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The majority of fabrication techniques used in micro-electro-mechanical systems 

(MEMS) are planar technologies, which severely limits the structures available during 

device design. In contrast, the emerging gray-scale technology is an attractive option for 

batch fabricating 3-D structures in silicon using a single lithography and etching step. 

While gray-scale technology is extremely versatile, limited research has been done 

regarding the integration of this technology with other MEMS processes and devices.  

This work begins with the development of a fundamental empirical model for 

predicting and designing complex 3-D photoresist structures using a pixilated gray-scale 

technique.  A characterization of the subsequent transfer of such 3-D structures into 

silicon using deep reactive ion etching (DRIE) is also provided.  Two advanced gray-

scale techniques are then introduced: First, a double exposure technique was developed to 

exponentially increase the number of available gray-levels; improving the vertical 

resolution in photoresist. Second, a design method dubbed compensated aspect ratio 



dependent etching (CARDE) was created to anticipate feature dependent etch rates 

observed during gray-scale pattern transfer using deep reactive ion etching (DRIE).     

The developed gray-scale techniques were used to integrate variable-height 

components into the actuation mechanism of electrostatic MEMS devices for the first 

time. In static comb-drives, devices with 3-D comb-fingers were able to demonstrate 

>34% improvement in displacement resolution by tailoring their force-engagement 

characteristics. Lower driving voltages were achieved by reducing suspension heights to 

decrease spring constants (from 7.7N/m to 2.3N/m) without effecting comb-drive force. 

Variable-height comb-fingers also enabled the development of compact, voltage-

controlled electrostatic springs for tuning MEMS resonators. Devices in the low-kHz 

range demonstrated resonant frequency tuning >17.1% and electrostatic spring constants 

up to 1.19 N/m (@70V).  

This experience of integrating 3-D structures within electrostatic actuators 

culminated in the development of a novel 2-axis optical fiber alignment system using 3-D 

actuators. Coupled in-plane motion of electrostatic actuators with integrated 3-D wedges 

was used to deflect an optical fiber both horizontally and vertically. Devices 

demonstrated switching speeds <1ms, actuation ranges >35µm (in both directions), and 

alignment resolution <1.25µm. Auto-alignment to fixed indium-phosphide waveguides 

with <1.6µm resolution in <10 seconds was achieved by optimizing search algorithms.   
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1. INTRODUCTION 

1.1. Introduction 

The role of technology in today’s society is ever present.  From iPod’s to cell 

phones to the internet, technology is continually transforming the global landscape.  As 

this trend continues, the push for smaller, faster, cheaper, components continually 

challenges engineers at all levels of product development.  These challenges often go 

beyond cramming more transistors on a chip, towards integrating multiple technologies 

into a single package for overall system density.  It is here that the area of 

microelectromechanical systems (MEMS) becomes quite attractive, whereby lithography, 

deposition, and etching techniques used in the microelectronics industry are exploited to 

create complex structures and systems at the micro-scale.   

Some commercial MEMS products have recently seen success, with Analog 

Devices shipping over 200 million MEMS accelerometers*, and Texas Instruments 

introducing Digital Light Processing (DLP) chips for projection displays.  However, the 

majority of fabrication techniques used in the integrated circuit (IC) and MEMS 

industries are considered planar technologies.  Simply put, the user defines the horizontal 

dimensions of a structure through a series of lithography steps, while subsequent 

processes, such as etching or deposition, define the structure vertical dimensions.  The 

structures possible using such conventional fabrication technologies are extremely 

limited.  Consequently, MEMS designers have typically limited themselves to 

structures/designs possible using the preferred fabrication technologies rather than 

designs capable of yielding the highest performance.   

                                                 
* As of 1/14/06 (http://www.analog.com/en/cat/0,2878,764,00.html) 
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Alternative fabrication techniques have been introduced over the years that are 

capable of creating complicated 3-D geometries. Yet previous research has often focused 

on creating stand-alone features for rapid prototyping and are rarely batch fabrication 

compatible (i.e. microstereolithography [1]), which negates many of the potential 

advantages for MEMS, such as high volume and low cost. In contrast, the emerging gray-

scale technology is an attractive fabrication technique for producing 3-D structures in 

silicon using batch fabrication tools [2-17].  While gray-scale technology is extremely 

versatile (able to produce a variety of 3-D structures in a single lithography and etching 

step), limited work has been done regarding the integration of this technology with 

standard MEMS processes and specific devices.  In addition, gray-scale technology relies 

heavily on deep reactive ion etching (DRIE), a relatively new technology (last 10 years) 

whose limits and applications are still being explored.   The integration of such a 3-D 

fabrication technology with conventional fabrication techniques could not only improve 

upon existing devices, but also enable a class of MEMS actuators previously thought 

impossible or impractical.   

This dissertation will focus on developing the emerging gray-scale technology to 

improve upon existing MEMS actuators and develop new actuation schemes for 

optoelectronics packaging.  Consequently, the topics discussed in this dissertation will be 

broken into three primary categories: 3-D fabrication, in-plane MEMS actuators, and 

optical fiber alignment.  First, newly developed gray-scale technology design and 

fabrication techniques will be described, with an emphasis on technology collaborations 

pursued as part of this work.  Next, the developed techniques were used to integrate 3-D 

components into the actuation mechanism of electrostatic MEMS comb-drive actuators to 
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improve their resolution and provide tailored force-engagement profiles.  This principle is 

subsequently extended to the development of tunable MEMS resonators that are more 

compact than corresponding devices fabricated with planar techniques.  Finally, a novel 

device for aligning an optical fiber in 2-axes using 3-D shaped actuators is proposed, 

fabricated, and tested, as a platform towards the integrated packaging of optoelectronics 

components.     

1.2. Summary of Thesis Accomplishments 

The specific accomplishments of this research are as follows: 

• Gray-scale Technology Development:  

Starting with my masters thesis work [18], a methodology for designing 

complex optical masks to create 3-D profiles in photoresist was developed.  The 

subsequent pattern transfer of such structures into silicon via deep reactive ion 

etching (DRIE) was characterized, with a focus on etch selectivity.  This work was 

extended to include novel design methods to alleviate two primary limitations within 

gray-scale technology: First, a double exposure technique was developed to 

exponentially increase the number of gray-levels available in photoresist and improve 

the vertical resolution in photoresist.  Second, a design technique dubbed 

compensated aspect ratio dependent etching (CARDE) was created to anticipate 

feature dependent etch rates observed during gray-scale DRIE pattern transfer.  

The general utility of gray-scale technology for create complex static 

topographies was demonstrated through 3 technology collaborations: 

1. Development of a variable span microcompressor (U.S. Army Research 

Laboratory and Massachusetts Institute of Technology) 
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2. Design and Fabrication of 3-D substrates for packaging of a MOSFET 

relay (Toshiba Corporation) 

3. Design, Fabrication, and Testing of X-ray Phase Fresnel Lenses (NASA-

Goddard Space Flight Center)  

• Compact Tailored Electrostatic MEMS Comb-drives:  

Comb-drive actuators incorporating variable height gray-scale structures were 

designed, fabricated, and tested for the first time.  Analytical and 3-D finite element 

analysis (FEA) methods were developed to establish a theoretical framework for 

analyzing improvements in resolution, range of operation, and deflection stability.  

Comb-drive actuators with reduced height suspensions were also demonstrated as a 

simple method to decrease suspension spring constants, and thus reduce driving 

voltages.   

Testing of variable height comb-finger designs demonstrated >34% 

improvement in displacement resolution (from 344nm/V to 227nm/V), while reduced 

height suspensions exhibited a 70% decrease in spring constant (from 7.7 N/m to 2.3 

N/m).  The design and fabrication techniques developed for integrating gray-scale 

technology within an electrostatic MEMS actuator process help these devices serve as 

a platform for developing more complex 3-D shaped actuators.  

• Vertically Shaped Tunable MEMS Resonators:  

The work on vertically shaped comb-drive actuators was extended to create a 

new class of compact, tunable MEMS resonators.  The traditional theoretical 

framework of voltage-controlled electrostatic springs was modified using a 

combination of 2-D and 3-D Finite Element Analysis (FEA), enabling tuning of the 
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resonant frequency both Up and Down in a compact layout not previously achieved.  

This framework can be adapted to use a new weighted, variable finger engagement 

design to minimize non-linear stiffness coefficients when driving the resonator with 

large amplitudes.   

MEMS resonators in the low kHz range were designed, fabricated, and tested 

to demonstrate these configurations.  Electrostatic springs as strong as 1.19 N/m 

(@70V) enabled tuning of the resonant frequency by up to 17.1%. 

• On-Chip 2-axis Optical Fiber Alignment:  

An on-chip 2-axis optical fiber alignment system using opposing wedges 

fabricated with gray-scale technology was created for the first time.  Devices with 

various actuator layouts and gray-scale wedge designs were fabricated, assembled, 

and tested.  An optical test station was developed and utilized to evaluate fiber 

displacement range and resolution for various configurations. New auto-alignment 

algorithms were developed and implemented to demonstrate the ability to align the 

optical fiber to a specific target, with particular emphasis on comparing overall 

alignment time and final resolution.  Methods to evaluate Cartesian control and 

possible hysteresis effects of these actuators were also developed.   

Switching speeds were measured to be consistently <1ms.  Alignment times 

of <10sec to a fixed 2µm square indium phosphide (InP) waveguide with <1.6µm 

resolution were commonly achieved by optimizing search algorithms and parameters.  

Ultimately, MEMS aligners were able to achieve alignment ranges as large as 40µm 

(at fiber tip) in both the in-plane and out-of-plane directions, with alignment 

resolution of <1.25µm.   



 6 

1.3. Literature Review: 

The area of MEMS has evolved over the past 20 years, and as such, the three 

primary topics discussed in this thesis (3-D fabrication, in-plane MEMS actuators, and 

optical fiber alignment) have been investigated to various extents by other groups.  The 

following sections will review the relevant work found in the literature regarding each of 

these topics.  

1.3.1. 3-D Fabrication Techniques 

While many 3-D fabrication techniques have been developed over the years, they 

can be broadly categorized as being either a serial unit process, where each unit is 

fabricated in a sequential fashion, or a batch fabrication process, where many devices can 

be fabricated at one time on a given wafer. 

1.3.1.1. Serial Unit Processes 

One of the most versatile 3-D fabrication techniques is that of 

microstereolithography [1, 19, 20], an extension of stereolithography techniques patented 

in 1986 [21] for rapid-prototyping.  Microstereolithography uses the light-induced, 

spatially resolved polymerization of a liquid resin into a solid polymer.  A sequence of 

deposition and exposure steps of a thin photosensitive polymer are used, where each 

exposure contains a 2-D pattern of the appropriate cross section of the desired structure.  

After all exposures are finished, a single development step removes the unexposed areas 

of polymer, leaving a 3-D polymer mold with virtually arbitrary shape. 

The exposure system could be a set of photomasks with flood exposures, or a 

scanning technique using a rastered laser beam.  To achieve sufficient vertical resolution 

at minimal cost, the laser technique has become far more prevalent, and structures with 

>1000 levels are common.  Using a He-Cd laser (325nm), Takagi et al reported structures 
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as large as 20mm x 20mm x 20mm, with a minimum resolution of 5µm x 5µm x 3µm 

(x,y,z) [22].  However, such a scanning technique requires a long write time for each 

layer, particularly over large areas.  In addition, one must repeatedly spread a liquid resin 

between exposures, slowing the process significantly.  To this end, two-photon 

microstereolithography [23, 24] could be used where two-photon absorption is used to 

expose confined areas within a solid medium.   

With the advent of high resolution projection displays, some groups have moved 

to ‘integral microstereolithography’, where a dynamic pattern generator can quickly 

expose an entire layer, and be reconfigured quickly.  Bertsch et al successfully 

implemented a liquid crystal display (LCD) based system (260 x 260 pixels) capable of 

90 layers per hour with 5µm x 5µm x 5µm resolution [19].  Yet, even as screen 

resolutions improve, there is an obvious trade-off between resolution and maximum 

structure size.  This limitation notwithstanding, microstereolithography has already been 

used in RF MEMS applications to create a phase shifter [25], and can create intricate 

structures such as the fluidic connector shown in Figure 1.1. 

 

 

 

 

 

 

 

Figure 1.1: Fluidic connector fabricated using microstereolithography (Bertsch et al, MEMS ’98). 
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Current microstereolithography research has been more focused on the use of 

ceramic composites, in order to open up the opportunity of manufacturing complex 3-D 

parts that can be sintered into pure alumina microcomponents [19].  However, some 

limitations of microstereolithography cannot be ignored, particularly in MEMS 

applications.  First, regardless of advances in processing speed, it is inherently a slow 

process because only a single device is fabricated at one time, which cannot compare to 

large wafer throughput.  Second, it is limited to polymer materials, limiting its integration 

with silicon microelectronic circuits, and preventing its use in many MEMS applications.    

If one moves towards more silicon-friendly 3-D fabrication technologies, focused 

ion-beam (FIB) fabrication techniques are quite versatile [26-29].   FIB can provide 

localized maskless milling and deposition of both conductors and insulators with very 

high precision.  Khan-Malek et al used this technique to fabricate 3-D diffractive optical 

elements (DOEs), demonstrating zone plates with 32nm outer rings [29].  While FIB 

enables 3-D structures in/on silicon with superior resolution, fabricating each structure is 

quite time consuming (hours), making them better candidates for low volume tasks such 

as photomask error correction.  

1.3.1.2. Batch Fabrication 

It is clear that for high volume manufacturing, any 3-D fabrication technique must 

be batch fabrication in some respect, and preferably compatible with the IC workhorse 

material, silicon, for later system integration.  The crystallographic properties of various 

substrates (such as silicon) may enable angled features to be created using wet chemical 

etching (such as potassium hydroxide, for silicon), but flexibility in this angle cannot be 

accommodated.  In some cases, simple stepped structures can be used to mimic a 3-D 
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profile, possibly using multiple embedded masking layers to create 3-4 levels in silicon 

with heights in the 10’s to 100’s of micrometers [30].  However, the goal of any 

technique should be the fabrication of nearly arbitrary angles, for maximum flexibility to 

be used in myriad applications.   

Some research has been conducted utilizing inclined/rotated UV lithography [31, 

32].  Beuret et al were able to use multiple integrated metal masks to create cones of 

exposed resist as the light source is rotated, resulting in angled structures in the 

photoresist [31].  Metal structures with angled sidewalls were then achieved by 

electroplating.  While this technique can create conductive structures with small angles 

(<20º reported), it requires multiple integrated metallic masks that complicate processing 

significantly.  Alternatively, Han et al used a negative thick photoresist (SU-8), which 

was exposed using multiple inclined and/or rotated exposures, and reported angles in 

resist up to 39º [32].  However, the author’s technique results in polymer 3-D structures, 

with no discernable way to transfer this process into the underlying silicon, severely 

inhibiting its use in many applications.   

In silicon, Pham et al have used anisotropic etching of silicon to create 3-D 

inductors, but anisotropic etching provides only one fixed angle (54.7º from the vertical 

using a <100> wafer) [33].  Ayon et al have used a buried dielectric layer to deflect 

charged ions during Deep Reactive Ion Etching (DRIE) [34] to achieve angled etch 

profiles, reporting angles as large as 32º [35]. Yet, setting up this buried dielectric layer is 

non-trivial.  Often multiple bonding steps are required, and the handle wafer must be 

sacrificed entirely due to notching effects.  This handle wafer also limits the density and 

configuration of angled etch profiles, prohibiting all but the simplest angled trenches to 
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be fabricated.  For MEMS devices demanding high levels of density and integration with 

other MEMS fabrication steps, this option is quite insufficient.  

More recently, an alternative fabrication method for creating 3-D silicon 

structures using a single lithography and etching step, gray-scale technology, has been 

developed by multiple groups [2-14], including research conducted at UMD as part of the 

preliminary work for this thesis [15-17, 36-38].  In this technique, a variable transmission 

optical mask is used to partially expose a conventional photoresist layer, often in a 

standard projection lithography tool.  After a development step, different thicknesses of 

photoresist remain (called ‘gray levels’) that correspond to the intensity through the mask 

at that point.  A dry-anisotropic etching step, such as DRIE, then transfers this pattern 

into the underlying silicon.   

 

 

 

 

 

 

 

Figure 1.2: Positive lens in silicon, 10µm tall, 30µm diameter (Wagner, Henke, et al, 1995). 

 

Both Gal [2] and Henke et al [3-5] used the diffraction effects between sub-

resolution transparent pixels in a projection lithography system to create an intensity 

corresponding to the pixel size, enabling sloped photoresist structures of various size that 

could be transferred into a substrate (see Figure 1.2).  Whitley et al [6] then briefly 
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demonstrated the transfer of these structures into the underlying silicon using DRIE, 

resulting in deep sloped structures in silicon, towards optics applications.  This work was 

then built upon by Waits et al [13-15] to extend this work into the MEMS domain, where 

a light-field pixilated implementation was used, as well as detailed pattern transfer 

characterizations begun.  While the gray-scale process is quite sensitive and requires 

extensive characterization and optimization, it has the ability to create variable height 

structures in silicon over a wide range of dimensions (µm to mm) in a batch manner.   

Simple gray-scale structures have been demonstrated previously, yet few (if any) 

MEMS devices have been developed to take advantage of this newfound capability.  This 

versatility, coupled with the fact that only standard MEMS fabrication equipment is 

required, makes gray-scale technology an attractive option for integrating 3-D 

components within MEMS devices.  Since the technology is still in its infancy, Chapter 2 

of this thesis will discuss the gray-scale process in greater detail, and describe the steps 

taken to further develop and optimize the process to enable increased flexibility, 

resolution, and integration within MEMS devices. 

1.3.2. Traditional MEMS Actuators 

Many MEMS actuation schemes have been developed using planar technologies, 

and not all will necessarily benefit from the integration of 3-D components.  The 

following sections will discuss two primary categories for MEMS actuators, those used 

for static actuation and those developed for resonator applications.  Specific comments 

will be made on the potential for 3-D components to enhance their performance. 
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1.3.2.1. Static Actuation 

Numerous research groups have developed MEMS actuation techniques, such as 

magnetic [39], piezoelectric [40], scratch drives [41], and shape memory alloys (SMA) 

[42].  Magnetic and piezoelectric actuators are typically inhibited by fabrication 

difficulties and material concerns (such as containing toxic lead compounds), which often 

limit their applications.  Scratch drive actuators can create relatively large forces and 

displacements (Akiyama et al report 100µN and 150µm respectively [41]), but scratch 

drives have a severe disadvantage because they typically only operate in one direction.  

Shape memory alloys on the other hand, can produce large displacements in two 

directions, with Krulevitch et al reporting displacements >50µm [42].  Bi-morph SMAs 

can be used to produce large deflections with small forces, but these simply alternate 

between two fixed positions.  Alternatively, free standing SMAs achieve reversible 

motion by requiring extra springs for a restoring force, or special thermomechanical 

treatments (that exhibit less recoverable formation), which would not be compatible with 

most batch fabrication techniques [42].   

Another class of actuators, electrothermal, has also received much attention 

because they can generate large forces and displacements, while being fabricated with 

planar IC-compatible techniques [43-45]. Que et al have reported forces in the mN range, 

with displacements >10µm, using relatively low voltages <12V [43].  However, 

electrothermal actuators use Joule heating and therefore require large currents (increasing 

power consumption) and often reach temperatures of >600 C, which may be prohibitive.   

An alternative MEMS actuation scheme that can be fabricated using planar 

techniques, electrostatic actuation [46-49], is based on capacitive actuation, resulting in 

minimal current/power consumption.  As a result, planar comb-drive actuators have been 
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developed in multiple materials, including silicon [50], polysilicon [47], and electroplated 

metals [51].  While each finger of a comb-drive produces minimal force, cascading the 

comb-fingers with careful suspension design can result in large forces and displacements.   

The first boom in comb-drive design centered on achieving large static 

displacements using standard planar technologies [50, 52-57].  One group identified that 

with the ability to fabricate 3-D components, they could significantly reduce the spring 

constant of their suspension without reducing the comb-drive force, resulting in a 

significant increases in displacement.  Thus, Lee et al reported static deflections of up to 

130µm at only 37V [58].  However, to achieve this structure took a complicated 

fabrication process including 3 plasma enhanced chemical vapor depositions (PECVD), 4 

DRIE etches, and 2 isotropic sulfer-hexafluoride (SF6) etches, followed by aluminum 

metallization [58].  In contrast, such a structure could be fabricated in a single etch using 

gray-scale technology and will be demonstrated in Chapter 3 of this thesis.   

The second wave of comb-drive research centered around the fact that 

electrostatic actuation relies on the capacitance between two surfaces, which is heavily 

dependent on the geometry of each surface.  For rectangular planar comb-drives, there is 

a constant change in capacitance per unit length, resulting in a simple quadratic relation 

between displacement (∆x) and voltage (V) (i.e. ∆x~V2) [46].  Using planar technologies 

multiple groups have proposed altering this capacitance-position profile by changing the 

gap between the stationary and moving comb-fingers, see Figure 1.3 [55, 59-61].  Ye et al 

[60] used numerical 2-D simulation to design variable comb-finger shapes and gaps for 

linear, quadratic, and cubic force-engagement profiles.  Jensen et al [61] used a parallel 

plate approximation model to calculate the capacitance between overlapping comb-
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fingers with a lithographically-defined variable gap.  These results enabled tuning of both 

displacement and resolution of the comb-drive actuators, but at the expense of 

significantly increasing the size of each comb-pair.  For example, most designs proposed 

by Ye et al (or Jensen et al) required more than twice the area for each comb-pair [60].  

The result is a device with a much larger footprint, an unacceptable consequence in most 

cases where miniaturization is a concern.   

 
 
 
 
 
 
 
 
 
Figure 1.3: (a) Top view of a typical planar comb-drive finger, where the gap remains constant as the 
finger engages. (b) Top view of a variable gap design (from Jensen et al JMEMS, 2003), where the 
area required for a single comb-pair is greatly increased. 

 

Further work by Ye et al [62] attempted to simulate variable capacitance/force 

profiles by optimizing comb-finger geometry in the vertical dimension to address the 

problem of increased device size.  While the authors present simulation of complex 

comb-finger geometries (shaping both top and bottom surfaces of the comb-finger), they 

concede that their designs cannot be fabricated due to the limitations of current 

manufacturing techniques.  However, with the advent of gray-scale technology, 3-D 

shaping of individual comb-fingers is possible, enabling variable force-engagement 

profiles for improved resolution without affecting device area.   

The design, fabrication, and testing of comb-drive actuators with altered force-

engagement profiles, as well as reduced spring constants, is discussed in more detail in 

Chapter 3 of this thesis. 

(a). (b). 
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1.3.2.2. MEMS Resonators 

Besides static deflection applications, one of the primary uses for electrostatic 

MEMS actuators is for micromechanical resonators.  For example, MEMS varactors for 

tuning electrical resonance have been developed by multiple groups [63, 64].  

Micromechanical resonators for signal processing/filtering applications [65-67], 

gyroscopes[68], and charge and field sensors[69], have been demonstrated previously.  

A natural extension of static MEMS resonators is to make them tunable, 

something first accomplished by Nathanson et al in 1967 [70].  The basic premise was to 

use a third electrode for tuning in a parallel plate configuration, where the quadratic 

dependence of capacitance on the gap creates an electrostatic spring.  More recently, 

other groups have used this concept to develop MEMS resonators towards RF tunable 

filters, capable of tuning the resonant frequency down by 1% of 760KHz device [71], or 

by ~5% for a ~1MHz resonator with Q factor = 4370 [72].  However, bi-directional 

tuning of a MEMS resonator (particularly over wide range) is much more challenging.   

Adams et al took the approach of using fringing field actuators, basically non-

overlapping comb-drives moving perpendicular to their traditional direction [73, 74]. 

While this technique was able to tune both linear and non-linear stiffness coefficients, the 

range of motion was quite small (on order of 1µm) and tune fingers arranged 

perpendicular to the stroke makes the design less compact and increases damping.  

Jensen et al chose to use variable gap (i.e. variable force-engagement) planar comb-

fingers to create an electrostatic spring for larger ranges of resonator displacements and 

bi-directional tuning [61].  But again, the variable gap design requires that the size of 

each comb-pair be increased, dramatically increasing overall device size.  However, 

using gray-scale technology to create the required variable force-engagement profiles 
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could produce similar effects over a large travel range without increased the device 

footprint.   The design, fabrication, and testing of such resonators is discussed in more 

detail in Chapter 4 of this thesis. 

 

1.3.3. On-Chip Optical Fiber Alignment 

Packaging of optoelectronic components, often in the form of fiber-pigtailing, 

usually requires alignment of the fiber by large, expensive, macro-scale systems capable 

of aligning each fiber to high accuracy using precision actuators.  However, these 

machines are typically expensive and have low throughput due to the tight alignment 

tolerances required for aligning the fiber (in the micron to sub-micron range).  For 

example, pick-and-place assembly systems with 20-30µm accuracy are an order of 

magnitude faster than those requiring 1-2µm accuracy, severely affecting throughput 

[75].  Optoelectronic packaging costs can easily exceed 50% of the total module cost 

[76].  In fact, the 2003 International Technology Roadmap for Semiconductors (ITRS) 

identified a key issue with packaging optoelectronic devices to be aligning the optical 

path in an automated manor, as alignment between components currently dominates the 

cost of packaging of most hybrid systems [77].     

While silicon is not suitable for producing active optoelectronic devices, hybrid 

packaging approaches using micro-fabricated silicon packaging platforms to move the 

alignment mechanism ‘on-chip’ have been of particular interest.  Such systems offer the 

potential for low cost, high volume, integrated packages, with potentially high accuracy 

fiber alignment placement.  In general, the approaches developed fall into two categories, 

either passive or active, each of which is discussed below. 
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1.3.3.1. Passive Techniques 

For the purposes of this research, ‘passive’ alignment techniques will refer to 

methods where the final alignment and assembly is performed without any light 

propagating in the optical path.  Essentially, the goal is to fabricate and assemble all 

components extremely accurately and hope that the result is acceptable when the light is 

turned ‘on.’  Since the 1970’s, anisotropically etched v-grooves in silicon have been used 

to create precise optoelectronic packaging platforms for passive alignment of an optical 

fiber to optoelectronic components [78-83].  The boundaries of the v-groove are defined 

during the lithographic process to be precisely aligned with other features on the wafer, 

forming what is commonly called a “silicon waferboard,” as shown in Figure 1.4 [81].  

The optical fiber is secured in the v-groove, while optoelectronic chips are flip-chip 

bonded to pre-fabricated solder pads, often using surface tension for self-alignment of the 

chip and substrate, see Figure 1.5 [84]. 

 

 

 

 

 

 

 

 

 
 

Figure 1.4: Prototype silicon waferboard for passive laser/fiber alignment (Armiento et al, 1991). 
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Figure 1.5: Surface tension of solder bumps during re-flow can be used for self-alignment (Sasaki et 
al, 2001). 

 

By maintaining strict fabrication and assembly tolerances, such approaches report 

alignment in the range of 1-2µm [81, 82], which will not meet the needs for future 

devices that will require sub-micron tolerances [85].   Limiting factors often include the 

tolerance of fiber diameter, core/cladding concentricity, and imperfect mounting in the V-

groove [83].  An additional challenge to such v-groove/flip-chip approaches is to control 

the vertical alignment of each component, as vertical shifts due to changes in solder 

ball/paste volume are common.  

Even if these challenges can be overcome, such passive alignment schemes rely 

on extremely precise fabrication tolerances to cumulatively guarantee alignment, which 

can significantly increase processing costs.  Therefore, an attractive alternative approach 

is to relax fabrication and assembly tolerances and instead use on-chip actuation to 

optimally position each fiber for maximum coupling – essentially performing the role of 

the expensive macro-aligner at the micro-scale. 

1.3.3.2. Active Techniques 

Active fiber alignment involves monitoring the amount of coupled power through 

the system while changing the location of the optical fiber.  The fiber is then fixed at the 

location where maximum coupling is measured.  The primary benefits of on-chip active 

alignment systems using MEMS are: 
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1. Relaxed fabrication and assembly tolerances: Final alignment is no longer solely 

dependent on cumulative fabrication tolerances of multiple components, reducing 

the required accuracy of individual components 

2. Potentially high-volume and high throughput: actuation mechanisms are batch 

fabricated and contained  inside each optoelectronic module, enabling 

individually optimized alignment  

3. Sub-micron actuation capability: MEMS actuators with sub-micron displacement 

resolution are common 

Multiple on-chip active fiber alignment systems using MEMS approaches have 

been proposed and demonstrated, using a variety of actuation schemes.  Alignment in the 

plane of the wafer (1-D) has been achieved using electrothermal actuators [86, 87] or 

asymmetric laser trimming of films with residual stress [88].  However, as with the 

passive alignment techniques, the lack of vertical actuation capability is extremely 

limiting.  Kaneko et al provided a small amount of vertical shift by using a partially metal 

coated fiber in a V-groove, yet the rotation of the fiber was done externally and the 

motion was discrete (only 4 separate points could be reached) [89]. 

When it comes to MEMS devices providing multi-axis alignment, there have been 

three primary devices developed.  An electromagnetic-based actuator was developed by 

T. Frank, shown in Figure 1.6, that was capable of deflecting an optical fiber cantilever 

over 100µm [90, 91]. The actuator used large coils in a multiple wafer stack to actuate a 

permanent magnet attached to the end of the fiber.  However, this technique requires the 

attachment of a permanent magnet to the fiber, making this technique impractical as a 

high volume, high-throughput packaging option.   
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Figure 1.6: Micro-alignment machine requiring a permanent magnet attached to the optical fiber 
(Frank, 1998). 

 

An electrostatic actuator developed by Kikuya et al used multiple anisotropically 

etched v-grooves to create an optical fiber cantilever [92, 93].  By patterning electrodes 

on the sidewalls of the deeply etched v-grooves, the applied voltages created an attractive 

force on a metallized optical fiber, bending the fiber into appropriate alignment in 2-axes.  

While this technique achieves 2-D fiber alignment in a relatively compact (narrow) 

manner, it has two main limitations: First, the electrostatic nature requires that the 

component being manipulated is a conductor or has a conductive coating already applied.  

Second, electrostatic attraction of the fiber is subject to the pull-in phenomenon, where 

the fiber will ‘snap’ to the substrate after only moving a fraction of the gap size (in 

parallel plate actuators, this happens at 1/3 of the original gap [94]).  Thus, tradeoffs 

between fiber to v-groove gap, range of motion, and applied voltages, make it difficult to 

scale their design to shorter/stiffer cantilevers (<10mm).   
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Figure 1.7: In-package micro-aligner requiring specialized fabrication equipment (Haake et al, 1998). 
 

The most capable on-chip MEMS packaging system so far has been that of Haake 

et al [95, 96], see Figure 1.7, which is capable of alignment in all 3 axes,.  The authors 

report fiber tip actuation of over 20µm in each direction.  However, device design and 

fabrication is quite complicated as the large force actuators require the LIGA process 

[97], which needs an x-ray synchrotron radiation source – limiting the widespread 

adoption of such a device.  Additionally, typical configurations are not conducive to 

dense fiber integration.   

In contrast, electrostatic comb-drive actuators with 3-D shaped components could 

provide an on-chip actuation packaging platform capable of high-resolution active optical 

fiber alignment within an optoelectronic module in both the in-plane and out-of-plane 

directions.  Such a system could be batch fabricated in potentially dense configurations, 

would require no previous fiber preparation, and could be integrated with 3-D gray-scale 

actuators for tailoring displacement/alignment resolution.  The principles, design, 
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fabrication and testing of the on-chip 2-axis MEMS fiber alignment system developed in 

this work are discussed in Chapters 5 and 6 of this thesis.  

1.4. Thesis Objectives and Structure 

The purpose of this research is two-fold: First, to develop gray-scale technology 

as an integrative MEMS-based 3-D fabrication tool, and second, to demonstrate the first 

MEMS actuators of any kind to utilize gray-scale fabricated features for improved 

performance and capabilities.  The advances in gray-scale technology pioneered in this 

work firmly establish gray-scale as an attractive platform technology for MEMS device 

development.  As part of this research on the core technology, multiple novel static 

devices were demonstrated, including: static micro-compressors, 3-D packaging 

substrates for MOSFET relays, and soft X-ray phase Fresnel lenses. The variable-height 

comb-drive actuators and resonators developed in this work are the first demonstration of 

achieving tailored electrostatic actuator behavior while maintaining a compact device 

layout.  This dissertation also reports the first 2-axis on-chip optical fiber alignment 

system that uses the coupled in-plane motion of gray-scale shaped actuators to create 

actuation both in- and out- of the plane of the wafer.  Alignment of an optical fiber 

cantilever in 2-axes over a large range (40µm x 40µm), with high resolution (<1µm), and 

fast alignment times (routinely <20 seconds), establish this device as a realistic on-chip 

platform for the packaging and integration of optoelectronic devices. 

This PhD dissertation is organized as follows: Chapter 1 has reviewed the 

motivation behind this research, summarized the main contributions contained in this 

dissertation, and briefly reviewed the relevant literature.   
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Chapter 2 will discuss the gray-scale technology process in detail.  Specific 

attention will be paid to profile control and pattern transfer.  Three demonstrations of 

static 3-D applications developed with gray-scale technology will be presented as 

technology collaborations with different partners: the U.S. Army Research Laboratory, 

the Toshiba Corporation, and the NASA-Goddard Space Flight Center. 

The development of the first electrostatic MEMS actuators integrating variable 

height structures fabricated with gray-scale technology will be presented in Chapter 3.  

Issues related to the design and integration of gray-scale structures into a comb-drive 

actuator will be reviewed, while test results will confirm their improved performance.  

Chapter 4 will build upon this work and discuss a more specific application of gray-scale 

tailored actuators: tunable MEMS resonators.  The theoretical framework for such 

actuators will be presented, along with test results from multiple embodiments. 

Chapters 5 and 6 will discuss the development of a new on-chip 2-axis optical 

fiber alignment system developed using gray-scale technology.  The concept, design, and 

fabrication of the basic system will be discussed in detail in Chapter 5, while Chapter 6 

will review all optical testing and alignment results. 

Chapter 7 has been reserved for discussions on potential extensions of the work 

presented in this dissertation, as well as concluding remarks.  Topics to be covered 

include: low frequency tunable resonator applications, prospects for miniaturizing fiber 

alignment systems towards dense array packaging, and methods for clamping optical 

fibers after alignment has been achieved. 
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2. GRAY-SCALE TECHNOLOGY 
This chapter will review the research performed on the core gray-scale technology 

process, which serves as the cornerstone of this dissertation.  The developments presented 

here demonstrate gray-scale technology as a flexible platform for 3-D actuator 

development.  The initial portions of this work, most notably the 3-D profile control and 

etch selectivity characterization, were conducted as part of my Master’s Thesis research, 

“Development of a Deep Silicon Phase Fresnel Lens using Gray-scale Lithography and 

Deep Reactive Ion Etching” [18]. For clarity, the term “gray-scale lithography” will refer 

to a photolithography process using a “gray-scale optical mask,” while the term “gray-

scale technology” will refer to the combination of “gray-scale lithography” and a dry-

anisotropic etching step used to transfer the photoresist pattern into the silicon. 

2.1. Introduction 

As discussed in Chapter 1, gray-scale technology is a batch fabrication technique 

capable of creating variable height structures in silicon using a single lithography and 

etching step.  Gray-scale lithography was first developed for use in diffractive optics in 

the mid 1990’s [8, 11, 12].  One method uses commercially available high energy beam 

sensitive (HEBS) glass (www.canyonmaterials.com) that uses the chemical reduction of 

silver ions in a silver-alkali-halide material to produce coloring specks of silver atoms, 

directly modulating the opacity of each point on a photomask [9, 10].  However, the cost 

of HEBS masks can be up to one order of magnitude more than standard chrome on 

quartz plates and there is only one known vendor, which together limit the widespread 

adoption of this technique.  Thus, the method of gray-scale implementation chosen for 

this research is based on the pixilated approach described by Waits et al [14, 15], which 

CHAPTER 2: GRAY-SCALE TECHNOLOGY 
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uses many sub-resolution opaque pixels on a standard chrome optical mask in a 

projection lithography system. 

During a UV exposure, the projection lithography system filters out all spatial 

diffraction orders, creating intermediate transmitted intensities proportional to the pixel 

size [3, 4].  Each intensity partially exposes a positive photoresist film to a certain depth. 

This exposure renders the top portion of the photoresist layer more soluble in a developer 

solution, while the bottom portion of the photoresist layer remains unchanged.  

Therefore, after a standard development step, an intermediate thickness of photoresist, 

called a ‘gray level,’ will remain behind in areas that received a partial exposure.   By 

locally modulating this intensity pattern with a specially designed gray-scale optical 

mask, many gray levels may be created at once to form a 3D structure in the photoresist, 

where each pixel size on the mask results in a different height gray level in photoresist.   

By patterning the photoresist on a silicon wafer, a dry-anisotropic etching 

technique, such as reactive ion etching (RIE) or deep reactive ion etching (DRIE), may be 

used to subsequently transfer this pattern into the silicon [2].  A schematic of this entire 

process is shown in Figure 2.1.  By distributing many appropriately sized pixels on the 

optical mask, step approximations to various 3-D shapes can be replicated in the 

photoresist and/or underlying silicon. 

The following sections will review the theoretical background of gray-scale 

technology, and then review developments in both lithography and etching performed 

during this work.  Finally, three collaborations with organizations outside UMD will be 

presented as applications of static 3-D silicon structures fabricated using gray-scale 

technology.     
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Figure 2.1: Schematic of the gray-scale technology process.  (a) An example pixilated gray-scale 
optical mask design using 2 different size pixels, or gray levels. (b) The corresponding pattern in a 
positive photoresist after exposure and development. (c) Final silicon structure after transfer into 
underlying substrate using dry plasma etching. 

 

2.2. Gray-scale Background 

Before discussing advancements in gray-scale technology developed as part of 

this dissertation, the theoretical framework and design limitations for the chosen gray-

scale implementation must be discussed.  

2.2.1. Theoretical Background 

The chosen method of pixilated gray-scale lithography relies on a standard 

projection lithography system, a simplified schematic of which is shown in Figure 2.2. 

When a pixilated optical mask is placed in this system, a fraction of the incident light is 

blocked and transmitted light will diffract.  It is this diffraction between closely spaced 

opaque pixels that leads to a uniform intermediate intensity at the wafer surface.   
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Figure 2.2: A generic projection lithography system with reduction optics (usually 5X or 10X). 

 
To understand this phenomenon more closely, we will follow the reasoning of 

Henke et al [4, 5], where we consider the projection optics (objective lens) to act as a 

spatial frequency filter on a one dimensional grating, such as set of chrome lines, with a 

pitch of p.  We can define the amplitude transmission function of the mask as T(x), where 

the values 0 and 1 are assigned to locations on the mask with or without chrome, 

respectively. The Fourier spectrum, T’(k), of this amplitude transmission function, T(x), is 

obtained through the standard Fourier relations:   
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A diffraction limited optical system will cut off higher spatial frequencies in the Fourier 

spectrum, T’(k).  Thus, the complex amplitude, A(x’), in the image plane (i.e. at the wafer 

surface), is given by: 
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The parameter k refers to a lateral wave vector on the mask, whose 1st diffraction order 

corresponds to: 
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where λ is the wavelength of illumination light used in the stepper and υ is a spatial 

frequency of the grating lines.  The numerical aperture (NA) of the system then defines 

the maximum angle, θc, capable of passing through the system: 

cNA θsin= .      (5) 

 
For normal incidence plane wave illumination, this NA determines the critical 

spatial frequency, υc, or critical pitch, pc, necessary on the optical mask for the 1st 

diffraction order to reach the critical angle, θc: 
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For periodic features below this critical pitch, the ±1 and higher diffraction orders are 

prevented from passing through the projection system.  Since all spatial information is 

contained in the higher diffraction orders, only a uniform ‘DC’ component of light (0th 

diffraction order) is transmitted through the optical system, and all spatial information 

regarding the shape of individual pixels is lost.  In a true lithography system, the partial 
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coherence of the light source, σ, will also play a role in determining the critical pitch of 

the system [5]: 

NA
pc

)1( σ

λ

+
= .     (7) 

 
For the research performed in this dissertation, the pitch has been held constant, at 

or near the critical pitch in order to maintain this condition.  The ‘DC’ component of the 

optical mask transmission was then locally modulated by varying the size of rectangular 

sub-resolution opaque pixels contained therein, as shown in Figure 2.3.   

 

 

 

 

 

 

 
Figure 2.3: Optical mask design scheme using sub-resolution pixels and a constant sub-resolution 
pitch.  By calculating the area of each pixel and the area of the pitch, the percent transmission 
through the mask is estimated. 

 
Now, the complex amplitude at the wafer surface can be determined by a simple 

integral over the mask transmission function, which only includes k=0: 
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For a pixilated approach, this integral calculates the percentage of light transmitted 

through the optical mask (Tr), which can be calculated using the area of each pixel (Apixel) 

and the area of the square pitch (Apitch): 
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This results in a normalized aerial image intensity at the wafer surface of:  
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2.2.2. Optical Mask Constraints 

The projection lithography system used in this research was a 5X reduction 

stepper (CGA-Ultratech) in the clean-room facilities at the Laboratory for Physical 

Sciences (LPS) in College Park, MD.  Since the estimated resolution of this system is 

between 0.5-0.6µm on the wafer, the critical pitch used on our gray-scale optical mask is 

on the order of 2.5-3.0µm, meaning each pixel must be even smaller.  All optical masks 

for this research were obtained through Northrop Grumman Corp., Linthicum, MD, but 

the design rules discussed here can be applied to any mask vendor. 

Optical masks cannot be fabricated with arbitrarily small features, so the number 

of different size pixels that will fit inside a particular pitch is finite.  The result is a 

discrete set of available pixels (each with an associated transmission, Tr) that depends on 

the selected pitch and the mask vendor limitations.  Since each pixel is sub-resolution, the 

actual shape of the pixel (i.e. square or circle) should not be reconstructed and therefore 

only the total area of the pixel should be important. 

When designing a pixilated gray-scale mask, there are 2 main parameters that 

determine your pixel constraints: (1) minimum feature size (Fm) and (2) mask address 

size, usually the electron beam spot size (S0).  The minimum feature size is the smallest 

feature dimension, opaque or clear, expected to be resolved after mask fabrication (i.e. all 
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dimensions of an opaque box must be larger than Fm and two adjacent edges cannot be 

spaced closer than Fm).  The spot size of the electron beam used to fabricate a mask is 

also important because it often defines the smallest possible increment between 

subsequent pixel sizes.  Smaller spot sizes are advantageous because they can lead to 

larger pixel sets as the permutations of pixel sizes can be increased while remaining 

within the Fm constraints.   Masks obtained from Northrop Grumman had limitations of 

Fm = 0.5µm and S0 = 0.1µm. 

 

 

 

 

 

 

 

 

Figure 2.4: Rectangular pixilation schematic used to define mask design constraints. 

 
Thus, to create a set of useable sub-resolution pixels for a gray-scale optical mask 

design, the dimensions of each rectangular pixel, height(X) vs. width(Y) must satisfy the 

following 3 identities derived from Figure 2.4: 
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where PC is the critical pitch, or resolution limit, discussed earlier. The limiting case of 

11 will result in the largest transmission through the mask, while the limit of Equation 12 

will define the smallest transmission through the mask.  Equation 13 will determine the 

final number of pixels (or transmissions) available.   We can now modify Equation 9 for 

each pixel (i) to fit the rectangular case shown in Figure 2.4: 

( ) ( ) ( )
( )2

*
1

CP

iYiX
iTr −= .     (14) 

 
Any pixels with identical (or extremely close) Tr values may be eliminated from a 

pixel set since they will be redundant.  One must also keep in mind that every pixel will 

not necessarily result in a repeatable gray level in photoresist, since the development 

process must be considered, which often eliminates many smaller pixels.  The final pixel 

set will be determined through the use of a calibration mask to experimentally establish 

the useable range of pixels (gray levels).  In some instances, a mask pitch above the 

critical pitch could be used for gray-scale design to increase the number of available 

gray-levels, but with the danger of introducing oscillations in the photoresist surface as 

higher diffraction orders are collected by the objective lens. 

2.2.3. Standard Lithography Process 

Establishing a standard photolithography process enables the lithography 

processing to be considered a constant, which in turn allows all 3-D structures to be 

designed using only pixel selection.  When developing a gray-scale lithography process, 

low-contrast thick photoresists are preferred to increase the range of intermediate 

intensities that generate different development rates, resulting in more gray levels.  

Clariant’s AZ9245 was chosen as the photoresist for this research because it has 

relatively low contrast and can be spun to a nominal thickness of >6µm with ease.  The 
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developer solution was Clariant’s AZ400K, mixed in a concentration of 5:1, DI water to 

developer.  This yielded development times in the 5-6 minute range, much longer than 

conventional development times of 1-2 minutes.  Slower development steps are preferred 

in order to avoid over-development, which will cause a loss of lower gray levels.     

Exact lithography parameters were optimized using a calibration mask [18] and 

the 5X projection lithography system at LPS with an observed resolution of 0.56µm, 

corresponding to a critical pitch of 2.8µm on the optical mask.  The process details are 

given in Table 2.1.  Note that no hard bake step is used (as suggested by the photoresist 

manufacturer) to avoid any photoresist re-flow during hard bake.  Further details on the 

lithography process can be found in [14, 15, 18].  Unless otherwise noted, this gray-scale 

lithography process was used for processing all 3-D structures discussed in the rest of this 

dissertation.  An example of a gray-scale photoresist wedge is shown in Figure 2.5. 

Table 2.1: The standard gray-scale lithography process. 

Photoresist 
Spin Coating 
(rpm : sec) 

Soft Bake 

(°C : sec) 

Focus 
(µm) 

Exposure 
(mJ) 

Developer : 
Time (min) 

AZ9245 
2500 : 60 

(6.0µm thick) 
110 : 120 -1.0 250 

AZ 400K 1:5 
DI water : 5 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.5: An example gray-scale wedge in photoresist using >45 gray levels. 

5µm 
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2.3. Design and Lithography Advancements 

The previous section established the capability to achieve multiple intermediate 

intensities through a pixilated gray-scale optical mask, as well as described a photoresist 

process to realize these intensities as differential height photoresist structures after 

development.  To extend this work into MEMS and other applications, it was imperative 

that methods to control the 3-D profile’s horizontal and vertical resolution be developed, 

as discussed in the following sections.   

 

2.3.1. Minimum Feature Limitations 

The analysis and discussion provided in Section 2.2 assumes an infinitely periodic 

array of gray-scale pixels.  However, a real MEMS structure is usually finite, leading to a 

definitive ‘edge’ where the pixels stop and some higher diffraction orders are collected.  

On large MEMS structures, this edge effect could be small compared to the overall 

device size, yet on smaller structures (<10µm), the effects can be severe.  Shown in 

Figure 2.6 is an opaque structure next to an attempted gray level, using a pitch of 2.0µm 

and only 10 pixels.  As evident from the SEM, the edge effects on both side of this 

structure effectively remove the entire intended gray level. 

 

 

 

 

 

 

Figure 2.6: Attempted gray level in photoresist using 10 pixels on a 2.0µm mask pitch, where edge 
effects have effectively removed the gray-level. 

Opaque 

level 

Gray level 
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As the size of the gray-scale structure increases, this edge effect stays 

approximately constant at around a 1-1.5µm indent to each side.  The 8µm opaque 

structure in Figure 2.7 shows that a ~5µm gray level is now achieved.  Thus, for gray-

scale structures with critical minimum features <10µm, a simple bias of ~1µm can be 

included in the gray-scale design to offset the change in dimension due to edge effects.  

After pattern transfer, only a small amount of mask erosion at the corners is observed due 

to the lack of verticality at the photoresist edge.  We estimate that a minimum gray-scale 

feature size of 4-5µm can be realistically reproduced. 

 

 

 

 

   

 
 

Figure 2.7: A gray level in photoresist using 20 pixels on a 2.0 mask pitch. 

 

2.3.2. 3-D Profile Control 

Given the small size of each pixel at the wafer level (~0.5 x 0.5µm), it is crucial 

that the method developed for controlling 3-D profiles in photoresist be conducive to 

automation, in order to facilitate placement of the thousands of pixels required to create 

MEMS structures of appreciable size.   

Our investigation begins with the basic law of absorption, where we know that as 

the incident UV light travels through the thickness of the photoresist, the intensity 

decreases exponentially [98]: 

)exp()( 0 zIzI α−= .     (15) 
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Considering only this exponential decay of intensity through the photoresist, 

linear changes in transmission (i.e. I0) through an optical mask will create a logarithmic 

change in the exposure depth (z) at which a desired intensity is reached.  Combining this 

logarithmic behavior with an initial uniform photoresist thickness and exposure time 

could determine exposure dose contours within a photoresist layer.  However, there are 

other more factors that also influence the exact thickness of photoresist that remains after 

development, such as bake conditions, development rate, etc.  Thus, a gray-scale profile 

control model must account for all these process variables.  

An empirical model was developed based on the use of a calibration mask and the 

standard optimized lithography process.  The calibration mask contained long stepped 

structures with different constant pitch, and each contained a limited number of pixel 

permutations. The height of each gray level in photoresist was measured and correlated to 

the pixel and pitch on the optical mask that produced the particular height.  Measuring 

multiple levels creates an empirical relation between the initial pixel size on the optical 

mask and the final photoresist height.  Note that the exact pixel shape on the mask after 

fabrication is unknown, so the calculated Tr is an approximation.  It is thus more 

important that the mask vendor be consistant than accurate because systematic errors will 

be accounted for in the empirical model. The normalized height in photoresist (Hp) for 

many pixels with the same pitch was then plotted against the corresponding Tr value, as 

done in Figure 2.8.  

A Gaussian curve was then used to approximate the trend of these data points, 

creating a simple relation between any Tr and Hp [16, 18]: 

( )( )γ*exp*
2

0 TrAH P −=      (16) 
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where A0 and γ are the empirically determined fit parameters for the particular photoresist 

being used.  Ideally, the fit parameters will be identical for different pitches, but due to 

approximations in Tr value and measurement uncertainty, they tend to vary slightly.  A 

Gaussian fit to this data was chosen for two specific reasons.  First, a decaying logarithm 

or exponential type function with intensity is expected due to the exponential decay in 

intensity with increasing depth.  Since the intensity is proportional to Tr
2 (Equation 10), a 

decaying exponential appears Gaussian when plotted against the Tr value derived from 

the pixel size (Equation 9).  The second reason for a Gaussian curve lies in the simplicity 

of inverting the equation.   

 

 

 

 

 

 

 

 
Figure 2.8: Gaussian curve fit through data points relating normalized photoresist heights to the 
percent transmission through the mask [16].  
  

The result is an intuitive design tool, where a simple expression can be used to 

calculate the percent transmission, Tr, required on the mask to produce the desired height 

in photoresist, Hp: 
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When designing a specific structure, the ideal calculated Tr value is cross referenced with 

the available Tr values from a set of available pixels.  

 By using the Gaussian approximation method described above, much of the 

modeling behind the gray-scale lithography process may be abbreviated, and gray-scale 

masks may be designed to mimic any desired slope.  As shown later in Section 2.5, this 

technique has demonstrated precise profile control over a wide range of structure sizes. 

2.3.3. Double Exposures 

While the pixilated technique makes gray-scale mask design and fabrication 

simple, one disadvantage is the inherent tradeoff between horizontal and vertical 

resolution.  A small pitch will yield the best horizontal resolution, but few pixel 

permutations are possible, limiting vertical resolution. By choosing a large pitch, more 

gray-levels can be designed to fit the criteria outlined in Section 2.2.2, but the horizontal 

resolution in the plane of the wafer becomes poor.  Even if vertical resolution is the only 

concern, the pitch (and therefore # of pixels) cannot be increased arbitrarily due to the 

finite resolution of the projection lithography system.   

It is instructive to introduce typical values for each of the constraints outlined in 

Section 2.2.2.  Using a critical pitch (Pc) of 2.5µm and a minimum feature size (Fm) of 

0.5µm, we can calculate the minimum and maximum Tr values to be 36% and 96%, 

respectively.  The useable range of Tr is actually even smaller in practice because pixels 

with Tr values above 80% are rarely realized in photoresist after development.  Since the 

first (highest) gray level is created using Tr=36%, only approximately the bottom ½ of 

the photoresist thickness will have gray levels.  Using a spot size (S0) of 0.1µm, only ~40 

unique pixels could be designed in this range, and that requires working at the extremes 
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of mask vendor capability, which often does not yield consistent results.  And even 40 

gray levels may be insufficient for MEMS structures that span 100’s of micrometers.  

Thus, a new method of mask design is necessary whereby high resolution in horizontal 

and vertical domains can be maintained, while relaxing mask fabrication tolerances. 

In this research, an exponential increase of photoresist gray levels has been 

demonstrated through the addition of a 2nd exposure step before photoresist development.  

By tuning the time of each of the two exposures, the entire range of photoresist can be 

utilized for gray-scale structure creation.  A double exposure test mask was designed and 

fabricated to demonstrate this capability.  A pitch of 2.6µm was chosen to remain close to 

the diffraction limit, while Fm was increased to 0.8µm and S0 was assumed to be 0.2µm 

(both values relaxing previous mask tolerances).  Only square pixels were chosen for this 

demonstration, yet the results can be scaled to include rectangular pixels as well.  The 

square pixel dimensions used and their corresponding Tr values are shown in Table 2.2. 

Table 2.2: Pixels and percent transmissions used in double exposure experiments, with 2.6µm pitch. 

Pixel Size Tr 

2.6 0% 

1.8 52.1% 

1.6 62.1% 

1.4 71.0% 

1.2 78.7% 

1.0 85.2% 

0.8 90.5% 

0.0 100% 

Note that pixel sizes of 2.6µm and 0.0µm correspond to completely opaque and 

completely transparent areas, respectively.  Assuming all gray levels could be reproduced 

in photoresist, using a single exposure would result in 8 distinct levels for use in structure 

design: the full photoresist thickness, 6 intermediate gray level heights, and no remaining 

photoresist.  Each size pixel was arrayed to make 200µm by 200µm pads that were 
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arranged in columns by pixel size, creating a square matrix of gray-scale pads with 

identical columns.  This square matrix was then repeated with a 90º rotation, as shown 

below in Figure 2.9, and placed on the opposite side of a single mask. 

 

 

 

 

 

 

Figure 2.9: Schematic of the mask layout for the double-exposure experiment, where each column (or 
row) corresponds to gray-scale pads using a single pixel size and constant pitch. 

 
A silicon wafer was prepared with the standard gray-scale lithography process 

outlined earlier, with the exception of the exposure step.  Rather than a single exposure of 

say 1.5 seconds to achieve the correct dosage, the wafer was exposed in two steps.  The 

first exposure corresponds to the pattern in Figure 2.9.  The mask was then removed from 

the system and rotated 180º.  After rotation, the two orthogonal columns of gray-scale 

pads overlap, so that during the second exposure, a complete matrix of exposure 

combinations is create, resembling Figure 2.10.   

 

 

 

 

 

 
 
Figure 2.10: Schematic of exposure matrix after 180º rotation of mask between 2 exposures, where 
the primed numbers indicate the 2nd exposure pattern. 
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Using simply two ½ exposures, the number of unique exposure combinations 

possible with N intensity levels is N2/2 (in this case, 32).  Yet, by exposing with a 

weighted exposure technique, say 1/3 and 2/3 doses, a full complement of N2 intensity 

levels (64) can be achieved.  Figure 2.11 shows measured photoresist heights for each 

pad in the double exposure matrix for a combination of 0.95 + 0.55 second exposures, 

plotted as a function of the effective total percent transmission, Treff: 

21

2211 )()(

TimeTime

TimeTrTimeTr
Treff

+

×+×
= .     (18) 

 
The large points in the figure correspond to those levels where an identical pixel was 

used during both partial exposures, and thus represent the gray levels possible using only 

a single exposure technique.   

 

 

 

 

 

 

 

 

Figure 2.11: Achieved gray levels using the double exposure technique with 6 pixel sizes.  The levels 
achieved using identical pixels for both partial exposures correspond to a single exposure technique. 

 
Previously with single exposures, gray levels could not be created in the higher 

portions of the photoresist due to pixel limitations, rendering approximately the top ½ of 

photoresist unusable.  In addition, the spacing of gray levels was uneven, leading to large 
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vertical steps between high gray levels.  However, it is clear from Figure 2.11 that not 

only has the number of gray levels increased, but the distribution throughout the 

thickness of photoresist has also improved dramatically.   

The power of this technique is easily realized when you consider that the pixel set 

used for this demonstration was limited to 6 square pixels with conservative spacing.  

Simply extending the initial pixel set to include 16 pixel permutations should result in 

>200 gray levels in photoresist, covering the majority of the photoresist thickness.  It 

must also be reiterated, that these improvements can all be achieved without sacrificing 

any horizontal resolution.   

While the design of an optical mask becomes more complicated when using the 

double exposure technique, empirical modeling similar to the Gaussian approximation 

method described in Section 2.3.1 should be possible to automate the process.  

Depending on the required horizontal and vertical resolution required for a particular 

application, the double exposure technique may or may not be necessary.  However, the 

flexibility to create 3-D structures in this expanded design space lends further weight to 

the importance and significance of gray-scale technology as an enabling tool within the 

micro-fabrication and MEMS communities. 

  

2.4. Pattern Transfer 

Once a variable height photoresist structure is created, it is subsequently used as a 

mask during a plasma-etching step to transfer the pattern into the underlying substrate 

material.  For shallow structures (<10µm), reactive ion etching (RIE) can be used, while 

for deeper structures in silicon, deep reactive ion etching (DRIE) has become the 

dominant technique.  The following sections will describe the basic DRIE process and 
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how the gray-scale pattern is transferred into silicon.  A detailed etch selectivity 

characterization for controlling the amplification of the photoresist structure into the final 

3-D silicon structure will be presented. 

 

2.4.1. Deep Reactive Ion Etching (DRIE) 

Robert Bosch GmbH established the basic DRIE process in 1996 [99], where 

cycles of etching and passivation are used to create deep, vertical, high aspect ratio 

features in silicon.  Much research has been done regarding the various processes at work 

in the plasma, including [34, 100-107], so the basic operation is only briefly summarized 

below.  The remaining focus will be on its application to gray-scale pattern transfer. 

The starting material is typically a silicon wafer patterned with a masking material 

such as photoresist or silicon dioxide.  A short etching step is first executed using an 

inductively coupled plasma (ICP) containing SF6 (and sometimes Ar or O2 gases).  This 

etch is relatively vertical over small depths (usually <1µm), however there will be a 

limited amount of isotropic lateral etching of the silicon.  A passivation step follows, 

where C4F8 gas is cycled into the chamber to create a conformal teflon-like film over the 

entire surface.  When the etching step is repeated, the passivation layer is preferentially 

removed from horizontal surfaces by charged ions in the plasma, allowing vertical 

etching to continue.  Simultaneously, this passivation layer temporarily protects the 

silicon sidewall from further etching by F ions and radicals.  Etch and passivation steps 

are cycled until a desired etch depth is achieved in the silicon, resulting in a deep vertical 

etch with slight scalloping on the sidewalls, as shown in Figure 2.12.  Etch rates of 1-

5µm per minute are achievable. 
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Figure 2.12: Cross section of a silicon trench fabricated using DRIE, where the sidewalls exhibit 
slight scalloping due to the cyclic nature of the etch. 

 
During the DRIE process, the masking material is simultaneously etched along 

with the substrate.  However, the etch rate of the masking material, in our case 

photoresist, is many times lower than the etch rate of silicon.  This ratio of the silicon to 

photoresist etch rates is referred to as the ‘etch selectivity.’  Etch selectivity for a 

photoresist mask is typically around 60 to 1, usually written as 60:1 or just 60.  Whitley et 

al [6] briefly demonstrated and received a patent on the transfer of gray-scale structures 

into silicon using DRIE in 2002, showing simply that tuning the cycle times could 

produce sidewall facets with sufficient quality for their optical devices.  However, full 

characterization of the etch selectivity within a DRIE system is required for gray-scale 

technology as the difference in the etch rates between the two materials amplifies the 

vertical dimensions of each gray-scale structure.   

Figure 2.13 shows an example photoresist wedge on a silicon substrate.  As this 

wedge is etched in a DRIE process, any exposed silicon will etch quickly, while the 

photoresist nested mask etches more slowly (the photoresist is primarily etched by ion 

bombardment).  As the etch proceeds, the photoresist wedge will slowly recede, exposing 

more silicon to the high etch rate plasma.  The transferred gray-scale structure will retain 

its original horizontal dimensions, while the vertical dimensions are amplified by the etch 

Sidewall 

scalloping 
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selectivity.  Therefore, etch selectivity control is an absolute necessity for the fabrication 

of precise 3D structures in silicon.  

   

 

 

 

 

 

 

 

 

 

Figure 2.13: (a) Initial sloped photoresist structure on silicon. (b) Sloped pattern begins to transfer 
into the silicon with a particular selectivity.  (c) Final structure in silicon retains lateral dimensions 
while vertical dimensions are amplified by the etch selectivity. 

 

2.4.2. Selectivity Characterizations 

Precisely controlling the vertical scaling of the photoresist into the final silicon 

structure (i.e. etch selectivity) during DRIE is one of the major challenges in the gray-

scale technology process.  Many factors contribute to the etch rate of both the silicon and 

photoresist, and often the effects are difficult to de-couple entirely.  During each etch 

cycle of DRIE, the silicon is etched by a combination of chemical reactions and ion-

assisted etching, while the photoresist is etched by sputtering via ion bombardment. 

A number of experiments were carried out to assess the effect of changing various 

etch parameters on etch selectivity [16-18].  The starting etch recipe, termed Base Etch I, 

is shown in Table 2.3, and consists of separate passivation and etch steps within a time 

(a) 

(c) 

(b) 

Photoresist 

Silicon 
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multiplexed cycle. Changes were made to Base Etch I regarding temperature, electrode 

power, and silicon loading because of anticipated effects on the etch selectivity.  For 

example, increasing the electrode power will increase the rate at which the photoresist is 

sputtered from the surface due to ion bombardment, causing a corresponding decrease in 

etch selectivity.  These results were presented in more detail in my Masters Thesis [18], 

but are summarized in Table 2.4. 

Table 2.3: DRIE process parameters for Base Etch I. 

Step 
Ar 

(sccm) 
C4F8 

(sccm) 
SF6 

(sccm) 
Pressure 
(mTorr) 

Water 

Temp(°C) 

Electrode 
Power (W) 

Time 
(sec) 

Passivation 40 70 0 19 20 1 5 

Etch 40 0 100 19 20 10 8 

 
 
Table 2.4: DRIE etch selectivity characterization results. 

Parameter 
Silicon 
Loading 

(%) 

Si Etch 
Rate 

(µm/min) 

PR Etch 
Rate 

(µm/min) 

Etch 

Selectivity 

Sidewall Angle 
(Inside/Outside) 

Base Etch I 41 0.71 0.010 75 -0.1˚/-2.0˚ 

Base Etch II 57 0.73 0.016 42 -0.1˚/-2.0˚ 

Base Etch III 27 0.90 0.010 92 -0.3˚/-2.1˚ 

Higher 
Electrode Power 

41 0.71 0.013 55 -0.5˚/-2.2˚ 

Lower Electrode 
Power 

41 0.54 0.005 103 2.3˚/0.4˚ 

Increased 
Temperature 

41 0.75 0.015 48 -1.3˚/-2.9˚ 

 

While the process changes described above may be applied in many cases, 

achieving extremely low etch selectivity (<20) may be difficult while maintaining other 

etch characteristics, such as sidewall profile.  An alternative approach for coarse tuning 

of etch selectivity was also developed that uses an intermediate Oxygen-only step added 

to each passivation-etch cycle [16, 18], as shown in Table 2.5.  Oxygen plasma steps are 
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commonly used in MEMS and the IC industry for photoresist removal, and have minimal 

structural impact on silicon surfaces.  But by adding a short Oxygen-only plasma step to 

each cycle, a thin layer of photoresist is removed during each cycle, effectively 

increasing the photoresist etch rate.  The silicon etch rate should remain largely 

unaffected since the Oxygen plasma step is separate from the etching portion of the time-

multiplexed cycle.  By modulating the length of the Oxygen-only plasma step, the 

amount of photoresist removed during each cycle, and hence etch selectivity, can be 

coarsely controlled, as shown in Table 2.6. 

Table 2.5: Modified Bosch process using an Oxygen-only step for etch selectivity reduction. 

 
Table 2.6: Modulating the length of the O2 etch step coarsely controls resulting etch selectivity. 

  Etch Length of O2 Step (sec) Etch Selectivity 

1 0 70.4 

2 2 37.2 

3 4 25.6 

4 6 13.7 

 

The etch recipes and trends seen above are intended to serve as guidelines for etch 

development of specific structures.  It must also be noted that while the selectivity can be 

changed over a wide range, there are nearly always tradeoffs with other etch parameters 

that may or may not be important, such as etch rate or sidewall angle/roughness.  

However, given the design flexibility afforded during the gray-scale lithography process, 

it is often possible to design for an etch selectivity range where other etch parameters are 

Step 
Ar 

(sccm) 
C4F8 

(sccm) 
SF6 

(sccm) 
O2 

(sccm) 
Pressure 
(mTorr) 

Chamber 

Temp(°C) 

Electrode 
Power 
(W) 

Time 
(sec) 

Passivation 40 70 0 0 19 20 1 5 

Etch 40 0 100 0 19 20 10 8 

Oxygen-
step 

40 0 0 70 19 20 8 0-6 
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acceptable, and use the results above to fine-tune the process to achieve the appropriate 

final 3-D silicon structure.  An example gray-scale wedge after being transferred into the 

silicon is shown in Figure 2.14. 

 

 

 

 

 

 

 

 

Figure 2.14: Example 200µm tall gray-scale wedge after being transferred into the underlying silicon 
using DRIE [17]. 

 

2.5. Technology Collaborations 

The previous sections have discussed the mechanisms behind gray-scale 

technology, and the steps taken to improve and expand upon its capabilities.  Yet these 

abilities and developments are best understood when discussing specific applications 

where precisely controlled 3-D silicon structures play a crucial role in overall 

system/device performance.  The following sub-sections briefly describe three 

technology collaborations, where my research was partnered with outside organizations 

to develop and demonstrate unique 3-D silicon structures for enhanced performance.  

2.5.1. Micro-compressor (ARL + MIT) 

Researchers at the U.S. Army Research Laboratory (ARL) and Massachusetts 

Institute of Technology (MIT) are currently developing a micro turbine engine device, 



 49 

towards portable power generation for the future soldier [108-110].  The development of 

such a micro-gas turbine engine requires an efficient micro-compressor design that 

preferably emulates their high efficiency macro-scale counterparts, which are 3-D in 

nature [111, 112].  While designing 3-D microstructures would not be realistic using 

traditional micro-fabrication techniques, with the development of gray-scale technology, 

the design may be driven by optimum performance goals rather than what is achievable 

with conventional fabrication techniques.    

A micro-compressor based on the capabilities of gray-scale technology was 

recently designed [111, 113], and is shown in Figure 2.15.  This improved design has the 

tops of the blades defined by the original wafer surface, while the bottom of the flow 

passage is etched to a variable depth.  To complete the flow passage, another wafer 

would be bonded on top for encapsulation.  The design calls for the base of the flow 

passage to slope from 400µm deep at the inner radius to 200µm deep at the outer radius 

(a 2mm long, 200µm tall slope), resulting in a mass flow inlet to exit ratio of 2:1 in the 

vertical dimension.   

 
Figure 2.15: Variable height micro-compressor design exhibiting a 2mm inwardly sloped profile, 
where the compressor blades and veins extend above the slope to a constant height. 

 

2mm 
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The first generation design, before the introduction of the Gaussian 

approximation, had a sloped photoresist height of ~3µm, so that a selectivity of 67 was 

needed.  When using the base etch I from Table 2.4 a height of 210µm was achieved, and 

the final structure is shown in Figure 2.16 [17].  It is apparent that in this first 

demonstration, the sloped was quite non-linear.  By using the Guassian approximation 

method, a 2nd design was fabricated with a linear slope, as shown in the optical 

profilometer scan of Figure 2.17.   

 

 

 

 

 

 
 
 
 

Figure 2.16: SEM and profilometer scan of the 1st generation micro-compressor [17]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17: Optical profilometer scan of the 2nd generation micro-compressor using the Gaussian 
approximation design method. 
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The final step in developing this 3-D structure was its integration into an existing 

MIT compressor wafer process flow.  A nested mask approach was developed to create 

the gray-scale slope and outer flow channels in separate etches, thereby eliminating the 

need for large single gray levels [114].   

An abbreviated schematic of this process flow is shown in Figure 2.18, while 

Figure 2.19 is an SEM of the final variable height silicon micro-compressor with smooth 

outer flow channels.   

 

 
 

Figure 2.18: Integrated micro-compressor level wafer process flow using a nested oxide mask. 
 
 

2. Spin and pattern photoresist 

using gray-scale lithography. 

4. Remove photoresist and DRIE 

using the nested oxide mask. 

1. Deposit and pattern PECVD oxide 

nested mask on silicon wafer. 

3. DRIE gray-scale pattern transfer 

using photoresist mask. 
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Figure 2.19: SEM of a micro-compressor fabricated using the integrated, nested oxide mask process. 

 
At the time of this writing, the improved performance of variable height micro-

compressor structures has not been confirmed in a rotating platform within the micro-

engine device, largely due to the many other technical challenges associated with the 

project.  However, our research was able to advance gray-scale technology to the point 

where such geometries can be achieved with regularity using the design methods and etch 

development guidelines described earlier. 

2.5.2. Phase Fresnel Lens (NASA) 

A phase Fresnel lens (PFL) is essentially a small grating that will diffract incident 

radiation towards its focus, while ideally producing a phase change within each grating 

zone to concentrate all incident power into the primary focus. Recently, G. Skinner 

proposed a Fresnel lens-based system for astronomical observations at hard X-ray and 

gamma-ray energies [115-117]. This system would have the highest diffraction-limited 

angular resolution of any wavelength band, resulting in a greater than 108 improvement 

over current gamma-ray imaging systems. The sensitivity of the proposed system would 

also be tremendous compared to typical background-limited gamma-ray instruments, 
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resulting in a 103 improvement.  (Improvements based upon comparison of a 5m Fresnel 

lens-based system to that of INTEGRAL [117].) The main drawback is the inherently 

long focal length, on the order of 106 km, requiring that the lens and detector be located 

on separate spacecraft and aligned appropriately. (A detailed mission study indicated that 

given current propulsion technology, a large focal length is not prohibitive [118]).   

To demonstrate the superior imaging properties of a PFL, scaled down lenses 

were developed for ground testing at lower X-ray energies as part of my masters thesis 

work [16, 18].  The thickness (t) of a PFL, as a function of radius (r), is defined as [119]: 
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where π2t  is the thickness of material required to produce a phase shift of 2π, and A is a 

function of focal length (f) and target photon energy (E), given by: 
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Neglecting absorption effects, the lens profile can also be extended to higher phase 

depths, such as 4π, 6π, etc [120]. Making a step approximation to the ideal profile leads 

to an expression for the efficiency (ηLens) of a multi-level diffractive lens, given the 

number (N) of steps used to approximate the profile [121-123]: 
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Therefore, a traditional binary lens (2 steps) has a maximum theoretical efficiency of 

40.4%.  For example, By increasing the number of steps using gray-scale technology to 8, 

the maximum theoretical efficiency reaches 95.0%.   
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Using the photoresist profile and etch selectivity control methods described 

earlier, silicon PFL’s with diameters as large as 4.7mm were designed and fabricated.  

Figure 2.20 shows an optical profiler scan of a fabricated silicon PFL profile (red) along 

with the designed profile (blue).  The close agreement over the measured profile, 

demonstrates the precise profile control possible using the gray-scale techniques 

developed in this research.  A phasor-based profile evaluation method was developed in 

combination with optical profiler scans of silicon PFL profiles to estimate the efficiency 

of the fabricated structures [18, 36].  Efficiencies of >87% were obtained for 1.2mm 

diameter PFL’s assuming 8.4keV photons and f=118m [18].  An SEM of a 1.6mm 

diameter silicon PFL is shown in Figure 2.21 [16].   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.20: Measured silicon PFL profile compared to the ideal case, with efficiency >87%. 
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Figure 2.21: SEM of a 1.6mm silicon PFL fabricated using gray-scale technology [16]. 

 
Similar test PFL’s with diameter of 3mm and 4.7mm were fabricated on 70µm 

silicon-on-insulator wafers using identical design and fabrication techniques.  To 

minimize absorption, a backside through-wafer etch was added to remove the bulk silicon 

beneath each test lens.  A few such lenses have been fabricated for testing in a new 600m 

x-ray beam line at the NASA-Goddard Space Flight Center [124].  Preliminary results 

show prominent focusing by the lenses, however significantly more testing and 

characterization is needed to properly evaluate the performance of the lenses and the 

beam line itself.  At the time of this writing, this research is being pursued by my 

collaborators at NASA. Figure 2.22 is a raw data image from a cooled x-ray CCD 

camera, where each point indicates a single x-ray absorption event.  As shown in the 

histograms (at bottom and right), a Gaussian-shaped distribution is evident from the 

collected photons. 
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Figure 2.22: Raw data from X-ray beam line testing of 3mm silicon gray-scale PFL’s on SOI 
substrates – filtered around the  k_alpha line of a copper target (8keV).  Each blue point corresponds 
to a single X-ray, with histograms for both axes are provided in green. 

 

2.5.2.1. Compensated Aspect Ratio Dependent Etching (CARDE) 

My research on silicon PFLs with decreasing ridge width and focal length 

revealed that aspect ratio dependent etching (ARDE) [34, 102, 106] caused significant 

changes in overall profile accuracy, as small ridges at large radii did not etch as deeply as 

larger ridges towards the center [16].  This problem is expected to limit future PFL 

efficiency because the annular ring created by each ridge has an identical collection area, 

so the accuracy of small outer ridges dominates PFL performance.  Since gray-scale 

technology is already being employed to define the vertical dimensions of the PFL 
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features, a photoresist biasing technique using gray-scale lithography was created to 

counteract the subsequent ARDE.  Specifically, a vertical bias was introduced to the 

design of variable-height photoresist nested masks to locally modulate etching time 

according to feature size and pattern density, creating a compensated aspect ratio 

dependent etching (CARDE) process [36, 125].  

The conventional, or uncompensated, PFL profile thickness profile, t(r), given a 

desired focal length of 17.1m and 6.4 keV photons, can be defined as [36]: 
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which normalizes the periodic modulo function to the maximum photoresist height 

(PRmax) available in the design.  An investigation of Equation 22 reveals that as the radius 

increases, each ridge becomes thinner and thus has a higher aspect ratio.   

For the CARDE PFL, a compensating function (δ(r)) was introduced to the above 

design.  Since the widths of the PFL ridges steadily decrease as the radius increases, a 

linearly decreasing compensation function was used for simplicity: 
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where Rmax is the radius at which no compensation will be used and δ0 is the maximum 

normalized offset in the center (r=0) of the PFL.  The compensation function is then 

incorporated into the thickness profile of Equation 22: 
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An example of the normalized compensated and uncompensated PFL profiles is 

shown in Figure 2.23.  The large, fast-etching ridges at the center of the lens are now 
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defined using higher gray levels (i.e. thicker photoresist).  These large central ridges will 

begin etching after a delay, while the thin outer ridges will begin transferring into the 

silicon immediately, effectively getting a head start.  At a certain point later during the 

etch, the large central ridges will catch up to the thin outer ridges and a consistent etch 

depth/ridge height will be achieved.  This behavior is confirmed in the two silicon PFL 

profiles shown in Figure 2.24.  For the uncompensated case, the ridge height/depth 

decreases at large radii as the aspect ratio increases.  However, for the CARDE case, a 

consistent ridge height/depth is achieved.   

 

 

 

 

 

 

 

Figure 2.23: Normalized ideal and compensated PFL photoresist profile, showing the linearly 
decreasing compensation function. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 2.24: Silicon profiles measured using an optical profiler for an (a) uncompensated and (b) 
compensated PFL design.  The latter has different width ridges with the same height/etch depth. 
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Using the profile evaluation method developed in [18, 36], we calculated the 

efficiency of ridges at the edge of 1mm PFL profiles (r>400µm) for both compensated 

and uncompensated PFL designs to be 55% and 54%, respectively.  This similarity at the 

edge of the PFL is expected since the small outer ridges receive no compensation.  Note, 

these calculated efficiencies also easily exceed the maximum theoretical efficiency of a 

binary Fresnel lens profile (~40%) that would be possible using planar fabrication 

techniques.  Optical profilometer scans were taken over the first 4 ridges (r=0�250µm) 

and their efficiencies calculated.  For the uncompensated profile, an efficiency of only 

43% was calculated for the center of the PFL, while a calculated efficiency of 80% was 

measured for the CARDE PFL.  Thus, by introducing the compensation function to the 

PFL design, the calculated efficiency for the CARDE PFL was almost twice as high as 

the uncompensated PFL.   

This photoresist biasing technique clearly offers the ability to control the vertical 

dimensions of a 3D silicon profile despite changes in feature size that causes different 

etch rates across the pattern.  Such a technique could be utilized for the integration of 

gray-scale structures with silicon-on-insulator (SOI) actuators, since electrostatic MEMS 

actuators often incorporate a wide range of feature sizes and over-etching of large 

features, gray-scale or otherwise, may be undesirable.      

 

2.5.3. 3-D Substrates for Packaging (Toshiba) 

Researchers at the Toshiba Corporation (Corporate Manufacturing Engineering 

Center, Yokohama, Japan) desired to reduce the size of their metal-oxide-semiconductor 

field effect transistor (MOSFET) relay – a switching device for small electrical signals 
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commonly used in measurement equipment.  Therefore, a new, smaller MOSFET relay 

package configuration based on a 3-D silicon substrate was proposed and demonstrated 

using gray-scale technology at UMD [126, 127].   

The outline of a conventional MOSFET relay package, shown in Figure 2.25(a), 

contains three separate devices: a light emitting diode (LED), the MOSFET, and the 

Driver chip.  Traditionally, the chips are connected by wire bonding and the package is 

shielded by plastic molding. The proposed relay package, at approximately one-half the 

size of the conventional package is shown in Figure 2.25(b).  The combination of a 3-D 

silicon substrate (in place of the lead-frame) and flip-chip bonding to connect the 

MOSFET and Driver chips enables more dense packing of the components to reduce 

overall package size by 50%.    

  

 

 

 

 
 
Figure 2.25: Schematic cross-sections of (a) the conventional MOSFET relay package, and (b) the 
proposed MOSFET relay package utilizing a 3-D silicon substrate. 

 
The new design requires a tall, sloped silicon bulge that must be metallized to 

provide electrical connection between the base of the substrate and the second vertical 

level containing the Driver chip.  Wiring of large, isotropically etched surfaces has been 

demonstrated by Sharma et al [128], however isotropic etching in general is rather 

limited in the structures and geometries that can be achieved.  In contrast, gray-scale 

technology can make nearly arbitrary profiles in silicon at the necessary scale. 
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The basic design of the 3-D substrate is shown in Figure 2.26.  The substrate has 

three primary features.  First, backside electrodes are connected to the substrate surface 

using large through-hole interconnects.  Second, two large bulges are used to provide a 

vertical platform for attaching the Driver chip above the LED.  And third, electrical 

connection between the top and bottom of the bulges is accomplished by patterning wires 

on a large, sloped surface on the side of the bulges.   

 

 

 

 

 

Figure 2.26: Schematic of the MOSFET relay 3-D substrate incorporating two bulges with sloped 
wiring and through-hole interconnects. 

 
The major fabrication challenge is to optimize the gray-scale technology process 

to achieve sloped wiring connections between multiple levels vertically separated by 

>100µm.  The primary concern for developing sloped interconnects is the surface 

morphology of the slope, since a single large step could prevent electrical continuity.   

Using a minimum spot size of S0=100nm as the increment in pixel width or 

length, a set of >50 pixels was created for a pitch of 3.0µm on the mask.  Using a fixed 

increment in pixel width creates a change in pixel area proportional to its length (∆Area = 

Increment x Length), and vice versa.  Thus, there will be a large increment in pixel area 

between two large pixels, creating larger gray level steps at the top of photoresist 

structures (this was also apparent previously in Figure 2.11).  Since a single gray level 

step of only a few micrometers could prevent electrical connection down the tall 
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(>100µm) gray-scale slope, post-processing of the photoresist and silicon slopes was 

investigated. 

A hard-bake step was added to a 10µm version of the gray-scale lithography 

process (following the development step) in an attempt to cause limited photoresist re-

flow and improve the smoothness of the slope. Figure 2.27 shows profilometer scans of 

two photoresist structures before and after the hard bake step.   

 

 

 

 

 

 

 

 

Figure 2.27: Profilometer scans of (a) gray-scale photoresist slope and (b) planar structure, before 
and after a hard bake step.  The gray-scale slope becomes remarkably smoother, while the planar 
structure loses some dimensional accuracy. 

 
In the case of the gray-scale slope, Figure 2.27(a), the bottom of the slope is 

initially quite smooth, while the top of the slope contains gradually larger steps due to the 

constant pixel increment discussed earlier.  After the hard bake step, the photoresist re-

flow has significantly improved the smoothness of the entire profile.  However, Figure 

2.27(b) shows a large planar structure before and after the hard bake, where the 

photoresist horizontal dimensions and sidewall profile have changed.  The dimensional 

change of 15-20µm for this large planar structure is acceptable for the MOSFET relay 

substrate, as only large planar structures are defined during this step.  However, for 
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applications requiring strict planar dimension control, the photoresist re-flow method 

may be inappropriate or require further optimization (such as tailoring baking 

temperature and/or time).  The change in photoresist sidewall profile (no longer vertical) 

may also result in rough silicon sidewalls due to mask erosion during the DRIE step.   

These photoresist profiles were subsequently transferred into silicon, where the 

average roughness on the gray-scale slopes immediately after DRIE was measured to be 

less than 50nm.  Simple post-processing steps, such as isotropic plasma etching and 

thermal oxidation, have been used to further improve the sloped surface morphology.  

Alternative methods, such as hydrogen annealing [129], could be used for dramatic 

smoothing of the silicon profile if desired. 

The final step in developing 3D sloped interconnects was to define metal traces 

on the slope and verify electrical continuity.  A Ti/Au (60nm/300nm) layer was 

evaporated over the entire substrate.  Since the substrate has already undergone DRIE, 

photoresist spray coating was performed at the Toshiba Corporate Manufacturing 

Engineering Center in Yokohama, Japan to coat the complex topography.  Contact 

lithography was used to pattern this photoresist layer and wet etching removed the excess 

metal, leaving various metal traces on the 3-D substrate, as shown in Figure 2.28(a).   

Electrical continuity was verified between the top of this 170µm tall bulge and the 

bottom of the etched open area, using standard wafer probes.  These results confirm that 

the final gray-scale silicon slope was sufficiently smooth for even a thin (360nm) metal 

layer.  Figure 2.28(b) shows example IC’s after flip-chip bonding, demonstrating the 

ability to interconnect multiple IC’s at different elevations on the same substrate.   
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Figure 2.28: (a) Silicon substrate with patterned metal traces providing electrical contact between the 
two levels. (b) Flip-chip bonding of multiple IC’s illustrates the potential configuration for a 
MOSFET relay. 

 

2.6. Conclusion 

This chapter has reviewed the research performed on the core gray-scale 

technology process, an attractive and flexible batch fabrication technique capable of 

creating variable height structures in silicon using a single lithography and etching step. 

Developments presented include precise 3-D photoresist profile design techniques, and 
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etch selectivity characterization for controlling the vertical amplification of photoresist 

profiles into final 3-D silicon structures.  Multiple applications were pursued as 

collaborations on this technology, where the developed techniques were shown to be 

effective and precise.  This research has laid the foundation for gray-scale technology 

serve as a platform technology for 3-D MEMS actuator development, towards improving 

device performance and enabling unique actuator behavior. 
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3. ELECTROSTATIC COMB-DRIVES USING GRAY-SCALE 
TECHNOLOGY 

3.1. Introduction 

As discussed in previous chapters, the majority of fabrication techniques used in 

the area of microelectromechanical systems (MEMS) are planar technologies.  While 

myriad MEMS actuators have been developed using these techniques, the design space is 

severely constricted due to fabrication limitations.  Thus, actuator designs must often 

compromise between desired performance and the ability to be fabricated.  In particular, 

electrostatic MEMS actuators are extremely sensitive to their surrounding geometries, so 

the ability to design with 3-D structures, can offer a significant performance advantage.   

This chapter will review the basic mechanisms at work in electrostatic MEMS 

comb-drives, as well as highlight the areas where improvements can be made by 

incorporating 3-D components.  Novel methods for tuning comb-drive performance using 

gray-scale technology in both the comb-fingers and the suspension structure will be 

discussed.  Comb-drive actuators with 3-D comb-fingers and reduced height suspensions 

are demonstrated that enable customized displacement characteristics and lower driving 

voltages without increasing device footprint.  The integrated process flow and comb-

actuators developed here will serve as a building block for the development of tunable 

resonators (Chapter 4) and optical fiber aligners (Chapters 5 and 6).  

 

3.2. Electrostatic Actuation Fundamentals 

Planar electrostatic actuators, and in particular comb-drives, have been developed 

with planar techniques by many groups [46-57].  In order to properly utilize the 

CHAPTER 3: ELECTROSTATIC COMB-DRIVES 
USING GRAY-SCALE TECHNOLOGY 
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capability to now design comb-drives in the vertical dimension, we will first consider the 

relevant equations for the planar case.  Referring to Figure 3.1, two sets of interdigitated 

fingers are used to form a parallel plate capacitor.  By applying a potential (V) across the 

capacitor, an attractive force is generated between the fingers causing their overlap to 

increase (assume one set of comb-fingers to be suspended and the other fixed). 

 

 

 

 

 

 

 

 

Figure 3.1: Perspective view of a comb-drive actuator. 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic of a typical comb-drive actuator with fixed and suspended comb-fingers.  The 
suspended set of comb-fingers is often electrically grounded to minimize any attractive force to the 
ground plane below. 
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The behavior of a comb-drive is typically described by considering a single comb-

pair, shown in Figure 3.2, where we write the electric potential co-energy (W*) as [130]: 
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where C is the capacitance between the two conductors for a particular position of the 

suspended fingers.  In the voltage constrained case, as one side of the capacitor moves, 

the electrostatic force involved is the positive spatial derivative of the stored potential 

energy [131]. Thus, we can write the forces in the x- and y-directions: 
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Once the comb-fingers are overlapped, the contribution of fringing fields on the 

derivative of capacitance is essentially negligible [132].  Thus, the capacitance for 

overlapping section of a single comb-finger is often estimated using a parallel plate 

approximation: 
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where ε0 is the permitivity of vacuum (and approximately that of air), h is the height of 

the comb-fingers, x is the amount of overlap, and d is the gap between comb-fingers.  

First considering the force in the y-direction, we see that when the suspended comb-

finger is equidistant from both sides (d1=d2), the force generated from each of the 

capacitors (C1 and C2) will be equal in magnitude, but in opposite direction, canceling 
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each other out.  Note that this issue will be revisited later in Section 3.3.3 as it relates to 

instability of the comb-drive.  Using the same assumption (d1=d2), the force in the x-

direction can also be calculated as: 

20 V
d

h
NFx

⋅
=

ε
     (29) 

 
where N is the number of comb-fingers and V is the applied voltage.  For a planar comb-

drive where the height of the comb fingers (h) is constant, the derivative of capacitance 

with respect to position is also constant.  Thus, the force generated by a comb-drive is 

independent of the overlap of the comb-fingers and proportional to the square of the 

applied voltage. 

The total displacement of a comb-drive actuator is the point where the generated 

force and restoring spring force are equal in magnitude.  Assuming a linear spring 

constant (k), the displacement of a planar comb-drive (∆x) is also a quadratic function of 

applied voltage, V: 
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Plugging in some example numbers from structures achievable with DRIE, Figure 

3.3 shows a plot of the resulting displacement versus voltage curve.  A few characteristics 

of this graph, and comb-drives in general, should be noted:  first, displacements >10µm 

can be easily achieved using <100V, making this an attractive technology for large 

displacements at the micro-scale. Second, the quadratic relation between displacement 

and voltage results in large displacements, but at the cost of significantly decreasing 

resolution at large deflections. 
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Figure 3.3: Example calculated displacement versus voltage plot for an electrostatic comb-drive 
assuming N=50, K=5 N/m, d=10µm, and h=100µm. 

 
We can define the actuation resolution (R, in meters/volt) at a particular 

displacement as the derivative of the displacement-voltage curve at that point: 
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where V′ is the voltage required to cause ∆x displacement: 
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Resulting in a displacement resolution that depends on the present displacement: 
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For applications working with optics or nanomechanics testing, sub-nanometer 

resolution may be important over large distances (~1mm) [133].  Referring to the case of 

Figure 3.3, the resolution at 5µm is three times better than the resolution at 40µm 

displacement (R(5µm)=133nm/V, while R(40µm)=376 nm/V).   
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3.3. Tailored Comb-finger Design and Simulation 

To meet a specific resolution, we see that the actuator design can be adjusted 

through many parameters (suspension, gap, etc).  However, in order to meet a required 

resolution at large displacement, we see that the resolution at small displacements will far 

exceed that which is necessary.  This means we are essentially “wasting” voltage during 

small displacements of the device since we unnecessarily created extremely high 

resolution at those points.  Ideally, a constant resolution over the entire range would be 

the most effective use of applied voltage.  Thus, the resolution at large displacements 

should be improved while keeping the resolution at small displacements unchanged.   

Since traditional planar comb-drives use a constant gap between the moving and 

stationary fingers, they have a constant change in capacitance per unit length and 

generate a force that is independent of the relative finger position.  However, by locally 

modifying the capacitance profile, the force-engagement profile can be changed, enabling 

the resolution to be tailored as the displacement changes. For example, as the voltage is 

increased, the generated force scales as V
2.  If the change in capacitance (i.e. force) 

decreased as the actuator is displaced, the effect of squaring the voltage (V2) would be 

offset.  The net effect would be the improved resolution at large deflections without over-

engineering small displacements.  

As mentioned in Chapter 1, previous approaches for tailoring the capacitance (and 

force) characteristics have varied the gap, d�d(x), between the moving and fixed comb-

fingers.  However, such variable-gap approaches cause large increases in the wafer real-

estate required for each comb-pair (frequently >50%), resulting in a much larger device 

footprint [60, 61].  One group realized that with a variable height profile, h→h(x), the 

generated electrostatic force can also be made position dependent without increasing 
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device footprint.  They expanded their simulated designs to include shaping in the 

vertical dimension, yet eventually conceded that their designs could not be fabricated due 

to manufacturing limitations [62].   

The following sub-sections describe new 3-D comb-finger designs that use gray-

scale technology to locally reduce the height of comb-fingers to alter the capacitance 

profile, as shown in Figure 3.4.  Such an approach does not increase the area occupied by 

each comb-pair, while enabling similar tuning of displacement-voltage profiles. Both 

analytical and finite element analysis will be used to investigate the effects of shaping 

comb-drive components within the constraints of gray-scale technology.  To enable the 

extension of these actuators to the optical fiber alignment systems developed in Chapters 

5 and 6, 100µm silicon-on-insulator (SOI) wafers will be considered. 

 

 

 

 

 

 

Figure 3.4: Schematic of a single variable height comb-finger moving between two constant height 
stationary fingers to achieve tailored comb-drive displacements. 

 
 

3.3.1. Analytical Displacement Simulations (2-D) 

To further establish the intuition for tailoring comb-fingers, analytical simulations 

using 2-D parallel plate approximations for the capacitance were used.  This method was 

then extended to simulate the displacement-voltage behavior of a profile given a position 

motion 
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dependent capacitance change (dC/dx) [134].  Much of the analysis and designs will use 

10:1 aspect ratios, which are readily achievable in DRIE, making the initial gap=10µm 

for 100µm SOI wafers.  Determining the displacement-voltage characteristics of a comb-

drive design starts by estimating the capacitance at each position of an individual comb-

pair.  The device behavior is then calculated by using an incremental method to 

determine the voltages required to create small displacements.   

Let us consider our proposed design which locally varies the height of each comb-

finger using gray-scale technology, h�h(x).  The static displacement, ∆x(V), of this 

comb-drive is the point at which the generated comb-drive force and the restoring spring 

force are equal in magnitude.  Assuming a linear spring constant, k, the displacement of a 

planar comb-drive was easily described as a quadratic function of applied voltage and 

linearly proportional to the other design parameters in Equation 30, and is repeated here 

using a height that changes with position, h(x): 

20 )(
V

dk

xh
Nx

⋅

⋅
=∆

ε
.     (34) 

 
Looking at Equation 34, we see that by changing the height profile of the comb-finger to 

scale as the inverse of displacement (h(x) ∝ 1/∆x) will create a relationship where both 

displacement and voltage scale together quadratically: 
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An example of a (1/∆x) profile is shown in Figure 3.5.  Essentially, as the displacement 

(∆x) increases with voltage, the height (h) decreases to offset the squaring of the applied 

voltage.  This decrease in height is analogous to the gradual increase in gap between 

comb-fingers investigated by other groups [60, 61], but in our case the overall device 
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footprint remains unchanged.  Similarly, the opposite effect can be produced by creating 

comb-fingers that gradually increase in height to give cubic or other force/displacement 

profiles (analogous to decreasing the gap).  

 

 

 

 

 

 

Figure 3.5: An example variable height comb-finger profile compared to the constant height case. 

 
Assuming the capacitance is known as a function of position, an iterative method 

was introduced to simulate the displacement-voltage behavior of the device.  First, an 

incremental movement, ∆xi, is defined.  Then, Equation 34 is inverted to calculate the 
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A running calculation of voltages is then used to assemble the voltage as a function of 

displacement, where ∆Vi is typically 0.1V: 
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Using a parallel plate approximation, we initially assume the change in 

capacitance with position (dC/dx) to simply be proportional to the local height of the 

moving comb-finger, h(xi).  Figure 3.6 shows simulated displacement characteristics for 
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the height profiles shown in Figure 3.5, assuming N=200 comb-fingers, a gap of 

d=10µm, and a linear spring constant of 5 N/m. 

 

 

 

 

Figure 3.6: Calculated displacement as a function of voltage for designs using the constant height or 
variable height comb fingers shown previously in Figure 3.5. 

 
As expected from the analysis presented earlier, the constant finger height profile 

results in a quadratic displacement-voltage curve, while the variable height comb-finger 

profile (now possible using gray-scale technology) creates a displacement-voltage curve 

that stays linear.  In the variable height case, the incremental movement (dx) created at 

large voltages is reduced giving improved resolution of the comb-drive positioning. 

While this method is used here for the simplest case of h(x) ∝ 1/∆x, it can be adapted to 

any C(x) relationship to predict the corresponding actuation behavior. 

3.3.2. Finite Element Analysis (3-D) 

The glaring difference between the planar and variable height case is the 

importance of fringing fields, which are neglected in planar devices.  Given the 

dimensions and aspect ratios involved, simply reducing the height by 50% will not reduce 

the capacitance at each comb-position by exactly 50%.  Thus, our parallel plate model 

must be extended to include the effects of fringing fields on the capacitance-position 

profiles to accurately predict actuator behavior using Finite Element Analysis (FEA).  
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as achievable comb-finger gaps and feature aspect ratios will be fabrication dependent.  

Our analysis and designs will continue to assume 100µm SOI wafers and 10:1 feature 

aspect ratios, giving an initial gap of d=10µm as done before.   

FEA models were constructed in the FEMLAB (V3.0) Electrostatics Module to 

emulate a grounded, variable height comb-finger moving between two stationary comb-

fingers (held at a potential of V=1 Volt).  The behavior of a device with N comb-pairs 

was estimated by multiplication.  Top and side view schematics of the basic model 

geometry simulated are shown in Figure 3.7.  While h(x) ∝ 1/∆x profiles were discussed 

earlier for intuition, it will be shown that fringing fields cause a height step to act in a 

similar manner.  All comb-fingers were 100µm long with a maximum height of 100µm.  

The moving comb-finger has an initial 15µm full-height section, followed by 85µm long 

section with a reduced constant height, H.  A ground plane was included 10µm below the 

comb-fingers to simulate a grounded substrate below the moving fingers.  The system 

was bounded by a 3mm by 3mm grounded box.  A mesh containing approximately 200K 

elements was found to be sufficient to ensure convergence of our solution.   

 

 

 

 

 

 

Figure 3.7: (a) Top view and (b) side view schematics of the FEA models built in FEMLAB.  The 
moving comb-finger has an initial full-height section, followed by a section with reduced height 
(simulating a single gray level). 

 

100µm 

15µm 

100µm 

H 

100µm 

30µm 

15µm 

100µm 

10µm 
1V 

Ground 

(a) Top View (b) Side View 



 77 

Rather than solve the Laplace equation ( 02 =∇ V ) directly, FEMLAB was used to 

minimize total system energy in order to find the voltage distribution.  This distribution 

specifies the electric field, and therefore electric energy density, in each discrete element.  

By integrating over the volume, the total electric potential energy of the system was 

obtained.  The capacitance is then calculated using this total electric potential energy and 

the applied potential of 1V in Equation 25.  The FEA simulated capacitance as a function 

of comb-finger overlap is shown in Figure 3.8 for values of H = 100µm (planar), 

H=40µm, and H=10µm.  While the absolute value of capacitance will be different for 

each case, all curves were shifted vertically to a common origin to ease interpretation.  

This does not effect the force profiles since they depend only on the derivative.   

 

 

 

 

 

 

 

 

 

Figure 3.8: Simulated capacitance vs finger overlap for different height gray levels (H=100µm, 40µm, 
and 10µm) using FEMLAB. 

 
Using 6th order polynomial curve fits, the derivative of each simulated case was 

calculated, see Figure 3.9.  These curves represent the normalize force of each actuator as 
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a function of position.  As evident in Figure 3.9, the planar case results in a constant force 

that is independent of position, consistent with the simple parallel plate model.   

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Normalized force vs. position for different height gray levels.  Fringing fields cause the 
gradual transition.  For H=10µm, the force is reduced by 75% at 40µm overlap. 

 
From the FEA simulation results, we see that the effects of fringing fields on the 

capacitance profile are significant.  If a parallel-plate approximation was sufficient for the 

variable-height case, the normalized force profile would resemble the stepped height 

profile, h(x), shown in the side view of Figure 3.9.  However, the fringing fields and our 

FEA model are able to “see” the change in height far before the reduced-height section 

arrives between the stationary fingers at an overlap of 15µm.  Consequently, the force 

profile changes gradually around the transition point, and eventually settles to a smaller 

constant value.  For the case of H=10µm, the total force is reduced by 75%, which should 

cause a corresponding improvement in displacement resolution of the actuator.  Both the 
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analytical and FEA simulated force profiles will be compared to the experimental results 

of the fabricated gray-scale actuators in Section 3.6.1. 

 

3.3.3. Instability Considerations 

One issue that has been ignored to this point is the stability of the comb-drive 

actuator.  In the analysis presented in Section 3.2, it was assumed that all forces in the y-

direction (perpendicular to the stroke) will cancel.  However, that assumption is premised 

on the moving comb-fingers being exactly ½ way between the stationary fingers.  In 

reality, the comb-fingers are always slightly off-center and the force in the y-direction is 

non-zero: 










∆+
−

∆−

⋅∆⋅
=∆

22

2

0

)(

1

)(

1

2

)(
)(

ydyd

VxA
NxFy

ε
  (38) 

 
Where A(∆x) is the effective overlap area of a parallel plate capacitor on each side of the 

moving comb-finger. While A(∆x) does not explicitly take fringing fields into account, 

any capacitance value including fringing fields can be represented as an equivalent 

parallel plate case ignoring fringing fields.   

 We can now define a virtual spring constant in the y-direction (ky-virtual) as the 

derivative of Fy with respect to y, evaluated at the ∆y=0 (center) position: 
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This spring constant essentially represents the amount of instability present due to 

electrostatic forces.  When this virtual spring constant of the electrostatic force exceeds 

the real mechanical spring constant of the suspension in the y-direction (ky-real), an 

instability point is reached and both sets of comb-fingers will likely ‘snap’ together.  If 
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we set ky-virtual = ky-real, we can find the maximum stable deflection point (∆xmax).  For the 

case of a traditional, planar comb-drive, we start by re-arranging Equation 30 to be: 

x
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⋅
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0

2

ε
.     (40) 

 
Substituting this V2 expression into Equation 39 (set to ky-real), and using the fact that for 

the planar case A(x)=h·∆x, yields: 
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Collecting terms and solving for ∆x, we find the maximum stable deflection point for a 

traditional, planar comb-drive to be: 
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Thus, the maximum displacement is actually dictated by the ratio of spring constants in 

the x- and y-directions, rather than their absolute value.  It should be noted that the spring 

constants in Equation 42 are real, instantaneous values.  While an approximation, 

Equation 42 can be used as a reasonable guideline for choosing a suspension design to 

suit your desired displacement needs.  Further discussion on the design and performance 

of comb-drive suspensions is provided in Section 3.4. 

 For the case of a gray-scale tailored comb-finger however, Equation 42 is no 

longer applicable.  Since the height is now a function of displacement, we must write 

A(∆x) as an integral: 
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Making Equation 39: 
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Similarly, Equation 40 no-longer holds as the V

2
(x) relationship is now a complicated 

function dependent on h(x), ∆x, kx, N, ε0, and d: 

),,,,),(( 0

2
dNkxxhfV x ε∆=      (45) 

 
Substituting into Equation 44 gives ky-virtual for a variable height comb-finger: 
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Given a particular h(x) profile of the comb-finger, we can solve Equation 46 numerically 

for different values of displacement (explicit code is given in Appendix A).  Using the 

comb-finger profiles and assumptions from Figure 3.5, ky-virtual was calculated as a 

function of displacement, as shown in Figure 3.10:  

 
Figure 3.10: Calculated virtual spring constants for both planar and variable height gray-scale 
comb-finger designs. 
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In Figure 3.10 a fictitious line has been added to represent an arbitrary value for 

ky-real.  It is clear that a device with gray-scale variable height fingers will reach this 

limiting threshold earlier than a corresponding planar device would.  Such behavior is 

expected from the gray-scale design because improved resolution was obtained by 

increasing the voltage required to generate the same displacement.  Even though the 

overlap area of the gray-scale comb-fingers is smaller than the planar case, the fact that 

force scales with V2 over-compensates for the reduction in overlap area.  Thus, vertically 

shaped gray-scale comb-fingers can be expected to have a net decrease in stability 

compared to traditional planar comb-drive designs. 

 

3.4. Reduced Height Suspensions 

While shaping comb-fingers in the vertical dimension can alter the force 

generated by the comb-drive, gray-scale technology may also be used to locally reduce 

the height of comb-drive suspensions, for tailoring spring constants and/or resonant 

frequencies.  Significant research has been performed regarding the various suspension 

designs possible for electrostatic actuators [50, 52-54, 135].  The ‘folded-flexure’ 

suspension design, shown schematically in Figure 3.11, is one of the simplest designs and 

has a relatively high compliance in the direction of the stroke, while providing stability in 

the direction perpendicular to the stroke (i.e. large ∆xmax). The approximate spring 

constant in the direction of motion, kSuspension, of the ‘folded-flexure’ design is [50]:  

3

32

l

Ehb
kSuspension =      (47) 

 
where E is Young’s Modulus, h is the spring height, l is the leg length, and b is the width 

of each leg.  For planar designs, the spring constant is usually changed by adjusting the 
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spring length (at the expense of increased device area), or the spring width (at the 

expense of higher aspect ratio).  However, gray-scale technology offers the possibility of 

tuning the suspension without increasing device area or aspect ratio. 

 

 

 

 

 

 

 

 

 

Figure 3.11: Top view schematic of a ‘folded-flexure’ suspension. 

 
 Assuming that the leg width, b, is limited to some minimum width, modulating 

the suspension height is the only method for decreasing kSuspension without increasing 

device area (i.e. length).  Reducing the thickness of the entire device would reduce the 

spring constant, however this simultaneously reduces the force generated by the comb-

drive in an identical ratio, offsetting the effect (see Equation 29).  By fabricating the 

suspension using gray-scale technology, the spring height may be reduced without 

changing the comb-drive force, resulting in larger displacements at corresponding 

voltages.  The change in spring constant will also cause a change in resonant frequency, 

ω0, in accordance with: 

resonator

Suspension
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For the devices discussed later, the suspension mass is approximately 18% of the entire 

resonator mass, mresonator.  However, since the beam velocity varies along the length of the 

suspension, it should be described with an effective mass (m*).  For a simple cantilever 

beam, mm ⋅= 24.0*  [136], making the effective mass of the spring closer to 5% of the 

overall mass, of which only part is removed by reducing the suspension height.  Thus, 

Equation 48 can be used for reasonably accurate predictions of resonant frequency shifts. 

3.5. Fabrication 

In order to integrate 3-D structures within an electrostatic MEMS actuator, the 

gray-scale process must be developed as part of an appropriate process flow.  The 

fabrication process developed in this work, and outlined in Figure 3.12, is based on 

silicon-on-insulator (SOI) technology, where a silicon dioxide sacrificial layer is 

sandwiched between two crystalline silicon substrates of customized thickness.   

Metal liftoff is first used to pattern contact pads and alignment marks.  Gray-scale 

lithography is then performed in a projection lithography system (GCA-Ultratech) at the 

Laboratory for Physical Sciences (LPS) using a specifically designed gray-scale optical 

mask.  DRIE is used to transfer the planar and variable height structures into the silicon 

simultaneously.  As discussed in Chapter 2, the etch selectivity is controlled to properly 

define the vertical dimensions of each gray-level in silicon.  Before removing the 

remaining photoresist, the wafer is dipped in buffered hydrofluoric acid (BHF 1:6) to 

remove the sacrificial silicon dioxide layer.  Soaking in successive solutions of isopropyl 

alcohol (IPA) enables released structures without significant stiction problems due to its 

lower surface tension.  Oxygen plasma is used to strip any remaining photoresist.  

Explicit process details are given in Appendix B. 
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Figure 3.12: Integrated process flow for creating electrostatic MEMS actuators with 3-D suspended 
components. 

 
An initial SOI device layer of 100µm and a buried oxide layer of 2µm were used, 

where the device layer was chosen to be appropriate for further extension to the actuation 

an optical fiber (125µm in diameter) later in Chapters 5 and 6.  It is imperative to note 

that this 3-D actuator process flow is no more complex than the planar case, although 

each step must be precisely controlled to produce the desired results.  

The design and fabrication challenges for such devices fall into two main 

categories: optical mask design and DRIE control.  For designing the optical mask, a 

small offset was introduced between the desired structure edge and the pixilated design, 

according to the characterization of Section 2.3.1.  For variable height comb-fingers, this 

offset was very important to ensure that the gap between fingers was constant.  For 

DRIE, it was necessary to control the etch selectivity while etching high aspect ratio 

structures (10:1) and combating aspect ratio dependent etching (ARDE), as discussed 

previously in Chapter 2 [34].  In the case of variable-height comb-fingers, this means the 

etch selectivity inside the fingers is different from that in open areas.  By using the buried 

1. SOI wafer 3. Gray-scale Lithography 2. Pattern Metal contacts (Al) 

4. DRIE pattern transfer 5. Oxide etch release (BOE) 6. Remove photoresist 

Buried Oxide Aluminum Silicon Photoresist 



 86 

oxide layer as an etch stop, over-etching of the sample was used to further etch the gray-

scale structures without significantly affecting adjacent planar structures. 

An SEM of the initial variable height comb-finger design after DRIE is shown in 

Figure 3.13.  A single gray-level 30µm long and 10µm high was used to remove a ‘notch’ 

from a planar comb-finger.  It is important to note that the roughness seen on the gray 

level is easily removed with short isotropic plasma etching steps, and as such should have 

negligible effect on the capacitance and device performance.  Figure 3.14 shows an SEM 

of a different variable height comb-finger design after fabrication and a short isotropic 

plasma etching step.  The roughness is essentially gone, leaving a smooth reduced height 

surface.  An example of a reduced height suspension fabricated with gray-scale 

technology is shown in Figure 3.15, where roughness is inconsequential for the 

mechanical properties of the suspension. 

 

 

 

 

 

 

 

Figure 3.13: SEM of variable height comb-fingers incorporating a single intermediate gray level.  
Roughness may be reduced with post-processing. 
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Figure 3.14: SEM of another variable height comb-drive where isotropic plasma etching leaves the 
gray-scale comb-fingers smooth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15: SEM of reduced height comb-drive suspensions fabricated with gray-scale technology. 
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3.6. Comb-drive Testing 

The simulated static and dynamic behavior of comb-drive actuators incorporating 

variable height gray-scale features was confirmed by fabricating two comb-drives on a 

single wafer, where the only difference was either in the comb-finger profile or the 

suspension height. 

3.6.1. Reduced Height Comb-fingers 

 
For the case of reduced height comb-fingers using gray-scale technology, devices 

had identical suspensions (L=1000µm, b=10µm), gap (d=10µm), and number of fingers 

(N=100).  Two comb-drive devices were fabricated, one planar device and one with a 

gray-scale notch (as shown in Figure 3.13).  The deflection of these two devices was then 

measured under an optical microscope for various DC applied voltages to compare static 

deflection characteristics.  The approximate spring constant for the suspension was 

extracted from the planar actuator using its measured actuator dimensions in silicon and 

analytical equations to estimate the force.  The measured dimensions of the gaps/finger 

widths in silicon were also imported into the FEMLAB model to account for fabrication 

errors. Using the iterative technique described previously in Section 3.3.1, the 

displacement characteristics were simulated for comparison to experimental results. 

Figure 3.16 shows the measured displacement as a function of applied voltage for 

each of the two actuator types: planar and variable height (with gray level height of 

40µm).  The behavior of the planar actuator is accurately predicted using simple parallel 

plate approximations for the capacitance.  For the variable height comb-finger case, we 

see that the parallel plate model first over-estimates, then under-estimates the actual 

displacement.  However, the FEMLAB capacitance model along with the iterative 
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displacement calculation method was able to account for fringing fields and accurately 

predict the displacement behavior of the variable height device.   

 

 

 

 

 

 

 

 

 

Figure 3.16: Measured displacement with simulated responses for comb-drives incorporating planar 
or variable height comb-finger profiles (40µm tall, 30µm long gray-scale section).  FEMLAB models 
are able to accurately capture variable height comb-drive behavior. 

 
A summary of the actuation magnitudes and resolutions from the data in Figure 

3.16, is shown in Table 3.1.  For the planar case, the amount of displacement achieved 

over the final 50V is larger than the displacement achieved over the first 100V (recall 

that comb-drive force scales with V
2).  However, for the variable height case, the 

displacement measured over the final 50V is actually smaller, leading to a significantly 

better resolution at large displacements (227 vs 344 nm/V) compared to the planar case.  

Looking back to Equation 33, we see that a planar actuator could offer similar resolution 

at 20µm displacement by increasing the spring constant from 4.2 N/m (measured) to ~9.6 

N/m.  However, the voltage required to cause ~20µm displacement using the new spring 

constant would increase to 177V compared to the variable height device that requires 

only 140V.   
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Table 3.1: Displacement and resolution data for both planar and gray-scale comb-finger designs. 

Incremental Displacement (µm) Resolution (nm/V) 

 
0 � 100 V 100 � 150 V @5µm @20µm 

Planar 14.6 17.8 141 344 

Variable Height 
(Gray-scale) 

11.5 10.5 126 227 

 

These results confirm that our iterative technique and FEA models can be used to 

accurately predict the static deflection behavior of variable height comb-drives fabricated 

using gray-scale technology.  It should also be noted that these improvements were 

achieved with a conservative design.  Devices with lower gray level heights (than the 

40µm device discussed above) should show even stronger response.       

 

3.6.2. Reduced Height Suspensions 

A second set of comb-drive actuators were designed and fabricated with identical 

planar comb-finger layouts to investigate the effects of locally reducing the height of the 

suspension structure.  By using gray-scale technology to reduce the suspension height, 

the spring constant should be reduced proportionally with the height.  This modulation 

comes without effecting the generated comb-drive force, resulting in a net increase in 

displacement for a given voltage. 

Static displacement measurements were made using DC applied voltages under a 

microscope for two devices with identical lengths (L=1000µm) and widths (b=10µm), but 

different heights: h=100µm (planar) and h~30µm (variations from gray-scale uniformity).  

The resulting static displacement measurements are shown in Figure 3.17.   
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Figure 3.17: Measured displacements for comb-drives using planar or gray-scale suspensions. 

 
By using the measured comb-finger widths/gaps and parallel plate approximation 

for the force, the spring constants were estimated to be 7.7N/m for the 100µm tall planar 

suspension and 2.3N/m for the 30µm tall gray-scale suspension.  Referring back to 

Equation 47, we see that the spring constant should scale with the height, and in fact, our 

measurements confirm that reducing the spring to 30% of its original height reduces the 

spring constant by an identical amount.  

Another consequence of a reduced height suspension design is that the dynamic 

behavior of the device also changes due to the reduced spring constant in Equation 48.  A 

Veeco Wyko NT1100 Optical Profiler with DMEMS option was used to test the dynamic 

behavior of comb-drive devices.  The Wyko uses stroboscopic white-light interferometry 

to measure the position of the comb-drive during a frequency sweep at a particular phase.  

This information was then transformed into an approximate displacement to extract the 

resonant frequency for each of the two devices discussed above, and the results are 

shown in Figure 3.18.  (Note: more detail regarding the Wyko system will be given in 
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Chapter 4 which focuses on the dynamic characterization of tunable comb-drive 

resonators).  Ignoring any change in resonator mass caused by reducing the suspension 

height (as explained earlier), the measured change in resonant peak (f0=1630Hz� 

f0′=910Hz) corresponds well to the prediction made using the reduced spring constant 

and Equation 48 (f0′=891Hz).   

One drawback of reducing the suspension height is that the spring constant in the 

vertical direction (out of the plane of the wafer) is significantly decreased, leading to 

difficulty releasing the buried oxide layer with wet etching.  This problem could 

potentially be solved by using dry vapor-etch techniques [137].   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.18: Dynamic measurements of the planar and reduced height comb-drive devices. 
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3.7. Conclusion 

This chapter has reviewed the basic mechanisms behind electrostatic MEMS 

comb-drives.  The design and simulation of comb-drive actuators incorporating gray-

scale technology to tailor actuator properties (without increasing the device footprint) 

was presented using both analytical approximations and finite element analysis (in 

FEMLAB).   

Multiple comb-drive actuators with reduced height comb-fingers and suspensions 

were then fabricated and tested to experimentally confirm the predicted behavior of 

improved resolution and reduced driving voltages.  Specifically, for variable height 

comb-fingers, the displacement resolution at 20µm was improved from 344nm/V to 

227nm/V with little effect on resolution at smaller displacements.  On a separate device, 

suspension spring constants were reduced from 7.7N/m to 2.3N/m to enable lower 

driving voltages, achieving >3 times the deflection at 100V.   

These results have clearly illustrated the value of using gray-scale technology 

within electrostatic MEMS actuators to modify device behavior without increasing 

overall actuator footprint.  Measurements of static and dynamic actuator behavior 

confirm that our FEA model and iterative displacement calculation techniques are able to 

accurately predict 3-D actuator behavior.  These results serve as the foundation for 

developing the tunable resonator devices presented in Chapter 4, as well as for the optical 

fiber alignment systems developed in Chapters 5 and 6. 
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4. VERTICALLY-SHAPED TUNABLE MEMS 
RESONATORS 

4.1. Introduction 

Micromechanical resonators have received significant attention over the past 20 

years due to their applications in thin film characterization [138], signal processing (RF 

and IF filters) [65, 67, 139], gyroscopes [68], electrostatic charge and field sensors [69], 

mass sensors for bio-chemical sensing [140], and vibration-to-electric energy conversion 

[141-144].  Laterally driven comb-resonators are often preferred due to their reduced 

damping and large travel range [49].  Vacuum sealing techniques have been used to 

increase the quality (Q) factor of comb-resonators to >2,000 in some cases [67].   

This chapter is devoted to presenting an additional important application for the 

variable-height comb-drive structures presented in Chapter 3: voltage-tunable MEMS 

resonators.  Previous MEMS tuning methods will be reviewed briefly, and the principle 

of vertically-shaped gray-scale electrostatic springs is introduced as a tuning mechanism.   

Design and simulation of vertically-shaped comb-fingers as electrostatic springs will be 

followed by testing results that demonstrate their bi-directional tuning capability of 

MEMS resonators in the 2 kHz range.   

4.2. Tunable MEMS Resonator Operation 

Since the inception of MEMS resonators, as far back as 1967 [70], the natural 

progression has been towards developing tunable resonators for use in tunable filters and 

other frequency dependent applications.  The most popular technique is the use of an 

additional electrode beneath a suspended cantilever, as shown in Figure 4.1, to tune the 

resonant frequency down [66, 70-72, 139].  The situation can be best described using the 

CHAPTER 4: VERTICALLY-SHAPED TUNABLE MEMS 
RESONATORS 



 95 

energy method, where the total potential energy (U) is the sum of the kinetic energy of 

the beam and the potential energy in stored in the tuning capacitor [72]: 

222
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where keff is the effective spring constant, kmech is the mechanical spring constant, z is the 

deflection magnitude, and C and V are the capacitance and voltage on the tune electrode, 

respectively.  Assuming the voltage is constant, taking the 2nd derivative of Equation 49 

yields an expression for keff, where the second term represents an electrostatic spring 

(kelec): 
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For the cantilever example in Figure 4.1, C can be approximated as a parallel-plate 

capacitor using the electrode area (A), gap (d), and dielectric constant of air (ε0): 
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Combining Equations 50 and 51 yields: 
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The major drawbacks of the parallel plate tuning technique are that the electrostatic 

spring strength depends on the magnitude of vibration of the cantilever and the initial gap 

(d), which is dependent on the tuning voltage [72].  Thus, the tune and actuation voltages 

are inherently coupled. 



 96 

 

Figure 4.1: Schematic of a MEMS resonant cantilever with drive and tune electrodes for tuning the 
resonant frequency down. 

 
Alternative tuning techniques have been developed that modify the capacitance-

position relationship, C(x) for in-plane resonators; de-coupling the actuation and tuning 

effects, and enabling electrostatic tuning of the resonant frequency either up or down.  

First, so-called “fringing field actuators,” have demonstrated tuning of linear and non-

linear stiffness coefficients [73, 74].  These operated only over a small range of motion 

(~2µm) and oscillated perpendicular to the comb-finger orientation, increasing footprint 

and air damping.   

 

 

 

 

 

 

Figure 4.2: Electrostatic spring tuning via tailored capacitance-position profiles using variable-gap 
comb-fingers [61]. 

 
Shown in Figure 4.2 is a tuning method using familiar variable-gap comb-fingers 
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DC voltage can create an electrostatic spring over large displacements. Note that a 

constant gap and height comb-finger should provide a uniform mechanical force along 

the travel distance, so electrostatic spring would be observed.   

Describing the variable gap situation using the energy method is now slightly less 

intuitive (but still valid) because both the gap and area of the capacitor change with 

distance.  Instead, we can qualitatively consider the forces generated by the comb-fingers.  

Applying a voltage (V) to the static electrode of Figure 4.2 creates an electrostatic force 

in the positive x-direction on the moving finger.  As the comb-finger moves from point 

“A” to point “A′,” the electrostatic force remains in the positive x-direction and the 

magnitude increases, shown schematically in Figure 4.3(a).  Also shown in Figure 4.3 is 

the mechanical restoring force (Fmech) created by the spring (kmech).  In a sense, the tuning 

electrode “helps” pull the resonator in the x-direction more as the engagement increases, 

weakening the spring (keff < kmech).  A plot of the net force (Fnet) in Figure 4.3(b) shows 

the reduced keff is valid over the range where the gap changes with distance.   

 

 

 

 

 

 

 
Figure 4.3: Graphic representation of the individual mechanical and electrostatic forces in (a), as 
well as the resulting net force in (b), for a weakening comb-finger design. 
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which can also be expressed in terms of the original resonant frequency (f0): 
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For the case shown in Figure 4.3, kelec is taken as a negative since it is in the 

opposite direction from the kmech restoring spring, essentially “weakening” keff and tuning 

to a lower resonant frequency.  The opposite tuning behavior, a “stiffening” spring, can 

also be produced by using a comb-finger design where the gap increases with distance.  

In such a “stiffening” design, the electrostatic force would “help” significantly in the 

beginning, and then provide less help as the deflection increased.  Thus, the spring would 

appear to be “stiffer” than the mechanical spring constant (keff > kmech), and the resonant 

frequency would increase.   

While variable gap resonators are versatile, once again their tuning ability comes 

at the expense of dramatically increasing the device size.  However, as shown in Chapter 

3, vertically-shaped gray-scale comb-fingers can provide variable force-engagement 

profiles over large travel ranges without increasing the footprint of a comb-finger pair. 

4.3. Gray-scale Electrostatic Springs 

The design, simulation, and fabrication of variable height gray-scale electrostatic 

springs used here are quite similar to the methods developed in Chapter 3.  The following 

sub-sections will introduce the three types of variable-height electrostatic springs 

investigated in this research, as well as simulation and fabrication results to predict their 

relative spring constants.  
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4.3.1. Design 

As evident from simulations in Chapter 3, a vertical step in comb-finger height 

creates a smoothly varying force-engagement profile (see Figure 3.9), of which a portion 

appears to be quasi-linear and could be used an electrostatic spring.  Therefore, the three 

designs presented here contain only a single gray level for simplicity, and the height of 

the gray level (in conjunction with the applied voltage) will determine the strength of the 

electrostatic spring.  More precise force-engagement profiles are possible by 

incorporating more gray levels (as will be shown with simulations in Section 4.5).     

The first gray-scale electrostatic spring design is shown in Figure 4.4, where the 

moving comb-fingers initially engage with a reduced height section, followed by a full 

height (planar) section.  Such a design is analogous to the decreasing gap design shown in 

Figure 4.2, and will thus be referred to as the “weakening” finger design. 

 

 
Figure 4.4: Spring-weakening comb-finger design using a single gray level on the moving finger. 

 
A second electrostatic spring design is shown in Figure 4.5(a).  The moving finger 

initially engages with a full-height (planar) section, followed by a reduced height section 

some distance later.  Thus, the electrostatic force decreases as the engagement increases, 

analogous to an increasing gap comb-drive design.  The net effect is a “stiffening” of keff.   
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Figure 4.5: Spring stiffening designs using (a) single or (b) double vertical shaping of the comb-
fingers with gray-scale technology. 
 

Figure 4.5(b) shows an additional novel design that vertically-shapes both 

stationary and moving comb-fingers.  As the fingers engage in this “stiffening – double” 

design, there should be a dramatic change in force as the two full-height sections pass 

each other.  Since the fully engaged force will be lower for the “double” design, it is 

anticipated that a more dramatic electrostatic spring “stiffening” effect will be observed 

(assuming the change in force from max to min occurs over a similar engagement 

change).  A variable-gap comb-finger design would have particular difficulty replicating 

the analog to this “double” shaping design since it would require shaping both moving 

and stationary fingers, leading to an increase in device footprint.  It must be noted that the 

electrostatic spring will be non-linear for each of these three cases due to their simplistic 

design, a trait that will be discussed in more detail towards the end of this chapter. 
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4.3.2. Simulation 

  The capacitance as a function of engagement for each spring design was 

simulated using FEMLAB for different gray level heights.  As in Chapter 3, 100µm SOI 

wafers are assumed, with 10µm comb-finger gaps and widths.  Capacitance-engagement 

data were fit with a 6th-order polynomial, and the derivative taken near the height change 

to obtain the local force-engagement profile.  The horizontal geometry of each design and 

the engagement required to reach the edge height step(s) are shown in Table 4.1.   

Table 4.1: In-plane design specifications for resonator designs. 

Design 
Planar Section 

Length  
(µm) 

Gray-scale 
Length  

(µm) 

Engagement to 
Height Change  

(µm) 

Weakening 85 30 30 

Stiffening – Single 15 85 15 

Stiffening – Double 15 85 30 

 

A derivative of the force-engagement profile near the height step was used to 

estimate the generated electrostatic spring constant.  While in general taking multiple 

derivatives of polynomial fit functions can be inaccurate, later results will show that 

derivatives in the middle of the simulated range (near the height step) are able to predict 

resonator behavior with reasonable accuracy. Plots of the 1st and 2nd derivatives of the 

simulated capacitance for each type of comb-finger design are shown in Figure 4.6, 

Figure 4.7, and Figure 4.8, where each line indicates a specific height of the associated 

gray level.  The plots represent example electrostatic forces (Felec - left plots) and spring 

constants (kelec - right plots) as a function of engagement for a single comb-finger.   
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Figure 4.6: Simulated Felec and kelec for a “weakening” design with 20 or 40µm gray levels. 

 

 

 

 

 

 

 

 
Figure 4.7: Simulated Felec and kelec for “stiffening–single” design with 10, 30, or 50µm gray levels. 

 

 

 

 

 

 

 

 

Figure 4.8: Simulated Felec and kelec for “stiffening–double” design with 30 or 50µm gray levels. 
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The 1st derivative of capacitance can be used in Equation 26 from Chapter 3 to 

obtain the force, while the 2nd derivative should be plugged into Equation 50 from 

Chapter 4 to obtain the spring constant.  In each case, one must multiply by the number 

of comb-fingers in the system.  The peak value of kelec is calculated in Table 4.2 for each 

simulated design, assuming N=50 comb-fingers and an applied voltage of 100V.  As 

expected, lower gray levels create larger changes in force, and thus higher magnitudes of 

kelec.  It is also clear that the “stiffening – double” design is a significant improvement 

over the “stiffening – single” design (1.97 N/m vs. 1.15 N/m for 30µm high gray levels). 

Table 4.2: Peak simulated spring constants for different finger designs and gray level heights. 

Design 
Height 
(µm) 

Peak kelec (N=50, V=100) 
(N/m) 

Weakening 20 – 1.31 

Weakening 40 – 0.98 

Stiffening – Single 10 1.43 

Stiffening – Single 30 1.15 

Stiffening – Single 50 0.69 

Stiffening – Double 30 1.97 

Stiffening – Double 50 1.39 

 
As a rough comparison, we consider the geometry required for a planar, variable-

gap model to produce tuning equivalent to the “stiffening – double” design above (using 

the model of Jensen et al [61]).  For similar fabrication constraints, the gap would have to 

change from approximately 10µm to 20µm over a 10µm engagement length.  However, 

by changing the gap, the density of fingers is reduced, so a device with similar footprint 

will only provide 2/3 the tuning of the gray-scale devices shown above.  It is possible that 

a combination of variable-gap and variable-height comb-fingers could provide even 

stronger tuning effects. 
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4.3.3. Layout and Fabrication 

The layout of tunable gray-scale resonators is based on that shown in Figure 4.9.  

A set of 48 stationary planar comb-fingers are connected to an actuation electrode, where 

the AC drive signal is applied.  The “tune” electrode on the right side, which always 

receives a DC voltage, is attached to 48 stationary gray-scale comb-fingers.  The resonant 

mass is made entirely of planar comb-fingers, except for the “stiffening – double” design 

that requires comb-fingers on the “tune” side of the resonant mass to be shaped vertically.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Basic layout of a tunable MEMS resonator using gray-scale comb-fingers. 
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electrode on the right side to maximize kelec.  This bias will cause the device to resonate 

around a deflected point (5-10µm).  Since kelec is position dependent in Figures 4.6-4.8, 

static deflections will effect the magnitude of the electrostatic spring.  To anticipate these 

offsets, the rest position of the comb-fingers was biased so that the peak kelec occurs after 

~5µm of deflection.  

All resonator devices were fabricated using the SOI gray-scale actuator process 

described in Chapter 3.  The approximate measured gray level height for each type of 

device tested in the following section is shown below in Table 4.3.  For comparisons with 

the models presented earlier above, the simulated value closest to the measured height 

will be used for kelec predictions. 

Table 4.3: Measured heights of gray-scale comb-finger sections after fabrication. 

Device 
Approximate gray level height 

(µm) 

Weakening 10-20 

Stiffening – Single ~35 

Stiffening – Double ~35 

 

4.4. Testing and Characterization 

Static and dynamic characterization of all resonators was performed using an 

optical profiler (Veeco Wyko NT1100 with DMEMS option).  As with the comb-drive 

testing in the previous chapter, the resonating mass and bulk substrate are kept 

electrically grounded to avoid pull-in forces normal to the substrate.  The following 

sections will review the methods used to test each resonator, and to extract the resonant 

frequency (f) and electrostatic spring constant (kelec) as a function of tuning voltage.  
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4.4.1. Method 

The Wyko NT1100 operates under the principle of white-light interferometry in 

both of it’s primary modes, static and dynamic.  Pattern recognition software can be used 

in either mode to measure relative structure movements in both the horizontal and 

vertical planes.   

DC tests on the set of planar comb-fingers on each resonator were used to 

estimate the mechanical spring constant of the suspensions (kmech).  Analytical equations 

were used to calculate the force as a function of applied voltage (Equation 29 from 

Chapter 3), while the Wyko software was used to track the resonator position.  The kmech 

is then back-calculated using F=kmechx.  Example displacement vs. voltage measurements 

are shown in Table 4.4, where the extracted kmech is relatively consistent. 

Table 4.4: Displacement and voltage for planar comb-fingers to determine the mechanical spring 
constant. 

Applied Voltage 
(V) 

Measured Position 
(µm) 

Displacement 
(µm) 

Extracted kmech 
(N/m) 

0 135.28 0 - 

20 135.56 0.28 5.7 

40 136.55 1.27 4.9 

60 138.03 2.75 5.1 

70 139.02 3.74 5.1 

80 140.23 4.95 5.0 

90 141.49 6.21 5.0 

100 142.91 7.63 5.1 

 
Next, the dynamic measurement mode is used to determine the frequency 

response for different tuning voltages.  In this mode, the Wyko uses an LED that is 

synchronized with the actuation signal to strobe the resonator at a particular phase of its 

periodic motion.  A schematic of the periodic driving signal is shown in Figure 4.10, 

where the peak of the shifted sinusoid occurs at a phase of 90º. 
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Figure 4.10: Schematic of the applied voltage as a function of phase. 

 
To obtain the resonant frequency, we strobe the motion at a particular phase, 

while sweeping the actuation frequency.  As the resonator passes through resonance, the 

drive signal and resonator motion will undergo a relative phase shift, according to the 

standard resonance equation [145]:  
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where δ is the resonator displacement, F is the applied force (F=F0sin(ωt)), Q is the 

quality factor, and ωR is the resonant angular frequency.  A brief inspection shows that as 

ω�0, Equation 55 reduces to Hooke’s Law (δ=F/kmech), while for the case of ω=ωR 

(resonance) we find a –90º phase shift: 

mechk

QF
j−=δ .      (56) 

 
Considering this standard resonance behavior, depending on the choice of phase 

for the LED strobe, the measured resonator position vs. frequency will be quite different.  

Here we will discuss two primary examples:  first, if a strobe phase of 90º is chosen, then 

for f<<f0 the measured resonator position will be at its maximum deflection (during the 
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peak of the Vdrive signal).  As the drive frequency approaches f0, the resonant amplitude 

will gradually increase.  However, at resonance, the 90º phase shift causes the mechanical 

vibration and LED strobe to be 90º out of phase.  Thus, the resonator will now be strobed 

in the middle of its travel range, appearing as negligible movement even though the 

amplitude of vibration is maximized.  As the frequency increases further to f>>f0, another 

90º phase shift causes the strobe and mechanical motion to be 180º out of phase, and the 

measured resonator deflection is at the maximum deflection in the opposite direction.  

This sequence is depicted in Figure 4.11(a), where the point that the resonator position 

crosses the rest position indicates the approximate point of resonance.  Yet, the odd shape 

of such a plot makes it difficult to determine f0 accurately with a limited number of data 

points. 

 

Figure 4.11: Schematic of resonator position vs. frequency for a strobe phase of (a) 90º and (b) 0º. 

 
Alternatively, a phase of 0º can be used when strobing the resonator.  Initially, 

almost no motion is detected because the strobe occurs in the middle of any periodic 

motion.  However, as the drive frequency approaches f0, the 90º phase shift causes the 

maximum mechanical deflection to shift to the phase where it is being strobed.  This 

method creates a plot of position vs. frequency similar to Figure 4.11(b).  This second 
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method is preferred for the purpose of determining resonant frequency because a peak 

curve fit can be used to extract the center frequency of the peak with only limited data 

points required.  For the data discussed here, a 4-parameter (a,b,x0,y0) Lorentzian fit in 

SigmaPlot was used of the form: 

2
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 −
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+=

b

xx

a
yy .    (57) 

 
The quality factor (Q) of a device is often estimated using Q=ω0/∆ω, where ∆ω is 

the full-width half max of the power spectrum, or 1/√2 of the amplitude.  However, we 

must remember that the Wyko records the position of the resonator at a particular phase 

for each frequency, not the amplitude vs. frequency that is required to estimate the quality 

factor.  Thus, the width of the Lorentzian fit to this data cannot be used to find Q.  The 

Wyko is capable of generating amplitude vs. frequency plots, but requires a series of 

nested phase and frequency sweeps that is much more time consuming.  However, 

referring back to Equation 56 for the case of ω=ωR, we can divide the peak resonant 

amplitude by the displacement caused by a DC signal to obtain an approximate Q.  For 

most resonators tested here, this method yielded Q’s of ~15 in air.   

4.4.2. Weakening Resonator Tests 

Tests of the weakening resonator design used an AC drive voltage of 30V on a 

device with 10-20µm gray levels and 10µm wide suspension arms.  The extracted kmech 

from static tests was 4.7 N/m.  Figure 4.12 shows the measured resonator position as a 

function of frequency for different applied DC tuning voltages (0-80 V).  Notice that as 

the voltage is increased, the base of the peak shifts gradually in the +x direction by ~5µm, 

as expected from the asymmetric resonator design and large DC tuning voltages.  As the 
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tuning voltage increases, the resonant peak shifts to lower frequency, consistent with a 

“weakening” of the mechanical spring in Equation 53.  SigmaPlot curve fits show the 

resonant peak shifted from f0= 1594.6 Hz at Vtune= 0V, to ftuned= 1442.4 Hz at Vtune= 90V.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12: Measured position vs. frequency for different applied voltages in a weakening comb-
finger design. 

 
To compare these tuning results to our predictions, we start by taking our kelec 

parameter from Figure 4.6 for the 20µm case at each appropriate finger engagement 

(accounting for the DC displacement caused by Vtune).  Using Vtune and the number of 

comb-fingers (N=48), the expected kelec is calculated for each voltage using Equation 50.  

This result was combined with the measured kmech in Equation 54 to yield a predicted 

resonant frequency as a function of tuning voltage.  The measured and predicted resonant 

frequencies match well, as shown below in Figure 4.13.   
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Figure 4.13: Predicted and measured resonant frequency as a function of tuning voltage for a 
“weakening” comb-finger design. 

 

4.4.3. Stiffening Resonator Tests 

For the “stiffening” resonators, we will first consider the “stiffening – single” 

design.  The suspension arms are 10µm wide and the gray-levels were measured to be 

~35µm tall.  The extracted kmech from static tests was 5.7 N/m and an AC drive voltage of 

20V was used.  Once again, we extract the kelec parameter from FEMLAB simulations 

and combine it with kmech in Equation 54 to calculate the predicted new resonant 

frequency.  The measured and predicted resonant frequencies agree well and are shown in 

Figure 4.14.  As expected, increasing the tuning voltage causes the resonant peak to shift 

to higher frequencies, indicating a “stiffening” of keff.  SigmaPlot curve fits show that the 

resonant peak shifted from f0 = 1965.9 Hz at Vtune = 0 V, to ftuned = 2151.5 Hz at Vtune = 

100 V. 
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Figure 4.14: Predicted and measured resonant frequency as a function of tuning voltage for a 
“stiffening – single” comb-finger design. 

 
Next, we consider the “stiffening – double” design, which according to our 

simulations, is expected to produce even stronger tuning characteristics.  The gray levels 

were measured to be ~35µm tall, but the suspension width in this case was only 8µm.  

Since the suspension spring constant scales with the width3 (see Equation 47 from 

Chapter 3), the extracted kmech from static tests was only 3.2 N/m.  Figure 4.15 shows 

both the measured and predicted resonant frequencies (using FEMLAB simulations and 

Equations 50 and 54) as a function of tuning voltage.  The rapid increase in frequency is 

larger compared to the “stiffening – single” finger design due in part to the smaller kmech, 

but also because of the larger kelec produced.  SigmaPlot curve fits show that the resonant 

peak shifted from f0 = 1332.5 Hz at Vtune = 0 V, to ftuned = 1560.2 Hz at Vtune = 70 V, a 

17% increase in resonant frequency.   
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Figure 4.15: Predicted and measured resonant frequency as a function of tuning voltage for a 
“stiffening – double” comb-finger design. 

 
 

4.4.4. Tuning Summary  
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extracted kelec magnitude using Equation 54.  Figure 4.16 shows the extracted kelec for the 
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that a Vtune = 100 V would produce electrostatic springs on the order of 0.05 N/m, which 

is ~1/3 of the extracted kelec for the planar design.  We attribute the discrepancy to 

fringing fields that increase the effective area of the finger tip, causing an 

underestimation of the capacitive tuning.  We believe this small asymmetry also caused a 

slight stiffening shift in all of designs, as evident from the consistent slight 

underestimation in the figure. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.16: Extracted electrostatic spring constant (kelec) for the 3 types of gray-scale springs and the 
planar case for comparison. 
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on either side of the resonating mass should eliminate any resonator offset induced by the 

large DC tuning voltages.  This would enable the devices to stay in their linear range up 

to larger tuning voltages; however the versatility and utility of variable-height gray-scale 

electrostatic springs has been clearly demonstrated. 

4.5. Non-linear Stiffness Coefficients 

As mentioned in the previous section, the kelec created by the gray-scale comb-

fingers has a limited range over which the spring behaves linearly.  Thus, at large 

deflections or large DC tuning voltages, the presence of non-linear stiffness coefficients 

becomes important.  An example of this non-linear behavior for the “weakening” 

resonator design presented earlier is shown in Figure 4.17 (un-tuned f0=1594.6 Hz).  For 

each of the 4 cases shown, the tuning voltage was held constant at 80V, but the amplitude 

of the drive signal was changed from 10V to 40V.  At the lowest drive voltage of 10 V, 

the tuned resonant frequency was 1472.5 Hz.  In a linear system, the peak should simply 

change height as driving amplitude changes.  However, the figure shows that large drive 

amplitudes cause the peak to bend/creep towards the original f0.   

 

 

 

 

 

 

 

 
 
Figure 4.17: Measured resonant peak for a single resonator with a constant tune voltage of 80V, but 
different drive voltages. 

130 

135 

140 

145 

150 

155 

160 

165 

170 

1300 1350 1400 1450 1500 1550 1600 1650 
Frequency (Hz) 

X
 l
o

c
a
ti

o
n

 (
u

m
)

10V 
20V 
30V 
40V 



 116 

In general, such a system can be described by the Duffing equation [146]: 

)cos(3 tbxkxxxm ωγξ =+++ &&&      (58) 

 
where ξ is the damping coefficient and γ represents a third-order term in the spring 

constant, such that: 

3
xkxF γ±= .     (59) 

 
Exact solutions to the Duffing equation are not, in general, available [138], but the 

concept of both “hard” (γ>0) and “soft” (γ<0) springs are shown in Figure 4.18.  In some 

frequency ranges, multiple stable solutions exist and the resonator may ‘jump’ from one 

position to the next as the frequency changes [138], an undesirable effect in most cases. 

 

 

 

 

 

 

 

Figure 4.18: Schematic of frequency response for a resonator with non-linear stiffness coefficients. 

 
For a typical un-tuned resonator, as the resonant amplitude increases, cubic 

stretching terms in the suspension spring constant [147, 148] can become non-trivial, 

leading to a “hard” spring behavior [138, 146].  Parallel plate electrostatic springs have 

been found to exhibit “soft” spring behavior [146], an inherent artifact of their cubic 

dependence on amplitude and gap from Equation 52.     
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In contrast, the tendency of vertically shaped resonators developed in this work is 

to bend towards the original f0 (i.e. a “weakening” design shows “hard” spring behavior 

and a “stiffening” design shows “soft” spring behavior).  This occurs because kelec at the 

rest position is typically at a peak value, so large vibrations move the resonator to regions 

of significantly lower kelec and the amount of tuning decreases.   

Two potential methods will now be presented to deal with these non-linear 

effects.  First, multiple gray levels can be used to further tailor the capacitance profile to 

extend the linear range of the electrostatic spring.  For example, Figure 4.19 shows the 

simulated electrostatic force and spring constant for a single gray level design (“stiffening 

– single,” 10µm tall) compared to a multi-gray level design (three additional 10µm long 

intermediate steps with heights of 70µm, 50µm, and 30µm).  As evident from the figure, 

the single gray level design provides a steep change in force over a short distance.  The 

multi-gray level design provides the same total change in force, but it now takes place 

over a large engagement distance, leading to a slightly smaller spring constant that is 

more consistent with engagement. 

 

 

 

 

 

 

 

Figure 4.19: Simulated electrostatic force and spring constant for a multiple gray level finger design. 
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Complex force-engagement profiles could be developed through simulation to 

tailor spring behavior, though the simulation process is quite slow.  However, a second 

method for extending the linear range of electrostatic springs is also briefly introduced 

below.  By staggering the relative engagement of single-gray level comb-fingers, by δ as 

shown in Figure 4.20, the sum of appropriately spaced electrostatic springs could be used 

to create a wide linear range of operation.  In this case, a single gray level design can be 

simulated accurately in 3-D FEA and the result manipulated easily within a simpler 

programming language (such as MATLAB).   

  

 

 

 

 
Figure 4.20: Schematic of a variable-engagement comb-finger design. 

 
To investigate this concept in more depth, we start by considering the simulated 

spring constant as a function of engagement for a single finger, as done previously in 

Figure 4.6 – Figure 4.8.  We then use the sum of many staggered fingers to create an 

arbitrary kelec-engagement profile: 

∑ −=
n

nelec xkxk )()( 0 δ     (60) 

 
where k0(x) is the kelec-engagement profile of a single un-shifted finger and δn is the shift 

of each individual finger.  For the simplest case of shifting A fingers forward and B 

fingers backward by an identical amount, we have: 

)()()( 0000 δδ −⋅++⋅= xkBxkAxkelec .   (61) 
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Thus, the problem has reduced to simply finding two coefficients, A and B, which 

determine the relative number of comb-fingers with each shift (+δ0 or –δ0).   

For example, Figure 4.21 shows a simulated electrostatic spring without any 

offset, where the magnitude of kelec changes dramatically with engagement.  However, 

when an offset of δ0=8µm is used (with 
8

5=A  and 
8

3=B ), a plateau >20µm wide is 

created where there is negligible change in kelec.  Thus, a tunable resonator with 48 

fingers (like before) would be designed with 30 fingers shifted forward and 18 fingers 

shifted backward from a neutral point.  More complicated combinations of offsets and 

coefficients could be used to extend and/or tailor the kelec-engagement profile as desired. 

In some instances, this manipulation of high-order stiffness coefficients may prove useful 

for purposes beyond improving linearity (such as incorporating “soft” electrostatic 

springs to compensate for “hard” mechanical spring behavior due to material stretching). 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: kelec characteristics possible with a binary variable-engagement design. 
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4.6. Conclusion 

This chapter has reviewed the mechanisms behind electrostatic tuning of MEMS 

resonators through modifications to the force-engagement profile of comb-drive 

actuators.  Variable-height comb-finger tunable resonators were designed, simulated, 

fabricated, and tested for the first time.  Such devices can provide similar tuning to 

variable-gap comb-finger designs, however without the penalty of increasing the device 

footprint.  Electrostatic springs as high as 1.19 N/m (using 70V) or 1.66 N/m (using 

120V) were demonstrated, with a maximum frequency tuning of 17% of the original f0.  

Although most designs discussed in this work utilized a single gray-level, simulations 

were able to show that finer control of the force-engagement profile is possible by using 

the many intermediate heights available through gray-scale technology.   

As a direct result of the development and integration of gray-scale technology 

presented in the first 3 chapters of this dissertation, all of the above tuning and frequency 

response control is provided without increasing the overall resonator footprint.  While the 

resonant frequency and Q-factor of the devices discussed were kept low, the design and 

simulation principles developed can be applied to virtually any of the resonator 

applications mentioned previously [65, 67-69, 138-144].   
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5. GRAY-SCALE FIBER ALIGNER I: Concept, Design, and 
Fabrication 

5.1. Introduction 

Alignment of an optical fiber within an optoelectronic module is a continuing 

challenge in optoelectronic packaging, and often dominates module cost [76].  

Ultimately, passive alignment and packaging techniques would be preferred for their 

simplicity.  Passive systems utilizing silicon waferboards and flip-chip bonding have 

reported alignment accuracies of 1-2µm [149-151], mostly through attempts to improve 

process and dimensional control (and in turn increasing processing cost).  Common 

sources of error that make passive sub-micron alignment difficult include fiber core 

eccentricity, fiber diameter, v-groove width and placement, or variation in etch angle 

[88].  Particular difficulty in configurations using flip-chip bonding has been encountered 

with non-uniform solder ball volume distribution, which can cause vertical shifts in 

alignment [152-154].   

Even if high-accuracy fabrication and flip-chip bonding can be accomplished, 

such tight tolerances increase the cost of processing and assembly, and severely limit 

throughput.  For example, relaxing placement tolerances from the 1µm to 20µm level can 

increase throughput of a pick-and-place machine by an order of magnitude [75].  Further 

complicating the drive for passive techniques, groups now report up to 3dB of loss from 

only 1-2µm of axial misalignment [155].  Thus, as current alignment requirements 

approach 0.2µm [85], passive alignment becomes unrealistic regardless of the amount of 

process control.  Multi-axis on-chip methods for final alignment of the optical fiber are 

therefore attractive replacements for the expensive and slow macro actuators currently 

required to achieve sub-micron alignment.   
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The primary challenge for on-chip fiber alignment systems is realizing both 

horizontal and vertical actuation of the fiber to compensate for shifts in either direction, 

such as vertical shifts from solder ball irregularities [152-154].  Previous MEMS fiber 

actuators have demonstrated multi-axis on-chip alignment [90, 95].  However, these 

systems typically require specialized fiber preparation (attachment of permanent magnets 

to the fiber tip [90]) or rare fabrication techniques (LIGA [95]).  Such requirements limit 

their feasibility as a packaging option.  In contrast, the 2-axis fiber actuator developed in 

this research requires no special fiber preparation and is realized using gray-scale 

technology – a batch technique using standard MEMS equipment.  This gray-scale fiber 

aligner exploits the coupled motion of opposing in-plane actuators with integrated 3-D 

wedges).  The device creates a dynamic v-groove (controlled via MEMS in-plane 

actuators) to modify the horizontal and vertical position of the optical fiber [156, 157].   

The developed optical fiber alignment system can act as a platform for integrated 

packaging of optoelectronics devices, addressing one of the most costly and time-

consuming aspects of mass-producing such components. Integrated packaging platforms 

using the chosen fabrication techniques are inherently mass-producible and compatible 

with electronics integration, promoting dense integration of optical and electronic 

systems in a single component.   

Section 5.2 will discuss the concept of operation and layout of the developed 

MEMS gray-scale fiber aligner.  Section 5.3 will discuss the competing optical loss 

mechanisms in the device which serve as guidelines for system design.  The layout and 

dimensions of each actuator component are described in Section 5.4, while the fabrication 

and assembly of the device are detailed in Section 5.5 and 5.6.  Finally, a brief 
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demonstration of the actuation mechanism using an optical profiler is provided in Section 

5.7.  The following chapter will discuss optical testing results. 

5.2. Device Concept 

Contrary to traditional fixed v-groove designs obtained by wet chemical etching 

[78-83, 149], the fiber alignment mechanism developed in this research creates a dynamic 

v-groove using opposing sloped, silicon wedge structures to hold the optical fiber in a 

particular alignment location.  The basic alignment mechanism is illustrated in Figure 

5.1.  In Figure 5.1(a), the system is “at rest” with the fiber lying at the bottom of the 

dynamic v-groove.  However, in Figure 5.1(b), after an in-plane displacement of one 

silicon alignment wedge, the bottom of the dynamic v-groove has been translated in both 

the in-plane and out-of-plane directions, altering the alignment of the optical axis.  Thus, 

through coupled in-plane motion of opposing wedge structures, alignment of an optical 

fiber in the X-Y plane can be achieved.   

 

 

 

 

 

 

 

 

 

Figure 5.1: Optical fiber (a) at rest and (b) after actuating a single wedge, causing horizontal and 
vertical displacement of the fiber [156], essentially creating a dynamic v-groove. 
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3-D and top-view schematics of the 2-axis optical fiber alignment system are 

shown in Figure 5.2 and Figure 5.3.  A flexible fiber cantilever is created by anchoring 

one end of the fiber in a static v-groove or trench located a few millimeters away.   The 

static v-groove provides approximate passive alignment such that the free end of the 

flexible fiber cantilever rests between two sets of 3-D shaped wedges.  Each set of 

wedges is attached to an in-plane MEMS actuator, such as comb-drives, which provide 

the requisite forces.  The movement of each in-plane actuator allows the position of the 

fiber tip to be changed; improving alignment to a target device – in the case of Figure 5.2, 

the target is a chip with a waveguide.  After achieving the desired alignment, the fiber 

could be secured using various types of epoxy or possibly a clamping mechanism (more 

discussion on this topic in Chapter 7). It is anticipated that fiber tip actuation of >10µm 

will be required to compensate for fabrication and assembly errors within an 

optoelectronic module [152].   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2: Concept of on-chip active MEMS fiber alignment system using opposed sloped alignment 
wedges to create a dynamic V-groove.  Shown with simplified suspensions and planar comb-drives. 
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As mentioned earlier, the sloped alignment wedges are fabricated using gray-scale 

technology.  Since the integration of gray-scale technology with an SOI MEMS actuator 

process flow has already been developed in Chapter 3 of this dissertation, only the results 

of the process will be given later when the fabrication is discussed.  Additionally, since 

the gray-scale alignment wedges are purely mechanical elements, they are not limited too 

conductive or magnetic materials, as may be the case in other types of actuators.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3: Top view schematic of the 2-axis optical fiber actuator [157]. The opposing actuators are 
aligned with a static v-groove trench to provide approximate passive alignment. 

 

5.3. Fiber Coupling Loss Analysis  

The goal of the gray-scale 2-axis fiber aligner is to eliminate axial misalignment 

by bending the fiber to an appropriate position.  However, bending the fiber inherently 

introduces some loss as well.  Thus, three primary sources of optical loss, shown in 

Figure 5.4, should be considered and analyzed: longitudinal (along the axis of light 

propagation), axial (perpendicular to light propagation), and angular.  The coupling 

analysis in this section is based on the Gaussian coupling model presented by Joyce and 
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DeLoach in 1984 [158]; however adaptations have been introduced to specifically model 

the behavior of the gray-scale fiber aligner.  This approach requires beams to be 

represented by their nearest equivalent Gaussian mode, which while an approximation, 

provides useful insight to the coupling for a variety of optical and mechanical 

configurations of the gray-scale fiber aligner.  The following analysis will assume fiber-

fiber coupling, but can be applied to other source/sink combinations with approximately 

Gaussian modes.  Similar treatment of Gaussian coupling can be found in [159, 160]. 

 

 

 

 

 

 

 

 

Figure 5.4: Three primary sources of loss in fiber-fiber coupling. 

 
The simplest case to consider initially is that of purely longitudinal separation 

between two co-axial fibers, as shown in Figure 5.4(a).  Since the optical mode is no 
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where k=2π/λ and w0 is the original beam waist inside the fiber core.  The term w is 

known as the half-width or beam waist, where the amplitude of the electric field drops to 
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1/e of the peak, or where the intensity drops to 1/e2.  For the simulations below, and most 

subsequent experiments in the following chapter, 8.2µm core single mode optical fibers 

were used (Corning SMF-28e), with 2w=10.4µm
†, and an operating wavelength of λ = 

1550 nm to match the preferred low loss window of optical fibers [161]. 

 For elliptical mode profiles, the coupling efficiency (τ) between co-axial fibers for 

either the x or y primary axes, can be calculated separately to be [158]: 
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where w01 and w02 are the original beam waists for the input and output fibers 

respectively, and ZTotal is the separation distance between them.  Assuming circular 

symmetry and identical input/output fibers, the coupled power transmission coefficient 

(TLongitudinal) can be simplified to: 
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We can plot this transmission as a function of separation to evaluate the 

anticipated loss resulting from only longitudinal separation, see Figure 5.5 below.  From 

the graph it is clear that the magnitude of separation (|z|) has a large influence over the 

coupled power between fibers, and should therefore be kept as small as possible.  

However, small changes (∆z) about a certain separation have little effect on the total 

transmission ( )()( zTzzT ≈∆+ ).  For example, assuming only 5µm longitudinal 

placement accuracy for |z|=20µm, the difference in coupled power between 20µm and 

                                                 
† Material data sheet (www.corning.com/photonicmaterials/pdf/pi1446.pdf, accessed 3/16/05). 
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25µm separation is <0.08dB.  As will be shown shortly, this difference in coupling is 

virtually negligible compared to the change in coupling that would be caused by similar 

levels of axial misalignment.  Other studies have also shown the longitudinal axis to be 

the least critical of the misalignment components considered here [159, 160]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.5: Calculated coupling as two co-axial single-mode fibers are separated longitudinally. 
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shown here, but positional requirements should still be more forgiving than along the 

other axes.     
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For the gray-scale fiber aligner, we will assume some constant separation value 

(ZTotal) between two fibers that are also offset both axially and angularly.  The 

representative configuration is shown schematically in Figure 5.6.  An input fiber is 

secured at one end to create a cantilever.  The cantilever has an initial axial misalignment 

of Y0.  The cantilever tip is then displaced (∆y) by the gray-scale fiber aligner in an 

attempt to maximize the coupled power.  For the purposes of this analysis, we will 

assume that the misalignment in the x-direction (into the page) is negligible. 

 

 

 

 

 

 

Figure 5.6: Alignment schematic for a bent fiber cantilever coupling to a fixed output fiber. 

 
The fiber cantilever length (L) and tip displacement (∆y) dictate the included 
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For such separated fibers with an included angle (θ), Joyce and DeLoach were able to 

show that the transmission (T) can be now be written as [158]:  
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where θe is an angular tolerance parameter: 
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The important aspect of Equations 66 and 67 is that the beam waists (w) must be 

evaluated at the appropriate (z) location corresponding to the intersection of the extended 

propagation axes.  Thus, we can calculate the propagation distance for evaluation of w (Z1 

and Z2) based on the geometry of Figure 5.6: 
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12 ZZZ Total −=      (69) 

 
Strictly speaking, the path traveled by the input beam will be the hypotenuse of the 

triangle created by Z1 and (Y0-∆y).  However, since the angles involved will be small for 

practical lengths and deflections (θ<0.02 rad for L=5mm and ∆y=50µm), Z1 is a 

reasonably good approximation of the path length.   

Pure axial misalignment can be viewed as a special case of Equations 67 and 68, 

where the included angle becomes infinitesimally small angle (θ=d/z as z�∞).  Thus, as 

z�∞, Equation 63 approaches w�2z/kw0 and Equations 67 and 68 reduce to [158]:  
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These expressions are equivalent to those derived elsewhere for the case of pure axial 

misalignment of Gaussian modes [159]. 
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We will now use Equations 62-69 to simulate the transmitted power (T) as a 

function of fiber cantilever tip displacement and analyze the losses corresponding to each 

component.  Shown in Figure 5.7 is the transmitted power for a cantilever (L=5mm) with 

various tip deflections.  The target fiber location has been fixed at Y0=20µm with 

longitudinal separation of Z=30µm.  Also plotted in Figure 5.7 are lines indicating the 

loss that would be caused by each type of misalignment (longitudinal, axial, and angular) 

if they occurred independently of the other two.  Strictly speaking, the three loss 

components are not entirely separable.  However, for the geometries being considered, 

Figure 5.7 suggests that (to first order) they can be qualitatively viewed as components 

whose sum approximates the loss behavior near the coupling peak.   

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Various loss components for a single target fiber location @ Y0=20µm. 
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misalignment should cause >0.5 dB of loss.  While the relative sensitivity to axial 

misalignment should be independent of target location, Figure 5.7 shows that the angular 

misalignment loss (0.03dB for Y0=20µm) increases with cantilever tip displacement 

(increasing θ).  Since the gray-scale fiber aligner reduces the amount of axial loss by 

introducing a small angular loss, the location of the target fiber is extremely important as 

it dictates the angular loss penalty introduced by the device. 

Looking more closely at the angular loss penalty, Figure 5.8 plots the maximum 

transmission for different fiber cantilever lengths and tip displacements (temporarily 

assuming no longitudinal separation).  For long cantilevers (10mm), the angle created by 

bending the fiber tip 50µm is still rather small.  However, for shorter cantilevers (5mm), 

the angle resulting from the same displacement is larger (see geometry analysis in 

Appendix C), leading to more optical loss.  For comparison, the loss caused by 1µm pure 

axial misalignment is also shown.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: Max transmission depending on fiber cantilever length and tip displacement, compared 
to the loss caused by 1µm axial misalignment with no angle between input/output. 
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We see that a 5mm cantilever with 45µm tip displacement actually introduces 

greater angular loss than would be caused by 1µm axial misalignment.  This means that 

for cases of short fiber cantilevers and large deflections, the gray-scale fiber aligner may 

not provide a significant advantage over other alignment techniques. As a general rule, 

the angular loss introduced by the gray-scale fiber aligner should be small compared to 

the equivalent axial loss tolerance we are trying to obtain.  Thus, Figure 5.8 illustrates 

that this device will have inherent limitations in actuation range when the length of the 

fiber cantilever is scaled down. 

Another way interpret the introduction of angular misalignment is that the axial 

misalignment must be improved in order to compensate and maintain the same total 

transmitted power.  This concept of angular/axial alignment tradeoffs has been derived 

analytically in multiple forms as an “alignment product” of angular and axial tolerance 

terms [158, 159].  Fiber splices requiring high axial resolution are insensitive to angular 

misalignment, while fiber splices requiring high angular resolution are less sensitive to 

axial misalignment.  As the fiber tip is deflected by the gray-scale fiber aligner, many 

combinations of angular and axial losses occur.  Thus, the power transmission curves for 

an L=5mm cantilever have been calculated numerically for different target fiber positions 

to investigate the tradeoff between tip deflection (angle) and required resolution (see 

Figure 5.9).  The loss caused by a 1µm axial misalignment is also plotted for reference. 

As evident in Figure 5.9, target fibers located at large tip deflections have 

progressively lower peak transmission due to increased angular loss.  Thus, axial 

alignment resolution must improve to <1µm in order to surpass the equivalent of 1µm 

axial misalignment with no tip deflection.  Table 5.1 shows the maximum transmission 
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and axial resolution required to achieve coupling equivalent to a 1µm pure axial 

misalignment.  We see that for a 5mm cantilever and a target fiber at Y0=40µm, the axial 

resolution must improve from 1µm to 0.40µm to achieve power transmission equivalent 

to 1µm pure axial misalignment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: Transmitted power as a function of tip displacement for different target locations. 

 
Table 5.1: Max transmission and required equivalent resolution for different fiber tip locations 
(assuming L=5mm and longitudinal separation of 30µm). 
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0 -0.31 1.00 

10 -0.32 0.96 

20 -0.34 0.87 

30 -0.38 0.72 

40 -0.44 0.40 
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to estimate limitations of the proposed device. One must use similar analysis to determine 

what advantage the gray-scale fiber aligner can provide in a specific application.  

In this research, to avoid significant angular loss, and for mechanical reasons 

discussed in the following section, fiber cantilevers with L≥10mm were used. For the 

lengths and deflections considered here, the radius of curvature for bent fibers is >1m, 

making bending losses inside the optical fiber negligible.   

5.4. Design 

The principle of operation of an out-of-plane actuator based on opposing sloped 

alignment wedges was shown previously in Figure 5.1. Translating the alignment wedges 

alters the location of a cylindrical optical fiber resting within a dynamic v-groove. Since 

initial embodiments in packaging applications will require only a single use, it is not 

required that the actuator be either low-voltage or low-power, allowing a large amount of 

flexibility in actuator design. Planar electrostatic MEMS comb-drives will initially serve 

as the actuation mechanism for translating the sloped alignment wedges. This enables the 

use of the same process flow to fabricate both comb-drives and sloped alignment wedges 

simultaneously. Future devices could integrate variable-height comb-drives for improved 

displacement resolution, but such improvements lie beyond the initial goals of this thesis. 

For feasibility in packaging applications, the gray-scale fiber aligner should be capable of 

compensating for accumulated packaging and assembly errors to the order of 10µm initial 

misalignment [152]. The following sections discuss in more detail the design of the 

actuation mechanism and the design of the opposing sloped alignment wedges.   

5.4.1. In-Plane Actuators (Comb-drives)  

Design of the in-plane electrostatic MEMS actuator will largely focus on 

achieving the desired fiber deflection magnitude.  As shown previously in Figure 5.3, the 
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anchor point for the optical fiber provides approximate passive alignment of the optical 

fiber, similar to a passive v-groove, such that the fiber’s free end rests between the sloped 

alignment wedges.  The location of this anchor point determines the length, and therefore 

spring constant, of the cylindrical optical fiber cantilever, according to [163]: 
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where E is Young’s Modulus of the fiber (~70GPa), r is the radius of the fiber (typically 

r=62.5µm), and l is the length of the fiber cantilever.  As an example, a 10mm cantilever 

results in kfiber= 2.5 N/m.  To first order, this spring constant can be modeled as part of 

the spring constant of the in-plane MEMS actuator suspension.  

To achieve a desired range of motion, the actuation mechanism and fiber 

cantilever length must be considered jointly. Electrostatic comb-drive actuators have 

well-characterized force behavior, simplifying both design and control.  The force 

generated by a comb-drive was presented earlier in Chapter 3 (Equation 29), and is 

repeated here: 
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where N is the number of comb-fingers, ε0 is the permittivity of free space, h is the comb-

finger height, d is the gap between fingers, and V is the applied voltage. Making some 

basic assumptions (N=100, h=100µm, d=10µm, V=100V), we can estimate a generated 

force of 89µN.  If this force were applied directly to the fiber cantilever discussed above, 

the deflection would be >35µm (F=kx).  However, one must also consider two additional 

factors for this device: first, the sloped wedges push the fiber at an angle, causing the 

fiber deflection magnitude to be slightly smaller than the comb-drive deflection 
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(assuming 45º wedges). Second, part of the generated comb-drive force is used to bend 

the comb-drive suspension, reducing the force delivered to the fiber.  However, it is still 

reasonable to expect fiber actuation on the order of 10’s of micrometers using comb-drive 

voltages of 100-150V on fiber cantilevers in the range of 10-12mm long. The use of 

comb-drive actuators also provides interesting possibilities for integrating the gray-scale 

comb-fingers discussed in Chapter 3 for improved positioning resolution of the fiber.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: L-edit layout of a comb-drive actuator for actuating an optical fiber (gray-scale fingers 
would sit at the edge of the suspension frame where the arrow indicates the direction of motion). 
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the novel approach taken in this research to create a “repulsive electrostatic comb-drive”.  

Starting from a single electrode, the static comb-fingers were arranged on arms that 

reached around and point back towards the aluminum (Al) contact pad.  The suspended 

comb-fingers meanwhile are attached to a stiff suspension frame that extends between the 

static electrode arms.  Upon applying a voltage to the Al contact pad, the suspended 

structures get pulled to the right by the wrapped-around comb-fingers.  Thus, a pushing 

motion has been created from the perspective of the electrode.  One drawback of this 

design is its size.  Wrapping the suspension frame inherently takes extra space, and a 

device with 100 comb-fingers per side requires significant real-estate on the wafer.  The 

area required for one side of the actuator shown in Figure 5.10 is ~1.1mm2.  Given the 

size of the suspensions (1mm long each) and length of the cantilever (~10-12mm), an 

entire device is in the range of ~7mm2. 

For devices investigating the design, fabrication, operation, and control of this 

new type of actuator, the relatively large overall footprint is acceptable.  However, for 

packaging applications, it is imperative that these systems be reduced in size, particularly 

for packaging of fiber arrays with a small pitch (250-500µm).  Two primary approaches 

for developing such systems will be discussed in Chapter 7 as extensions of this work:  

(1) the use of reduced cladding fiber (r=40µm) for shorter/more flexible cantilevers, and 

(2) integration of higher force actuators that have potentially smaller footprints (such as 

thermal [45]).   

The rest position of a fiber tip between sloped alignment wedges can be 

calculated using geometry (see Appendix D).  We will always assume that the restoring 

force of the bent fiber cantilever causes it to rest at the bottom of the dynamic v-groove. 
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For the case of 45º alignment wedges and comb-drive actuators, we can plot the rest 

position of the fiber as a function of applied voltage.  Figure 5.11(a) shows the possible 

v-groove alignment area, where each point represents a case of discrete applied voltages 

to comb-drives A and B from Figure 5.3.  Taking the point (0,0) as the initial fiber resting 

place before actuation, the center of an optical fiber can be moved to any point within the 

boundaries of this imaginary diamond-shaped alignment area.  Note that the uneven 

spacing of points in Figure 5.11(a) derives from the quadratic displacement of planar 

comb-drive actuators, resulting in alignment resolution that varies with position.  Future 

devices could incorporate the variable-height gray-scale comb-drives discussed in 

Chapter 3 which could improve alignment resolution at large displacements, as shown in 

Figure 5.11(b). 

 

 

 

 

 

 

 

 
Figure 5.11: Possible alignment area covered (in the X-Y plane of Figure 9) for (a) a planar comb-
drive actuator (k=5 N/m, gap=10µm, N=200, Vmax=90V), where the displacement resolution varies 
depending on position, and (b) a gray-scale tailored force actuator exhibiting improved resolution at 
large deflections (k=5 N/m, gap=10µm, N=200, Vmax=120V).  
 

5.4.2. Alignment Wedges  

The most critical components of this fiber actuator are the opposing sloped 

alignment wedges, since they contact the fiber directly and enable the out-of-plane 
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actuation.  Once again, gray-scale technology will be used to integrate the required 3-D 

silicon wedges with in-plane electrostatic MEMS comb-drives. The primary difficulty 

when designing the alignment wedges is balancing the wedge angle, ARDE effects (see 

Section 2.5.2.1), and number of gray levels (i.e. morphology).  

The exact angle of the wedges is not critical, but excessively shallow or steep 

angles could cause slippage or jamming of the fiber.  A target angle of approximately 45º 

was chosen as the initial goal for the wedge design, ideally resulting in similar horizontal 

and vertical resolution.  The alignment wedges are located within the open fiber trench, 

which is almost an order of magnitude wider than the comb-drive finger spacing (200µm 

vs. 30µm).  This large size difference will lead to significant ARDE between the two 

structures.  To anticipate the over etching required to fully define the comb-drive 

fingers/spaces, the alignment wedges were designed to have a ~30µm vertical shift 

(created by introducing a constant offset in the CARDE process discussed in Chapter 2).    

The selection of the gray-scale mask pitch and pixel set for defining the alignment 

wedges is extremely important. Ideally, after fabrication, the sloped wedges should be 

smooth compared to the size of the optical fiber (diameter=125µm) to enable continuous 

motion.  Yet, considering the mask design limitations discussed in Chapter 2, tall and 

smooth slopes are a challenge when using a single gray-scale exposure.  Compounding 

this difficulty is the fact that the CARDE offset renders a large number of lower gray 

levels unusable.  Thus, the importance of pitch selection can be seen in the following 

simulations, based on the Gaussian approximation and pixel limitations discussed earlier 

in Chapter 2.  Two different gray-scale alignment wedge profiles were simulated, both 

assuming an etch selectivity of 60:1 and a 30µm over-etch (due to ARDE). The first 



 141 

profile, shown in Figure 5.12(a), uses a mask pitch of 2.8µm with only ~25 useable gray 

levels, resulting in a prominent stair stepped profile.  In contrast, Figure 5.12(b) shows a 

simulated profile using a pitch of 3.2µm, which enables ~50 gray levels within the 

desired range (pixel sets are given in Appendix E).  Given these simulated profiles, the 

3.2µm pitch is expected to produce smoother fiber motion, but still has room for 

improvement.  These alignment wedges could be an excellent candidate for the double-

exposure lithography technique introduced in Chapter 2, however it would require 

significantly more characterization.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12: Simulated gray-scale alignment wedge profiles using (a) 2.8µm pitch with ~25 levels, or 
(b) 3.2µm pitch with ~50 gray levels. 
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5.5. Fabrication 

The fabrication of the gray-scale fiber aligner follows the same gray-scale SOI 

comb-drive process flow presented previously in Chapter 3 (hence both fiber aligners and 

comb-drives can be fabricated simultaneously).  Figure 5.13 shows optical and SEM 

micrographs of fabricated gray-scale alignment wedges in photoresist.  In Figure 5.13(a), 

the opposing wedges appear with rainbow colors that are indicative of the changing 

photoresist thickness.  The small holes evident in the wedge in Figure 5.13(b) are caused 

by partial re-construction of the pixels on the optical mask since the chosen pitch (3.2µm) 

is slightly above the projection lithography system resolution (a tolerable effect in our 

current application).   

 

 

 

 

 

 

 
 
Figure 5.13: (a) Optical and (b) close-up SEM micrographs of photoresist gray-scale alignment 
wedges using a 3.2µm pitch. 

 
After DRIE pattern transfer, the difference in morphology between the 2.8µm 

pitch (25 gray levels) and the 3.2µm pitch (50 gray levels) is significant.  Released silicon 

electrostatic actuators with integrated 3D wedges are shown in Figure 5.14 and Figure 

5.15, for the 2.8µm and 3.2µm pitch designs, respectively.  Figure 5.14(b) clearly shows 

the wedge has distinct steps on the gray-scale slope, similar to the simulated profile of 

Figure 5.12(a).  In contrast, the close-up SEM in Figure 5.15(b) shows a much improved 
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slope, as expected from Figure 5.12(b), where micron-level roughness has been achieved 

over the majority of the slope.  Note that the holes in photoresist shown previously in 

Figure 5.13(b) are not evident in the silicon after DRIE pattern transfer.  Due to the size 

and location of the wedges, profilometer tips could not reliably trace the alignment finger 

profiles, and white light interferometry did not capture sufficient reflected light from the 

angled surface.  Thus, quantitative roughness measurements were impractical without 

destructive testing that makes it impossible to relate roughness to device performance.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14: (a) Far-field and (b) close-up SEM’s of alignment wedges fabricated with 25 gray levels 
using a 2.8µm pitch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.15: (a) Far-field and (b) close-up SEM’s of alignment wedges fabricated with 50 gray levels 
using a 3.2µm pitch.  Notice that the small holes in photoresist are not evident on the slope. 
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5.6. Assembly 

To prepare the sample for testing, a length of single mode optical fiber (Corning 

SMF-28e) was manually stripped and cleaved. The cleaved free end of the fiber is placed 

between the alignment wedges (attached to the comb-drives), while the bulk of the fiber 

passes through the static trench.  In order to enable coupling to other devices (either 

optical fibers or indium-phosphide (InP) waveguides), the cleaved facet of the fiber 

cantilever hangs slightly off the edge of the SOI chip (<1mm).   

The bulk fiber is secured in the static trench with UV-curing epoxy (Norland 

Products, Inc.) to create a flexible cantilever.  Small drops of epoxy are applied using a 

piece of optical fiber dipped in un-cured epoxy.  Due to the lack of control over drop 

volume, the UV lamp must shine on the sample immediately after the drop is applied to 

avoid excessive spreading of the epoxy.  The effect of spreading epoxy is most noticeable 

when it wicks along the bottom of the fiber beyond the static trench, effectively 

shortening the fiber cantilever length.  Since the extents of epoxy flow are easily viewed 

under a microscope, an adjusted fiber cantilever length can be estimated to account for 

this effect.  A device after fiber attachment is shown in Figure 5.16.   

Since the fiber attachment process is entirely manual, it is difficult to ensure that 

the fiber touches both wedges in its rest state.  Reliable operation can be achieved with 

small gaps between the wedge and fiber, but requires a voltage offset to move both sets 

of wedges into contact before the fiber begins to move.  The inconsistencies with manual 

fiber attachment and epoxy dispensing should be remedied by moving towards automated 

pick and place machines with controlled liquid dispensing capabilities [164].  Alternative 

methods for fiber attachment, such as laser spot welding could also be investigated [165].   
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Figure 5.16: SEM’s of (a) fiber secured in the static trench with UV-curing epoxy and (b) the free end 
resting between the 3-D alignment wedges. 

 

5.7. Actuation Concept Demonstration 

The proposed new fiber actuation mechanism was first evaluated using a white-

light optical profiler (Veeco WYKO NT1100) to track both horizontal and vertical 

movement of the fiber caused by actuating the sloped wedges.  In static mode, this 

profiler uses reflected light from horizontal surfaces to create a full-field 3-D height map 

in only a few seconds.  Since an optical fiber is cylindrical, appreciable reflected light is 

only collected from a thin strip (1-2µm wide) representing the top of the fiber.  The 

silicon actuators in the background serve as a vertical reference point, enabling changes 

in both the horizontal and vertical location of the fiber to be determined.  Due to limited 

magnification available in the system and changing light conditions as a fiber is 

deflected, the accuracy of measurement is estimated at only <2µm.  While this 

measurement method is clearly not intended to evaluate alignment to another fiber, it is 

adequate for demonstrating the principle of operation of the gray-scale fiber aligner.   

Figure 5.17 shows the measured location of the optical fiber for different sets of 

applied voltages (up to 120V).  Three primary actuation trajectories are shown.  
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Actuating each set of wedges independently (while holding the opposite set at 0V) results 

in points along two trajectories that are tilted with respect to the X-Y axis (labeled #1 and 

#3 in the figure).   Purely vertical motion of the fiber is achieved by applying an identical 

voltage to each actuator (#2 in the figure).  Intermediate voltage combinations should 

result in fiber positions within the diamond-like bounds of these measurements.   This 

test successfully demonstrates the basic operation of our gray-scale fiber aligner, where 

an optical fiber cantilever is deflected in both the horizontal and vertical directions using 

coupled in-plane motion of sloped silicon wedges.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Fiber locations measured using an optical profiler for different actuation voltage 
combinations.  Each colored path represents a trajectory caused by actuating either wedge by itself 
(angled trajectories #1 and #3) or both wedges together (straight up #2). 

 

 

5.8. Conclusion 

This chapter has introduced a new on-chip method for actuating an optical fiber in 

2-axes.  Opposing electrostatic comb-drives with integrated 3-D wedges create a dynamic 
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cantilever.  All structural components of this new device can be fabricated in silicon 

using gray-scale technology, making it conducive to batch fabrication.  This device is 

attractive for on-chip active alignment of fiber optics to edge-coupled optoelectronic 

devices.   

Analysis of the primary sources of optical coupling loss between two fibers 

showed that 2-axis alignment is sufficient to eliminate the dominant source of loss (axial 

misalignment).  However, the amount of angular misalignment introduced by bending the 

fiber cantilever must also be considered.  The design and fabrication of the gray-scale 

alignment wedges showed that ~50 gray levels were able to produce a relatively smooth 

slope, which should result in nearly continuous fiber actuation (experimental results 

discussed in the following chapter).  Simple actuation and measurement results clearly 

demonstrated the fundamental operation of the 2-axis gray-scale fiber aligner.  

The following chapter will focus on evaluating the performance of gray-scale 

fiber aligners in an optical coupling setup.  Of particular interest will be the fiber 

actuation range and resolution, as well as hysteresis behavior between the sloped wedges 

and optical fiber due to friction.  Automated alignment algorithms will be developed as 

part of this evaluation process to demonstrate the flexibility of this device. 
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6. GRAY-SCALE FIBER ALIGNER II: Optical Testing and 
Characterization 

6.1. Introduction 

The previous chapter has introduced the design, modeling, and fabrication of a 

novel 2-axis optical fiber alignment platform, the gray-scale fiber aligner, for systems 

requiring in-package active fiber alignment.  The development of this device is directly 

aimed towards addressing some of the primary challenges identified by ITRS in the area 

of optoelectronic packaging [77].  While the basic mechanical operation of this device 

was briefly demonstrated, the overriding purpose of this device is to optimize optical 

coupling between an optical fiber and a corresponding target (another fiber, waveguide, 

laser, etc).  Therefore, this chapter is dedicated to the static and dynamic characterization 

of the gray-scale fiber aligner through multiple optical coupling configurations.   

The development of an experimental setup for testing both fiber-fiber and fiber-

waveguide coupling will first be discussed in Section 6.2.  Static testing results will then 

be reviewed in Section 6.3, with particular emphasis on evaluating actuation range and 

controlling movement of the fiber tip.  Section 6.4 will discuss auto-alignment algorithms 

for both coarse and fine alignment, with testing results focused on speed and resolution 

presented in Section 6.5.  Discussion of testing results will be given in Section 6.6.  

Concluding remarks are provided in the final section. 

6.2. Experimental Setup 

All infrastructure and experimental testing discussed in this chapter was 

developed in the MEMS Sensors and Actuators Lab (MSAL) at UMD.  The following 

sub-sections will describe both the hardware assembled for optical testing and some 

characterization of the system limitations. 

CHAPTER 6: GRAY-SCALE FIBER ALIGNER II: Optical 
Testing and Characterization 
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6.2.1. Hardware 
The optical setup developed to test the gray-scale fiber aligner is shown 

schematically in Figure 6.1.  A 1550nm laser diode is used as the optical source.  The 

target fiber is fixed on a calibrated electrostrictive XYZ stage controlled via LabVIEW.  

In some cases, the target fiber is aligned to an indium-phosphide (InP) chip with 

suspended waveguides [166, 167].  The gray-scale fiber aligner holds the output fiber and 

is fixed on a second electrostrictive XYZ stage.  In general, the location of the gray-scale 

fiber aligner chip is not altered during alignment testing to avoid repositioning the 

electrical probes.  The output fiber is connected directly to an optical power meter, which 

is sampled by LabVIEW.  Actuation voltages for the gray-scale fiber aligner are provided 

through two analog-out channels on a data acquisition (DAQ) card and a high-voltage 

(HV) MEMS amplifier.  The limited current output of the DAQ card (5 mA), coupled 

with the low input impedance of the HV amplifier (50Ω), made it necessary to add an op-

amp buffer circuit to increase current output in order to achieve high voltages (up to 

200V).  The primary components and associated model numbers are listed in Table 6.1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1: Optical test setup for auto-alignment of MEMS-actuated fiber to cleaved fibers or InP 
waveguides. 
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Table 6.1: Primary hardware components used in the optical testing setup. 

Manufacturer Product Model # 

Newport Optical Power Meter 1830-C 

Newport IR Detector 818-IR 

Newport Laser diode LD-1550-21B 

Newport Laser diode driver 501 

Newport µ Drive Controller ESA-C 

Newport Electrostrictive Actuator AD-100 

Newport Mechanical Positioning Stages 561D 

National Instruments Data Acquisition Card 6221 

Pragmatic High Voltage MEMS Amplifier 100X 

ST Microelectronics Operational Amplifier LM324N 

Corning Single mode fiber (9/125µm) SMF-28e 

Corning OptiFocus Lensed Fiber 3.3µm MFD 

 

6.2.2. Instrumentation Characterization and Limitations 
Prior to testing devices, it was necessary to characterize the limitations of the 

experimental setup.  Since optical coupling is position sensitive, mechanical drift 

between input and output was a particular concern.  Two fibers were manually aligned 

with the XYZ stages to peak coupling and the power monitored over the course of a few 

hours.  As shown in Table 6.2, slight drift between stages caused <2% change in coupled 

power over a 3 hour period.  Since peak coupling could be restored using X-Y 

positioners, we concluded that negligible drift occurred along the Z-axis.  This fact is 

important because the gray-scale fiber aligner already adjusts for X-Y position, but 

changes in separation would alter the peak power which must remain stable during 

alignment tests.  Therefore, the stability of the peak power is limited by optical noise 

(source and detector variations) and mechanical vibrations in the system; estimated to be 

<1% for short coupling experiments. 
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Table 6.2: Mechanical drift of stage causes slight change in coupled power between aligned fibers. 

Time 
Power 
(µW) 

Drift 
(%) 

12:25pm 496.0 -- 

12:42pm 497.2 0.2 

1:35pm 502.6 1.3 

2:16pm 504.0 1.6 

3:02pm 504.5 1.7 

3:31pm 507.4 1.9 

 

One essential function this setup must perform is to locate the position and value 

of the maximum coupled power.  The facet of the input fiber can be scanned in the X-Y 

plane using a custom LabVIEW module (developed by MSAL member Jonathan McGee) 

to control the electrostrictive XYZ stage while monitoring the coupled power.  This facet 

scan creates a 2-D map of coupled power vs. position to quantify the relative locations of 

the target and output fiber before and after each alignment experiment.  An example 2-D 

coupled power map is shown in Figure 6.2.  The coupling profile is approximated using a 

3-parameter Gaussian fit to quantify the shape of the peak: 
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This Gaussian fit is imperative for measuring the sharpness of the peak, as shown 

in Figure 6.3, which provides a numerical correlation between the coupled power and 

axial misalignment between input/output.  As a worst case scenario estimate, the “true” 

peak power is inferred using the Gaussian width parameter by assuming the highest 

recorded power during the facet scan was 0.5µm misaligned (½ way between two points 

on the 1µm scan grid).  If a higher power is observed during the alignment tests, 

potentially due to nearly “perfect” alignment or small noise fluctuations, the higher 
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power is taken as the “true” peak power instead.  Since the peak in Figure 6.3 is relatively 

wide, achieving alignment resolutions of ~1.5µm will require final coupling thresholds 

close to 95% of the peak power.       

 

 

 

 

 

 

 

 

 

Figure 6.2: Example coupled power contours using a LabVIEW module to scan the facet of the fiber.  
Measures location and sharpness of coupling profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Cross-section of fiber-fiber coupled power profile after 3-parameter Gaussian fit. 
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The final important characteristic of our experimental setup pertaining to the 

gray-scale fiber aligner is the delay between fiber movements required by the control 

program to properly asses the new coupled power.  There are two possible contributors to 

this delay: first, a finite time is required for the fiber to physically move and switch 

positions.  Second, the LabVIEW control program and associated components need time 

to be updated and/or queried.  Thus, the control program must periodically pause after 

initiating a voltage change to allow the fiber to reach its new position and sample the 

optical power meter, all before actuating the fiber again.  

First, transient fiber-fiber coupling experiments were conducted to evaluate the 

switching speed of the gray-scale fiber aligner.  The optical power meter was temporarily 

replaced with a high-speed photoreceiver (New Focus 1811 IR-DC 125MHz Low Noise 

Photoreceiver).  Note that this photoreceiver is noisy compared to the optical power 

meter and has a small dynamic range, making it ill-suited to alignment experiments but 

acceptable for assessing transients. The gray-scale fiber aligner was initially partially 

aligned with an output fiber such that a small amount of coupled power was received.  

The fiber was then actuated to a position of different coupling while recording the 

actuation voltage and photoreceiver output voltage simultaneously via the DAQ card. 

Measurements of fiber aligner switching were taken during both “Up” and 

“Down” actuation trajectories (starting and ending voltage combinations), as shown in 

Figure 6.4.  During the “Up” trajectory, the fiber was sometimes observed to slightly 

over-shoot the final position, possibly due to momentum carrying it off the surface of the 

alignment wedges.  It is expected that the switching speed will depend slightly on the size 

and direction of the fiber trajectory, yet typical switching speeds of <1ms were observed. 
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Figure 6.4: Actuation speed of the gray-scale fiber aligner during (a) “Up” and (b) “Down” actuation 
trajectories.  In some “Up” experiments, the fiber over-shoots the final position, as in (a). 
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actuation voltages and sample the optical power meter.  Thus, a settling time (pause) 

parameter was introduced in LabVIEW as a delay between sending the actuation signal 

and measuring the power at a new position. The same fiber-fiber coupling setup as above 

was used with the optical power meter, and the received power was recorded after 

different settling times.  Fiber settling experiments were conducted for different fiber 
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trajectories, the results of which are depicted graphically in Figure 6.5, where the 

transition from one fiber position to the other is obvious.   

Since the fiber actuation occurs in ~1 millisecond, these tests confirm that the 

required settling time is limited by the LabVIEW control program and power meter.  

Although the optimum settling time for each fiber trajectory may be different, our results 

indicate that a universal settling time of at least 300ms should be used between fiber 

movements.  While changes to the experimental setup could potentially increase this 

actuation speed, later fiber alignment tests will show that such speeds have still produced 

fast and reliable fiber alignment.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Measured power as a function of settling time for different fiber trajectories, showing the 
delay between sending the actuation signal and the fiber completing it’s motion.  Settling times of 
300ms were deemed sufficient for complete fiber switching. 
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actuation.  Such static movements will serve as the foundation for the auto-alignment 

algorithms discussed in later sections.  Unless otherwise mentioned, tests described in 

this and the following sections utilize devices with a fiber cantilever length of L=12mm. 

 

6.3.1. “Diamond” Extents 
The actuation mechanism of the gray-scale fiber aligner inherently defines a 

diamond-shaped area over which a fiber tip can be aligned, as described in Chapter 5.  

Thus, to establish the overall range of operation for this device, we must measure the size 

of this diamond-shaped area corresponding to the extreme movements of each alignment 

wedge. The voltage on either actuator was limited to 0-140V to avoid breakdown of the 

2µm buried oxide (based on experience), restricting the overall travel range.   

Four discrete voltage combinations were applied to the two actuators to move the 

fiber to the four corners of the diamond-shaped alignment area.  The location of the 

cleaved fiber tip was measured for each case using the facet scanning capability 

described earlier (with Gaussian fits).  The voltage combinations, as well as absolute and 

relative fiber locations for this device, are given in Table 6.3.  These four points, shown 

graphically in Figure 6.6, create a relatively symmetric diamond. Fiber positions within 

the diamond-shaped bounds of these measurements (37µm tall, 48µm wide) should be 

achievable with the appropriate set of applied voltages.     

Table 6.3: Measured fiber locations for discrete actuation voltages.  These 4 points form the corners 
of a diamond shaped alignment area. 

 

 

 

 
 

 

Ch A 
(V) 

Ch B 
(V) 

X Position 
(µm) 

Y Position 
(µm) 

∆X 
(µm) 

∆Y 
(µm) 

0 0 -5.5 -3.0 0 0 

0 140 -29.5 17.6 -24.0 20.6 

140 0 18.8 16.7 24.3 19.7 

140 140 -5.4 34.0 0.1 37.0 
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Figure 6.6: Measured fiber location for extreme actuation voltages, which form a diamond-shaped 
alignment area. 

 
The fiber tip displacements measured in Figure 6.6 are slightly larger than the 

fiber displacement at the alignment wedges because the fiber tip extends beyond the 

wedges for ease of testing, causing a small additional tip displacement.  More discussion 

on this subtle point is given in Appendix C.   

 

6.3.2. Power Mapping 
The diamond extents test was simply a demonstration of large single movements. 

Yet, we would also like to show that the gray-scale fiber aligner provides some of the 

same functionality as the electrostrictive XYZ stages.  Using LabVIEW, we implemented 

a raster actuation routine to map the fiber-fiber coupled power as a function of applied 

voltages to channels A and B of the gray-scale fiber aligner.  This scan is analogous to 

the 2-D facet scan performed by the electrostrictive stages.   

Shown in Figure 6.7 are coupled power contours that are plotted vs. voltage 

squared (since comb-drive force scales with V2).  The concentric circular power contours 

clearly demonstrate that movements of each alignment wedge behave predictably and 

rather symmetrically.  The single dominant coupling peak is a result of the fiber-fiber 
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setup being used in this test; however optimizing coupling to devices with secondary 

peaks is always a concern during fiber alignment and will be discussed in later sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7: Coupled power contours created using the gray-scale fiber aligner for a fixed target fiber 
location as voltage combinations are applied to the device. 
 

 

6.3.3. Cartesian Control 
As evident from the diamond test, when one wedge is kept stationary and the 

other moved, the fiber tip will trace out an angled trajectory parallel to one side of the 

diamond-shaped alignment area shown in Figure 6.6. This essentially leads to a rotated 

coordinate system (in V2 space) where moving one actuator creates fiber movement along 

a tilted axis.  Yet, in some cases it may be advantageous to move the fiber along 

Cartesian coordinates; for example, to map optical sources with complicated modes.   

 

 

 

 
Figure 6.8: Relation between Cartesian and wedge primary axes. 
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Referring to Figure 6.8, we see that the Cartesian axes are simply summations of 

the angled fiber trajectories caused by individual wedge movements: 

( ) 2/ˆˆˆ BAx −=      (75) 

( ) 2/ˆˆˆ BAy +=      (76) 

 
Thus, a coordinate transform from wedge to Cartesian axes can be made by assuming 

symmetrical 45º wedges and an initial point in voltage space (VA, VB).  We can then 

define an arbitrary desired Cartesian trajectory (U) to be: 

yxU ˆˆ ⋅+⋅= βα
r

      (77) 

 
where α and β are coefficients in units of Volts

2 because the comb-drive force scales with 

voltage squared.  The set of new voltages (VA-new, VB-new) required to create this trajectory 

can then be calculated as: 

βα ++=−

2

AnewA VV      (78) 

βα +−=−

2

BnewB VV .     (79) 

 
Using these transforms, the fiber tip can be directed in any Cartesian direction 

from any starting point within the diamond alignment area.  To show this capability, the 

fiber was actuated along trajectories every 45º for |U|=2000V
2
 and |U|=4000V

2, starting 

from the middle of the actuator range (99V, 99V).  The measured fiber locations after 

actuation are shown in Table 6.4 and Figure 6.9.  For the angled trajectories, one wedge 

remains stationary while the other wedge slides the fiber up/down the slope.  For the 

vertical and horizontal trajectories, the wedges must move in tandem to produce the 

desired fiber movement.     
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Table 6.4: Cartesian control results for the 45º primary axes starting from center of diamond shaped 
alignment area (99V, 99V). 

Desired  
Angle  

(º) 

Desired 
|U|  

(V2) 

∆X 
(µm) 

∆Y 
(µm) 

Measured 
|U| 

(µm) 

Measured 
Angle  

(º) 

Resolution 
(µm / |U|=1000V2) 

0 2000 8.7 -0.1 8.7 -0.5 4.3 

0 4000 15.7 1.0 15.7 3.8 3.9 

45 2000 5.0 4.9 7.0 44.5 3.5 

45 4000 10.5 9.8 14.3 42.8 3.6 

90 2000 -1.1 6.3 6.4 99.5 3.2 

90 4000 -1.2 12.9 13.0 95.3 3.2 

135 2000 -6.5 5.0 8.2 142.4 4.1 

135 4000 -12.6 10.0 16.1 141.4 4.0 

180 2000 -8.6 0.6 8.6 175.9 4.3 

180 4000 -15.7 1.0 15.7 176.3 3.9 

-135 2000 -4.7 -4.7 6.7 -135.0 3.3 

-135 4000 -9.4 -9.4 13.4 -135.0 3.3 

-90 2000 1.2 -7.8 7.9 -81.1 4.0 

-90 4000 2.1 -13.8 14.0 -81.4 3.5 

-45 2000 5.8 -5.1 7.7 -41.7 3.9 

-45 4000 12.1 -10.6 16.1 -41.0 4.0 

 
 

For most cases of Table 6.4 and Figure 6.9, the measured and desired trajectory 

angles are within a few degrees.  The resolution parameter calculated in the last column 

indicates that a movement of 3-4µm can be expected from a |U|=1000V2 size trajectory; 

this information will become important during fine resolution fiber alignment tests later 

in this chapter.  The slight non-linearity and variability over these 16 tests (and their 

~30µm travel range) is attributed to small asymmetries in wedge morphology and fiber 

rest position.  
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Figure 6.9: Primary axes of movements show trajectories along ~45º, demonstrating that Cartesian 
control of fiber is possible. 

 
As a brief demonstration that the Cartesian control principle produces similar 

results starting from an arbitrary point (not the center), a module was created in 

LabVIEW to automatically create successive fiber movements at the behest of an 

operator.  The LabVIEW module (shown in Figure 6.10) allows the user to define a 

starting location and then press buttons to determine the direction and magnitude of the 

next fiber movement.  While buttons only exist for every 45º in the figure, arbitrary 

angles can also be manually entered with slight changes to the program.  To demonstrate 

this operability, the letter “M” was traced out with the fiber tip using sequential 

movements and facet scans to measure fiber location (see Figure 6.11).  Both vertical and 

angled trajectories across the diamond alignment area were necessary to create the 

desired shape.  Once again slight non-linear motion was observed.   

The 45º trajectories and “M” tests have clearly demonstrated that Cartesian 

control of the fiber tip location can be achieved using simplified geometrical transforms 
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to control the coupled motion of two alignment wedges.  Improvements in wedge 

morphology and angle are expected to improve the symmetry of fiber movement.   

 

 

 

 

 

 

 

 

 

 

 
Figure 6.10: LabVIEW module for creating arbitrary fiber movements. 

 

 

 

 

 

 

 

 

 

 
Figure 6.11: Cartesian control was used to trace out the letter “M”. 
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6.3.4. Hysteresis Evaluation 
Another important quasi-static characteristic to investigate is hysteresis of the 

fiber motion, primarily caused by the morphology of the gray-scale wedges.  The main 

forces on the fiber during an “Up” cycle are shown in Figure 6.12, where both wedges 

move towards each other to create purely vertical motion.  In the absence of friction, each 

wedge transmits the electrostatic force of the comb-drive into a net angled force on the 

fiber (Fnet A and Fnet B).  These forces combine to produce a net force/movement “Up,” 

which is balanced by a restoring spring force (Frestore) that points back toward the original 

fiber location (“Down” in this case).  However, as the fiber slides “Up” each wedge, there 

is a frictional force on each wedge face (Ff-A and Ff-B) that will oppose the fiber’s upward 

motion.  

 

 

 

 

 

 
Figure 6.12: Force diagram during the “up” portion of a hysteresis test, where the frictional forces 
oppose the net force acting on the fiber from each alignment wedge. 

 
These frictional forces between the wedges and optical fiber will oppose the fiber 

motion on any actuation path, causing hysteresis.  To test the magnitude of this effect, a 

fiber was fixed with a vertical offset compared to the gray-scale fiber aligner.  During a 

sequence of increasing then decreasing voltages, the gray-scale fiber aligner tip passes 

through the point of peak coupling both on its way “Up” and on its way back “Down.” 

The coupled power between fibers was then measured as the gray-scale fiber aligner was 
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actuated “Up” and “Down” over multiple cycles.  As shown in Figure 6.13, there is 

definite hysteresis between the two actuation paths.  (While a single cycle is shown here, 

the hysteresis is quite repeatable).  Essentially, friction from the wedge surfaces increase 

the force (i.e. V
2) required to move the fiber “Up,” and then delays the fiber’s return 

“Down” to a lower state.  Using facet scans taken with the calibrated electrostrictive 

stages, this ‘lag’ is estimated to be equivalent to a shift of ~4µm between the two 

coupling peaks.     

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
Figure 6.13: Actuating both sloped wedges identically creates a vertical up/down motion that exhibits 
definite hysteresis [168].  
 

It should be possible to reduce this hysteresis effect by improving the wedge 

morphology through a combination of design and/or fabrication, although the observed 

roughness is already small (1-2µm) compared to the 125µm fiber.  Since the fundamental 

principle of operation of this device relies upon two sliding surfaces, it is not expected 

that hysteresis could be totally eliminated in practice.  As will be shown in later sections, 

fiber alignment using closed-loop control has proven robust with the current structures 

despite these small hysteresis effects.  
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6.4. Auto-alignment Algorithms 

The motivation for developing the gray-scale fiber aligner is rooted in automating 

the optical fiber alignment and packaging process.  Thus, it is only prudent to 

demonstrate the capabilities of said actuator for auto-alignment of a fiber to various 

targets.  Alignment algorithms can be considered a field unto itself and the development 

of entirely new algorithms is not the primary focus of this work.  Rather, the following 

sub-sections will provide a brief overview of general alignment schemes, and focus 

instead on the adaptation of popular alignment schemes to the gray-scale fiber aligner.  

Of primary interest will be the impact and/or limitations imposed by the developed novel 

fiber actuation mechanism on the achievable alignment time and resolution. 

 

6.4.1. Overview and Background 
The majority of alignment algorithms developed in the literature utilize external 

stages or fiber positioners capable of manipulating the fiber position in multiple axes 

[169-176].  Nearly all alignment sequences make use of multiple algorithms in order to 

minimize cycle time and improve reliability.  Most begin with a coarse alignment step to 

achieve “first light” and meet some intermediate threshold power.  This coarse threshold 

power is often designed high enough to avoid noise and secondary peaks.  Once coarse 

alignment has been reached, a fine alignment step optimizes the alignment via a different 

algorithm.  

The majority of alignment algorithm implementations use a “step-and-read” 

approach, where the fiber is moved incrementally and the coupled optical power is 

measured at the new fiber location.  “If-then-else” types of logic are popular [174], 

however more complicated Hamiltonian [170] or fuzzy logic [171] approaches have 

potential advantages for simultaneously aligning many fibers with multiple degrees of 
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freedom.  Some algorithms also take advantage of a priori knowledge regarding the 

expected coupling profile shape (such as beam ellipticity) to reduce the overall alignment 

time [176].   

The coarse and fine algorithms implemented in this work are adaptations of 

standard algorithms in order to characterize the performance of the gray-scale fiber 

aligner.  To this end, our testing uses targets with symmetric coupling profiles, allowing 

us to infer alignment accuracy regardless of the direction of misalignment.  After 

characterizing the performance of the gray-scale fiber aligner and demonstrating its 

flexibility, it would be possible to implement more complex alignment algorithms, but is 

considered beyond the scope of this work. 

The coarse and fine alignment experiments discussed in the rest of this chapter 

will follow the same general sequence: (1) the longitudinal separation between the target 

and gray-scale fiber aligner is set manually under a microscope.  (2) Electrostrictive XYZ 

stages are controlled via LabVIEW to create a facet scan of the target in order to correlate 

the coupled power to positional misalignment.  (3) The target is intentionally misaligned 

with regards to the gray-scale fiber aligner. (4) A LabVIEW program, utilizing coarse 

and/or fine algorithms, optimizes alignment by modifying voltages supplied to gray-scale 

fiber aligner while monitoring the coupled optical power.  (5) Upon satisfying all relevant 

thresholds, or giving up due to some failure, pertinent data is logged electronically.  (6) 

Finally, the facet is re-scanned via the electrostrictive XYZ stages to verify that 

negligible drift occurred during the test(s).   
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6.4.2. Coarse Algorithms 
We have implemented two separate coarse alignment scans using the gray-scale 

fiber aligner to show its versatility and evaluate achievable speed and accuracy.  It will be 

shown that the fundamental choice and settings of each algorithm has a significant effect 

on the speed with which the threshold is reached.  For these coarse algorithm tests, 

cleaved fiber-cleaved fiber coupling was used for simplicity and ease of re-configuration.  

Coarse threshold powers of 50-75% peak power were typically used to simulate 

avoidance of side modes, but the observed coupling profile remains a single Gaussian-

shaped peak as shown earlier.  

The simplest coarse alignment routine is that of a raster scan.  The voltage on the 

1st actuator is held fixed, while the voltage on the 2nd actuator is swept through its range.  

The voltage on the 1st actuator is then incremented, and the sweep repeated on the 2nd 

actuator.  The primary variable to control during a raster algorithm is the step size 

between successive fiber locations (∆V2 because we are using comb-drives).  Using a 

raster scan coarse algorithm, Figure 6.14 shows the time required to achieve a coarse 

alignment threshold of 75% peak coupling for different positions of the target fiber.  The 

slope of the alignment wedges cause the time contour lines to be tilted with respect to the 

X-Y axes, a result of the sequential angled fiber trajectories caused by sweeping the 2nd 

actuator from one extreme to the other, as indicated in the figure.  Note that times >36sec 

in Figure 6.14 indicate failure to achieve threshold, loosely illustrating the diamond-

shaped possible alignment area of this device.  
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Figure 6.14: Coarse alignment contours for different target fiber locations using raster algorithm 
[168]. 
 

As mentioned above, the raster coarse algorithm performance can be tailored by 

adjusting the step size (∆V2) between successive points (mesh density).  For example, 

Table 6.5 shows the time required to achieve a 75% coarse threshold power to a fixed 

target location for different step sizes.  As the step size increases, the time required to 

achieve coarse threshold scales by approximately the square of the step size ratio (∆V2
old 

/ ∆V2
new)2, essentially an area term.  However, reducing the coarse alignment time by 

using larger steps has the inherent risk of missing important peaks altogether.   

Table 6.5: Coarse alignment time to achieve 75% peak coupling as a function of step increment 
within raster algorithm for a single target location. 
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The primary drawback of a raster scan for packaging applications is that it begins 

searching for the peak in a presumably unlikely position (the very edge of the travel 

range at the bottom of the diamond alignment area).  Ideally, an optoelectronic module 

design would have the target in the center of the alignment area such that shifts/errors in 

any direction could be corrected.  However, even for perfect fabrication and assembly, a 

raster scan would still require 12-18 seconds to achieve coarse alignment to a centrally 

located target; meaning precise fabrication and assembly could require longer alignment 

times than in cases of poor assembly.   

To address the paradox of perfect assembly requiring longer alignment times, a 

spiral search algorithm was also developed and implemented for the gray-scale fiber 

aligner to compare with the raster scan.  Rather than beginning at the edge of fiber travel 

range, the spiral algorithm begins in the center of achievable motion, and spirals outward 

to progressively less-likely positions until the coarse alignment threshold is reached.  

Furthermore, a spiral scan is significantly more interesting from a device characterization 

standpoint since it requires coupled motion of both alignment wedges to create a spiral 

fiber trajectory (whereas the raster scan moves one alignment wedge at a time).  The 

spiral trajectory used here was made of concentric circles of increasing radius.  Both the 

radius of each ring and the angular spacing between successive fiber positions can be 

adjusted to tailor the speed and resolution of the fiber trajectory. 

Figure 6.15 shows the measured coarse alignment time for the same target 

positions as in the case of a raster scan.  The time contours appear in concentric circles, 

as expected from the desired fiber trajectory.  For locations near the center, we observed 

coarse alignment times <6 seconds, confirming that the spiral algorithm is more efficient 
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when the target is near the center, as likely in a packaging application.  It should be noted 

that the total time required to scan the entire alignment area was kept approximately the 

same (>30sec) for both raster and spiral algorithms to emulate a similar scan point 

density in the X-Y plane.     

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 6.15: Coarse alignment time contours for different target fiber locations using a spiral 
algorithm [168]. 

 

While only two basic coarse algorithms have been implemented so far, the spiral 

results clearly reinforce the previous claim that nearly arbitrary 2-axis motion of a fiber 

tip can be achieved through the coupled motion of sloped gray-scale wedges.  Thus, any 

other 2-D coarse algorithm of interest could be implemented using the gray-scale fiber 

aligner.   
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Hamiltonian [170] and fuzzy logic [171] approaches tend to be most useful when 

aligning multiple fibers with many degrees of freedom, while the spot size method [176] 

requires 3 degrees of freedom and an optically elliptical target.  The most popular 

algorithm for fine alignment is a “gradient search” or “hill-climbing algorithm” [174, 

175] due to its simplicity of implementation.   

A basic hill-climbing algorithm is shown in Figure 6.16.  Coupled power 

measurements are taken at two successive fiber locations.  If the coupled power 

increased, then the search continues in the same direction, “up” the hill.  If the power 

change is negative, the algorithm assumes it is going “down” a hill, away from the 

optimum location.  The search then turns around and reduces it’s step size (assuming it 

somehow jumped “past” the optimum peak because the step was too large).  Since this 

process is 1-dimensional, the hill-climb loop for turning around is executed for each axis 

independently, usually switching between axes after every few changes in direction.  This 

sequence continues until the ultimate threshold is reached (or the program gives up).  

The primary drawback of the hill-climbing technique is the susceptibility to 

trapping in false peaks.  This limitation can sometimes be addressed using a quasi-

momentum term within a hill-climbing algorithm [171].  Alternative fine alignment 

algorithms have been developed that work better in the presence of side modes, such as 

the simplex method discussed in [175].  However, these algorithms can be quite complex, 

making it difficult to distinguish between algorithm complications and actuator 

performance.  Since the targets used in this research operate with a single fundamental 

mode, and the coarse threshold is intended to avoid side modes, a hill-climbing algorithm 

is sufficient for this device characterization. 
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Figure 6.16: Simplified hill-climbing algorithm block diagram. 
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between speed and reliability.  A time-out function was also included to avoid infinite 

attempts to climb a hill that peaks outside of the possible area.   

 

6.5. Automated Fiber Alignment Results 

The experimental results presented in this section were performed entirely using 

the developed test setup described in Section 6.2.  These tests were intended to 

specifically investigate the performance and limitations of the gray-scale fiber aligner 

using the implemented auto-alignment algorithms discussed in the previous section.  Of 

specific interest are both the speed and resolution of the alignment process, each of which 

is focused on independently in the following two sections. Note that these tests make use 

of either lensed fibers or InP waveguides with approximately circular modes.  While 

elliptical targets (like LEDs) may provide more coupling sensitivity along 1-axis, each 

power could correspond to multiple misalignment positions, significantly complicating 

evaluation of our device. 

 

6.5.1. Cleaved Fiber – InP Waveguide (Speed) 
The first auto-alignment tests using the gray-scale fiber aligner investigate the 

effect of algorithm parameters on speed of alignment within the constraints of the 

developed actuator and test setup.  All experiments in this section utilized InP suspended 

waveguides (courtesy of fellow MSAL graduate student Jonathan McGee) [167] in an 

attempt to simulate in-package alignment to III-V photonic devices.  It must be noted that 

due to the sensitive coupling between both facets of InP waveguides, alignment tests to 

InP waveguide were performed for a limited number of waveguide positions. 

Initially, InP ribbed waveguides (2 by 2µm core with 400nm rib height) [167] 

were used as the alignment target, vertically misaligned by ~20µm with respect to the 



 174 

gray-scale fiber aligner.  The waveguide location was somewhere towards the middle of 

the aligner’s range, but the precise location was left unknown to simulate ‘blind’ 

alignment.  The final alignment threshold used for this first test was 92% peak, 

corresponding to ~3.5µm misalignment due to the wide central mode emerging from the 

ribbed waveguide.  While this resolution is far from the micron-level goal of this 

research, these tests serve to ensure that all alignment algorithms were implemented 

correctly.   

The total alignment time for different coarse threshold powers and settling times, 

all using a raster coarse algorithm, are shown in Figure 6.17.  The total alignment time 

scales linearly with settling time from 1000ms down to 300ms.  However, experiments 

using settling times <300ms consistently failed due to insufficient time for the fiber to 

reach its new position.  For a single settling time, we observed that lower coarse 

threshold powers (50% vs 75%) produced faster overall alignment results, but this 

improvement comes with higher risk of getting trapped in side peaks during fine 

alignment.  Since the ribbed InP waveguide had insignificant side modes, this trapping 

was not a problem.  Overall, the total alignment time for a single waveguide location was 

reduced from 34.2 seconds to 8.5 seconds by decreasing the settling time (from 1000ms 

to 300ms) and coarse threshold level (from 75% to 50% peak).  While the position and 

sharpness of the target will influence the exact alignment times, these trends should be 

universal. 
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Figure 6.17: Alignment times to an InP waveguide for different settling times and coarse threshold 
power (% peak). 

 
It is obvious that for all cases in Figure 6.17, the total alignment time is 

dominated by achieving a coarse threshold power.  Thus, some changes to the 

experimental conditions were implemented.  First, we wanted to compare results when 

the raster coarse algorithm was replaced with the spiral coarse algorithm. And second, a 

2µm square InP waveguide (tighter optical confinement than ribbed waveguide) was used 

in conjunction with a final threshold of 95% peak coupled power to decrease the required 

alignment resolution to 1.6µm (rather than the unimpressive 3.5µm).  Once again, the InP 

waveguide was fixed in a single location approximately ~20µm vertically shifted from 

the gray-scale fiber aligner.  The time required to achieve final alignment (<1.6µm) was 

then recorded as it relates to coarse algorithm selection (raster vs spiral) and incremental 

actuator step size (∆Voltage
2 applied to comb-drives).  The results are shown in Figure 

6.18.  Note that alignment results to a single target location were extremely repeatable 

(∆t<0.1sec). 
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As expected for a quasi-centrally located target, the coarse alignment time 

dominates the total alignment time when a raster algorithm is used, especially for smaller 

∆V
2 (a finer scan mesh).  Using the spiral algorithm dramatically decreased the coarse 

alignment time, but large ∆V
2 increments caused the fiber to temporarily overshoot the 

target location.  The fastest alignment times (routinely <10 seconds) were achieved using 

the spiral algorithm in conjunction with the smaller ∆V
2.  

 

 

 

 

 

 

 

 

 

 
Figure 6.18: Time to align within 95% peak power (<1.6µm) to a fixed InP waveguide, as a function 
of coarse search algorithm and ∆Voltage2 setting [168]. 
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the target location (i.e. lensed fiber) to determine if high resolution can be achieved over 

the majority of the alignment area.  

The custom LabVIEW module developed for executing the alignment tests at 

multiple target locations is shown in Figure 6.19.  Universal hardware setup parameters 

are controlled in the bottom left section.  The operator then selects either “raster” or 

“spiral” coarse search algorithm via a toggle switch, with the associated power threshold 

levels and ∆V
2 increments.  The position of the XYZ stage with lensed fiber is controlled 

using the “Electrostrictive Position Settings” on the right side.  For each position of the 

XYZ stage and target fiber, the chosen alignment algorithm is executed and alignment 

results for both the coarse and fine steps are displayed and logged for analysis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: LabVIEW module for auto-alignment testing of multiple target fiber locations. 

 
A 20 by 20µm grid was selected within the diamond shaped alignment area 

(shown in the inset of Figure 6.21), with 2.5µm spacing between target locations.  For 
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each position of the input fiber, the gray-scale fiber aligner attempted to align within 97% 

peak coupling (1.25µm accuracy when calibrated with electrostrictive stages).  Initial 

results indicated success rates of only 73%, meaning the gray-scale fiber aligner failed to 

achieve the required alignment for 27% of the target locations (failed points were 

randomly scattered).  A histogram of the best alignment accuracy achieved for each 

location using standard actuation is shown in Figure 6.20. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.20: Estimated alignment accuracy histogram for 20 by 20µm area using standard actuation. 
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between the wedges and fiber.  Thus, depending on target location, hysteresis, and 

friction conditions, decisions within the algorithm were often based simply on noise, 

causing the alignment to eventually fail. 

We then altered the fiber actuation scheme to include a 100ms pulse of (0V, 0V) 

prior to the intended actuation voltage to “un-stick” and reset the fiber.  While this 

method slows alignment slightly, it enables small ∆V
2 steps to create real changes in the 

fiber location.  Alignment tests were then performed over the same 20 by 20µm area, but 

now using this ‘pulse’ method of actuation in the fine alignment step.  As shown in the 

histogram of the estimated resolution in Figure 6.21, the 1.25µm required threshold was 

achieved with 100% success across the entire area (all 81 measured points).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.21: Estimated alignment accuracy histogram for a 20 by 20µm area (with 2.5µm grid), 
where alignment better than 1.25µm (setup limited) was achieved with 100% success. 
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6.6. Testing Summary and Discussion 

While the exact time required to align to particular device depends on its location, 

our tests show that an accuracy of <1.6µm could be routinely achieved on the order of 10 

seconds to InP waveguides initially misaligned by ~20µm.  Direct comparison of such 

alignment times to previous research is difficult because externally actuated systems 

typically optimize degrees of freedom beyond the 2-axis optimization performed by our 

gray-scale fiber aligner.  Although previous simulations showed that our gray-scale fiber 

aligner is optimizing alignment along the two most important axes.  Nonetheless, the 

alignment speed of the gray-scale fiber aligner (at ~10 seconds for 2-axes) compares 

favorably to active alignment times reported using external actuators (~30 seconds for 3-

axes) [174]. Many algorithm parameters could also be adjusted to tailor the alignment 

speed and/or resolution for particular applications. 

The alignment resolution achieved with the gray-scale fiber aligner (<1.25µm) is 

competitive with the best reported passive alignment techniques [84], with the advantage 

that extreme control over all fabrication and assembly tolerances is not required.  Pulse 

testing results imply that continuous small displacements by the gray-scale fiber aligner 

are limited by friction between the wedges and fiber.  Thus, improving the sloped wedge 

surface morphology should lead to more continuous movement and finer alignment 

accuracy. Re-design of the gray-scale slope using more gray levels could minimize 

wedge roughness in photoresist at the expense of increasing optical mask cost.  

Alternatively, techniques such as short isotropic silicon etching or hydrogen annealing 

[129] are candidates for post-process smoothing of the surface, but would require careful 

process control to avoid effecting other geometries on the device. However, as shown 
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with the pulse actuation method, fibers can already be positioned with accuracy below the 

minimum continuous movement threshold.  

Use of a 9µm core cleaved fiber makes evaluating the desired sub-micron 

resolution nearly impossible with the current optical setup.  As stated previously, the 

FHWM is currently ~10µm, so <1µm misalignment corresponds to <0.1dB of loss, which 

is too near the noise threshold of our system (<1% ≈ 0.04dB) to be reliable.  It would be 

preferable to work with a setup similar to Kang et al [155] where they reported a 3dB 

loss for only 1-1.2µm misalignment of a lensed fiber to an InP chip.  However, manually 

assembly of lensed fibers in the gray-scale fiber aligner would be exceedingly difficult 

and expensive given the equipment available.  (Assembly yield would be extremely low 

since lensed fiber tips are delicate and manual insertion/epoxying of the fiber often does 

not result in good contact between the fiber and both alignment wedges.)   

 

6.7. Conclusion 

The static and auto-alignment testing presented in this chapter was able to clearly 

demonstrate three key abilities of the gray-scale fiber aligner.  First, controlled actuation 

of the optical fiber in both the horizontal and vertical directions was achieved over a 

range >35µm in each axis with switching speeds of ~1ms.  Second, auto-alignment 

results illustrated that standard search algorithms could be implemented using the gray-

scale fiber aligner with predictable and intuitive behavior; optimizing alignment to fiber 

and waveguide targets on the order of 10 seconds.  Thirdly, alignment using the pulse 

actuation method was able to confirm that an alignment resolution <1.25µm was 

achievable over a 20 by 20µm area. Gray-scale fiber aligners have also proven robust, in 
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some instances actuating >105 times in numerous testing configurations without any 

observed change in performance. 

The developed gray-scale fiber aligner system is a significant step towards in-

package alignment of optoelectronic components.  The most realistic packaging 

configuration would likely include flip-chip bonding of III-V or SOI photonic circuits 

onto a silicon substrate containing one or more fiber alignment devices (and possibly 

relevant control electronics).  The gray-scale fiber aligners would then provide 

individually optimized alignment to minimize optical losses.  While only basic device 

configurations and control algorithms were presented here, there remain numerous 

avenues for optimizing active alignment time and accuracy for particular applications.  In 

addition, testing has shown that nearly arbitrary control methods and search algorithms 

could be adapted to work with this device. 
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7. CONCLUSION 

7.1. Summary of Accomplishments 

This PhD dissertation has investigated electrostatic MEMS actuators 

incorporating 3-D features fabricated with gray-scale technology. While traditional 

MEMS actuators have been limited to planar design and fabrication, the integration of   

3-D components has enabled improved performance and increased (or otherwise 

impossible) functionality. This research is the first to demonstrate such a beneficial 

marriage between MEMS actuators and a batch 3-D fabrication technique. Developed 

devices include static 3-D comb-drives, tunable MEMS resonators, and a novel 2-axis 

fiber alignment device.   

The specific accomplishments of this PhD dissertation are as follows:  

1. Gray-scale Technology Development: Complex 3-D photoresist and silicon 

profiles were controlled through a developed empirical model of the gray-scale 

lithography process and extensive DRIE pattern transfer characterization.  A 

double-exposure technique was demonstrated as a method to exponentially increase 

the vertical resolution of 3-D structures, while the CARDE process was introduced 

as an effective technique for anticipating aspect ratio limitations during DRIE.  

Static applications of gray-scale technology were demonstrated through three 

technology collaborations: (a) Development of a variable span microcompressor 

(U.S. Army Research Laboratory and Massachusetts Institute of Technology); (b) 

Design and fabrication of 3-D substrates for a MOSFET relay package (Toshiba 

Corporation); (c) Design, fabrication, and testing of x-ray phase Fresnel lenses 

(NASA-Goddard Space Flight Center).  

CHAPTER 7: CONCLUSION 
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2. Compact Tailored Electrostatic MEMS Comb-drives:  Variable height gray-

scale structures were integrated with electrostatic MEMS actuators for the first 

time.   Analytical and FEA methods were developed to model comb-drives with 

variable height comb-fingers, enabling tailored displacement characteristics without 

increasing device area.  Local reduction of actuator suspension height enabled 

dramatic (70%) reductions in spring constant, leading to lower driving voltages.  

The design and fabrication techniques developed to integrate gray-scale technology 

within an electrostatic MEMS actuator process flow serves as a platform for 

developing more complex 3-D shaped actuators.  

3. Vertically-Shaped Tunable MEMS Resonators: Research on vertically shaped 

comb-drive actuators was extended to create new compact tunable MEMS 

resonators.  Voltage-controlled electrostatic springs were designed, modeled, and 

fabricated; capable of bi-directional resonant frequency tuning of in-plane comb 

resonators.  Simulations showed that multi-step comb-finger profiles or variable-

engagement comb-finger designs can be used to minimize non-linear stiffness 

coefficients during large amplitude resonator oscillations.  MEMS resonators in the 

low kHz range demonstrated electrostatic springs as strong as 1.19 N/m (@70V) 

and enabled tuning of the resonant frequency by up to 17.1%. 

4. Gray-scale Fiber Aligner: A novel 2-axis optical fiber alignment system using 3-D 

wedges (fabricated with gray-scale technology) was created for the first time.  

Without the integration of these 3-D components, this new class of actuators would 

be otherwise impossible or impractical.  Devices were designed, fabricated and 

tested based on experience with comb-drive actuators and gray-scale integration.  
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Auto-alignment algorithms were developed and implemented to demonstrate the 

ability of final devices to align an optical fiber to a specific target, with particular 

emphasis on comparing overall alignment time and achievable resolution.  Methods 

for Cartesian control and evaluating hysteresis of these actuators were also 

developed.  Device switching speeds were measured to be consistently <1ms, while 

alignment times of <10sec to a fixed 2µm square indium phosphide (InP) 

waveguide with <1.6µm resolution were commonly achieved.  Ultimately, gray-

scale fiber aligners were able to achieve alignment ranges as large as 40µm (at fiber 

tip) in both the in-plane and out-of-plane directions, with alignment resolution of 

<1.25µm.  These results represent a significant step towards cost effective in-

package fiber alignment in optoelectronic packaging. 

7.2. Future Work 

The following sections will briefly comment on areas for future work based on 

this PhD dissertation. 

7.2.1. Gray-scale Technology: Resolution and Uniformity 

The discussion on the gray-scale technology process presented in this research 

was primarily concerned with design and process control for individual devices.  

However, the wide acceptance of this technique will hinge upon developments in two 

primary areas of future work: resolution and uniformity. 

As discussed briefly in Chapter 2, the horizontal resolution of gray-scale 

photoresist structures is limited by the pixilated technique being used during the mask 

design process (recall that horizontal resolution is inversely proportional to vertical 

resolution due to mask vendor limitations).  Additionally, a finite number of pixels is 
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required to create a distinct gray level in photoresist.  The double-exposure technique 

introduced in Section 2.3.3 could exponentially increase the number of gray levels 

available without sacrificing horizontal resolution, but will require significantly more 

modeling and process optimization in order to reliably produce complex 3-D profiles. 

Another interesting possibility is to use the 2nd exposure to “sharpen” the edges of an 

initially defined gray-scale feature to remove edge effects from the pixilated mask design, 

thereby reducing the minimum gray-scale feature size.  

The manufacturability of MEMS devices utilizing gray-scale technology will 

ultimately be limited by the uniformity and repeatability of both the lithography and 

etching steps.  During the current research, the lithography was largely manual, allowing 

limited control over the uniformity.  However, one area observed to have a potentially 

large effect on uniformity was the baking step, as soft baking photoresist on an uneven 

hot-plate caused dramatic differences in structure heights across the wafer.  Changing to 

an oven soft bake could lead to more uniform photoresist solvent content and therefore 

developing properties, but will require significant characterization and process control.  

Automation of the development step should also improve wafer to wafer repeatability, 

although puddle techniques have been problematic due to the finite time required to cover 

the wafer.  It is recommended that spray development techniques be investigated as an 

alternative. 

Etching uniformity during DRIE is already a large field of interest [34, 100, 101, 

105, 177-179].  In general, low silicon loading is preferred for uniformity [178] where 

transport is ion limited, compared to high loading that is neutral limited [100].  Groups 

have reported techniques for modeling uniformity effects from pattern layouts [179], or 
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even introducing dummy structures to minimize pattern dependent processing [180].  

Other research has focused on tuning the plasma for lower pressure and high coil power 

to improve uniformity [101].  However, each change to the layout and/or plasma process 

for uniformity purposes will also effect the etch selectivity of the 3-D photoresist transfer 

into silicon.  Thus, it is suggested that a database relating etch uniformity and selectivity 

for high and low loading conditions be developed in order to anticipate realistic 

manufacturing tolerances and tuning ability when developing a device.   

These interesting and exciting areas of future work on the core gray-scale 

technique are currently being pursued by another graduate student, Mr. Lance Mosher, as 

part of his Masters Thesis research (at MSAL at UMD). The author can envision 

developments in this fabrication technique opening up applications in micro-molding, 

micro-fluidics, or on-chip inductors and interconnects.  

 

7.2.2. Vibrational Energy Harvesting 

The voltage-tunable MEMS resonators discussed in Chapter 4 have relatively low 

resonant frequencies (~2 kHz) and would likely require significant modifications for RF 

applications. However, the dimensions and frequencies discussed are close to those of 

interest in vibrational energy harvesting (100’s of Hz), an active topic of research in 

MEMS and distributed wireless sensor networks [141-144] . 

The development and deployment of wireless sensor networks could be felt in a 

variety of applications, such as embedded sensors in buildings and bridges [141].  

However, such systems will rely on small low power nodes that must be autonomous and 

maintenance free.  While approaches such as micro-batteries are being investigated [181], 

stored power sources for applications requiring multiple years of operation are currently 
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extremely challenging.  Thus, energy scavenging approaches, such as photovoltaics and 

vibration harvesting, have received increasing attention.  While the power available from 

these sources is small (typically 100’s of µW/cm3 [144]), wireless RF transmitters with 

10m range and <1mW power consumption have been demonstrated that rely entirely on 

solar and vibrationally scavenged energy [143].   

For vibrational energy harvesting, Williams and Yates [141] developed a 

simplified model to calculate the maximum available power (P) from a vibrational source 

with an angular frequency of  ω (independent of power conversion technique): 
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    (80) 

where m is the vibrating mass, Y is the amplitude of vibration, ζ is a damping coefficient, 

and ωR is the resonant frequency of the vibrating mass.   

As evident from Equation 80, the power scales with mass, so most designs seek to 

include the largest proof mass possible within size limitations.  The power also scales 

with the cube of resonant frequency, and the square of amplitude, making fast high 

amplitude vibrations preferable for high power output (with some designs requiring 

stable operation for >30µm amplitudes [141]).  Near resonance, the amplitude of 

vibration is inversely proportional to the damping coefficient ( ζ
1∝Y ), meaning low 

damping will lead to high power, at the expense of making the resonator more frequency 

selective.  Other terms in Equation 80 also show that the frequency of input vibrations 

must match the resonant frequency of the resonator in order to maximize power.  Since 

the frequency and acceleration of the source vibrations are inherent properties of each 
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environment, the capability for a single node design to adapt (tune) it’s resonant 

frequency is quite attractive.   

Looking at the vibration spectrums measured by Roundy et al [144], common 

ambient environments have acceleration peaks in the 100-300 Hz range.  Such 

frequencies could be obtained using a 1000µm silicon cube held by 3 N/m springs, giving 

an approximate resonant frequency of 182 Hz.  In the case of large damping coefficients, 

this single device could cover a wide range of frequencies at the cost of dramatically 

reducing the power available from any particular frequency.  Conversely, designs using a 

minimal damping coefficient could increase power dramatically, but the optimal range of 

frequencies for generation would be small.  Thus, it would be necessary to design and 

fabricate many devices to be able to cover the desired range.  An alternative could be to 

include vertically-shaped electrostatic springs to enable resonant frequency tuning (either 

up or down) of a single optimized design in order to maximize power output at any given 

frequency in the range of interest.   

The paradox in such a proposal is that energy harvesting typically uses low 

voltages to minimize power consumption, while the electrostatic springs discussed 

previously in this chapter require >50V to create significant tuning.  However, there are 

multiple potential solutions.  First, reservoir capacitors could be precisely pre-charged on 

tuning “islands” that are isolated from the remaining system.  Since the tuning 

mechanism is capacitive, virtually no energy should be consumed during operation and 

the capacitor voltage should remain stable.  Note that the reservoir capacitor should be 

much larger than the capacitance of the comb-fingers themselves. A second option could 

be the inclusion of electret’s (permanent electrostatic charges), which have been shown to 
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hold up to 100 Volts for >3 years [182].  Electrets would require corona charging as a 

post-processing step after resonator fabrication (possibly using shadow masks) to serve as 

the permanent tuning mechanism.   

A potential tunable resonator configuration utilizing “tuning islands” and extra 

comb-fingers for an electrostatic generator (like the generator in [142]) is proposed in 

Figure 7.1.  Both stiffening and weakening electrostatic fingers could be included on 

separate “islands” to enable tuning of the resonant frequency either up or down. This 

approach would enable a single optimized design to be fabricated and subsequently tuned 

to a final desired frequency as a post-processing step.  Using the gray-scale electrostatic 

springs demonstrated in Chapter 4, the 182 Hz system discussed earlier could be tuned 

from 154 Hz (-0.85 N/m) to 227 Hz (1.66 N/m).  Altering basic design parameters, such 

as the number of fingers and/or their spacing, could easily extend this range significantly.   

 

 

 

 

 

 

 

 

Figure 7.1: Schematic of a vibrational energy scavenger using stiffening and weakening gray-scale 
electrostatic spring islands. 
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could provide numerous opportunities for on-chip tuning and actuation of electrostatic 

MEMS devices.  Thus, vertically-shaped gray-scale tunable resonators could have direct 

applications in vibrational energy harvesting, and the topic is worthy of further study.  

7.2.3. Fiber Aligner Miniaturization 

The device footprint of the gray-scale fiber aligner is currently large, requiring 

cantilever lengths >10mm and multiple actuators measuring approximately 0.5 by 4mm.  

This design was initially chosen to minimize angular loss and enable the use of well 

understood comb-drive actuators.  Yet for acceptance as a packaging technique, the 

layout should be more compact and compatible for array packaging.  Both the fiber 

cantilever length and MEMS actuator size could be reduced by making some basic 

modifications to the design.   

First, the use of a reduced cladding (RC) fiber (r=40µm vs 62.5µm) would have a 

dramatic effect on fiber spring constant because kfiber ∝  radius4 (see Equation 72).  Thus, 

an RC fiber cantilever of only 5.5mm would have the same spring constant as a 10mm 

cantilever of normal fiber. RC fiber is already commercially produced, often as bend-

insensitive fiber (see www.StockerYale.com), making it a potentially viable solution.  

A second design modification could be the migration to MEMS electrothermal 

actuators as the source of in-plane actuation [43-45].  Such actuators are capable of much 

higher forces compared to electrostatic devices, offering up to 0.67mN @ 7mA per beam 

[45].  The fabrication process for electrothermal actuators with 3-D components could be 

virtually identical to that used for the gray-scale electrostatic devices discussed in this 

research.  Multiple electrothermal beam actuators could also be cascaded to increase the 

generated force, with the footprint still being smaller than most comb-drive designs.  



 192 

Smaller footprints could lead towards compact fiber array packaging schemes, such as 

that shown schematically in Figure 7.2.   

 

 

 

 

 

 

 

 

 

Figure 7.2: Schematic of compact gray-scale fiber aligner array configuration using electrothermal v-
beam actuators with attached alignment wedges. 

 
Electrothermal actuators were not originally used because they introduce 

additional design, fabrication, and testing variables that would make evaluation of the 

fiber actuation mechanism difficult. Since the mechanism of fiber actuation has now been 

established, electrothermal actuators could prove instrumental for reducing the gray-scale 

fiber aligner footprint of future. However, while RC fiber and electrothermal actuators 

could make short cantilever devices mechanically feasible, optical considerations 

discussed in Chapter 5 may become the limiting factor in fiber aligner designs.   

Methods for improving and evaluating the alignment accuracy of gray-scale fiber 

aligners are also of great interest, but are more related to the core gray-scale technology 

and equipment limitations discussed previously. This actuation mechanism could also be 

extended for use in other applications, such as 1 x N switches or micro-robotics.   
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7.2.4. Maintaining Fiber Alignment  

Once acceptable coupling has been achieved by the gray-scale fiber aligner, to 

whatever tolerance is required, the device currently requires a constant application of 

voltage to maintain the alignment. Thus, the gray-scale fiber aligner would greatly benefit 

from the development of a mechanism to fix the fiber in its final position, a necessary 

component of any fiber packaging scheme.   

There are two apparent avenues to address the fiber-fixing challenge.  The first 

option is to immobilize the fiber via epoxy or soldering, which is typically a permanent 

process.  Some research has been pursued to study the alignment effects on a fiber within 

a package caused by thermal CTE mismatch of adhesives [184] and solder ball relaxation 

[172].  Options such as laser welding could be attractive in certain cases [155], but 

significant research on this topic remains.  

Alternatively, a mechanical locking mechanism could potentially be introduced to 

immobilize the silicon actuators, and therefore indirectly immobilize the fiber.  MEMS 

bi-stable actuators [185] could be adapted to hold the comb-drive actuators, and therefore 

the fiber, in the final aligned positions.  A schematic of such a system is shown in Figure 

7.3.  The primary advantage of a mechanical clamping approach is that the locking 

mechanism could be reversible, enabling re-positioning of the fiber if any shifts occur 

during or after the clamping process.  However, the additional actuators would increase 

the size and complexity of the overall device.  Significant design, simulation and testing 

would be required for such a mechanism, with specific focus on it’s susceptibility to 

shock and/or vibration.  
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Figure 7.3: Schematic of a bi-stable clamping mechanism (a) before and (b) after fixing a fiber 
actuator in an optimal position. 

 
 

7.3. Conclusion 

This PhD dissertation research has definitively shown that electrostatic MEMS 

actuators incorporating gray-scale technology have significant advantages over their 

planar counterparts.  In demonstrating that gray-scale is a viable 3-D batch fabrication 

technique for developing MEMS sensors and actuators, it is my sincere hope that this 

technology can be leveraged by the MEMS community to develop innovative solutions to 

many of the technical, economic, and social challenges facing the world today. 

 

(a) (b) 
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APPENDIX A: Matlab Script for Virtual Electrostatic 
Spring Constants 

As discussed in Section 3.3.3, the instability point of a static comb-drive actuator 

is defined by the perpendicular virtual electrostatic spring (ky-virtual) that is created as the 

voltage increases and the device deflects.  To calculate this instability point, knowledge 

of both the actuation characteristics (V2
(x)) and overlap area (A(x)) as a function of 

displacement is required.  However, for variable height profiles these relations are not 

simple analytical functions.  Thus, a Matlab script was created to take any comb-finger 

height profile (h(x)) and numerically calculate ky-virtual as a function of displacement.   

The script first defines all constants and assumptions about the comb actuator 

design (such as number of fingers and suspension spring constant).  A height profile is 

then input from a text file, where it is assumed that the height profile accounts for 

fringing fields by scaling the physical height into an “effective” height representing 

dC/dx.  Equation 43 is then evaluated numerically to obtain A(x), while V
2
(x) is 

calculated numerically using the piecewise constant technique of Equations 36 and 37.  

Finally, the virtual spring constant ky-virtual(x) as a function of displacement is calculated 

using Equation 46.  The code is shown below with comments in green font. 

*********************************************************************** 
% Matlab code for calculating the perpendicular virtual electrostatic spring constant as a 
% function of displacement for arbitrary comb-finger profiles 
 
% Define constants and design assumptions in SI units 
step = 1; 
stepx = 1e-7; 
epsilon = 8.85e-12; 
gap = 10e-6; 
num_fingers = 200; 
k = 5; 
max_finger_height = 100e-6; 
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% Input “effective” height profile from text file – can account for fringing fields  
string_input = 'height_profile.txt'; 
fid = fopen(string_input); 
height = fscanf(fid, '%f',[1 inf]); 
height = height'; 
fclose(fid);   
 
% Calculate overlapping area as a function of (x) by integrating over the height profile 
% Corresponds to A(x) in Equation 43 
area(1) = max_finger_height * stepx; 
for(ii=2:length(x)) 
    increment = x(ii) - x(ii-1); 
    area(ii) = area(ii-1) + height(ii) * increment; 
end 
 
% Calculate voltage2 vs. displacement characteristics for V2(x) in Equation 45 
% Assumes force is proportional to the given “effective” height profile  
Vtemp2 = zeros(length(x),1); 
V = zeros(length(x),1); 
V2 = zeros(length(x),1); 
for(n = 2:length(x)); 
    increment = x(n) - x(n-1); 
    Vtemp2(n) = increment * gap * K / (epsilon * height(n)) / num_fingers; 
    V(n) = sqrt(V(n-1)^2 + Vtemp2(n)); 
    V2(n) = V(n) * V(n); 
end 
 
% Use A(x) and V2(x) in Equation 46 to calculate the virtual electrostatic spring as a  
% function of displacement, ky(x) 
for(i=1:length(area)) 
    ky(i) = num_fingers * epsilon * area(i) * V2(i) * 2 / gap^3; 
end 
 
plot(x,ky) 
 
********************************************************************** 
 
 
 

 



 197 

APPENDIX B: Process Flow for Gray-scale SOI process 
The process flow for integrating gray-scale technology within an SOI actuator 

required significant development.  The final process was described qualitatively in 

Section 3.5 and the details are shown in Table B.1.  The gray-scale lithography and DRIE 

steps were described in more detail elsewhere in this dissertation (see Chapter 2).  Slight 

modifications would be required to adapt this process to devices having different layouts 

or requiring different etch selectivity.   

The wafer saw step is intentionally performed before the wet oxide etch release 

step to maintain structural integrity during the relatively harsh sawing process.  The oxide 

etch release required significant development as the sequence of etching in buffered 

oxide etch (BOE) and rinsing in DI water often effected the complete etching between 

high aspect ratio features.  In general, 1-2 rinse steps in DI water (5 min each) helped to 

ensure complete undercutting of desired structures.  The final die rinse process was a 

combination of multiple soaks in DI, followed by soaks in IPA to avoid stiction problems 

(due to its low surface tension). 

 

Table B.1: Process details for electrostatic MEMS actuators incorporating gray-scale technology. 

Step 
# 

Step Name Location Recipe / Description 

1 
Starting 
Material 

MSAL 

 

Wafer = 100mm, p-type (1-10 ohm-cm) 
SOI (device layer / buried oxide layer)  –  100µm / 2µm 
Thickness = 600-650µm (total) 
 

2 
Coat 

Photoresist 
ARL 

 

Karl Suss ACS 200 
Recipe Name: 5214eS51 
Spin: 2000rpm, 40 sec 
Bake: 110 C, 120 sec 
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3 
Expose 

Photoresist 
LPS 

 

GCA Waferstep 
File: COMBS2, Pass: METAL2 
Mask: 2ndGen_M 
4 by 4 array (dropping corners), 19.5mm in X & 18mm in Y 
Exposure = 0.17 sec, Focus = 0 
 

4 
Develop 

Photoresist 
LPS 

 

AZ312MIF 1:1 DI 
120 seconds, light agitation 
� Check under microscope 
 

5 De-Scum LPS 

 

PlasmaTherm 790 
Recipe: dandescu.prc 
Gas = O2 16sccm, Pressure = 200mTorr, Power = 100W, 
Time = 45 sec 
 

6 
Evaporate 

Metal 
LPS 

 

CHA Mark – 40  
Recipe 22: Aluminum, 1000 A 
Rate = 4 A/sec, Power = 90% 
 

7 
Metal Lift 

Off 
ARL 

 

PRS – 3000 
Temp = 85 C 
Time = 120 min 
 

8 Inspection ARL 
 

Under microscope – check for line definition / delamination  
 

9 
Coat 

Photoresist 
ARL 

 

Karl Suss ACS 200 
Recipe Name: 9245S51 
Spin: 2500rpm, 60 seconds 
Bake: 110 C, 120 seconds 
 

10 
Gray-scale 
Exposure 

LPS 

 

GCA Autostep 
File: COMBS2, Pass: GRAY2 
Mask: 2ndGen_S 
4 by 4 array (dropping corners), 19.5mm in X & 18mm in Y 
Exposure = 1.50 sec, Focus = -1 
Alignment: Align Fiducial mark to Al mark on wafer 

i. Align mark offset = 8mm on x-axis 
ii. Uses die’s (3,1) and (3,4) 

 

11 
Develop 

Photoresist 
LPS 

 

AZ400K 1:5 DI (Fresh solution every wafer) 
Time = 6 min (Light agitation)  
 

12 Inspection LPS 

 

Aluminum mark must be covered by larger photoresist mark 
Aluminum pads should be covered by photoresist squares 
 

13 
DRIE 

Chamber 
Conditioning 

ARL 

 

PlasmaTherm 770 DRIE 
Recipe: Clean 
Time = 15 min  
Recipe: brianm2 
Time = 25 loop conditioning run with recipe below 
� Use dummy wafer 
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14 
DRIE Silicon 

Etch 
ARL 

 

PlasmaTherm 770 DRIE 
Recipe: brianm2 

• Coil Power = 825 W (etch), 825 W (dep) 

• Chiller Temperature = 20 C 

• Pressure = 15mTorr (etch), 15mTorr (dep) 

• Electrode Power = 13 W (etch), 1W (dep) 

• Cycle Time = 9sec (etch), 8 sec (dep) 

• Number of Loops = 230+  
 

15 Inspection ARL 

 

Be sure area between comb-fingers is clear of silicon  
� darkness indicates remaining silicon!! 
 

16 Wafer Dicing ARL 

 

Wafer saw at ARL – channel 1 = 18mm, channel 2 = 
19.5mm (assuming wafer flat is towards the operator) 
 

17 
Oxide Etch 

Release 
ARL 

 

Buffered oxide etch (BOE) 6:1 � ~1000 A/min @RT 
Time: 50min BOE � DI 5min � 50min BOE 
10 min DI soak � 5 min DI soak � 10 min IPA soak � 30 
min IPA soak 
Release bars at least 30µm wide should be cleared 
 

18 
Photoresist 

Strip 
LPS 

 

PlasmaTherm 790 RIE 
Recipe: 02sample.prc 
Time: 10 min 
 

 

 

 

 

 

 

 

 

 

 

Figure B.1: Resulting die layout on a 4-inch wafer. 
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APPENDIX C: Fiber Deflection Geometry 
For purposes of both optical and mechanical characterization of the gray-scale 

fiber aligner, the angles and displacements of the fiber cantilever tip during actuation 

must be calculated.  As a slight approximation, we will assume that the deflected fiber 

cantilever of length (L) follows a circular arc of radius (r) due to a tip displacement (∆y), 

creating an angle (θ) as shown in Figure C.1. We can then write the length of the circular 

arc as: 

θrL =      (C.1) 

And the displacement in terms of the angle as: 

θcosrry −=∆ .     (C.2) 

 

 

 

 
 
 
 
 

 
Figure C.1: Angle created by deflecting fiber cantilever tip. 

 
Since L and ∆y are known, we can substitute Equation C.1 into C.2 to eliminate r, 

resulting in a single equation with one unknown (θ): 

( )θ
θ

cos1−=∆
L

y .     (C.3) 

Equation C.3 can be solved for θ by converting to sin θ terms (instead of cos θ) and using 

the approximation of sin θ ≈ θ.  Re-arranging and squaring both sides, we obtain: 

2

2

11 θ
θ

−=







∆− y

L
.     (C.4) 

 
Solving for θ results in Equation 65 as stated in Section 5.3: 

∆y L 

r 

θ 
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






 ∆
+

∆

=

L

y

y

L

2
θ .     (C.5) 

 
For most cases L >> ∆y, and Equation C.5 can be reduced to: 

L

y∆
= 2θ .      (C.6) 

 
Knowledge of this angle is quite useful for determining the angular loss components of a 

deflected fiber cantilever tip, as discussed in Chapter 5.   

For most implementations of the gray-scale fiber aligner, the fiber will actually 

extend beyond the point of contact with the alignment wedges along a straight line 

tangent to the curve, see Figure C.2.  Thus, an additional tip displacement (∆y′) is 

generated that depends on the fiber angle and the length it extends past the alignment 

wedges (L′): 

θtan⋅′=′∆ Ly .       (C.7) 

 

 

 

 
 
 

Figure C.2: Additional tip displacement due to fiber tip extending beyond the point of actuation. 

 
Using Equations C.5 and C.6, we can now analyze the fiber displacements in 

Figure 6.6 more accurately.  For the case of (140V,140V) in Figure 6.6, the total 

measured displacement (∆y + ∆y′) was 37µm for a device with L=12mm and L′=2mm.  

This means that the 37µm tip displacement was actually comprised of approximately 

∆y=28µm at the alignment wedges and ∆y′=9µm due to the overhanging fiber.    

Although the extra L′=2mm of fiber was necessitated by our testing setup, the fiber 

L′ 

∆y 

∆y′ 

Straight section 

Bent section 

L 
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displacement at the alignment wedges is still easily in the 10’s of micrometer range that 

is realistically required for in-package alignment [152].   

It is also possible to use this additional angular displacement to one’s advantage 

when designing a fiber alignment system.  Shown in Table C.1 are 3 possible designs for 

achieving 40µm tip displacement with a total fiber cantilever length of 6mm.  Moving the 

alignment wedges from L=6mm to L=4mm reduces the fiber displacement at the 

alignment wedges (∆y) by a factor of two, causing a corresponding reduction in the 

angular losses during optical coupling.  One caveat to this approach is that while the 

required fiber motion is smaller, the fiber spring constant will increase dramatically 

(recall kfiber~1/L
3 from Equation 72) and higher force actuators may be required. 

Table C.1: Example designs using displacement amplification to achieve 40µm total tip movement. 

L 
(mm) 

L′ 
(mm) 

∆y 
(µm) 

∆y′ 
(µm) 

θ 
(rad) 

Max Transmission 
(dB) 

6 0 40 0 0.0133 -0.085 

5 1 28.6 11.4 0.0114 -0.063 

4 2 20 20 0.0100 -0.048 
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APPENDIX D: Geometry for Fiber Position in V-groove 
In order to design a gray-scale fiber aligner for a particular application, one must 

calculate the rest position of the cylindrical fiber between two overlapping wedges, as 

shown in Figure D.1.  For this general case, we will assume that the fiber is perfectly 

cylindrical (with radius=R), and that each wedge makes an identical angle (θ) with the 

horizontal axis.  The coordinates of interest will be those that define the center of the 

fiber as it rests between the wedges (X,Y). 

 

 

 

 

 

 

 

 

 

Figure D.1: Geometry for deriving the rest position of a cylindrical fiber within a v-groove. 

 
The horizontal position (X) of the fiber center in relation to the edge of an 

individual wedge can be readily calculated using the width of that wedge (Wx), and it’s 

overlap with the opposing wedge (Wx′): 

2

x
x

W
WX

′
−= .      (D.1) 

 
However, calculating the vertical position (Y) of the fiber center is more complicated 

because it is determined by a combination of the fiber radius (R), the gap (g) between the 

R 

(X,Y) 

θ 
h 

g 

X Z 

Y 

Wx′ 
Wx 

y 

Chord between 

points of contact  
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fiber edge and the bottom of the v-groove, and the offset (h) created by the overlapping 

wedges: 

hgRY ++= .     (D.2) 

 
Calculating the vertical offset caused by the overlapping wedges is straight forward: 

 

)tan(
2

θxW
h

′
= .     (D.3) 

 
The gap (g) between the fiber and bottom of the v-groove can be determined by first 

defining a chord between the two points of contact between fiber and wedges.  The 

vertical distance between the center of the chord and the fiber edge (“y” in the figure), 

can then be calculated to be:  















+
−=

1)tan(

1
1

2θ
Ry .    (D.4) 

 
Using some trigonometry, the gap can then be determined in terms of y and θ: 
 

yyRRg −−−= 22 )()tan(θ .   (D.5) 

 
Equations D.1-D.5 explicitly define the center coordinates of a cylindrical fiber resting in 

a v-groove of arbitrary angle.  As intuition would dictate, as the wedge angle approaches 

zero, the gap vanishes (g�0 and y�0) and the Y coordinate approaches the fiber radius 

(Y�R).   

For the case of θ=45º, as desired in this research, the calculation of the Y 

coordinate can be greatly simplified to: 

2
2 xW

RY
′

+= .     (D.6) 
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APPENDIX E: Pixel Sets for Alignment Wedges 
As mentioned in Chapter 5, two different pixel sets were used during the design 

of the gray-scale fiber aligner wedges.  The design utilizing a 2.8µm mask pitch has a 

total of 27 available pixels, while the design utilizing a 3.2µm mask pitch has a total of 

52 available pixels.  The tables below give the in-plane dimensions of each rectangular 

pixel, with its calculated transmission (Tr) and expected height in photoresist using the 

Gaussian approximation.  The final height in silicon is then estimated by assuming an 

etch selectivity of 60:1, with a 30µm over etch to account for ARDE.  

 
Table E.1: Set of pixels for 2.8µm mask pitch used to create gray-scale alignment wedges. 

Level # 
x 

(µm) 
y 

(µm) 
Calculated 

Tr 

Estimated Height 
in Photoresist 

(µm) 

Estimated Height 
in Silicon 

(µm) 

1 2.2 2.1 0.411 2.42 115.3 

2 2.1 2.1 0.438 2.10 95.8 

3 2.2 2.0 0.439 2.08 94.9 

4 2.3 1.9 0.443 2.04 92.3 

5 2.1 2.0 0.464 1.81 78.5 

6 2.2 1.9 0.467 1.78 76.9 

7 2.0 2.0 0.490 1.56 63.8 

8 2.1 1.9 0.491 1.55 63.1 

9 2.2 1.8 0.495 1.52 61.0 

10 2.0 1.9 0.515 1.34 50.6 

11 2.1 1.8 0.518 1.32 49.4 

12 1.9 1.9 0.540 1.16 39.4 

13 2.0 1.8 0.541 1.15 38.9 

14 2.1 1.7 0.545 1.12 37.2 

15 1.9 1.8 0.564 0.99 29.4 

16 2.0 1.7 0.566 0.97 28.4 

17 1.8 1.8 0.587 0.85 20.8 

18 1.9 1.7 0.588 0.84 20.3 

19 2.0 1.6 0.592 0.82 19.0 

20 1.8 1.7 0.610 0.72 13.0 

21 1.9 1.6 0.612 0.70 12.2 

22 1.7 1.7 0.631 0.61 6.4 
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23 1.8 1.6 0.633 0.60 6.0 

24 1.9 1.5 0.636 0.58 4.9 

25 1.7 1.6 0.653 0.51 0.3 

26 1.8 1.5 0.656 0.49 -0.3 

27 1.6 1.6 0.673 0.42 -4.8 

 
 
 
Table E.2:  Set of pixels for 3.2µm mask pitch used to create gray-scale alignment wedges. 

Level # 
x 

(µm) 
y 

(µm) 
Calculated 

Tr 

Estimated Height 
in Photoresist 

(µm) 

Estimated Height 
in Silicon 

(µm) 

1 2.4 2.4 0.438 2.39 113.5 

2 2.5 2.3 0.438 2.38 112.8 

3 2.6 2.2 0.441 2.34 110.7 

4 2.4 2.3 0.461 2.12 97.2 

5 2.5 2.2 0.463 2.10 95.9 

6 2.6 2.1 0.467 2.06 93.4 

7 2.3 2.3 0.483 1.88 83.1 

8 2.4 2.2 0.484 1.88 82.5 

9 2.5 2.1 0.487 1.85 80.8 

10 2.6 2.0 0.492 1.80 77.9 

11 2.3 2.2 0.506 1.67 70.3 

12 2.4 2.1 0.508 1.65 69.2 

13 2.5 2.0 0.512 1.62 67.2 

14 2.6 1.9 0.518 1.57 64.1 

15 2.2 2.2 0.527 1.49 59.2 

16 2.3 2.1 0.528 1.48 58.7 

17 2.4 2.0 0.531 1.45 57.3 

18 2.5 1.9 0.536 1.42 54.9 

19 2.6 1.8 0.543 1.36 51.8 

20 2.2 2.1 0.549 1.32 49.1 

21 2.3 2.0 0.551 1.30 48.2 

22 2.4 1.9 0.555 1.28 46.5 

23 2.5 1.8 0.561 1.23 44.0 

24 2.1 2.1 0.569 1.17 40.3 

25 2.2 2.0 0.570 1.17 39.9 

26 2.3 1.9 0.573 1.15 38.7 

27 2.4 1.8 0.578 1.11 36.8 

28 2.5 1.7 0.585 1.07 34.1 

29 2.1 2.0 0.590 1.04 32.3 

30 2.2 1.9 0.592 1.03 31.5 
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31 2.3 1.8 0.596 1.00 30.1 

32 2.4 1.7 0.602 0.97 28.0 

33 2.0 2.0 0.609 0.92 25.3 

34 2.1 1.9 0.610 0.92 24.9 

35 2.2 1.8 0.613 0.90 23.9 

36 2.3 1.7 0.618 0.87 22.3 

37 2.0 1.9 0.629 0.81 18.8 

38 2.1 1.8 0.631 0.80 18.2 

39 2.2 1.7 0.635 0.78 17.0 

40 2.3 1.6 0.641 0.75 15.2 

41 1.9 1.9 0.647 0.72 13.2 

42 2.0 1.8 0.648 0.72 12.9 

43 2.1 1.7 0.651 0.70 12.1 

44 2.2 1.6 0.656 0.68 10.7 

45 1.9 1.8 0.666 0.63 8.0 

46 2.0 1.7 0.668 0.63 7.5 

47 2.1 1.6 0.672 0.61 6.5 

48 1.8 1.8 0.684 0.56 3.5 

49 1.9 1.7 0.685 0.55 3.3 

50 2.0 1.6 0.688 0.54 2.6 

51 2.1 1.5 0.692 0.52 1.4 

52 1.8 1.7 0.701 0.49 -0.7 
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