data X Xd(k_;, t) and the
(d — 1)-D DXT of A(t + N,t). This relation can be used recursively such that
any d-D DXT can be generated from the 1-D DXT using d filter blocks as shown
in Fig. 4.17.

As described in the previous section, there are two kinds of time-recursive
DXT architectures, the moving-frame d-D DXT and the block d-D DXT. The
structure of the basic building block in the moving-frame DXT is shown in Fig.
4.18, where the filter array can be either the lattice or the filter form. The
function of each block is to shift the (d — 1)-dimensional data into a data bank,
then distribute the difference of the first and last frame of the data bank to the
second stage DXT array. The dimension of the shift register array is (N +1) x N*
and the delay in filter array 7 is N*. The time required to obtain the (d — 1)-
dimensional DXT is N?!, which is also the time required to obtain the N¢

elements of the transformed data.

2This is true for all the discrete sinusoidal transforms considered here.
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Figure 4.17: The block diagram of the d-D DXT.

In the case of block DXT, the size of the shift register array can be reduced
and adders can be eliminated because intermediate transformed data do not have
to be stored. The size of the shift register array is N*. The structure of the LAB

is shown in Fig. 4.19. The lattice array 7 is reset every N'*! cycles.

Area-Time Complexity Analysis

Our architecture for computing the d-dimensional transform DXT over N¢ points
consists of d blocks, each block is composed of a shift register array followed by
a one-dimensional lattice or IIR structure made up of N DXT modules. The
sth shift register array is of size (N + 1) x N'b, where 0 < ¢ < d —1 and b is
the number of bits used to represent each number. The output is generated in

a shift register array of size N?b. Therefore the total number of multipliers and

adders used is O(dN) = O(N), and the total amount of memory is O(/N%b). The
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Figure 4.18: The basic building structure of the moving-frame DXT.
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next lemma states that the area of any chip that computes the d-dimensional
DFT transform must be Q(N®), and hence our design asymptotically optimal
in its use of area. The same holds true for the remaining transforms. We are

using the standard VLSI model as introduced by Thompson[75].

Lemma 6 Any VLSI system that computes the d-dimensional DFT on
N points requires area A = Q(N?b), where b is the number of bits required to

represent each input number.

The proof of the lemma can be derived from a result in [74] in a straightforward
way. Hence our design uses the least amount of memory asymptotically. The
speed of our VLSI design cannot be improved asymptotically since it processes
the input in real time. Hence our design is asymptotically optimal in both speed

and area.

4.7 Summary

In this Chapter, we proposed optimal time-recursive unified architectures for
computing the DCT, DST, DHT, DFT, LOT, and CLT using only half as many
multipliers as the unified lattice structure described in [17]. In the lattice struc-
ture, two transforms are dually generated simultaneously, while this optimal ar-
chitecture has the flexibility of generating either one transform or both together.
The basic configuration of the optimal unified architectures has a second order
autoregressive model. It is optimal in the sense that the number of the multipliers
used is minimum and both speed and area are asymptotically optimal. We also
gave a theoretical justification of the unified time-recursive architecture using

the Fundamental Recurrence Formula. We show that to generate the DCT and
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DST, only 2N — 2 multipliers are necessary, while in the case of dual generation
of the DCT and DST, only 1.5N multipliers are required for each transform on
average. Finally, we generalized the time-recursive concept to multi-dimensional
transforms. The resulting architecture is fully-pipelined, modular, and regular.

It requires only d 1-D arrays for computing a d-D DXT.
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Chapter 5

VLSI Implementation of DCT/DST

Lattice Structures

The alternate use [22] of the discrete cosine transform (DCT) and the discrete
sine transform (DST) can achieve a higher data compression rate and less block
effect in image processing. We will focus on the parallel lattice structure that
can dually generate the 1-D DCT and DST proposed in Chapter 2. This archi-
tecture is especially suited for VLSI implementation because they are modular,
regular, and have only local interconnections. The VLSI implementation of the
lattice module using the distributed arithmetic approach is described. The chip
was designed for real-time processing of 14.5-MHz sampled video data. Fabri-
cated by using 2um double-metal CMOS technology, the lattice module contains
approximately 18,000 transistors, which occupy a 5.6 x 3.4mm? area. The 40-pad

die size is 6.8 x 4.6mm?. It has been tested to be fully functional.
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5.1 Introduction

The DCT and DST are two of the most eflicient transforms for video and image
coding applications. The DCT approaches the optimal performance of the KLT
transform for highly correlated signals, while the DST approaches the optimal
performance of the KLT for signals with low correlation coefficients. If we are
able to compute the DCT and DST simultaneously, this structure will be very
useful, especially when we do not know the statistics of the incoming signal.
Rose et al. showed in [22] that alternate use of the DCT and DST can achieve
the removal of redundancies in the correlation between neighboring blocks, as
well as the preservation of continuity across the block boundaries.

The most important block in the parallel 1-D lattice structures is the lattice
module. The VLSI implementation of the lattice DCT/DST module is described
in this Chapter. In order to achieve an efficient VLSI realization, we adopt the
distributed-arithmetic method to implement the multipliers in the structure.
The advantages of using this memory-oriented realization are the savings in chip
area, better accuracy and higher speed [25, 90]. This chip has been fabricated
using 2um CMOS technology, and will be capable of processing 116 Mb/s data
in real-time.

The rest of this Chapter is organized as follows. In Section 2, the algorithm
and structure to generate the parallel 1-D DCT and DST are described. In
Section 3, the VLSI implementation of the lattice module by employing the
distributed-arithmetic method is discussed. The detailed architectures of the
building blocks in the DCT/DST lattice module are described in Section 4. The
VLSI realization of the chip and simulation results are given in Section 5. The

finite-precision analysis is given in Section 6. Finally, the conclusion is given in
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Section 7.

5.2 Distributed-Arithmetic based Implemen-
tation

Since the lattice module is the most important component in the DCT/DST
lattice structures, we focus on the VLSI implementation of the lattice module.
It has been shown in [63, 64, 86, 85, 82] that the DCT and other sinusoidal
transforms can be implemented in the form of filter banks. Every lattice module
in the DCT/DST structure is a modified normal form digital filter [28], which
has the least roundoff noise and is less sensitive to coefficient inaccuracy. Due
to the fact that the block 2-D DCT operation will reset all the outputs of the
LAI and LAII every N and N? clock cycles respectively, the roundoff errors
will be further minimized [65]. In the following we will focus our discussion on
the 8 point DCT with 8-bit input signals and 12-bit output signals using two’s
complement binary number system.

Suppose we want to construct the lattice module that is based on the Liu-
Chiu2 module with 4 multipliers [17]. Then the total number of multipliers
needed for the 8 x 8 2-D DCT is 64, which is quite excessive. In addition, the
system throughput will be limited by the operational speed of the multipliers.

Several DCT processors has been proposed [88, 81, 89, 25]. Sun et al. [25, 28]
proposed the first working 16 x 16 DCT chip which incorporates the distributed-
arithmetic method. Using this memory-oriented structure, a high speed, high
accuracy efficient hardware implementation of the 2-D DCT can be achieved.

We adopt the distributed-arithmetic scheme in our VLSI implementations. The
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multiplication results stored in the ROM are computed using double precision
numbers on a SUN workstation. The lattice module can be redrawn as shown
in Fig. 5.1. The dashed box in Fig. 5.1 can be implemented by using a single
ROM with three inputs and four outputs. Using this realization, the roundoff
errors due to multiplication are minimized since distributed-arithmetic trans-
forms explicit multiplication into implicit multiplication. Therefore, the errors
of the system are all due to the quantization errors resulting from finite precision
implementation and addition operations. Under the 12-bit two’s complement re-
alization, the RMS error values are approximately 40dB [25], which is satisfactory
for most applications. Assuming that every input of the ROM is 2-bit long, the
lattice module can be implemented using 6 ROMs and 22 adders as shown in
Fig. 5.1. The ROM size for each lattice array is 18432 bits. By reducing the
number of bits of every input of the ROM to one, the ROM size reduces to
4608 bits. This is one-fourth of the previous case, but the the number of adders
needed is doubled.

Another way to implement the lattice module using ROMs is shown in
Fig. 5.2. Each dashed box is realized using a ROM with one input and two
outputs. Fig. 5.2 illustrates the realization of each ROM when the number of
bits of the input signal is 6 bits. Using this method, the ROM size of each lattice
array is 13824 bits and the number of adders needed is 10. When the number
of bits of the input signal is reduced, the ROM size is reduced but the number
of adders is increased. We implement our system based on the schematic dia-
gram for each lattice module as shown in Fig. 5.2. The adder is a 12-bit carry
lookahead full adder/subtracter which is constructed using three 4-bit carry-

look-ahead adders. Since, ROMs need less area than general purpose multipliers
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and can achieve a higher speed, circuit implementations using this approach can

be used for very high speed video signal processing.

5.3 Design of the Building Blocks

The main building blocks of the lattice structure are ROMs, adders, shift reg-
isters, and latches. These components will be described individually in this
section. The critical path in our lattice modules is the feedback loop which
includes one ROM and three adders. A traditional two-phase clocking scheme
would use one phase to perform these computations and a second phase to latch
* the results. In order to make the two phases of the clock more symmetric, we
perform computations on both phases of the clock. As shown in Fig. 5.3, we
perform one addition and the ROM lookup during the first phase and two addi-
tions during the second phase. Intermediate results are stored in half-latches as

described below.

5.3.1 ROM Implementation

As described in Section 4, the main component of the distributed-arithmetic
based lattice structure is the ROM. Most existing ROMs are implemented based
on the precharge concept, that is, the bit lines are precharged high during the
precharge phase, and then the selected word lines discharge some of the bit lines
according the coeflicients stored during the evaluate phase. In order to reduce
the ROM access time, we use a novel ROM design [66]. Fig. 5.4 shows the
detail of each cell in the ROM. A simple inverter with a feedback transistor and

a transmission gate controlled by phase ¢; is used as a sense amplifier at the
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output of the bit-lines. We precharge the bit lines to an intermediate voltage
between GND and Vdd, and use n-channel transistors to either charge the bit
line from this intermediate voltage to Vdd-Vt or discharge it to GND, during the
evaluate phase. In this scheme, the array is fully populated; . i.e. the number
of n-channel transistors in the array is MN, where M is the number of word lines
and N is the number of bit lines. A ‘zero’ is stored at a particular location, by
connecting the n-channel transistor at that location to Vdd; a ‘one’ is stored by
connecting the transistor to GND. The layout of the storage cells in the ROM
array is shown in Fig. 5.5. The cell size is only 13X x 16).

In our distributed-arithmetic scheme, the multiplication of the 12-bit input
number with a 12-bit sine or cosine coefficient is performed by two ROMs each
with 6-bit inputs and two adders. This reduces the chip area needed to imple-
ment multiplication with fixed coefficients. The ROM includes two 6-bit decoders
and two small ROMs as shown in Fig. 5.3. The 12-bit input is divided into two
parts; the most significant 6-bits of the input are used to generate the coeffi-
cients for small ROM1 and the least significant 6-bits are used for small ROM2.
The final result of the multiplication is obtained by adding the outputs of small
ROM1 with a shifted version of the outputs of small ROM2. We only store the
most significant 7-bit result of the multiplication at ROM2. The sizes of small
ROM1 and ROM2 are 64 words by 24 bits and 64 words by 14 bits respectively.

In order to improve the ROM access time, each 6-bit decoder is implemented
as a tree consisting of two 3-bit decoders and a linear array of 64 AND gates.
The delay time for this 6-bit decoder is 8.55ns, while a straightforward imple-
mentation would have a delay of 20.40ns. The outputs of the 64 AND gates

form the word lines of the ROM array. The logical layout of the 6-bit decoder is
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shown in Fig. 5.6. The physical size of the final ROM is 1292 x 1646 which is
much smaller than the area needed by a general purpose multiplier. The total

ROM access time is 20ns.

5.3.2 Adders

Since the lattice modules are implemented based on a word-serial bit-parallel
approach, high-speed bit-parallel adders are necessary. We build a 12-bit carry
lookahead adder using three 4-bit carry lookahead adders [67]. Two large invert-
ers are placed at the outputs of the adders to supply sufficient drive capability.
The physical size of the 12-bit adder is 1022\ x 256\ and the propagation delay
through the adder is 18ns.

5.3.3 Shift Registers and Latches

There are two kinds of latches and one shift registers in the circuit. One of the
latches is the half-latch which is controlled by phase ¢ and is used to store the
intermediate results obtained from the adders. The logical representation of the
12-bit half-latch is depicted in Fig. 5.7. The other latch is the reset controlled
half-latch located in the feedback loop. Its logical circuit is shown in Fig. 5.7.
When the reset signal goes low, the outputs from ROM2 and ROM3 are set to
zero. The shift register located at the input stage of the system is a regular two

phase shift register which delays the input sequence by eight clock cycles.

5.3.4 Control Unit

Only one control signal (reset) and two clock phases (¢; and ¢) are required in

this system. Phase ¢ is used to latch the computational results from one adder
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Figure 5.6: The logical diagram of the 6-bit decoder.
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Figure 5.7: The logical diagram of half-latch and reset controlled half-latch.

and the ROM, while phase ¢ is used to latch the results from the remaining
adders. Since the propagation delay time for the ROM and the adder is approx-
imately the same, we can make both clock phases symmetric to each other. The
signal diagram of these two phases is depicted in Fig. 5.8. The reset signal is
active low. One of the attractive features of this chip is the very simple control

signals used. No additional logical control circuitry is needed in the design.

5.4 Chip Realization and Simulations

Having realized the symbolic layout of the individual blocks, the next issue
is to integrate all these components efficiently. The floor plan of the lattice
module is shown in Fig. 5.9. This includes three ROMs, eleven adders, four

half-latches, two reset controlled half-latches and one shift register. ROM2 and
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Figure 5.8: The signal diagram of the clock signals.

ROMS3 are rotated by 90 and 270 degree respectively to simplify inter-component
routing. This chip accepts 8-bit input signals and produces 12-bit DCT and
DST coefficients every 100ns. The physical layout of the lattice module chip is
depicted in Fig. 5.10. There are 18000 transistors in the chip, most of which are
used in the three fully-populated ROMs. The total size of the active circuitry is
5400X x 3400A. This is fabricated in a die of size 6800\ x 4600\ and packaged
in a 40-pin chip.

Both logical and timing simulations were performed on the this chip. From
the simulation results due to Sun et. al[25], the word length of the ROM must be
at least 9 bits to ensure that the SNR is greater than 40dB. To reduce the error
due to recursive computations, we increase the word length of the ROM to 12
bits. We used IRSIM to perform logic simulations on the layout of the chip. The

results from IRSIM were compared with the DCT and DST of the same input
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sequence obtained from a C program written on a SUN workstation. The results
are accurate up to the least significant bit of the 12-bit representation. The
SNR of this computation from simulations is about 41dB, which is satisfactory
for image and video processing applications. SPICE simulations indicate that the
worst case rise and fall time for the ROM bit-lines are 8ns and 9ns respectively.
Fig. 5.11 shows the timing simulation for the entire ROM which includes the
decoder, cell array, and sense amplifier. The sense amplifier, together with a
feedback transistor is used to precharge the bit lines to an intermediate voltage
between GND and Vdd. This decreases the voltage swing on the bit lines during
the evaluate phase, and hence reduces the ROM access time. The upper part
of Fig. 5.11 shows the case when the output is charged to high. The total
delay time from input to output is 20ns. The lower part of Fig. 5.11 shows
the case when the output discharges from this intermediate voltage to GND. It
should be noted that although the bit line does not charge up to Vdd, the sense
amplifier can still discharge the output to GND in a relatively short time. The
delay time in this case is 15ns. The delay time for the three stage 12-bit carry
lookahead adder is 20ns. The critical path in the structure is the feedback loop,
which contains one ROM and three adders. Timing simulations indicate that
the chip works at a frequency of 14.5MHz and hence input data at a rate of
116Mb/s can be processed in real-time. An example of the chip testing results
using Integrated Measurement Systems V2000 machines is given in the following
list. The exact DCT and DST results are compared with those obtained from
the Irsim and chip testing. Compared with the DCT chip built by Sun et. al
[25], our data throughput rate is about nine times faster than theirs.

Resource P1=Timing TXT
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Technology

2-um double metal CMOS

Core size 5.6 X 3.4mm?
Die size 6.8 x 4.6mm?
Total no of transistors | 18,000
Active signal pads 39

Speed 14.5MH~z

Table 5.1: Summary of the DCT lattice module chip.

17 AT P1 12

Resource End

Radix P1=Bin

Polarity P1=Pos
Hidrive P1=5.00V
Lodrive P1=0V
Format P1=RZ,0s,30ns

Resource P2=Timing TXT
26 AT P2 10
Resource End
Radix P2=Bin
Polarity P2=Pos
Hidrive P2=5.00V
Lodrive P2=0V
Format P2=RZ,40.‘OOHS,30ns
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Resource DCT=Compare TXT
18 B3 Ycl1 36
18 B2 Ycl0 37
18 B1 Yc9 38
18 BO Yc8 39
9 B7 Yc7 40
9 B6 Ycb6 2
9 B5 Yc5 3
9B4Ycd 4
9B3Ye35
9B2Yc26
9B1Ycl?7
9 BO Yc0 8
Resource End
Radix DCT=Bin
Polarity DCT=Pos
Threshold DCT=2.27V
Sample DCT=72.00ns

Resource DST=Compare TXT
15 B3 Ysl11 13
15 B2 Ys10 14
15 B1 Ys9 15
15 B0 Ys8 16
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3 BT Ys7 17

3 B6 Ys6 18

3 B5 Ys5 19

3 B4 Ys4 20

3 B3 Ys3 22

3 B2 Ys2 23

3 B1 Ys1 24

3 B0 Ys0 25
Resource End

Radix DST=Bin
Polarity DST=Pos
Threshold DST=2.27V
Sample DST=72.00ns

Resource Vdd=Power TXT
25 V0 Vdd 11

Resource End

Power Vdd=5.00V,250mA ,0s,HIZ

Aclk System
Fail 0
Mask ”111111111111 1111111111117
Input R P1 P2 Irsim DCT Irsim DST Chip DCT Chip DST
7700000000 0 1 1 xxxxxxxxxxxx xxxxxxxxxxxx 000000001110 111111101000
77 00000000 0 1 1 xxxXXXXXXXXX xxxxxxxxxxxx 000000000000 000000000000
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?

2

”»

”

»

»

»

»

»

»

»

»

»

”

”,00000000 0 1 1 xxxxXxXXxXXxXx xxxxxxxxxxxx 111100000111 000011000101
”,00000000 0 1 1 XXXXXXXXXXXX XXxXxxxxxxxx 111100000111 000011000101
?,00000000 0 1 1 XXXXXXXXXXXX Xxxxxxxxxxxx 111100000111 000011000101
”7.,00000000 0 1 1 xxxxxxxxxxxx xxxxxxxxxxxx 111100000111 000011000101
”,00000000 0 1 1 xxxxxxxxxxxX Xxxxxxxxxxxx 111100000111 000011000101
”,00000000 0 1 1 xxxxXXXXXXXX XXXXxxxxxxxx 111100000111 000011000101
”7,00000000 0 1 1 xxXxXXXXXXXXX XXxxxxxxxxxx 111100000111 000011000101
7.,00000000 0 1 1 xxxxxxxxxxxx xxxxxxxxxxxx 000000000000 000000000000
”,00000000 0 1 1 000000000000 600000000000 000000000000 000000000000
”,00000000 0 1 1 000000000000 000000000000 000000000000 0000060000000
”,11111111 1 1 1 000000000000 000000000000 000000000000 000000000000
”,00000000 1 11 111100000111 000011000101 111100000111 000011000101
”,00000000 1 11 111100101100 001000110001 111100101100 001000110001
”,00000000 1 11 111101110001 001101001010 111101110001 001101001010
”,00000000 1 11 111111001100 001111100011 111111001100 001111100011
”,00000000 1 1 1 000000101111 001111100100 000000101111 001111100100
”,00000000 1 11 000010601010 001101010001 000010001010 001101010001
”,10001000 1 1 1 000011010000 001000111111 000011010000 001000111111
»,00010001 1 1 1 000001110010 000100111111 000001110010 000100111111
”?,11000000 1 11 111101111101 000101001011 111101111101 000101001011
7,00111000 1 11 111011101010 001010001111 111011101010 001010001111
7,00001110 1 1 1 111100001000 010000110001 111100001000 010000110001
»,00111100 1 11 111101110100 010101100100 111101110100 010101100100
7,00111101 111 111111001000 010111111101 111111001000 010111111101
”,00000010 1 1 1 000000100100 011000001011 000000100100 011000001011
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” 7 00000001 1 1 1 000010110011 010101100000 000010110011 010101100000
: Mem End

5.5 Finite Precision Analysis

From the definition of the discrete sinusoidal transforms, we can see that the
discrete sinusoidal transforms can be realized directly by using transversal FIR
filters. To reduce the number of multipliers, we propose the lattice and direct
form IIR architectures, Either the lattice or direct form structure is realized the
FIR operations in terms of IIR filter structures. Due to quantization on the
coefficients of poles under finite-precision implementation, the poles and zeros
can not be cancelled exactly. Therefore, the problems of numerical stability,
accuracy of recursive computations become interesting issues.

From the transfer functions of the discrete sinusoidal transforms, we observe
that poles of the system belong to the roots of (122") (Lemma 4 of Chapter 4)
because those transforms are FIR in natural. The poles are determined from the
coeflicients of those four multipliers on the butterfly of the lattice module and
from the coefficients of the multipliers in the second order autoregressive loop
of the direct IIR realization. The poles and zeros can not be cancelled exactly
under finite-precision implementation. However, the locations of the poles are
determined from the cos and sin coeflicients only. We claim that the systems
are numerical stable because we can always choose appropriate coefficients such
that the poles of both architectures are inside the unit circle. The operation of

the butterfly inside the lattice structure is basically a rotation operations like
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the QR-Decomposition that has been shown to be numerical stable.

Next, we will discuss the accuracy problem under finite-precision implemen-
tation. Our approach is to use random input data sequences as input signals to
our time-recursive lattice or IIR structure, then calculate the average SNR by
using our time-recursive approach. The input sequence is a random sequence
with integer values from 0 to 255. Here the noise or the error of the SNR is
the difference between the result of time-recursive and direct DCT computation.
The signal used in the computation of SNR is the transformed value obtained
from the direct DCT computation. The transform size is assumed to be 8 for
simplicity.

Under the cases of finite precision implementation, we write a program to
simulate the number of word-length required to ensure the correct operation of
the transforms. We perform the time-recursive DCT computation based on the
lattice structure by using a random sequence with 1000 sets of input vectors.
Before every set of input vector, the system will be reset. Under the case that
every word is realized by using 17 bit 2’s complement representation (the number
of integer bit before binary point are 9,9,8,8,7,7,7,7 for k = 0,1, ..,7 respec-
tively, the average SNR of the DCT and DST is given in Table 5.2. For the
case of 13 bit 2’s complement realization and the same number of integer bit for
different k as described above, the average SNR of DCT and DST is shown in
Table 5.3. For the case without reset and computing for more than 2000 sets of
input vector, the SNR of the DCT and DST for different channels is shown in
Table 5.4. In our VLSI implementation, we realize the multiplication by table
lookup ROM instead of multiplier. Under the ROM realization, we multiply the

fix-point input with floating-point cos or sin coefficients then truncate the results
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k DCT DST

0/1 | 44.942963 | 35.190636
1/2 | 34.184319 | 44.814548
2/3 | 39.264011 | 43.289104
3/4 | 41.745930 | 79.265343
4/5 | 79.027130 | 49.259743
5/6 | 48.230076 | 50.621094
6/7 | 53.087914 | 57.517517
7/8 | 57.517517 | 57.517517

Table 5.2: The SNR of different channels under 17 bit 2’s commplement realiza-

tion for lattice structure with reset.

to fix-point representation. The precision will be grealty improved under this re-
alization. The SNR of the DCT and DST under ROM realization with 13 bit 2’s
complement realization is shown in Table 5.5. We can see that for ROM-based
fix-point time-recursive DCT and DST computations with reset by the lattice
structure have reasonable SNR under 13 bit 2’s complement realization.

We perform the same finite precision simulation on the direct form IIR struc-
ture. Under the case that every word is realized by using
{24,23,21,21,20,20,20,21} for {k = 0,1,..,7} 2’s complement realization, the
average SNR of the DCT and DST computations with reset is given in Table 5.6.
Under the same number of bits 2’s complement realization for the above IIR case
, the average SNR for the case without reset and computing for more than 2000

points is given in Table 5.7. We see that the direct IIR structure requires larger
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k

DCT

DST

0/1

10.655185

16.459002

1/2

9.285774

10.730865

2/3

23.946426

18.457523

3/4

20.127630

24.292803

4/5

30.984459

25.592823

5/6

19.969921

34.406025

6/7

33.664532

27.156586

7/8

28.221741

24.243774

Table 5.3: The SNR of different channels under 12 bit 2’s commplement realiza-

tion for lattice structure with reset.

k

DCT

DST

0/1

44.987225

36.080139

1/2

29.888460

39.248798

2/3

39.477829

30.254431

3/4

24.502811

79.231575

4/5

79.267960

43.144184

5/6

40.664646

23.840471

6/7

24.687447

16.813284

7/8

16.019300

79.347824

Table 5.4: The SNR of different channels under 17 bit 2’s commplement realiza-

tion for lattice structure without reset.
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k DCT DST

0/1 | 50.443138 | 53.527218
1/2 | 45.009701 | 49.953545
2/3 | 47.878632 | 53.429337
3/4 | 51.759617 | 62.241699
4/5 | 62.962940 | 59.318321
5/6 | 55.741486 | 57.282707
6/7 | 58.739319 | 60.233566
7/8 | 54.367374 | 61.524181

Table 5.5: The SNR of different channels under 12 bit 2’s commplement realiza-

tion for lattice structure with reset.

number of word-length to have the same range of SNR as the lattice structure.
From the simulation results, we observe some interesting phenomenon. First,
the lattice structure has better numerical properties under finite-precision anal-
ysis than direct IIR realization. This is because the multiplication inside the
feedback loop of the direct IIR structure will increase the dynamic range of in-
ternal values.. Therefore, it requires more number of bits to prevent overflow
The

problem. Second, the dynamic range of different channels is different.

word-length to have same SNR for different channels will be different.

5.6 Summary

The algorithm and architecture of the first chip that can generate the 1-D DCT

and DST simultaneously were described. We implemented the lattice module
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Table 5.6: The SNR of different channels for IIR realization with reset.

Table 5.7: The SNR of different channels for direct form IIR structure without

reset.

k

DCT

DST

0/1

44.942963

27.735569

1/2

37.864502

70.388779

2/3

52.676773

38.406712

3/4

45.298786

45.232964

4/5

79.027130

63.747444

5/6

55.914196

52.004436

6/7

40.730568

46.265491

7/8

35.204231

45.141651

k

DCT

DST

0/1

10.663971

0.115382

1/2

12.286688

7.103189

2/3

11.586293

8.112682

3/4

13.489008

24.281227

4/5

18.664270

10.714873

5/6

12.423462

3.119943

6/7

11.605821

0.481012

7/8

10.191545

24.317970
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using the distributed arithmetic method with a data rate of 116 Mb/s under 2um
CMOS technology. Testing results clearly show that our VLSI implementation
is a good candidate for real-time image processing. We are currently exploring
further refinements and a full-implementation of a system that can handle 16 x 16

block sizes.
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Chapter 6

Conclusions and Future Research

In this dissertation, we have studied the problem of developing efficient VLSI
architectures for real-time computation of the discrete sinusoidal transforms, es-
pecially the DCT/DST/DHT/DFT/LOT/CLT. The architectures are based on
the time-recursive approach which can obtain the transform immediately when-
ever a new datum arrives. This approach has been shown to be a very promising
method for the applications of video communications since our structures can
match the high speed requirements in real-time video systems. Moreover, the
resulting architectures are regular, modular, local-connected, and very suitable
for VLSI implementation. In the following, we will summary our contributions
and suggest further research directions.

The major contribution of our work is to propose a new point of view in
the VLSI implementation of the discrete sinusoidal transforms. Instead of using
different implementation techniques to improve the realization of FFT-like algo-
rithms, we start from the serially available property of signals in the transmission
and scanning systems to improve the operation speed of the systems. We have

shown that our system has higher throughput rate than others and satisfies the
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speed requirement in video communication systems. From the time-recursive
approach, we also provide an unified view of the discrete sinusoidal transforms.
All these discrete sinusoidal transforms can be generated by using same lattice
or IIR architectures with different multiplication coeflicients. The fundamental
dual generation relations between the DCT/DST, DHT/DFT and LOT/CLT
can also be derived. The other important results are summaried as follows.

Based on the time-recursive concept, we first proposed the unified parallel
lattice structures that can dually generate the DCT and DST simultaneously as
well as the DHT are developed. These structures can obtain the transformed
data for sequential input time-recursively with throughput rate one per clock
cycle and the total number of multipliers required is 6 N — 8. Furthermore,
there is no constraint on N. The resulting architectures are regular, modular,
and without global communication so that they are very suitable for VLSI im-
plementation. Every lattice module in the lattice array can be viewed as an
analysis filter banks. It is because every lattice module itself is an independent
digital filter with different frequency components &£,/ = 0,1,..., N — 1. We also
proposed the synthesis filter bank structure for the DCT that is almost same as
that of the analysis filter bank.

In addition to deriving unified parallel lattice structures for 1-D discrete
sinusoidal transforms, we also employ the frame-recursive concept on the 2-D
DCT for the successive input frames. A new real-time parallel 2-D DCT lattice
structure is proposed. The system is fully-pipelined with throughput rate N
clock cycles for N x N successive input data frame. Moreover, the 2-D DCT
architecture is modular, regular, and requires only two 1-D DCT blocks which

can be extended directly from the 1-D DCT. Parallel implementation of this
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architecture for HDTV applications is also presented.

The lattice structures we proposed are superior to other architectures in all
the qualitative comparisons except the number of multipliers is large when N
is small. Hence, we proposed an optimal time-recursive unified architectures
for computing the DCT, DST, DHT, DFT, LOT, and CLT using only half as
many multipliers as the unified lattice structures. It is optimal in the sense that
the number of the multipliers used is a minimum and both speed and area are
asymptotically optimal. We show that to generate the DCT and DST, only
2N — 2 multipliers are necessary, while in the case of dual generation of the DCT
and DST, only 1.5/N multipliers are required for each transform on average. Two
transforms are dually generated simultaneously in the lattice structure, while
this optimal architecture has the flexibility of generating either one transform
or both together. We also gave a theoretical justification of the unified time-
recursive architecture using the fundamental recurrence formula. Finally, we
generalized the time-recursive concept to multi-dimensional transforms. The
resulting architecture is fully-pipelined, modular, and regular. It requires only d
1-D arrays for computing a d-D DXT.

The VLSI implementation of the lattice module has been fabricated by using
2um double metal CMOS technology. The chip has been shown to be fully
functional under 14.5MHz clock rate which can achieve a data processing rate of
116Mb/s that is satisfied for most video signal applications. Under current 1.2
or 0.8 um CMOS technology, a clock rate of 40MHz and data rate of 320M Hz
is easy to achieve that is very desirable in sophisticated video communications
applications such as HDTV or multimedia systems.

Although a lot of work has been done on this research topic, a few prob-
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lems are not studied completely and several new research topics can be further
investigated. They are summaried as follows.

The finite-precision problem is an important issue for filter realizations. Sev-
eral interesting issues, such as \numerical sensitivity, stability, quantization ef-
fects under different realization models, the sensitivity of the SNR of different
frequency components should be addressed. Theoretical analysis and numerical
simulation of the quantization effects should be done to better understand these
problems.

Fault tolerance is an important issue for VLSI systems. For example, in the 2-
D DCT chip, there will be more than 100000 transistors. Therefore, designing an
efficient algorithm-based fault-tolerance scheme is essential to ensure the correct
operation of the chip.

Motion estimation is important in video signal processing and teleconferenc-
ing where only small motion involved between interframes. Instead of transmit-
ting all the data in the frames, only motion vectors are estimated and trans-
mitted. There are many ways to find motion vectors, such as block matching,
phase correction and cross correlation approaches. Most of the phase correla-
tion approachs are based on the DFT. However, the DCT other than the DFT
is most used in the image data compression. Combining the DCT and motion
estimation by the time-recursive and phase correction relation concepts will be

an interesting research direction.
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