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Abstract

A numerical technique capable of simulating blade-scale compression system 
ow instabilities
over times scales spanning tens of rotor revolutions is presented. Simulations of stall inception,
growth to fully-developed rotating stall, and evidence for hysteresis, secondary instabilities, and
other nonlinear phenomena are presented. Signal processing techniques for 
ow asymmetry
characterization are discussed in the context of obtaining low-order representations of the 
ow
disturbances with the ultimate goal of active stall suppression.

Keywords: compressor stall, instabilities, bifurcations, computational 
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1 Introduction

Models for understanding the aerodynamics of compression system stall inception and growth
of these disturbances to fully-developed rotating stall have existed for over forty years. A
feature common to many of these models is that the power input to the 
ow �eld is modeled
by some forcing function to the equations of 
uid motion [1, 2]. This \indirect" approach is
favored over direct numerical simulation because of the wide time scale range of the dynamic
phenomena (several revolutions for stall, 10-100's for a surge cycle) and the complexity of direct
computational 
uid dynamic simulations of multistage compression systems.

Recently, numerical techniques which represent the force imparted to 
uid 
ow �elds as forc-
ing functions to the Navier-Stokes equations [3] (replacing boundary conditions in the 
ow and
pressure �elds) have been developed for simulating systems with 
uid/
exible structure inter-
actions [4]. Because the speed with which 
uid dynamic simulations can be performed increases
with decreasing complexity of the domain over which the computations are performed, these
techniques can also improve the e�ciency of these computations. Exploitation of the interplay
of this numerical technique and the communication patterns of massively-parallel processors is
a key element in making the multistage compressor simulations possible in this work.
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The modeling approach presented in this study is unique in the �eld of turbocompressor
simulation in that not only do the forcing functions depend on spatial position, but they are
also computed solely from the equations of 
uid motion and the geometry of the compressor
blading. An important aspect of this work is studying the predictive capabilities of such a
model in simulating the inception of rotating stall as the stall margin is crossed, and following
the growth of these instabilities to fully-developed rotating stall. Simulations of rotor blade wake
momentum defect growth to a fully separated 
ow �eld blocking a blade passage will be shown
to be consistent with the conceptual model of compressor stall, originally proposed by Iura and
Rannie [5]. Stall cell propagation rates of approximately 1/2 rotor speed were observed in our
simulations. The stall cell propagation mechanism put forth by the cited study1 corroborates
with our simulations.

The simulation results presented in this paper focus on a two stage compression system
model. Each rotor row consists of 11 blades and each stator has 14 blades. The number of blades
was chosen to exceed the minimum number of rotor blades involved in a propagating modal stall
cell: Longley [6] estimated that the minimum wavelength of a modal stall disturbance would
span eight blades, and this theoretical prediction is supported by experimental studies with
a seven rotor blade machine [7] which resulted in stall events consistent with the continuum
models of Moore and Greitzer [1]. Naturally, smaller-scale events should then be captured in
our design.

Understanding the spatial structure of the stall cells is important for interpreting signals
obtained from a �nite number of measurement probes in experimental systems and is particularly
important for designing stall controllers based on direct suppression of these 
ow disturbances.
Early studies of the spatial structure of stall cells assumed single sin-shaped modes, and studies
which built on this initial work decomposed the stall cells into modes of a truncated Fourier
series. We will present preliminary results on obtaining a optimal (empirically determined) set of
basis functions from our detailed simulations, a technique which has the potential of generating
extremely low order simulators which retain virtually all of the �delity of the original simulations.

2 The Numerical Simulation Technique

The compression system model developed in this paper is based on 2D, incompressible 
ow
through an annulus, and so we begin by writing the Navier-Stokes equations in conservative
form and separating the right-hand-side into terms which are linear and nonlinear in the velocity
�eld v to obtain

@v

@t
= �r � (vv) +

1

Re

r
2v �rp+ f = N(v) + L(v) �rp+ f (1)

over the unit square. What follows is an outline of the numerical technique used to integrate
(1) over one time step �t. The time step of all simulations performed in this study was �xed at
0.001 rotor revolutions. A staggered arrangement of velocity component discretization points
was used in the �nite-di�erence calculation of the spatial derivatives [8]. Pressure and forcing
function scalar �eld values were de�ned at the cell centers using a 500�500 evenly spaced array
of cells. Dimensionless rotor speed is 1.0 and the Reynolds number based on the circumferential
length was set at Re = 10; 000.

At the start of each time step, given a velocity �eld vn at time tn and following the operator
splitting method of Karniadakis and co-workers [9], we predict an interim velocity �eld v̂ from

1The mean 
ow �eld diverted around the blockage results in blades to one side experiencing increased angles of

attack, thus inducing 
ow separation, and blades to the other side experiencing the opposite e�ect, resulting in overall

stall cell propagation in the former direction
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Figure 1: Compression system geometry on the discretization grid points. Mean axial 
ow is from

bottom to top. Rotors: 1st and 3rd blade rows; stators are 2nd and 4th. Vyn marks the axial

velocity measurement locations.

a fourth-order Runge-Kutta (explicit) step:

v̂ � vn

�t
=

1

6
(k0 + 2k1 + 2k2 + k3)

with
k0 = N(vn) k2 = N(vn + k1�t=2)
k1 = N(vn + k0�t=2) k3 = N(vn + k2�t):

Adding the contributions of the pressure and forcing �elds gives

^̂v � v̂

�t
= �r^̂p+ fb + ft with ft � ey =

�
V




�2
(2)

where ft acts only in the direction ey of the mean axial 
ow and is applied over the entire 
ow
�eld as a substitute for the atmospheric-to-plenum pressure rise. V is the mean axial outlet
velocity component, and 
 is the throttle position in the ori�ce equation.

The spatially resolved forcing function fb is computed to impart the equivalent amount of
force that would otherwise be \felt" by the 
uid if the 
uid/blade boundary condition actually
existed. If x is the vector of k discretization points de�ning an individual rotor or stator blade,
v̂(xi) is the interim velocity �eld interpolated to the discretization point xi, and v

�

i is the blade
velocity,

kX
j=1

�(xi;xj)fb(xj) =
v�i � v̂(xi)

�t
:

Solving this system of linear equations for the individual forces fbi is numerically e�cient, since
the array of � values only must be inverted once. This numerical simpli�cation is possible since
the arrangement of forcing points on each blade remains constant, and because the blades are far
enough from each other so that their force �elds do not overlap. The numerical distance function
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Figure 2: Stall inception after throttle position change from 
 = 0:3 to 
 = 0:2.

�(xi;xj) used above, in calculating v̂(xi), and for spreading fb to the pressure discretization
point locations is discussed in Peskin [4].

Continuity is enforced by taking the divergence of (2) and solving the resulting Poisson's
equation for the static pressure �eld p:

r
2^̂p =

r � v̂

�t
+r � fb: (3)

Solving the (spatially) discretized form of (3) amounts to solving 250,000 coupled, linear, alge-
braic equations { a large number resulting from the �ne mesh size. This means iterative solution
methods must be used over a direct method, such as Gaussian elimination. Because we have
replaced what would otherwise be a complicated, time-dependent geometry with forcing func-
tions de�ned over a simple domain, we can take advantage of relatively non-memory intensive
and naturally parallelizable techniques, such as the Conjugant Gradient Method. A simple do-
main means less use of routed and more nearest-neighbor communications in massively-parallel
processors, and so we have found signi�cant advantages to performing our simulations, written
in CM Fortran, on a Thinking Machines Corporation CM5.

The �nal step in computing the total update also bene�ts from fast linear equation solvers
since we chose to use an implicit integrator for calculating the contribution of the linear portion
of (1):

vn+1 � ^̂v

�t
= L(vn+1):

This concludes the discussion of the numerical integration technique.
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3 Simulation Results

One of the hallmarks of compression system aerodynamic instabilities is the hysteresis associ-
ated with compressor stall. In a noise-free situation, we �nd that as the compressor throttle is
closed, the plenum-to-atmospheric pressure rises while the mean axial 
ow decreases until the
axisymmetric 
ow �eld becomes unstable. After this point is crossed, small perturbations grow
rapidly into large-amplitude rotating stall cells. Reopening the throttle does not necessarily
reverse this transition: the multistability brought about by the nonlinear nature of the instabil-
ities can lead to nonrecoverable stall and operating points which are unstable with respect to
�nite amplitude disturbances. Noise clouds the stall inception picture, since small amplitude
inlet 
ow �eld disturbances can be ampli�ed by the impending instability and may give rise to
the frequently cited, long-lived, small amplitude stall precursors.

Preliminary simulations were performed to �nd the approximate location of the stall incep-
tion point. The compression system simulator was then brought to equilibrium at a throttle
opening corresponding to 
 = 0:3, a \uniform-
ow," locally asymptotically stable operating
point (we place the term uniform-
ow in quotes since the velocity �eld, even in the inlet and
exits ducts, is never truly uniform due to 
ow around the compressor blading). The throttle
was then closed through the range where the 
ow was found to become unstable to a �nal value
of 
 = 0:2. The time trace of Fig. 2 shows the onset of stall soon afterwards. Note that the
disturbance grows to a large-amplitude rotating stall cell after only a few rotor revolutions,
growing only out of the natural 
ow asymmetry induced by the rotor-stator blade interactions.
The early state of this 
ow disturbance is illustrated in Fig. 5.

After a period of disturbance growth to fully developed rotating stall, the throttle was re-
opened to 
 = 0:3 (recall that this throttle position corresponds to a locally asymptotically
stable uniform 
ow operating point). After reaching equilibrium, we found that the rotating
stall persisted, a clear indicator of multistability (hysteresis). See Fig. 3 for a close-up view of
the stalled 
ow �eld. Furthermore, plotting the mean exit pressure versus time (Fig. 4) shows
a secondary, time-dependent oscillation. Because the frequency is so much lower than the fre-
quency with which stall cells interact with individual rotor blades, we take this as evidence of
secondary bifurcations taking place along the stalled-
ow equilibria locus born o� the axisym-
metric 
ow solution branch. Because of the incompressible formulation of this simulation, the
exit duct does not act as a mass storage region and so this is not a surge bifucation, but results
from the birth of a modulated traveling wave. See Adomaitis and Abed[10] for more details on
the bifurcation behavior of these systems.

4 Signal Processing

One of the primary motivations for this research was to develop a compression system 
ow
instability simulator with no built-in bias towards the structure of the stall inception and fully
developed 
ow �eld instabilities. This approach would give a model capable of resolving both
modal and localized disturbances, and so would provide an e�ective tool for developing numerical
techniques for characterizing the 
ow asymmetry and testing signal processing techniques for
identifying such 
ow features in an experimental rig. To this end, consider the problem of
�nding a set of spatially-dependent trial functions  i(x) from which a time-dependent linear
combination can be computed to represent the the axial component of 
ow �eld (Vy):

Vy(x; t) = a0(t) 0(x) + a1(t) 1(x) + : : :+ am(t) m(x):

Taking  0 = 1 means a0 represents the mean axial 
ow Vmean, and all  i for i = 1; 2; : : :
represent spatially-varying modes, so

v(x; t) = a1(t) 1(x) + : : :+ am(t) m(x): (4)
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Figure 3: Stable 
ow �eld relative to rotor 1, illustrating stalled and unstalled blade passages (to

the right and left, respectively) for 
 = 0:3. The stall cell propagates to the right in this reference

frame. Note the region of reversed 
ow upstream of the stall cell.

6



0 2 4 6 8 10 12 14 16 18 20
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Rotor Revs

P
re

ss
ur

e 
R

is
e

Figure 4: Plenum-to-atmospheric pressure trace during rotating stall for 
 = 0:3. The 6-rev

oscillations (a much lower frequency than that generated by stall cells passing from blade-to-blade)

indicates secondary instabilities.

Ultimately, we will consider low-order approximations to the entire 2D 
ow �eld, but this
study will be limited to a 1D \slice" across the circumferential coordinate at the axial position
of the velocity measurement probes (see Fig. 5). Taking snapshots of the instantaneous axial
velocity component of the 
ow �eld deviations at this location facilitates comparisons to previous
studies, such as Moore and Greitzer[1] where the 
ow �eld disturbance just upstream of the inlet
guide vanes was modeled.

Because �nite di�erence approximations were used to discretize (1), each snapshot taken
during the stall inception transient of Fig. 3 consists of a long (500 element) vector of velocity
values. Each of these vectors corresponds to points in time separated by approximately 1/3 rotor
rev intervals, giving a total of M = 43 snapshots collected during the 12 rotor rev transient.
Prior to applying the numerical technique to be discussed, we estimate the phase angle of the

ow �eld disturbances and adjust all of snapshots to synchronize the phase angles so that the
minimum velocity point all coincide at the Vy8 probe position.

The time evolution of the 
ow �eld is governed by set a well-behaved di�erential equations
and so there is some degree of correlation between the snapshots. This means the snapshots are
not necessarily linearly independent, and so an e�cient method for representing the snapshot
vectors is to �rst determine an orthogonal basis spanning the snapshots and then decompose the
snapshots using the basis vectors as discretized trial functions. One can use the Gram-Schmidt
orthogonalization procedure to obtain the basis vectors, but an optimal basis is determined by
a computationally e�cient implementation of the Proper Orthogonal Decomposition method
discussed in Sirovich [11].

If the vector vi represents the deviation of the axial 
ow component Vy from the mean axial
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the velocity measurement probes Vyn.


ow Vmean of snapshot i, we can construct the array of inner products:

2
6664

(v1; v1) (v1; v2) � � � (v1; vM )
(v2; v1) (v2; v2) � � � (v2; vM )

...
(vM ; v1) (vM ; v2) � � � (vM ; vM )

3
7775 (5)

and so determine the optimal set of eigenmodes spanning the original set of snapshots using the
eigenvectors Ei of (5). Each element Ej;i gives the contribution of snapshot j to eigenmode i,
and so the empirical eigenfunctions are computed by

 i(x) =

MX
j=1

Ej;ivj(x):

These eigenfunctions are shown in Fig. 6.
With each eigenmode  i is associated an eigenvalue �i which corresponds to the probability

of �nding that eigenfunction in the time-dependent 
ow �eld from which the snapshots were
extracted:

�i = [(v1;  i)
2 + (v2;  i)

2 + : : :+ (vM ;  i)
2]=M:

An optimal set of trial functions should capture as much energy as possible in as few modes as
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Figure 6: First eight empirically-determined eigenmodes.
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Figure 7: Contribution of the �rst four eigenmodes to the snapshots collected during stall inception.

possible, and this holds true for the example presented since2
66666666666664

�1 = 0:7179
�2 = 0:1212
�3 = 0:0679
�4 = 0:0313
�5 = 0:0189
�6 = 0:0131
�7 = 0:0095
�8 = 0:0052

...

3
77777777777775

showing that nearly 96% of the energy is captured in the �rst �ve modes.
These empirically determined eigenmodes can now be used to decompose snapshots of the

dynamically changing 
ow �eld to quantify growth rates of these modes as the stall cell develops.
Projecting snapshots of the 
ow �eld onto the basis functions gives the values of the mode
amplitude coe�cients of (4); results are shown in Fig. 7.

One can reverse the decomposition procedure and reconstruct the 
ow �eld from mode
amplitudes and the empirical eigenfunctions, such as shown in Fig. 8. This is more than simple
data compression, since we see that the �rst mode may provide a more e�cient better way
of representing the 
ow asymmetry than the �rst term in a trigonometric, wavelet, or other
theoretical basis function series since it captures 72% of the disturbance energy. Analogous to
the Galerkin procedure used by [1], we can use these empirical eigenfunctions as a basis for
discretizing the original equations of 
uid motion giving nonlinear mode-amplitude equations
which should predict the bifurcations and dynamics in the neighborhood of where the snapshots
were collected. In fact, the eigenmodes of Fig. 6 can be used without modi�cation for discretizing
the model of Moore and Greitzer [1].

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Circumferential Coordinate

A
xi

al
 V

el
oc

ity
 P

er
tu

rb
at

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Circumferential Coordinate

A
xi

al
 V

el
oc

ity
 P

er
tu

rb
at

io
n

Figure 8: Axial 
ow deviation from mean (left) and 
ow deviation reconstructed from the �rst

eight modes (right) corresponding to the 
ow �eld at rotor revs=6 of Fig. 2.

The 
ow �eld distubances can be faithfully reconstructed for more developed rotating stall
cells and the small amplitude disturbances at stall inception. Figure 9 is a stall inception
disturbance (c.f. Fig. 5, the true disturbance) reconstructed from the same eight eigenmodes of
Fig. 6, showing the initial 
ow disturbance is localize to several blades. It is interesting to see
that the blade passage-width oscillations grow in amplitude to the side of the main 
ow deviation
corresponding to the higher angle of attack (the circumferential coordinate range spanning 0.8
to 1.0 and then continuing from 0.0 to 0.2) and are suppressed on the other side (0.4 to 0.8), in
accordance to the stall cell propagation mechanisms discussed.

5 Acknowledgments

This research was supported by AFOSR grant F49620-93-1-0186. This work was supported
in part by a grant of HPC time from the DoD HPC Shared Resource Center, Army HPC
Computing Center CM5, and the University of Maryland UMIACS CM5.

References

[1] F. K. Moore and E. M. Greitzer, \A theory for post-stall transients in axial compression sys-
tems: Part I { Development of equations," ASME Journal of Engineering for Gas Turbines

and Power, Vol. 108, pp. 68-76, 1986.

[2] M. W. Davis, Jr. and W. F. O'Brien, \Stage-by-stage poststall compression system modeling
technique," AIAA Journal of Propulsion, Vol 7, pp. 997-1005, 1991.

[3] D. Goldstein, R. Handler, and L. Sirovich, \Modeling a no-slip 
ow boundary with an
external force �eld," Journal of Computational Physics, Vol. 105, pp. 354-366, 1993.

[4] C. S. Peskin, \Numerical analysis of blood 
ow in the heart," Journal of Computational

Physics, Vol. 25, pp. 220-252, 1977.

[5] T. Iura and W. D. Rannie, \Experimental investigations of propagating stall in axial-
ow
compressors," Transactions of ASME, Vol. 76, pp. 463-471, 1954.

[6] J. P. Longley, \A review of nonsteady 
ow models for compressor stability," ASME Journal

of Turbomachinery, Vol. 116, pp. 202-215, 1994.

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Circumferential Coordinate

A
xi

al
 V

el
oc

ity
 P

er
tu

rb
at

io
n

Figure 9: Stall inception perturbation reconstructed from the �rst eight empirical eigenmodes.

[7] O. O. Badmus, S. Chowdhury, K. M. Eveker, C. N. Nett, and C. J. Rivera, \A simpli�ed
approach for control of rotating stall: Experimental results," AIAA paper 93-2234, 1993.

[8] R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow. Springer-Verlag, New
York, 1983.

[9] G. E. Karniadakis, M. Israeli, and S. A. Orszag, \High-order splitting methods for the
incompressible Navier-Stokes equations," Journal of Computational Physics, Vol. 97, pp.
414-443, 1991.

[10] R. A. Adomaitis and E. H. Abed, \Local nonlinear control of stall inception in axial 
ow
compressors," AIAA paper 93-2230, 1993.

[11] L. E. Sirovich, \Turbulence and the dynamics of coherent structures, Part I: Coherent
Structures," Q. Appl. Math. Vol. XLV, pp. 561-571, 1987.

12


