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This dissertation presents the characterization and implementation of the first

microfabrication process to incorporate high aspect ratio compliant polymer struc-

tures in-plane with traditional silicon microelectromechanical systems (MEMS). This

discussion begins with in situ mechanical characterization of microscale polymer

springs using silicon-on-insulator-MEMS (SOI-MEMS). The analysis compares mi-

croscale samples that were tested on-chip with macroscale samples tested using a

dynamic mechanical analyzer. The results describe the effect of the processing steps

on the polymer during fabrication and help to guide the design of mechanisms using

polymers.

Characterization of the dielectric breakdown of polymer thin films with thick-

nesses from 2 to 14 µm between silicon electrodes was also performed. The results

demonstrate that there is a strong dependence of the breakdown field on both the

electrode gap and shape. The breakdown fields ranged from 250 V/µm to 635 V/µm,



depending on the electrode geometry and gap, approaching 10x the breakdown fields

for air gaps of the same size.

These materials were then used to create compliant all-polymer thermal and

electrostatic microactuators. All-polymer thermal actuators demonstrated displace-

ments as large at 100 µm and forces as high as 55 µN. A 1 mm long electrostatic

dielectric elastomer actuator demonstrated a tip displacement as high as 350 µm at

1.1 kV with a electrical power consumption of 11 µW. The actuators are fabricated

with elastomeric materials, so they are very robust and can undergo large strains in

both tension and bending and still operate once released.

Finally, the compliant polymer and silicon actuators were combined in an actu-

ated bio-inspired system. Small insects and other animals use a multitude of materials

to realize specific functions, including locomotion. By incorporating compliant elas-

tomer structures in-plane with traditional silicon actuators, compact energy storage

systems based on elastomer springs for small jumping robots were demonstrated. Re-

sults include a 4 mm x 4 mm jumping mechanism that has reached heights of 32 cm,

80x its own height, and an on-chip actuated mechanism that has been used to propel

a 1.4 mg projectile over 7 cm.
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Chapter 1

Introduction

There have been several seminal papers in the area of microelectronics that

have inspired broad areas of research leading to microrobots. Richard Feynman’s

1959 “There’s Plenty of Room at the Bottom” challenged scientists to investigate

miniaturization of motors and reduce the minimum size of features that could be

patterned [1]. This came around the same time that the first integrated circuit was

demonstrated by Jack Kilby in 1958 and patented in 1959 [2]. Kurt Petersen’s 1982

paper “Silicon as a Mechanical Material” helped to define microelectromechanical

systems (MEMS) as an active research field [3]. Anita Flynn’s 1987 paper “Gnat

Robots (and how they will change robotics)” spurred an interest into microrobotics

as a research area [4]. Flynn’s paper describes how advances in integrated circuits,

computer algorithms, and microfabrication have led to visions of a world where tiny

robots supplement the everyday lives of humans. While it has been 25 years and such

a premonition has not yet come true, such a vision still inspires and motivates.

A brief search of papers on microrobots demonstrates the large range of de-

vices that have been called microrobots. These range from large, centimeter scale

robots with integrated power, control, and sensing [5, 6] to small, micrometer or sub-

micrometer scale structures which require off-board power and sensing [7, 8, 9, 10].
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At both scales there is ongoing work looking at controlling biological organisms, with

single bacteria [11, 12] and large moths and cockroaches [13, 14] at two extremes.

For the purposes of this dissertation, a microrobot will be defined as a mobile device

that has micron-scale features but that is millimeters in size. Additionally, this work

does not consider the field of microrobotics which looks at using macroscale robotics

to interface with microscale components such as manipulators, though much of the

work that will be presented could arguably be applied to that type of microrobotics

as well.

The purpose of this dissertation is to bring the current state-of-the-art one step

closer to the goal of robust, autonomous, and effective microrobots. There are many

different approaches that one can take toward achieving this goal, and determining the

appropriate path depends on the intended application. This dissertation approaches

the task of creating microrobots by exploring the possibilities that integrating silicon

and polymer components allows, while at the same time justifying this approach. It is

also important to realize that all of the research completed during the various phases

of this dissertation are applied to the more specific field of microrobotics but also

contribute to the MEMS field in a general sense.

1.1 Microrobots

One of the most well-known microrobots is the Harvard RoboBee, though it is

admittedly on the larger end of the size spectrum of microrobots with a wingspan
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of 3 cm (though the other dimensions are considerably smaller) [15]. The manner in

which the research on this robot is being executed exemplifies all of the challenges

involved in the development of microrobots from the fabrication to control and actu-

ation. There is a large team of scientists and engineering involved in the project, each

with their own tasks and goals. Each aspect of the research, be it related to power,

actuation, mechanisms, controlling, or sensing for the system, can be considered in-

dependently of the others, but without considering each of these ideas in the broader

context of the microrobot, the project will not ultimately succeed. This dissertation

only discusses the topics of fabrication, actuation, and mechanism design, but will

address each of these topics in the context of the entire system.

There are a variety of mobility methods that have been examined for micro-

robots. Previous works include walking robots [16, 17], flying robots [15, 18], and

crawling robots [19]. As the number of different mobility methods and mechanism

complexity increases, microfabrication techniques have also had to evolve and be de-

veloped to support the complex requirements of these microrobots. Ebefors demon-

strated polyimide thermal actuators as part of one of the first millimeter-scale walking

microrobots [16]. Hollar’s 10 mg silicon microrobot was built using traditional sili-

con microelectromechanical systems (MEMS) processing to include thick structural

layers for high force actuators and thin polysilicon for multi-degree of freedom hinges

in robot legs [17]. Wood developed the Smart Composite Microstructures (SCM)

process by combining laser micromachined carbon fiber and polymer films to build
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millimeter sized compliant mechanisms for a 60 mg robotic insect [20]. To create

thin, compliant wings for micro air vehicles, Tanaka combined silicon deep reactive

ion etching for mold building with parylene and polyurethane [18].

One of the common themes among all of these approaches is the use of uncon-

ventional materials in customized fabrication processes, be it the carbon fiber in the

SCM process, the polyimide in the Ebefors process, or parylene and polyurethane in

the Tanaka process. This dissertation focuses on the integration of silicone polymer

materials into MEMS. These materials are common in microfluidics but are still not

commonly used in silicon fabrication for mechanical features.

1.2 Materials for Microrobots

Semiconductors, dielectrics and metals are traditional materials used in the

fabrication of MEMS [3]. MEMS processes provide for small feature sizes, batch

processing and good integration with microactuators. While these materials and

processes have proven to be extremely successful in devices such as inertial sensors

[21], inkjet printer heads [22] and micromirrors for display systems [23], they are

not well-suited for all MEMS devices including those that require compliant elastic

materials [24]. Polymer materials such as polyimide [16, 25], parylene [26] and SU-

8 [27] have been integrated with MEMS devices in an attempt to fill the void left

by traditional materials. These polymers are attractive because of their mechanical

properties, particularly a lower Young’s modulus (around 2-4 GPa for polyimide [25],

4



parylene [26] and SU-8 [27] as opposed to 130-188 GPa for silicon [28]) and increased

elasticity. Parylene is deposited with a conformal chemical vapor deposition process

that allows for thin, high aspect ratio films. Suzuki demonstrated a low-frequency

accelerometer based on parylene springs with a process that achieved spring constants

as low as 26.1 mN/m [26]. SU-8 is commonly used because it is photopatternable in a

wide range of film thicknesses (<1 µm to >1 mm), but it requires carefully controlled

pre- and post-exposure bakes and has large residual stresses [29].

The library of materials available for MEMS processing also includes two-part

polymers and room temperature vulcanizing rubbers. These materials are attractive

for use in MEMS devices because they have a low Young’s modulus, some less than

1 MPa [24] and can achieve maximum recoverable strains as high as 1000% [30]. The

most prevalent example of these materials is poly(dimethylsiloxane) (PDMS), which

is used widely in microfluidics and imprint lithography [31]. PDMS is not widely ac-

cepted as a mechanical material in MEMS devices, mainly because integration with

semiconductor processing can be difficult. Lotters used PDMS as a mechanical ma-

terial to demonstrate triaxial accelerometers using a patchwork process that required

manual assembly of each sensor, resulting in variations in the acceleration sensitivity

[32]. Tung demonstrated a complex multi-wafer fabrication process that integrated

PDMS with comb drive actuators in a silicon-on-insulator device that could achieve

multi-axis out-of-plane motion [33].

Work by Bergbreiter manually integrated PDMS into MEMS processes [34].
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The PDMS that was used, Sylgard 186, had a Young’s modulus on the order of a

single MPa and was demonstrated for use in an energy storage and quick-release

mechanism for a jumping microrobot. These devices, however, required separate

fabrication and assembly of the silicon and elastomer components, which decreased

the device yield, could only be used to fabricate relatively large features in the elas-

tomer (approximately 100 µm), and decreased the fabrication time but increased the

post-processing assembly time outside of the cleanroom.

This dissertation examines the integration of PDMS into batch silicon microfab-

rication and focuses on the integration of PDMS and silicon mechanical components

for microrobots. This is done by first discussing how these two materials can actu-

ally be combined in a batch semiconductor fabrication process. The details of the

fabrication are included as well as a detailed analysis of how all of the steps of the

fabrication process effect the material properties of the post-processed polymer. Since

the devices which will be discussed later are electromechanical devices, the dielectric

breakdown of the polymer is discussed at the micron scale. Conductive polymers can

are also manufactured by adding conductive filler particles, which is also discussed

and characterized. These materials and the fabrication process are then implemented

to demonstrate actuators and mechanisms for microrobots.
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1.3 Organization of this Dissertation

This dissertation is divided into three major themes: fabrication and character-

ization, actuators, and actuated mechanisms. The discussion begins with Chapter 2

detailing the fabrication process used throughout the work as well as mechanical and

electrical characterization of the polymer. This is followed by Chapter 3 on thermal

and electrostatic all-polymer actuators. The characterization is followed by Chapter

4 detailing mechanical components for microrobots. Finally, conclusions are included

in Chapter 5.
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Chapter 2

Fabrication with Silicon and Polymers

The introduction to this dissertation described some of the potential for using

compliant materials such as PDMS for microrobots. Before any new materials can

be fully integrated into an electromechanical system, however, they must first be

fully understood and characterized. This chapter describes the fabrication process

that was implemented throughout this dissertation as well as the mechanical and

electrical characterization of the polymers used throughout this dissertation. Section

2.1 of this chapter is based on the publication “In situ characterization of PDMS

in SOI-MEMS” from volume 24, issue 4 of the Journal of Micromechanics and Mi-

croengineering by A. P. Gerratt, I. Penskiy, and S. Bergbreiter, published in 2013.

Section 2.1.6 is based on the publication “SOI/Elastomer process for energy stor-

age and rapid release” from volume 20, issue 10 of the Journal of Micromechanics

and Microengineering by A. P. Gerratt, I. Penskiy, and S. Bergbreiter, published in

2010. Section 2.2 is based on the publication “Dielectric breakdown of PDMS thin

films” in the Journal or Micromechanics and Microengineering by A. P. Gerratt and

S. Bergbreiter, published in 2013. Section 2.3 is based on parts of the publication

“Microfabrication of compliant all-polymer MEMS thermal actuators” from volume

122 of Sensors and Actuators A: Physical, pages 16 - 22, by A. P. Gerratt and S. Berg-
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breiter, published in 2012. All of the work presented in this chapter was completed by

Aaron Gerratt with the exception of the design of the electrostatic characterization

device in Section 2.1.3.2. The design of this device was based on a device created by

co-author Ivan Penskiy and was adapted by Aaron Gerratt for the requirements of

this work.

2.1 SOI Fabrication Process and Mechanical Characterization

2.1.1 Introduction

Microelectromechanical systems (MEMS) are traditionally manufactured using

materials with moduli on the order of 10s to 100s of GPa such as silicon, oxides, and

metals by employing semiconductor microfabrication processes [3]. Recently, how-

ever, there has been an increase in research into non-silicon based MEMS, including

polymer MEMS [35]. Stiff polymers with moduli on the order of 1 GPa, including

parylene and polyimide, have been generally accepted in silicon processing, mainly

as flexible substrates and coating or isolation layers [26, 36, 37, 38, 39]. Compliant

polymers with moduli on the order of 1 MPa, such as poly(dimethylsiloxane) (PDMS)

[40, 41], are enabling the development of microfluidics as they allow for simple and

rapid prototyping with soft lithography [42, 43]. There has been some work on inte-

grating PDMS into a silicon chip as a mechanical material [30, 32, 33, 44, 45], but

little work has been done on the in situ characterization of PDMS.

There are many papers which have reported stress-strain data for PDMS at sizes
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approaching the microscale. These works, however, typically characterized millime-

ter and centimeter scale PDMS thin films by using atomic force microscopy [46] or

nanoindentation [47, 48, 49, 50] to apply small strains. Other works used highly sen-

sitive macroscale transducers to measure the applied forces while monitoring strains

[51, 52, 53]. Some previous work has looked at characterization by using differ-

ential pressure to deform PDMS membranes [54, 55]. The most relevant previous

work demonstrated in situ dynamic mechanical characterization of PDMS samples at

strains up to 14% using a multi-wafer fabrication process to transfer molded PDMS

from a silicon wafer to an SOI wafer [56]. Strain in the PDMS was measured indi-

rectly by monitoring the change in diffraction due to a grating patterned on the top

of the PDMS sample to infer the strain. These solutions are useful, but either do not

truly represent microscale sample sizes or do not account for all of the processing steps

that materials are exposed to during an on-chip fabrication run. Additionally, most of

these solutions do not capture the non-linear behavior of PDMS at large strains. The

goal of this work is to demonstrate in situ mechanical characterization of PDMS at

strains up to 65% using a test mechanism microfabricated with a silicon-on-insulator

(SOI) based fabrication process. The results of this section are important for the

design of MEMS which include PDMS as a mechanical material.

This discussion also provides a direct comparison of microscale and macroscale

PDMS samples by fitting the results of the tests to linear and non-linear material

models. This allows for analysis of the effect of the microfabrication processing steps,
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which included exposure to various chemicals and plasmas, on the mechanical behav-

ior of the PDMS. Previous work looked at the effect of different chemical treatments

common in microfabrication on the qualitative survival of PDMS for microsystems,

but did not examine the effect on mechanical properties [40]. In this work, the

macroscale samples will be used to examine the influence of the curing temperature

on the stiffness of PDMS and the microscale samples will be used to examine the in-

fluence of the release step in buffered hydrofluoric acid on the stiffness of the PDMS.

These steps are of particular interest because of their strong potential to dramatically

affect the mechanical properties of PDMS.

This fabrication process has been used to integrate PDMS and silicon for energy

storage [44, 24] and to quantify the friction between PDMS thin films and silicon [45].

None of these works performed calibrated in situ characterization of the stress-strain

behavior of PDMS in SOI-MEMS, which is the focus of this section. These calibrated

measurements are necessary for designing MEMS devices which include mechanical

features fabricated with PDMS [32, 44, 55, 57, 58].

This discussion begins with a description of the fabrication process in Section

2.1.2. The test setup and procedures are described in Section 2.1.3 with results shown

in Section 2.1.4. A discussion of the results is presented in Section 2.1.5. Additional

characterization of the elastomer adhesion, ultimate strain, and hysteresis is presented

in Section 2.1.6. Finally, conclusions and future work are presented in Section 2.1.7.
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2.1.2 Fabrication

The (100) SOI wafers used in the process were 100 mm in diameter with a

handle layer thickness of 300 µm, a buried oxide (BOX) layer thickness of 4 µm, and

a device layer thickness of 20 µm. The device and handle layers were boron doped

to resistivities of 0.001-0.005 Ω-cm and 1-20 Ω-cm, respectively. Complete details of

the fabrication process can be found in Appendix A, including tool parameters that

were used during the fabrication.

2.1.2.1 Details of the Fabrication Process

The microfabrication began with a deep reactive ion etch (DRIE) down to the

BOX using a silicon dioxide hard mask deposited at 300 ◦C in a plasma-enhanced

chemical vapor deposition (PECVD) tool, shown in Step 2. The trenches created by

the DRIE were then refilled with PDMS, which was cured at 90 ◦C for 2 hours, shown

in Step 3. The excess cured polymer was removed from the wafer leaving a smooth

surface, shown in Step 4. A 60 second rinse in a 3:1 solution of n-methylpyrrlidone

(NMP) and tetrabutylammonium fluoride (TBAF) was used to remove any residual

PDMS particles from the surface of the wafer [59]. A 2 minute soak in 6:1 buffered

hydrofluoric acid (BHF) was used to remove the silicon dioxide hard mask.

A second DRIE was performed on the device layer down to the BOX using a

150 ◦C PECVD silicon dioxide hard mask. This DRIE patterned the silicon around
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the previously patterned PDMS features, shown in Step 5. The next step was a DRIE

on the handle layer of the wafer down to the BOX using a thick photoresist etch mask,

shown in Step 6. The final step was a timed wet etch of the BOX with 18:1 BHF to

release the silicon structures followed by a 1 hour soak in 2-propanol, shown in Step

7. Prior to testing, aluminum wedge bonds were added to silicon contact pads to

provide a better electrical contact for the tungsten probes used to interface between

the silicon chip and the external power supply.

The PDMS characterized in this section was Sylgard 184 from Dow Corning

with a base to curing agent mass ratio of 10:1. Sylgard 184 is the focus of this section

because it is the most commonly used silicone in MEMS [42, 51]. This process can be

used with other silicones, provided they can withstand the processing. The silicones

MRTV-9 from Insulcast, Dragon Skin from Smooth-On, and Sylgard 186 from Dow

Corning have also been successfully fabricated with the process.

2.1.2.2 Results of the Fabrication Process

The viscosities of Sylgard 184 and Sylgard 186 are 4,575 centipoise and 66,700

centipoise [60], respectively, and both have been refilled in trenches with aspect ratios

in excess of 20:1, as shown in Figure 2.2. The highly conformal refill is shown in Figure

2.3 which shows the presence of scallops in both the silicon and PDMS features. The

scallops in the PDMS features, however, are actually the negative of the scallops in the

silicon, a by-product of the silicon etch process described in more detail in Section
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Figure 2.1: Cross-section and projection views of the microfabrication process.
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elastomer silicon

30 μm

Figure 2.2: Trenches etched in silicon that have been refilled with Sylgard 184.

2.2.4 that was present when the PDMS was poured over the wafer. The PDMS

was then cured and the silicon etched away, exposing the scalloped PDMS features.

Features from 2 µm to hundreds of micrometers in width have been fabricated at

lengths up to several millimeters. The yield for elastomer features less than about

30 µm in width was near 100%. This yield was consistent for features that were

fabricated on many different SOI wafers. As the width of the features increased

above 30 µm, the yield decreased. Any variations in the surface topography around

the elastomer features resulted in a local thinning of the photoresist, especially for

wider features where the difference in height was generally more pronounced.

2.1.2.3 Affect of the Fabrication Process on PDMS Dimensions

One important consideration when processing the test results was the dimen-

sions of the PDMS features. The length and cross-sectional area were designed to
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siliconPDMS

20 μm

Figure 2.3: SEM image of a silicon and elastomer feature. Note the scalloping is
apparent in both the silicon and the PDMS features, signifying the highly conformal
refill of the elastomer in the silicon trench.

be consistent on the test features used later in Section 2.1.3 and both were deter-

mined from a series of scanning electron microscope (SEM) images. The length was

measured to be 30.3 µm (5 measurements, σ = 0.33). The cross-sectional area was

challenging to determine and was affected by two steps in the fabrication: the DRIE

in Step 2 and the BHF release in Step 7.

The width of all of the PDMS features used in this work were designed to

be 6 µm. The feature patterns were transferred from the photolithography mask

to the etch mask on the wafer. Ideally, the DRIE would result in a feature the

exact width of the patterned etch mask, however there was some lateral etching that

occurred during the DRIE that widened the silicon trenches, shown in Figure 2.4b.

The PDMS features were formed by refilling the trenches etched in Step 3 of the

fabrication process. The widening was expressed in the PDMS when it filled the
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trench, shown in Figure 2.4c. After the PDMS refill, the average feature width was

6.82 µm (18 measurements, σ = 0.27).

The other step that affected the final width of the PDMS features was the BHF

release in Step 7. Devices were released for either 5 or 8 hours in BHF. After the

5 hour release the average width was 4.35 µm (20 measurements, σ = 0.13). After

the 8 hour release the average width was 3.99 µm (6 measurements, σ = 0.08). This

corresponds to a decrease in width of 2.46 µm and 2.82 µm for the 5 and 8 hour

releases, respectively, from the pre-release dimension of 6.82 µm due to etching of the

polymer by the BHF, shown in Figure 2.4e.

The BHF etch was isotropic, so all exposed surfaces were etched by the same

amount, including the top and bottom. The thickness of the device layer of the

silicon wafer was measured to be 20.4 µm (4 measurements, σ = 0.06), but the top

and bottom of the PDMS features were also etched, so thicknesses of 17.9 µm and

17.5 µm were used for the 5 and 8 hour released devices, respectively. This did not

account for any variations across the surface of the wafer due to the planarization

process in Step 4 of the fabrication process.

The 2.46 µm etch of the PDMS over 5 hours and 2.82 µm etch of the PDMS

over 8 hours suggests that the etch rate was not constant over time. The etch rate

decreased from 0.48 µm per hour during the first 5 hours of the etch to 0.13 µm per

hour during the last three hours of the etch. The reason for the change in the etch

rate is unknown.
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(a)

(b)

(c)

(d)

(e)

PDMS silicon
dioxide

silicon

Figure 2.4: A schematic showing a cross-section of the wafer during fabrication to
demonstrate the lateral etch of the silicon during the DRIE and isotropic etch of
the PDMS during the BHF release. a) the SOI wafer after the first etch mask was
patterned b) the wafer after the first DRIE, demonstrating the lateral etch c) the
wafer after the second etch mask was patterned d) the wafer after the second DRIE
and e) the wafer after the BHF release, demonstrating the etch of the PDMS. The
vertical dashed lines show the width of the etch mask from 2.4a. Note: the changes
in dimension are not to scale and have been heavily exaggerated to highlight the
changes.
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2.1.3 DMA and In situ Test Procedures

Two types of tests were performed to characterize the mechanical properties of

PDMS: macroscale tests with a dynamic mechanical analyzer and microscale in situ

on-chip tests. This allowed for direct comparison of test results from the macroscale

and microscale PDMS samples.

2.1.3.1 DMA Test Procedure

The PDMS manufactured at the macroscale was characterized with a Q800

dynamic mechanical analyzer (DMA) from TA Instruments. The Sylgard 184 base

and curing agent of the polymer were mixed by hand, degassed for 10 minutes at 1

Torr, and cured for 2 hours in a polyoxymethylene mold. Three curing temperatures

were examined: 70 ◦C, 90 ◦C, and 120 ◦C. Three curing temperatures were used

because of the influence of the curing temperature on the resulting stiffness of the

PDMS [51, 61, 62].

The DMA tests strained the samples to 10%, 30%, 50%, and 70%, returning

to 0% between each level, at a rate of 500% strain per minute. The sample widths

were determined by a cutting tool provided by TA Instruments, the lengths were

set when loading each sample into the tool, and the thicknesses were determined by

the amount of polymer poured into the mold prior to curing. The average sample

dimensions were 5.46 mm in width, 9.81 mm in length, and 0.80 mm in thickness
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with standard deviations of 0.04 mm, 0.22 mm, and 0.25 mm, respectively. All of the

tests were performed at room temperature within 24 hours of the completion of the

curing process. For each curing condition at least four samples were tested.

2.1.3.2 In situ Test Procedures

The test mechanism for in situ characterization, shown in Figure 2.5, included

a set of electrostatic comb drive actuators that drove two springs. One was a set of

silicon flexures required by the actuators and also used to calibrate the system, shown

in Figure 2.5d. Robust silicon flexures were required to maintain lateral stability in

the electrostatic actuators and to prevent issues related to stiction during the release.

The other spring was the PDMS test sample, shown in Figure 2.5e, which was in

parallel with the silicon flexures. The silicon flexures and the PDMS spring were

designed to have a similar nominal spring constant so that neither dominated the

response of the system.
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100 μm

Figure 2.6: SEM image a PDMS spring being strained 65%.

The test mechanism was operated by grounding one set of comb fingers and

applying a voltage to the other set of comb fingers. The voltage was ramped from 0

V to the level which corresponded with the maximum displacement, typically 120 V,

in 1 V steps. A SEM image of a PDMS spring strained to 65% is shown in Figure

2.6. The step time was not actively controlled, but was roughly 1 s per step, which

was determined by the response time of the computer used to capture the images and

control the applied voltage.

The PDMS springs were designed to be 30 µm long, 20 µm thick, and 6 µm

wide. The fabricated lengths and widths varied slightly from the designed lengths

and widths due to lateral etching of the silicon during the DRIE and isotropic etching

of the PDMS during the BHF release etch, as was discussed in Section 2.1.2.3.
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2.1.3.2.1 Calibration

The variations between each fabricated chip across the wafer and the difference

between the designed and manufactured dimensions required that the test mecha-

nisms be calibrated individually. Measuring the force output of MEMS actuators is

challenging given the magnitude of the forces. This issue was overcome by using a

combined optical and capacitive calibration method.

In order to calculate the force applied to the PDMS spring, the spring constant

of the silicon flexures had to be quantified. Once the tests on the PDMS spring were

completed, a probe was used to remove the sample while leaving the comb drives and

silicon flexures intact. The device could then be calibrated to determine a capacitance

coefficient, kc, and a silicon flexure spring constant coefficient, kfl.

After the PDMS spring was removed, the static equilibrium of the system was

maintained by the balance of the electrostatic force in the comb drives, Fcd, and the

spring force in the silicon flexures, Ffl, or Fcd = Ffl. The electrostatic force can be

calculated with Equation 2.1:

Fcd = Nε
t

g
V 2 (2.1)

where N is the number of fingers on one side of the actuator, ε is the permittivity,

t is the thickness of the fingers, g is the gap between the fixed and moving fingers,

and V is the applied voltage. Equation 2.1 can be simplified to Fcd = kcdV
2, where
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kcd = Nε t
g
is a constant.

The theoretical capacitance of the actuator can be calculated with Equation

2.2:

C = 2Nε
t

g
x (2.2)

where x is the overlapping area between the fixed and moving fingers. Equation

2.2 can be simplified to C = kcx, where kc = 2Nε t
g
is a constant. It is clear that

kcd =
1
2
kc, so Equation 2.1 can be written as

Fcd =
1

2
kcV

2. (2.3)

Using this equation, the force applied by the actuators is a function of only the applied

voltage.

Returning to the equilibrium between the actuator and the silicon flexures,

Equation 2.3 and Hooke’s Law can be used to show that 1
2
kcV

2 = kflΔx where Δx is

the comb drive displacement. Solving for the silicon flexure spring constant coefficient

kfl shows that

kfl =
1

2
kc

V 2

Δx
. (2.4)

The terms V 2 and Δx can be combined in a single coefficient as kV x = V 2

Δx
. This

simplifies Equation 2.4 to:
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kfl =
1

2
kckV x. (2.5)

Determining the silicon flexure spring constant allows for isolating the force applied

to the silicon flexures from the force applied to the PDMS spring.

In order to determine the force applied to the PDMS springs, two tests were

performed to determine the kc, kV x, and kfl terms. The kc term was determined by

manually advancing the comb drive with a probe tip while measuring the displacement

and capacitance. The constant kc was the slope of the linear fit of the measured

capacitance versus displacement points. The kV x term was determined by driving the

actuators from 0 V to the voltage at the maximum displacement, typically 60 V, in 1

V steps. The constant kV x was the slope of the linear fit of the measured displacement

versus voltage squared points. The constant kfl was then calculated with Equation

2.5. Detailed information on the kc and kV x terms is available in Appendix B.

The capacitance of the system was measured using an Analog Devices AD7745/46

Evaluation Board. This board was not useful for measuring exact capacitance values,

but was well suited for measuring changes in capacitance. Displacement of the comb

drives was monitored using an optical method [63]. Two sets of silicon features were

patterned, shown in Figure 2.5a: one set that was anchored to the substrate and one

that was on the moving shuttle of the actuator. The features were a series of 2.5 µm

silicon teeth separated by 2.5 µm gaps, detailed in Appendix C. The displacements of

the two sets were monitored by capturing a photograph at each voltage step. These
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images were analyzed using a MATLAB script with the displacement of the teeth as

the output. The influence of vibrations of the entire die was reduced by monitor-

ing the displacement of both the moving and fixed features. This was accomplished

by subtracting the displacement of the fixed features from the displacement of the

moving features.

2.1.3.2.2 In situ Stress and Strain

Prior to the calibration tests which required removing the PDMS springs, the

characterization tests of the PDMS samples were performed. The force applied to the

PDMS springs was calculated by examining the static equilibrium Fcd = Ffl + Fspr,

where Fspr was component of the force applied to the PDMS spring and Ffl was the

component of the force applied to the silicon flexures. Solving for the spring force

and substituting Equation 2.3 and Hooke’s Law shows that

Fspr =
1

2
kcV

2 − kflΔx. (2.6)

The terms kc and kfl were determined during the calibration. The resulting data was

the PDMS spring force, Fspr, and a displacement, Δx, which were then converted to

a stress and a strain by dividing by the cross-sectional area and length of the PDMS

spring, respectively, that were calculated in Section 2.1.2.3.
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2.1.3.2.3 Geometric Coefficient

The PDMS spring consisted of the central spring and two attachment mecha-

nisms, one on each end, which interfaced the PDMS springs with the silicon device,

shown in Figures 2.7 and 2.5e. These PDMS and silicon features were fabricated

together and were not assembled, so these attachment mechanisms helped to prevent

delamination by mechanically interlocking the silicon and PDMS. These attachment

points, however, affected the actual strain achieved in the central test spring because

they did not provide a rigid boundary condition, but rather deformed along with the

central spring. The displacement measurements were made on the silicon features

shown in Figure 2.5a and not the PDMS springs themselves, so the influence of the

mechanisms on the strain in the central spring had to be determined.

The effect of the mechanisms on the strain was determined by performing a finite

element analysis (FEA) in ANSYS. A three-dimensional model, which represented the

devices as they were designed, was created using the SOLID5 element. The Young’s

modulus and Poisson’s ratio of the silicon were set to 160 GPa and 0.29, respectively

[28]. The Young’s modulus and Poisson’s ratio of the PDMS were set to 1.4 MPa

and 0.499, respectively [44]. The model was given prescribed displacements from 1 to

20 µm in 1 µm steps. The expected strain from the displacement was then compared

to the calculated strain in the center of the PDMS sample at each step.

As the displacement was varied from 1 µm to 20 µm, the strain in the center of

the PDMS sample was consistently 93% of the strain that was expected as a result of
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(a) (b) (c)

PDMSsiliconattachment
mechanism

Figure 2.7: a) The undeformed model showing the attachment mechanisms, b) FEA
results showing the penetration of the strain into the attachment mechanisms, and c)
a closeup of the central spring.

the displacements applied by the model. This discrepancy was consistent for all strain

ranges, even when the Young’s modulus of the PDMS was increased and decreased,

demonstrating the effect was insensitive to variations in strain and Young’s modulus.

The decreased strain was a result of the work that was done to strain the PDMS in the

attachment mechanisms. To compensate for this effect, a coefficient was introduced.

Equation 2.7 relates the actual strain, εactual, to the measured strain, εmeasured, with

a geometric coefficient ηgeom.

εactual = ηgeomεmeasured (2.7)

The results of the FEA showed that ηgeom = 0.93.

28



2.1.4 Results

Using the procedures described in Section 2.1.3, tests on both the macroscale

and microscale samples were performed in order to characterize the PDMS.

2.1.4.1 DMA Characterization

The results from the macroscale DMA tests are shown in Figure 2.8. The results

shown in this figure include at least four samples for each curing temperature, 70 ◦C,

90 ◦C, and 120 ◦C. The multiple samples tested at each curing temperature were

from the same PDMS mixtures. In order to evaluate the possibility of variation

between mixtures contributing to the change in the stiffness, four separate mixtures

were prepared, cured at 120 ◦C, and tested, with results shown in Figure 2.9. The

variation from one PDMS mixture to the next was significantly less than the variation

seen when changing the curing temperature, demonstrated in Figures 2.8 and 2.9.

Figures 2.8 and 2.9 show that there was some variation in the maximum strain

that was achieved in each cycle. The same test procedure was run on each sample, but

strain achieved by the DMA varied slightly. The cause of this is unknown but likely

stemmed from the performance of the DMA when testing small samples of compliant

materials, such as PDMS.

The data for the elongation of the samples was fit to the uniaxial tension Hooke,

Neo-Hookean, and second-order Ogden material models, shown in Equations 2.8, 2.9,
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Figure 2.8: Stress-strain results for the macroscale PDMS samples cured for 2 hours
at 70 ◦C, 90 ◦C, and 120 ◦C.
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Figure 2.9: Stress-strain results for eighteen macroscale PDMS samples from four
mixtures cured for 2 hours at 120 ◦C. The gray curves represent all eighteen samples
and the black line shows the average and standard deviation.
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and 2.10, respectively, where λ is the stretch ratio and CH , CNH , αi, and μi are

material constants [64, 65, 66]. It is worth noting that these equations require being

fit to the stretch ratio (λ = ε+ 1), but some of the results provided later are plotted

against strain, for clarity. It is interesting to consider the Neo-Hookean and Ogden

fits, not only the linear Hooke fit, because of the non-linearity of PDMS at large

deformations. Each of these material models has it own pros and cons the Hooke

model is simple to implement and fit to, but the Ogden model provides a more

accurate description of elastic materials, especially at higher strains. The Hooke

model shows that the force in the material is proportional to the applied strain. The

Neo-Hookean model is slightly different in that it shows that the stress, not force as

in the case of the Hooke model, in the material is proportional to the applied strain.

Each of these can provide accurate fits for elastic materials at small strains, but at

larger strains other material models such as the Ogden model should be used as they

are better at predicting the behavior of elastomers at higher strains.

At large strains, elastomeric materials display phenomenon which leads to the

stress in the material increasing at an increasing rate as the strain increases. This

can be seen in the DMA results shown in Figure 2.8, especially in the samples cured

at 120 ◦C. As the strain increases above 40%, the stress begins to increase at a higher

rate. The Ogden model accurately predicts this material behavior at higher strains

[66, 67]. This behavior is a function of the elongation of the polymer chains in the

elastomer. When no stress is applied, the chains are tangled and meander through the
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bulk. As the chains are strained they start to align with the applied stress. Eventually

the chains become fully elongated and there is a transition from a straightening of

the chains along the direction of the stress to elongation of the chains themselves by

straining the chemical bonds. This transition results in a greater pressure needed

to elongate the elastomer, as seen in the upturn in slope of the stress-strain curve

at approximately 40%. The Ogden model is based on a strain-energy relationship

through which the stress-strain relationship can be derived [68].

σH
eng = CH (λ− 1) (2.8)

σNH
eng = 2CNH

(
λ− λ−2

)
(2.9)

σO
eng =

2∑
i=1

μi

(
λαi−1 − λ− 1

2
αi−1

)
(2.10)

The Hooke and Neo-Hookean models were used because of their relative sim-

plicity and the Ogden model was used because of its relative accuracy in describing

the behavior of the experimental results. The Hooke model does not capture the non-

linearity of PDMS and the Neo-Hookean model plateaus and does not predict the rise

in stress at higher strains. The Ogden model, however, does allow for an increased

stress at larger strains, leading to a more appropriate fit for non-linear materials such

as PDMS.
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The fits to the three material models for the samples cured for 2 hours at 70,

90 and 120 ◦C are shown in Figure 2.10c and Table 2.1. The Neo-Hookean and

Ogden model coefficients were calculated using the curve-fitting tool in ANSYS and

the Hooke model coefficient was calculated using Excel. As was expected, the Ogden

model fit better than the Hooke model, which in-turn fit better than the Neo-Hookean

model. As was mentioned above, it is important to note that while Figure 2.10 is

plotted with units of MPa and percent strain, the coefficients in Table 2.1 are for the

stress in MPa and the stretch ratio so that they correspond with Equations 2.8, 2.9,

and 2.10. All of the data show the engineering stress and strain, as opposed to the

true stress and strain.

While the Hooke model is linear, the Neo-Hookean and second order Ogden

models are non-linear. A Young’s modulus can still be extracted from each of these

fits, as shown in Equations 2.11, 2.12, and 2.13 [64, 65]. The values of the moduli are

listed in Table 2.1.

EH = CH (2.11)

ENH = 6CNH (2.12)

EO =
1

2

2∑
i=1

μiαi (2.13)
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Figure 2.10: Stress-strain curves for the elongation of the macroscale samples cured
for 2 hours at (a) 70 ◦C (b) 90 ◦C and (c) 120 ◦C.

Table 2.1: Nonlinear coefficients and calculated Young’s moduli for the elongation of
macroscale PDMS samples cured for 2 hours at three different temperatures.

Hooke Neo-Hookean 2nd Order Ogden

CH
∗ EH

∗ CNH
∗ ENH

∗ μ1
∗ α1 μ2

∗ α2 EO
∗

70 ◦C 1.54 1.54 0.358 2.15 0.0198 7.90 12.9 0.0801 1.78
90 ◦C 2.00 2.00 0.464 2.78 0.0277 8.02 82.2 0.0147 2.14
120 ◦C 2.43 2.43 0.563 3.38 0.0352 8.18 36.9 0.0345 2.34
∗ units in MPa

2.1.4.2 In situ Characterization

Using the test mechanism and procedure described in Section 2.1.3.2, microscale

PDMS spring samples were tested. The samples were manufactured using the process

described in Section 2.1.2 with either a 5 or 8 hour 18:1 BHF release time. After the

tests were performed, the device was calibrated and the acquired images were pro-

cessed to produce the stress-strain data. The focus of this section is on the elongation

phase of the tests and not the contraction phase. Dynamic testing to characterize
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the viscoelastic behavior of PDMS will be a focus of future work, which requires

simultaneous force and displacement sensing on-chip at higher speeds.

As was mentioned in Section 2.1.3.2, the test mechanism was nominally designed

so that the spring constants of the silicon flexures and PDMS springs were the same.

The manufactured devices varied slightly from the designed value as a result of the

fabrication. The silicon flexures were designed to have a spring constant of 10.8

N/m but the fabricated devices had an average spring constant of 2.39 N/m. The

discrepancy between the designed and fabricated spring constants was caused by the

lateral etching and footing, which was discussed in Section 2.1.2.3, and resulted in a

reduction of the width and thickness of the silicon features. The spring constant has

a cubic dependence on the width of the flexures, so lateral etching led to dramatic

changes in the final spring constant. Assuming a linear modulus of 1.4 MPa [44], the

PDMS springs were designed to have a spring constant of 5.6 N/m.

2.1.4.2.1 Long-term stability

The long-term stability of the PDMS was examined by cycling a sample 1,000

times and collecting stress-strain data every 100 cycles. Figure 2.11 shows that there

was little discernible change in the stress-strain results, demonstrating that the PDMS

samples were stable over strains to 65% for at least 1,000 cycles. One curve in Figure

2.11 is slightly offset from the others. This was the first cycle performed during the

test, demonstrating that there was a slight change from cycle 1 to cycle 100, but not
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Figure 2.11: Results representing 1,000 strain cycles on microscale samples. This
figure shown eleven curves, one to represent every 100th cycle.

from cycle 100 to cycle 1,000. This change after the first cycle is likely a result of the

Mullins effect which says that the stiffness of elastomers decrease to a steady-state

value as they are cycled [69, 70].

2.1.4.2.2 Test Results

The stress-strain curves for the PDMS samples tested in situ are shown in

Figures 2.12, 2.13, and 2.14. Figure 2.12 shows the curves for both the 5 and 8 hour

BHF releases. There were four samples tested with a 5 hour release and seven samples

tested with an 8 hour release. The results shown in theses figures do not all represent

the same cycle; the cycle shown ranged from the second cycle to the tenth cycle.

The samples occasionally had to be cycled a few times during setup of the tests. In

Figure 2.12 there are two clusters of lines. The group with the higher slope and red
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Figure 2.12: Stress-strain curves for the microscale PDMS samples released for 5 and
8 hours.

average curves represents the samples released for 5 hours and the group with the

lower slope and blue average curves represents the samples released for 8 hours. The

dashed curves show the average curve during elongation and the solid curves show

the average curve during contraction.

Figures 2.13 and 2.14 show the elongation of the samples released for 5 and

8 hours, respectively, as well as the Hooke, Neo-Hookean, and second-order Ogden

model fits. The coefficients and calculated moduli for each of these models are listed

in Table 2.2. As with the DMA results, the Ogden model was the best fit for the

collected data.
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Figure 2.13: Stress-strain curves showing the elongation of the microscale PDMS
samples released for 5 hours.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

S
tr

es
s 

(M
P

a)

Strain (%)

 

 

Experimental
Hooke
Neo−Hookean
Ogden

Figure 2.14: Stress-strain curves showing the elongation of the microscale PDMS
samples released for 8 hours.

Table 2.2: Nonlinear coefficients and calculated moduli for elongation of microscale
PDMS samples tested in situ after 5 and 8 hour release times.

Hooke Neo-Hookean 2nd Order Ogden

CH
∗ EH

∗ CNH
∗ ENH

∗ μ1
∗ α1 μ2

∗ α2 EO
∗

5 hour 2.10 2.10 0.458 2.75 1.19x10−3 14.2 0.381 3.24 1.88
8 hour 1.61 1.61 0.315 1.89 5.03x10−2 6.72 4.61 0.161 1.68
∗ units in MPa
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2.1.5 Discussion

The macroscale samples were characterized at three temperatures: 70 ◦C, 90 ◦C,

and 120 ◦C. Table 2.1 shows that for all three of the material models, the PDMS

Young’s moduli calculated with Equations 2.11, 2.12, and 2.13 increased as the curing

temperature increased. This data agrees with previously published works that have

characterized Sylgard 184 PDMS [44, 51, 61]. The microscale samples were cured at

90 ◦C and were characterized at two different release times: 5 and 8 hours. Table 2.2

shows that for all three of the material models, the PDMS Young’s moduli calculated

with Equations 2.11, 2.12, and 2.13 decreased as the release time increased.

It is well understood that increasing the curing time and temperature of PDMS

increases the stiffness of the material [51, 61, 62]. As temperature is increased, the

crosslink density is also increased, which means that the length of the polymer chains

between crosslinks is decreased. When the polymer chains are deformed, these shorter

chains become fully elongated at lower strains and therefore require more force to

elongate farther. Other work has shown that the modulus of silicones is proportional

to the crosslink density [71, 72, 73].

2.1.5.1 Comparison of the Macroscale and Microscale Samples

A comparison of the data collected from the macroscale samples characterized

with the DMA and the microscale samples characterized in situ is presented in Figure
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2.15. The stress required to strain the microscale samples released for 8 hours was

similar to the stress required to achieve the same strains in the macroscale samples

cured at 70 ◦C. The stress required to strain the microscale samples released for 5

hours was similar to the stress required to achieve the same strains in the macroscale

samples cured at 90 ◦C. Both of these statements are confirmed by the comparison

of the Young’s moduli calculated for the Hooke, Neo-Hookean, and Ogden models

presented in Tables 2.1 and 2.2.

These results can be used to justify two hypotheses about the processing of

PDMS in SOI-MEMS. The microscale samples that were released for 5 and 8 hours

were exposed the same processing prior to the BHF release but the stiffness of the

sample released for 8 hours was less than the stiffness of the sample released for 5

hours. This leads to the first hypothesis which says that the BHF exposure reduced

the crosslink density, and therefore stiffness, of the PDMS. Additionally, the stiffness

of microscale samples that were cured at 90 ◦C and released for 5 hours was sim-

ilar to the stiffness of the macroscale samples that were cured at 90 ◦C. The first

hypothesis, however, states that the stiffness was reduced during the 5 hour release.

By extrapolating the data, this means that the crosslink density of the microscale

samples must have been higher just before the BHF release than it was just after the

initial cure of the PDMS. So, even though the microscale sample cured at 90 ◦C and

released for 5 hours and the macroscale sample cured at 90 ◦C had similar stiffnesses,

this was just a coincidence. This leads to the second hypothesis which says that all
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of the processing that the PDMS was exposed to after its initial cure but before the

BHF release led to additional curing of the polymer, therefore increasing the crosslink

density and stiffness of the material.

It is important to note that while the decrease in crosslink density is considered

in the discussion above as a change in the entire volume of the PDMS samples, the

working hypothesis is that this was actually a surface effect. The ability of the BHF

to decrease the crosslink density of the PDMS is limited by its diffusion rate through

the volume of the PDMS. It is possible that there was a gradient in the crosslink

density and that the measured stiffness of the PDMS was, effectively, a weighted

average across the entire cross-section of the PDMS. This would mean that while

the conclusions presented above are valid for samples with the geometry used in this

work, these conclusions should not necessarily be extrapolated up or down to sample

sizes with larger or smaller cross-sectional areas. Larger samples which would likely

be less effected because of a larger ratio of volume-to-surface area and smaller samples

would likely be more effected because of a smaller volume-to-surface area ratio.

2.1.5.2 Implications for PDMS Processing in SOI-MEMS

Figure 2.15 shows that test results for macroscale samples can not necessarily be

used to describe processed microscale PDMS. A second-order Ogden model fit to test

results for macroscale PDMS cured at 90 ◦C was used to calculate a modulus of 2.14

MPa, shown in Table 2.1. The same fit to test results for microscale samples cured at
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Figure 2.15: Stress-strain curves showing the average data for the elongation of the
microscale and macroscale PDMS samples.

90 ◦C and released for 8 hours was used to calculate a modulus of 1.68 MPa, shown

in Table 2.2. This represents a 22% difference between the moduli calculated for

the microscale processed and the macroscale unprocessed PDMS. This is a difference

significant enough that it is necessary to consider in the design of any mechanical

systems which might include PDMS components.

Since the comparison of the microscale and macroscale test results imply that

that the processing steps affect the mechanical properties of the PDMS, it is necessary

to examine which of these steps affect the material. The steps that influenced the

pre-release stiffness of the PDMS likely included the brief 2 minute 47 second 150 ◦C

PECVD deposition that formed the silicon dioxide etch mask for the DRIE in Step

5 of the fabrication process. There were also several brief soft bakes of photoresists

at 90 ◦C prior to the lithography for Steps 5 and 6. Finally, the PDMS was present
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on the wafer during several plasma etches including the DRIE of the silicon in Steps

5 and 6, the inductively coupled plasma reactive ion etch (ICP-RIE) to pattern the

silicon dioxide etch mask in Step 5, and several oxygen plasmas to clean the surface

of the wafer and promote photoresist adhesion throughout all of the processing steps.

Exposure to the plasmas may have cured the PDMS more by increasing the tem-

perature of the wafer during the etches or by changing the surface chemistry of the

PDMS. This is especially true of the 2 hour and 20 minute DRIE etch on the handle

layer of the wafer during Step 6 of the fabrication process. The DRIE tool uses he-

lium to cool the bottom of the wafer, but the temperature of the wafer still increases

during the etch as a result of heat transfer from the plasma to the wafer [74, 75].

The possible effects of all of the processing steps on the mechanical properties of the

materials must be considered when determining the specifics of the processing and

details of the device design. It should be noted that the specific influences of each

of the individual steps on the resulting stiffness of the PDMS were not tested in this

work and are presented as something to be tested in future work.

There are also some design rules for PDMS processing that come from this

work. The dimensions of PDMS features must account for both any lateral etch

during the DRIE which expands the dimensions and the isotropic BHF etch of the

PDMS which reduces the dimensions. The lateral etch is a factor of the DRIE tool

and the recipe used during the etch. The time duration of the BHF etch is determined

by the distance the BHF must etch the silicon dioxide underneath the silicon in order
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to fully release the silicon features. Etch holes that allow for access of the BHF to

the underlying oxide can be used to shorten the etch. The devices used in this work

required a silicon undercut of 20 µm. Another factor that influenced the required

etch time was the strength of the BHF. In this work 18:1 BHF was used; 6:1 BHF

was diluted down to 18:1 because the 6:1 BHF was qualitatively determined to be

too strong as it rapidly etched the PDMS, resulting in unusable samples. Based on

the results of this work, a device must have a width greater than 2.5 µm for a 5 hour

release and greater than 2.8 µm for an 8 hour release to have any remaining PDMS.

2.1.6 Elastomer Adhesion, Ultimate Strain, and Hysteresis

This section presents the characterization of several other important metrics

of the fabricated polymer: the silicon-elastomer adhesion, the ultimate strains that

could be reached in the elastomer, and the hysteresis of the elastomer.

2.1.6.1 Silicon-Elastomer Adhesion

In addition to the stress-strain behavior which has been discussed, adhesion of

the fabricated silicon and elastomer features was critically important. If the adhesion

of the two materials was not sufficient, the silicon and elastomer features would delam-

inate under normal operating conditions. Ideal adhesion would allow the elastomer

to reach its ultimate strain before the silicon and elastomer features delaminated.

Test structures to examine the normal adhesion were designed and fabricated. These
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structures consisted of the elastomer that was under investigation in series with a sil-

icon spring. The silicon spring was designed using ANSYS to have a spring constant

of 4.35 N/m. The spring constant was recalculated after fabrication to account for

any lateral etch during the DRIE. The DRIE process also does not fabricate perfectly

vertical sidewalls, trenches are either tapered in and form a v-shaped trench or are

tapered out and form a re-entrant trench. The specific process parameters during

the etch, especially the etch and passivation times, dictate whether the trench will be

v-shaped or re-entrant. The DRIE process used during the silicon etch was tailored

to have re-entrant trenches with an aspect ratio of 25:1. During analysis, the silicon

walls were assumed to be vertical, which added some uncertainty to the calculated

spring constant for the silicon springs. See Appendix A for more information on the

fabrication. A probe was used to manually apply a force to the end of the silicon

spring and this same force was transferred to the elastomer. For analysis, micrographs

were taken at several stages as the applied force was increased.

The test structure used to measure the normal adhesion is shown in Figure 2.16.

The ultimate pressure at which the elastomer delaminated from the silicon due to a

normal force occurred over the range of 0.8 to 1.6 MPa in eight tests. It is worth

noting that these values were calculated using an estimated spring constant for the

silicon flexures, not a calibrated spring constant.
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Figure 2.16: SEM of the test structure used to measure normal adhesion.
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Figure 2.17: SEM of the test structure used to measure strain characteristics.
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Figure 2.18: Stress-strain curves for Sylgard 184.
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2.1.6.2 Ultimate Strain Behavior of Processed Elastomer

The ultimate strain behavior of the elastomer is important for understanding

the mechanics of any device, especially one which uses the elastomer for mechanical

energy storage. The design of the test structures used for the in situ characterization

allowed for strains up to only 65%, so test structures used to characterize the ultimate

strain of the materials were fabricated, shown in Figure 2.17. The structure had a

silicon spring in series with a 1 mm long elastomer spring. These tests brought the

structures to failure, which was typically due to delamination of the elastomer from

the silicon in the c-shaped region of the structure, but was twice due to failure of

the elastomer spring. Failure occurred at an average elongation of 116% over eight

tests. Elongation of both the elastomer spring and the silicon spring were used to

calculate the response of the elastomer spring. The calculated stress-strain curves

of Sylgard 184 for eight separate test structures are shown in Figure 2.18. While

the failure mechanism for most structures was delamination of the elastomer from

the silicon surface in the c-shaped region of the structures, strains as high as 200%

were achieved. This is slightly greater than the 180% maximum strain that has been

reported in literature for unprocessed Sylgard 184 [51].
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2.1.6.3 Hysteresis in Processed Elastomer

Stretching and relaxing an elastomer for energy storage incurs losses due to

heating and friction from the rubbing of the crosslinked polymer chains as they reor-

ganize during elongation or contraction of the bulk [76]. Two tests of the hysteresis

of Sylgard 184 using the test structure shown in Figure 2.17 are shown in Figure

2.19. The solid curve had 15% energy loss during relaxation of the Sylgard 184 and

the dashed curve had 27% energy loss during relaxation, though this test brought

the elastomer to a higher maximum strain. These tests were performed by slowly

manually straining and relaxing the elastomer spring. These results are similar to the

hysteresis visible in the results from the tests on the macroscale samples in Section

2.1.4.1 as well as other work which have characterized silicone materials [62]. As with

the tests of the silicon-elastomer adhesion, the data presented in Figure 2.19 used

a calculated spring constant to determine the stress, but the strains were measured

directly. The results, however, are independent of any error on the stress as they only

depend on the change in the stress and strain, not the absolute value.

2.1.7 Conclusions

This discussion presents a comparison between the results of in situ tests per-

formed on microscale samples with a custom MEMS device fabricated in an SOI

wafer and similar tests performed on macroscale samples with a dynamic mechanical
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Figure 2.19: Hysteresis curves for Sylgard 184.

analyzer. The macroscale tests demonstrated a strong dependence of the material

stiffness on the curing temperature. The in situ results showed that the various mi-

crofabrication steps initially led to increased crosslinking of the PDMS, but that the

final release in BHF decreased the crosslinking, resulting in a decreased stiffness of

the PDMS. The 5 hour BHF release resulted in a 2.5 µm isotropic etch of the PDMS

while the 8 hour release resulted in a 2.8 µm etch. Coefficients and calculated moduli

for the Hooke, Neo-Hookean, and Ogden material models were also presented. Long-

term tests showed that the PDMS was stable over at least 1,000 cycles to 65% strain.

Test structures measured hysteresis in PDMS of 15% and 27%, yield strains in PDMS

as high as 200%, and adhesion of PDMS to silicon around 1 MPa.
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2.2 Dielectric Breakdown of PDMS Thin Films

2.2.1 Introduction

This dissertation uses PDMS in electrical devices as well as mechanical devices,

so characterization of properties like the dielectric breakdown is important. Dielectric

breakdown, or change in the molecular structure of a solid resulting in a dramatic

increase in conductivity of the material [77], is well characterized in materials tradi-

tional to microfabrication such as oxides [78, 79, 80]. Polymers like PDMS, however,

have not been thoroughly characterized, especially at thicknesses approaching sin-

gle micrometers. PDMS is often used for encapsulation of electronics, in medical

devices [42], and as a flexible substrate for electronics [35, 81]. PDMS is also used

as a functional mechanical material in systems such as actuators and pumps and

valves for microfluidics. Some dielectric elastomer actuators (DEAs), a type of elec-

troactive polymer actuator, use PDMS as a compliant dielectric material to separate

electrode layers [82, 83], but one of the most common failure modes in DEAs is elec-

trical breakdown [84, 85, 86]. In most of these applications mentioned, PDMS is used

primarily for its mechanical properties, but knowledge of electrical properties such

as the dielectric breakdown point would be beneficial for design and optimization of

electromechanical systems. The purpose of this section is to characterize the dielectric

breakdown of PDMS thin films with thicknesses from 2 to 14 µm.

As the film thickness of PDMS approaches single micrometers, it becomes in-
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creasingly difficult to achieve uniform thicknesses, so testing of such thin films is rare.

There are many examples of previously published works that report single points

for breakdown field or voltage ranging from 19 V/µm to 133 V/µm [60, 87]. There

are no works that study the breakdown fields as a function of film thickness below

100 µm. This makes analysis of the breakdown fields for PDMS difficult because of

the different methods used in each of these works. The closest example looked at the

breakdown of PDMS at three sub-15 µm thicknesses between a rigid electrode and a

conductive fluid droplet separated by PDMS for electrowetting [88]. Test structures

fabricated in a silicon-on-insulator (SOI) wafer to test the dielectric breakdown of

PDMS thin films are described below in this section.

This discussion begins with a description of the fabrication process and design

of the test structures in Section 2.2.2. The results are presented in Section 2.2.3

followed by a discussion in Section 2.2.4. Finally, conclusions and future work are

presented in Section 2.2.5.

2.2.2 Design and Fabrication of Test Structures

PDMS thin films are typically obtained by either spinning a pre-cure viscous

mixture on a rigid substrate (the film thickness decreases as the spin speed increases)

or by using soft lithography to mold the PDMS features [42, 89]. Both of these

processes are limited in the minimum thickness uniform films that can be achieved.

This section employs a molding technique similar to soft lithography and based on a
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fabrication process which has been used to create PDMS-based microelectromechan-

ical systems (MEMS) [44, 90]. In this work both the width of the gap between the

electrodes and the shape of the electrodes were varied. There were seven electrode

gaps, from 2 to 14 µm in 2 µm steps, and five different electrode geometries examined,

which will be described in detail in Section 2.2.2.1.

2.2.2.1 Design of Test Structures

Three different types of test devices were fabricated, shown in cross-section in

Figure 2.20. Type A was simply silicon electrodes with an air gap. Type B devices

were coated with PDMS, cured, and then the excess PDMS was removed from the

surface, resulting in test structures with a silicon and PDMS top-surface. Type C

devices were coated with a single thick layer of PDMS and not planarized. The details

of the fabrication are described below.

Test structures used to measure breakdown of dielectrics generally are oriented

in vertical stacks, but stacking uniform structures with single micron thicknesses is

not feasible when using viscous polymers like PDMS. In order to fabricate dielectric

layers only micrometers in thickness, the fabrication process described below defined

the PDMS thickness in-plane by molding the PDMS features. A consequence of this

fabrication process is the use of silicon, a semiconductor, for electrodes. Dielectric

breakdown is generally measured using metal electrodes, but the fabrication process

described below was not compatible with metals.
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Figure 2.20: Schematic showing cross sections of the fabrication process and the three
types of test structures: 2) Type A with an air gap 3) Type C coated with PDMS
and 4) Type B coated with PDMS and planarized.
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Each type of device was fabricated in five different style electrode geometries,

shown in Figure 2.21. Style 1 had two flat electrodes. Style 2 had one flat electrode

and one curved electrode. Style 3 had two curved electrodes. Style 4 had one flat

electrode and one pointed electrode. Style 5 had two pointed electrodes. The elec-

trodes were all 500 µm wide and 3 mm long. The radius of the curved electrodes

was 250 µm. The pointed electrodes ended with isosceles triangles that had two leg

lengths of 354 µm that met at 90◦ at the ends. From this point on the following

naming convention will be used: a Type A device with a Style 4 geometry will be

referred to as an A4 test structure, a Type C device with a Style 3 geometry will be

referred to as a C3 test structure.

The thickness of the electrodes was determined by the thickness of the device

layer of the SOI wafer that was used. The Type A and B devices were fabricated

on SOI wafers with device layer thicknesses of 25 µm and 75 µm and device layer

resistivities of 0.006-0.009 Ω-cm and 0.07-0.13 Ω-cm, respectively. These wafers both

had buried silicon dioxide layer thicknesses of 2 µm and handle layer thicknesses of

400 µm. The Type C test structures were fabricated on an SOI wafer with a device

layer thickness of 40 µm, buried silicon dioxide layer thickness of 5 µm, handle layer

thickness of 490 µm, and device layer resistivity of 0.001-0.003 Ω-cm.

It is worth noting that these test structure designs did not test the electrome-

chanical breakdown of the PDMS films [91], which is sometimes the case with PDMS

thin films, especially ones being used for DEAs [84, 85, 86]. The electromechanical
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Figure 2.21: SEM images showing the five different electrode styles with 20 µm elec-
trode gaps.

breakdown, which is typically caused by the contraction of the PDMS film due to the

applied Maxwell pressure, was not being tested because the electrodes were rigidly

fixed in place, so there was no contraction of the films during testing.

2.2.2.2 Fabrication of Test Structures

The fabrication for all three types of test structures began with the same pro-

cessing, it was the final steps that differentiated them. A cross-section schematic of

the fabrication process is shown in Figure 2.20. The fabrication began by depositing

a 200 nm layer of silicon dioxide in an Oxford PlasmaLab 100 plasma-enhanced chem-

ical vapor deposition tool (PECVD). A layer of photoresist was deposited and then

patterned using an EVG 620 mask aligner. The silicon dioxide was then patterned

with an Oxford PlasmaLab System 100 inductively-coupled plasma reactive ion etch

(ICP-RIE) tool in Step 1.

The wafers were then diced into dies which were bonded to a handle wafer with

a 15 µm layer of photoresist and etched with a Surface Technology Systems deep
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reactive ion etch (DRIE) tool. The number of etch cycles performed (etch time =

10 s, passivation time = 6 s) depended on the device layer thickness; 45, 80 and 130

cycles were used for the 25, 40, and 75 µm device layer wafers, respectively. The dies

were then released from the handle wafer with a solvent and the silicon dioxide mask

was removed with a 1 minute dip in 6:1 buffered hydrofluoric acid (BHF) in Step 2.

At this point, the Type A test structures, which had an air gap separating two silicon

electrodes, could be tested.

To complete the manufacturing of the Type B and C test structures, a PDMS

mixture was prepared in a 10:1 mass ratio of base to curing agent, poured over the

wafer, degassed in a vacuum for 15 minutes at 50 Torr to remove the air bubbles

introduced during mixing which could have affected the results, and cured on a hot-

plate at 90 ◦C for 15 minutes in ambient conditions that ranged from 34 to 35%

relative humidity. Once the PDMS was cured in Step 3, the Type C structures could

be tested.

Type B devices were finished by taking dies with cured PDMS and removing

the excess PDMS above the surface of the wafer with a razor blade by running it

across the surface of the wafer like a squeegee in Step 4, a process described in detail

in [44]. This resulted in silicon electrodes with exposed top surfaces separated by thin

PDMS films. The PDMS used in all of this work is Sylgard 184 from Dow Corning,

the most common type of PDMS used in microsystems.
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2.2.3 Test Procedure and Results

2.2.3.1 Test Procedure

Tests were performed by applying a voltage between the two silicon electrodes

with tungsten probes, shown in Figure 2.22. During testing, the voltage was slowly

increased until breakdown occurred. There were four ways in which the breakdown

was evident: a spike in the current draw, demonstrated in Figure 2.23, a visually

noticeable destruction of the silicon, demonstrated in Figure 2.22, a drop in the

supply voltage from the the current-limited power source due to a reduction of the

resistance of the load, or an audible sound. Voltages were applied using a Bertan

Series 230 High Voltage Power Supply.

2.2.3.2 Test Results

This section reports the results of the tests of the dielectric breakdown of the

PDMS thin films. For this section, the term dielectric breakdown is defined as the

voltage at which failure occurred when an increasing voltage ramp was applied to

the material [92]. All of the tests were performed in ambient conditions that ranged

from 38 to 40% relative humidity and 18 to 21 ◦Cwithin 72 hours of the PDMS being

cured.

All of the results represent at least two separate test structures, but most of the

results represent five devices for each style and type combination of test structure.
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Figure 2.22: The top image is a C1 test structure with flat electrodes and a 6 µm gap
before breakdown. Below that are images of Type A, B, and C devices. Columns 1 and
2 show two fabricated but untested devices. Column 3 shows a tested devices. Column
4 shows a closeup on the damage resulting from the breakdown. The Type A and B
images were acquired from an SEM. The Type C images are optical micrographs.
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Figure 2.23: A voltage versus current curve from a test of an A1 test structure with
an 8 µm air gap. At 345 V the current jumps several orders of magnitude, indicating
breakdown of the structure.
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The voltages were measured on a multimeter using a voltage divider in parallel with

the test structure. There was also an ammeter in series with the test structures used

to indicate any increase in the current draw. The electrode gap dimensions used to

calculate the breakdown field were not the as-drawn gaps but rather an average of

at least three measurements performed in a scanning electron microscope (SEM) for

each electrode gap and each test structure geometry.

In order to confirm that the tests were in fact measuring breakdown, the Type

A devices were used to measure the breakdown of air so that the results could be

compared to Paschen’s Law, which describes the breakdown of air [93]. Paschen’s

Law is valid down to approximately 8 µm, at which point it begins to deviate from

experimental results. Below that, however, the behavior has been characterized ex-

perimentally [94, 95, 96, 97, 98, 99, 100].

The test results for the Type A devices are shown in Figure 2.24a, which demon-

strates that the breakdown fields match well with Paschen’s Law. This figure, and

all the figures which plot breakdown fields as a function of electrode gap, show the

breakdown according to Paschen’s Law down to 4 µm [94] as well as experimental

data for gaps from 10 µm down to 2 µm [96].

The results for the Type B devices are shown in Figure 2.24b and demonstrate

that the breakdown fields were again similar to Paschen’s Law. When compared

directly to the results of the Type A devices, shown in Figure 2.24c, it is evident that

the breakdown field of the Type B structures was slightly higher than that of the

59



0 5 10 15 20
0

50

100

150

200

El
ec

tr
ic

 F
ie

ld
 (V

/
µm

)

Gap ( µm)

(a)

 

 

A1
A2
A3
A4
A5
Paschen
Data from [94]

0 5 10 15 20
Gap ( µm)

(b)

 

 

B1
B2
B3
B4
B5
Paschen
Data from [94]

0 5 10 15 20
Gap ( µm)

(c)

 

 

A1
B1
A2 and A3
B2 and B3
A4 and A5
B4 and B5
Paschen
Data from [94]

Figure 2.24: a) Breakdown of the Type A test structures b) breakdown of the Type
B test structures c) breakdown of the Type A and B test structures.

Type A structures.

The results for the Type C test structures are shown in Figure 2.25. The

breakdown of the devices with one or two curved electrodes, Styles 2 and 3, is shown

in Figure 2.25a and the breakdown of the devices with one or two pointed electrodes,

Styles 4 and 5, is shown in Figure 2.25b. A direct comparison of the different styles

of electrodes is shown in Figure 2.25c.

Figure 2.25 demonstrates that the maximum gap size that was tested varied by

electrode style. This was because at voltages above 4340 V, the test structures broke

down through the buried silicon dioxide layer that separated the silicon device and

handle layers, as opposed to breaking down through the PDMS. Figure 2.25c shows

a thick black line labeled Oxide that represents the electric field at a constant 4340

V, which effectively denotes the maximum voltage that could be applied to the test

structures. This limited the maximum electrode gaps which could be tested, as is
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Figure 2.25: a) Breakdown of the C2 and C3 test structures b) breakdown of the C4
and C5 test structures c) breakdown of the C1, C3, and C5 test structures.

seen in the figure; Type 1 devices could only be tested up to 14 µm gaps, Type 2 and

3 devices could only be tested up to 10 µm gaps, and Type 4 and 5 devices could only

be tested up to 6 µm gaps. The position of this line is a function of the particular

wafer that was used in the tests. Increasing or decreasing the thickness of the buried

silicon dioxide layer of the wafer would shift the curve up or down, accordingly.

2.2.4 Discussion

The results of the Type A test structures used to characterize the breakdown

of air are shown in Figure 2.24. As was expected, the results closely match the

breakdown of air described by Paschen’s Law. It was not expected that the data would

exactly match Paschen’s Law as the breakdown field depends on the electrode shape

and material as well as the ambient environment in which the tests were conducted.

One of the side effects of using a DRIE tool to etch the silicon is scalloping, or
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30 μm
etched trenches scallops

Figure 2.26: SEM image of a series of trenches etched in a silicon wafer showing the
scalloping resulting from the DRIE process.

sharp points on the sidewalls of the trenches resulting from the cyclic nature of the

etch process, which likely contributed to the variation of the results. A SEM image

demonstrating scalloping on a series of trenches etched in silicon is shown in Figure

2.26 with a closeup of the sidewall and base of an etched trench shown in Figure 2.27.

The Type B test structure results, shown in Figure 2.24b and 2.24c, demon-

strate a breakdown field that was slightly higher than the breakdown of the Type

A structures. The cause of the increase is not fully understood, but is likely due to

the fact that the breakdown was isolated to the surface of the wafer. In the Type A

devices, breakdown could occur at any point along the depth of the test structures. In

the Type B structures, however, the breakdown could only occur at the surface of the

wafer due to the PDMS which filled the gaps between the electrodes and inhibited

breakdown. Any damage to the surface of the electrodes during the planarization

could have affected the ultimate breakdown field that was measured during testing.
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Figure 2.27: SEM image of scalloping in silicon after a DRIE process.

The results from the Type C devices demonstrate far more interesting results.

Figures 2.25a and 2.25b compare the different styles of electrodes that were fabricated.

Figure 2.25a shows that the breakdown fields for the Style 2 and 3 devices were

similar. Additionally, Figure 2.25b shows that the breakdown fields for the Style 4

and 5 devices were similar. This suggests that the effect of having curved or pointed

electrodes is accomplished by adding a single such electrode to the test structure,

such as in the Style 2 and 4 structures. When the test structure had two curved or

pointed electrodes, such as in the Style 3 and 5 structures, respectively, there was no

significant change in the breakdown field at the gaps tested. Figure 2.25c, however,

shows that changing from having two flat electrodes to having at least one pointed

or curved electrode led to a dramatic increase in the breakdown field.

A similar dependence of the breakdown on the thickness of the films has been

demonstrated in larger size films. It is generally accepted that the breakdown field EB
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is proportional to the inverse of the dielectric thickness t to the power of a constant

n, which varies by material, or EB ∝ t−n [101, 102, 103]. Some have suggested that

failure polymer films tested in a similar manner was a result of thermal breakdown, or

an imbalance between the dissipation of heat and Joule heating from any conduction

through the dielectric [77, 101].

One of the significant findings of this work is that electrode shape and gap both

had a dramatic effect on the breakdown field of PDMS, which contradicts the findings

for the breakdown of air. Figure 2.24 shows that the breakdown field of the Type A

and B test structures had a limited dependence on the electrode shape and gap at

widths above 5 µm. Figure 2.25c, however, shows that the electrode shape and gap

had a large effect on the breakdown of PDMS. The breakdown fields ranged from 349

V/µm for the C3 devices with a 10 µm gap to 500 V/µm for the same devices with a

2 µm gap, demonstrating the variation with electrode gap for one electrode geometry.

Additionally, the breakdown fields ranged from 343 V/µm for the C1 devices with

a 4 µm gap to 541 V/µm for the C5 devices with a 4 µm gap, demonstrating the

variation with electrode geometry at one electrode gap.

A comparison of the increase in the breakdown field for the Type B and C test

structures relative to the Type A test structures is shown in Figure 2.28. The ratios

shown in this figure were calculated by dividing the breakdown field of the Type B

and C devices by the breakdown field of the Type A devices for each style of test

structure. Figure 2.28 shows that the increase in the breakdown field for the Type C
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test structures was much greater than that of the Type B test structures. The Type

B devices had ratios of 1.1 to 1.4 and were linear over all of the electrode gap widths.

The Type C test structures, however, had with ratios varying from 4.4 to 9.5. The

ratios increased significantly as the electrode gaps increased, meaning the impact of

the PDMS on the breakdown field increased as the electrode gap increased, relative

to air.

Figure 2.28 also shows that the data for the Style 2 and 3 devices overlapped,

as did the data for the Style 4 and 5 devices. The overlaps led to grouping of data for

the Type C devices into three different groups with the Style 1 devices in one group,

Style 2 and 3 devices in a second group, and the Style 4 and 5 devices in a third

group. This again implies that the effect of curved or pointed electrodes is achieved

with just a single electrode and that adding a second pointed or curved electrode does

not additionally effect the breakdown field.

There are no known examples of previous work that have looked at the effect of

electrode shape on the breakdown of polymers at similar length scales, though some

previous work has examined the effect of the electrode shape on the breakdown of air

[97]. This work demonstrates a noticeable but relatively modest relationship between

electrode shape and breakdown field, which agrees with the data shown in Figure

2.24. The results in Figure 2.25 suggest that the PDMS increases the variation of the

breakdown field across the electrode geometries.

It is worth acknowledging that the results of this work demonstrate breakdown
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Figure 2.28: The ratio of the change in the breakdown field with respect to air as a
function of gap for Types B and C.

fields that are higher than the breakdown fields typically reported for Sylgard 184

PDMS. As was mentioned earlier, breakdown results for Sylgard 184 range from 19

to 133 V/µm [60, 87, 104, 105, 106, 107, 108]. This discrepancy is most likely due to

the difference between the electrode gap geometries and materials used in this work

and used in other works. As the results presented above demonstrate, the breakdown

field does depend on the electrode gap, and most other works used larger PDMS film

thicknesses. These other works also used different electrode geometries and materials,

so comparing the results directly can be deceiving. The list of citations above is not

intended to be an exhaustive list; there are many other publications which mention

the dielectric breakdown of PDMS. Most publications, however, simply use results

from other papers as a guideline for the breakdown of PDMS. There are not any pre-

vious works that measured breakdown of sub-14 µm PDMS thin films between silicon
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electrodes. The results in this section demonstrated a wide range of breakdown fields

by varying electrode gap and geometry and emphasize the importance of determin-

ing the breakdown field of PDMS as it changes with the environment in which it is

implemented.

2.2.5 Conclusions

This discussion described the dielectric breakdown of PDMS thin films at thick-

nesses from 2 to 14 µm with several electrode geometries. The results showed that

while there was not a strong influence of the electrode shape and gap size on the break-

down field of air gaps, there was a strong influence for similar gaps filled with PDMS.

The results show that the PDMS dielectric breakdown fields varied from 250 V/µm

to 635 V/µm, depending on the electrode shape and geometry, which corresponds to

a 4.4x to 9.5x increase in the breakdown field over that of air.

2.3 Conductive PDMS

While all of the polymers that have been characterized so far have been di-

electrics, it is common for conductive filler particles to be added to a polymer matrix

in order to create conductive PDMS. Common filler particles include silver micropar-

ticles [109], carbon black [109], exfoliated graphite [52], and carbon nanotubes [110].

All of the work presented in this dissertation used carbon black particles because it is

inexpensive and readily available in particle sizes down to tens of nanometers. Carbon
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black particles are about an order of magnitude less expensive than silver particles

of the same size. Carbon nanotubes and exfoliated graphite are potential options in

the future, but are required to be much smaller than 2 µm, the approximate size of

the trenches which the particles must enter and are not readily available at this size

scale.

Conductive traces have been patterned on elastomeric substrates with thin

metal films [111] and wavy thin silicon films [112]. These methods, however, are not

compatible with the fabrication processes that will be used for the devices described

in Chapters 4 and 3, so while these methods are useful for particular applications, it

is not practical for fabrication of high aspect ratio features, which is central to this

dissertation.

2.3.1 Carbon Black Filler Particles

The influence of carbon black particles on rubber was discussed by Guth in

the first half of the twentieth century [113]. In his paper, Guth introduces a model

that describes the relationship between the modulus of a rubber and the volume

concentration of a carbon black filler, shown in Equation 2.14.

E∗ = Eo

(
1 + 0.67fc+ 1.62f 2c2

)
(2.14)

where Eo is the unloaded modulus, c is the volume concentration, and f is a shape

factor which equals the length divided by the breadth of the particles. Guth describes
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three ranges of volume concentration that a carbon black and rubber sample can exist

in. The first, a volume concentration of carbon black from 0% to 10%, describing

the range in which there is no discernible electrical conductivity of the polymer. The

second, a volume concentration of carbon black from 10% to 30%, describes the range

in which the electrical conductivity of the polymer increases as the number of paths

through the polymer that electrons can follow increases with volume concentration.

Eventually the polymer becomes saturated by the carbon black and packing of the

carbon reaches its most dense configurations, which Guth suggests is a volume con-

centration of carbon black over 30%. Guth does not address how particle size might

influence his model or how it might shift any of these percentages.

Strictly speaking, Guth writes that Equation 2.14 should be used to describe

the second range of conductive filler, volume concentrations from 10% to 30%. Guth

also states that the model should be used for are rod-shaped fillers where the shape

factor f is much greater than 1, not for spheres, as is the case with carbon black where

f=1. However, this model can still be used as a reference for considering the affect of

spherical fillers, like carbon black. Equation 2.14 shows that carbon black particles

are ideal when the a low modulus material is desired. This is because when f=1, the

increase in the modulus is smallest. It should be noted that assuming f=1 for carbon

black is an approximation as the carbon black particles do tend to agglomerate, as

opposed to individual particles suspended in the matrix material. The agglomeration

was noticed visually upon inspection of the material under an optical microscope.
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Materials like carbon nanotubes have f values that can be from 101 to upwards of

104 times larger, so they have a much more significant impact on the modulus of the

materials. Smaller filler particles, however, require larger concentrations to achieve

conductivities similar to that of larger filler particles. One of the challenges of using

nanoparticles to provide conductivity to the polymers is the difficulty in uniform

dispersal of the particles throughout the matrix [114, 115], but the evaluation of

various mixing methods is outside of the scope of this work. Once suitable polymers

were realized there was no additional work done to optimize them.

2.3.2 Characterization of PDMS/carbon

The conductive polymers were created by combining the carbon black with the

polymer. The two, however, cannot be simply mixed together to result in a high

quality film. This is because as increasing amounts of carbon black are added, the

viscosity of the mixture increases as well. In the fabrication process detailed earlier

in this chapter, a low viscosity pre-cure polymer mixture is required in order to

successfully refill the silicon trenches. To mitigate this issue, solvent can be added

in order to decrease the viscosity of the mixture and facilitate mixing. Then, during

the curing process, the solvent evaporates, resulting in a PDMS and carbon black

composite.

There is a strong dependence on the conductivity of the resulting material, as

is shown in Figure 2.29. The data shown here is collected from samples with varying
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Figure 2.29: Conductivity of the PDMS/carbon as a function of weight percentage of
carbon black. Note the log scale on the y-axis.

amounts of carbon black relative to the amount of PDMS. The solvent used was

hexane and was a constant 20x the mass of the carbon black in the solution. The

filler particles used in these tests were 39724 carbon black from Alfa Aesar which was

mixed with the polymer Sylgard 184 PDMS. This data shows that the conductivity

varies more than three orders of magnitude, depending on the amount of carbon black

added to the solution. At 2.5 wt.% carbon black the tool being used to measure the

resistance of the devices indicated an open circuit, meaning the sample resistance was

greater than 200 MΩ.

It is worth noting that adding solvents to the polymer and carbon mixture is

not without consequence. The influence of solvents on polymers like silicones has also

been widely studied [116, 117, 118, 119]. Most of these studies focused on determining

the affect of the solvents on the crosslinking density and organization of the crosslink
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networks. There is some discrepancy between published work, however. Some papers

claim that the solvents decrease the final crosslinking density, while others claim that

the crosslinking density is maintained but the length of the polymer chains between

crosslinks increases with increased solvent. The former would lead to a decrease in

the modulus of the material, as the modulus has been shown to be linearly dependent

on the crosslink density. The latter considers what is called “supercoiling” [120, 121].

This is when the polymers form crosslinks in the presence of the solvent and then

contract as the solvent evaporates. When the solvent has evaporated, the chains of the

polymer have contracted into ordered coils. The resulting decrease in entanglements

and supercoiling lead to a decrease in the modulus of the polymers and an increase

in the ultimate strain and strain crystallization.

One of the issues with using carbon black as the conductive filler in PDMS is

that the conductivity of the films was also very sensitive to strain. The effect has been

widely reported and hinders the use of carbon black and PDMS films in strain sensor

application that require reasonably fast response times [122]. Any perturbation of

the films created using this combination led to a dramatic change in the conductivity

and had a settling time on the order of hours. To demonstrate this, a sample of

PDMS/carbon was strained to 100% and was then relaxed. Figure 2.30 shows the

response of the resistance as a function of time during the relaxation. The dashed

horizontal red line shows the resistance prior to the sample being strained. This

general type of decay in the resistance over time was seen regardless of the strain.

72



0 3 6
0
1

5

10

15

N
or

m
al

iz
ed

 R
es

is
ta

nc
e 

(R
/R

o)

Time (hours)

0 0.5 1 1.5
0

5

10

Time (minutes)

Figure 2.30: Resistance as a function of time during relaxation for a PDMS/carbon
sample that was strained to 100% and relaxed. The dashed horizontal red line shows
the resistance of the sample prior to being strained.

The samples are very sensitive to changes in strain but take a long time to return to

their initial value.

In addition to the electrical properties, the mechanical properties of the polymer

filled with carbon black are also important to characterize, especially how adding

the carbon black particles effects the modulus of the polymer material. In order to

examine this, three macroscale samples were prepared and tested in a DMA. In this

work, the polymer MRTV-9 from Insulcast was used. This polymer was used because

it has a lower viscosity than the Sylgard 184 PDMS, which aids the mixing with the

carbon black particles. Three samples were prepared: the unfilled MRTV-9, MRTV-9

mixed with an equal amount of hexane, and MRTV-9 mixed with an equal amount

of hexane and 7% carbon black particles by weight. The MRTV-9 and MRTV-9 and

hexane samples were mixed by hand. The samples with carbon black were prepared
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by first mixing the hexane and carbon black with a magnetic stir bar for several hours

and then for several additional hours after the MRTV-9 was added to the mixture.

The samples were then poured into polyoxymethylene molds and cured at 120 ◦C.

Once the samples were prepared, they were tested in a dynamic mechanical

analyzer. The results of the tests are shown in Figure 2.31. The results show that

adding hexane to the MRTV-9 lowered the modulus but adding carbon black and

hexane to the mixture increased the modulus. Fits to the linear Hooke material

model return coefficients of 0.27 MPa for the MRTV-9 sample, 0.23 MPa for the

MRTV-9 and hexane sample, and 0.62 MPa for the MRTV-9, hexane, and carbon

black sample. The decrease and increase of the modulus was expected, as discussed

earlier in this section. The Guth model predicts that a 7% by weight concentration of

carbon black, or 15% by volume, would lead to an increase in the modulus from 0.23

MPa for the MRTV-9 with hexane to 0.25 MPa for the MRTV-9 with hexane and

carbon black. This is much lower than the increase in the modulus that was actually

seen, but this is likely because the Guth model was developed for use with materials

with a high aspect ratio such as carbon nanotubes, not carbon black which has an

aspect ratio of 1, assuming perfectly round particles.

2.4 Conclusions

This chapter has presented the mechanical and electrical characterization of

polymers fabricated in SOI wafers for MEMS applications. The results show that the
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Figure 2.31: Stress-strain curves for three types of MRTV-9 samples.

polymer materials can be integrated into semiconductor processes without adverse

effect on the material properties. PDMS features can be molded in high aspect ratio

silicon features and achieve strains upwards of 100%. Tests of the dielectric breakdown

of PDMS showed a large increase in the breakdown fields at small gap sizes over the

breakdown fields of previously published works at larger gap sizes. This chapter

has also demonstrated how carbon black filler particles can be added to PDMS to

create conductive polymers. Throughout the rest of this dissertation, the materials

described in this section will be used to create various components for microrobots

such as actuators in Chapter 3 and actuated systems in Chapter 4.
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Chapter 3

All-Polymer Actuators

The previous chapter described the electrical and mechanical characterization of

PDMS fabricated in silicon. This chapter describes the use of the polymers described

in microscale thermal and electrostatic thermal all-polymer actuators. Section 3.2 of

this chapter is based on the publication “Microfabrication of compliant all-polymer

MEMS thermal actuators” from volume 122 of Sensors and Actuators A: Physical,

pages 16 - 22, by A. P. Gerratt and S. Bergbreiter, published in 2012. Section 3.3

of this chapter is based on the publication “Batch fabricated bidirectional dielectric

elastomer actuators” in the proceedings of the International Conference on Solid-State

Sensors, Actuators, and Microsystems (Transducers), pages 2422 - 2425, by A. P.

Gerratt B. Balakrisnan, I. Penskiy, and S. Bergbreiter, presented in June 2011. All of

the work included in this chapter was performed by Aaron Gerratt. Co-authors Bavani

Balakrisnan and Ivan Penskiy gave input on the design of the dielectric elastomer

actuators described in Section 3.3.

3.1 Fabrication

The actuators demonstrated in this chapter are all-polymer MEMS devices. The

microfabrication process described in this section is an extension of the silicon and
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Figure 3.1: 20 µm PDMS and conductive-PDMS features fabricated together in-
plane.

polymer microfabrication process shown in Chapter 2. This section presents a man-

ufacturing process that allows for both conductive and dielectric polymer structures

within the devices, which can provide interesting benefits and possibilities beyond

the capabilities of devices that are fabricated with silicon. The essence of the process

includes etching sets of trenches in a silicon wafer and using these trenches to mold

different polymer layers together, such as in the device shown in Figure 3.1.

3.1.1 Fabrication Process

The fabrication process is detailed in Figure 3.2. The process began with the

deposition of 200 nm of silicon dioxide on a bare 500 µm thick silicon wafer. A

1.4 µm photoresist layer was patterned with photolithography and the pattern was
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transferred to the oxide layer with a brief etch in 6:1 buffered hydrofluoric acid (BHF).

This was followed by a 40 µm deep reactive ion etch (DRIE), shown in step 1 (steps

correspond with Figure 3.2). A one minute oxygen plasma clean was then performed

to remove any residual passivation from the DRIE etch.

A composite with a PDMS matrix and carbon black particle filler was then

prepared. The PDMS was prepared in a 10:1 ratio of base:curing agent. The carbon

black used in this work was Vulcan XC72-R from Cabot [123]. The PDMS/carbon

composite was 82.5 wt% PDMS and 17.5 wt% carbon black particles. The polymer

was prepared using the fabrication process described in Section 2.3.2.

After curing, the excess PDMS/carbon was manually planarized to the surface of

the wafer with a razor blade. A 60 second etch in 3:1 tetrabutylammonium fluoride

(TBAF) and n-methylpyrrolidone (NMP) was performed to remove any remaining

PDMS/carbon residue [59]. This was followed by a brief 6:1 BHF etch to remove the

oxide mask. A low-temperature (100 ◦C) plasma enhanced chemical vapor deposition

(PECVD) silicon dioxide was deposited and patterned for a second DRIE in step

3. Following the DRIE, a 20 second SF6 isotropic dry silicon etch was performed to

remove any residual silicon that may have survived the DRIE along the sidewalls of

the PDMS/carbon.

This second set of trenches was refilled in step 4 with PDMS, which was manu-

ally planarized in the same manner as the PDMS/carbon. In steps 5 and 6, the wafer

was bonded, topside down, with Cool Grease from AI Technologies to a handle wafer
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Bare silicon wafer

DRIE silcion wafer
(1)

Refill with PDMS/carbon
(2)

DRIE silicon wafer
(3)

Refill with PDMS
(4)

Bond topside-down to handle wafer

(5)

Isotropic silicon etch
(6)

Solvent release(7)

bonding
agent

silicon PDMS/carbon

PDMS

Figure 3.2: Perspective and cross section views of the microfabrication process. Gray
is the silicon, light yellow is the bonding agent, red is the conductive polymer, and
blue is the dielectric polymer.
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and an SF6 plasma isotropic dry silicon etch was performed to remove the exposed

silicon. In step 7, an acetone soak and ultrasonication was used to release the devices

from the handle wafer. Finally, a brief etch in 6:1 BHF was performed to remove the

remaining oxide mask.

3.1.2 Fabrication Results

One of the main benefits of this fabrication process is the ability to pattern

very thin films of both conductive and dielectric polymer layers. Polymer layers are

often spin coated to achieve uniform films [89]. The film thickness to spin speed rela-

tionship is highly non-linear and generally asymptotically approaches some minimum

thickness, which depends on the specific polymer being processed and the substrate

material [124]. As the film thickness approaches this minimum, the thickness unifor-

mity of the PDMS decreases as well. This is especially true when filler particles such

as carbon black are added. Such filler particles have dramatic implications on the

uniformity and minimum thickness of films that can be achieved through spin coating

[125].

The benefit of the process presented above is that the films are all patterned

with a molding process, so there is no spin coating of the pre-cure polymer films. This

means that a wide variety of feature sizes can be patterned, even multiple feature sizes

on the same wafer. This molding technique has been used to fabricate feature sizes

from 2 µm to several millimeters in length and width [44]. Feature sizes from 20 µm
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to 1 mm have been fabricated at the same time on one silicon wafer. Additionally, the

depth of the features depends only on the depth of the DRIE during the fabrication

and depths from 5 µm to 40 µm have been achieved. In this chapter, the feature sizes

ranged from 10s to 1000s of microns in width and were all 40 µm in depth.

In the process presented in this section, the PDMS/carbon was deposited before

the PDMS was deposited. This helped to prevent any electrical shorting in the

devices. During deposition of the second polymer layer, any non-uniformities on the

top surface of the PDMS/carbon layer were filled in with PDMS. If the PDMS were

deposited first followed by PDMS/carbon, the non-uniformities would be filled with

the conductive PDMS/carbon, which could potentially short the devices.

One issue with this fabrication process is that some of the devices had large

residual stresses after fabrication, though this varied across the wafer. It is likely

that this came from the reaction between the polymer and the SF6 plasma during

the DRIE etch cycle, coupled with inadequate cooling from the handle wafer. It was

observed that soaking the devices in 18:1 buffered hydrofluoric acid for several hours

helped to relieve some of the residual stresses, though the exact mechanism is not

yet fully understood. It is possible that the BHF removed a thin oxide layer on the

surface of the PDMS that was generated during the plasma etch cycles during the

DRIE [126].

Attempts were also made to use 2.3 µm silver particles as a conductive filler

material, but the PDMS/silver films did not survive the final isotropic silicon etching
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200 μm 50 μm

bottom, as noted in Figure 3.2 roughness from the DRIE

Figure 3.3: PDMS films with silver (left) and carbon black (right) filler particles.
The surface roughness of the silver sample was a result of the reaction with the SF6

plasma during the isotropic etching process while the surface roughness of the carbon
black sample was a result of the non-planar silicon trench surface from the DRIE that
were transferred to the PDMS/carbon during the molding process.

process. The silver particles reacted more strongly with the silicon etch than the

carbon black. Other than the residual stress in the PDMS/carbon, there were no

other adverse affects of the isotropic silicon etch on the PDMS/carbon films that were

observed. The PDMS/silver, however, became highly porous and greatly increased

the resistivity of the PDMS/silver films. A visual comparison of the silver and carbon

black films after the isotropic silicon etch is shown in Figure 3.3. This figure shows

the highly porous nature of the surface of the PDMS/silver as a result of the isotropic

silicon etch. The surface of the PDMS/carbon sample was also slightly non-uniform,

but this was due to the surface roughness at the bottom of the silicon trenches prior

to the deposition of the PDMS/carbon; it was not a result of the final isotropic silicon

etch.
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3.2 All-Polymer Thermal Actuators

Microfabrication processes that integrate non-traditional MEMS materials such

as polymers have recently garnered increased attention in part due to material prop-

erties that are significantly different from traditional materials like silicon, oxides,

and metals [35]. Silicon is an anisotropic material with a Young’s modulus between

130 and 188 GPa [28] and a coefficient of thermal expansion (CTE) of 2.9x10-6 1/K

[127]. For some applications, however, it is beneficial to have materials with a Young’s

modulus that is many orders of magnitude smaller than silicon along with a CTE that

is several orders of magnitude larger. Large displacement thermal actuators in par-

ticular could benefit from such a combination. Parylene C has a Young’s modulus

of 2.76 GPa and a coefficient of thermal expansion similar to silicon of 3.5x10-6 1/K

[36]. Compliant elastomers such as PDMS have a Young’s modulus on the order of 1

MPa and a coefficient of thermal expansion of 310x10-6 1/K (two orders of magnitude

above silicon) [128].

There are prior works that integrate mechanical polymer layers in MEMS de-

vices for actuation. These works employ fabrication methods that typically require

large feature sizes [129, 130], rigid structural layers (silicon, SU-8) [27] or serial pro-

cessing and manual assembly of messy carbon grease layers [131]. There are also

examples of works that exploit the difference in the coefficient of thermal expansion

between silicon and polymeric materials such as SU-8 to demonstrate actuation dur-
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ing heating [27]. These devices, however, are limited in their displacements because

of the high modulus of silicon. Other work achieved bending by using metal traces

patterned on polyimide to create asymmetric expansion of polyimide-filled v-shaped

groves [16]. Devices that use rigid materials with different coefficients of thermal

expansion, however, have issues with delamination at the interface of the two mate-

rials [132]. The devices demonstrated in this dissertation require no rigid structural

materials and are made entirely of polymers, which allows for very robust actuators

with large achievable displacements.

PDMS is a good material choice to achieve these large displacements, due to its

high achievable strains in excess of 100% [51]. PDMS, however, is a dielectric material

and to design actuators it is beneficial to have conductive traces that can also undergo

such large strains. Many attempts to integrate conductive materials with compliant

polymers use thin metal layers, such as gold, but these devices can only survive

relatively small strains [41]. Conductive filler particles such as silver [133], carbon

black [134], and exfoliated graphite [52] have been used to create conductive PDMS.

In this work, carbon black was used because it results in films with only moderately

altered mechanical properties with very inexpensive and simple fabrication.

3.2.1 Thermal Actuator Design

There are three common types of silicon-based thermal actuators: chevron [135],

heatuator [27], and bilayer [136]. Polymer versions of these actuators are shown in
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Figure 3.4. These actuators are powered with Joule heating by running a current

through the conductive traces. Thermal actuators are ideal in applications where the

electrical power requirements are not strict, as thermal actuators generally have low

efficiencies. Thermal actuators can be beneficial in applications that require large

forces [135] and in situations where large currents but not large voltages are available

from the control electronics. One issue with these devices was that the resistance

of the actuators was typically on the order of 100s of kΩ to 10s of MΩ. Since the

heat production is determined by the applied power, this meant that high voltages

(as high as 150 V) were needed at higher currents in order to satisfy Ohm’s law.

Other conductive polymer mixtures have shown lower resistivities and could be used

in future process iterations [52, 133, 134].

As was discussed earlier, the CTE of PDMS is 310x10-6 1/K and the CTE for

silicon is 2.7x10-6 1/K. Carbon black filled silicones were shown to have a CTE that

was decreased by approximately the same percentage wt% of carbon black that was

added [137]. The PDMS/carbon in this work was 17.5 wt%, so the PDMS/carbon

CTE is approximately 82.5% of the CTE of pure PDMS, or 256x10-6 1/K. This

agrees with rudimentary tests that were performed by placing long strips of PDMS

and PDMS/carbon on a hotplate and optically monitoring the change in length as

the temperature of the hotplate was increased in steps. It is partly this large CTE

that makes PDMS an attractive material for thermal actuators. Thermal strain can

be calculated as where is the CTE and is the temperature change. So, a 50 ◦C change
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Figure 3.4: SEM of a) chevron b) heatuator and c) bilayer thermal actuators. The
blue arrows show the direction of actuation. The black diamond indicates the point
at which the displacements were measured on each actuator.

results in 15 millistrain in PDMS and 0.14 millistrain in silicon; PDMS strains are

100x those in silicon. However, the Young’s modulus of PDMS, as shown in Section

2.1.4.2.2, is approximately 1.68 MPa. Since the force scales with the modulus of the

material, this low modulus will result in a lower output force.

3.2.2 Experimental Results

Two tests were run to characterize the actuators. The first test analyzed the

static free displacement of the actuators. A probe station was used to apply power to

the actuators with tungsten probe tips contacting electrodes that were patterned at

the base of each type of actuator. The power applied to the actuator was increased in

steps, with optical images taken at each step. The power was applied at a constant

voltage at each step. The second test analyzed the output force of the actuators. A

vertical tungsten wire (1.3 mil wire from Gaiser Tool Company) was placed at the end

of the actuator, as shown in Figure 3.5. In the equilibrium position, the tungsten wire
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(a)

(b)

tungsten wire

actuator l

Figure 3.5: Schematic of the force-displacement characterization setup. In 3.5a, the
equilibrium state of the system is shown. In Figure 3.5b, the heated state of the
system is shown. The expansion of the actuator bends the tungsten wire, which is
used to calculate the applied force.

was aligned vertically in front of the actuator, as shown in Figure 3.5a. The power

applied to the actuator was increased in steps, leading to Joule heating and expansion

of the actuator. This expansion exerted a force on the tungsten wire, bending the

tungsten wire, as shown in Figure 3.5b. Optical images such at those shown in Figure

3.6 were taken at each step as the input power was increased.

After the testing was completed, the images were analyzed to measure the dis-

placement of the tip of the tungsten wire as a function of the input power. The

physical and geometric parameters of the tungsten wire were known. The analysis

assumed the wire diameter had a uniform cross section, homogeneous mechanical

properties, that it was rigidly fixed at the base, that the displacement was small

enough that beam theory was still valid (l >> δ), and that any thermal energy con-

ducted into the tungsten wire did not alter any of its mechanical properties. The

force-displacement relationship follows simple beam theory [138]:
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Figure 3.6: Overlaid images of hot and cold (A) heatuator actuators (B) chevron
actuators (C) bilayer actuator.

F =
3EIδ

l3
(3.1)

where E is Young’s modulus of the wire (411 GPa [139]), I is the area moment of

inertia (58200 µm4), δ is the displacement of the tip of the wire, and l is the length

of the wire (4.5 mm ). It should be noted that since this method of measuring the

force allowed the actuator to expand, the blocked force was not being measured; the

measured force was something less than the blocked force. It should also be noted

that this setup was not calibrated, so the accuracy of the measurement is unknown.

The forces calculated using the method are approximate, but provide a good estimate

of the magnitude of the forces.
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3.2.2.1 Thermal Actuator Performance

The results of the actuation tests varied from device to device and typical results

are shown. This was largely due to variations in the resistivity of the actuators, likely

resulting from the hand mixing of the PDMS/carbon mixture. The residual stress

also likely contributed to variations in the performance of the actuators. Figure 3.7

shows the free displacement as a function of the input power and Figure 3.8 shows

the force as a function of the input power. The tests were performed as described

above. For the bilayer and heatuator actuators, the displacement was determined

by measuring the motion of the top right and left corners, respectively, as shown in

Figure 3.4. It should be noted that all three styles of actuator are presented on one

graph, but the performances should not be used to directly compare the actuators

as differences such as resistance and footprint were not compensated for. The results

are presented together, but are best interpreted separately. The thermal expansion at

elevated temperatures led to effective strains up to 5% at the highest temperatures.

A comparison of the polymer thermal actuators can be made with silicon ther-

mal actuators [135]. This example of a silicon chevron actuator demonstrated at least

6.7 mN at 3W with a size of 2.1 mm x 2.5 mm. The thermal actuator demonstrated

in this work exerted 30 µN at 80 mW with a size of 1.5 mm x 1.2 mm. The sili-

con based chevron actuator had a force density of 1.3 kN/m2 and a power density of

571 kW/m2. The PDMS based chevron actuator had a force density of 16 newton/m2

and a power density of 44 kW/m2. So, the force output of the silicon based device was
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Figure 3.7: Displacement as a function of input power.
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Figure 3.8: Force as a function of input power.

higher, but power density of the polymer based devices was lower. Additionally, the

free displacement of the PDMS actuator was much greater than the free displacement

of a similarly sized silicon thermal actuator since this displacement is proportional to

the CTE of each material.
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3.2.2.2 Frequency Response

The frequency response of a chevron actuator was measured by applying a

square wave with a frequency of 0.005 Hz to 12 Hz. High speed video of the ac-

tuation was taken at 300 frames per second. The displacement amplitude between

the power on and power off states was considered to be the displacement for the

given frequencies. It should be noted that at higher frequencies the actuators did

not cool completely to their equilibrium position. The normalized frequency response

is shown in Figure 3.9. At lower frequencies the actuators had time to completely

heat and cool during each cycle so the response is frequency independent. As the

frequency increased above 1.25 Hz, the amplitude of the displacement decreased by

approximately 16 dB per decade. Bilayer actuators showed a faster time response and

operated at 90% of their static free displacement at 10 Hz. The difference between

the performances of the two actuators is largely due to the difference in the thermal

mass between the two actuator types.

3.2.2.3 Robustness

One of the benefits of using compliant polymers is their ability to absorb energy

when deformed by an external force and release this energy to return to their original

position when the external force is removed. As shown in Figure 3.10, the actuators

can be manipulated by straining and bending, and when they are released, they return
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Figure 3.9: Frequency response of the displacement amplitude during actuation.
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tweezers

Figure 3.10: A chevron-type actuator in three states a) as fabricated b) strained by
tweezers and c) bent out of plane by a pair of tweezers.

to their original shape and can be re-used. This is the case for any deformations that

do not exceed the elastic strain limit of the PDMS and PDMS/carbon.

3.3 All-Polymer Electrostatic Actuators

One of the drawbacks of the thermal actuators described in the previous section

is the relatively large electrical power draw, which was on the order of milliWatts.

This is due to the low efficiency of the thermal actuators. This section will focus on

the development of dielectric elastomer actuators (DEAs), which offer the potential
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for operation at powers several order of magnitude lower than that of the thermal

actuators.

DEAs are fabricated using elastomeric materials and are lightweight, compliant,

robust, and have relatively high power densities [85, 140, 141]. These properties

make DEAs attractive for biomimetic applications including artificial muscles [85].

Additional applications of DEAs include lightweight actuators for space exploration

[142] and in biomedical MRI-compatible systems [143]. There are many examples

of macroscale DEAs, but microscale DEAs are still difficult to realize because of

complications with the fabrication process [82, 125, 144].

The major focuses of current DEA research are improving mechanical and elec-

trical properties of the materials, fabricating actuators that are resistant to electrical

failure, and reducing the operating voltages [85, 140, 141]. DEA materials have typi-

cally been limited to silicone and acrylic for the dielectric layer of DEAs and carbon

grease for the electrodes [145]. There has been extensive research on the use of

nanoparticles for increasing the dielectric constant of these materials, but this also

typically leads to a decrease in the breakdown voltage [125, 146]. Nanoparticles are

also used as filler particles in the elastomer matrices to create conductive elastomers.

Research in this area is focused on increasing the conductance of the composites

without altering the mechanical properties [52, 82, 129, 130]. The last thrust in DEA

research is on reduction of the operating voltage, mainly by decreasing the dielectric

layer thickness. Fabrication processes commonly used allow for film thicknesses down
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to 10s of microns. DEAs are typically operated at 10s or 100s of volts per micron, so

operating voltages are often many kilovolts [141, 147] resulting in actuators that are

difficult to integrate into larger systems.

Prior works have been successful at demonstrating DEAs using microfabrication

techniques, but still have not made significant progress in decreasing the actuation

voltage of DEAs. There has been some work into surface micromachining DEAs, but

these actuators have not yet been successfully operated [148]. A microfabrication

process using ion-implantation of gold particles into thin films of dielectric elastomers

has been used to demonstrate microscale membrane DEAs, but the devices require a

differential pressure on the membrane to operate [82]. Additionally, work has been

done to demonstrate microscale DEAs using conductive grease as the electrode ma-

terial [129, 130]. Conductive grease, however, is messy and is not robust compared

to other macro-scale electrodes.

The research described in this section use the same fabrication process used

for the thermal actuators in Section 3.2 to fabricate DEAs plus one additional step

added to the end of the processing. This was a several hour soak in 18:1 buffered

hydrofluoric acid. The purpose of this soak was to remove any oxides that may have

developed on the actuators. The elastomer used in these actuators was not Sylgard

184 but rather MRTV-9, which was characterized in Section 2.3.
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Figure 3.11: A microfabricated bidirectional DEA with alternating conductive and
dielectric layers.
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Figure 3.12: A DEA without and with a voltage applied. The top and bottom blue
layers are the electrodes and the gray middle layer is the dielectric.
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3.3.1 Analysis of Dielectric Elastomer Actuators

The derivation of the compressive force in a single DEA unit (two electrode lay-

ers and one dielectric layer, shown in Figure 3.12) is presented in this section. This

analysis will neglect the effect of the electrode layers and of the boundary conditions

on the performance of the actuators (assume a modulus/thickness of zero) and is

similar to the analysis presented in [67]. This other analysis derives the force, pres-

sures, and pull-in strains. The analysis is extended in this dissertation to describe

the pull-in voltages.

The capacitance of a single actuator is

C = ε0εr
A

z
(3.2)

where ε0 is the relative permittivity, εr is the dielectric constant of the dielectric

material, A is the overlapping area of the electrodes, and z is the thickness of the

dielectric layer, as shown in Figure 3.12. The force can be determined using Equation

3.3

Fe = −∂U

∂z
(3.3)

where

U =
1

2

Q2

C
. (3.4)
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By substituting Equations 3.4 and 3.2 into Equation 3.3 we see that

Fe =
∂U

∂z
+

∂U

∂A

∂A

∂z
(3.5)

which can be solved to show

Fe =
1

2

Q2

ε0εrA
− −1

2

Q2z

ε0εrA2

−A

z
= −1

2

Q

ε0εrA
− 1

2

Q

ε0εrA
= − Q

ε0εrA
. (3.6)

The DEAs will be operated by controlling the voltage, not the charge, so it useful to

convert this equation so that it is a function of voltage, not charge:

V =
Q

C
= Q

z

ε0εrA
. (3.7)

The electric field E can be described by

E =
V

z
=

Q

ε0εrA
. (3.8)

So, Equation 3.6 can be simplified to

F = −ε0εrAE
2 (3.9)

and the pressure is equal to
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P = −ε0εrE
2. (3.10)

It is useful to look at the instability, or pull-in, point of the actuators. This is the

point at which the mechanical elastic restoring force in the dielectric cannot increase

at the same rate as the compressive electrostatic stress applied by the electrodes,

leading to a collapse of the dielectric layer. Taking Equation 3.10, we can make the z

term a function of the strain by setting z = z0 (1 + S) where S is the z-axis strain and

z0 is the initial gap between the electrodes, using the axis directions from Figure 3.12.

We also know that the pressure P is equal to the Young’s modulus of the material

EY times the strain S. This can be substituted in to Equation 3.10 and after some

simply algebra, we see that the resulting equation can be written as:

S3 + 2S2 + S = −ε0εrV
2

EY z20
(3.11)

The instability points are the roots of the partial of Equation 3.11 with respect to

the strain, or the roots of

0 =
1

3S3 + 4S2 + 1
(3.12)

which are −1 and −1
3
. As the compressive strain cannot be 100%, the instability, or

pull-in, point is −1
3
strain in the z-direction.

The analysis above examined pull-in in terms of the strain of the dielectric, but

98



it is also necessary to understand the relationship between the applied voltage and

the pull-in to determine the operational limits of the devices. To begin this, Equation

3.9 can be re-organized to show that

Fe = − ε0εrAV
2

(z0 − z)2
(3.13)

where z is the magnitude of the compression. We can also say that the mechanical

restoring force of the dielectric layer is

Fm = kz (3.14)

where k is the spring constant of the dielectric layer. Equations 3.13 and 3.14 can be

combined to show the net force in the system is

Fnet = − ε0εrAV
2

(z0 − z)2
+ kz (3.15)

By taking the differential of the net force with respect to the displacement and sub-

stituting the solution from the pull-in strain analysis (z = 1
3
z0), the resulting pull-in

voltage is

VPI =

√
4

27

kz30
ε0εrA

(3.16)

where k is the spring constant of the dielectric material being compressed. The
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dielectric can be considered a beam being compressed whose spring constant is k =

EY A
L

where EY is the Young’s modulus of the material. In this derivation, the length

L is equivalent to the thickness of the dielectric, z. Substituting this into Equation

3.16, the pull in voltage as a function of the compliance and thickness of the dielectric

layer is

VPI =

√
4

27

EY z20
ε0εr

. (3.17)

One of the important takeaways from Equation 3.17 is that the pull in voltage de-

pends only on the material properties of the dielectric (Young’s modulus and relative

permittivity) and the thickness of the dielectric.

It is also worth looking at the strain in the transverse directions. All of the

elastomers used in this work are assumed to be incompressible, so volume must be

conserved. This means that Equation 3.18 must be stratified. This equation assumes

that there are no boundary conditions that limit the compression of the dielectric in

z or expansion of the electrode and dielectric layers in x and y, which implies that

the strain in x and y are the same:

(1 + Sz) (1 + Sx) (1 + Sy) = 1. (3.18)

Since there is compression only in the z-direction, Sx = Sy, so Equation 3.18 can be

simplified to
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(1 + Sz) (1 + Sx)
2 = 1 (3.19)

By using the Taylor series expansion of this equation, we can see that

Sz = −2Sx = −2Sy. (3.20)

It is important to remember that Equations 3.11 and 3.17 neglect the influence

of the electrode layers, which will work to decrease the ultimate strain that can be

achieved at a given voltage. An analytical solution for the performance of DEAs with

the affect of the electrode layers is possible, but is also very dependent on the specifics

of the design of the DEA of interest. Additionally, it is important to include the

influence of the traces which supply the electrodes of the DEA with their potential,

which further degrades the performance of the DEA and further complicates the

analytical solution to the equations describing the performance of DEAs. There are

many other works which have focused on modeling DEAs and provide more complete

derivations, but additional modeling was not included in this dissertation as the focus

of the work was on the fabrication [84, 149, 142].

3.3.2 Design

DEAs are traditionally fabricated by vertically stacking alternating layers of

conductive and dielectric elastomers. This method is difficult to replicate at the
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microscale due to the complications involved with stacking and patterning thin layers

of elastomers. Thin layers are commonly fabricated by spinning the elastomers prior

to curing them. As the spin speed is increased to realize thinner layers, however, the

thickness uniformity of the layers decreases rapidly. Once filler particles are added,

additional complications arise due to the increase of the viscosity that occurs when

fillers are added to the polymer matrix.

This work uses the fabrication process described in Section 3.1.1, which allows

for molding of the elastomer layers, thereby eliminating the issues related to spinning

of the polymer films. Unlike macroscale DEAs that have vertically stacked layers,

the DEAs shown in this work have horizontally stacked layers. A similar approach

using deep reactive ion etched (DRIE) trenches to mold dielectric polymer and silicon

DEAs was proposed, but has not been successfully demonstrated [86].

By patterning alternating layers of conductive and dielectric elastomers, in-

plane bending actuators can be realized, such as that shown in Figures 3.11 and 3.13.

Applying an electrical potential between two of the neighboring electrodes generates

a stress in the dielectric layer between the two electrodes. The elastomers used are

incompressible, so this stress leads to transverse compression and axial extension

of the dielectric layer that separates the two electrodes. The beam is essentially a

bimorph and axial extension in one layer leads to bending of the beam. Figure 3.13a

shows bending of such a DEA when a potential is applied between the bottom and

middle electrodes. The beam returns to its equilibrium position once the potential is
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removed, shown in Figure 3.13b. Actuation in the opposite direction is achieved by

applying a potential between the top and middle electrodes, shown in Figure 3.13c.

One of the benefits of the fabrication process described in Section 3.1.1 is that

the thickness of the dielectric and conductive electrode layers is determined by the

width of the etched trenches. The consistency in the thickness of the layers eliminates

one of the common issues in DEAs. Electrical failure of the DEAs commonly occurs at

the defects in the dielectric layer where the thickness or particles allow for premature

breakdown of the DEA.

The devices fabricated in this work had layer thicknesses of 20 or 30 µm. Using

Equation 3.17 and assuming a linear elastic modulus of 0.267 MPa for the MRTV-9

dielectric layer, as was calculated in Section 2.3.2, the pull-in voltage at 30 µm is 1.3

kV, which sets a theoretical maximum voltage that can be applied. Another concern

is the breakdown of the materials. Section 2.2 characterized the dielectric breakdown

of PDMS thin films up to only 14 µm, but assuming a conservative breakdown field of

40 V/µm, which is well below any of the breakdown points measured in Section 2.2,

the maximum voltage that can be applied across the 30 µm wide dielectric is 1.2 kV.

It is also important to consider the breakdown of air, which could occur at the top

and bottom surface of the DEA, which, according to Paschen’s Law, is 548 V in air

at a 30 µm gap.

103



v

v

(a) Potential applied between the bottom and middle electrodes

(b) No potential applied

(c) Potential applied between the top and middle electrodes

Figure 3.13: Schematic showing how applied voltages lead to bidirectional actuation.
The red layers represent the layers with applied electric potential. The left side of
the beams is fixed and the right side is free.
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200 μm

Figure 3.14: The tip of a fabricated DEA with 30 µm traces.

3.3.3 Actuation Results

A DEA with 30 µm layer thicknesses was fabricated with the process described

above and is shown in Figure 3.11 with a close-up at the tip of a DEA is shown in

Figure 3.14. An actuated device with 20 µm layer thicknesses is shown in Figures

3.15 and 3.16. During operation, the middle electrode was grounded and one of the

outer two electrodes was put at a potential, depending on the desired direction of

operation.

Unidirectional operation of a fabricated DEA is demonstrated in Figure 3.15.

This shows one actuator at four different voltages. Images were taken at 0, 700,

900, and 1100 volts. Then the images were cropped and overlaid. Figure 3.17 shows

the displacement of the end of the actuator as a function of voltage. The actuator is

1000 µm long, 100 µm wide (five 20 µm traces), and 40 µm thick. Operating voltages

were varied between 0 and 1100 volts, which resulted in tip displacements up to
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a

b

c

d

Figure 3.15: Overlaid images of the actuator at a) 0 V, b) 700 V, c) 900 V, and d)
1100 V. The red arrow shows the direction of displacement with increasing voltage.

a
b
c

Figure 3.16: Overlaid images of a DEA demonstrating bidirectional actuation of the
DEA a) up, b) at equilibrium, and c) down.
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350 µm.

The experimental data was verified against a 2-dimensional model created in

ANSYS. The model used the PLANE223 element type with the electroelastic coupled-

field analysis mode active. This element allows for three degrees of freedom: motion

in the x-direction, motion the in y-direction, and the applied voltage. The solver finds

a solution considering both the structural and electrostatic components of the model.

The full code used can be found in Appendix D. One of the important considerations

when establishing the ANSYS model was setting the material properties. A dielectric

constant of 2.94 was used, which is stated in the MRTV-9 datasheet [150]. There

were no tensile tests performed on the materials used in the fabricated DEAs, so the

material properties were not known. This meant that the modulus values used in the

model had to be extrapolated from the data presented in Chapter 2.

The results of the material characterization from Chapter 2 was used to estimate

the modulus of the DEA materials. The microscale in situ Sylgard 184 samples were

soaked in 18:1 BHF, just like the DEAs. The in situ samples that were cured at 90 ◦C

experienced a decrease in their modulus of 22% (from 2.14 MPa for the macroscale

unsoaked samples to 1.68 MPa for the microscale samples soaked in BHF for 8 hours).

The discussion of these results in Chapter 2 determined that this decrease was likely

larger, so the ANSYS material model assumed a modulus with a decrease of 25%

resulting from the BHF soak.

The dielectric layer of the DEAs was MRTV-9, which was shown in Section 2.3
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to have a macroscale modulus of 0.27 MPa. The electrode layer was made from a

mixture of MRTV-9, hexane, and carbon black at 17.5 wt.%. This exact material was

not tested in a dynamic mechanical anaylzer, so values again had to be extrapolated.

A sample with 7 wt.% carbon black was charaterized in Section 2.3 and had a modulus

of 0.62 MPa. The modulus of 0.62 MPa represented a 2.3x increase over the unfilled

material, or 0.33x increase per 1 wt.% of carbon black added. In order to calculate the

change in the modulus of the dielectric and electrode layers, the following assumptions

were used:

• Carbon black leads to a linear increase in the modulus of the polymer at 0.33x

per 1 wt.% of carbon black added (i.e., a sample an unloaded modulus of 1 MPa

with 1 wt.% carbon black has a modulus of 1.33 MPa and a sample with 10

wt.% carbon black has a modulus of 3.3 MPa).

• Exposure to 18:1 BHF leads to a 25% decrease in the modulus of the polymer.

These assumptions are very simplistic, but provide a rough estimate of the final

polymer modulus. The Guth model shows that the linear increase with carbon added

assumption is not a correct, but Chapter 2.3 also showed that the Guth model does

not hold for filler particles with an aspect ratio of 1. Using these assumptions, the

moduli for the two layers in was calculated, as shown in Table 3.1.

Figure 3.17 shows both the experimental results and the results of the ANSYS

simulation. The ANSYS model underestimates the experimental data using the ma-

terial properties described above. Even though the data for the two do diverge at
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Table 3.1: Calculation of the material properties used in the FEA analysis. The
calculations are based on data from Section 2.3 which showed MRTV-9 has a modulus
of 0.27 MPa.

Layer MRTV-9 Multiplier for Carbon Black Multiplier Final
Modulus (MPa) (0.33x per wt.% CB) for BHF Soak Modulus (MPa)

Electrode 0.27 17.5 wt.% *0.33x = 5.78x 0.75x 0.27*5.78x*0.75x = 1.16
Dielectric 0.27 - 0.75x 0.27*0.75x = 0.20
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Figure 3.17: The voltage-displacement curve that corresponds with Figure 3.15.

large voltages, the similarity of two does demonstrate that the model used can at

least be used to generalize the behavior of the DEAs and that the assumptions of the

material properties were reasonable. The model would not converge above 1000 V

because of the large displacements, so the 1100 V solution was not performed.

The operating voltages of the DEA are above the voltage at which the air was

expected to break down, 440 V. The reason that there was no breakdown is not

entirely understood, but is possibly due a variation in the conductivity through the

depth of the actuator. Though this is not confirmed, it is expected that the carbon
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black concentration at the top (top relative to how the actuator was fabricated) of

the actuator was higher that the concentration at the bottom. This is because the

trenches likely acted as filters for the carbon black, resulting in electrodes with dra-

matically lower conductivities than that of the bulk material. It is also possible that

differences in the depths of the silicon etches for the conductive and non-conductive

polymers led to differences in the profile at the bottom of the trench, as is evident in

Figure 3.1, which would have increased the effective path over which the air would

have had to breakdown. This, however, would lead to only a moderate increase in

the breakdown voltage.

As was shown in Equation 3.10, the pressure in the dielectric layer has a squared

dependence on the voltage. As was mentioned earlier, this actuator is a bimorph, or

cantilever with layers of multiple materials [151]. There is effectively a stress generated

in one of the dielectric layers which then acts on the other layers of the cantilever to

generate displacements. It has been shown that the radius of curvature of a bimorph

DEA is proportional to the square of the voltage [86, 129, 130, 142]. As is expected,

there was a quadratic relationship between the applied voltage and the displacement.

The quadratic fit to the set of points in Figure 3.17 is

δ = 358.82V 2 − 127.74V + 23.44 (3.21)

where V is the applied voltage in kV and δ is the resulting displacement in microns.

The r-squared value for this fit is 0.99. The offsets of the curve are likely due to
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inaccuracies in the measurement of the displacements and residual stresses in the

materials. Additionally, there was a long tungsten wire (diameter of 25.4 µm which

was pushing down on the DEA, holding it in place. The wire made was quite long,

approximately 2 cm, so as to decrease the lateral spring constant of the actuator and

minimize its effect on displacement. The wire was necessary so that the entire length

of the DEA was in the same optical plane so that images of the displacement of the

DEA could be acquired with a compound microscope. This may have contributed to

the non-uniform curve observed in Figure 3.15.

Figure 3.16 demonstrates one actuator with bidirectional actuation achieved by

switching the high potential from the top electrode to the bottom electrode. Full

analysis of the transient response was limited by the available electronics, but devices

were operated at frequencies in excess of 30 Hz with losses less that 10% of the static

displacement.

An ideal DEA would draw current only when switching the voltage, but these

devices typically drew current on the order of 10 nA in static conditions. This results

in a total maximum power draw on the order of 11 µW. The output force of the

actuators was not examined due to limitations of available equipment.

Figure 3.16 shows the displacement of a single actuator, but the typical displace-

ment that was seen in all of the actuators varied widely, from just tens of microns to

the results shown here of hundreds of microns. The variation in the displacements

is likely due to the residual stresses in the polymer layers from exposure to heat and
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the SF6 plasma during the final isotropic silicon etch.

3.4 Conclusions

This chapter has demonstrated a process for fabricating conductive and non-

conductive elastomeric polymer features together in-plane. The fabricated thermal

actuators demonstrated displacements as high as 100 µm and forces as high as 55 µN.

The electrostatic actuators are the first to have demonstrated actuation at sub-1000

V levels. The device achieved 350 µm of displacement with an input voltage of 1.1

kV at 10 nA for a total power consumption of only 11 µW. Additionally, both the

thermal and electrostatic devices are robust and can survive large strains in tension

and bending.
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Chapter 4

Incorporating Silicone for Jumping Locomotion in Microrobots

The previous chapter focused on the development of actuators using microscale

patterned polymer features. This chapter focuses on some of the capabilities of the

manufacturing process described in Chapter 2 and take advantage of the elastic prop-

erty of the material for creating mechanical energy storage systems. This chapter

is based on the publication “Incorporating compliant elastomers for jumping loco-

motion in microrobots” from volume 22, issue 1 of Smart Materials and Structures

by A. P. Gerratt and S. Bergbreiter, published in 2013. All of this work was per-

formed by Aaron Gerratt other than the wirebonding on the actuated device which

was performed by Ivan Penskiy.

4.1 Introduction

Nature does a fantastic job of generating impressive locomotion in small pack-

ages. Cockroaches can run at speeds up to 50 body lengths per second [152] and

ants less than 5 mm long have been demonstrated running at speeds approaching 40

body lengths per second [153]. Jumping, which requires high power, is performed by

insects with the help of biological mechanisms that store energy slowly and release

it quickly [154]. Froghopper insects can jump to heights over 100x their own length
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[155]. Such impressive movement in insects is in part due to complex mechanisms

designed in small packages.

While nature can easily create these mechanisms by combining various biologi-

cal materials from resilin to chitin to muscle, this is much more difficult to achieve in

microrobotics. Microrobots, defined as sub-centimeter sized robots with microscale

features, are typically built using microelectromechanical systems (MEMS) and mi-

crofabrication [16, 19, 44, 156, 157, 158, 159]. Since MEMS were derived from the same

techniques used to build integrated circuits, they are often limited to the same materi-

als as integrated circuits - typically silicon, silicon dioxide, silicon nitride, polysilicon,

and metals [3]. These materials are brittle, limited to strains of several percent, and

have moduli of 10s to 100s of GPa. The biological material that enables jumping in

many insects is resilin. This material can undergo large strains, has a modulus of ap-

proximately 2 MPa, and is highly resilient (approximately 97% of energy is returned

when deformed) [160]. It is promising to consider the benefits of adding compliant

materials like resilin to microrobot design.

At larger scales, bio-inspired robots have taken advantage of a wide array of ma-

terials to provide the same passive mechanical properties used by insects at smaller

scales. For example, iSprawl was manufactured using the shape deposition manufac-

turing process in which materials with various properties were combined to create

complex mechanisms such as a passive hip joint for rapid locomotion [161]. RHeX

maintained its mobility across a variety of terrains by taking advantage of the passive
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compliance of its legs [162]. A joint made of carbon fiber and polyimide resulted in an

additional passive degree of freedom that enabled in the first liftoff of a centimeter-

scale flapping robot [15].

Microrobots made from traditional MEMS materials, however, lack the robust-

ness of their biological cousins. The microrobot in [17] often lost legs due to the

brittleness of 2 µm square polysilicon pin hinges. However, the only legged micro-

robot that has demonstrated forward motion also displayed impressive robustness, in

part due to the use of polymer legs made from a combination of polyimide and silicon

[16].

A key challenge in microrobotics is the addition of new materials to the cur-

rently existing microfabrication toolbox for manufacturing complex mechanisms and

substantially improving locomotion. Poly(dimethylsiloxane) (PDMS) is a compliant

material that can undergo elastic strains in excess of 100% and has a Young’s modulus

of 1.8 MPa [51], which is very similar to that of resilin. PDMS is most commonly used

to quickly and easily fabricate small and clear channels for fluid flow in microfluidics

and bioMEMS [42]. However, it has rarely been used for its mechanical properties,

primarily because of the lack of adequate fabrication processes. Parylene has been

used to replace silicon springs given its modulus of 1 GPa [26], but this is still a rel-

atively stiff, non-elastic material. Polyimide has been used for its thermal properties

in the microrobot legs mentioned above [16].

The contributions of this section include the application of a fabrication process
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that integrates elastic materials into microfabrication to achieve small feature sizes

and high aspect ratios for microrobot mechanisms. Compliant elastomers can increase

robustness and can be used in microrobot mechanisms including energy storage/quick

release structures for jumping. Other than wirebonding and breaking tethers used to

hold structures in place during fabrication, no post-process assembly is required. In

addition, this microfabrication process allows for integration with silicon actuators

that have already been developed in the MEMS world.

An introduction to scaling for jumping and the mechanism described in Section

4.3 was included in a previous conference proceeding [57], but both have been sig-

nificantly expanded in this dissertation. An earlier article by the authors described

the details, characterization, and un-actuated operation of a device manufactured

with the fabrication process used in Section 4.4 [44], but did not consider integrating

actuation, which is directly addressed and demonstrated in this dissertation.

This section begins with an introduction to jumping robots in Section 4.2. A

mechanism used to demonstrate jumping at the microscale is described in Section 4.3

and an actuated mechanism is described in Section 4.4.

4.2 Jumping Robots

The focus of this chapter is the integration of compliant materials in MEMS

devices to enable jumping in microrobots. There are several key points laid out in this

section that are important to keep in mind for the design of a jumping microrobot.
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First, the actuators and mechanical components must be able to rapidly release energy

for jumping, which can be achieved with a mechanical spring. Second, as the scale

of the systems is decreased, the drag increases, so parameters such as velocity, mass,

and area of the robot must be considered. Third, the actuators must be small and

simple to control so that they do not adversely alter the maximum height the robot

can jump and the processing required for the actuators must be compatible with the

elastomeric materials used for the springs. These points are discussed in the following

sections in the context of the final goal of integrating MEMS actuators and compliant

materials for jumping locomotion.

4.2.1 Scaling

As the size scale of a robot is decreased from macroscale to mesoscale to mi-

croscale, challenges related to mobility increase as the size of a robot itself decreases

relative to the objects in the environment around it. As a result, jumping becomes an

attractive mobility method for microrobots [163]. An important performance metric

for jumping robots at all scales is the energy release time [57, 164]. An insect such as

a froghopper begins the process of jumping by first storing energy in resilin. When

this energy is released, the froghopper’s feet push against the ground and accelerate

the insect. The acceleration time, defined as the time between the initiation of the

jump and liftoff, can be determined with Equation 4.1; lleg is the leg length and vi is

the initial takeoff velocity.

117



tacc =
2lleg
vi

(4.1)

A robot with a 1 mm leg and a desired initial velocity of 2 m/s must have a takeoff

time of just 1 ms. This short takeoff time requires a means of rapidly releasing energy

in order to realize the desired initial velocities, and therefore jump heights.

In vacuum, assuming the robot jumps vertically, the maximum height, h, that a

robot can reach depends only on the initial velocity of the robot and the gravitational

acceleration, g, as shown in Equation 4.2.

h =
1

2

v2i
g

(4.2)

Due to the scaling effects of drag and inertial forces, there are some additional

considerations that must be made at the microscale that are not necessary with

larger, macroscale robots. The Reynolds number, shown in Equation 4.3, is the ratio

of inertial forces to viscous forces; μ is the dynamic viscosity and ρ is the density of

the medium in which the object of interest is moving, v is the velocity of the object,

and L is a characteristic linear dimension of the object.

Re =
ρvL

μ
(4.3)

A high Reynolds number means that the inertial forces dominate the viscous forces;

a low Reynolds number means that viscous forces dominate the inertial forces. A
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medium-sized bird has a Reynolds number on the order of 105 [165]. A microrobot

with a takeoff velocity of 2 m/s, a characteristic length of 4 mm, and operating in

air (ρair = 1.2 kg/m3 and μair = 1.98x10−5 kg/m/s) has a Reynolds number of 484,

which is low enough that drag must be considered.

The low Reynolds number of microrobots in air implies that drag forces must

be considered. The instantaneous drag force, shown in Equation 4.4, depends on the

drag coefficient, Cd, the frontal area of the robot, Arobot, the density of air, ρair, and

the instantaneous velocity of the robot, v.

Fdrag =
1

2
CdArobotρairv

2 (4.4)

Inserting the drag force into the equation of motion and solving the differential equa-

tion leads to Equation 4.5, the jump height, hdrag, as a function of the initial velocity,

vi [166].

hdrag =
mrobot

CdArobotρair
ln

(
1 +

CdArobotρair
2mrobotg

v2i

)
(4.5)

This equation is a valuable tool for jumping microrobot design. A robot operating

in air with a mass of 8 mg, drag coefficient of 1 [167], an area of 4 x 4 mm2, and an

initial velocity of 2 m/s would reach a maximum height of 16.6 cm.
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4.2.2 Actuation

The short takeoff times demonstrated by Equation 4.1 mean that high power ac-

tuators are required. This requirement exceeds that of currently available microactua-

tors [168]. One exception is chemical-based solutions which includes focused exother-

mic reactions whose byproducts work to propel the robot [169, 170]. These systems,

however, require a means of carrying and mixing or activating the reagents. This

poses specific challenges to integration and repeatability which need to be addressed

before chemical-based actuators can reliably be integrated into jumping microrobots.

Due to the output power limitations of voltage controlled actuators, macroscale

jumping robots, in addition to insects, often employ mechanisms in addition to actu-

ators in order to slowly store energy over time that can be rapidly released [164, 171].

This enables the use of low input power actuators, which are more readily accessible,

to elicit a high output power of the robot. These mechanisms work to store potential

energy, be it as compressed air in a pneumatic cylinder [172, 173] or in a strained

mechanical spring [164, 171, 174]. As with the chemical-based methods mentioned

earlier, pneumatic systems also have specific challenges to integration and repeata-

bility which need to be addressed. Pneumatic systems require compressed air, which

must be either carried along with the robot or generated with on-board pumps, and

both options pose significant additional weight requirements.

A spring-based solution, however, requires only a spring and an actuator and

is repeatable for multiple jumps. One of the contributions of this work is the imple-
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mentation of elastomers for enhancing the capabilities of microrobots. A thorough

justification for an elastomer spring over more readily available materials like silicon

is discussed in previous works by the authors [44, 166]. Advantages include increased

robustness, lightweight and high energy density elastomer springs, and simple inte-

gration with silicon-based actuators.

There are several types of MEMS actuators that can be integrated into a mi-

crorobot including electrostatic, thermal, piezoelectric, and electroactive polymer ac-

tuators, among others [168, 175]. Electroactive polymer actuators, such as dielectric

elastomer actuators and ionic polymer actuators, are promising due to their robust-

ness, but require more development to increase force densities and to simplify and

generalize fabrication before they can be integrated into microrobots [85, 148, 140].

Piezoelectric actuators have been integrated into centimeter-scale walking and flying

robots [15, 176], but it is difficult to scale these complete systems down with existing

fabrication processes. Piezoelectric materials also impose limitations on the materials

that can be used because of the processing parameters such as high temperatures.

Electrostatic and thermal actuators, however, have already been demonstrated in mi-

crorobots [17, 159] and are easily fabricated in silicon [135, 177]. Thermal actuators

are beneficial because they can generate large forces and because of the simplicity

of their design, but are not suitable for autonomous, untethered operation because

they are very inefficient (10−7 electrical efficiency [135]). Electrostatic actuators are

much more efficient, but currently lack the force density and robustness required to
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Figure 4.1: A schematic of the three phases of the jumping process: (1) equilibrium
position, (2) with an external force applied, and (3) just after takeoff.

compete with thermal actuators [178]. This dissertation uses thermal actuators for

force density and simplicity, but future work will apply electrostatic actuation.

It is worth noting that a complete robot is a complex, integrated system that

includes power, control, sensing, and actuation. This dissertation addresses issues re-

lated to actuation including the actuators themselves and the mechanisms on which

these actuators perform work. Based on the discussion above, fabrication to incor-

porate elastomer-based mechanisms and silicon thermal actuators has been demon-

strated for the first time. However, this dissertation does not address power, control,

and sensing, but it does consider these issues in the context of how they affect per-

formance and future work.

4.3 Jumping Mechanism

In order to examine jumping locomotion at the microscale, a jumping mecha-

nism was fabricated and first presented in [57]. The robot mechanism is essentially
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two rigid masses that are connected by a series of elastomer springs, as shown in

Figure 4.1. In this case, the robot “leg” is in the center of the device and the robot

“body” is the u-shape around the outside. When an external force is applied, the

structure is compressed and the springs are strained, storing potential energy. When

the external force is removed, the potential energy is released. The force in the springs

works to increase the kinetic energy of the body.

One of the keys to the fabrication of such a mechanism was the integration of

the elastomer spring into the semiconductor fabrication. Previous work accomplished

this in a similar system by manufacturing the springs on a silicon-on-insulator chip,

but the system was fragile and could not demonstrate jumping [44]. A new fabrication

process was developed using a 300 µm thick, 100 mm diameter double side polished

(DSP) silicon wafer and deep reactive ion etching (DRIE). A standard DRIE process

results in high aspect ratio trenches; features that are 2 µm wide and 40 µm deep

are possible. By combining two DRIE steps with one elastomer molding step, planar

silicon and elastomeric features were simple to create. The elastomer used in all of

this work was Sylgard 184 PDMS from Dow Corning, but the process has also been

adapted to work with other elastomers.

4.3.1 Fabrication Process

The fabrication process, shown in Figure 4.2, began with the plasma enhanced

chemical vapor deposition (PECVD) of an 8 µm thick layer of silicon dioxide on the
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Deposit 8 μm of silicon dioxide on the 
bottom side of a DSP wafer

Bond to handle wafer with photoresist

Perform a DRIE through the DSP wafer
down to the silicon dioxide

Refill with the elastomer and cure the
elastomer for 2 hours at 90 °C

Planarize the elastomer to the surface

Perform a DRIE through the DSP wafer
down to the silicon dioxide

Release in acetone and remove silion
dioxide with buffered hydrofluoric acid

photoresist for bonding
and silicon dioxide layer

DSP wafer

handle layer

elastomer

Figure 4.2: Cross-section and perspective views of the DSP-based fabrication process.
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backside of a silicon wafer, shown in Step 1. A 15 µm thick layer of photoresist was

deposited and patterned on the front side of the wafer. This photoresist layer served

as a mask for the first DRIE process. Prior to the DRIE, the wafer was bonded to a

handle wafer using a thick layer of photoresist and was baked for 2 hours at 90 ◦C.

After this bonding step, the DRIE was performed. The DRIE was complete when the

entire thickness of the DSP wafer was etched, shown in Step 3. This set of trenches

formed the mold for the elastomer features.

The elastomer was prepared using the manufacturer-recommended process. A

10:1 ratio of the base to the curing agent was used. The two were mixed thoroughly

and then poured over the surface of the wafer. To ensure that the elastomer com-

pletely refilled the trenches, the wafer was put into a vacuum and held at 1 Torr for

10 minutes. The elastomer was then cured at 90 ◦C for two hours, shown in Step 4.

Once the elastomer was cured, the excess was removed from the surface of the

wafer by running a razor blade across the surface of the wafer. This left some residual

pieces of elastomer, so a one minute rinse in a 3:1 mixture of n-methylpyrrolidone

and tetrabutylammonium fluoride was performed [59]. This planarized the elastomer

to the top of the wafer, shown in Step 5.

The new surface was planar enough that a new layer of photoresist could be

deposited and patterned on the front side of the wafer. This created a second mask

which was used to perform a second DRIE through the entire thickness of the wafer.

The result of this etch was silicon features that were patterned around the elastomer
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features, shown in Step 6.

The final step in the process was to release the devices from the handle wafer by

soaking the wafers in acetone and performing a brief etch in 6:1 buffered hydrofluoric

acid (BHF) to remove the silicon dioxide mask, shown in Step 7.

4.3.2 Results

Using the process described above, the mechanism in Figure 4.1 was fabricated.

A scanning electron microscope (SEM) image of the final fabricated device is shown

in Figure 4.3. The mechanism was 4 mm on a side and had a total mass of 8 mg.

The elastomer springs were 720 µm long, 100 µm wide, and 300 µm thick, the full

thickness of the wafer. The elastomer spring dimensions were designed so that the

stored energy was approximately 100 µJ. Equation 4.1 indicates that this amount of

energy would result in a jump height of 127 cm in vacuum, or 58 cm in air, according

to Equation 4.5.

By compressing the robot with tweezers and therefore tensioning the elastomer

springs, mechanism was repeatedly launched and reached a maximum height of 32 cm.

A series of 18 jumps reached an average height of 19.4 cm with a standard deviation

of 7.2 cm. Failed launches, defined as ones that reach heights less than 2 cm, were

not included in these statistics. The jumping performance varied greatly because of

the method of launching the robot. It was not uncommon for the robot to hit the

tweezers during or immediately after takeoff, which dramatically affected the jump

126



silicon

elastomer

3 mm

Figure 4.3: A SEM image of the jumping mechanism.

performance. The height was determined by launching the robot in front of 1 cm

grid paper and video of several jumps was taken with a Casio Exilim EX-F1 camera

at 300 frames per second. Screenshots from these videos are shown side-by-side in

Figure 4.4. The maximum jump height of 32 cm was 80x the robot’s own height,

and the same robot was used repeatedly, demonstrating the robustness of the process

and final mechanism. A video clip which demonstrates the jumping mechanism is

included as supporting information.

The jump that reached 32 cm had an initial velocity of 3 m/s, or initial kinetic

energy of 36 µJ. This number was calculated by measuring the distance traveled

between two frames of the video. This corresponds to a Reynolds number of 726

(ρair = 1.2 kg/m3, v = 3 m/s, L = 0.004 m, and μair = 1.98x10−5 kg/m/s). A

Reynolds number this low means that drag should be considered. According to Equa-
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Figure 4.4: Screenshots from a video showing the takeoff of the jumping mechanism.
Due to the small size of the jumping mechanism relative to the scale of the jump, the
mechanism is difficult to make out, but it has been circled in each frame to show the
position.

tion 4.5, a jump height of 32 cm requires 38 µJ at takeoff, which matches well with

the calculated initial kinetic energy. An initial velocity of 3 m/s in vacuum, however,

would result in a height of 46 cm according to Equation 4.2. Assuming 100 µJ of

stored energy, the calculated transfer efficiency from stored potential energy to ki-

netic energy used for a jump is 40%. Losses can be due to spring viscosity, leg mass

[179], rotation, and interaction with the tweezers during takeoff, among other factors.

Previous work by the authors demonstrated hysteretic losses on the order of 20 to

30% [44]. Assuming hysteretic losses of 30%, the losses due to other sources such as

leg mass and rotation also contributed 30% losses.

The robot demonstrated here achieved jump heights almost 80x its own size.

This is similar to the froghopper insect mentioned in the introduction that can reach

heights 100x their own size. This comparison, however, does not account for the
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fact that the froghopper includes all of the components necessary to jump (muscles,

skeleton, sensory neurons, etc. [180]). The robot includes only the mechanisms

required to demonstrate a jump. In order to jump autonomously, however, actuators,

control, and power are also required, each of which will add to the mass and size

of the robot. The robot also did not include mechanisms that mimic the mechanics

of a jump performed by a froghopper. The froghopper has several features that aid

its jumping ability including sensory mechanisms that aid in the timing of the jump

mechanics, small spines on the bottom of their legs that increase friction with the

surface from which they are jumping, and specialized legs to enhance jumping [181].

Mechanisms such as these can be exploited in future generations of the robot once

the ability of the fabrication process to be create joints is determined, which is a topic

of future work.

4.4 Combining Actuation and Elastomer Mechanisms

While the mechanism described in Section 4.3 is useful for examining the merits

of jumping microrobots, it is interesting to consider how actuation can be added to

such a system, as any system employed outside of a laboratory setting would require

on-board actuation. The fabrication process described in Section 2.1.2 was used to

manufacture these devices.
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Figure 4.5: A colored SEM image of the actuated mechanism. The blue and purple
areas are the two sets of actuators. The orange areas are the springs. The black areas
are the anchors for the springs. The patterned gray area is the frame. A closeup of
the area inside the red box is shown in Figure 4.7.

4.4.1 Actuated Mechanism

A SEM image of a fabricated actuated mechanism is shown in Figure 4.5. The

color in this image was added after it was captured for illustrative purposes. The

frame is shown in dark gray with black patterning. The frame was used to transfer

the force from the actuators to the springs. The springs, orange in color in Figure 4.5,

were anchored to the substrate at one end, shown in black, and were attached to the

frame at the other end. There were two sets of actuators arranged around the frame;

one set is blue and the other set is purple. Figure 4.5 shows a mechanism with two

springs, but mechanisms with eight springs (two sets of four) were also fabricated,

shown in Figures 4.8 and 4.9.

The actuators used in this work were thermal actuators, often referred to as

chevron actuators because of their angled arms which resemble a chevron. When a
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current was passed through the structure, the silicon heated up due to Joule heating,

which resulted in expansion of the silicon. The temperature the actuators reach was

directly related to the amount of current passed through the actuators. The chevron

actuators, shown in Figure 4.6, were symmetric structures. The voltage was applied

between the two large pads on either side of the thin beams. There were twelve 10 µm

beams on either side which, when heated, expanded towards each other. The beams

were at a slight angle, so the expansion led to bending of the beams, which pushed the

central beam forward, as labeled in Figure 4.6. The thermal strain can be calculated

with Equation 4.6:

εthermal = αΔT (4.6)

Silicon has a thermal coefficient of expansion of 2.9 ppm/K at room temperature

[127]. Previous work demonstrated 800 K is the approximate maximum temperature

the actuators should reach during normal operation [135]. The temperature change of

502 K (from room temperature of 298 K to 800 K) results in 1.5 millistrain. A strain

this small can result in large displacements due to the configuration of the chevron

beams. Figure 4.7 shows the actuators in the on and off positions to show how they

interface with the frame.

It is worth noting the symmetry of the mechanism shown in Figure 4.5. The

actuators had to be symmetric on either side of the frame since the frame was not

anchored at any point. If there were actuators on only one side, the actuators would
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GND

θ

500 μm

frameextension
direction
when heated

Figure 4.6: A SEM image of a thermal actuator. The voltage was applied to the inner
pad next to the frame and ground was applied to the other outer pad.

Voltage OFF Voltage ON

pushing direction

Figure 4.7: Closeup on the area down in the red box on Figure 4.5. The thermal
actuators are shown in the off and on positions and closeups on the pads on the
actuators which engage with the frame during operation are shown to demonstrate
the motion. The actuators push the frame from left to right in small steps which are
accumulated to achieve large displacements.
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simply push the frame up or down. The symmetry meant that the up/down forces

(normal force) of the actuators worked against each other so there was no net up/down

motion of the frame, but the left/right drive forces of the actuators added serially to

push the frame.

The actuation scheme was based on the design presented in the work by Maloney

[135]. By operating the A and B sets of actuators in an alternating fashion, many

small displacements of the frame were accumulated to result in a large displacement.

The sequence began with both the A and B actuators on. Then the A actuators were

turned off, allowing the B actuators to push. The A actuators were then turned back

on, returning the actuators to the intermediate step with both actuators on. Finally

the B actuators were turned off, allowing the A actuators to push. The process

was repeated until the desired displacement has been achieved. A video clip which

demonstrates the actuated mechanism is included as supporting information.

During operation the voltage was switched between Vlow and Vhigh. One im-

portant note is that Vlow was not 0 V. By switching between two higher voltages, a

faster response was possible. Vlow was set to be just low enough that the actuators

did not engage with the frame. This left the frame free to move with respect to that

set of actuators, while not requiring them to cool to room temperature. This was

particularly important because of the nature of the thermal actuators. One of the

downsides of using these actuators was the relatively long thermal cycling time that

was required. By cycling over a smaller range of voltages, the thermal cycling time
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was reduced, therefore increasing the operating speed. A complete thermal analysis

of these actuators was performed in previous work [135].

There were two forces that needed to be balanced during operation. The first

was the friction force between the actuator and the frame. The second was the

force exerted along the length of the frame, or drive force. If the friction force was

too small, the beam of the actuator that interfaced with the frame would simply

slip along the frame when engaged. As the friction force was increased, so was the

maximum possible drive force. The magnitude of the two forces was determined by

the angle of the between the actuator arm and the frame, labeled as θ in Figure

4.6. As the angle approached 90◦, more of the total force output of the actuators

contributed to increasing the fictional force at the expense of the driving force. As

the angle approached 0◦, more of the total output force of the actuators contributed

to increasing the driving force at the expense of the friction force. The angle used in

the fabricated mechanisms was 60◦.

The voltages were applied to the actuators with probes under a microscope.

There were three probes required: one for the ground, one for the A actuator voltage,

and one for the B actuator voltage. The grounded probe was simply touched to the

handle layer of the wafer. This simplified the wirebonding that was required because

the end of the actuator facing away from the frame, as labeled in Figure 4.6, was

wirebonded to the handle layer with a short wirebond to ground the pad. Then all

of the actuators in set A were wirebonded together and all of the actuators in set B
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1 mm GND VA VB

wirebonds to hold frame in-plane

Figure 4.8: A fully wirebonded actuated mechanism. Note the extra wirebonds which
cross over the frame. These wirebonds worked to hold the frame down in-plane during
operation. VA was the voltage applied to the A actuators. VB was the voltage applied
to the B actuators. The entire substrate was grounded, so the outer pad of each
actuator was grounded with a wirebond.

were wirebonded together, shown in Figure 4.8.

4.4.2 Results

After fabrication, the tethers holding the frame in place were broken and the

actuators were wirebonded together. Then the actuators were used to repeatedly

store and release energy in the elastomer springs. Figure 4.9 shows the system in two

states: unstrained on the left and strained on the right. This figure show the frame

after it was advanced 580 µm, straining the 1 mm springs 58%. The solid yellow

line shows the position of the top of the spring attachment point in the unstrained
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Figure 4.9: Two images of the system before (left) and after (right) the actuators
were sequenced. The frame was advanced 580 µm during the voltage sequencing.

condition. It is worth noting the state of the elastomer springs in Figure 4.9. In

the unstrained condition, the two leftmost springs were stuck to each other and the

rightmost spring was stuck to the substrate. During operation it was not uncommon

for the springs to stick to each other or the substrate. The adhesive force, however,

was not great enough to keep the springs attached once strained, which is evident on

the right in Figure 4.9. The backside etch in Step 6 of the fabrication process aided

in alleviating this issue.

The actuated mechanism was used to propel a projectile, as shown in Figure

4.10. The voltage signals were generated using an Arduino Uno microcontroller and

a motor driver. The system was cycled to strain the elastomer springs 45% and

store 0.45 µJ. The projectile, an 0402 sized surface mount capacitor with a mass

of 1.4 mg, was then placed directly in front of the frame. The actuators were then

turned off, releasing the frame. The force from the energy stored in the springs
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Figure 4.10: A schematic of the test setup. The projectile was placed on top of the
wafer substrate, which was placed on a stage under a microscope.

worked to accelerate the frame, which in turn worked to accelerate the projectile.

The projectile was 1 mm long, 0.5 mm wide, and 0.5 mm tall. In the best test, the

projectile traveled more than 7 cm, so it traveled at least 70x the longest dimension

of the projectile. The exact distance is not known because the projectile fell off the

stage under the microscope after it traveled 7 cm. As with the tests performed on the

jumping mechanism, not every test was successful. The projectile was 0.5 mm tall,

but the frame of the actuated mechanism was only 0.02 mm tall, so during several

tests the frame slide under the projectile. In a series of eight consecutive tests, five

were successful and had projectile travel distances with an average and standard

deviation of 4.82 cm and 1.9 cm, respectively. A failed test was defined as one where

the projectile travelled less than 1 cm.

As was mentioned in the introduction, one of the benefits of being able to

integrate a material such as an elastomer is the ability to have repeatable actuation.

Several tests were performed where the springs were strained to store energy and then

released to allow the springs to return to their unstrained position. This cycle was then

repeated to strain and release the springs a total of 10 times. This test was performed
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17 times with one device at various operating voltages and frequencies without failure

for a total of 170 strain/release cycles, demonstrating the robustness of the elastomer

material. These tests strained the springs to several 10s of percent strain, but strains

as high as 100% were demonstrated. The fastest speed demonstrated was 0.7 mm/s

to achieve 45% strain. This was an average speed over the entire strain cycle as the

speed decreased as the strain, and therefore force in the springs, increased.

4.5 Discussion

One issue encountered was that the frame would pop out-of-plane during oper-

ation. This issue was exacerbated by the fact that the frame was only attached to

the springs; there was nothing working to keep the frame in the same plane as the

actuators. As a result, the force of the actuators on the frame was significant enough

that the pads of the actuators which interfaced with the frame worked to push the

frame up out-of-plane. The solution was to use a series of wirebonds across the frame

to hold it in-plane. These wirebonds can be seen in Figure 4.8. The left and rightmost

wirebonds across the frame were attached to the substrate at both ends, so did not

pass any electrical signals, but simply served to hold the frame in place.

The actuators used in this work drew 0.4 A at 12 V per set of actuators for

a total power draw around 10 W, depending on the exact voltage being applied.

While this power is excessive for many applications, thermal actuators are valuable

because of their robustness, large displacements, and ease of design. Before on-board
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power can be integrated into the system, it is necessary that either the efficiency of

the thermal actuators be improved or a more efficient actuator be implemented. The

former is an issue with all thermal actuators, so it is necessary to identify an alternate

transduction method. Prior work by the authors demonstrated the application of

the process described in Section 2.1.2 to manufacture electrostatic actuators with

integrated elastomers for thin films [45]. There are also several examples of inchworm-

type electrostatic actuators which can be used to deliver a similar force density as

the thermal actuators that were employed in this work [17, 177, 178, 182, 183, 184].

As of the publishing date of this work, the force per area of SOI-based electrostatic

inchworm actuators is approximately one order of magnitude lower than that of the

thermal actuators used in this work (0.28 mN/mm2 for electrostatic [45] and 1.28

mN/mm2 for thermal [135]), but the electrical efficiency of the electrostatic actuators

is five orders of magnitude higher than that of the actuators used in this work (17%

for electrostatic [45] and 10−5% for thermal [135]). Once the issues related to the

integration of electrostatic actuators have been resolved, efficient options for storing

and releasing potential energy in elastomer springs can be demonstrated.

The results in this chapter came from tests that were performed under ideal

test conditions. In real-world applications, however, the conditions in which robots

operate are variable and sometimes unknown. As was mentioned in Section 4.2.1,

outside physical forces exerted on jumping robots change with size scale. Other work

has explored centimeter-scale jumping robots in uncertain, stochastic environments
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[185], but did not consider microscale robots. Analysis of the influence of the en-

vironment on the performance of the robots is necessary in order to demonstrate a

jumping microrobot with repeatable and reliable operation. This is particularly true

for repeated jumping, as the robot must either always land in the jumping position

or be able to either right itself [185, 186, 187]. These considerations, however, are

outside of the scope of this dissertation and is a topic for future work.

4.5.1 Comparison of the two Systems

It is interesting to compare the results from the two systems. The jumping

mechanism from Section 4.3 stored 100 µJ while the actuated mechanism from Section

4.4 stored only 0.45 µJ. The discrepancy between the two systems is largely due to

the difference in the two fabrication processes. The DSP process utilized the entire

300 µm thickness of the wafer while the SOI process could utilize only the 20 µm

device layer of the wafer. SOI wafers with thicker device layers can potentially be

used to increase the thickness, and therefore spring constant, of the elastomer springs,

but the thickness is limited by the achievable DRIE aspect ratio. The energy in

the actuated system can also be improved by increasing the maximum strain before

release. By increasing the width and thickness of the springs from 20 µm to 40 µm

and straining the springs to 100%, 9 µJ can be stored in an 8 spring system, such as

that shown in Figure 4.8. This would be enough energy for an 8 mg, 4 mm x 4 mm

robot to reach a jumping height of 10.1 cm in air.
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4.6 Conclusions

This section demonstrates the application of the first microfabrication process

to incorporate compliant elastomer structures in-plane with traditional silicon micro-

electromechanical systems. By incorporating new materials, elastomer springs were

applied as compact energy storage mechanisms for small jumping robots. The fabri-

cation process for an 8 mg jumping mechanism that was 4 mm x 4 mm x 0.3 mm was

described. The device stored 100 µJ, 40% of which was transferred into kinetic energy

of the mechanism resulting in jump heights as high as 32 cm. A similar fabrication

process was used to fabricate an actuated system on an SOI chip. This thermally

actuated device stored and released 0.45 µJ to propel a 1.4 mg projectile more than 7

cm. The jumping mechanism and the actuated mechanism were both used repeatedly

to store and release energy, demonstrating the enhanced mechanical robustness of the

devices manufactured with these processes.
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Chapter 5

Conclusions, Contributions, and Future Work

5.1 Conclusions and Contributions

This dissertation presents a large step forward toward developing new genera-

tions of polymer-based microrobots. The process presented in Chapter 2 was used

to create various components for microrobots. Robust actuators with displacements

on the order of several hundreds of microns were presented. The operating voltages

of microscale dielectric elastomer actuators were reduced an order of magnitude to

sub-1000 V levels. Elastomer springs, or microscale rubber bands, were fabricated

and integrated with silicon actuators to create microscale energy storage and release

systems. The variety of devices that were created using a basic fabrication framework

demonstrates the generality of the fabrication process. This is important because it

demonstrates that the process can be adapted in order to meet the particular demands

of various applications; the process is not intended for a specific device, but is meant to

enable batch fabrication with new materials for a wide variety of devices. Ultimately

the goal and purpose of this dissertation was to improve fabrication capabilities so

that future microrobot design is not limited to traditional materials like oxides and

silicon, but can use polymers such as those used throughout this dissertation.
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The following list describes the specific contributions of this dissertation:

1. Development and Characterization of Novel Silicon and Elastomer Microfabri-

cation Process

• This dissertation presents the details of a fabrication process that creates

elastomer features together with silicon features. The process is the first

to integrate mechanical elastomer features with silicon features at this size

scale. One of the major improvements of this process over others methods

is the batch processing and the generality of the process. While PDMS

thin films down to 10s of µm can be achieved by spinning, the process

demonstrated in this dissertation allows for patterning film dimensions at

any size scale from single microns to 100s of microns at the same time.

The details of the process provided include the process tool parameters,

which will simplify the task of repeating the process or replicating the

work. The process was designed for the purpose of creating components

for microrobots, but is generally applicable across many scientific fields.

• Mechanical characterization of elastomer features fabricated in the process

was completed. Results of tests performed in situ on microscale samples

using a custom MEMS device fabricated in an SOI wafer were compared to

results of similar tests performed on macroscale samples with a dynamic

mechanical analyzer. This allowed for a detailed analysis of the effect

of all of the processing steps on the mechanical behavior of the PDMS
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samples. This analysis represents the only large-strain characterization

of PDMS samples at the single microns scale, which makes the informa-

tion presented in the results and analysis particularly useful for design of

mechanical structures. The fact that this analysis considers the effect of

the exposure to chemicals and plasmas during the fabrication makes this

work particularly unique. Many other works at this scale use results of

macroscale tests without accounting for the processing. This dissertation

provides information which will allows for such accounting to be made.

• The polymer used throughout this dissertation, PDMS, is commonly used

as a passivation layer on electronics to isolate traces and components from

the outside world. This dissertation provides results of tests on the break-

down of PDMS films from 2 µm to 14 µm, scales which have not previously

been explored with silicon electrodes. This data is also necessary for the

design of dielectric elastomer actuators at these length scales. The maxi-

mum operating voltage of DEAs is dependent on the breakdown point of

the dielectric layer, but until this dissertation the breakdown PDMS thin

film had not been characterized at these film thicknesses.

• The polymer used throughout most of this dissertation is a dielectric ma-

terial, but work included demonstrates how carbon black filler particles

can be added to the polymer to create conductive polymers. This included

characterization of the effect of the filler particles on the modulus of the
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materials as well as the change in conductivity of the material with amount

of filler particles added to the polymer matrix.

2. Thermal Microactuators

• An all-polymer fabrication process based on the elastomer and silicon pro-

cess was detailed. This process allows for fabrication of dielectric and

conductive polymer features together in-plane at length scales from tens

of microns to hundreds of microns.

• This all-polymer fabrication process was implemented to fabricate thermal

actuators that take advantage of the relatively large coefficient of thermal

expansion of the polymers. When powered via Joule heating the actuators

were designed to expand and displace. Three different styles of actuators

were demonstrated and showed displacements as high as 100 µm and forces

as high as 55 µN.

3. Dielectric Elastomer Microactuators

• Using the same all-polymer fabrication process developed for the microscale

thermal actuators, electrostatic dielectric elastomer microactuators were

fabricated. A 1 mm long electrostatic dielectric elastomer actuator demon-

strated a tip displacement as high as 350 µm at 1.1 kV with a electrical

power consumption of 11 µW. The thermal and electrostatic actuators

were both fabricated with elastomeric polymers, so they are very robust
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and can undergo large strains in both tension and bending and still operate

once released.

• Operation at sub-1000 V levels is significant as the operating voltage of

DEAs is typically on the order of several thousands of volts, so these ac-

tuators demonstrate an order of magnitude improvement.

4. Actuated Micromechanism

• Using the silicon and elastomer fabrication process, mechanisms for storage

and release of potential mechanical energy were designed and fabricated.

The purpose of these devices was to evaluate the feasibility of jumping

microrobots using on elastomer-based energy storage systems.

• The fabrication process for an 8 mg jumping mechanism that was 4 mm x

4 mm x 0.3 mm was described. The device stored 100 µJ, 40% of which

was transferred into kinetic energy of the mechanism resulting in jump

heights as high as 32 cm.

• A similar fabrication process was used to fabricate an actuated system on

an SOI chip. This thermally actuated device stored and released 0.45 µJ

to propel a 1.4 mg projectile more than 7 cm.

• The jumping mechanism and the actuated mechanism were both used re-

peatedly to store and release energy, demonstrating the enhanced mechan-

ical robustness of the devices manufactured with these processes.
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5.2 Future Work

While this dissertation answers many questions about the integration of silicon

and polymers together in MEMS devices for microrobotic applications, there are

still many areas that can be explored further. Much of the work presented in this

thesis is related to development of the details of the fabrication process and the

characterization of the materials used in the process. While there was much work

done on the implementation of the materials, there are still several areas which can

be explored further.

One of the topic of particular promise is the use of the fabrication process used

in Chapter 3 for the thermal and electrostatic all-polymer actuators. This work,

especially the electrostatic actuators, show great promise, especially as the scale of

the actuators is decreased. The actuators described in this work had 20 µm smallest

dimensions, but if improvements to the process can be made these dimensions can be

decreased even further. The biggest issue that needs to be addressed is the conduc-

tive polymer. The polymer used in this dissertation was a carbon black and PDMS

composite, which has a very low conductivity, on the order of 0.1 S/m. This conduc-

tivity, however, was measured on bulk macroscale samples and does not necessarily

translate directly to the microscale features. One of the largest issues was creating

reproducibly conductive samples. This is because of the relatively high viscosity of

the composite mixture. The samples were diluted with a solvent in order to decrease
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the viscosity, but the solvent evaporates quickly as the vacuum used to evacuate the

trenches is pulled. A material using different filler particles such as carbon nanotubes

or graphene in a low viscosity polymer matrix that does not require dilution with

a solvent would offer a much more reliable solution this issue. Ideally the material

would be able to refill high aspect ratio trenches at gaps down to single microns.

The actuated mechanism described in Chapter 4 is impressive in its ability

to integrate silicon and polymer components together on a single chip. Some of

the details of the design, however, can be improved upon, especially related to the

actuators. The thermal actuators used in this design required a significant amount of

power, 2.5 W per actuator or 10 W for the entire device. This is not a suitable solution

for a device which has to rely on a limited power supply such as a battery, solar cells, or

energy harvester. There are, however, alternative solutions which can be used in order

to reduce the power consumption, such as electrostatic actuators. One of the issues

with electrostatic actuators is the low force density compared to that of the thermal

actuators, but recent work has shown that electrostatic actuators that operate in a

manner similar to that of the thermal actuators used in this dissertation can achieve

the same forces with electrical power draws that are orders of magnitude lower and

efficiencies that are orders of magnitude higher [188]. There are issues related to

stability and generation of the control voltages for these electrostatic actuators, but

they still represent an attractive alternative to the thermal actuators used in this

dissertation.
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Outside of building on the work described in this dissertation, the fabrication

process used to create actuators in Chapter 3 of this dissertation can also be used

to create sensors. The benefit of such a process is that the materials used are all

polymers, which adds a level of robustness to the devices. Similar materials have

been used to fabricate compliant tactile skins at much larger sizes, but this process

presents the opportunity to scale down the size of the sensor nodes to 100s or even

10s of microns in size, depending on the application requirements.
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Appendix A

Details of the Fabrication Process

This Appendix provides details of the fabrication process which was used through-

out this dissertation.

List of abbreviations used in Table A.1:

PECVD - plasma enhanced chemical vapor deposition

RIE - reactive ion etch

HMDS - hexamethyldisiloxane

PR - photoresist

RPM - rotations per minute

DRIE - deep reactive ion etch

IPA - 2-propanol

DI - deionized

He - helium

SF6 - sulfur hexafluoride

C4F8 - octafluorocyclobutane

N2O - nitrous oxide

sccm - standard cubic centimeter per minute

mT - milliTorr
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Notes:

A. The PECVD process begins with a 30 s N2O clean with a 1000 mT chamber

pressure, power of 50 W, and N2O flow rate of 710 sccm. The oxide deposition

process has a chamber pressure of 1000 mT, power of 50 W, 5%SiH4/95%N2

flow rate of 170 sccm, and an N2O flow rate of 710 sccm. For a 200 nm thick

film, a deposition time of 2 min 47 s was used.

B. This 30 s RIE plasma has a chamber pressure of 100 mT, power of 50 W, and

O2 flow rate of 50 sccm.

C. The plasma to pattern oxide was a 9 minute etch with a 1 mT chamber pressure,

DC power of 50 W, ICP power of 100 W, C4F8 flow rate of 10 sccm, He flow

rate of 10 sccm, and had backside He cooling at 12 sccm.

D. The DRIE alternates between an etch and a passivation phase. The etch phase

was 10 s long, had a SF6 flow rate of 130 sccm, an O2 flow rate of 13 sccm, a

power of 600 W on the 13.56 MHz generator, and a power of 17 W on the 380

kHz on the LF generator. The passivation phase was 6 s long, had a C4F8 flow

rate of 85 sccm, a power of 600 W on the 13.56 MHz generator, and a power of

0 W on the 380 kHz on the LF generator. The entire process used backside He

cooling at 8 T with a maximum allowable leak rate of 5 mT/min. The results

of the etch are shown in Figure A.1 which demonstrates the slightly re-entrant

profile of the etch. A re-entrant profile, one where the bottom of the trench is

wider than the top of the trench. It was necessary to design an etch process
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Figure A.1: SEM of the cross section of trenches etched in a silicon wafer demon-
strating the trench profile.

with a re-entrant profile for the silicon etch used to mold the polymer features.

If instead of a re-entrant profile the trenches had a v-shaped profile where the

top of the trench was wider than the bottom of the trench, it is possible that

small segments of silicon would remain un-etched. This un-etched silicon would

be the silicon at the bottom of the v-shaped trench and would effectively be

masked by the refilled polymer in any subsequent etch steps.

In addition to the profile of the etch, it was necessary to consider the width

of the trenches being etched. If features with a small width were located near

features with a large width, the aspect ratio dependency of the DRIE process

would result in a slower etch rate in the smaller features than in the larger

features, as shown in Figure A.2. This is because it is more difficult for the

reactive gases to access smaller features than larger features [75, 189].

E. The solvent clean to remove the residual polymer was a 1 minute soak in a 3:1

mixture of n-methylpyrrolidone and tetrabutylammonium fluoride. After the
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Figure A.2: SEM of the cross section of trenches etched in a silicon wafer demon-
strating the ARDE.

soak, the wafer was cleaned with IPA and DI water.
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Appendix B

Data from the Calibration of the Microscale Devices

As described in Chapter 2, there were two constants that had to be experimen-

tally determined in order to calibrate the in situ test structure. The first constant

was the capacitive constant, kc, or slope of the linear fit of the measured change in

capacitance versus displacement points. This is a linear relationship, so a simple lin-

ear fit can be used. The devices tested came from two wafers, and because of some

of the variations in the silicon etch process there were slight differences between the

constants from one wafer to the next. The purpose of this calibration process, how-

ever, is to account for any variations between wafers or from one die to another. The

data for the two wafers is presented in Figure B.1. The average slope for the devices

from Wafer A was 34.5 µm/pF (σ = 0.44) and the average slope for the devices from

Wafer B was 29.3 µm/pF (σ = 1.22).

The second constant was the relationship between the displacement of the comb

drive as a function of the input voltage, or kV x. In order to satisfy the derivation

from Chapter 2, the relationship of interest was the slope of the displacement versus

voltage squared points. This again is a linear relationship, so a simple linear fit can

be used. As before, there were slight variations between the devices from the two

wafers used. The average slope for the devices from Wafer A 163 V2/µm(σ = 13.5)

and the average slope for the devices from Wafer B was 105 V2/µm(σ = 15.5). The

devices from Wafer A had a slight offset, but the slope was the value of interest, so

variations in the intercept were not an issue.
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Figure B.1: Plot of the calibration data used to determine the capacitance as a
function of displacement.
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Figure B.2: Plot of the calibration data used to determine the flexure spring constant.
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Appendix C

MATLAB Code for Image Processing

The following is the code that was used in Section 2.1 to analyze the displace-

ment of the patterned feature on the in situ test mechanism. The code is based

on the theory used in the “nano+” metrology software for MEMS characterization

(lmis2.epfl.ch/nanoplus) by Christophe Yamahata [63], which can analyze video files.

The theory behind the program was used and was highly simplified for analysis of a

series of images by Ivan Penskiy in the Micro Robotics Laboratory at the University

of Maryland, College Park.

1 % Setup
2 clear a l l
3 clc
4

5 % Create a l i s t o f a l l o f the the TIF f i l e s in the cur r en t
d i r e c t o r y to be analyzed

6 path im = ’ ’ ;
7 i m l i s t = l s ( [ path im ’ ∗ . t i f ’ ] ) ;
8

9 % Determined the number o f TIF f i l e s to be analyzed
10 nFrames = s ize ( im l i s t , 1 ) ;
11

12 % Read in the f i r s t image to an array
13 f r = imread ( [ path im im l i s t ( 1 , : ) ] ) ;
14 % Convert the RGB image to g r ay s ca l e image
15 f r g r = rgb2gray ( f r ) ;
16 % Convert g r ay s ca l e images to i n t en s i t y va lue s
17 f r n=imadjust ( f r g r ) ;
18 % Display the i n t e n s i t y va lue s as an image
19 imshow ( f r n ) ;
20 % Create a draggable r e c t ang e l on the i n t e n s i t y value image
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21 h = imrect ;
22 % Waits un t i l the r e c t ang l e i s created , double c l i c k i n g

i n s i d e the image resumes execut ion o f the s c r i p t , r eads
r e c t ang l e p o s i t i o n to va r i ab l e

23 po s i t i o n = wait (h) ;
24

25 % Sets width o f r e c t ang l e in p i x e l s to va r i ab l e N
26 N = po s i t i o n (3 ) ;
27

28 % Creates an array o f ze ro s the s i z e o f the number o f frames
29 angl = zeros ( nFrames , 1) ;
30 % Create a va r i ab l e o f the s i z e o f the f f t
31 n f f t = 2ˆ(nextpow2(N) ) ;
32 % Set number o f i n t e r f e r e n c e pa t t e rn s inc luded in the drawn

r e c t ang l e
33 T sample = 5 ;
34 % Set ac tua l phy s i c a l with o f T sample i n t e r f e r e n c e pa t t e rn s
35 window size = 35 ;
36

37 % Peek−peek d i s t ance in p i x e l s
38 ppx=N∗T sample/window size ;
39

40 % The maximum frequency
41 n max = round( n f f t /ppx ) + 1 ;
42

43 % Process each images
44 for i =1:nFrames
45 % Read in the i−th image
46 f r = imread ( [ path im im l i s t ( i , : ) ] ) ;
47

48 % Crop the p o s i t i o n o f the r e c t ang l e used e a r l i e r
49 f r c r=imcrop ( f r , p o s i t i o n ) ; %moving part
50 % Convert cropped image to g r a t s c a l e
51 f r g r = rgb2gray ( f r c r ) ;
52 % Create i n t e n s i t y p l o t o f cropped image
53 f r n=imadjust ( f r g r ) ;
54

55 % Sum the i n t e n s i t y p l o t by column o f p i x e l s
56 f r i n t e n s = sum( f r n , 1 ) ;
57

58 i f i==1
59 f r i n t e n s f i r s t = f r i n t e n s ;
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60 % Perform f f t on the summed i n t e n s i t y data
61 f r i n t e n s f i r s t =

f f t ( f r i n t e n s f i r s t ( : , 1 ) ,N) ;
62

63 % Wil l be used f o r zero padding
64 mid g r ey l ev e l = mean( f r i n t e n s f i r s t ) ;
65

66 % Find beginning o f image
67 x beg in = round ( ( n f f t−N) /2)+1;
68 % Find end o f image
69 x end = x beg in − 1 + N;
70 % Create array s i z e o f the image
71 x = 1 : 1 : n f f t ;
72 end
73

74 % Create array o f average va lue s f o r e n t i r e image
75 f r i n t e n s n f f t = mid g r ey l ev e l ∗ones (1 , n f f t ) ’ ;
76 % Update f f t va lue s f o r analyzed area
77 f r i n t e n s n f f t ( x beg in : 1 : x end ) = f r i n t e n s ( 1 : 1 :N) ;
78

79 % Perform f f t
80 f r i n t e n s = go e r t z e l ( f r i n t e n s n f f t ( : , 1 ) , n max) ;
81 % Determine phase ang l e s ( r ad i ans ) f o r each image
82 angl ( i ) = angle ( f r i n t e n s ) ;
83

84 end
85

86 % Calcu la t e change in phase ang le from f i r s t image
87 % Sign convent ion : A displacement to the r i gh t i s (+)
88 angl=angl ( 1 )−angl ;
89 % Correctphase ang l e s
90 uangl=unwrap( angl ) ;
91 % Compute Actual Displacement
92 disp=(T sample∗uangl /(2∗pi ) ) ;
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Appendix D

ANSYS Code

The following is the code used in Section 3.3.3 to model the behavior of the DEAs

in ANSYS. The convergence tolerance (CNVTOL) was set to 1e-3 for 0 to 800 V. It

had to be increased to 1e-2 for 900 V and 1e-1 for 1000 V. The solution would not

converge at 1100 V at 1e-1, but the CNVTOL was not increased further.

finish
/clear,start
/output,term

/prep7
eps0=8.854e-6 ! free space permittivity

!set the applied voltage
voltage=100

!set layer thickness
t=20
!set length of actuator
w=1000
!set nodesize, relative to layer thickness
nodesize=t/3

!build geometry
blc4,0,0,w,t
blc4,0,t,w,t
blc4,0,2*t,w,t
blc4,0,3*t,w,t
blc4,0,4*t,w,t

!set element types and material properties
!electrode layers
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ET,1,plane223,1001
emunit,epzro,eps0
mp,perx,1,2.94
mp,ex,1,1.16
mp,prxy,1,0.49999

!dielectric layers
ET,2,plane223,1001
emunit,epzro,eps0
mp,perx,2,2.94
mp,ex,2,0.2
mp,prxy,2,0.49999

!select the electrode layer areas
asel,s,loc,y,0,t
asel,a,loc,y,2*t,3*t
asel,a,loc,y,4*t,5*t

!apply materials to areas and mesh electrode layers
aatt,1,,1
esize,nodesize
amesh,all

!select the dielectic layer areas
asel,s,loc,y,t,2*t
asel,a,loc,y,3*t,4*t

!apply materials to areas and mesh dielectric layers
aatt,2,,2
esize,nodesize
amesh,all

!merge points so that layers will move together
nummrg,all

/solu

!setup solution
antype,static
cnvtol,f,1,1e-3

!set the bottom electrode to voltage
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nsel,s,loc,y,0,t
d,all,volt,voltage

!set the middle electrode to voltage=0
nsel,s,loc,y,2*t,3*t
d,all,volt,0

!fix the base of the actuator in x and y
nsel,s,loc,x,0
d,all,ux,0
d,all,uy,0

!enable nlgeom for large strains
nlgeom,on

!solve
alls
solve
fini
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