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Modeling and improving system reliability require selecting appropriate probability 

distributions for describing the uncertainty in failure times.  The q-Weibull distribution, 

which is based on the Tsallis non-extensive entropy, is a generalization of the Weibull 

distribution in the context of non-extensive statistical mechanics. The q-Weibull 

distribution can be used to describe complex systems with long-range interactions and 

long-term memory, can model various behaviors of the hazard rate, including unimodal, 

bathtub-shaped, monotonic, and constant, and can reproduce both short and long-tailed 

distributions. Despite its flexibility, the q-Weibull has not been widely used in reliability 

applications partly because parameter estimation is challenging.  This research develops 

and tests an adaptive hybrid artificial bee colony approach for estimating the parameters of 

a q-Weibull distribution. This research demonstrates that the q-Weibull distribution has a 

superior performance over Weibull distribution in the characterization of lifetime data with 



 

a non-monotonic hazard rate. Moreover, in terms of system reliability, the q-Weibull 

distribution can model dependent series systems and can be modified to model dependent 

parallel systems. This research proposes using the q-Weibull distribution to directly model 

failure time of a series system composed of dependent components that are described by 

Clayton copula and discusses the connection between the q-Weibull distribution and the 

Clayton copula and shows the equivalence in their parameters. This dissertation proposes 

a Nonhomogeneous Poisson Process (NHPP) with a q-Weibull as underlying time to first 

failure (TTFF) distribution to model the minimal repair process of a series system 

composed of multiple dependent components. The proposed NHPP q-Weibull model has 

the advantage of fewer parameters with smaller uncertainty when used as an approximation 

to the Clayton copula approach, which in turn needs more information on the assumption 

for the underlying distributions of components and the exact component cause of system 

failure. This dissertation also proposes a q-Fréchet distribution, dual distribution to q-

Weibull distribution, to model a parallel system with dependent component failure times 

that are modeled as a Clayton copula. The q-Weibull and q-Fréchet distributions are 

successfully applied to predict series and parallel system failures, respectively, using data 

that is characterized by non-monotonic hazard rates.  
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Chapter 1: Introduction 

 

1.1 Background and Motivation 

Modeling and improving system reliability require selecting appropriate probability 

distributions for describing the uncertainty in failure times. Development, choice, and 

application of a probability distribution to accurately describe failure times is not a trivial 

task, and reliability analysis depends crucially on it. Many probability distributions can be 

used to model failure times. However, for some systems and components, the classical 

distributions are not satisfactory. It’s important to remark that deviation from a given 

distribution is not merely quantitative, but also qualitative, once the bathtub-shaped failure 

rate behavior cannot be described by the classic Weibull distribution, many reliability 

inferences (e.g., maintenance policies, risk and cost analyses) may be inaccurate if the 

reliability model cannot recognize non-monotonic failure rate behavior. Besides, some 

characteristics of complex systems including long-range correlations are not well described 

by the classical distributions. For simple systems, by assuming independence, there is a 

well-established theoretical framework with approaches based on classical distributions. In 

reality, this assumption usually cannot be satisfied, and there is a dependency relationship 

among components of the system. In this scenario, a generalized distribution capable of 

providing a better description of complex systems is welcome. This is the case of the family 

of q-distributions which emerge from the non-extensive statistical mechanics. Concepts 
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related to non-extensive statistical mechanics have been applied to a variety of problems 

in diverse research areas of complex systems, including physics, chemistry, biology, 

mathematics, economics, among others. In the context of non-extensive statistical 

mechanics, the q-distribution is a generalization of the classic distribution in the same way 

that the non-extensive entropy [1] is a generalization of Boltzmann-Gibbs-Shannon (BGS) 

entropy (using a parameter 𝑞, known as entropic index), extending statistical mechanics to 

complex systems. For complex systems with dependence, the q-distributions may be used 

to improve the description of reliability engineering problems. 

The Weibull distribution is one of the most frequently used distributions in reliability 

engineering. In this research, we focus on its generalization known as q-Weibull 

distribution in the context of non-extensive statistical mechanics, and this was done by 

Picoli et al. [2]. The q-Weibull distribution can be used to describe complex systems with 

long-range interactions and long-term memory [3]. Compared to the Weibull distribution, 

which can only describe monotonic hazard rate functions, the q-Weibull has its advantage 

of containing only three parameters with flexibility to model various behaviors of the 

hazard rate, including the unimodal, bathtub-shaped, monotonic (monotonically 

decreasing, monotonically increasing) and constant. The q-Weibull probabilistic model 

unifies monotonic and non-monotonic hazard rate functions by using one general formula, 

which is flexible and elegant for failure data fitting. Such flexibility is important to 

accurately perform reliability analyses when failure data are characterized by non-

monotonic hazard rates. For example, the well-known bathtub curve, which is widely used 

in reliability engineering and that can be reproduced directly by q-Weibull model using a 
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single set of three parameters instead of three Weibull models. Additionally, the q-Weibull 

model can reproduce both short and long-tailed distributions [2]. The performance of the 

q-Weibull distribution is expected to be superior over that of the classic Weibull 

distribution due to its flexibility to fit failure times data and the ability to describe complex 

systems. 

This research seeks to contribute to the insertion of q-Weibull distribution to model 

reliability engineering problems. The q-Weibull distribution has already been introduced 

in the literature, but its application in reliability engineering is limited, and its benefits have 

not been recognized. It is partly because parameter estimation is challenging. In this work, 

the parameters of the q-Weibull are estimated by the maximum likelihood (ML) method. 

Due to the intricate system of nonlinear derivative equations related to the log-likelihood 

function, analytical solution is very difficult to be obtained. Given that parameter 

estimation and data fitting are crucial steps for reliability analyses, a numerical approach 

may be employed. This work employs an artificial bee colony (ABC) algorithm [4], which 

is a nature-based heuristic method that does not require derivative information to solve the 

q-Weibull distribution ML problem. 

 

1.2 Research Objectives 

Within the scope of this research, we seek answers to the following questions:  

• How well the q-Weibull distribution fits failure times data compared with classic 

Weibull and other Weibull generalizations? 
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• How can the q-Weibull distribution be used to model dependent series systems? 

• How can the q-Weibull distribution be modified to model dependent parallel 

systems? 

Therefore, the main objectives of this research are as follows: 

• Demonstrate that the q-Weibull distribution is a flexible and useful distribution to 

describe failure time data with a variety of hazard rate behaviors, in particular data 

with a non-monotonic hazard rate. That allows us to propose the q-Weibull 

distribution is a good candidate for the existing life distributions in modeling 

reliability data. 

• Explore the ability of q-Weibull distribution to model a series system with 

dependent component failure times and estimating the model’s parameters from 

failure time data. Specifically, explore the connection between q-Weibull 

distribution and Clayton copula and investigate the effect of parameter 𝑞 on the 

systems’ dependency. 

• Propose a q-Fréchet distribution, dual distribution to q-Weibull distribution, to 

model a parallel system with dependent component failure times that are modeled 

as a Clayton copula.  

• Develop an efficient approach based on an artificial bee colony algorithm to solve 

all the maximum likelihood problems. 
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1.3 Research Approach 

To achieve the first objective, we adopt the ML method to estimate the q-Weibull 

distribution parameters. Numerical experiments are conducted to evaluate the ability of the 

q-Weibull distribution to model various behaviors of the hazard rate function. The accuracy 

and precision of the ML estimates of the q-Weibull parameters are evaluated by bias and 

MSE. Intervals estimates for the q-Weibull parameters are provided, including asymptotic 

intervals based on the ML theory, parametric and non-parametric bootstrapped confidence 

intervals. The proposed parameter estimation method is also applied to an example 

involving failure data characterized by a bathtub-shaped hazard rate function. For 

comparison purposes, we consider the standard Weibull and some alternative bathtub-

shaped hazard rate models: the modified Weibull extension [5] and the ENH [6] models. 

A modified Kolmogorov-Smirnov (KS) goodness-of-fit test statistic and p-value are used 

to determine the goodness-of-fit of these models. 

 

To achieve the second objective, we analytically derive that a q-Weibull distribution can 

approximate the distribution of the failure time of a series system with dependent 

component failure times that are modeled as a Clayton survival copula. Also, we derive the 

relationship between the parameter 𝑞  in q-Weibull distribution and the parameter 𝜃  in 

Clayton copula, which measures the degree of dependence among the components of a 

system. For a series system with minimal repair, we develop a method for estimating the 

parameters of the Clayton copula given data about component failures, and we show that 
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this process can be modeled as a nonhomogeneous Poisson process (NHPP). Thus, we 

propose the NHPP with q-Weibull as the underlying time to first failure (TTFF) distribution 

model to approximate the minimal repair process of a repairable series system composed 

of multiple dependent components characterized by Clayton copula. The maximum 

likelihood (ML) method is developed to estimate the model parameters, and asymptotic 

confidence intervals based on ML asymptotic theory are also developed.  

A simulation study is conducted to validate the proposed NHPP q-Weibull model. In the 

simulation, a sampling method for conditional failure times of dependent subsystems 

modeled by Clayton copula is developed. A modified Kolmogorov-Smirnov (KS) 

goodness-of-fit test statistic and p-value are used to determine the goodness-of-fit of the 

proposed NHPP q-Weibull model. The proposed NHPP q-Weibull model and parameter 

estimation procedure are applied to a real failure times data set of a load-haul-dump (LHD) 

machine given by Kumar et al. [7]. The proposed model is compared with other commonly 

used minimal repair process models, including NHPP Weibull and NHPP S-PLP [8], and 

the independent models. 

 

To achieve the third objective, we propose a q-Fréchet distribution to model a dependent 

parallel system with dependent component failure times that are modeled as a Clayton 

copula. We derive that the parameter 𝑞  in q-Fréchet distribution approximates the 

parameter 𝜃  in Clayton copula, which measures the degree of dependence among the 

components. One example of dependence is illustrated as common cause failures when all 

components’ hazard rates are affected by a common randomized environmental effect. We 
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perform a simulation study to evaluate the q-Fréchet approximation. We also apply the 

proposed q-Fréchet model to a data set of 18 two-motor parallel systems’ failure times. 

 

Due to the intricate likelihood function, it is impractical to analytically obtain the ML 

estimates for the q-Weibull parameters, and the classic numerical optimization approach 

fails to efficiently find the global solution for the associated ML problem. To achieve the 

fourth objective, we use the heuristic optimization method of artificial bee colony (ABC) 

algorithm. To deal with the slow convergence of ABC, we propose an adaptive hybrid 

ABC (AHABC) algorithm that dynamically combines a local Nelder-Mead simplex search 

method with ABC to efficiently solve the q-Weibull distribution ML problem. Numerical 

experiments are conducted to evaluate the performance of the proposed AHABC algorithm 

to solve the q-Weibull ML problem, comprising different behaviors of the hazard rate and 

sample sizes. The proposed AHABC is compared with ABC and a similar algorithm in 

terms of accuracy and convergence speed in the context of the maximum likelihood 

problem for the q-Weibull distribution. 

1.4 Dissertation Outline 

This dissertation is arranged into the following chapters. 

Chapter 2 presents a literature review of the background and related studies in q-Weibull 

distribution. 

Chapter 3 demonstrates that the q-Weibull distribution is a flexible and useful distribution 

to describe failure time data with both monotonic and non-monotonic hazard rate 
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behaviors. This chapter develops an adaptive hybrid ABC (AHABC) algorithm to obtain 

the ML estimates for the q-Weibull distribution parameters. 

Chapter 4 presents analytical derivation and simulation validation that a q-Weibull 

distribution can approximate the distribution of the failure time of a series system with 

dependent component failure times that are modeled as a Clayton survival copula. 

Chapter 5 proposes a q-Fréchet distribution, which can be used to approximate the 

distribution of the failure time of a parallel system with dependent component failure times 

that are modeled as a Clayton copula. 

Chapter 6 presents a summary of conclusions, contributions, and recommendations for 

future research. 

The source code for this dissertation can be found https://github.com/Mengumd/q-

Weibull-distribution-in-reliability 

 

 

 

 

 

 

 

https://github.com/Mengumd/q-Weibull-distribution-in-reliability
https://github.com/Mengumd/q-Weibull-distribution-in-reliability
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Chapter 2: Literature Review 

 

This chapter presents related work about the main topics of the dissertation: q-Weibull 

distribution, other Weibull generalizations, lifetime data fitting by q-Weibull distribution, 

dependent systems modeling, and the numerical solution of MLE using artificial bee 

colony algorithm. 

2.1 Characterization of q-Weibull Distribution 

The probability density function (PDF) of the q-Weibull distribution is as follows: 

 
𝑓𝑞(𝑡) = (2 − 𝑞)

𝛽

𝜂
(
𝑡

𝜂
)
𝛽−1

exp𝑞 [− (
𝑡

𝜂
)
𝛽

] , 𝑡 ≥ 0, (2-1) 

where 𝛽 > 0  and 𝑞 < 2  are shape parameters, and 𝜂 > 0  is a scale parameter. The q-

Exponential function exp𝑞(𝑥) is defined as: 

  

 
𝑒𝑥𝑝𝑞(𝑥) = {(1 + (1 − 𝑞)𝑥)

1
1−𝑞 ,     𝑖𝑓 1 + (1 − 𝑞)𝑥 > 0,

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (2-2)  

 

Therefore, the q-Weibull PDF can be rewritten as: 

 

𝑓𝑞(𝑡) = (2 − 𝑞)
𝛽

𝜂
(
𝑡

𝜂
)
𝛽−1

[1 − (1 − 𝑞)(
𝑡

𝜂
)
𝛽

]

1
1−𝑞

, 𝑡 ≥ 0, (2-3) 

where 
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𝑡 ∈ {

[0,∞),   for 1 < 𝑞 < 2,
[0, 𝑡𝑚𝑎𝑥],       for 𝑞 < 1,

 (2-4) 

 

with 𝑡𝑚𝑎𝑥 =
𝜂

(1−𝑞)1/𝛽
. 

In the limit 𝑞 → 1, 𝑓𝑞(𝑡) reduces to the Weibull PDF, for 𝛽 = 1 it corresponds to the q-

Exponential PDF, and when 𝑞 → 1 and 𝛽 = 1 it becomes the Exponential distribution [9]. 

The q-Weibull cumulative distribution function (CDF) and reliability function are as 

follows: 

 
𝐹𝑞(𝑡) = 1 − [1 − (1 − 𝑞) (

𝑡

𝜂
)
𝛽

]

2−𝑞

1−𝑞

, (2-5) 

 

𝑅𝑞(𝑡) = [1 − (1 − 𝑞)(
𝑡

𝜂
)
𝛽

]

2−𝑞
1−𝑞

. (2-6) 

Then, the hazard rate function is defined as: 

 

ℎ𝑞(𝑡) =
𝑓𝑞(𝑡)

𝑅𝑞(𝑡)
=

(2 − 𝑞)
𝛽
𝜂𝛽
𝑡𝛽−1

1 − (1 − 𝑞) (
𝑡
𝜂)

𝛽
. (2-7) 

Equation (2-7) can represent different types of hazard rate functions according to the 

values of the shape parameters [3]. Indeed, Assis et al. [3] provided the ranges of the shape 

parameters 𝑞 and 𝛽 related to each type of curve. ℎ𝑞(𝑡) is monotonically decreasing for 

1 < 𝑞 < 2 and 0 < 𝛽 < 1, monotonically increasing for 𝑞 < 1 and 𝛽 > 1, unimodal for 

1 < 𝑞 < 2 and 𝛽 > 1, and bathtub-shaped for 𝑞 < 1 and 0 < 𝛽 < 1. 
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Figure 2-1 illustrates the different behaviors of ℎ𝑞(𝑡) for 𝜂 = 5 and specific values of the 

shape parameters 𝑞 and 𝛽. Note that for 𝑞 = 0.5 (𝑞 < 1), ℎ𝑞(𝑡) – as well as 𝑓𝑞(𝑡), 𝐹𝑞(𝑡) 

and 𝑅𝑞(𝑡) – has a limited support. For the cases 𝛽 = 0.5 with 𝑞 = 0.5 and 𝛽 = 1.5 with 

𝑞 = 0.5 depicted in Figure 2-1, 𝑡𝑚𝑎𝑥 is 20 and 7.937, respectively. 

 

Figure 2-1: Behaviors of the q-Weibull hazard rate function for 𝜂 = 5 and different 

values of the shape parameters 𝑞 and 𝛽 

Moreover, random samples may be generated according to the q-Weibull distribution by 

inverting 𝐹𝑞(𝑡). Indeed, the q-Weibull random number generator is obtained as: 

 

𝑡 = 𝜂 {
[1 − 𝑈

1−𝑞
2−𝑞]

1 − 𝑞
}

1
𝛽

, (2-8) 
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where 𝑈 is a uniform random number in [0, 1]. 

Suppose that an item has survived to the time 𝑡0, then the q-Weibull conditional reliability 

function is given by: 

 

𝑅𝑞(𝑡|𝑡0) =
𝑅𝑞(𝑡0 + 𝑡)

𝑅𝑞(𝑡0)
=

[
 
 
 1 − (1 − 𝑞) (

𝑡0 + 𝑡
𝜂 )

𝛽

1 − (1 − 𝑞)(
𝑡0
𝜂 )

𝛽

]
 
 
 

2−𝑞
1−𝑞

. (2-9) 

Sometimes, it is convenient to rewrite the reliability function of q-Weibull distribution in 

Equation (2-6) as: 

 

𝑅𝑞(𝑡) = exp𝑞′ [−(
𝑡

𝜂′
)
𝛽

] = [1 − (1 − 𝑞′) (
𝑡

𝜂′
)
𝛽

]

1
1−𝑞′

. (2-10) 

Where 𝑞′ =
1

2−𝑞
, 𝜂′ =

𝜂

(2−𝑞)
1
𝛽

. The parameter 𝑞′ comes from the cumulative distribution 

function (CDF) form of q-Weibull distribution; the corresponding parameter from the 

probability density function (PDF) is q. 

 

2.2 Generalizations of Weibull Distribution 

The Weibull distribution has been modified or generalized in different ways to allow for 

non-monotonic hazard rate functions. For instance, Murthy et al. [10] provide a taxonomy 

to integrate the different Weibull models. There are some recent Weibull distribution 

extensions in the reliability engineering literature. Pham and Lai [11], and Almalki and 

Nadarajah [12] reviewed the generalizations and modifications of the Weibull distribution. 
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These models are capable of modeling a bathtub-shaped hazard rate functions and can be 

classified into two categories: i) methods that add parameters to an existing distribution to 

obtain classes of more flexible distributions as introduced by Olkin [13], and ii) methods 

that combine two or more distributions with one or more being Weibull. Examples include 

the IDB model (Hjorth [14]), the exponentiated Weibull (EW) distribution (Mudholkar and 

Srivastava [15]), the generalized Weibull (GW) (Mudholkar and Kollia [16]), the additive 

Weibull (AW) distribution (Xie and Lai [17]), the extended Weibull distribution (Marshall 

and Olkin [18]), the modified Weibull (MW) distribution (Lai et al. [19]), the modified 

Weibull extension (MWE) (Xie et al. [5]), the beta Weibull (BW) distribution (Lee et al. 

[20]), the flexible Weibull extension (FWE) (Bebbington et al. [21]), the generalized 

modified Weibull (GMW) distribution (Carrasco et al. [22]), the ENH distribution 

(Lemonte [6]), the additive modified Weibull (AMW) distribution (He et al. [23]), and the 

generalized modified Weibull power series (GMWPS) distribution (Bagheri et al. [24]). 

There are also models involving two or more Weibull distributions, for example, sectional 

method, competing risk approach, and multiplicative model introduced by Jiang and 

Murthy [25]. 

2.3 Lifetime Data Fitting by q-Weibull Distribution 

q-Weibull distribution is a generalization of Weibull distribution in the context of non-

extensive statistical mechanics, and it has been successfully applied to model lifetime data 

in the context of reliability engineering. For example, Costa et al. [26] used q-Weibull 

distribution to properly describe time-to-breakdown data of electronic devices; Sartori et 
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al. [27] considered a q-Weibull distribution to describe the failure rate of a compression 

unit in a typical natural gas recovery plant based on time-to-failure data. 

The q-Weibull distribution parameters have been estimated via the least squares estimation 

(LSE) procedure (see Picoli et al. [2]) or through square correlation coefficient 𝑅2 

maximization (in Sartori et al. [27] and Assis et al. [3]). Jose and Naik [28] provided the 

likelihood function, but claimed that it is very difficult to obtain the maximum likelihood 

(ML) estimates of the parameters due to the nonlinear set of equations. Alternatively, Jose 

and Naik [28] employed the method of moments stating, however, that the moment 

estimates are not easy to evaluate when all the parameters are unknown. Extensive 

simulation studies have shown the ML method is better than the LSE in reliability 

applications when data sets are typically small or moderate in size [29]. Since the 

distribution of ML parameter estimates are more accurate with smaller variance, we here 

adopt the ML method. 

2.4 Dependent Systems Modeling by q-Distribution and Clayton Copula 

This q-Weibull flexibility is related to the parameter 𝑞, which controls the shape of the 

distribution along with the parameter 𝛽 , while the Weibull distribution has just one 

parameter 𝛽 affecting its shape. Besides interpreting parameter 𝑞 to be a shape parameter, 

this research goes further to explore the meaning of parameter 𝑞. The shape parameter 𝑞 is 

related to the entropic index in the context of Tsallis statistics [1]. The q-entropy proposed 

by Tsallis [1] 𝑆𝑞 =
1−∑ 𝑝𝑖

𝑞𝑊
𝑖=1

1−𝑞
. Here, 𝑝𝑖 is the probability of the 𝑖𝑡ℎ state, 𝑊 is the number 
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of accessible states of the system, and 𝑞  is a real parameter that rules the degree of 

generalization of the theory (when 𝑞 → 1 , the standard Boltzmann-Gibbs entropy is 

recovered). The maximization of 𝑆𝑞  subject to specific constraints generates q-

distributions such as q-exponential, q-Gaussian and q-Weibull. Costa et al. [30] interpreted 

parameter 𝑞 occurring in the Tsallis statistics to be entirely induced by the fluctuations of 

the parameter characterized by Gamma function. To the best of our knowledge, it has not 

been realized that parameter 𝑞 is connected with copula, thus q-Weibull distribution is able 

to model complex system with dependence. Specifically, this research explores the 

connection of q-Weibull distribution with Clayton copula, which is one of the most 

important Archimedean copulas for the dependence structure of random vectors. 

 

A copula is a useful tool for handling multivariate distributions with given univariate 

marginals. A copula is a distribution function, defined on the unit cube[0, 1]𝑛, with uniform 

one-dimensional marginals. For continuous multivariate distribution functions, the 

univariate marginals and multivariate dependence structure can be separated, and the 

dependence structure can be represented by a copula. The copula was first developed by 

Sklar [32], according to the Sklar’s theorem [32], every multivariate distribution admits a 

representation in terms of a copula and a set of marginal distributions. The copula theory 

and its applications can be found, for example, in Nelsen [33]. In the context of reliability, 

the survival copula denoted by 𝐶̂  is more effective. Clayton [34] is one of the first to 

propose a bivariate association model for survival analysis. Without knowing the concept 

of copulas, the implicit survival copula associated with the Clayton model is 𝐶̂(𝑢1, 𝑢2)) =
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(𝑢1
1−𝜗 + 𝑢2

1−𝜗 − 1)
−

1

𝜗−1  , where 𝜗 > 0 , Oakes [35] explicitly showed this bivariate 

survival copula by reparameterization of Clayton model. This copula function is a special 

case of the multivariate Cook-Johnson [36] copula. For this reason, many people referred 

to this copula as Clayton or Cook-Johnson copula, in this research, we prefer to name it 

Clayton copula. In this research, we find that q-Weibull distribution can model a series 

system with dependence characterized by the Clayton copula, which is the multivariate 

survival copula 𝐶̂(𝑢1, 𝑢2, … , 𝑢𝑑) = (∑ 𝑢𝑖
−𝜃𝑑

𝑖=1 − 𝑑 + 1)
−1/𝜃

, where the case 𝜃 > 0 can be 

used to construct a copula in any dimension; the case 𝜃 = 0 constructs the independence 

copula in any dimension; in the case 𝜃 < 0, for dimension 𝑑 ≥ 2, 𝜃 ≥ −1/(𝑑 − 1) [37]. 

2.5 Numerical Solution of MLE: Artificial Bee Colony Algorithm 

In this research, we employ an artificial bee colony (ABC) algorithm, which is a nature-

based heuristic method that does not require derivative information to solve the maximum 

likelihood problems. ABC was introduced by Karaboga [4] and is an optimization 

algorithm based on the intelligent foraging behavior of honey bee swarm for optimizing 

multidimensional and multimodal numerical functions. In ABC, a swarm of employed 

bees, onlooker bees, and scouts are generated, and the swarm moves in a search space of 

possible solutions for an optimization problem. The global minimum of the objective 

function can be obtained from the bee interactions. The performance of ABC has been 

compared to other well-known modern heuristic algorithms such as Genetic Algorithm 

(GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Evolution 
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Strategies (ES) [38] [39] [40]. Results show that ABC is better than or at least comparable 

to these population-based algorithms with the advantage of employing fewer control 

parameters. Due to its simple structure, easy implementation and outstanding performance, 

ABC has received significant interest from researchers of different areas and has been 

successfully applied in many optimization problems [41].  

 

However, the convergence performance of ABC for local search is slow due to its solution 

search method, which is good at exploration but poor at exploitation [42]. In order to 

improve its performance, some modified versions of ABC have been proposed in the 

literature. For instance, inspired by Particle Swarm Optimization (PSO), Zhu and Kwong 

[42] developed an improved ABC algorithm named gbest-guided ABC (GABC) by 

incorporating the information of global best solution into the solution search equation to 

improve exploitation. Kang et al. [43] proposed a Hooke-Jeeves ABC (HABC) algorithm 

that combines Hooke-Jeeves pattern search with ABC algorithm. In the HABC, the 

exploration phase is performed by ABC, and the exploitation stage is completed by pattern 

search. Karaboga and Gorkemli [44] adopted the Quick ABC (qABC), which models the 

behavior of onlooker bees more accurately and improves the performance of standard ABC 

in terms of local search ability. In order to achieve an optimization performance with higher 

convergence speed and an improved exploitation capacity, Shan et al. [45] used a self-

adaptive hybrid artificial bee colony (SAHABC) algorithm inspired by self-adaptive 

mechanism, DE, and PSO algorithm. In the SAHABC, the search equation for employed 

bees is modified based on the self-adaptive mechanism, which is used to balance the 
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exploration ability and the convergence speed of ABC, and DE mutation strategy, which 

uses the best solution to improve convergence performance. The search equation for 

onlooker bees is modified based on PSO to improve the exploitation ability. Kang et al. 

[46] proposed a hybrid simplex ABC algorithm (HSABCA) that combines Nelder-Mead 

simplex method with artificial bee colony algorithm for inverse analysis problems. The 

HSABCA was applied to parameter identification of concrete dam-foundation systems. 

The Nelder-Mead simplex algorithm proposed by Nelder and Mead [47] is an efficient 

local search method. It was also combined with other heuristic to improve the convergence 

accuracy and speed. For example, Fan and Zahara [48] proposed the hybrid NM-PSO 

algorithm based on the Nelder-Mead simplex search method and PSO for unconstrained 

optimization. 

2.6 Summary 

Using the q-Weibull distribution for reliability analysis is a step towards an efficient 

approach to handle equipment failure time data dismissing previous limitations in terms of 

modeling the whole failure rate behavior, specifically when unimodal or bathtub-shaped 

ones are presented. More than an alternative to the existing life distributions in modeling 

reliability data, the q-Weibull has the advantage of being originated from a theoretical 

background rooted in non-extensive statistical mechanics. The flexibility of q-Weibull 

distribution allows decisions about reliability, maintenance planning, and evaluation to be 

performed more accurately. It is proposed in this research that the q-Weibull distribution 

can be considered the main distribution in some situations for complex systems. 
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In this research, we adopt the ML method to estimate the model parameters due to the good 

statistical properties of the resulting estimators. The obtained estimators through ML are 

approximately unbiased, and its variance is nearly as small as the variance resulting from 

other estimators. However, the application of ML on q-Weibull distribution presents some 

challenges: the first derivative equations of the related log-likelihood function are highly 

nonlinear, and the equations do not have analytical solutions for the parameters' estimators. 

Such a difficulty can explain the limited number of applications based on the q-Weibull 

model given that parameter estimation, and data fitting are crucial steps for reliability 

analyses. 

 

A method that does not depend on derivative, but also presents fast convergence is 

necessary for the q-Weibull distribution ML optimization problem. This research employs 

an artificial bee colony (ABC) algorithm, which is a nature-based heuristic method that 

does not require derivative information to solve the q-Weibull distribution ML problem. 

To deal with the slow convergence of ABC, this research proposes to develop an adaptive 

hybrid ABC (AHABC) algorithm that dynamically combines a local Nelder-Mead simplex 

search method with ABC for the ML estimation of the q-Weibull parameters. Differently 

from HSABCA proposed by Kang et al. [46], AHABC dynamically controls the 

exploration and exploitation, given that the parameter for Nelder-Mead local search is 

adaptively tuned according to the search status. AHABC is also different from SAHABC 

in terms of the hybrid strategy and adaptive mechanism. The proposed AHABC is an 
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efficient manner to tackle the difficult ML problem related to the q-Weibull distribution 

comprising different behaviors of the hazard rate function.  

 

With the new algorithm in hand, we can efficiently obtain the parameter estimation for q-

Weibull distribution and compare the q-Weibull distribution with classic Weibull 

distribution and other Weibull generalizations in fitting failure times data.  

 

In the literature, the reliability applications of q-Weibull distribution are limited. To the 

best of our knowledge, no previous work has shown that the shape parameter 𝑞 in a q-

Weibull distribution is equivalent to a parameter of the Clayton copula and that the q-

Weibull distribution is able to model a system with dependent component failure times. 

Specifically, this research explores the connection between the q-Weibull distribution and 

the Clayton copula, which is one of the most important Archimedean copulas for the 

dependence structure of random vectors. This research investigates the effect of the 

parameter 𝑞 on the dependence of the system. We expect that the performance of the q-

Weibull distribution is superior over that of the classic Weibull distribution due to its 

flexibility to fit failure times data and the ability to describe complex systems.  
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Chapter 3: Lifetime Data Fitting 

 

3.1 Overview  

This chapter1 proposes to demonstrate that the q-Weibull distribution is a flexible and 

useful distribution to describe failure time data with a variety of hazard rate behaviors, in 

particular data with non-monotonic hazard rate. We adopt the ML method to estimate the 

life distribution parameters. We propose to develop an adaptive hybrid ABC (AHABC) 

algorithm that dynamically combines a local Nelder-Mead simplex search method with 

ABC to efficiently solve the q-Weibull distribution ML problem. Numerical experiments 

are conducted to evaluate the performance of the proposed AHABC algorithm to solve the 

q-Weibull ML problem, comprising different behaviors of the hazard rate and sample sizes. 

The proposed method is also applied to an example involving failure data characterized by 

a bathtub-shaped hazard rate function. 

 

  

 

 

1 The full-text of this chapter entitled “On the q-Weibull distribution for reliability applications: An adaptive 

hybrid artificial bee colony algorithm for parameter estimation” has been published in the Journal of 

Reliability Engineering & System Safety. Volume 158, February 2017, Pages 93-105.    

https://doi.org/10.1016/j.ress.2016.10.012 

https://doi.org/10.1016/j.ress.2016.10.012
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3.2 Maximum Likelihood Constrained Problem 

In this section, the parameters of the q-Weibull distribution are estimated via the ML 

method. Let 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛) be an n-dimensional vector of observed failure times 𝑡𝑖 , 𝑖 =

1,… , 𝑛, independently drawn from a q-Weibull distribution. The likelihood function is 

given by: 

 
𝐿(𝑡|𝜂, 𝛽, 𝑞) =∏ 𝑓𝑞(𝑡𝑖)

𝑛

𝑖=1

=∏ (2 − 𝑞)
𝛽

𝜂
(
𝑡𝑖
𝜂
)
𝛽−1

[1 − (1 − 𝑞) (
𝑡𝑖
𝜂
)
𝛽

]

1
1−𝑞𝑛

𝑖=1
. 

(3-1) 

The log-likelihood function is as follows: 

 

 ℒ(𝑡|𝜂, 𝛽, 𝑞) = 𝑛𝑙𝑛(2 − 𝑞) + 𝑛𝑙𝑛(𝛽) − 𝑛𝛽 ln(𝜂) + (𝛽 −

1)∑ ln(𝑡𝑖)
𝑛
𝑖=1 +

1

1−𝑞
∑ ln [1 − (1 − 𝑞) (

𝑡𝑖

𝜂
)
𝛽

]𝑛
𝑖=1 . 

(3-2) 

 

Considering the constraints of parameters and the support, the constrained optimization 

problem is: 

max 𝑛ln(2 − 𝑞) + 𝑛ln(𝛽) − 𝑛𝛽 ln(𝜂) + (𝛽 − 1)∑ ln(𝑡𝑖)
𝑛
𝑖=1 +

1

1−𝑞
∑ ln [1 − (1 − 𝑞)(

𝑡𝑖

𝜂
)
𝛽

]𝑛
𝑖=1 , 

(3-3) 

 

s.t. 2 − 𝑞 > 0, (3-4) 
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1 − (1 − 𝑞) (

𝑡𝑖
𝜂
)
𝛽

> 0 , 𝑖 = 1, … , 𝑛, (3-5) 

 𝜂 > 0, (3-6) 

 𝛽 > 0. (3-7) 

 

The first derivatives of the log-likelihood function w.r.t. parameters are nonlinear, and 

analytical solutions are very difficult to be obtained. A heuristic based constrained 

optimization method can be applied to tackle this problem. In this research, the ML 

estimates 𝜂̂, 𝛽̂ and 𝑞̂ are obtained using an adaptive hybrid artificial bee colony (AHABC) 

algorithm developed in the next section. 

 

3.3 Proposed Adaptive Hybrid Artificial Bee Colony Algorithm 

In the ABC algorithm, while onlookers and employed bees carry out the exploitation 

process in the search space, the scouts control the exploration process [4]. However, the 

original ABC is good at exploration but bad at exploitation for numerical benchmark 

functions optimization [42]. From our simulation experiments for ML estimation of the q-

Weibull parameters by ABC (see Section 3.4.2), we also observe similar results: although 

ABC could find the global optimum, the estimates’ variability is large due to the slow 

convergence speed of ABC for local search.  
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Thus, in order to make full use of ABC’s exploration, and avoid its drawbacks, an adaptive 

hybrid ABC is proposed that incorporates a local search stage. The main idea of AHABC 

is that through adaptively tuning the parameters of hybrid ABC according to the search 

process, the hybrid ABC will gradually change from the global ABC search pattern to the 

local search pattern. The general AHABC framework is shown in Figure 3-1. The details 

of the proposed AHABC algorithm are presented in the following subsections. 

 

Artificial Bee Colony Nelder-Mead Simplex Method

• Employed phase
• Onlooker phase
• Scout phase

Global Exploration Local Exploitation

• Population size
• Limit

• Number of function evaluations

Adaptive Switch Mechanism

Hybrid Strategy • Reflection operation
• Expansion operation
• Contraction operation
• Shrinkage operation

First Generation Last Generation

• Initial simplex of D+1 points
• Reflection, expansion, contraction 

and shrinkage coefficients
• Number of function evaluations

ParametersParameters

 

Figure 3-1: Framework of adaptive hybrid ABC 

 

3.3.1 Hybrid Strategy 

“Hybrid Strategy” is the method to combine ABC with a local search algorithm. There are 

two common types of hybrid strategies: i) selectively applying either ABC or local search, 
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which means that for a certain population, the next generation is given by ABC or local 

search method; ii) merging the local search into ABC, which means that the local search is 

incorporated into ABC as an operation or a phase.  

 

In the proposed algorithm, we adopt the second hybrid strategy. Nelder-Mead simplex 

search is chosen as the local search method and is added to ABC as an additional step after 

the original three phases and within every iteration. This method rescales the simplex by 

four procedures: reflection, expansion, contraction and shrinkage. The input of local search 

phase is the best 𝐷 + 1  solutions in the population, where 𝐷  is the dimension of the 

optimization problem, as shown in Figure 3-2. Then, three candidate solutions are 

generated and evaluated. If the best of these new solutions can outperform the worst 

solution in the current simplex, this new solution replaces the worst one (see Figure 3-2). 

Otherwise, the current simplex shrinks towards the best solution in the current simplex (see 

Figure 3-2). These solutions will be exploited by the Nelder-Mead simplex local search for 

a number of function evaluations 𝑁𝑆.  
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Figure 3-2: Scheme of simplex search 

3.3.2 Adaptive Switch Mechanism 

“Adaptive switch mechanism” determines how the hybrid algorithm changes from global 

exploration to local exploitation. The principle of “adaptive switch mechanism” is to 

gradually increase the use of local search by tuning algorithm parameters according to the 

search process. These tunable parameters are search space-related, i.e., changing their 

values will modify the search property (more global or more local). 

 

In this paper, we adaptively increase the number of simplex searches, and the searching 

process becomes more local. The remaining challenge is how to determine the number of 

simplex searches 𝑁𝑆. We propose the following formula: 

 

 𝑁𝑆 = 𝐶 ∗ limit ∗ total number of scout bees. (3-8) 
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Firstly, since the total number of scout bees increases over ABC iterations, this definition 

of 𝑁𝑆  will guarantee that 𝑁𝑆  is non-decreasing, which means the search process will 

become more and more local. Secondly, the total number of scout bees is a symbol of 

search status. A large number of scout bees indicates that a significant portion of the 

solution space has been explored, that the exploration is becoming inefficient and local 

exploitation is becoming urgent. Also, the “limit” is an important ABC parameter, which 

controls the scout bee generation frequency. 𝐶 is a coefficient that controls the amount of 

local search. For the q-Weibull distribution ML optimization problem, 𝐶 = 1 provided an 

acceptable convergence speed (shown in Section 3.4.1). Thus, we use the product of limit 

and the total number of scout bees as the number of function evaluations within the local 

search phase of the AHABC. In summary, 𝑁𝑆 dynamically increases along the search 

process and it gradually changes from global to local.  

 

3.3.3 Constraints 

For the constraints (3-4) to (3-7) related to the q-Weibull ML problem, we adopt the “throw 

away” approach, which means that if the generated solution is not feasible, we throw it 

away and keep the current solution. This is a simplified Deb’s rule [49] that involves 

domination rules between solutions. In our proposed algorithm, we do not allow infeasible 

solutions in the population, and once an infeasible one is generated, we consider it as 

inferior to its previous solution and throw it away. 
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3.3.4 Proposed Algorithm 

The pseudo-code of the proposed AHABC algorithm is given in Figure 3-3. 

 

Figure 3-3: Pseudo-code of AHABC 
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There are three commonly used control parameters in the standard ABC: the number of 

food sources, which is equal to the number of employed or onlooker bees (𝑆𝑁); the value 

of 𝑙𝑖𝑚𝑖𝑡 , which can be obtained from the formula 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷  [4], where 𝐷  is 

dimension of the optimization problem; and the maximum cycle number (𝑀𝐶𝑁). 

 

In the AHABC algorithm, one iteration cycle incorporates iterations of the Nelder-Mead 

local search. Instead of separately setting the iteration numbers for ABC and Nelder-Mead 

local search, we use only one parameter of maximum number of function evaluations 

(𝑀𝐹𝐸), totaling all the ABC and Nelder-Mead local search function evaluations. The 

number of function evaluations for Nelder-Mead local search is set by Equation (3-8), 

which is adaptively tuned according to the search process. 

 

There are three stop criteria employed in the AHABC algorithm: 

Maximum number of function evaluations (𝑀𝐹𝐸). 

1) The global best solution is the same for 𝑚𝑎𝑥𝐵𝑒𝑠𝑡𝑇𝑟𝑖𝑎𝑙 times. In this case, the 

iteration number in which the best solution has been found is used. 

2) The global best objective function value in two consecutive iterations are different, 

but such a difference is less than a predefined tolerance 𝜀. 
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3.4 Validation of AHABC by Numerical Experiments 

The proposed AHABC was coded in MATLAB environment, and simulation experiments 

were conducted to evaluate its performance. The experimental settings (ES) cover different 

behaviors of the q-Weibull hazard rate for reliability applications, as they involve different 

value combinations of the shape parameters 𝑞 and 𝛽. Note that for all ES, 𝜂 = 5. Table 3-1 

shows the ES, the 𝑞  and 𝛽  values as well as the corresponding hazard rate function 

behavior.  

Table 3-1: Experimental settings 

ES 𝑞 𝛽 Behavior of hazard rate 

function 

A 0.5 0.5 Bathtub-shaped 

B 1.5 0.5 Decreasing 

C 1 1 Constant 

D 0.5 1.5 Increasing 

E 1.5 1.5 Unimodal 

 

Sample sizes of 100, 500 and 1000 are taken into consideration. Samples for ES-A, B, D, 

and E were generated by Equation (2-8), whereas ES-C samples were directly drawn from 

the inverse transform of the Exponential cumulative distribution [50]. The parameters' 

values used in the AHABC simulation experiments are shown in Table 3-2. 
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Table 3-2: AHABC parameters 

Part of AHABC approach Parameter Value 

ABC 𝑆𝑁 50 

𝑙𝑖𝑚𝑖𝑡 150 

𝑀𝐹𝐸 200,000 

𝑚𝑎𝑥𝐵𝑒𝑠𝑡𝑇𝑟𝑖𝑎𝑙 1000 

𝜀 1e-16 

Nelder-Mead simplex method 𝛼 1 

𝛾 2 

𝜌 -0.5 

𝛿 0.5 

Adaptive hybrid coefficient C 1 

 

The initial intervals for 𝑞, 𝛽 and 𝜂 are set to [-10, 1.9], [0.1, 10], [0.1,𝑡𝑚𝑒𝑎𝑛], respectively, 

where 𝑡𝑚𝑒𝑎𝑛 is the mean of the sample. The initial population of 𝑆𝑁 solutions is randomly 

generated between these intervals. In the initialization, we also adopt the "throw away" 

method to ensure that all the initial solutions are feasible.  

 

3.4.1 Effect of Parameter C on AHABC 

The effect of parameter 𝐶  on AHABC is tested on ES-A with sample size 𝑛 = 100. 

Parameter 𝐶 is set to 0, 0.5, 1, 1.5, 2, 25, and 125. To assess the convergence performance 
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of AHABC, we take the difference between the objective function value ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂) and 

the true optimum value as the convergence performance. Since the true parameters of the 

sample are unknown, we take the best objective function value max {ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)} found 

among 30 replication runs as the true optimum value. The mean and the standard deviations 

of this difference for 30 replication runs are shown in Figure 3-4 and Figure 3-5, 

respectively. 

 

The results reveal that a proper value of 𝐶 can improve the performance of AHABC by 

providing faster convergence and more accurate solutions. It is observed that both for 𝐶 =

1 and 𝐶 = 125, satisfactory convergence can be obtained. For the sake of simplicity, 𝐶 =

1  is adopted in the subsequent experiments. Thus, Equation (3-8) for the number of 

function evaluations for local search can be simplified to 𝑁𝑆 = limit ∗

total number of scout bees. 
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Figure 3-4: Effect of C on convergence speed 

 

Figure 3-5: Effect of C on convergence variability 
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3.4.2 Comparison with ABC and SAHABC 

The proposed AHABC algorithm is compared with the standard ABC and with SAHABC 

for the q-Weibull ML problem in terms of variability and convergence speed. AHABC 

uses the same parameters given in Table 3-2, ABC is fed with the parameters’ values of 

the ABC part, also shown in Table 3-2, and SAHABC uses the parameters provided in 

Table 3-3. The algorithms are replicated 30 times for each sample (with 𝑛 =

100, 500,1000) and ES (A, B, C, D, E), which yields 15 different scenarios. The mean 

and standard deviations of ML estimates for parameters 𝑞, 𝛽, 𝜂, as well as log-likelihood 

function ℒ over 30 runs are shown in Table 3-4.  

 

For a given sample size and an ES, AHABC can provide accurate estimates for the 

parameters and the log-likelihood. Indeed, as we can see in Table 3-4, all the standard 

deviations for parameters estimates are in the order of 10−6  or less, and for the log-

likelihood in the order of 10−12 or less. The mean values of the parameter estimates are 

close to the true values of the q-Weibull distribution shown in Table 3-1. 

 

By comparing the results from AHABC, ABC, and SAHABC in Table 3-4, the best result 

for each scenario is highlighted in grey, and it is clear that most of the standard deviations 

for parameters and the log-likelihood by AHABC are smaller than those provided by ABC 

and SAHABC algorithms. These results indicate that AHABC can give more accurate 

estimates than both ABC and SAHABC. We also compare the convergence speed for ES-
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A and E (see Figure 3-6 and Figure 3-7). AHABC converges faster than ABC and 

SAHABC in both cases. Therefore, one can expect the proposed AHABC to be more 

efficient and to provide better solutions than ABC and SAHABC for the q-Weibull ML 

optimization problem.  

 

Table 3-3: SAHABC parameters 

Parameters Values 

SN 50 

limit 150 

MCN 2,000 

maxBestTrial 1,000 

ε 1e-16 
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Table 3-4: ML estimates for 30 replications of AHABC, ABC and SAHABC 

  AHABC ABC SAHABC 

Sample 

size 

ES Statistic Mean Std. Mean Std. Mean Std. 

n=100 A 𝑞̂ 0.4700 4.65E-08 0.5616 0.0471 0.4681 0.0112 

𝛽̂ 0.5497 7.96E-09 0.5642 0.0069 0.5494 0.0017 

𝜂̂ 5.4926 5.16E-07 4.5407 0.5390 5.5153 0.1304 

ℒ -158.2313 2.42E-14 -158.2537 0.0066 -158.2317 0.0004 

B 𝑞̂ 1.4236 1.36E-08 1.4236 4.58E-08 1.4236 2.8624e-08 

𝛽̂ 0.4556 6.83E-09 0.4556 2.39E-08 0.4556 1.8592e-08 

𝜂̂ 5.9228 5.95E-07 5.9229 1.62E-06 5.9228 1.2351e-06 

ℒ -531.0407 3.00E-13 -531.0407 3.17E-13 -531.0407 1.3352e-13 

C 𝑞̂ 0.9926 2.27E-08 0.9928 4.47E-05 0.9942 0.0041 

𝛽̂ 0.9735 1.46E-08 0.9736 2.86E-05 0.9743 0.0026 

𝜂̂ 4.9522 2.01E-07 4.9508 0.0004 4.9376 0.0393 
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ℒ -259.5912 4.95E-14 -259.5912 1.98E-07 -259.5916 0.0005 

D 𝑞̂ 0.5583 2.65E-08 0.5711 0.0060 0.5549 0.0186 

𝛽̂ 1.4949 1.96E-08 1.5013 0.0035 1.4932 0.0101 

𝜂̂ 4.8668 1.03E-07 4.8141 0.0253 4.8817 0.0782 

ℒ -186.6367 1.11E-13 -186.6379 0.0004 -186.6394 0.0050 

E 𝑞̂ 1.5853 9.78E-09 1.5853 4.38E-08 1.5853 2.4355e-06 

𝛽̂ 1.6157 3.21E-08 1.6157 1.31E-07 1.6157 6.4441e-06 

𝜂̂ 4.4819 1.16E-07 4.4819 5.02E-07 4.4819 2.6417e-05 

ℒ -387.1655 6.06E-14 -387.1655 2.05E-13 -387.1655 1.9181e-09 

n=500 A 𝑞̂ 0.5338 3.35E-08 0.5474 0.0021 0.5328 0.0148 

𝛽̂ 0.5115 7.43E-09 0.5139 0.0004 0.5114 0.0028 

𝜂̂ 4.2319 3.58E-07 4.0921 0.0193 4.2467 0.1491 

ℒ -677.2932 1.48E-13 -677.2990 0.0014 -677.3011 0.0083 

B 𝑞̂ 1.4665 2.08E-08 1.4665 4.90E-08 1.4665 4.0271e-08 
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𝛽̂ 0.4790 1.79E-08 0.4790 3.71E-08 0.4790 3.1588e-08 

𝜂̂ 5.9459 8.30E-07 5.9459 2.11E-06 5.9459 1.2849e-06 

ℒ -2807.6055 6.03E-13 -2807.6055 2.57E-12 -2807.6055 1.3695e-12 

C 𝑞̂ 1.0429 1.06E-07 1.0429 5.65E-07 1.0427 0.0011 

𝛽̂ 1.0509 6.27E-08 1.0509 4.61E-07 1.0508 0.0009 

𝜂̂ 4.6741 9.26E-07 4.6741 4.93E-06 4.6767 0.0089 

ℒ -1302.9980 7.24E-12 -1302.9980 2.40E-10 -1302.9982 0.0004 

D 𝑞̂ 0.4999 3.44E-08 0.5072 0.0009 0.4972 0.0222 

𝛽̂ 1.5091 2.66E-08 1.5131 0.0005 1.5081 0.0120 

𝜂̂ 5.0255 1.34E-07 4.9949 0.0038 5.0391 0.0929 

ℒ -924.4560 5.39E-13 -924.4581 0.0005 -924.4776 0.0236 

E 𝑞̂ 1.5044 1.38E-08 1.5044 1.34E-07 1.5043 9.2122e-05 

𝛽̂ 1.5687 3.98E-08 1.5687 3.01E-07 1.5687 0.0002 

𝜂̂ 5.2296 1.80E-07 5.2296 1.51E-06 5.2298 0.0008 
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ℒ -1831.8860 9.76E-13 -1831.8860 3.19E-12 -1831.8860 1.5732e-05 

n=1000 A 𝑞̂ 0.5519 3.31E-08 0.5582 0.0020 0.5509 0.0109 

𝛽̂ 0.5048 7.87E-09 0.5059 0.0004 0.5045 0.0024 

𝜂̂ 4.5260 4.09E-07 4.4546 0.0224 4.5408 0.1242 

ℒ -1438.8339 7.67E-13 -1438.8371 0.0009 -1438.8471 0.0208 

B 𝑞̂ 1.5040 2.31E-08 1.5040 4.07E-08 1.5040 4.7864e-08 

𝛽̂ 0.5035 2.28E-08 0.5035 3.28E-08 0.5035 4.7886e-08 

𝜂̂ 4.5311 7.36E-07 4.5311 1.22E-06 4.5311 1.4466e-06 

ℒ -5616.3389 1.51E-12 -5616.3389 6.27E-12 -5616.3389 5.8845e-12 

C 𝑞̂ 0.9919 8.42E-07 0.9919 2.85E-06 0.9915 0.0027 

𝛽̂ 0.9442 5.25E-07 0.9442 1.72E-06 0.9441 0.0014 

𝜂̂ 4.5989 7.78E-06 4.5989 2.52E-05 4.6028 0.0234 

ℒ -2532.4055 8.50E-10 -2532.4055 8.82E-09 -2532.4074 0.0032 

D 𝑞̂ 0.5062 3.18E-08 0.5132 0.0008 0.5100 0.0193 
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𝛽̂ 1.5061 2.57E-08 1.5099 0.0004 1.5083 0.0099 

𝜂̂ 4.9962 1.39E-07 4.9669 0.0031 4.9793 0.0814 

ℒ -1848.9886 1.17E-12 -1848.9924 0.0008 -1849.0244 0.0532 

E 𝑞̂ 1.5134 1.64E-08 1.5134 1.09E-07 1.5134 3.0101e-05 

𝛽̂ 1.5076 4.18E-08 1.5076 2.66E-07 1.5077 9.6409e-05 

𝜂̂ 4.7017 2.32E-07 4.7017 1.08E-06 4.7016 0.0002 

ℒ -3657.4987 9.67E-13 -3657.4987 3.71E-12 -3657.4987 4.5104e-06 



 

41 

 

 

 

Figure 3-6: Convergence comparison of AHABC, ABC and SAHABC for ES-A, 

𝑛 = 100 
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Figure 3-7: Convergence comparison of AHABC, ABC and SAHABC for ES-E, 

𝑛 = 100 

 

3.4.3 Bias and Mean Squared Error 

We also used the bias and MSE as additional criteria to evaluate the quality of the ML 

estimators via AHABC. For this purpose, we generate 1000 samples for each ES-A, B, C, 

D, and E for each sample size 𝑛 = 100,500, 1000. Then, AHABC algorithm was executed 

once for each sample. For each scenario, we have 1000 estimates for parameters 𝑞, 𝛽, 𝜂. 

Bias and MSE are computed according to the following equations: 
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𝑏𝑖𝑎𝑠(𝜃, 𝜃) =

1

𝑚
(∑ 𝜃𝑖̂

𝑚

𝑖=1
) − 𝜃 (3-9) 

 

 𝑀𝑆𝐸(𝜃) = 𝑣𝑎𝑟(𝜃) + [𝑏𝑖𝑎𝑠(𝜃, 𝜃)]
2
 (3-10) 

 

with 𝑚 = 1000, 𝜃 = 𝑞̂, 𝛽̂ or 𝜂̂, and 𝑣𝑎𝑟(𝜃) as the variance of the 1000 estimates. 

 

Results of bias and MSE are shown in Table 3-5 and Table 3-6 respectively. From these 

results, for larger sample sizes n=500, and 1000, bias and MSE are very small for the q-

Weibull parameters' estimates. Thus, AHABC is able to provide accurate and precise 

estimates for the q-Weibull parameters. 

Table 3-5: Bias of ML estimates for q-Weibull parameters 

ES Statistic n=100 n=500 n=1000 

A 𝑞̂ -0.2802 -0.0431 -0.0227 

𝛽̂ -0.0059 -0.0018 -0.0010 

𝜂̂ 11.6693 0.7646 0.3583 

B 𝑞̂ -0.0087 -0.0035 -0.0036 

𝛽̂ 0.0173 0.0021 0.0002 

𝜂̂ 1.9045 0.3734 0.2226 

C 𝑞̂ -0.0812 -0.0157 -0.0086 

𝛽̂ 0.0044 -0.0018 -0.0023 

𝜂̂ 1.0719 0.1756 0.0909 

D 𝑞̂ -0.2689 -0.0496 -0.0278 

𝛽̂ -0.0171 -0.0080 -0.0046 

𝜂̂ 1.1526 0.2032 0.1161 

E 𝑞̂ -0.0078 0.0003 -0.0026 

𝛽̂ 0.0518 0.0159 0.0016 

𝜂̂ 0.2154 0.0420 0.0452 
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Table 3-6: MSE of ML estimates for q-Weibull parameters 

ES Statistic n=100 n=500 n=1000 

A 𝑞̂ 0.4205 0.0214 0.0086 

𝛽̂ 0.0046 0.0008 0.0004 

𝜂̂ 1771.1883 5.1727 1.6128 

B 𝑞̂ 0.0099 0.0017 0.0010 

𝛽̂ 0.0079 0.0012 0.0007 

𝜂̂ 42.7344 2.6959 1.4148 

C 𝑞̂ 0.0689 0.0064 0.0029 

𝛽̂ 0.0208 0.0032 0.0016 

𝜂̂ 10.4633 0.6140 0.2621 

D 𝑞̂ 0.4851 0.0226 0.0085 

𝛽̂ 0.0383 0.0071 0.0031 

𝜂̂ 9.8914 0.3953 0.1515 

E 𝑞̂ 0.0105 0.0018 0.0009 

𝛽̂ 0.0770 0.0119 0.0058 

𝜂̂ 1.7203 0.2723 0.1409 

 

 

3.5 Confidence Intervals 

In order to construct confidence intervals for the parameters of the q-Weibull distribution, 

asymptotic confidence intervals (ACI), parametric bootstrap confidence intervals (BCI-P) 

and non-parametric bootstrap confidence intervals (BCI-NP) are developed. The related 

covariance matrix associated with the ML estimators for the q-Weibull distribution 

parameters can be estimated by the inverse of the observed information matrix 𝐼(𝑡|𝜂̂, 𝛽̂, 𝑞̂). 
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𝑣𝑎𝑟̂(𝑡|𝜂̂, 𝛽̂, 𝑞̂) = 𝐼−1(𝑡|𝜂̂, 𝛽̂, 𝑞̂) = −

1

𝛻2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

= −

[
 
 
 
 
 
 𝜕
2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝜂2
𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝜂𝜕𝛽

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝜂𝜕𝑞

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝛽𝜕𝜂

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝛽2
𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝛽𝜕𝑞

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝑞𝜕𝜂

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝑞𝜕𝛽

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝑞2 ]
 
 
 
 
 
 
−1

 

(3-11) 

 

whose entries are 

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝜂2
=
𝛽̂

𝜂̂2

{
 
 

 
 

𝑛 −∑
1

(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1 + 𝑞̂

𝑛

𝑖=1

}
 
 

 
 

− 𝛽̂2𝜂̂𝛽̂−2∑
1

𝑡𝑖
𝛽̂ [(

𝜂̂
𝑡𝑖
)
𝛽̂

− 1 + 𝑞̂]

2

𝑛

𝑖=1
 (3-12) 

 

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝜂𝜕𝛽
=
𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝛽𝜕𝜂

= −
1

𝜂̂

{
 
 

 
 

𝑛 −∑
1

(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1 + 𝑞̂

𝑛

𝑖=1

}
 
 

 
 

− 𝛽̂𝜂̂𝛽̂−1∑
ln (

𝜂̂
𝑡𝑖
)  

𝑡𝑖
𝛽̂ [(

𝜂̂
𝑡𝑖
)
𝛽̂

− 1+ 𝑞̂]

2

𝑛

𝑖=1
 

(3-13) 

 

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝜂𝜕𝑞
=
𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝑞𝜕𝜂
= −

𝛽̂

𝜂̂
∑

1

[(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1+ 𝑞̂]

2

𝑛

𝑖=1
 

(3-14) 
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𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝛽2
= −

𝑛

𝛽̂2
+ 𝜂̂𝛽̂∑

ln (
𝜂̂
𝑡𝑖
) ln (

𝑡𝑖
𝜂̂
)

𝑡𝑖
𝛽̂
[(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1 + 𝑞̂]

2

𝑛

𝑖=1
 (3-15) 

 

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝛽𝜕𝑞
=
𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝑞𝜕𝛽
=∑

ln (
𝑡𝑖
𝜂̂
)  

[(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1 + 𝑞̂]

2

𝑛

𝑖=1
 (3-16) 

 

𝜕2ℒ(𝑡|𝜂̂, 𝛽̂, 𝑞̂)

𝜕𝑞2
= −

n

(2 − 𝑞̂)2

+
2

(1 − 𝑞̂)3
∑ 𝑙𝑛 [1 − (1 − 𝑞̂)(

𝑡𝑖
𝜂̂
)
𝛽̂

]
𝑛

𝑖=1

+
2

(1 − 𝑞̂)2
∑

1

(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1+ 𝑞̂

𝑛

𝑖=1
−

1

1 − 𝑞̂
∑

1

[(
𝜂̂
𝑡𝑖
)
𝛽̂

− 1+ 𝑞̂]

2

𝑛

𝑖=1
 

(3-17) 

 

Once we have this covariance matrix, the asymptotic confidence intervals could be 

constructed for the q-Weibull distribution parameters. The asymptotic confidence intervals 

with (1 − 𝛼)100% confidence for 𝜂, 𝛽 and 𝑞 are given below: 

 CI[𝜂: (1 − 𝛼)100%] = [𝜂̂ + 𝑧α
2
√𝑣𝑎𝑟̂11, 𝜂̂ + 𝑧1−α

2
√𝑣𝑎𝑟̂11] (3-18) 

 CI[𝛽: (1 − 𝛼)100%] = [𝛽̂+ 𝑧α
2
√𝑣𝑎𝑟̂22, 𝛽̂ + 𝑧1−α

2
√𝑣𝑎𝑟̂22] 

(3-19) 

 CI[𝑞: (1 − 𝛼)100%] = [𝑞̂ + 𝑧α
2
√𝑣𝑎𝑟̂33, 𝑞̂ + 𝑧1−α

2
√𝑣𝑎𝑟̂33] 

(3-20) 
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in which 𝑧𝛼
2
 and 𝑧1−𝛼

2
 are the 

𝛼

2
 and 1 −

𝛼

2
 quantiles of the standard normal distribution, and 

𝑣𝑎𝑟̂11, 𝑣𝑎𝑟̂22 and 𝑣𝑎𝑟̂33 are the diagonal elements of the covariance matrix. 

The bootstrap is a computer-based method for assigning measures of accuracy to sample 

estimates [51]. This technique allows us to generate confidence intervals for the parameters 

of the q-Weibull distribution by using simple sampling methods to infer the precision of 

the ML estimators. 

The bootstrap approaches are classified as parametric and non-parametric, depending on 

how the samples are generated [52]. Given the original data set and the estimates of the 

parameters obtained from it, parametric and non-parametric bootstrap samples can be 

generated. For parametric bootstrap, the q-Weibull distribution uses the estimates to 

generate other 𝐵  new samples by Equation (2-8). For the non-parametric bootstrap, 𝐵 

samples are generated by resampling with replacement from the original data set. Along 

with the original sample, a total of 𝐵 + 1 samples are obtained, and we apply the ML 

method via AHABC to these samples. By sorting the 𝐵 + 1  resulting estimates, the 

𝛼

2
100% and (1 −

𝛼

2
) 100% percentiles are set as the lower and upper bounds to construct 

the confidence intervals with 𝛼 level of significance. 

Once again, 𝑛 = 100, 500,1000 and ES-A, B, C, D, and E. For all bootstrap experiments, 

𝐵 = 999. For BCI-P sampling, the estimates obtained from the first sample are used as q-

Weibull parameters to generate 𝐵  bootstrap samples by Equation (2-8). For BCI-NP 

sampling, in turn, the first sample is used to generate 𝐵 bootstrap samples by resampling 

with replacement. Then, AHABC is applied to each sample to compute ML estimates. The 
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5th and 95th percentiles are obtained to construct the corresponding 90% confidence 

interval. The resulting confidence intervals for parameters 𝜂, 𝛽, 𝑞 are presented in Table 

3-7 to  

Table 3-9 for sample sizes 𝑛 = 100,500, 1000, respectively. The values in parentheses 

are the corresponding interval lengths. 

 

From the results, it can be observed that all intervals contain the true values of parameters 

𝜂 , 𝛽, 𝑞. For larger sample sizes, asymptotic and bootstrap approaches tend to provide 

similar and more accurate interval estimates for the q-Weibull parameters. Note also that 

for the experimental settings A and B with n = 100 (Table 3-7), ACI provided negative 

lower bounds related to parameter eta. Despite being infeasible values for this parameter, 

the asymptotic approach does not guarantee valid bounds, and their results become more 

accurate and precise as the sample size increases. 
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Table 3-7: Interval estimates for the parameters, n=100 

ES True values of 

parameters 

𝜂 𝛽 𝑞 

ACI BCI-P BCI-NP ACI BCI-P BCI-NP ACI BCI-P BCI-NP 

A 𝜂 = 5 

𝛽 = 0.5 

𝑞 = 0.5 

-4.240 

15.226 

(19.466) 

2.413 

55.818 

(53.405) 

1.200 

837.669 

(836.469) 

0.406 

0.693 

(0.287) 

0.431 

0.676 

(0.245) 

0.396 

0.734 

(0.338) 

-0.378 

1.318 

(1.696) 

-1.028 

0.819 

(1.846) 

-4.782 

1.066 

(5.849) 

B 𝜂 = 5 

𝛽 = 0.5 

𝑞 = 1.5 

-0.607 

12.453 

(13.060) 

2.148 

23.876 

(21.728) 

2.207 

19.314 

(17.107) 

0.353 

0.558 

(0.205) 

0.358 

0.607 

(0.249) 

0.377 

0.565 

(0.188) 

1.267 

1.580 

(0.313) 

1.189 

1.575 

(0.386) 

1.241 

1.550 

(0.309) 

C 𝜂 = 5 

𝛽 = 1 

𝑞 = 1 

1.967 

7.938 

(5.971) 

3.092 

11.048 

(7.956) 

2.863 

10.877 

(8.014) 

0.749 

1.198 

(0.450) 

0.777 

1.222 

(0.445) 

0.741 

1.342 

(0.601) 

0.669 

1.316 

(0.646) 

0.461 

1.218 

(0.757) 

0.525 

1.278 

(0.752) 

D 𝜂 = 5 

𝛽 = 1.5 

𝑞 = 0.5 

2.871 

6.863 

(3.992) 

3.555 

9.793 

(6.238) 

3.392 

11.176 

(7.784) 

1.184 

1.805 

(0.621) 

1.202 

1.827 

(0.625) 

1.209 

1.813 

(0.604) 

0.077 

1.040 

(0.962) 

-0.523 

0.893 

(1.415) 

-0.871 

0.907 

(1.777) 

E 𝜂 = 5 

𝛽 = 1.5 

𝑞 = 1.5 

2.910 

6.054 

(3.144) 

3.158 

6.665 

(3.507) 

3.194 

6.811 

(3.617) 

1.191 

2.041 

(0.850) 

1.268 

2.284 

(1.017) 

1.277 

2.170 

(0.893) 

1.457 

1.714 

(0.257) 

1.428 

1.718 

(0.290) 

1.417 

1.699 

(0.283) 

 

Table 3-8: Interval estimates for the parameters, n=500 

ES True values of 

parameters 

𝜂 𝛽 𝑞 

ACI BCI-P BCI-NP ACI BCI-P BCI-NP ACI BCI-P BCI-NP 

A 𝜂 = 5 

𝛽 = 0.5 

𝑞 = 0.5 

2.002 

6.462 

(4.460) 

2.853 

7.701 

(4.848 

2.376 

8.090 

(5.715) 

0.464 

0.559 

(0.095) 

0.467 

0.556 

(0.090) 

0.462 

0.570 

(0.108) 

0.320 

0.748 

(0.429) 

0.269 

0.683 

(0.414) 

0.250 

0.746 

(0.496) 
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B 𝜂 = 5 

𝛽 = 0.5 

𝑞 = 1.5 

3.074 

8.817 

(5.744) 

3.712 

10.403 

(6.691 

3.642 

9.736 

(6.094) 

0.428 

0.530 

(0.102) 

0.429 

0.535 

(0.107) 

0.437 

0.535 

(0.098) 

1.401 

1.534 

(0.135) 

1.381 

1.529 

(0.148) 

1.393 

1.529 

(0.136) 

C 𝜂 = 5 

𝛽 = 1 

𝑞 = 1 

3.727 

5.622 

(1.895) 

3.889 

6.003 

(2.115) 

3.862 

6.075 

(2.213) 

0.955 

1.147 

(0.192) 

0.953 

1.152 

(0.199) 

0.952 

1.155 

(0.203) 

0.933 

1.152 

(0.219) 

0.906 

1.136 

(0.230) 

0.892 

1.143 

(0.252) 

D 𝜂 = 5 

𝛽 = 1.5 

𝑞 = 0.5 

4.243 

5.809 

(1.566) 

4.347 

6.293 

(1.946) 

4.371 

6.084 

(1.712) 

1.377 

1.641 

(0.264) 

1.365 

1.655 

(0.289) 

1.373 

1.642 

(0.269) 

0.314 

0.686 

(0.373) 

0.196 

0.664 

(0.467) 

0.249 

0.656 

(0.406) 

E 𝜂 = 5 

𝛽 = 1.5 

𝑞 = 1.5 

4.385 

6.074 

(1.689) 

4.515 

6.186 

(1.671) 

4.450 

6.255 

(1.805) 

1.387 

1.751 

(0.364) 

1.409 

1.777 

(0.367) 

1.404 

1.785 

(0.381) 

1.435 

1.574 

(0.139) 

1.433 

1.569 

(0.136) 

1.430 

1.573 

(0.143) 

 

Table 3-9: Interval estimates for the parameters, n=1000 

ES True values of 

parameters 

𝜂 𝛽 𝑞 

ACI BCI-P BCI-NP ACI BCI-P BCI-NP ACI BCI-P BCI-NP 

A 𝜂 = 5 

𝛽 = 0.5 

𝑞 = 0.5 

2.951 

6.101 

(3.150) 

3.456 

6.750 

(3.294) 

3.167 

6.869 

(3.702) 

0.473 

0.537 

(0.064) 

0.472 

0.537 

(0.065) 

0.467 

0.546 

(0.079) 

0.416 

0.688 

(0.272) 

0.390 

0.654 

(0.265) 

0.389 

0.682 

(0.293) 

B 𝜂 = 5 

𝛽 = 0.5 

𝑞 = 1.5 

2.957 

6.105 

(3.148) 

3.215 

6.650 

(3.436) 

3.341 

6.423 

(3.082) 

0.463 

0.544 

(0.082) 

0.466 

0.547 

(0.081) 

0.464 

0.549 

(0.085) 

1.456 

1.552 

(0.096) 

1.452 

1.550 

(0.098) 

1.455 

1.549 

(0.093) 

C 𝜂 = 5 

𝛽 = 1 

𝑞 = 1 

3.855 

5.343 

(1.488) 

3.932 

5.549 

(1.617) 

3.933 

5.707 

(1.774) 

0.884 

1.005 

(0.121) 

0.883 

1.008 

(0.126) 

0.882 

1.010 

(0.129) 

0.909 

1.074 

(0.165) 

0.891 

1.070 

(0.179) 

0.877 

1.070 

(0.193) 

D 𝜂 = 5 

𝛽 = 1.5 

4.435 

5.557 

4.530 

5.729 

4.556 

5.536 

1.412 

1.600 

1.406 

1.604 

1.413 

1.595 

0.372 

0.640 

0.328 

0.619 

0.379 

0.614 
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𝑞 = 0.5 (1.121) (1.199) (0.981) (0.188) (0.199) (0.182) (0.268) (0.292) (0.235) 

E 𝜂 = 5 

𝛽 = 1.5 

𝑞 = 1.5 

4.154 

5.250 

(1.096) 

4.229 

5.235 

(1.005) 

4.159 

5.349 

(1.190) 

1.386 

1.629 

(0.243) 

1.397 

1.637 

(0.240) 

1.391 

1.639 

(0.248) 

1.466 

1.560 

(0.094) 

1.467 

1.555 

(0.088) 

1.462 

1.562 

(0.0998) 
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Based on the validation results presented in this section, the AHABC can provide accurate 

estimates for the q-Weibull parameters for all the ES-A, B, C, D, and E covering different 

behaviors of the q-Weibull hazard rate. Therefore, with the proposed AHABC, the q-

Weibull distribution is used to tackle a real reliability problem in the next section. 

 

3.6 Application Example 

In this section, the proposed procedure to obtain the ML estimates of the q-Weibull 

parameters is illustrated through one application example involving lifetime data of 

engineering devices in reliability studies. The example deals with a data set of the time to 

the first failure of 500MW generators [53] that results in a bathtub-shaped hazard rate. For 

the data with a non-monotonic hazard rate, commonly used distributions like Weibull are 

barely suitable to fit the failure data. Thus, the use of the q-Weibull illustrates the ability 

of this distribution in dealing with non-monotonic hazard rate function, which encompasses 

a set of problems with relevant applications in the reliability context [54][55]. 

Table 3-10 shows the time to the first failure for a group of 36 generators of 500MW [53]. 

The AHABC is replicated 30 times and the estimated ML parameters, and the associated 

standard deviations are shown in Table 3-11. 

Table 3-10: Time to first failure (1000’s of hours) of 500 MW generators 

0.058 0.070 0.090 0.105 0.113 0.121 0.153 0.159 
0.224 0.421 0.570 0.596 0.618 0.834 1.019 1.104 
1.497 2.027 2.234 2.372 2.433 2.505 2.690 2.877 
2.879 3.166 3.455 3.551 4.378 4.872 5.085 5.272 
5.341 8.952 9.188 11.399     
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Table 3-11: ML estimates for 30 replications of AHABC 

 Mean Std. 

𝑞̂ 0.4318 2.5555e-08 

𝛽̂ 0.6697 4.8570e-09 

𝜂̂ 6.6087 2.9609e-07 

ℒ -68.0595 1.4211e-14 

 

To check the goodness-of-fit, we use the Kolmogorov-Smirnov (KS) test, which compares 

the empirical and the cumulative distribution function (CDF). However, the traditional KS 

test is not applicable to our situation, where the parameters of the theoretical distribution 

have been estimated from the same data used to apply this goodness-of-fit test [56]. 

Therefore, a bootstrapped version of the KS test [57] has been developed and applied in 

this paper. The KS test statistic is computed as follows: 

 

𝐷0 = 𝑚𝑎𝑥 ||𝐹𝑛(𝑡𝑖) − 𝐹(𝑡𝑖|𝑞̂,𝛽̂, 𝜂̂))|, |𝐹𝑛(𝑡𝑖−1) − 𝐹(𝑡𝑖|𝑞̂,𝛽̂, 𝜂̂)||, (3-21) 

 

where 𝐹𝑛(𝑡𝑖) = 𝑖/𝑛 is the empirical CDF and 𝐹(𝑡0) = 0, 𝐹(𝑡𝑖|𝑞̂,𝛽̂, 𝜂̂) is the theoretical 

CDF with estimated parameters. 𝐵 bootstrap samples 𝑡𝑗 = {𝑡1
𝑗
, 𝑡2
𝑗
, … , 𝑡𝑛

𝑗}, 𝑗 = 1,2,… , 𝐵 are 

generated using Equation (2-8) with 𝑞̂, 𝛽̂, 𝜂̂. The ML estimates 𝑞̂𝑗 , 𝛽̂𝑗 , 𝜂̂𝑗 for the 𝑗𝑡ℎ  sample 

are obtained by the proposed AHABC. The test statistic 𝐷𝑗  is computed with 

𝐹(𝑡𝑖
𝑗|𝑞̂𝑗,𝛽̂𝑗 , 𝜂̂𝑗) in place of 𝐹(𝑡𝑖|𝑞̂,𝛽̂, 𝜂̂). Then, we get 𝐵 + 1 observations of the KS test 
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statistic 𝐷. The p-value is computed as the number of observations where 𝐷𝑗  exceeds 

𝐷0divided by 𝐵 + 1.  

 

For comparison purposes, we consider the standard Weibull and some alternative bathtub-

shaped hazard rate models: the modified Weibull extension [5] and the ENH [6] models, 

as shown in Table 3-12. We then apply the proposed AHABC procedure to obtain the ML 

estimates of the parameters not only for the q-Weibull but also for the modified Weibull 

extension and the ENH models. The fitted parameters and log-likelihoods are given in 

Table 3-13, which also gives the KS test statistic 𝐷0 and p-value. Figure 3-8 presents the 

empirical and fitted CDFs for the example, and Figure 3-9 shows the hazard rate functions. 

Note that except for the standard Weibull that models the data as decreasing hazard rate, 

all the other models result in a bathtub-shaped hazard rate, which has also been observed 

by Bebbington et al. [54]. 

 

Compared to the standard Weibull, q-Weibull is more flexible to perform reliability 

analyses when failure data are characterized by non-monotonic hazard rates. Moreover, 

with the low KS test statistic and high p-value (see Table 3-13), the q-Weibull distribution 

is a good alternative to the other bathtub-shaped hazard rate models, namely the modified 

Weibull extension and the ENH.  
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Table 3-12: Some bathtub-shaped hazard rate models 

Model ℎ(𝑡) Parameters 

Modified Weibull 

Extension 

ℎ(𝑡) = 𝜆𝛽(𝑡/𝛼)(𝛽−1)exp [(𝑡/𝛼)𝛽] 𝛼, 𝛽, 𝜆 > 0 

ENH 𝛼𝛽𝜆
(1 + 𝜆𝑡)𝛼−1 exp[1 − (1 + 𝜆𝑡)𝛼] {1 − exp[1 − (1 + 𝜆𝑡)𝛼]}𝛽−1

1 − {1 − exp [1 − (1 + 𝜆𝑡)𝛼]}𝛽
 𝛼, 𝛽, 𝜆 > 0 

 

Table 3-13: Results for the example 

Model ML estimates log𝐿 𝐷0 𝑝 

q-Weibull 𝑞̂ = 0.4318, 𝛽̂ = 0.6697, 𝜂̂ = 6.6087 -68.0595 0.0983 0.5080 

Weibull 𝛽̂ = 0.8156, 𝜂̂ = 2.3118 -68.6906 0.1219 0.1880 

Modified Weibull 

Extension 
𝛼̂ = 10.0923, 𝛽̂ = 0.6920, 𝜆̂ = 0.2130 -68.2628 0.1046 0.2900 

ENH 𝛼̂ = 1.6347, 𝛽̂ = 0.6415, 𝜆̂ = 0.1430 -68.3560 0.1021 0.3330 
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Figure 3-8: Empirical and fitted CDFs 
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Figure 3-9: Hazard rate functions 

 

For the sake of comparison, the estimates of q-Weibull and Weibull parameters shown in 

Table 3-13 are used for obtaining the conditional reliability (Equation (2-9)) as shown in 

Figure 3-10. Note that as 𝑡0 increases, the Weibull provides higher conditional reliability, 

which is in accordance with the decreasing behavior of the hazard rate resulting from the 

application of the Weibull to this data set. On the other hand, the q-Weibull conditional 

reliability decreases more rapidly as 𝑡0 increases. Given the nature of the reliability data 
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set in Table 3-10, one can argue that the Weibull model results in an optimistic performance 

of the generators when compared to the q-Weibull distribution. 

 

Note that these results are representative of the failure data set in Table 3-10, and different 

outcomes might be obtained for different sets of reliability data. However, based on the 

experimental results discussed in the previous section and the ones from this application 

example, the q-Weibull distribution is a flexible and capable model that might be 

considered as one more alternative distribution when engineers are faced with modeling of 

reliability data sets. 
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Figure 3-10: Conditional reliability of q-Weibull and Weibull 

3.7 Summary 

The q-Weibull distribution can describe various behaviors of the hazard rate - 

monotonically decreasing, monotonically increasing, constant, unimodal and bathtub-

shaped - with a single set of parameters. This flexibility provided by the q-Weibull 

probabilistic model is important to describe accurately failure data characterized by both 
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monotonic and non-monotonic hazard rate functions. Although there are other 3-parameter 

distributions with that flexibility (e.g., modified Weibull extension [5], ENH [6]), the q-

Weibull distribution constitutes another alternative to the arsenal of options available for 

the reliability analyst.  

 

However, it is impractical to analytically obtain the ML estimates for the q-Weibull 

parameters, and the classic numerical optimization approach fails to efficiently find the 

global solution for the associated ML problem. Thus, the q-Weibull distribution is flexible 

and useful in the context of reliability engineering as it allows for the modeling and analysis 

of a variety of failure data behaviors, in particular data with non-monotonic hazard rate 

functions. However, its intricate likelihood function imposes significant numerical 

difficulties in estimating its parameters, which has limited the number of applications of 

this distribution so far. 

 

In this research, an adaptive hybrid artificial bee colony (AHABC) algorithm has been 

proposed to tackle this problem, which combines the global exploration of ABC and the 

local exploitation of Nelder-Mead simplex search. The exploitation ability of Nelder-Mead 

improves the local search performance of ABC.  

 

Numerical results show that the proposed AHABC algorithm efficiently finds the optimal 

solution for the q-Weibull ML problem, comprising different behaviors of the hazard rate 

and sample sizes. The ML estimates of the q-Weibull parameters obtained via AHABC are 
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accurate and precise with small bias and MSE. Using the proposed AHABC algorithm, 

intervals estimates for the q-Weibull parameters are provided, including asymptotic 

intervals based on the ML theory, parametric and non-parametric bootstrapped confidence 

intervals. Based on the results presented in Section 3.4.2, the proposed AHABC 

outperformed both ABC and similar algorithms in terms of accuracy and convergence 

speed in the context of the maximum likelihood problem for the q-Weibull distribution. 

The proposed method for the ML constrained q-Weibull problem was also applied to an 

example involving failure data characterized by a bathtub-shaped hazard rate function. 

 

To conclude, the proposed AHABC for parameter estimation showed that the q-Weibull is 

a promising alternative distribution for reliability modeling and constitutes in another 

distribution model in the reliability engineers’ toolbox.  
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Chapter 4: Modeling Dependent Series Systems 

 

4.1 Overview 

This chapter considers the problems of modeling a series system with dependent 

component failure times and estimating the model’s parameters from failure time data. This 

chapter shows that a q-Weibull distribution can approximate the distribution of the failure 

time of a series system with dependent component failure times that are modeled as a 

Clayton survival copula. Moreover, the parameter 𝑞  in q-Weibull distribution 

approximates the parameter 𝜃  in Clayton copula, which measures the degree of 

dependence among the components.  For a series system with minimal repair, we develop 

a method for estimating the parameters of the Clayton copula given data about component 

failures, and we show that this process can be modeled as a nonhomogeneous Poisson 

process (NHPP). 

Thus, we propose the NHPP with q-Weibull as the underlying time to first failure (TTFF) 

distribution model to approximate the minimal repair process of a system composed of 

multiple components with dependence characterized by Clayton copula. Furthermore, the 

proposed model is flexible and elegant to analyze the failure pattern of a complex repairable 

system showing monotonic and non-monotonic behaviors of the intensity function. 
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For a life test of a series system, one ideally would be able to observe and record the system 

failure times and the specific component that failed.  In this case, we describe a procedure 

for estimating the parameters of the components’ failure time distributions and the copula 

from the failure data.  In some cases, however, information about the failed components is 

not available due to the reason that component sometimes cannot be identified when 

resources are restricted. Instead, a set of components for the failure may only be known. 

So accurately estimating the parameters (of the components’ failure time distributions and 

the copula) from the failure data is unlikely. To address this scenario, we will use a simpler 

q-Weibull model to approximate the Clayton copula model. 

 

Compared with the copula model, which needs more information on the assumption for the 

underlying distributions of components and the exact component cause of system failure, 

the simpler q-Weibull model can approximate the Clayton copula model without knowing 

this information.  

 

We will perform a simulation study to evaluate the q-Weibull approximation. We also 

apply the proposed NHPP q-Weibull model to a data set of 44 LHD machine failure times 

given by Kumar et al. [7]. The data appear to have a bathtub-shaped failure intensity. 

Besides, we compare our model with Superposed-PLP (S-PLP) model by Pulcini [8] that 

superpositions two independent power law processes to fit this data set and also confirm 

the bathtub shape of the failure intensity. 
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4.2 Modeling System Failure Time 

This section considers the first failure time of a series system with dependent components 

and shows that a q-Weibull distribution can approximate the time to first failure 

distribution. Herein, we use the notation 𝑜(𝑥) [58] to denote a function of 𝑥 that satisfies 

the following property: lim
𝑥→0

𝑜(𝑥)

𝑥
= 0. 

4.2.1 Clayton Copula Model 

Consider a system with 𝑑  components connected in series. The dependence of these d 

failure times can be described by a Clayton copula.  

Let the random vector (𝑋1, 𝑋2, … , 𝑋𝑑) represents the lifetimes of the 𝑑 components. Let 

𝑅𝑖(𝑥𝑖) = Pr(𝑋𝑖 > 𝑥𝑖) , 𝑖 = 1,… , 𝑑 be the marginal reliability function. Assume the joint 

survival distribution function of the vector (𝑋1, 𝑋2, … , 𝑋𝑑) can be modeled as the Clayton 

survival copula: 

 P{𝑋1 > 𝑥1, 𝑋2 > 𝑥2, … , 𝑋𝑑 > 𝑥𝑑} = 𝐶̂(𝑅1(𝑥1),𝑅2(𝑥2),… , 𝑅𝑑(𝑥𝑑)) 

= [𝑅1
−𝜃(𝑥1) + 𝑅2

−𝜃(𝑥2) +⋯

+ 𝑅𝑑
−𝜃(𝑥𝑑) − 𝑑 + 1] 

−
1
𝜃. 

(4-1) 

where 𝐶̂ is Clayton survival copula and 𝜃 ∈ [−1,∞)\{0}. 

Because the components are in series, the system’s failure time is the minimum of all the 

components’ failure times: 𝑡 = min {𝑋1, 𝑋2, … , 𝑋𝑑}.  That is, the system is operating at 
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time t if and only if every component is operating at time t. Thus, from Equation (4-1), the 

reliability function of the series system at time t is given as follows: 

 𝑅𝑠(𝑡) = 𝑃(min{𝑋1, 𝑋2, … , 𝑋𝑑} > 𝑡) 

= 𝑃{𝑋1 > 𝑡, 𝑋2 > 𝑡, … , 𝑋𝑑 > 𝑡} 

= 𝐶̂(𝑅1(𝑡), 𝑅2(𝑡),… , 𝑅𝑑(𝑡)) 

= [𝑅1
−𝜃(𝑡) + 𝑅2

−𝜃(𝑡) +⋯+ 𝑅𝑑
−𝜃(𝑡) − 𝑑 + 1]

−
1
𝜃 . 

(4-2) 

 

4.2.2 q-Weibull Approximation 

Consider a series system with identical components. Now, suppose that the reliability 

function for a component can be expressed as follows: 

 𝑅𝑖(𝑡) = 1 − (
𝑡

𝜆
)
𝛼

+ 𝑜 ((
𝑡

𝜆
)
𝛼

),    as 
𝑡

𝜆
→ 0. (4-3) 

This leads to the following expression: 

 𝑅𝑖
−𝜃(𝑡) = 1 + 𝜃 (

𝑡

𝜆
)
𝛼

+ 𝑜 ((
𝑡

𝜆
)
𝛼

),    as 
𝑡

𝜆
→ 0. (4-4) 

After substituting Equation (4-4) into Equation (4-2), the system reliability function can 

be expressed as follows: 
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𝑅𝑠(𝑡) = [𝑑 ∙ (1 + 𝜃 (
𝑡

𝜆
)
𝛼

+ 𝑜 ((
𝑡

𝜆
)
𝛼

)) − 𝑑 + 1]

−
1
𝜃

 

= [𝑑 ∙ (𝜃 (
𝑡

𝜆
)
𝛼

+ 𝑜 ((
𝑡

𝜆
)
𝛼

)) + 1]

−
1
𝜃

 

≈ [1 + 𝜃𝑑 (
𝑡

𝜆
)
𝛼

]
−
1
𝜃
. 

(4-5) 

Now, set 𝑞′ = 1+ 𝜃 ,   𝛽 = 𝛼 , and 𝜂′ = 𝜆𝑑−
1

𝛼 .  Substituting these into Equation (4-5) 

yields the following: 

𝑅𝑠(𝑡) ≈ [1 − (1 − 𝑞
′) (

𝑡

𝜂′
)
𝛽

]

1
1−𝑞′

. 

This is the reliability function for a q-Weibull distribution, as shown in Equation (2-10). 

Thus, the system time-to-failure is approximately distributed as q-Weibull distribution. 

The quality of this approximation depends upon the magnitude of 𝑡. For 𝜃 ∈ [−1, 0), to 

ensure that 𝑑 ∙ 𝑅𝑖
−𝜃(𝑡) − 𝑑 + 1 > 0 in Equation (4-2) that is 𝑅𝑖

−𝜃(𝑡) ∈ (1 −
1

𝑑
, 1], the 

support ensures 𝑡 is small. The approximate is more accurate when 𝑡 is small (see Figure 

4-1 to Figure 4-4). For 𝜃 ∈ (0,∞) , 𝑅𝑖
−𝜃(𝑡) ∈ [0,1] , there is no restriction on 𝑡 , the 

approximation is not accurate (see Figure 4-5 and Figure 4-6). 
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Figure 4-1: (d = 10, 𝜃 = −0.1, 𝜆 = 100, 𝛼 = 0.5) 

 

 

Figure 4-2: (d = 3, 𝜃 = −0.1, 𝜆 = 100, 𝛼 = 0.5) 

0 5 10 15 20 25 30

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
lia

b
ili

ty

System Reliability

Clayton Survival Copula

qWeibull Approximation

0 50 100 150 200 250 300

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
lia

b
ili

ty

System Reliability

Clayton Survival Copula

qWeibull Approximation



 

68 

 

 

Figure 4-3: (d = 6, 𝜃 = −0.2, 𝜆 = 100, 𝛼 = 0.5) 

 

Figure 4-4: (d = 4, 𝜃 = −0.3, 𝜆 = 100, 𝛼 = 0.5) 
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Figure 4-5: (d = 10, 𝜃 = 0.5, 𝜆 = 100, 𝛼 = 0.5) 

 

Figure 4-6: (d = 10, 𝜃 = 2, 𝜆 = 100, 𝛼 = 0.5) 
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4.2.3 Heterogeneous Components 

Consider a series system with non-identical components. Suppose that the reliability 

function for component 𝑖 can be expressed as follows: 

 
𝑅𝑖(𝑡) = 1 − (

𝑡

𝜆𝑖
)
𝛼𝑖
+ 𝑜 ((

𝑡

𝜆𝑖
)
𝛼𝑖
), as 

𝑡

𝜆𝑖
→ 0 (4-6) 

 

Let 𝑚 be the component with the smallest exponent such that 𝛼𝑚 = min {𝛼1, 𝛼2, … , 𝛼𝑑}.  

The system reliability function is given by: 

 

𝑅𝑠(𝑡) = [∑(1 + 𝜃 (
𝑡

𝜆𝑖
)
𝛼𝑖

+ 𝑜 ((
𝑡

𝜆𝑖
)
𝛼𝑖

))

𝑑

𝑖=1

− 𝑑 + 1]

−
1
𝜃

= [∑(𝜃 (
𝑡

𝜆𝑖
)
𝛼𝑖

+ 𝑜 ((
𝑡

𝜆𝑖
)
𝛼𝑖

))

𝑑

𝑖=1

+ 1]

−
1
𝜃

≈ [1 + 𝜃 ∙∑[(
𝑡

𝜆𝑖
)
𝛼𝑖

]

𝑑

𝑖=1

]

−
1
𝜃

= [1 + 𝜃 ∙ (
𝑡

𝜆𝑚
)
𝛼𝑚

(𝜆𝑚
𝛼𝑚∑[𝜆𝑖

−𝛼𝑖(𝑡)𝛼𝑖−𝛼𝑚]

𝑑

𝑖=1

)]

−
1
𝜃

= [1 + 𝜃

∙ (
𝑡

𝜆𝑚
)
𝛼𝑚

(𝜆𝑚
𝛼𝑚 ∑ 𝜆𝑖

−𝛼𝑖

𝑑

𝛼𝑖=𝛼𝑚

+ 𝜆𝑚
𝛼𝑚 ∑ [𝜆𝑖

−𝛼𝑖(𝑡)𝛼𝑖−𝛼𝑚]

𝑑

𝛼𝑖≠𝛼𝑚

)]

−
1
𝜃

≈ [1 + 𝜃𝑡𝛼𝑚 ∑ 𝜆𝑖
−𝛼𝑚

𝑑

𝛼𝑖=𝛼𝑚

]

−
1
𝜃

 

(4-7) 
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Now, set 𝑞′ = 1+ 𝜃 ,   𝛽 = 𝛼𝑚 , and 𝜂′ = (∑ 𝜆𝑖
−𝛼𝑚𝑑

𝛼𝑖=𝛼𝑚
)
−

1

𝛼𝑚 .  Substituting these into 

Equation (4-7) yields the following: 

𝑅𝑠(𝑡) ≈ [1 − (1 − 𝑞
′) (

𝑡

𝜂′
)
𝛽

]

1
1−𝑞′

. 

This is the reliability function for a q-Weibull distribution, as shown in Equation (2-10). 

Thus, the system time-to-failure is approximately distributed as a q-Weibull distribution. 

Again, the approximation is more accurate when 𝑡 is small (see Figure 4-7 to Figure 4-8). 

 

Figure 4-7: (d = 10, 𝜃 = −0.1, 𝜆 = 100 

𝛼𝑖 = [2, 2, 2, 2, 2, 0.2, 0.2, 0.2, 0.2, 0.2]) 
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Figure 4-8: (d = 6, 𝜃 = −0.1, 𝜆 = 100 

𝛼𝑖 = [2, 2, 2, 0.2, 0.2, 0.2]) 

Therefore, for a series system with dependence characterized by Clayton copula, the failure 

time of the system follows q-Weibull distribution under the assumption that the 

component’s failure time distribution satisfies the Equation (4-3). For example, Weibull 

distribution: 𝑅𝑖(𝑡) = 𝑒𝑥𝑝 (− (
𝑡

𝜆
)
𝛼

) = 1 − (
𝑡

𝜆
)
𝛼

+ 𝑜 (−(
𝑡

𝜆
)
𝛼

) , uniform distribution on 

[0, 𝑡𝑚𝑎𝑥]: 𝑅𝑖(𝑡) = 1 −
𝑡

𝑡𝑚𝑎𝑥
. 

Thus, the system time-to-failure is approximately distributed as with a q-Weibull 

distribution. 
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4.3 Modeling the Minimal Repair Process of the Dependent Series System 

This section discusses approaches for modeling the failure times of a series system with 

dependent components that undergo minimal repairs when a component fails. The data 

analysis problem is to estimate the parameters of the model from system failures data. 

We model the dependent series system by NHPP q-Weibull model. For comparison 

purposes, we provide two other dependence modeling methods using Clayton copula 

models. One model considers information regarding the exact cause component for the 

system failure. The other model does not have this information. 

4.3.1 Nonhomogeneous Poisson Process with Underlying q-Weibull Distribution 

In this section, we propose the model of NHPP with q-Weibull as an underlying distribution 

for a minimal repair process of a series system. The NHPP can be used to model the failure 

process of repairable systems. The NHPP model presumes that, whenever a failure occurs, 

the system is repaired to the condition as it was right before the failure, which is the 

minimal repair or same-as-old repair assumption. For a system composed of many 

components having close reliability functions, this assumption is appropriate because only 

a few of the system’s many components are repaired at a time, which yields only a small 

change of the system hazard rate [59]. We can consider the NHPP is a process in which 

each failed system is instantaneously replaced by an identical one having the same failure 

rate as the failed one [59]. The intensity of the NHPP coincides with the hazard rate 

function of the underlying time to first failure (TTFF) distribution. It also means that just 
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after any repair action carried out at time t, the intensity is equal to the hazard rate of the 

TTFF distribution [60]. 

The NHPP has time-dependent intensity function 𝜆(𝑡) > 0. Let 𝑁(𝑡) be the number of 

events (failures) that occur in the interval [0, 𝑡]. Let 𝑅(𝑡) be the probability that no events 

(failures) occur in the interval [0, 𝑡]. 

 𝑅(𝑡) = 𝑃{𝑁(𝑡) = 0} 

=
(∫ 𝜆()𝑑

𝑡

0
)
0

0!
𝑒−∫ 𝜆()𝑑

𝑡
0  

= 𝑒−∫ 𝜆()𝑑
𝑡
0 . 

(4-8) 

Consider a series of failures occurring at the time 𝑡1, 𝑡2, … , 𝑡𝑛 according to the NHPP with 

intensity 𝜆(𝑡). Let 𝑡𝑘  be the time to the 𝑘𝑡ℎ failures. Let 𝑅(𝑡𝑘, 𝑡) be the probability that no 

failure occurs in the interval (𝑡𝑘, 𝑡): 

 𝑅(𝑡𝑘 , 𝑡) = 𝑃{𝑁(𝑡) = 0} 

=
(∫ 𝜆()𝑑

𝑡

𝑡𝑘
)
0

0!
𝑒
−∫ 𝜆()𝑑

𝑡
𝑡𝑘  

= 𝑒
−∫ 𝜆()𝑑

𝑡
𝑡𝑘  

=
𝑒−∫ 𝜆()𝑑

𝑡
0

𝑒−∫ 𝜆()𝑑
𝑡𝑘
0

 

=
𝑅(𝑡)

𝑅(𝑡𝑘)
, 

(4-9) 

which is the conditional reliability function of a system having age at the time 𝑡𝑘 . The 

NHPP is a process in which each failed component/system is instantaneously replaced by 
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an identical, working one having the same age as the failed one. This model is a minimal 

repair condition. If 𝑡𝑘  is equal to zero, 

 𝑅(𝑡) = 𝑒−∫ 𝜆(𝜏)𝑑𝜏
𝑡
0 , (4-10) 

which means that the intensity of the NHPP 𝜆(𝑡) coincides with the failure rate function 

ℎ(𝑡) of the underlying TTFF distribution. All future behavior of a repairable system is 

completely defined by this distribution.  

Under the NHPP model, the probability that, the failure after the one at 𝑡𝑖−1 will occur at 

(𝑡𝑖, 𝑡𝑖 + 𝛥𝑡) can be approximated by [61]: 

 
𝜆(𝑡𝑖)𝛥𝑡 ∙ 𝑒

−∫ 𝜆()𝑑
𝑡𝑖
𝑡𝑖−1 , (4-11) 

where the first multiplier is the probability of failure in (𝑡𝑖, 𝑡𝑖 + 𝛥𝑡) and the second is the 

probability of a failure-free operation in the interval(𝑡𝑖−1, 𝑡𝑖). 

Let 𝑓(𝑡𝑖|𝑡𝑖−1) be the conditional probability density function of the i-th failure time 𝑡𝑖 , 

given that the previous failure occurred at the time 𝑡𝑖−1: 

 
𝑓(𝑡𝑖|𝑡𝑖−1) = 𝜆(𝑡𝑖)𝑒

−∫ 𝜆()𝑑
𝑡𝑖
𝑡𝑖−1 ,    𝑡𝑖 ≥ 𝑡𝑖−1. (4-12) 

If the data are the observed failure times 𝑡1, 𝑡2, … , 𝑡𝑛, the likelihood function is the product 

of all the conditional probability density functions, which can be written as follows: 

 

 

 



 

76 

 

 
𝐿 = 𝑓(𝑡1)∏𝑓(𝑡𝑖|𝑡𝑖−1)

𝑛

𝑖=2

 

=∏𝜆(𝑡𝑖)

𝑛

𝑖=1

∙ 𝑒−∫ 𝜆()𝑑
𝑡1
0 𝑒

−∫ 𝜆()𝑑
𝑡2
𝑡1 ⋯𝑒

−∫ 𝜆()𝑑
𝑡𝑛
𝑡𝑛−1  

=∏𝜆(𝑡𝑖)

𝑛

𝑖=1

∙ 𝑒−∫ 𝜆()𝑑
𝑡𝑛
0  

=∏𝜆(𝑡𝑖)

𝑛

𝑖=1

∙ 𝑒−𝐻(𝑡𝑛). 

(4-13) 

The corresponding log-likelihood function is given by: 

 
𝑙𝑛𝐿 =∑𝑙𝑛[𝜆(𝑡𝑖)]

𝑛

𝑖=1

− 𝐻(𝑡𝑛), (4-14) 

Let 𝐻(𝑡) be the cumulative intensity function, which equals the cumulative hazard rate 

function: 

 
𝐻(𝑡) = ∫ 𝜆()𝑑

𝑡

0

= ∫ ℎ()𝑑
𝑡

0

. (4-15) 

We propose to use the q-Weibull distribution as the underlying distribution. In this case, 

the intensity function 𝜆(𝑡)  equals the hazard rate function ℎ𝑞(𝑡)  of the q-Weibull 

distribution: 

 
𝜆(𝑡) = ℎ𝑞(𝑡) =

𝛽𝑡𝛽−1𝜂−𝛽

1 − (1 − 𝑞) (
𝑡
𝜂)

𝛽
 (4-16) 

The cumulative intensity function (cumulative hazard rate function) of the q-Weibull 

distribution is 𝐻𝑞(𝑡): 
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𝐻𝑞(𝑡) = ∫ ℎ𝑞()𝑑

𝑡

0

= −
1

1 − 𝑞
𝑙𝑛 [1 − (1 − 𝑞)(

𝑡

𝜂
)
𝛽

]. (4-17) 

Substituting Equation (4-16) and (4-17) into Equation (4-13) yields the likelihood 

function for the NHPP with q-Weibull as underlying distribution as follows: 

 
𝐿 =∏ℎ𝑞(𝑡𝑖)

𝑛

𝑖=1

⋅ 𝑒−𝐻𝑞(𝑡𝑛) 

=∏
𝛽𝑡𝑖

𝛽−1
𝜂−𝛽

1 − (1 − 𝑞)(
𝑡𝑖
𝜂)

𝛽

𝑛

𝑖=1

⋅ (1 − (1 − 𝑞)(
𝑡𝑛
𝜂
)
𝛽

)

1
1−𝑞

. 

(4-18) 

Thus, the log-likelihood for NHPP with q-Weibull as underlying distribution is given by: 

 
𝑙𝑛𝐿 =∑𝑙𝑛[ℎ𝑞(𝑡𝑖)]

𝑛

𝑖=1

 − 𝐻𝑞(𝑡𝑛)  

=∑𝑙𝑛 [
𝛽𝑡𝑖

𝛽−1
𝜂−𝛽

1 − (1 − 𝑞)(
𝑡𝑖
𝜂)

𝛽
]

𝑛

𝑖=1

+
1

1 − 𝑞
𝑙𝑛 [1 − (1 − 𝑞) (

𝑡𝑛
𝜂
)
𝛽

]. 

(4-19) 

 

For comparison, we will use copula to model the minimum repair process of the dependent 

series system. Depending on whether we know which component fails or not, we have two 

copula models in sections 4.3.2 and 4.3.3. 

4.3.2 Clayton Copula with Unknown Components 

We consider the case in which the component that caused the system failure is unknown. 

This model uses the same information as the q-Weibull model: the system’s failure times 
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𝑡1, 𝑡2, … , 𝑡𝑛 (𝑡1 < 𝑡2 < ⋯𝑡𝑛). According to the reliability function for the series system in 

Equation (4-2), the hazard rate function for the series system can be expressed as follows: 

 

 
ℎ(𝑡) = −

𝑅𝑠
′(𝑡)

𝑅𝑠(𝑡)
 

=
𝑅1
−𝜃(𝑡)ℎ1(𝑡) + 𝑅2

−𝜃(𝑡)ℎ2(𝑡)+,… ,+𝑅𝑑
−𝜃(𝑡)ℎ𝑑(𝑡)

𝐶̂−𝜃(𝑅1(𝑡), 𝑅2(𝑡),… , 𝑅𝑑(𝑡))
. 

(4-20) 

 

The cumulative hazard function for the series system is 𝐻(𝑡): 

 

 𝐻(𝑡) = −𝑙𝑛𝑅𝑠(𝑡) 

= −𝑙𝑛𝐶̂(𝑅1(𝑡), 𝑅2(𝑡),… , 𝑅𝑑(𝑡)). 
(4-21) 

 

Here we substitute Equations (4-20) and (4-21) into the Equation (4-14) to determine the 

log-likelihood: 

 
𝑙𝑛𝐿 = ∑𝑙𝑛[ℎ(𝑡𝑖)]

𝑛

𝑖=1

 − 𝐻(𝑡𝑛) 

=∑[𝑙𝑛 (𝑅1
−𝜃(𝑡𝑖)ℎ1(𝑡𝑖) + 𝑅2

−𝜃(𝑡𝑖)ℎ2(𝑡𝑖)+, … ,+𝑅𝑑
−𝜃(𝑡𝑖)ℎ𝑑(𝑡𝑖))

𝑛

𝑖=1

+ 𝜃𝑙𝑛 (𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖),… , 𝑅𝑑(𝑡𝑖)))]

+ 𝑙𝑛 (𝐶̂(𝑅1(𝑡𝑛), 𝑅2(𝑡𝑛),… , 𝑅𝑑(𝑡𝑛))). 

(4-22) 
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4.3.3 Clayton Copula with Known Components 

This section considers the case where the component that caused the system failure is 

known. The system’s failure times are 𝑡1, 𝑡2, … , 𝑡𝑛  (  𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 ). Let 𝑗𝑖  be the 

component that fails at the time 𝑡𝑖. Each failure time is determined by the minimum of all 

the components’ failure times. 

Given the first 𝑖 − 1 failure times 𝑡1, 𝑡2, … , 𝑡𝑖−1, the probability that component 𝑗𝑖 fails in 

the interval (𝑡𝑖, 𝑡𝑖 + ∆𝑡)  while no other component fails between 𝑡𝑖−1  and 𝑡𝑖  can be 

expressed as follows: 

 𝑃(𝑡𝑖 < 𝑋𝑗i < 𝑡i + ∆𝑡, ⋃ {𝑋𝑙 > 𝑡i}𝑙≠𝑗i
|𝑋1 > 𝑡i−1, 𝑋2 > 𝑡i−1, … , 𝑋𝑑 > 𝑡i−1). (4-23) 

The probability density function for the failure time of component 𝑗𝑖 , given that the 

(𝑖 − 1)𝑡ℎ failure occurred at 𝑡𝑖−1, is given by: 
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 𝑓(𝑡𝑖|𝑡𝑖−1)

= 𝑙𝑖𝑚
∆𝑡→0+

 𝑃(𝑡𝑖 < 𝑋𝑗𝑖 < 𝑡𝑖 + ∆𝑡, ⋃ {𝑋𝑙 > 𝑡𝑖}𝑙≠𝑗𝑖
|𝑋1 > 𝑡𝑖−1, 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1)

∆𝑡

= 𝑙𝑖𝑚
∆𝑡→0+

𝑃(𝑡𝑖 < 𝑋𝑗𝑖 < 𝑡𝑖 + ∆𝑡,⋃ {𝑋𝑙 > 𝑡𝑖}𝑙≠𝑗𝑖
)

∆𝑡 ∙ 𝑃(𝑋1 > 𝑡𝑖−1, 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1)

= 𝑙𝑖𝑚
∆𝑡→0+

𝑃(𝑋𝑗𝑖 > 𝑡𝑖 , ⋃ {𝑋𝑙 > 𝑡𝑖}𝑙≠𝑗𝑖
) − 𝑃(𝑋𝑗𝑖 > 𝑡𝑖 + 𝛥𝑡, ⋃ {𝑋𝑙 > 𝑡𝑖}𝑙≠𝑗𝑖

)

∆𝑡 ∙ 𝑃(𝑋1 > 𝑡𝑖−1, 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1)

= 𝑙𝑖𝑚
∆𝑡→0+

𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖), … , 𝑅𝑑(𝑡𝑖)) − 𝐶̂(𝑅𝑗𝑖(𝑡𝑖 + ∆𝑡),⋃ 𝑅𝑙(𝑡𝑖)𝑙≠𝑗𝑖
)

∆𝑡 ∙ 𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1),… , 𝑅𝑑(𝑡𝑖−1))

= −
𝜕𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖),… , 𝑅𝑑(𝑡𝑖))

𝜕𝑅𝑗𝑖(𝑡𝑖)
∙
𝜕𝑅𝑗𝑖(𝑡𝑖)

𝜕𝑡
∙

1

𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1),… , 𝑅𝑑(𝑡𝑖−1))

=

𝜕𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖),… , 𝑅𝑑(𝑡𝑖))

𝜕𝑅𝑗𝑖(𝑡𝑖)
∙ 𝑓𝑗𝑖(𝑡𝑖)

𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1),… , 𝑅𝑑(𝑡𝑖−1))
, 

(4-24) 

 

where 𝑖 = 2,3,… , 𝑛 

and  

 
𝑓(𝑡1) =

𝜕𝐶̂(𝑅1(𝑡1), 𝑅2(𝑡1),… , 𝑅𝑑(𝑡1))

𝜕𝑅𝑗1(𝑡1)
∙ 𝑓𝑗1(𝑡1). (4-25) 

Plugging Clayton survival copula Equation (4-1) into Equations (4-24) and (4-25), we get: 
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 𝑓(𝑡𝑖|𝑡𝑖−1)

=
−
1
𝜃
∙ [𝑅1

−𝜃(𝑡𝑖) + 𝑅2
−𝜃(𝑡𝑖) +⋯+ 𝑅𝑑

−𝜃(𝑡𝑖) − 𝑑 + 1]+
−
1
𝜃
−1
∙ (−𝜃) ∙ 𝑅𝑗𝑖

−𝜃−1(𝑡𝑖) ∙ 𝑓𝑗𝑖(𝑡𝑖)

[𝑅1
−𝜃(𝑡𝑖−1) + 𝑅2

−𝜃(𝑡𝑖−1) +⋯+ 𝑅𝑑
−𝜃(𝑡𝑖−1) − 𝑑 + 1]+

−
1
𝜃

=
𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖), … , 𝑅𝑑(𝑡𝑖)) ∙ 𝑅𝑗𝑖

−𝜃(𝑡𝑖) ∙ 𝑓𝑗𝑖(𝑡𝑖)

𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1)) ∙ 𝐶̂−𝜃(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖), … , 𝑅𝑑(𝑡𝑖)) ∙ 𝑅𝑗𝑖(𝑡𝑖)

=
𝑅𝑗𝑖
−𝜃(𝑡𝑖)

𝐶̂−𝜃(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖),… , 𝑅𝑑(𝑡𝑖))
∙ ℎ𝑗𝑖(𝑡𝑖) ∙

𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖), … , 𝑅𝑑(𝑡𝑖))

𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1))
, 

(4-26) 

 

where 𝑖 = 2,3,… , 𝑛 

and 

 
𝑓(𝑡1) =

𝑅𝑗1
−𝜃(𝑡1)

𝐶̂−𝜃(𝑅1(𝑡1), 𝑅2(𝑡1), … , 𝑅𝑑(𝑡1))
∙ ℎ𝑗1(𝑡1)

∙ 𝐶̂(𝑅1(𝑡1), 𝑅2(𝑡1),… , 𝑅𝑑(𝑡1)) . 

(4-27) 

The likelihood function for the system can be written as 

 
𝐿 = 𝑓(𝑡1)∏𝑓(𝑡𝑖|𝑡𝑖−1)

𝑛

𝑖=2

 

=∏
ℎ𝑗𝑖(𝑡𝑖) ∙ 𝑅𝑗𝑖

−𝜃(𝑡𝑖)

𝐶̂−𝜃(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖),… , 𝑅𝑑(𝑡𝑖))

𝑛

𝑖=1

 

∙ 𝐶̂(𝑅1(𝑡𝑛), 𝑅2(𝑡𝑛),… , 𝑅𝑑(𝑡𝑛)), 

(4-28) 

 

where ℎ𝑗𝑖(𝑡) and 𝑅𝑗𝑖(𝑡) are the hazard rate and reliability functions for the component 𝑗𝑖 

which caused the system to fail at time 𝑡𝑖 . 
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The log-likelihood is given by: 

 
𝑙𝑛𝐿 =∑[𝑙𝑛 (ℎ𝑗𝑖(𝑡𝑖)) − 𝜃 𝑙𝑛 (𝑅𝑗𝑖(𝑡𝑖))

𝑛

𝑖=1

+ 𝜃𝑙𝑛 (𝐶̂(𝑅1(𝑡𝑖), 𝑅2(𝑡𝑖),… , 𝑅𝑑(𝑡𝑖)))]  

+ 𝑙𝑛 (𝐶̂(𝑅1(𝑡𝑛), 𝑅2(𝑡𝑛),… , 𝑅𝑑(𝑡𝑛))). 

(4-29) 

4.4 Simulation Experiments 

To evaluate the accuracy of the models presented in Sections 4.2 and 4.3. We conducted 

simulation experiments of multiple series systems with dependent component failure times. 

In particular, the experiments were designed to show how well the q-Weibull model could 

estimate the system reliability function even when there was no information about the 

components that failed. The simulated systems included those with increasing hazard rates 

and those with bathtub-shaped hazard rates. Section 4.4.1 describes the process for 

sampling failure times. Section 4.4.2 presents the simulated systems that were considered. 

Section 4.4.3 presents the results. 

4.4.1 Data Generating 

Let 𝑡1, 𝑡2, … , 𝑡𝑛 ( 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛) represent the successive system’s failure times, which 

refer to the corresponding components 𝑗1, 𝑗2, … , 𝑗𝑛 of the system. The system failure time 

𝑡𝑖 is determined by 𝑡𝑖 = 𝑚𝑖𝑛(𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 ), where 𝑡1

𝑖 , 𝑡2
𝑖 , … , 𝑡𝑑

𝑖   represent the components’ 

failure times given that all the components survived at 𝑡𝑖−1. 
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As the commonly used sampling method for Clayton copula [62] is restricted to 

unconditional data sampling, here we develop a conditional data sampling method to 

generate components’ failure times (𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 )  given the condition that all the 

components survived at 𝑡𝑖−1. Let 𝐴 = {𝑋1 > 𝑡𝑖−1, 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1}. 

The components’ failure times (𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 ) can be generated sequentially as follows: 

 

 𝑃(𝑋1 = 𝑡1
𝑖 , 𝑋2 = 𝑡2

𝑖 , … , 𝑋𝑑 = 𝑡𝑑
𝑖 |𝐴)

= 𝑃(𝑋𝑑 = 𝑡𝑑
𝑖 |𝑋𝑑−1 = 𝑡𝑑−1

𝑖 , … , 𝑋2 = 𝑡2
𝑖 , 𝑋1 = 𝑡1

𝑖 , 𝐴)⋯𝑃(𝑋2 = 𝑡2
𝑖 |𝑋1 = 𝑡1

𝑖 , 𝐴)

∙ 𝑃(𝑋1 = 𝑡1
𝑖|𝐴) 

(4-30) 

 

To generate the failure time for the first component, the conditional probability density 

function that the first component fails in (𝑡1
𝑖 , 𝑡1

𝑖 + ∆𝑡) given that the previous system failure 

occurred at the time 𝑡𝑖−1 can be derived as follows: 

 
𝑓(𝑋1 = 𝑡1

𝑖|𝐴) = lim
∆𝑡→0+

𝑃(𝑋1 = 𝑡1
𝑖 , 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1)

∆𝑡 ∙ 𝑃(𝑋1 > 𝑡𝑖−1, 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1)

= lim
∆𝑡→0+

𝑃(𝑋1 > 𝑡1
𝑖 , 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1) − 𝑃(𝑋1 > 𝑡1

𝑖 + ∆𝑡, 𝑋2 > 𝑡𝑖−1, … , 𝑋𝑑 > 𝑡𝑖−1)

∆𝑡 ∙ 𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1))

= lim
∆𝑡→0+

𝐶̂ (𝑅1(𝑡1
𝑖), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1)) − 𝐶̂ (𝑅1(𝑡1

𝑖 + ∆𝑡), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1))

∆𝑡 ∙ 𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1))

= −
𝐶̂(1) (𝑅1(𝑡1

𝑖), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1))

𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1), … , 𝑅𝑑(𝑡𝑖−1))
. 

(4-31) 
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Let 𝐶̂(𝑚)(𝑅1(𝑥1), 𝑅2(𝑥2),… , 𝑅𝑑(𝑥𝑑))  be the derivative of the copula 

𝐶̂(𝑅1(𝑥1), 𝑅2(𝑥2),… , 𝑅𝑑(𝑥𝑑))  with respect to 𝑥1, 𝑥2, … , 𝑥𝑚 . Take 𝑡0 = 0 . For 𝑚 =

2, 3, … , 𝑑 , and 𝑖 = 1, 2,… , 𝑛, the conditional probability density function that the 𝑚𝑡ℎ   

component fails in (𝑡𝑚
𝑖 , 𝑡𝑚

𝑖 + ∆𝑡) is equal to 

 𝑓(𝑋𝑚 = 𝑡𝑚
𝑖 | ⋃ {𝑋𝑙 = 𝑡𝑙

𝑖}𝑚−1
𝑙=1 , 𝐴)

= −
𝐶̂(𝑚)(⋃ {𝑅𝑙(𝑡𝑙

𝑖)}𝑚
𝑙=1 , ⋃ {𝑅𝑙(𝑡𝑖−1)}

𝑑
𝑙=𝑚+1 )

𝐶̂(𝑚−1)(⋃ {𝑅𝑙(𝑡𝑙
𝑖)}𝑚−1

𝑙=1 , ⋃ {𝑅𝑙(𝑡𝑖−1)}
𝑑
𝑙=𝑚 )

, 
(4-32) 

Then, the conditional reliability function based on the Clayton copula is given by: 

 

𝑅(𝑋1 = 𝑡1
𝑖|𝐴) =

𝐶̂ (𝑅1(𝑡1
𝑖),𝑅2(𝑡𝑖−1),… , 𝑅𝑑(𝑡𝑖−1))

𝐶̂(𝑅1(𝑡𝑖−1), 𝑅2(𝑡𝑖−1),… , 𝑅𝑑(𝑡𝑖−1))

=
[𝑅1

−𝜃(t1
𝑖 ) + 𝑅2

−𝜃(t𝑖−1) +⋯+ 𝑅𝑑
−𝜃(t𝑖−1) − 𝑑 + 1]

−
1
𝜃

[𝑅1
−𝜃(t𝑖−1) + 𝑅2

−𝜃(t𝑖−1) + ⋯+ 𝑅𝑑
−𝜃(t𝑖−1) − 𝑑 + 1]

−
1
𝜃

 

(4-33) 

For 𝑚 = 2, 3,… , 𝑑, and 𝑖 = 1, 2,… , 𝑛, 

 𝑅(𝑋𝑚 = 𝑡𝑚
𝑖 | ⋃ {𝑋𝑙 = 𝑡𝑙

𝑖}𝑚−1
𝑙=1 , 𝐴)

=
𝐶̂(𝑚−1)(⋃ {𝑅𝑙(𝑡𝑙

𝑖)}𝑚
𝑙=1 , ⋃ {𝑅𝑙(𝑡𝑖−1)}

𝑑
𝑙=𝑚+1 )

𝐶̂(𝑚−1)(⋃ {𝑅𝑙(𝑡𝑙
𝑖)}𝑚−1

𝑙=1 , ⋃ {𝑅𝑙(𝑡𝑖−1)}
𝑑
𝑙=𝑚 )

=
[∑ 𝑅𝑙

−𝜃(t𝑙)
𝑚
𝑙=1 +∑ 𝑅𝑙

−𝜃(t𝑖−1)
𝑑
𝑙=𝑚+1 − 𝑑 + 1]

−
1
𝜃
−(𝑚−1)

[∑ 𝑅𝑙
−𝜃(t𝑙)

𝑚−1
𝑙=1 +∑ 𝑅𝑙

−𝜃(t𝑖−1)
𝑑
𝑙=𝑚 − 𝑑 + 1]

−
1
𝜃
−(𝑚−1)

 

(4-34) 

To generate the system failure times, firstly generate random values on [0, 1] for the 

conditional reliability, then use the inverse of reliability function in Equation (4-33) and 

(4-34) to sequentially generate 𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 , the failure times for the components. Then, 
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the i-th failure time for the system is determined by the minimum of the components’ 

failure times 𝑡𝑖 = min {𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 } for 𝑖 = 1, 2, … , 𝑛. The pseudo-code of the proposed 

algorithm for generating the series system’s failure times is given in Figure 4-9. 

 

Figure 4-9: Pseudo-code of the series system’s failure times generating algorithm 

4.4.2 Simulated Systems 

Simulation experiments were conducted to evaluate the proposed NHPP with underlying 

q-Weibull and Clayton copula models. The algorithms were implemented in MATLAB. In 

these experiments, the Clayton copula parameter 𝜃  satisfies 𝜃 ∈ [−1, 0) , and the 

equivalent parameter 𝑞 in the PDF of the q-Weibull distribution is 𝑞 = 2 −
1

1+𝜃
. Thus, 𝑞 ∈

(−∞, 1), which includes increasing and bathtub-shaped hazard rates ℎ𝑞(𝑡). Indeed, ℎ𝑞(𝑡) 
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is monotonically increasing for 𝑞 < 1 and 𝛽 > 1, and bathtub-shaped for 𝑞 < 1 and 0 <

𝛽 < 1 [63]. The components’ failure times follow Weibull distributions with the reliability 

function 𝑅𝑖(𝑥) = 𝑒𝑥𝑝[−(𝑥/𝜆𝑖)
𝛼𝑖], which satisfies Equation (4-6). In these experiments, 

we set the components’ scale parameter 𝜆𝑖 = 5, for all the components 𝑖 = 1, 2,… , 𝑑. The 

maximum likelihood estimates for parameters of the underlying q-Weibull distribution 

were obtained by maximizing the log-likelihood function in Equation (4-19) via an 

adaptive hybrid artificial bee colony algorithm [64]. Table 4-1 and Table 4-2 show the 

parameters of the simulated systems from which we generated samples. The systems 

marked with a “*” in Table 4-1 and Table 4-2 were also used to compare the three models 

in sections 4.3.1, 4.3.2, and 4.3.3. For each simulated case, we ran 20 replications, and each 

replication had 𝑛 = 30 failures. For experimental setting parameter 𝜃, the correspongding 

dimension 𝑑 satisfies 2 ≤ 𝑑 ≤ 1 −
1

𝜃
 [37]. 

Table 4-1: Simulation settings for systems with increasing hazard rate 

Copula parameter 𝜃 

(equivalent 𝑞) 

Number of components 

𝑑 

Components’ shape parameters 

𝛼𝑖, 𝑖 = 1, 2,… , 𝑑 

𝜃 = −0.3333 

(𝑞 = 0.5) 

2 
[2, 2] 

[2, 3] 

3 

[2, 2, 2] * 

[2, 3, 5] 

4 
[2, 2, 2, 2] 

[2, 2, 3, 5] 
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𝜃 = −0.2857 

(𝑞 = 0.6) 

2 
[2, 2] 

[2, 3] 

3 
[2, 2, 2] * 

[2, 3, 5] 

4 
[2, 2, 2, 2] 

[2, 2, 3, 5] 

𝜃 = −0.1667 

(𝑞 = 0.8) 

2 
[2, 2] 

[2, 3] 

3 
[2, 2, 2] * 

[2, 3, 5] 

5 
[2, 2, 2, 2, 2] 

[2, 2, 3, 5, 5] 

6 
[2, 2, 2, 2, 2, 2] 

[2, 2, 3, 3, 5, 5] 

 

Table 4-2: Simulation settings for systems with a bathtub-shaped hazard rate. 

Copula parameter 𝜃 

(equivalent 𝑞) 

Number of 

components 𝑑 

Components’ shape parameters 𝛼𝑖, 

𝑖 = 1, 2,… , 𝑑 

𝜃 = −0.3333 

(𝑞 = 0.5) 

3 [2, 0.2, 0.2] 

4 [2, 2, 0.2, 0.2] 
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𝜃 = −0.2857 

(𝑞 = 0.6) 

3 [2, 0.2, 0.2] 

4 [2, 2, 0.2, 0.2] * 

𝜃 = −0.1667 

(𝑞 = 0.8) 

3 [2, 0.2, 0.2] 

4 [2, 2, 0.2, 0.2] * 

5 [2, 2, 0.2, 0.2, 0.2] 

6 [2, 2, 2, 0.2, 0.2, 0.2] 

𝜃 = −0.0909 

(𝑞 = 0.9) 

2 [1.2, 0.2] 

4 [2, 2, 0.2, 0.2] 

6 [2, 2, 2, 0.2, 0.2, 0.2] 

8 [2, 2, 2, 2, 0.2, 0.2, 0.2, 0.2] 

10 [2, 2, 2, 2, 2, 0.2, 0.2, 0.2, 0.2, 0.2] 

12 
[2, 2, 2, 2, 2, 2, 0.2, 0.2, 0.2, 0.2, 

0.2, 0.2] 

 

4.4.3 Simulation Results 

By simulation, we show two results, and one is that parameter 𝑞 in q-Weibull distribution 

can approximate parameter 𝜃 in Clayton copula; the other one is the comparison of the q-

Weibull model and the Clayton copula models.  

• 𝒒 in the q-Weibull distribution can approximate 𝜽 in Clayton copula 
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The ML estimated parameters for NHPP with the underlying q-Weibull distribution model 

(averages over 20 replications) are presented in Table 4-3 and Table 4-4. 

Table 4-3: MLE parameters for systems with increasing hazard rate 

Parameters for simulated systems MLE parameters 

Copula parameter 

𝜃 

(equivalent 𝑞) 

Number of 

components 

𝑑 

Components’ shape 

parameters 𝛼𝑖, 𝑖 =

1, 2, … , 𝑑 

𝑞̂ 𝛽̂ 𝜂̂ 

𝜃 = −0.3333 

(𝑞 = 0.5) 

2 
[2, 2] 0.4967 2.2878 4.9986 

[2, 3] 0.4952 2.6250 4.9107 

3 
[2, 2, 2] 0.5139 3.3159 3.9025 

[2, 3, 5] 0.4767 3.7754 4.2483 

4 

[2, 2, 2, 2] 0.4770 2.5762 3.2984 

[2, 2, 3, 5] 0.4733 2.5254 3.4405 

𝜃 = −0.2857 

(𝑞 = 0.6) 

2 
[2, 2] 0.5644 2.3926 4.8720 

[2, 3] 0.5663 2.1529 4.5009 

3 
[2, 2, 2] 0.6219 2.9412 3.8951 

[2, 3, 5] 0.5279 2.7890 3.9746 

4 
[2, 2, 2, 2] 0.5311 2.9951 3.6179 

[2, 2, 3, 5] 0.6081 4.2521 3.7457 

𝜃 = −0.1667 2 [2, 2] 0.8202 2.4774 4.5530 
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(𝑞 = 0.8) [2, 3] 0.8216 2.3907 3.9816 

3 
[2, 2, 2] 0.7965 1.9926 3.2856 

[2, 3, 5] 0.7986 3.5096 3.8870 

5 
[2, 2, 2, 2, 2] 0.8010 2.5192 2.7139 

[2, 2, 3, 5, 5] 0.8152 4.2286 3.2218 

6 
[2, 2, 2, 2, 2, 2] 0.8298 2.4949 2.3182 

[2, 2, 3, 3, 5, 5] 0.8110 3.3100 2.8980 

 

Table 4-4: MLE parameters for systems with a bathtub-shaped hazard rate 

Parameters for simulated systems MLE parameters 

Copula parameter 𝜃 

(equivalent 𝑞) 

Number of 

components 

𝑑 

Components’ shape 

parameters 𝛼𝑖, 𝑖 =

1, 2, … , 𝑑 

𝑞̂ 𝛽̂ 𝜂̂ 

𝜃 = −0.3333 

(𝑞 = 0.5) 

3 [2, 0.2, 0.2] 0.3626 0.5581 1.9567 

4 [2, 2, 0.2, 0.2] 0.3981 0.5951 1.6336 

𝜃 = −0.2857 

(𝑞 = 0.6) 

3 [2, 0.2, 0.2] 0.4417 0.7399 2.9293 

4 [2, 2, 0.2, 0.2] 0.5160 0.7740 1.5874 

𝜃 = −0.1667 

(𝑞 = 0.8) 

3 [2, 0.2, 0.2] 0.7913 0.8503 1.6090 

4 [2, 2, 0.2, 0.2] 0.7302 0.8534 1.2507 

5 [2, 2, 0.2, 0.2, 0.2] 0.7414 0.7342 0.8594 
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6 [2, 2, 2, 0.2, 0.2, 0.2] 0.7047 0.5317 0.5003 

𝜃 = −0.0909 

(𝑞 = 0.9) 

2 [1.2, 0.2] 0.9024 0.7373 3.2666 

4 [2, 2, 0.2, 0.2] 0.8841 0.9467 1.1295 

6 [2, 2, 2, 0.2, 0.2, 0.2] 0.8615 0.7669 0.6892 

8 [2, 2, 2, 2, 0.2, 0.2, 0.2, 0.2] 0.8663 0.5854 0.2955 

10 
[2, 2, 2, 2, 2, 0.2, 0.2, 0.2, 

0.2, 0.2] 
0.8550 0.4048 0.0928 

12 
[2, 2, 2, 2, 2, 2, 0.2, 0.2, 

0.2, 0.2, 0.2, 0.2] 
0.8400 0.3613 0.0828 

 

The results in Table 4-3 and Table 4-4 suggest that the parameter 𝑞  in the q-Weibull 

distribution can approximate the Clayton copula parameter 𝜃 in an equivalent form. 

• q-Weibull and Clayton copula models comparison 

We also compared the q-Weibull model, the Clayton copula models with and without 

information regarding the component cause for the system failure. The systems marked 

with a “*” in Table 4-1 and Table 4-2 were used for experimental settings. In each 

experiment, one sample of 𝑛 = 30 failure times and the corresponding failed components 

were generated using the algorithm in Figure 4-9, then the parameters were estimated 

through maximizing the log-likelihood functions in Equations (4-19), (4-22) and (4-29), 

respectively, for the three models. For the sake of clarity, Clayton copula model 1 denotes 

the Clayton copula model that is estimated using information about which components 
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failed, and Clayton copula model 2 denotes the Clayton copula model that is estimated 

using no information about which components failed. In the data analysis, all the ML 

estimated parameters were obtained by an adaptive hybrid artificial bee colony algorithm 

[64]. We should mention that Clayton copula model 1 utilizes the information of both 

failure times and the corresponding failed components, while the q-Weibull model and 

Clayton copula model 2 only use the failure times and omit the information of 

corresponding failed components. Table 4-5 and Table 4-6 show the estimated parameters 

and log-likelihoods for the three models of the simulated systems with increasing hazard 

rate and bathtub-shaped hazard rate, respectively. 

Table 4-5: Comparison between q-Weibull and copula models for systems with 

increasing hazard rate 

Parameters for 

simulated systems 

Estimated parameters 

Log-

likelihood 

𝜽 = −𝟎. 𝟑𝟑𝟑𝟑 

(𝑞 = 0.5) 

 

(3 components) 

[α1, α2, α3] = [2, 2, 2] 

[λ1, λ2, λ3] = [5, 5, 5] 

q-Weibull model: 

𝑞̂ = 0.4979 (𝜽̂ = −𝟎. 𝟑𝟑𝟒𝟑), 𝛽̂ = 2.0699, 

𝜂̂ = 3.9533 

23.8943 

Clayton copula model 1: 𝜽̂ = −𝟎. 𝟐𝟗𝟐𝟔 

[𝛼̂1, 𝛼̂2, 𝛼̂3] = [8.8988, 2.2566, 8.6938] 

[𝜆̂1, 𝜆̂2, 𝜆̂3] = [5.7724, 2.8896, 6.1682] 

10.1252 

Clayton copula model 2: θ̂ = 42.1013 

[𝛼̂1, 𝛼̂2, 𝛼̂3] = [1.2092, 1.0098e+08, 

28.0569] 

41.8032 
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[𝜆̂1, 𝜆̂2, 𝜆̂3] = [4.081, 5.4970, 4.9764] 

𝜽 = −𝟎. 𝟐𝟖𝟓𝟕 

(𝑞 = 0.6) 

 

(3 components) 

[𝛼1, 𝛼2, 𝛼3] = [2, 2, 2] 

[𝜆1, 𝜆2, 𝜆3] = [5, 5, 5] 

q-Weibull model: 

𝑞̂ = 0.6814 (𝜽̂ = −𝟎. 𝟐𝟒𝟏𝟔), 𝛽̂ = 1.2065, 

𝜂̂ = 2.3145 

21.5858 

Clayton copula model 1: 𝜽̂ = −𝟎. 𝟐𝟒𝟎𝟔 

[𝛼̂1, 𝛼̂2, 𝛼̂3] = [0.9293, 2.4875, 1.4309] 

[𝜆̂1, 𝜆̂2, 𝜆̂3] = [4.6923, 5.6968, 2.8343] 

1.3052 

Clayton copula model 2: 𝜃 = 36.3432 

[𝛼̂1, 𝛼̂2, 𝛼̂3] = [2.8310e+15, 0.1868, 

2.4731] 

[𝜆̂1, 𝜆̂2, 𝜆̂3] = [5.9328, 0.2905, 3.1281] 

48.7056 

𝜽 = −𝟎. 𝟏𝟔𝟔𝟕 

(𝑞 = 0.8) 

 

(3 components) 

[𝛼1, 𝛼2, 𝛼3] = [2, 2, 2] 

[𝜆1, 𝜆2, 𝜆3] = [5, 5, 5] 

q-Weibull model: 

𝑞̂ = 0.8294 (𝜽̂ = −𝟎. 𝟏𝟒𝟓𝟕), 𝛽̂ = 1.5233, 

𝜂̂ = 2.4425 

47.5582 

Clayton copula model 1: 𝜽̂ = −𝟎. 𝟏𝟓𝟑𝟎 

[𝛼̂1, 𝛼̂2, 𝛼̂3] = [1.8296, 1.6244, 1.4890] 

[𝜆̂1, 𝜆̂2, 𝜆̂3] = [5.0506, 3.9624, 3.9404] 

12.4829 

Clayton copula model 2: 𝜃 = 22.0311 

[𝛼̂1, 𝛼̂2, 𝛼̂3] = [2.1215, 9.7726, 958.2601] 

53.6636 
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[𝜆̂1, 𝜆̂2, 𝜆̂3] = [2.2702, 5.4771, 7.7224] 

 

Table 4-6: Comparison between q-Weibull and copula models for systems with 

bathtub-shaped hazard rate 

Parameters for 

simulated systems 

Estimated parameters 

Log-

likelihood 

𝜽 = −𝟎. 𝟐𝟖𝟓𝟕 

(𝑞 = 0.6) 

 

(4 components) 

[𝛼1, 𝛼2, 𝛼3, 𝛼4] = [2, 

2, 0.2, 0.2] 

[𝜆1, 𝜆2, 𝜆3, 𝜆4]

= [5, 5, 5, 5] 

q-Weibull model: 

𝑞̂ = 0.5938 (𝜽̂ = −𝟎. 𝟐𝟖𝟖𝟗), 𝛽̂ = 0.6944, 

𝜂̂ = 1.3656 

32.7652 

Clayton copula model 1: 𝜽̂ = −𝟎. 𝟐𝟐𝟔𝟒 

[𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛼̂4] = [1.6432, 2.0870, 67.0353, 

0.1912] 

[𝜆̂1, 𝜆̂2, 𝜆̂3, 𝜆̂4] = [2.6412, 3.5363, 5.2235, 

45.8162] 

13.4870 

Clayton copula model 2: 𝜃 = 31.8880 

[𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛼̂4] = [3.8188, 35.9773, 0.7425, 

9.5270e+05] 

[𝜆̂1, 𝜆̂2, 𝜆̂3, 𝜆̂4] = [2.4752, 4.5776, 0.4954, 

4.9862] 

47.7635 

𝜽 = −𝟎. 𝟏𝟔𝟔𝟕 q-Weibull model: 54.3851 
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(𝑞 = 0.8) 

 

(4 components) 

[𝛼1, 𝛼2, 𝛼3, 𝛼4]

= [2, 2, 0.2, 0.2] 

[𝜆1, 𝜆2, 𝜆3, 𝜆4]

= [5, 5, 5, 5] 

𝑞̂ = 0.8359 (𝜽̂ = −𝟎. 𝟏𝟒𝟏𝟎), 𝛽̂ = 0.5507, 

𝜂̂ = 0.2928 

Clayton copula model 1: 𝜽̂ = −𝟎. 𝟎𝟗𝟐𝟔 

[𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛼̂4] = [2.1284, 2.5218, 0.2685, 

0.0038] 

[𝜆̂1, 𝜆̂2, 𝜆̂3, 𝜆̂4] = [3.7955, 4.1438, 0.3812, 

2.5892] 

23.2597 

Clayton copula model 2: 𝜃 = 14.7487 

[𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛼̂4] = [787.0128, 16.6465, 

0.3833, 2.2429] 

[𝜆̂1, 𝜆̂2, 𝜆̂3, 𝜆̂4] = [7662.5168, 6.2063, 

0.0862, 1.8009] 

60.0837 

 

It can be observed that both the q-Weibull model and Clayton copula model 1 can 

approximate the parameter 𝜃,  while Clayton copula model 2 cannot. Specifically, our 

proposed q-Weibull model can successfully approximate the parameter 𝜃 using only the 

failure times data; it does not require knowing which components failed. In comparison, 

the Clayton copula model 2 cannot recover the dependence parameter 𝜃  with only the 

failure times data. Although, as shown in Table 4-5 and Table 4-6, the Clayton copula 

model 2 has a higher Log-likelihood than the proposed q-Weibull model does, it contains 

too many parameters given the limited data, which can easily cause overfitting and yield 



 

96 

 

inaccurate parameter estimates. To recover the parameter 𝜃, the Clayton copula model 

requires information about which components failed, which the Clayton copula model 1 

does. 

Based on the experimental results presented in this section, the q-Weibull distribution 

model is a good approximation to the series system with dependence describe by Clayton 

copula, covering increasing and bathtub-shaped behaviors of the q-Weibull intensity 

function. Therefore, the proposed NHPP with q-Weibull as an underlying distribution 

model could be used to tackle a real reliability problem. 

 

4.5 Modified Kolmogorov-Smirnov (KS) Goodness-of-Fit Test 

We used a modified Kolmogorov-Smirnov (KS) goodness-of-fit test to check the 

hypothesis that failure time data of a repairable system can be fitted by a NHPP q-Weibull 

model. Modified means that the parameters for the NHPP q-Weibull intensity function are 

replaced by their maximum likelihood estimates. The critical values of the modified KS 

statistics under the null hypothesis were generated via a Monte Carlo simulation following 

the approach proposed by Park and Kim[65]. In this approach, as shown in Figure 4-10, 

𝐷0 is the modified Kolmogorov-Smirnov statistic: 

𝐷0 = max {𝐷
+, 𝐷−}, where 

𝐷+ = max
1≤𝑖≤𝑛

{
𝑖

𝑛
−

𝐻̂(𝑡𝑖)

𝐻̂(𝑡𝑛)
}, 

𝐷− = max
1≤𝑖≤𝑛

{
𝐻̂(𝑡𝑖)

𝐻̂(𝑡𝑛)
−

𝑖−1

𝑛
}, and 
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𝐻̂(𝑡𝑖) is the cumulative intensity function with estimated parameters 𝑞̂, 𝛽̂, 𝜂̂. 

 

 

Figure 4-10: The normalized empirical and fitted cumulative intensity function and 

the illustration of 𝐷0 

 

Table 4-7: The goodness-of-fit test simulation settings 

Case Copula parameter 𝜃 

(equivalent 𝑞) 

Number of 

components 𝑑 

Components’ shape 

parameters 𝛼𝑖, 𝑖 = 1, 2, … , 𝑑 

1 𝜃 = −0.2857 

(𝑞 = 0.6) 
3 [2, 0.2, 0.2] 

2 𝜃 = −0.3333 

(𝑞 = 0.5) 
3 [2, 0.2, 0.2] 
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3 𝜃 = −0.1667 

(𝑞 = 0.8) 
3 [2, 0.2, 0.2] 

4 𝜃 = −0.1667 

(𝑞 = 0.8) 
4 [2, 2, 0.2, 0.2] 

5 𝜃 = −0.2857 

(𝑞 = 0.6) 
4 [2, 2, 0.2, 0.2] 

 

We considered five cases in Table 4-7. For each case, we first generated a set of n = 30 

system’s failure times and used these to estimate the parameters 𝑞̂, 𝛽̂, 𝜂̂ for the NHPP with 

underlying q-Weibull distribution model, results are shown in Table 4-8. Notice that the 

parameters were estimated from one sample, while those parameters in Table 4-3 and Table 

4-4 were averages of 20 replications. We then generated 999 sets of samples 𝑡𝑗 =

{𝑡1
𝑗
, 𝑡2
𝑗
, … , 𝑡𝑛

𝑗}, (𝑡1
𝑗
<  𝑡2

𝑗
< ⋯ < 𝑡𝑛

𝑗
), 𝑗 = 1, 2,… , 999; each set had n = 30 samples from the 

q-Weibull distribution with the estimated parameters 𝑞̂, 𝛽̂, 𝜂̂.  For each set, we determined 

𝑞̂𝑗, 𝛽̂𝑗 , 𝜂̂𝑗, the maximum likelihood estimates for the 𝑗-th sample set. The test statistic 𝐷𝑗 

was computed with 𝑞̂𝑗 , 𝛽̂𝑗 , 𝜂̂𝑗  in place of 𝑞̂, 𝛽̂, 𝜂̂ . This yielded 1000 observations of 

Kolmogorov-Smirnov test statistic 𝐷. We counted the number of observations where 𝐷𝑗 

exceeds 𝐷0 and computed the p-value as this number divided by 1000. For the five cases, 

we determined the goodness-of-fit of the NHPP q-Weibull model, the modified 

Kolmogorov-Smirnov statistic 𝐷0 and the p-value are shown in the Table 4-8. We can 

observe that mostly the cases have low KS test statistic and high p-value, thus the NHPP 

q-Weibull model can fit the data sets. 



 

99 

 

 

 

Table 4-8: The goodness-of-fit results for five cases 

Case 

NHPP estimated parameters 

𝑞̂ 𝛽̂ 𝜂̂ 𝐷0 p-value 

1 0.5576 0.2447 0.2630 0.1286 0.600 

2 0.5212 0.5974 1.8523 0.1539 0.638 

3 0.7548 0.7532 1.9073 0.1150 0.648 

4 0.8199 1.1574 1.7714 0.0827 0.883 

5 0.5801 0.2387 0.1326 0.1878 0.167 

 

4.6 Confidence Intervals 

We developed the asymptotic confidence intervals for estimated parameters of the NHPP 

q-Weibull and Clayton copula models. According to the asymptotic properties of the 

maximum likelihood estimators, for the NHPP q-Weibull model parameters 𝑞̂, 𝛽̂, 𝜂̂, the 

related covariance matrix associated with the ML estimators can be estimated by the 

inverse of the observed information matrix 𝐼(𝑞̂, 𝛽̂, 𝜂̂|𝑡) , the negative of the second 

derivation of the log-likelihood function in Equation (4-19) evaluated at the point estimates 

𝑞̂, 𝛽̂, 𝜂̂ given data 𝑡 [66][67]. 
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 𝑣𝑎𝑟̂(𝑞̂, 𝛽̂, 𝜂̂|𝑡) = 𝐼−1(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

= −

[
 
 
 
 
 
 
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝑞̂2
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝑞̂𝜕𝛽̂
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝑞̂𝜕𝜂̂

𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝛽̂𝜕𝑞̂
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝛽̂2
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝛽̂𝜕𝜂̂

𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝜂̂𝜕𝑞̂
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝜂̂𝜕𝛽̂
 
𝜕2𝐿(𝑞̂, 𝛽̂, 𝜂̂|𝑡)

𝜕𝜂̂2 ]
 
 
 
 
 
 
 
−1

 

(4-35) 

 

This information matrix 𝐼(𝑞̂, 𝛽̂, 𝜂̂|𝑡)  can be computed using ‘hessian’ function in 

MATLAB Symbolic Math Toolbox. The details can be found on the GitHub. 

The asymptotic confidence intervals with(1 − 𝛾) ∙ 100%  of confidence for 𝑞̂, 𝛽̂, 𝜂̂  are 

given by, respectively: 

 𝐶𝐼[𝑞̂, (1 − 𝛾) ∙ 100%] = [𝑞̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂11;  𝑞̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂11] (4-36) 

 𝐶𝐼[𝛽̂, (1 − 𝛾) ∙ 100%] = [𝛽̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂22;  𝛽̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂22] 

(4-37) 

 𝐶𝐼[𝜂̂, (1 − 𝛾) ∙ 100%] = [𝜂̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂33;  𝜂̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂33] 

(4-38) 

Where 𝑧𝛾
2
, 𝑧1−𝛾

2
 are the 

𝛾

2
 and 1 −

𝛾

2
 quantiles of the standard normal distribution and 

𝑣𝑎𝑟̂11, 𝑣𝑎𝑟̂22, … , 𝑣𝑎𝑟̂33  are the diagonal elements of the covariance matrix associated with 

the maximum likelihood estimators 𝑞̂, 𝛽̂, 𝜂̂. 

Similarly, the covariance matrix associated with the Clayton copula model can be obtained 

by taking the negative of the second derivation of the log-likelihood function in Equation 

(4-29). 
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4.7 Application to Machine Failure Data 

To illustrate the proposed model, we applied it to the failure data of a load-haul-dump 

(LHD) machine (see Figure 4-11). The LHD machine is modeled as a series system with 

six subsystems: engine (E), hydraulics (H), transmission (Tr), brakes (B), tires and wheels 

(T), and others (O) (including body, cabin, and chassis).  The reliability block diagram of 

the LHD machine is shown in Figure 4-12. The example is a data set of 44 failure times (in 

hours) for LHD A machine given by Kumar et al. [7]; these are shown in Table 4-9 with 

the abbreviation of the subsystem that failed at that time. The data appear to have a bathtub-

shaped failure intensity. For failure data with non-monotonic intensity, commonly used 

distributions such as the Weibull distribution are usually inappropriate. Pulcini [8] 

proposed a Superposed-PLP (S-PLP) model that superpositions two independent power 

law processes to fit this data set, which confirmed the bathtub shape of the failure intensity. 

We used the q-Weibull distribution to analyze this failure data. 
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Figure 4-11: An LHD machine [7] 

 

Hydraulics Transmission Brake
Tires and 
wheels

Others inclusive 
of body, cabin, 

chassis, etc
Engine

 

Figure 4-12: A reliability block diagram of an LHD machine [7] 

 

Table 4-9: Failure times of LHD A machine [7]. The letters refer to the subsystems 

that failed: E=Engine; H=Hydraulics; Tr=Transmission; B=Brake; T=Tires and wheels; 

O=Others inclusive of body, cabin, and chassis. 
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2291 

(E) 
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2299 

(T) 

2317 

(T) 
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We assumed that the LHD machine had minimal repair, and we applied the proposed three 

models to analyze this data set. For the Clayton copula models, we specified all the 

subsystems’ failure times follow Weibull distribution with a hazard rate ℎ𝑖(𝑥) =

𝛼𝑖

𝜆𝑖
(
𝑥

𝜆𝑖
)
𝛼𝑖−1

, for 𝑖 = 1,2,… ,6, where 𝛼𝑖 is shape parameter and 𝜆𝑖 is a scale parameter for 

the i-th subsystem.  

For comparison, instead of q-Weibull as underlying intensity function, we also considered 

the NHPP model with other two intensity functions, one was a Weibull distribution with 

the intensity function ℎ(𝑡) =
𝛼

𝜆
(
𝑡

𝜆
)
𝛼−1

 and another one was an S-PLP model with the 

intensity function ℎ(𝑡) =
𝛽1

𝛼1
(
𝑡

𝛼1
)
𝛽1−1

+
𝛽2

𝛼2
(
𝑡

𝛼2
)
𝛽2−1

[8]. Moreover, we considered the 

independent models, in which the subsystems are independent with each other. The 

independent models are special cases of the Clayton copula models with 𝜃 = 0 . 

Independent model 1 represents the independent model known the component cause for 

the system failure, and independent model 2 represents the independent model unknown 

the component cause for the system failure. 

All the parameters were estimated by optimizing the ML problems using the adaptive 

hybrid artificial bee colony algorithm [64]. Table 4-10 compares the performance of these 

models. The proposed NHPP q-Weibull model yielded the smallest Akaike information 

criterion (AIC) and Bayesian information criterion (BIC) values. Using the modified 

Kolmogorov-Smirnov (KS) goodness-of-fit test approach described in Section 4.5, we 

determined the goodness-of-fit of these models, the modified Kolmogorov-Smirnov 
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statistic 𝐷0 and the p-value are also shown in Table 4-10. Both the Clayton copula model 

1 with known component cause and the proposed NHPP q-Weibull model have high p-

value of 0.972 and 0.971, respectively, which indicates these two models can fit the data 

very well. The NHPP Weibull model has the lowest p-value of 0.03. Besides, the NHPP q-

Weibull model with the shape parameters 𝑞 and 𝛽 shows that LHD machine has a bathtub-

shaped failure intensity, which has also been observed by Pulcini [8]. Moreover, the 

parameter 𝑞  in the PDF of q-Weibull distribution is estimated as 𝑞̂ =  0.9495, the 

corresponding approximation to the Clayton copula parameter 𝜃 =
1

2−𝑞̂
− 1 = −0.0481. 

The results from the Clayton copula model 1 with information regarding exact component 

cause show that the dependence among the subsystems exists with degree characterized by 

𝜃 = −0.0245. This dependence can be approximated by the q-Weibull distribution. 

Table 4-10: Comparison of NHPP and Clayton copula models.  

AIC = Akaike information criterion; BIC = Bayesian information criterion. 

Models Parameters 
Log-

likelihood 
AIC BIC 𝐷0 p-value 

NHPP 

q-Weibull 

𝑞̂ = 0.9495 

𝛽̂ = 0.5652 

𝜂̂ = 15.1495 

-207.9311 421.8622 427.2148 0.0764 0.971 

NHPP 

S-PLP 

𝛼̂1 = 11.89 

𝛽̂1 = 0.603 

𝛼̂2 = 912 

𝛽̂2 = 3.211 

-207.4867 422.9735 430.1102 0.0742 0.578 

NHPP 

Weibull 

𝛼̂ =  0.9257 

𝜆̂ = 40.8725 
-210.3067 424.6134 428.1818 0.1746 0.030 
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Clayton 

Copula 

Model 1 

𝛼̂1 = 0.7722 

𝜆̂1 = 114.6580 

𝛼̂2 = 0.4395 

𝜆̂2 = 20.3106 

𝛼̂3 = 3.6608 

𝜆̂3 =  1937.33 

𝛼̂4 = 0.8612 

𝜆̂4 = 770.2656 

𝛼̂5 = 1.1892 

𝜆̂5 = 687.9873 

𝛼̂6 = 2.3211 

𝜆̂6 = 1913.7023 

𝜃 = −0.0245 

-271.8093 569.6186 592.8131 0.0752 0.972 

Clayton 

Copula 

Model 2 

𝛼̂1 =  1.1823 

𝜆̂1 = 104.0686 

𝛼̂2 = 0.5896 

𝜆̂2 = 9.2704 

𝛼̂3 = 7.3851 

𝜆̂3 = 1395.8181 

𝛼̂4 = 2.2130 

𝜆̂4 = 6638.3318 

𝛼̂5 = 1.3512 

𝜆̂5 = 2810258.52 

𝛼̂6 = 33.0909 

𝜆̂6 = 72870.6967 

𝜃 = 16.8148 

-202.7734 431.5468 454.7413 0.0698 0.788 

Independent 

Model 1 

𝛼̂1 = 0.9071 

𝜆̂1 = 126.32 

𝛼̂2 = 0.5142 

𝜆̂2 = 26.3187 

𝛼̂3 = 4.3294 

𝜆̂3 =  1682.14 

𝛼̂4 = 1.0629 

𝜆̂4 = 628.7710 

𝛼̂5 = 1.4752 

𝜆̂5 = 619.5290 

𝛼̂6 = 2.8359 

𝜆̂6 = 1572.83 

-272.1280 568.2560 589.6663 0.1052 0.729 
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Independent 

Model 2 

𝛼̂1 =  0.6082 

𝜆̂1 = 161.5754 

𝛼̂2 = 0.6082 

𝜆̂2 = 54.3404 

𝛼̂3 = 156.2540 

𝜆̂3 = 2302.1496 

𝛼̂4 = 0.6082 

𝜆̂4 = 75.0654 

𝛼̂5 = 2.6416 

𝜆̂5 = 788.0360 

𝛼̂6 = 0.6082 

𝜆̂6 = 1998.8373 

-213.2592 450.5185 471.9288 0.0825 0.350 

Note: in the Clayton Copula Models and Independent Models (special cases of Clayton 

Copula Models with 𝜃 = 0 ), the estimators 𝛼̂i , 𝜆̂i  ( 𝑗 = 1, 2,… , 6 ) represent shape 

parameter and scale parameter for subsystems: Engine, Brake, Hydraulics, Transmission, 

Tire, and Other. 

 

 

The cumulative intensity functions and intensity functions for the above models are 

compared in Figure 4-13 and Figure 4-14, respectively. From Figure 4-13, with the 

exception of the NHPP Weibull model and the independent model with known component 

cause, one can observe that the models fit this data relatively well. Moreover, Figure 4-14 

gives several interesting observations. Firstly, only the NHPP Weibull model shows 

monotonically decreasing intensity function, whereas the other models show a bathtub-

shaped intensity function. Secondly, the proposed NHPP q-Weibull model (which has the 

advantage of fewer parameters to be estimated) is comparable with the Clayton copula 

model 1, which needs more information regarding the exact component causing the system 

failure. Thirdly, both the Clayton copula model 2 with unknown component cause and the 

independent model 2 with an unknown component cause have a rapid increase at the end 

of the failure intensity function curve, while the Clayton copula model 2 with unknown 
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component cause also has a jump around time 1200. This result occurs due to data 

overfitting because while these models have 12 or 13 parameters, the sample size of 44 is 

relatively small. As shown in Table 4-10, some of the estimated parameters are 

unreasonably large. In comparison, provided the information about which component 

caused the system to fail, one can observe that the Clayton copula model 1’s failure 

intensity curve is smoother. 

 

Figure 4-13: Comparison of cumulative intensity for LHD machine failures 
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Figure 4-14: Comparison of intensity functions for LHD machine failures 

Results from this application example show that the proposed NHPP with q-Weibull 

distribution could model the series system comprising dependent subsystems characterized 

by Clayton copula. The shape parameter 𝑞 in the q-Weibull distribution is connected with 

the Clayton copula parameter 𝜃, which measures the degree of dependence among the 

subsystems. 

 

We also provide the asymptotic confidence intervals for estimated parameters of the NHPP 

q-Weibull model and the Clayton copula model 1 in the application example according to 

the approach proposed in Section 4.6. The confidence intervals are shown in Table 4-11 
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and Table 4-12. Note that the negative lower bound of scale parameter 𝜂 may be due to the 

small sample size. Compared to the Clayton copula model, the proposed NHPP q-Weibull 

model has fewer parameters with smaller uncertainty. 

 

Table 4-11: Asymptotic confidence intervals for NHPP q-Weibull model 

Parameters 90% Confidence Intervals 

𝑞̂ = 0.9495 

𝛽̂ = 0.5652 

𝜂̂ = 15.1495 

[0.9082, 0.9908] 

[0.2671, 0.8633] 

[-15.7541, 46.0531] 

 

Table 4-12: Asymptotic confidence intervals for Clayton copula and subsystems 

Subsystems Parameters 
90% Confidence 

Intervals 

Engine 
𝑘̂ = 0.7722 

𝛼̂ = 114.6580 

[0.3205, 1.2240] 

[-72.5527, 301.8687] 

Brake 
𝑘̂ = 0.4395 

𝛼̂ = 20.3106 

[0.1615, 0.7175] 

[-41.7100, 82.3313] 

Hydraulics 
𝑘̂ = 3.6608 

𝛼̂ =  1937.3287 

[0.0373, 7.2843] 

[1105.2781, 2769.3794] 

Transmission 
𝑘̂ = 0.8612 

𝛼̂ = 770.2656 

[-0.0025, 1.7249] 

[-461.8302, 2002.3614] 

Tire 
𝑘̂ = 1.1892 

𝛼̂ = 687.9873 

[0.2250, 2.1534] 

[-78.5869, 1454.5615] 

Other 𝑘̂ = 2.3211 

𝛼̂ = 1913.7023 

[-0.3307, 4.9730] 

[649.1040, 3178.3005] 

System Copula 𝜃 = −0.0245 [-0.0695,0.0206] 

 

 



 

110 

 

4.8 Summary 

In this chapter, we have shown that the q-Weibull distribution can model a series system 

with dependent component failure times that are described by Clayton copula and that the 

parameter 𝑞 can approximate the Clayton copula parameter 𝜃, which measures the degree 

of dependence. We have also proposed the NHPP with q-Weibull as the underlying time 

to first failure (TTFF) distribution model as an approximation to the minimal repair process 

of a series system composed of multiple dependent components characterized by Clayton 

copula. The maximum likelihood (ML) method was developed to estimate the model 

parameters, and asymptotic confidence intervals based on ML asymptotic theory were also 

developed. 

 

Simulation experiments were conducted to validate the proposed NHPP q-Weibull model 

and showed that parameter 𝑞 could approximate the parameter 𝜃 in Clayton copula, for 

both systems with monotonic and non-monotonic failure intensity functions. Estimating 

the parameters of the q-Weibull model does not require information about which 

components failed, which is necessary for accurately estimating the parameters of the 

Clayton model.  In the simulation, we developed a sampling method for conditional failure 

times of dependent subsystems modeled by Clayton copula. A modified Kolmogorov-

Smirnov (KS) goodness-of-fit test statistic and p-value were used to determine the 

goodness-of-fit of the proposed NHPP q-Weibull model. 
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The proposed model and parameter estimation procedure have been successfully applied 

to a real failure data set of a load-haul-dump (LHD) machine characterized by a bathtub-

shaped intensity function. The results have shown that the proposed NHPP q-Weibull 

model has the advantage of fewer parameters with smaller uncertainty when used as an 

approximation to the Clayton copula approach, which in turn needs more information on 

the assumption for the underlying distributions of components and the exact component 

cause of system failure. The goodness-of-fit test results also have agreed that the proposed 

NHPP q-Weibull model outperformed other commonly used minimal repair process 

models, including NHPP Weibull and NHPP S-PLP, and the independent models (special 

cases of the Clayton copula model with 𝜃 = 0). 
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Chapter 5: Modeling Dependent Parallel Systems 

 

5.1 Overview 

This chapter considers the problems of modeling a parallel system with dependent 

component failure times and estimating the model’s parameters from failure time data. We 

propose a q-Fréchet distribution, which can be used to approximate the distribution of the 

failure time of a parallel system with dependent component failure times that are modeled 

as a Clayton copula. Similar to the q-Weibull distribution, the parameter 𝑞 in q-Fréchet 

distribution is an approximation to the parameter 𝜃 in Clayton copula, which measures the 

degree of dependence among the components. The maximum likelihood method is used 

for the model parameters estimation. A simulation study is conducted to evaluate q-Fréchet 

approximation. This chapter also shows that the q-Fréchet distribution can model the 

parallel system with common cause dependence. The proposed q-Fréchet distribution is 

applied to a data set of 18 two-motor parallel system’s failure times. 

 

5.2 q-Fréchet Distribution 

Fréchet distribution, also known as inverse Weibull distribution, is the type II generalized 

extreme value (GEV) distribution, which is the limit distribution of properly normalized 

maxima of a sequence of independent and identically distributed random variables. 
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The cumulative distribution function (CDF) of Fréchet distribution is as follows: 

 
𝐹𝑓(𝑡) = 𝑒𝑥𝑝(−(

𝑡

𝜎
)
−𝜉

), (5-1) 

where 𝜉 > 0 is shape parameter and 𝜎 > 0 is scale parameter, and support is 𝑡 > 0. 

Similar to the q-type generalization of Weibull distribution, by the substitution of the 

exponential function by a q-exponential [30], we develop a q-Fréchet distribution with the 

CDF as follows: 

 
𝐹𝑞𝑓(𝑡) = 𝑒𝑥𝑝𝑞 (−(

𝑡

𝜎
)
−𝜉

), (5-2) 

where the q-Exponential function exp𝑞(𝑥) is defined as: 

 
𝑒𝑥𝑝𝑞(𝑥) = {(1 + (1 − 𝑞)𝑥)

1
1−𝑞 ,     if 1 + (1 − 𝑞)𝑥 > 0,

0,                                                     otherwise.
 (5-3)  

Therefore, the q-Fréchet CDF can be rewritten as: 

 

𝐹𝑞𝑓(𝑡) = [1 − (1 − 𝑞)(
𝑡

𝜎
)
−𝜉

]

1
1−𝑞

. (5-4) 

The probability density function (PDF) of the q-Fréchet distribution is as follows: 

 

𝑓𝑞𝑓(𝑡) =
𝜉

𝜎
(
𝑡

𝜎
)
−𝜉−1

[1 − (1 − 𝑞) (
𝑡

𝜎
)
−𝜉

]

𝑞
1−𝑞

, (5-5) 

where 𝑞 > 0 and 𝜉 > 0 are shape parameters, and 𝜎 > 0 is a scale parameter.  

In the limit 𝑞 → 1, 𝐹𝑞𝑓(𝑡) reduces to the Fréchet CDF 𝐹𝑓(𝑡). 

Then, the hazard rate function is defined as: 
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ℎ𝑞𝑓(𝑡) =
𝑓𝑞𝑓(𝑡)

𝑅𝑞𝑓(𝑡)
=

𝜉
𝜎 (
𝑡
𝜎)

−𝜉−1

[1 − (1 − 𝑞)(
𝑡
𝜎)

−𝜉

]

𝑞
1−𝑞

1 − [1 − (1 − 𝑞) (
𝑡
𝜎)

−𝜉

]

1
1−𝑞

. (5-6) 

Equation (5-6) can represent different types of hazard rate functions according to the 

values of the shape parameters. Figure 5-1 illustrates the different behaviors of ℎ𝑞𝑓(𝑡) for 

𝜎 = 5 and specific values of the shape parameters 𝑞 and 𝜉. Table 5-1 shows a 

comparison between q-Weibull distribution and q-Fréchet distribution. 

 

 

Figure 5-1: Behaviors of the q-Fréchet hazard rate function for 𝜎 = 5 and different 

values of the shape parameters 𝑞 and 𝜉. 
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Table 5-1: Comparison between q-Weibull distribution and q-Fréchet distribution. 

 q-Weibull q-Fréchet 

𝑅(𝑡) or 𝐹(𝑡) 
𝑅(𝑡) = 𝑒𝑥𝑝𝑞 (−(

𝑡

𝜂
)
𝛽

) 

= [1 − (1 − 𝑞) (
𝑡

𝜂
)
𝛽

]

1
1−𝑞

 

𝐹(𝑡) = 𝑒𝑥𝑝𝑞 (−(
𝑡

𝜎
)
−𝜉

) 

= [1 − (1 − 𝑞) (
𝑡

𝜎
)
−𝜉

]

1
1−𝑞

 

𝑓(𝑡) 
𝑓(𝑡) 

=
𝛽

𝜂
(
𝑡

𝜂
)
𝛽−1

[1 − (1 − 𝑞)(
𝑡

𝜂
)
𝛽

]

𝑞
1−𝑞

 

𝑓(𝑡) 

=
𝜉

𝜎
(
𝑡

𝜎
)
−𝜉−1

[1 − (1 − 𝑞)(
𝑡

𝜎
)
−𝜉

]

𝑞
1−𝑞

 

Parameters 
Shape parameters: 𝑞 and 𝛽 

Scale parameter: 𝜂 

𝑞 > 0, 𝛽 > 0 and 𝜂 > 0 

Shape parameters: 𝑞 and 𝜉 

Scale parameter: 𝜎 

𝑞 > 0, 𝜉 > 0 and  𝜎 > 0 

Base model 

Weibull 

𝑅(𝑡) = 𝑒𝑥𝑝(− (
𝑡

𝜂
)
𝛽

) 

Fréchet 

𝐹(𝑡) = 𝑒𝑥𝑝(− (
𝑡

𝜎
)
−𝜉

) 

Applicable 

system structure 

Series 

𝑡 = min {𝑥1, 𝑥2, … , 𝑥𝑑} 
Parallel 

𝑡 = max {𝑥1, 𝑥2, … , 𝑥𝑑} 

Dependence 

model 

Clayton survival copula 

𝑅(𝑥1, 𝑥2, … , 𝑥𝑑)

= 𝐶̂(𝑅1(𝑥1),𝑅2(𝑥2),… , 𝑅𝑑(𝑥𝑑))

= [𝑅1
−𝜃(𝑥1) + 𝑅2

−𝜃(𝑥2) +⋯

+ 𝑅𝑑
−𝜃(𝑥𝑑) − 𝑑 + 1] 

−
1
𝜃  

Clayton copula 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑑)

= 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑑(𝑥𝑑))

= [𝐹1
−𝜃(𝑥1) + 𝐹2

−𝜃(𝑥2) +⋯

+ 𝐹𝑑
−𝜃(𝑥𝑑) − 𝑑 + 1] 

−
1
𝜃 

Assumption for 

component 

𝑅𝑖(𝑡) = 1 − (
𝑡

𝜆
)
𝛼

+ 𝑜 ((
𝑡

𝜆
)
𝛼

) 

t

λ
→ 0 

𝐹𝑖(𝑡) = 1 − (
𝑡

𝜆
)
−𝛼

+ 𝑜 ((
𝑡

𝜆
)
−𝛼

) 

t

λ
→ ∞ 
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5.3 Maximum Likelihood Estimation for Parameters 

The parameters of the q-Fréchet distribution are estimated via the maximum likelihood 

estimation method. Let 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛) be an n-dimensional vector of observed failure 

times 𝑡𝑖 , 𝑖 = 1,… , 𝑛, independently drawn from a q-Fréchet distribution. The likelihood 

function is given by: 

 
𝐿(𝑡|𝜎, 𝜉, 𝑞) =∏ 𝑓𝑞𝑓(𝑡𝑖)

𝑛

𝑖=1
 

=∏
𝜉

𝜎
(
𝑡

𝜎
)
−𝜉−1

[1 − (1 − 𝑞)(
𝑡

𝜎
)
−𝜉

]

𝑞
1−𝑞𝑛

𝑖=1
. 

(5-7) 

The log-likelihood function is as follows: 

 

 ℒ(𝑡|𝜂, 𝛽, 𝑞) = 𝑛𝑙𝑛(𝜉) + 𝑛𝜉 ln(𝜎) + (−𝜉 − 1)∑ ln(𝑡𝑖)
𝑛
𝑖=1 +

𝑞

1−𝑞
∑ ln [1 − (1 − 𝑞)(

𝑡𝑖

𝜎
)
−𝜉

]𝑛
𝑖=1 . 

(5-8) 

 

5.4 Modeling System Failure Time 

This section considers the time to failure of a parallel system with dependent component 

failure times described by Clayton copula and shows that a q-Fréchet distribution can 

approximate the time to failure distribution. 

Herein, we use the notation 𝑜(𝑥) [58] to denote a function of 𝑥 that satisfies the following 

property: lim
𝑥→0

𝑜(𝑥)

𝑥
= 0. 
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5.4.1 Clayton Copula Model 

Consider a system with 𝑑 components in parallel. The dependence of these d failure times 

can be described by a Clayton copula. Let the random vector (𝑋1, 𝑋2, … , 𝑋𝑑) represents the 

lifetimes of the 𝑑  components. Let 𝐹𝑖(𝑥𝑖) = Pr(𝑋𝑖 < 𝑥𝑖) , 𝑖 = 1,… , 𝑑  be the marginal 

distribution function. Let 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑑(𝑥𝑑)) be a Clayton copula. Assume the 

joint distribution function of the vector (𝑋1, 𝑋2, … , 𝑋𝑑) can be modeled as the Clayton 

copula: 

 P{𝑋1 < 𝑥1, 𝑋2 < 𝑥2, … , 𝑋𝑑 < 𝑥𝑑} = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑑(𝑥𝑑)) 

= [𝐹1
−𝜃(𝑥1) + 𝐹2

−𝜃(𝑥2) +⋯

+ 𝐹𝑑
−𝜃(𝑥𝑑) − 𝑑 + 1] 

−
1
𝜃 . 

(5-9) 

where 𝜃 ∈ [−1,∞)\{0}. 

Because the components are in parallel, the system failure time is the maximum of all the 

components’ failure times: 𝑡 = max {𝑋1, 𝑋2, … , 𝑋𝑑}.  That is, the system fails at time t 

when all the components failed at time t. Thus, from Equation (5-9), the CDF of the parallel 

system at time t is given as follows: 

 𝐹𝑠(𝑡) = 𝑃(𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑑} < 𝑡) 

= 𝑃(𝑋1 < 𝑡, 𝑋2 < 𝑡, … , 𝑋𝑑 < 𝑡) 

= 𝐶(𝐹1(𝑡), 𝐹2(𝑡),… , 𝐹𝑑(𝑡)) 

= [𝐹1
−𝜃(𝑡) + 𝐹2

−𝜃(𝑡) +⋯+ 𝐹𝑑
−𝜃(𝑡) − 𝑑 + 1]

−
1
𝜃 . 

(5-10) 
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5.4.2 q-Fréchet Approximation 

Consider a parallel system with identical components. Now, suppose that the CDF for a 

component 𝑖 can be expressed as follows: 

 𝐹𝑖(𝑡) = 1 − (
𝑡

𝜆
)
−𝛼

+ 𝑜 ((
𝑡

𝜆
)
−𝛼

), as 
𝑡

𝜆
→ ∞ (5-11) 

This leads to the following expression: 

 𝐹𝑖
−𝜃(𝑡) = 1 + 𝜃 (

𝑡

𝜆
)
−𝛼

+ 𝑜 ((
𝑡

𝜆
)
−𝛼

), as 
𝑡

𝜆
→ ∞ (5-12) 

After substituting Equation (5-12) into Equation (5-10), the system CDF can be expressed 

as follows: 

 

𝐹𝑠(𝑡) = [𝑑 ∙ (1 + 𝜃 (
𝑡

𝜆
)
−𝛼

+ 𝑜 ((
𝑡

𝜆
)
−𝛼

)) − 𝑑 + 1]

−
1
𝜃

 

= [𝑑 ∙ (𝜃 (
𝑡

𝜆
)
−𝛼

+ 𝑜 ((
𝑡

𝜆
)
−𝛼

)) + 1]

−
1
𝜃

 

≈ [1 + 𝜃𝑑 (
𝑡

𝜆
)
−𝛼

]
−
1
𝜃
. 

(5-13) 

Now, set 𝜃 = −(1 − 𝑞),   𝛼 = 𝜉 , and 𝑑
1

𝛼𝜆 = 𝜎. Substituting these into Equation (5-13) 

yields the following: 

 

𝐹𝑠(𝑡) ≈ [1 − (1 − 𝑞) (
𝑡

𝜎
)
−𝜉

]

1
1−𝑞

. (5-14) 
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This is the CDF for a q-Fréchet distribution, as shown in Equation (5-4). Thus, the 

dependent parallel system time-to-failure is approximately distributed as q-Fréchet 

distribution. 

 

5.5 Simulation Experiments 

To evaluate the accuracy of the a-Fréchet model approximating the lifetime distribution of 

the dependent parallel system presented in Section 5.4. We conducted simulation 

experiments of multiple parallel systems with dependent component failure times 

described by Clayton copula. In particular, the experiments were designed to show how 

well the q-Fréchet model could estimate the parallel system’s reliability function. The 

simulated systems included those with decreasing hazard rates and those with unimodal 

hazard rates. Section 5.5.1 describes the process for sampling failure times. Section 5.5.2 

presents the simulated systems and the simulation results. 

5.5.1 Data Generating 

Let 𝑡1, 𝑡2, … , 𝑡𝑛 ( 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛) represent the system’s failure times, which refer to 

the corresponding components 𝑗1, 𝑗2, … , 𝑗𝑛  of the system. The system failure time 𝑡𝑖  is 

determined by 𝑡𝑖 = max {𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 } , where 𝑡1

𝑖 , 𝑡2
𝑖 , … , 𝑡𝑑

𝑖   represent the components’ 

failure times. 

We develop a data sampling method based on the sampling method for Clayton copula 

[62], to generate components’ failure times 𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 , then the system failure time is 
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determined by the maximum of the components’ failure times 𝑡𝑖 = max {𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 } for 

𝑖 = 1,2,… , 𝑛 . The pseudo-code of the parallel system’s failure times data generating 

algorithm is given in Figure 5-2. 

01: For 𝑖 = 1,2,… , 𝑛 

02:      Generate a variate 𝑉 with distribution function gamma distribution 

Ga(
1

𝜃
) 

03:      Generate independent uniform variates 𝑋1, 𝑋2, … , 𝑋𝑑 

04: 
     Compute (𝑈1, … , 𝑈𝑑) = (𝜓 (−

ln(𝑋1)

𝑉
) , … ,𝜓 (−

ln(𝑋𝑑)

𝑉
)), where 𝜓(𝑡) =

(1 + 𝑡)−1/𝜃  

05: 
     Generate (𝑡1

𝑖 , 𝑡2
𝑖 , … , 𝑡𝑑

𝑖 ) by taking the inverse of 𝐹(𝑡) = 𝑒
−(

𝑡

𝜎
)
−𝜉

 

06:      𝑡𝑖 = max (𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑑
𝑖 ) 

07: End 

08: Return (𝑡1, 𝑡2, … , 𝑡𝑛) 

Figure 5-2: Pseudo-code of the parallel system’s failure times data generating algorithm 

5.5.2 Simulated Systems 

In this section, simulation experiments were conducted to verify that a parallel system of 

identical components from Fréchet distribution with dependence described by Clayton 

copula approximately follows a q-Fréchet distribution. The algorithms were implemented 

in MATLAB. In these experiments, the Clayton copula parameter 𝜃 satisfies 𝜃 ∈ [−1, 0), 

and parameter 𝑞  in q-Fréchet can approximate parameter 𝜃  in Clayton copula in the 

equivalent form with 𝑞 = 1 + 𝜃 . In this simulation study, suppose a parallel system 

composed of 𝑑  components with dependence. The components’ failure times follow 

Fréchet distributions with the CDF 𝐹𝑖(𝑥) = 𝑒𝑥𝑝[−(𝑥/𝜎𝑖)
−𝜉𝑖], which satisfies Equation (5-
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11). In these experiments, set the scale parameter 𝜎𝑖 = 5, for all the components 𝑖 =

1, 2, … , 𝑑. The ML estimates for parameters of the q- Fréchet distribution were obtained 

by maximizing the log-likelihood function in Equation (5-8) via an adaptive hybrid 

artificial bee colony algorithm [64]. Table 5-2 shows the parameters of the simulated 

systems from which we generated samples and the maximum likelihood estimated (MLE) 

parameters. For each simulated case, we ran 20 replications, and each replication had 𝑑 =

50 components and 𝑛 = 200 failures. The results in Table 5-2 suggest that the parameter 

𝑞  in the q-Fréchet distribution can approximate the Clayton copula parameter 𝜃  in an 

equivalent form with 𝑞 = 1 + 𝜃.  

Table 5-2: Simulation settings for systems and MLE parameters 

Parameters to generate data MLE parameters 

Clayton 

copula 

Component 

shape 

Component 

scale 

System 

shape 

System 

shape 

System 

scale 

𝜃 𝜉𝑖 𝜎𝑖 
𝑞̂ 

(1 + 𝜃) 
𝜉 𝜎̂ 

0.2 1 5 1.12 0.94 242.48 

0.5 1 5 1.37 0.94 249.74 

0.8 1 5 1.66 0.99 245.80 

0.2 2 5 1.22 2.03 35.24 

0.5 2 5 1.54 2.09 36.45 

0.8 2 5 1.79 2.05 36.59 

 

5.6 Application to a Two-Motor System Failure Data 

In this section, the q-Fréchet distribution is applied to the failure data of a parallel system 

with two motors. In the parallel system, the system fails when both motors fail. This is a 

parallel model taking into consideration the dependence between the failure times of the 
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two motors. The data were published and analyzed in Reliability Edge Home [68]. The 

data in Table 5-3 shows the time to failure for 18 such systems, and a graphical 

representation of the data is given in Figure 5-3. This data set has been analyzed by 

[69][70][71]. 

Table 5-3: Time to failure (in days) for two motors [68]. The letters refer to the motors 

that failed: A=Motor A; B=Motor B. 

System First failure 
Second 

failure 
System First failure 

Second 

failure 

System 1 65 (B) 102 (A) System 2 84 (A) 148 (B) 

System 3 88 (A) 202 (B) System 4 121 (B) 156 (A) 

System 5 123 (B) 148 (A) System 6 139 (A) 150 (B) 

System 7 156 (B) 245 (A) System 8 172 (B) 235 (A) 

System 9 192 (B) 220 (A) System 10 207 (A) 214 (B) 

System 11 212 (B) 250 (A) System 12 212 (A) 220 (B) 

System 13 213 (A) 265 (B) System 14 220 (A) 275 (B) 

System 15 243 (A) 300 (B) System 16 248 (B) 300 (A) 

System 17 257 (A) 330 (B) System 18 263 (A) 350 (B) 
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Figure 5-3: Times to failure (in days) for two motors. 

Consider the second failure time is the system’s failure time; we apply the q-Fréchet 

distribution to fit the system’s failure times data. The ML estimated parameters are shown 

in Table 5-4. 

Table 5-4: MLE parameters of q-Fréchet distribution 

q-Fréchet 𝑞̂ = 4.5413, 𝜉 = 10.8367, 𝜎̂ = 259.3707,  ℒ = −101.4542 

 

The cumulative distribution function (CDF) and hazard rate function for the fitted q-

Fréchet distribution are shown in Figure 5-4 and Figure 5-5, respectively. It shows that the 

model fits this data well, and the q-Fréchet hazard rate shows unimodal. 

0 50 100 150 200 250 300 350

Time (days)

Motor A

Motor B
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Figure 5-4: The empirical and fitted cumulative distribution function 
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Figure 5-5: Hazard rate function for the two-motor system. 

5.7 q-Fréchet from Environmental Common Cause Failure 

In this section, we show that the dependence of a parallel system could result from the 

environmental common cause failure. The q-Fréchet distribution can model a parallel 

system with common cause dependence. 

5.7.1 q-Fréchet Model 

When a system is deployed in a random environment, the reliability function will be 

affected by that environment. The environment has a common effect on all the components. 

For example, all of the components are vulnerable to the temperature condition, with higher 

temperature, the components have higher hazard rates and vice versa. The lifetime 
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distribution function will change accordingly. Assume the lifetime of component 𝑖 in lab 

environment follows a Fréchet distribution, i.e., the CDF is: 

 
𝐹𝑖(𝑡) = 𝑒

−(
𝑡
𝜎𝑖
)
−𝜉𝑖

 (5-15) 

Suppose the field environment where the component operates will have a random effect on 

the component’s lifetime distribution function, as below: 

 
𝐹𝑖,𝑧 = (𝐹𝑖(𝑡))

𝑧
= 𝑒

−𝑧(
𝑡
𝜎𝑖
)
−𝜉𝑖

 (5-16) 

Where 𝑧  represents the random effect from the environment, following a gamma 

distribution 𝑓(𝑧) =
𝑏𝑎

𝛤(𝑎)
𝑧𝑎−1𝑒−𝑏𝑧. Notice that all the components in a given environment 

have the same 𝑧  value. We chose the gamma distribution for two reasons: 1) gamma 

distribution is commonly used to describe the latent environment effect, and 2) using 

gamma distribution will lead to a closed-form solution as below. 

At a given environment, assume these components are conditionally independent, let the 

random vector (𝑋1, 𝑋2, … , 𝑋𝑑)  represents the lifetimes of the 𝑑  components, then the 

conditional joint CDF of d components at a specific environment is determined as: 

 𝑃(𝑋1 < 𝑡1, 𝑋2 < 𝑡2, … , 𝑋𝑑 < 𝑡𝑑|𝑧) 

= 𝐹1,𝑧(𝑡1) ∙ 𝐹2,𝑧(𝑡2) ∙ … ∙ 𝐹𝑑,𝑧(𝑡𝑑) 

= 𝑒
−𝑧(

𝑡1
𝜎1
)
−𝜉1

∙ 𝑒
−𝑧(

𝑡2
𝜎2
)
−𝜉2

… ∙ 𝑒
−𝑧(

𝑡𝑑
𝜎𝑑
)
−𝜉𝑑

 

= 𝑒
−𝑧∗∑ (

𝑡𝑖
𝜎𝑖
)
−𝜉𝑖𝑑

𝑖=1  

(5-17) 

If the components are in parallel, then the systems’ failure time is:  
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 𝑡 = 𝑚𝑎𝑥 {𝑋1, 𝑋2, … , 𝑋𝑑} (5-18) 

Then the lifetime distribution function of the parallel system with d components at a given 

environment is: 

 𝐹𝑠(𝑡) = 𝐹𝑠(𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑑} < 𝑡) 

= 𝑃(𝑋1 < 𝑡,𝑋2 < 𝑡, … , 𝑋𝑑 < 𝑡) 
(5-19) 

Considering all the environmental effects, the expected lifetime distribution function of the 

parallel system is: 

 
𝐹𝑠(𝑡) = ∫ 𝑃(𝑋1 < 𝑡, 𝑋2 < 𝑡,… , 𝑋𝑑 < 𝑡|𝑧)𝑓(𝑧)𝑑𝑧

∞

0

 

= ∫ 𝑒
−𝑧∙∑ (

𝑡
𝜎𝑖
)
−𝜉𝑖𝑑

𝑖=1
𝑏𝑎

𝛤(𝑎)
𝑧𝑎−1𝑒−𝑏𝑧𝑑𝑧

∞

0

 

=
𝑏𝑎

𝛤(𝑎)
∫ 𝑧𝑎−1𝑒

−(𝑏+∑ (
𝑡
𝜎𝑖
)
−𝜉𝑖𝑑

𝑖=1 )𝑧
𝑑𝑧

∞

0

 

=
𝑏𝑎

𝛤(𝑎)
∙

𝛤(𝑎)

(𝑏 + ∑ (
𝑡
𝜎𝑖
)
−𝜉𝑖

𝑑
𝑖=1 )

𝑎 

= (1 +∑
1

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖𝑑

𝑖=1
)

−𝑎

 

(5-20) 

 

When all components are identical, the above system’s lifetime distribution function is a 

q-Fréchet distribution function as: 

 
𝐹𝑠(𝑡) = (1 +

𝑑

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖

)

−𝑎

 (5-21) 
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5.7.2 Clayton Copula from the Environmental Common Cause Failure 

This subsection clarifies the relationship between the system’s and components’ lifetime 

distribution functions. Similar to the derivation of the system’s lifetime distribution, the 

lifetime distribution function of a single component 𝑖 is determined as: 

 
𝐹𝑖(𝑡) = (1 +

1

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖

)

−𝑎

, (5-22) 

which is a q-Fréchet distribution. 

Then, the system’s lifetime distribution function can be rewritten as: 

 
𝐹𝑠(𝑡) = (1 +∑

1

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖𝑑

𝑖=1
)

−𝑎

 

= (1 +∑ (1 +
1

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖

− 1)
𝑑

𝑖=1
)

−𝑎

 

= (1 +∑ ((𝐹𝑖(𝑡))
−
1
𝑎 − 1)

𝑑

𝑖=1
)

−𝑎

 

= (1 +∑ ((𝐹𝑖(𝑡))
−
1
𝑎)

𝑑

𝑖=1
− 𝑑)

−𝑎

 

= (∑ (𝐹𝑖(𝑡))
−
1
𝑎

𝑑

𝑖=1
− (𝑑 − 1))

−𝑎

 

(5-23) 

which means the system’s lifetime distribution function can be described as a function of 

the components’ lifetime distribution functions. This relationship is exactly the Clayton 

copula. 



 

129 

 

This provides one justification of our assumption in section 5.4 using the Clayton copula 

to model the dependence among components. The common cause failure from randomized 

environment would lead to the Clayton copula dependence among components. 

5.7.3 Simulation Validation 

We performed a simulation study to verify that q-Fréchet distribution can model a parallel 

system with common cause dependence when all components’ hazard rates are affected by 

a common randomized environmental effect. For a parallel system with 𝑑 = 2 identical 

components, each component follows the Fréchet distribution 

𝐹𝑖(𝑡) = 𝑒𝑥𝑝 (−(
𝑡

𝜎𝑖
)
−𝜉𝑖
) , with parameter 𝜎𝑖 = 1, 𝜉𝑖 = 2 (𝑖 = 1,2) . The environmental 

effect follows a gamma distribution  𝑓(𝑧) =
𝑏𝑎

𝛤(𝑎)
𝑧𝑎−1𝑒−𝑏𝑧  with 𝑎 = 1, 𝑏 = 1 . Then, 

considering the environmental effect, the component’s lifetime distribution is  

𝐹𝑖,𝑧 = (𝐹𝑖(𝑡))
𝑧
= 𝑒

−𝑧(
𝑡

𝜎𝑖
)
−𝜉𝑖

. We generated N=1000 failure times for the parallel system 

using the algorithm below: 

01: 𝑁 = 1000,𝑎 = 1, 𝑏 = 1, 𝑑 = 2, 𝜎𝑖 = 1, 𝜉𝑖 = 2, samples = [] 

02: For j = 1, …, N 

03:         𝑧 = gamma_random(𝑎, 𝑏) 

04:         For i = 1,…,d 

05:                 u=uniform_random() 

06: 
                𝑡𝑖 = 𝜎𝑖 (

𝑧

−𝑙𝑛(𝑢)
)

1

𝜉𝑖 

07:         End 

08:         𝑡𝑠𝑦𝑠𝑡𝑒𝑚 = max (𝑡𝑖) 

09:         samples[𝑗] = 𝑡𝑠𝑦𝑠𝑡𝑒𝑚  
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10: End 

11: Return samples 

Figure 5-6: Pseudo-code of the failure times data generating algorithm for a parallel 

system with common cause dependence. 

Then, we used a q-Fréchet distribution to fit the sampled parallel system’s failure times 

data. The fitted CDF was compared with the empirical CDF, as shown in the following 

Figure 5-7. The figure shows that the two lines are perfectly aligned. This validates our 

theory that the common cause failure results from a randomized environment leads to a q-

Fréchet distributed lifetime. 

 

Figure 5-7: Comparison of the empirical and fitted CDFs of the system’s lifetime. 
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We also used the above algorithm to simulate the lifetime of the two-motor parallel system 

example. For a parallel system with identical components, the lifetime distribution of the 

system is 𝐹𝑠(𝑡) = (1 +
𝑑

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖
)
−𝑎

 as shown in Equation (5-21), where d = 2. 

Meanwhile, the lifetime distribution of the system has the standard q-Fréchet 

representation 𝐹𝑠(𝑡) = [1 − (1 − 𝑞) (
𝑡

𝜎
)
−𝜉

]

1

1−𝑞

 as shown in Equation (5-4), whose 

parameters were estimated by ML estimation, as 𝑞 = 4.5413, 𝜉 = 10.8382, 𝜎 =

259.4715 as shown in Table 5-4. Comparing the two representations, we can have the 

shape parameter of the environmental effect 𝑎 =
1

𝑞−1
= 0.2824. Notice that, in the 

simulation, we take the scale parameter of the environment effect 𝑏 =  𝑎 , so that the 

expected environmental effect is 𝐸(𝑧) = ∫ 𝑧𝑓(𝑧)𝑑𝑧
∞

0
= 𝑏/𝑎 =  1 . Lastly, from 1 +

𝑑

𝑏
(
𝑡

𝜎𝑖
)
−𝜉𝑖

= 1 − (1 − 𝑞) (
𝑡

𝜎
)
−𝜉

, we can have components’ parameters 𝜎𝑖 =

𝜎 (
𝑏(𝑞−1)

𝑑
)
1/𝜉

= 243.3967, 𝜉𝑖 = 𝜉 = 10.8382. 

Using the algorithm in Figure 5-6, setting these parameters 𝑎 = 0.2824, 𝑏 = 0.2824,𝑑 =

2, 𝜎𝑖 = 243.3967, 𝜉𝑖 = 10.8382, we sampled N=1000 lifetime pairs of motor A and B, 

plotted in the following Figure 5-8, it shows that the common cause failures between the 

two motors, i.e., the two motors fail relatively close to each other. 
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Figure 5-8: Simulated lifetime pairs of motor A and B. 

The system’s lifetime is the maximum value of the two motors’ lifetimes. Hence, we have 

the 1000 system’s lifetimes. Figure 5-9 shows the well alignment between the empirical 

CDF from the 1000 system’s lifetimes and the predicted CDF. Note that the predicted CDF 

is not fitted from the 1000 sampled lifetimes but predicted from the original data with 18 

samples. 
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Figure 5-9: Comparison of simulated empirical and predicted CDFs. 

5.8 Summary 

In this chapter, a q-Fréchet distribution was proposed to approximate the distribution of the 

failure time of a parallel system with dependent component failure times that are modeled 

as a Clayton copula. We implemented the maximum likelihood (ML) method for 

estimating the model’s parameters from failure time data. Simulation experiments were 

conducted to evaluate the q-Fréchet approximation and showed that parameter 𝑞 could 

approximate the parameter 𝜃  in Clayton copula. One example of dependence was 

illustrated as common cause dependence when all components’ hazard rates were affected 
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by a common randomized environmental effect. We have shown that the q-Fréchet 

distribution can model the parallel system with common cause dependence. The proposed 

q-Fréchet distribution was successfully applied to a data set of 18 two-motor parallel 

systems’ failure times.
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Chapter 6: Conclusions, Contributions and Recommendations for 

Future Research 

 

6.1 Conclusions 

This dissertation has demonstrated that the q-Weibull distribution is a promising alternative 

distribution for reliability modeling and constitutes another alternative distribution model 

for the reliability analyst. In this research, q-Weibull distribution has been successfully 

applied to fit failure times data and to model the reliability of systems, including dependent 

series systems and dependent parallel systems. 

The q-Weibull distribution is flexible and useful in the context of reliability engineering as 

it allows for the modeling and analysis of various behaviors of the hazard rate - 

monotonically decreasing, monotonically increasing, constant, unimodal, and bathtub-

shaped - with a single set of parameters. The maximum likelihood (ML) method was 

developed to estimate the q-Weibull distribution parameters. The ML estimates of the q-

Weibull parameters were accurate and precise with small bias and MSE. Intervals estimates 

for the q-Weibull parameters were provided, including asymptotic intervals based on the 

ML asymptotic theory, parametric and non-parametric bootstrapped confidence intervals. 

The proposed method for the ML constrained q-Weibull problem was also applied to an 

example involving failure data characterized by a bathtub-shaped hazard rate function. 
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In terms of system reliability, this dissertation has shown that the q-Weibull distribution 

can model a series system with dependent component failure times that are described by 

Clayton copula and that the parameter 𝑞 can approximate the Clayton copula parameter 𝜃, 

which measures the degree of dependence. The NHPP with q-Weibull as the underlying 

time to first failure (TTFF) distribution model was proposed as an approximation to the 

minimal repair process of a series system composed of multiple dependent components. 

The maximum likelihood (ML) method was developed to estimate the model parameters, 

and asymptotic confidence intervals based on ML asymptotic theory were also developed. 

Estimating the parameters of the q-Weibull model does not require information about 

which components failed, which is necessary for accurately estimating the parameters of 

the Clayton model. Simulation experiments were conducted to validate the proposed NHPP 

q-Weibull model and showed that parameter 𝑞  could approximate the parameter 𝜃  in 

Clayton copula, for both systems with monotonic and non-monotonic failure intensity 

functions. In the simulation, we developed a sampling method for conditional failure times 

of dependent subsystems modeled by Clayton copula. The proposed model and parameter 

estimation procedure have been successfully applied to a real failure data set of a load-

haul-dump (LHD) machine characterized by a bathtub-shaped intensity function. The 

results have shown that the proposed NHPP q-Weibull model has the advantage of fewer 

parameters with smaller uncertainty when used as an approximation to the Clayton copula 

approach, which in turn needs more information on the assumption for the underlying 

distributions of components and the exact component cause of system failure. A modified 

Kolmogorov-Smirnov (KS) goodness-of-fit test statistic and p-value were used to 
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determine the goodness-of-fit of the proposed NHPP q-Weibull model. The goodness-of-

fit test results also have agreed that the proposed NHPP q-Weibull model outperformed 

other commonly used minimal repair process models, including NHPP Weibull and NHPP 

S-PLP, and the independent models. 

Besides modeling series systems, this dissertation proposed a q-Fréchet distribution, dual 

distribution to q-Weibull distribution, to approximate the distribution for the failure time 

of a parallel system with dependent component failure times that are modeled as a Clayton 

copula. Similar to q-Weibull distribution, the parameter 𝑞 in q-Fréchet distribution is an 

approximation to the parameter 𝜃  in Clayton copula, which measures the degree of 

dependence among the components. A simulation study was conducted to evaluate q-

Fréchet approximation. We also have shown that the q-Fréchet distribution could model 

the parallel system with common cause dependence. The proposed q-Fréchet model was 

applied to a data set of 18 two-motor parallel systems’ failure times. The data appeared to 

have a unimodal failure intensity.  

In this research, all the models’ parameters were estimated by the maximum likelihood 

(ML) method. However, the intricate likelihood functions imposed significant numerical 

difficulties in estimating its parameters, which has limited the number of applications of q-

Weibull distribution so far. Such a difficulty can explain the limited number of applications 

based on the q-Weibull model given that parameter estimation, and data fitting are crucial 

steps for reliability analyses. In this research, an adaptive hybrid artificial bee colony 

(AHABC) algorithm has been proposed to solve the ML problem, which combines the 

global exploration of ABC and the local exploitation of the Nelder-Mead simplex search. 
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The exploitation ability of Nelder-Mead improves the local search performance of ABC. 

Numerical results showed that the proposed AHABC algorithm efficiently finds the 

optimal solution for the q-Weibull ML problem, comprising different behaviors of the 

hazard rate and sample sizes. The results also showed that the proposed AHABC 

outperformed both ABC and similar algorithms in terms of accuracy and convergence 

speed in the context of the maximum likelihood problem for the q-Weibull distribution. 

To conclude, the proposed AHABC for parameter estimation showed that the q-Weibull is 

a promising alternative distribution for reliability modeling of failure times data and series 

and parallel systems composed of multiple dependent components. 

6.2 Contributions 

The major contribution of this research to state-of-the-art is the fundamental understanding 

of q-Weibull distribution in modeling lifetime data and the dependence among 

components. Specifically, the dissertation has the following state-of-the-art contributions: 

 

• Analytically derived that the q-Weibull distribution approximates the distribution 

of failure time of a series system with dependent component failure times that are 

described by Clayton copula and that the parameter 𝑞 could approximate the 

Clayton copula parameter 𝜃, which measures the degree of dependence; 

• A novel NHPP with q-Weibull as the underlying time to first failure (TTFF) 

distribution model was proposed as an approximation to the minimal repair 

process of a series system composed of multiple dependent components. The 
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maximum likelihood (ML) method was developed to estimate the model 

parameters, and asymptotic confidence intervals based on ML asymptotic theory 

were also developed. 

• A new q-Fréchet distribution was proposed that could approximate the 

distribution of the failure time of a parallel system with dependent component 

failure times that are modeled as a Clayton copula. 

• The environmental common cause failure was revealed as one example of the 

dependence modeled by the Clayton copula. 

Besides the theoretical contributions, this dissertation also contributes to the engineering 

practice of using q-Weibull distribution. The contributions of this research to reliability 

engineering practice can be summarized as follows: 

• A complete approach was developed for the reliability lifetime data fitting by q-

Weibull distribution; A new algorithm AHABC was proposed to solve q-Weibull 

distribution ML problem; 

• A modified Kolmogorov-Smirnov (KS) goodness-of-fit test statistic was 

developed to determine the goodness-of-fit of the proposed NHPP q-Weibull 

model; 

• Two powerful lifetime distributions: q-Weibull distribution and q-Fréchet 

distribution were provided for fitting lifetimes data as alternative distributions to 

other commonly used ones.  

• Multiple simulation algorithms, including the conditional failure time data 

sampling for a series system with dependence described by Clayton copula, the 
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failure time data sampling for a parallel system with dependence described by 

Clayton copula, and the failure time data sampling for a parallel system with 

common cause dependence were presented to generate dependent failure time 

data. 

 

6.3 Recommendations for Future Research 

This research considered the value of using the q-Weibull distribution in solving typical 

problems in reliability engineering: the lifetime data fitting and modeling of series and 

parallel systems with dependence. Although we have demonstrated the successful 

applications of q-Weibull in these problems, there are some limitations of this research and 

some future research are recommended as follows:  

• The introduction of additional generalizations, like the use of linear or nonlinear 

transformation of time, use of multiple distributions, the time dependence of 

parameters, etc., as it was done with Weibull, will further enhance flexibility and 

accuracy of the q-Weibull model; 

• This research proposes to use a q-Weibull distribution to model a dependent series 

system, and to use a q-Fréchet distribution to model a dependent parallel system, 

both series (𝑘 = 𝑛) and parallel systems (𝑘 = 1) are special cases of the k-out-n 

system, more complex systems such as k-out-n systems, series-parallel systems 

should be studied; 
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• A wider range of reliability problems can incorporate the q-Weibull model, such 

as stress-strength analysis [72], optimal preventive maintenance policies [73][74], 

optimal system design [75], competitive risks [76]. 
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