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Summary. In this paper, information theoretic inference methology for
system modeling is applied to estimate the probability distribution for the
number of customers in a general, single server queueing system with
infinite capacity utilized by an infinite customer population. Limited to
knowledge of only the mean number of customers and system equilibrium,
entropy maximization is used to obtain an approximation for the number
of customers in the GGl queue. This maximum entropy approximation is
exact for the case of G=M, ie, the M|M|l gueue. Subject to both inde-
pendent and dependent information, an estimate for the joint customer
distribution for queueing systems in tandem is presented. Based on the
simulation of two queues in tandem, numerical comparisons of the joint
maximum cntropy distribution is given. These results serve to establish the
validity of the inference technique and as an introduction to information
theoretic approximation to queueing networks.

1. Introduction

Classical queueing theory [1-31 has proven to be quite successful in modeling
both communication networks [4, 5] and computer systems [6, 7]. In most cases,
rather unrealistic assumptions about either the underlying arrival process (e.g.,
Poisson) or serivice distribution (e.g.,, negative exponential) must be employed
to obtain results as it is under these assumptions that queueing theory most
easily yields solutions. Because the processes of “real world” systems generally
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do not obey this exponential structure, the success of the models has remained
in doubt.

Shore [8] has proposed an cxplanation based on information theoretical
system modeling and the principle of maximum entropy or, more generally, the
principle of relative-entropy [9]. In Shore’s approach, an abstract system
model consisting of various “states” is introduced. The probability of the
occurrence of a certain state is estimated by the maximum entropy distribution
subject to known information in the form of expected values of functions of the
states. A relationship between the abstract system and the actual system is
thereby established and estimates of desirable probability distributions of the
model arc obtained. Shore utilizes this technique to derive both the equilib-
rium and time-dependent probability distribution for the number of customers
(number of jobs, number of calls, ctc) in M|M|o: [N and M|M|oo queueing
systems.

In this paper, information theoretic system modeling is applied to estimate
the probability distribution for the number of customers in a general, G|G|1,
queueing system. The extension to queueing networks is considered through
the approximation of N systems in tandem.

Benes [10], it appears, first proposed use of maximum entropy and statis-
tical mechanical analysis of large-scale communication systems. For a tele-
phone system in which only the expected number of calls in progress is
known, Bene§ shows that the maximum entropy distribution is precisely that
which is obtained as the equilibrium distribution of an ergodic, reversible
birth-death Markov process with constant birth and death rates. A direct
implication of this result is that constrained only by the expected number of
customers in the system, the maximum entropy approximation to a single
service queueing system is the celebrated M|M|l queue. The maximum en-
tropy distribution is, of course, obtained independently of the underlying
stochastic processes and under moderately few technical assumptions [9].

Ferdinand [11] uscs the principles of statistical mechanics to derive the
solution to the M|M|1|N (finite capacity) queue. In later work, Shore [12]
establishes maximum entropy (termed information theoretic) approximations
for a number of “performance distributions™ of M|G|! and G|G|l queues at
equilibrium. These performance distributions, such as the number of customers
in the system, a customer’s waiting time, or the number served in a busy
period, are estimated subject to moments of the interarrival and service time
distributions. It is demonstrated that, using relatively few moments, that maxi-
mum entropy provides good approximations to a variety of M|G|l systems.
Further, for many of the distributions, the approximations yield exact results
when G =M. Using an approach similar to that of Shore, El-Affendi and
Kouvatsos [13] independently establish a maximum entropy approximation to
the number of customers in a M|G|1 system as well as the service distribution
corresponding to the estimate. Further, an approximation to a specific G|M |1
queue is determined.

In Sect. 2 of this paper, the general relative entropy formalism and tech-
nique for solution are presented. and the specialized case of entropy maximi-
zation is discusscd. These techniques are applied in Sect. 3 to derive the
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maximum entropy approximations to the G|G|1 queueing system. In Sect. 4,
utilizing the G|G|l approximation, the maximum cntropy approximation to
the joint distribution of the number of customers in N queues in tandem is
established. A discussion of maximum entropy “product form™ solutions sub-
ject to information on the marginal and joint distribution is included. In
Sect. 5, numerical comparisons of the maximum entropy approximation for
known or simulated distributions for two queues in tandem are given. The
paper i1s concluded by a general discussion in Sect. 6.

2. Problem Statement and Relative-Entropy Minimization

Consider a system that has a countable sct S of possible states with
p(S)>0, S8, i=1,2,..., (1)
Y p(S)=1 2

where p(S;) is the probability of the occurrence of the state S,. Assume that
there exists a “true” distribution, ¢*eD which is unknown. It is desirable to
estimate this distribution ¢* based on incompletc information. Let p be the
current estimate or initial value distribution of ¢ ™.

Suppose new information about ¢* becomes available in the form of
expected values of known functions, f,; [=1,2,.... M, of the states as follows:

T (SYAS) =S 3)

The constraints (1)-(3) do not precisely identify g*. Indeed, besides the true
distribution, ¢*, there exists a subset of distributions D' of D which also
satisfies all constraints. One way of uniquely choosing an estimate for ¢*, well-
accepted in the literature [14, 15, 97, is the method of minimizing the relative
entropy (also known as cross-entropy, Kullback-Leiber number, directed diver-
gence, or discrimination information), namely, choose ¢eD so that H[g,p]
defined by Sy
H{g.p] =Y ¢(S;) log i) 4
La.p) = (S o (45 )
is minimized. The choice of ¢ as above is called the final value distribution.
For estimating probability distributions, relative-entropy minimization has
been shown to be self-consistent and uniquely correct [9], and, thercfore, the
estimates are sometimes called information theoretic approximations. It turns
out [15-17] that if there exists a solution to (4) such that the constraints (1)-(3)
are satisfied, then that solution has the form

M
a5 =p(S)oxp (o= 3. Bif(S)) (5)

=1
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at all states, except possibly on a set for which ¢ is identically zero [16]. In (5),
B, 1=0,1,....M are Lagrangian multipliers. Further, if f5; can be determined
such that the constraints (1)-(3) are satisfied. then a solution to (4) exists* and
is given by (5). From {2) and (5), the following partition function exp(f,) given
by

M
exp(fo) =D exp(— Y B, /(S (6)
{ =1
or
M
Bo=log¥ cxp (ﬂ 5 /fl_l}(S;)) 7
i =1

can be defined, noting that fi, is a function of the other multipliers. If the sum
in (7) converges and, in particular, assumes a closed form solution, then the
multipliers may be determined via the following relations:

— = ®

In the event that no closed form is obtainable or the system (8) is inconsistent,
the multipliers must be approximated by numerical techniques [18]. For sys-
tems that have an uncountable number of system states, the sums arc replaced
by integrals in the usual way.

Entropy Muximization

When little is known a priori about the distribution to be estimated, a natural
choice for the initial value distribution is one in which all states are given
equal weight, i.e., the uniform distribution on S. In this case, the solution ¢ in
(4) is said to muximize the entropy H given by

H{q]= =} 4(S)loglq(S,). )
When a solution exists, ¢ is denoted the maximum entropy approximation to g™
and is given by

aS)=exp (== T AufiS)). (10

Note that (10) is identical to (5) with the initial value distribution deleted.

A large value of the entropy functional (9) corresponds to a high degree of
uncertainty. The maximum entropy distribution can thus be interpreted as the
probability distribution that reflects maximum uncertainty while utilizing all
available information. In this sense, it is the “least biased™ or “most con-
servative” distribution one can propose which satisfies all constraints.

In the following section, the methodology of relative-entropy minimization
is applicd to obtain approximations to the number of customers in a G|G|I
system at equilibrium.

*  The issue of existence of a solution has been studied by Csiszar [16]
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number of customers is the M|M|1 queue. It turns out that this approximation
is sometimes a satisfactory cstimate for the M |G|l system [12], especially
when the service distribution is close to exponential, ¢.g.. the M|H, |l system,
but as a gencral G|G|1 approximation, there is no reason to assume (13) will
be “close™.

To specify the queucing system, we imposc additional constraints. Namely,
as is well-known [1, 2], all single server systems at steady state satisfy the
cquilibrium condition

T=q©) 1 (16)

s, ay
which has the interpretation that the average rate of arrivals to the system is
cqual to the average rate of departures. Now. subject to (11)-(12) and rewriting
(16) as

qO)y=1-p (17)
where p=s,/u,, the following queueing system approximation can be consid-
ered. The constraint (17) can be posed as

Y I(kyg(K=k)y=1—p

k=0

1 if k=0
I(k)= . 18
() {() il k>0 (18

where

The maximum entropy solution has the form
g(K=k)y=exp(—=f,—f, k=B, 1tk). (19)
For notational convenience, pose
x:=exp(—f,) y:=cxp(—pf,) z:=exp(—f,)

and observe from (19) that

Xz k=0
K=k= . 20
4q( ) {.\'yk k>0 {20)
From (11), (12), (17), and straightforward manipulations, we obtain:
LK) —p
Ky’
Cyl=p) - (KK>—p)
B | Y Ry
p(t—=y) p
U= 7

T4y (Ko—p

Substituting the values for x, y. = in (20). the approximation to the GIG]]
queueing system is given by
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Il—p k=0

[(ufj-,,) (") e .

For the particular case of p=<{K /A1 +{K>), (21) reduces to ¢(K=k)=
(1 =p)(p)* the exact M{M|1 formula as expected. It is noteworthy that in [12]
(17) 1s applied not as a constraint but as a condition on the solution, (13). This
results in a G{G|l approximation given by (14) which is clearly less general
than (21).

In the following section, utilizing the approach which led to the G|Gil
approximation, maximum entropy approximations to the joint distribution of
the number of customers in more than one queueing system is examined and
the approximation to queues in tandem is presented.

J(K=k)=

4. Maximum Entropy Approximation to Queueing Systems in Tandem

Under certain conditions, the relative-entropy joint distribution, or, specifically,
the maximum entropy distribution, is cqual to the product of relative-entropy
distributions. The concept of product form distribution is stated precisely
below.

Definition. A joint probability distribution ¢ (K. K., ..., K,) is of the product
Sform if

N
g K K. Ky)=]]g"(K)

=1

L., the joint distribution is equal to the product of the marginal distributions
4 (K), 1Si<N.

The above definition 15, of course, equivalent to the random variables
K, K, ....K, being statistically independent. Much of this section will be
devoted to the discussion of when the approximation is of the product form.

Muximum Entropy Approximation to N General Queueing Systems

Subject to constraints only on the mean number of customers in ¢ach system
and cquilibrium, it is now shown that the maximum cntropy approximation to
the joint distribution of the number of customers in N queueing systems is a
“product form™ solution. The cquilibrium condition for each system is as
before; the average arrival rate is equal to the average departure rate. For
notational simplicity, let

(K,>:=the expected number of customers in system i
and
S
P = =the utilization factor for system i
u
1
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where s and a{ arc the first interarrival and service moments of system i.
Under the above assumptions on the constraints of the joint distribution, the
following result can be shown.

Proposition 1. The maximum entropy approximation to the distribution of the
mumber of customers in N GGl queueing systems at equilibrium is of the
product form, ie.,

q(Kl,Kz,...‘KN)zAﬁq(K,-) (22)
where .
[] —p; k;=0
IR =k) = l(”lﬁ ,,,) (S@;&)k‘ k>0 @3)
(KD =p; (K l

Proof. Because there are constraints only on the marginal distributions, the
joint maximum entropy distribution has the form

2N

¢(K K, ...,Ky)=cxp (—/3(,~ > /3,,/;-(1(1.1(2,.4..1(,\.))

=1

where, by assumption, f{(K,,K,.....K,) is a function of only K. Specifically,

2N N
xp (o= L BAK Kavoor K ) =expl = o) TTexpt =K, =2 1K)

i=1 =
by simply relabeling the multipliers f3,,=/,. I{K,) is defined by (18). Under the
assumption that the marginal distributions satisfy the normalization constraint,
the product form follows. By (22), it is clear that the maximum entropy
approximation to each marginal distribution is exactly the G|G]l approxima-
tion given by (21) and (23} is obtained. Q.E.D.

[t should be emphasized that Proposition ] is not a result on queueing
networks. A queueing network is an inter-connected group of queueing systems
where customers can enter an individual “node™ (queueing system), extract
scrvice, and then either depart the network completely or go to another node
and extract more scrvice. In order to discuss approximating distributions to
such systems. many new parameters must be considered, such as the network
topology or the possible transitions between systems. To utilize information
theoretic analysis, it is necessary to capture the system interaction through
appropriate equilibrium constraints. In the certain instances where one has
knowledge of rate balance equations for each individual node of a network as
well as system equilibrium rate balance equations, one possible approach
follows from relative-entropy minimization subject to fully decomposable sub-
sct and aggregate constraints [19]. This technique is not considercd here;
instead, it turns out that the approach utilized for the single queueing system is
applicable to an clementary queucing network, namely, queueing systems in
tandem.
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Maximum Entropy Approximation to Tandem Queues at Equilibrium

A simple queucing network topology is N queues in tandem. The tandem
queueing network of consideration consists of N queucing systems 1n which
customers departing node i immediately enters node i+ 1. It is assumed that
once a customer enters the first node, he must extract service at cach node
before departing the network and reentering the arriving customer population.
The arrival rate for node i+1 is therefore the departure rate for node i It is
further assumed that the system as a whole is at equilibrium, so, by the
topology, it follows that

1 1—¢g*(K;=0) 1

W ) TUU+
ay 8 ay

(24)

Le, the average arrival rate to all nodes is 1dentical and thercfore must be
equal to the arrival rate to the first node; 1/a\". Hence, subject to (24),
equilibrium, and the expected number of customers in cach node, (22)-(23), is
the maximum entropy approximation to the distribution of the number of
customers in a network of tandem queues where p, has the particular form

5
Pi _“(1“ ’

Although the interconnection of the tandem queues can be addressed by
(24), the form of the approximation (22) is generally incorrect. The only known
tandem network with a product form distribution for the number of customers
in the network is onc with Poisson arrivals to the first node and where
customer scrvice times in each node are distributed according to an e¢xponen-
tial distribution. Morcover, the service times for a specific customer are inde-
pendent from node to node. The product form follows directly from Burke’s
Theorem [2], and it turns out that each node is an M|M|1 queue [2]. Thus, in
order to obtain a maximum cntropy approximation to the tandem network
which is not of the product form, it is necessary to repose the inference
problem and obtain the approximation subject to “dependent” information.
This notion of dependent information is now made precise.

Maximum Entropy Approximation Subject to Joint Information

Subject to information only on the marginal distribution, the maximum en-
tropy approximation to a joint probability distribution is of the product form
[17]. Conversely, if there is any hope of capturing the possible dependence of
random variables, it is nccessary to use constraints which give information on
two or more random variables simultaneously, i.c.,

T SK K K g(K K o Ky =K Ky K ).

Ki.K,, ..., Kn
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Constraints of this form are on the joint distribution and will be termed joint
constraints. A special casc of interest occurs when the function of the random
variables, f(K,,K,,...,Ky) is of the form

J(K,K,,....Ky) =K K} ... K&

where i, j, and k aré integers, then the joint constraint is a joint moment of the
true distribution.

There is nothing in the maximum entropy formalism which disallows ob-
taining the maximum cntropy solution subject to constraints only on the joint
distribution. Under the assumption that the problem is well-defined, it turns
out that all marginal distributions are identical. 1t appears, however, that in
general, nothing can be stated about whether the approximation to the joint
distribution is of the product form.

The relative-entropy approximation subject to constraints on both the mar-
ginal and joint distribution can still be of the product form. Under the
assumption that the initial value distribution is of the product form, necessary
and sufficient conditions are presented for the special case of moment con-
straints. The proof of the following proposition is given in the Appendix.

Proposition 2. The relative-entropy approximation to ¢* (K, K,,...,Ky) subject
to both marginal and joint moment constraints is of the product form if and only
if each joint constraint is equal to the product of marginal constraints satisfied
by the approximarion.

If the random variables K, are correlated, then joint constraints can be
used to force probabilistic dependence of the approximation. In the present
application where the random variables represent quantities of individual sys-
tems, joint constraints thereby provide a means for the modeling and eventual
analysis of system intcraction.

As a special application of the preceding result, consider the maximum
entropy approximation to the joint distribution ¢™ (K, K,) subject to normal-
ization and the covariance of the random variables K| and K, te,

Cov(K,; Ky):= Z (K —<(KDIK, —<(K D) ¢(K 1, K).
K|,K>
This is not a valid constraint as the covariance cannot be written as the
expected value of a single function of the random variables. However, if the
problem is posed as the determination of the maximum entropy distribution
subject to <K >, {K,», and (K, K,), the problem is generally well-defined and
the solution will automatically satisfy the covariance, Cov(K, K,). Noting that

Cov(K, K,»=(K,K,)—<{(K »<{K,>

and under the assumption of zero covariance, the joint constraint is equal to
the product of marginal constraints. Hence, subject to constraints only on the
means and the first joint moment, the maximum cntropy approximation is of
the product form if and only if the random variables are uncorrelated.
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Maximum Entropy Approximation to Tiwo Queues in Tundem

Using the preceding ideas. the maximum entropy approximation to the num-
ber of customers in a two-node tandem queueing network subject to both
marginal and joint constraints is now presented. Two separate approximations
to ¢ " (K, K,) arc considered.

The first approximation is obtained subject to normalization, and the
independent information: (K>, p,, and {(K,», p, where p,=s/a). As al-
ready noted, the maximum entropy solution is a special case of Proposition 1.
Let ¢, (K, K,) denote this approximation which is given by

4, (K Koy =q, (K ) g, (K))
where
Jl —pi k=0
g (K, =k)= 2 K> —p.\k
11( i ) l( pl )(< 1>_ pl) k>0
(K
The second approximation is obtained subject to the same constraints on
¢,(K,K,) and the first joint moment, (K, K,>. The form of the approxima-
tion denoted, ¢,(K . K,), is given by

i=1,2. (25)

‘Iz(Ker):CXP("/50'/31K1 *ﬁzl(Kl)_ﬁus"[341(K2)_B5K1 K2)~ (26)

In this case, no analytic form could be found and, for the forthcoming numeri-
cal results, (26) will be estimated by the APL function of Johnson [18], which
computes estimates of relative-entropy approximations given an arbitrary con-
straint matrix. These approximations will be compared in the following section
for a variety of two-node queucing networks.

5. Numerical Results

As lar as can be determined, there are essentially no known distributions for
the number of customers in a network of tandem queues except for a tandem
network of M[M|1 queucs. In order to compare the approximations, a simula-
tion of two queues in tandem was performed using an APL function which
computes the jomt distribution. The simulated distribution will be denoted
JUK LK)

To verify the accuracy of the simulation, a chi-square goodness of fit test
(201 was performed at the five percent level for the MiM|1—- M|l system.
After performing the test, it was determined that the null hypothesis; the
distribution observed is the joint distribution for the number of customers is a
Jacksonian tandem network [2] of M|M|! queues could not be rejected.

Two different networks were simulated, one in which dustomers require
service according to the same general distribution in each node but have
independent service times and one in which a customer has the identical service
time in both nodes. One reason for considering these networks is that for the
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simulation distributions, Cov(K,K,) was generally larger than for systems
with independent, identically distributed service times. In both networks, cus-
tomers arrive to the first node according to a Poisson process. and the first
node is therefore an M|G|1 queue. A comprehensive analysis of the network
where customers have identical service times in both nodes under the assump-
tion of Poisson arrivals to the lirst queue is given in Boxma [21], the particu-
lar case where the first node is an M|M|l queue is considered in Pincdo and
Wollf [22].

As stated, the approximations (25)-(26) arc for tandem networks with
general interarrival and service distributions. The forthcoming examples are
restricted, however, to systems with Poisson arrivals to the first system. There
arc two rcasons for this: one is the aforementioned interest of such networks:
the other reason is that these results serve to cxtend cxamples presented by
Shore [12] for single M|G|1 systems. Moreover, in the {irst three examples, the
departure process from the first mode is not Poisson and so the second system
is truly a G|G|l qucue, and thus the numerical results give some insight on
maximum entropy approximations to general queucing systems.

Numerical results are presented in terms of the joint distribution of the
simulated distribution and the two maximum entropy approximations. Several
examples are given based on various service distributions. The statistics <K,
(K,>. and (K, K,y are computed from ¢*(K, K,), the constraints. 1 —p, and
1 —p, are derived from ¢*(K,K,). The approximations are compared via the
following measures: the relative entropy between ¢;(K,.K,) and ¢’ (K, K,)

g (K, Ky
Hlg,q*]= Y ¢{K, K))log——~—= =12
KIZKZ PEETERK LK)
the sum of the squarc of the pointwise difference between ¢,(K,.K,) and
¢*(K,, K,),

Z (¢, K, K) —q* (K Ky)?  i=1,2
K1 Kz

and the maximum absolute pointwise difference between ¢;(K,,K,) and
(K. Ky)

max [q,(K,K,)—¢"(K.K,)| i=1.2.

(K1.K2)
A “small” value for cach measure implies the distributions are “close™ In the
case where ¢,(K, =k, K,=k,) is closc to ¢*(K, =k,, K, =k,) for cach pair ki,
k,, the relative-entropy, H[g;¢*], can be considered the average percentuge of
relative difference between the distributions. This interpretation is valid, for
example, when the maximum absolute pointwise difference is a very small
value and the ratio ¢,(K |, K,)/¢*(K,,K,) is thereby close to one. It then follows
that
‘li(K1~Kzl_1)

4K, K ) (
(K K ) logdiZ 22 5 (KK,
Y.4:(K, K,)log K. Y q,(K,.K)) KK

¢ (K,
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Example I M{H =101

L/‘(K L 1\‘3)
Simulation Distribution for M HL[1= 111 Tandem Network

K, 0 1 2 3 4 5
K 1
0 0.1390 0.0%61 00322 0.0304 0.0216 0.0134
I 0.0831 0.0466 0.0316 0.0184 0.0130 0.0096
2 0.0476 00311 0.0163 00114 0.0087 0.0055
3 0.0340 0.0020 0.0150 0.0087 0.0057 0.0035
4 0.0261 0.0132 00095 00053 0.0041 0.0021
5 0.0165 0.007% 0.0047 00027 0.0026 0.0014
(K. .K 3)
Maximum Entropy Distribution Subject o Utilization
(K >=1.77(K,>=183

K, 0 1 2 3 4 S
K 1
0 0.1410 0.0799 0.0527 0.0347 0.0229 0.0151
1 0.0826 0.0469 0.0309 0.0204 0.0135 0.0088
2 0.0543 0.0304 0.0200 0.0132 0.0087 0.0057
3 0.0346 0.0197 00130 0.0083 0.0056 0.0037
4 0.0224 0.0127 0.0084 0.0053 0.0036 0.0024
5 0.0143 0.0083 00054 0.0036 00024 0.0016
42 K K)
Maximum Entropy Distribution Subject to Utilization
(K,y =177 (K. =183 (K, K ,>=314

K, 0 I 2 : 4 5
K,
1) 0.1390 0.0793 00527 0.0350 0.0232 0.0154
1 0.0822 00469 0.0310 0.0203 0.0135 0.0090
2 0.0336 0.0304 0.0020 0.0132 0.0087 0.0057
3 0.0349 00198 0.0130 0.0083 0.0056 0.0037
+4 0.0228 0.0128 0.0084 00053 0.0036 0.0023
3 Q0148 (L0083 00054 0.0035 0.0023 00015

In this first example, customers arrive o the first node according to a Poisson
process with rate 1 a\" =1, then proceed to a service arca consisting of two
paratlel servers. The service distribution is the hyperexponential distribution.
The first node is therefore the MH, [T system. The service density, b{1), is given
by
bity=jexp(—i)+3exp(—-20) (27
from which it follows that §{"’ =3 8. Hence, p, =5,8. By (24), the arrival rate o
the second node is also equal to one, even though the departure process from
the first node is not Poisson. The customers receive service in the second node
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with density given by (27), but each customer has a service time length
independent of his service time in the first system. Regardless of this inde-
pendence condition, the utilization factor of the second system is given by p,
=5/8. The simulation was run for 5,016 customers, and from ¢%(K,, K,), the
following statistics were computed: (K,>=1.77, {K,>=1.83, and <{K,K,>
=3.14. From the Pollaczeck-Khinchin mean value formula [2] (cf. page 187),
{(K;>=1.79 when computed from the true distribution, g*(K,), so the simula-
tion value is extremely close. Note that Cov(K |, K,)= —0.1; thus, the simulat-
ed distribution is only slightly correlated.

Example 2 MH,|1-1|1

¢(K,,K,)
Simulation Distribution for M|H,|1—1|l Tandem Network

K, 0O 1 2 3 4 5
K,
0 0.2020 0.0764 0.0387 0.0249 0.0131 0.0083
| 0.1020 0.0490 0.0257 0.0209 0.0120 0.0083
2 0.0418 0.0265 0.0225 0.0173 0.0115 0.0086
3 0.0199 0.0197 0.0166 0.0141 0.0085 0.0046
4 0.0095 0.0142 0.0164 0.0122 0.0056 0.0047
S 0.0031 0.0081 0.0070 0.0038 0.0036 0.0038
qy(K,.K,)

Maximum Entropy Distribution Subject to Utilization
(K,>=1.70 (K,>=1.70

K, 0 1 2 3 4 S

K,

0 0.1410 0.0855 0.0544 0.0346 0.0220 0.0140
1 0.0855 0.0520 0.0331 0.0210 0.0134 0.0085
2 0.0054 0.0331 0.0210 0.0134 0.0085 0.0054
3 0.0346 0.0210 0.0134 0.0085 0.0054 0.0034
4 0.0220 0.0134 0.0085 0.0054 0.0034 0.0022
S 0.0140 0.0085 0.0054 0.0034 0.0022 0.0014
4,(K(, K5)

Maximum Entropy Distribution Subject to Utilization
(K,>=170 (K,>=170 (K,K,)y=41

K, 0 1 2 3 4 5
K 1
0 0.1560 0.0925 0.0534 00303 00178 0.0103
1 0.0925 0.0569 0.0342 0.0205 0.0123 0.0074
2 0.0534 00342 0.0214 00134 0.0084 0.0052
3 0.0308 0.0205 00134 0.0087 0.0057 0.0037
4 0.0178 0.0123 0.0084 0.0057 0.0038 0.0026
5 0.0103 0.0074 0.0052 0.0037 0.0026 0.0018
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All discussion of Example I applies o this second example, except now cus-
tomers have identical service times in each node. The service density in node
one is again given by (27), so the first system is an M|H,|l queue and the
network will be denoted by M|{H,|1—1I|l where “I” indicates identical service
times. From Example 1, it follows that p, =5/8=p,. The simulation was run
for 2,536 customers, and the following statistics were computed: {K,;>=1.70
={K,)» and (K,K,>=41. Hence, Cov(K,K,)=1.22, and customers having
identical scrvice times in each node significantly increases the correlation of the
random variables K| and K, as expected.

Example 3 M|D|1-1|1

g (K Ky)
Simulation Distribution for M{D|1—1{1 Tandem Network

K, 0 1 2 3 4 5
KI
0 0.2930 0.1950 0 0 0 0
1 0.1530 0.1780 0 0 0 0
2 0.0363 0.0916 0 0 0 0
3 0.0049 0.0345 0 0 0 0
4 0.0008 0.0101 0 0 0 0
5 0 0.0021 0 0 0 0
4,(K,,K3)

Maximum Entropy Distribution Subject to Utilization
(K »=0.765 (K,>=0.512

K, 0 { 2 3 4 5

K,

0 0.2500 0.2440 0.0057 1.34%x10-% 3.14x10-° 737 x10-8
1 0.1630 0.1600 0.0037 8.77 x 10-3 2.05%x107° 481 x10-8
2 0.0056 0.0055 0.0013 3.04x10-° 7.12x1077 1.67 x10-%
3 0.0196 0.0019 0.0004 1.05%x10-3 2.47%x1077 578 x107?
4 0.0067 0.0066 0.0002 3.64x10-° 8.84x 108 854 x10-8
5 0.0023 0.0023 0.0005 1.26 x 10-¢ 296x10-8 0.6930 x 107
4>(K 1, K5)

Maximum Entropy Distribution Subject to Utilization
(K »=0.765 (K,>=0512 (K, K,)=0521

K, 0 1 2 3 4 5
K,
0 0.2820 0.2150 0.0025 2.95% 10~ 346x 1077 405%10-°
1 0.1580 0.1700 0.0028 494x 1073 7.96 x 10~ 126 x 10
2 0.0043 0.0065 0.0015 3.54% 10 825x 1077 192 x 10-#
3 00118 0.0025 0.0008 270x 1075 898 x 107 292108
4 0.0032 0.0096 0.0004 207 % 10~ 9.56x 107 443% 10"
5 0.0009 0.0037 0.0002 1.58 % 105 9.56 % 10" 6.72x 10
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In the third example, customers again arrive to the first node according to a
Poisson process with rate equal to one. Each customer then demands a fixed
amount of service of length equal to 0.5. The first node is therefore an M|D|!1
system with service time density given by

- b(t)=dtt =0.5) (28)

where o is the usual Dirac delta function. From (28), it is clear that s, =0.5,
and by a similar argument as in the preceding cxamples, the utilization for
both systems is equal to 0.5, i.c, p, =0.5=p,. The simulation was run for 1.024
customers, and the following statistics were computed: (K> =0.765, {(K,)
=0.512, and {(K,K,> =075 From the Polaczeck-Khinchin formula (K}
=0.75, when computed for the true distribution, so, again, the simulation
statistic is very close. For the simulation distribution, Cov(K,, K,)=0.13, so, as
in Example 1, the random variables are essentially uncorrelated. The small
correlation likely results from the light load on the first system; this is only
conjecture, however, and more investigation is necessary to establish any
connection between “loading” and correlation.

Example 4 M|IM|1 1|1

G(K,.K,)
Simulation Distiibution for M|A[1--111 Tandem Network

K, 0 1 2 3 4 5
K 1
0 0.0982 - 0.0382 0.0253 0.0175 0.0099 0.0077
1 0.0527 0.0318 0.0247 0.0167 0.0125 0.0083
2 0.0290 0.0242 0.02061 0.0186 0.0152 0.0079
3 0.0169 0.0189 0.0218 0.0214 0.0152 0.0076
4 0.0082 0.0114 0.0175 0.0217 0.0107 0.0095
S 0.0040 0.0072 0.0116 0.0179 0.0090 0.0080
¢, (K K3)
Maximum Entropy Distribution Subject to Utilization
(K,>=336 (K,>=283

K, 0 1 2 3 4 5
K 1
0 0.0400 0.0451 0.0324 0.0233 0.0167 0.0120
1 0.0378 0.0427 0.0300 0.0220 0.0138 0.0113
2 0.0289 0.0326 0.0234 0.0168 0.0121 0.0090
3 0.0221 0.0249 0.0179 0.0128 0.0092 0.0066
4 0.0169 0.0190 0.0137 0.0098 0.0070 0.0050
5 0.0129 0.0145 0.0104 0.00735 0.0033 0.0039
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42K Ky)
Maximum Entropy Distribution Subject to Utilization
(K> =336 (K.)=283(K,K, =134

K, 0 1 2 3 4 5
K 1
0 0.0467 0.0526 0.0346 0.0227 0.0149 0.0097
1 00443 0.0509 0.0341 0.0228 00153 0.0102
2 0.0315 0.0369 0.0251 0.0172 00117 0.0080
3 0.0224 0.0267 0.0186 0.0129 0.0090 0.0062
4 0.0159 0.0193 0.0137 0.0097 0.0070 0.0049
5 0.0113 0.0140 0.0101 0.0073 0.0052 0.0038

Table 1. Comparison of Approximations for Example | M|H,|t—H,|1 Tandem Network

Constraints: (K> =177 (K,> =183 (K, K,)=3.14

H[4,.¢"] Z(‘L(Kl*KZ)_LIX(KPKZ))Z max [¢; (K, Ky) —¢*(K . K3)]
q, 6.24 x 1073 1.43x 10-* 6.20 % 10+
4, 1.60x 103 1.44 x 10+ 6.60x 10~2

In the fourth example, customers arrive to the first node with rate equal to 0.8
and demand service according to a negative exponential distribution. Hence,
the first node is an MM |1 quecue. The service density is given by

b(ty=cxp(—1)

SO s(l”zl. Each customer has identical service times in each node, and thus
this network differs from a tandem network of M|M]|l queues discussed in
connection with Jackson’s and Burke's theorems. The utilization factor for
each node is given by p, =0.8=p, The simulation was run for 4,840 cus-
tomers, and the following statistics were computed: (K> =3.36, (K,» =2.83,
and {K,K,>=13.14. From the Pollaczeck-Khinchin formula, (K> =4 when
computed from the true distribution. For the simulation distribution
Cov(K,, K,)=3.9, which is the largest correlation among the examples.

For cach example, the results of the comparisons are given in Tables 1-4.

Due to the generally small probabilitics of any given state, both approxi-
mations ¢, (K, K,) and ¢,(K,,K,) arc “close” to the simulated distributions
under the measures of maximum pointwise difference and the sum of the
square of pointwise difference. Hence, the relative-entropy measure (average
percentage of relative difference) is the most revealing. By the relative-entropy
measure, both approximations in examples one and two differ from the simula-
tion by less than one percent. The addition of the joint constraint results in a
2.4 percent increase in accuracy in Example 3 and a four percent increase in
Example 4, the most correlated among the examples.
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Table 2. Comparison of Approximations for Example 2 M{H,11-1|1 Tandem Network

Constraints: (K,>=1.70 (K,>=170 (K, K,>=4.1

H{g;q'] Z(‘I.(Ksz)“‘lS(Kl'Kz))z max |4, (K. K;) —¢"(K,.K,)|
4, 1.01 x 10~ s 576 x 1073 6.17x 102
4, 7.38x 1072 3.60x10°3 460x10"2

Table 3. Comparison of Approximations for Example 3 M|D[1- /{1 Tandem Network

Constraints: (K> =0.765 (K ,>=0.512 (K, K,»=0.521

H[q,4"] Z(‘I.'(KI-KZ)"‘J‘(KwKz))z max |q,(K,. K)) —¢* (K, K,)I
g, 5.8 x 1072 7.05x 1073 494 x10-?
q, 2.39%x 1072 1.53x 1073 263x10"°

Table 4. Comparison of Approximations for Example 4 M{M|1—1I|] Tandem Network

Constraints: (K> =336 (K,>=283 (K K,>=13.14

Hly4,4'] Z(‘l.(KlvKz)_(is(Kth))z max |¢,(K |, K} —¢* (K, K,)|
¢, 2.33x 107! 5.56x 103 5.82 x 10~2
q, 191 x10~! 503 x10-3 5.15x 1072

5. Discussion

In this paper, information theoretic analysis was applied to obtain an explicit
maximum entropy distribution for the number of customers in a G|G|1 system
subject to “minimal” information. The approach was then extended to multiple
simultancous G|G|l systems where the approximation was obtained subject to
independent information resulting in an independent (product form) distribu-
tion. The result is of interest primarily because it sparked a general discussion
of product form approximations where it was determined that dependency of
random variables is captured only by imposing constraints on both the mar-
ginal and joint distributions. Moreover, although not directly applicable, the
result serves to stimulate interest in the use of this inference technique for
networks of queueing systems.

The difficulty in applying maximum entropy analysis to a network of
queues lics in capturing the interconnection of the systems. As a first step, a
very simple network, queues in tandem, was considered. For this network, the
interconnection of the queues was captured by the equilibrium constraint,
which led to an explicit formula for the number of customers in the tandem
system subject to the mean number of customers in each system. A secondary
problem, that of the form of the approximation, was addressed by adding an
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additional constraint on the first joint moment. This result is interesting
because it identifies minimal information for a joint system that addresses the
possible dependency of the random variables.

The maximum entropy approximation could prove useful in applications in
which knowledge of the full probability distribution is necessary. One example
is queueing network control. By straightforward techniques (measurement or
prediction), it is common to know (or have unbiased estimates of) average
flows and average service rates and thereby average queue sizes. Higher order
moments such as variances are needed, however, to apply modern distributed
routing algorithms that utilize estimates of flow derivatives. The more sophisti-
cated versions of these algorithms require the entire distribution to predict the
optimal control function. It should be noted that the maximum entropy ap-
proximation has been shown to be continuous as a function of the constraints
[233. Thus, if only good estimates of moments are available (for cxample,
through repeated sampling), the approximation will be close to the approxima-
tion subject to the true (unknown) moments.

The approximation could also be used as an additional tool in con-
ventional operational analysis [24-26]. Indeed, in the present approach, stand-
ard performance measures are utilized as constraints for the distribution. In
any case, if the customer population approximation is close to the true distri-
bution in some precise sense, then it can provide a more extensive analysis of
system interaction. For example, knowledge of the joint customer distribution
readily provides the distribution for the number of customers in the network as
well as marginal and conditional customer distributions. From the conditional
distributions, conditional moments can be computed and, under appropriate
assumptions, estimates of conditional expected delays and sojourn (response)
times become available.

Tandem queues were selected to introduce the approach to networks.
Because of the special topological structure, much is known [21, 22, 27] about
such systems. The focus here is not the particular study of tandem queues but
an initial consideration of the issues involving information theoretic analysis
for queueing networks. 1t seems clear that the approach applied to the tandem
network can be extended to more general networks through imposed marginal
and joint constraints along with analogous equilibrium constraints that reflect
the topological structure.

To assess the quality of the two maximum entropy distributions as approxi-
mations to the customer distribution of a tandem network, scveral different
examples were presented. The particular case of a two-node nctwork was
considered where customers extracted service according to a variety of distri-
butions and had either identical or independent and identically distributed
service times in each node. Based on these examples, it appears that minimal
information results in “good” approximations. In particular, for small cor-
relation, it appears that the product form approximation is.quite accurate. This
approximation is appealing as it has closed form solution. When, however, the
random variables are strongly correlated, the joint constraint should become
more important.
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A question that arises in comparing probability distributions is what con-
stitutes a good mecasure of closeness. For distributions such that the probability
ol any particular state is small, for example, if the mass is spread “uniformly”
over a large state space, the maximum absolute pointwise difference.of the sum
or the squarc of the pointwisc difference of the two distributions is expected to
be small. In this casc, it appears that the relative-entropy between the two
distributions is best among the three proposed measures as it relates the two
on a “micro” level. Emphasizing this measure {or the tandem examples, it is
rcasonable to say that the approximations, in particular those obtained with
the joint constraint, are all close. Of course, far more analytical and numerical
work is needed to say anything precise about the approximations, but as an
inference technique for single system queues and possibly networks of queues,
the results arce promising.

Acknowledgements. The authors thank J. Shore for reading an earlier version of this paper and
providing many helpful suggestions, and R. Johnson, A. Makowski, and B. Hughes for many
helpful and stimulating discussions.

Appendix

Proof of Proposition 2. For notational simplicity, let
K:=(K,K,,...,Ky).
By system independence [17], if the initial value distribution is of the product

form, the relative-entropy approximation to ¢{K) subject only to constraints on
the marginal distribution, 1.c.,

LK GK) =) f;(K)g(K)=(f{(K)>  i=1,2,... L, j=12...M
K K

is of the product form, N
q(K)=[14(K)). (29)

i=1

Now, (29) also satisfies the constrained problem of the relative-entropy distri-
bution subject to

LK) gK)={f(K)y  j=1,2,...M (30)
K
and
N
;fz(K)q(K)=<fi(K)>='l_[<fi,‘(K,~)> I=M+1,M+2,....N (30

where {f,(K;)> is an element of the set of marginal constraints given by (30).
The relative-entropy solution subject to (30)-(31) and normalization is given by

M N
q(K):p(Kl)p(Kz)...[)(KN)cxp(—/ﬁO—Z/j’i‘f"—v Z /3,_/,').

1=1 I= M1
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However, by uniqueness of the relatiVe-éntpopy solution, f§,=0, M+1=I<N
and the product form solution follows.

Conversely, if the relative-entropy approximation is of the product form,
and every joint constraint is a joint moment satisfied by the approximation,
then it follows that '

S 1K) 4(K)=( f(K)y =Y KL K .. Kyg(K)
K K

::ZKil ‘I(K1)ZK£‘1(K2) ZKII\;J(J(KN)=<Ki1><KI.2> <K’;v>
K, K, Kn

Hence, each joint constraint is equal to the product of marginal constraints
satisficd by the marginal relative entropy distributions. Q.E.D.
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