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Abstract

Bifurcaiions occurring in power system models exhibiting voltage collapse have
been the subject of several recent studies. Although such models have been shown to
admit a variety of bifurcation phenomena, the view that voltage collapse is triggered
by possibly the simplest of these, namely by the (static) saddle node bifurcation of the
nominal equilibrium, has been the dominant one. The authors have recently shown
that voltage collapse can occur “prior” to the saddle node bifurcation. In the present
paper, a new dynamical mechanism for voltage collapse is determined: the boundary
crisis of a strange attractor or synonymously a chaotic blue sky bifurcation. This deter-
mination is reached for an example power system model akin to one studied in several
recent papers. The identified mechanism for voltage collapse amounts to the disap-
pearance of a strange attractor through collision with a coexisting saddle equilibrium
point. This mechanism results in solution trajectories containing both an oscillatory
component (as predicted by recent analytical work), and a sharp, steady drop in volt-
age (as observed in the field). More generally, blue sky bifurcations (not necessarily
chaotic) are identified as important mechanisms deserving further consideration in the

study of voltage collapse.

Keywords: Voltage collapse; boundary crisis; chaos; power systems; bifurcations;

nonlinear systems; stability.






1 Introduction

Voltage collapse in electric power systems has recently received significant attention in the
literature. (see, e.g., [1] for a synopsis). This has been attributed to increases in power
demand which result in operation of an electric power system near its stability limits. A
commonly held view is that voltage collapse arises at a saddle node (static) bifurcation
of equilibrium points (see, e.g., {2], [3]). Dobson and Chiang [3] postulated a dynamic
mechanism for voltage collapse tied to the saddle node bifurcation, which stresses the role
of the center manifold of the system model at the bifurcation. In the same paper, they
introduced a simple example power system containing a generator, an infinite bus and a
nonlinear load. The saddle node bifurcation mechanism for voltage collapse postulated in
[3] was investigated for this example in subsequent papers, including [3] and [8].

The presence of a saddle node bifurcation in a dynamical system does not preclude the
presence of other, possibly more complex, bifurcations. Thus, the recent papers [4], [5], [7], [8]
have shown that indeed other bifurcations occur in the example power system model studied
in [3]. Other bifurcations which were found in this model include Hopf bifurcations from
the nominal equilibrium, a cyclic fold bifurcation, period doubling bifurcations, as well as a
period doubling cascade leading to chaotic behavior. (See, e.g., [14] and references therein
for a general discussion of these phenomena.) Other papers have also studied bifurcations
in voltage dynamics in other power system models [22], [23], [24].

The fact has therefore now been established that a variety of bifurcations, static and
dynamic, occur in power system models exhibiting voltage collapse. The main theme of
this paper, which continues the work reported in [5], [6], is to determine the implications
of these bifurcations for the voltage collapse phenomenon. In our paper [5], a link was sug-
gested between the voltage collapse phenomenon and the occurrence of dynamic bifurcations.
Specifically, in that paper we showed the possible role of an oscillatory transient in voltage
collapse. This was achieved using the model of [3]. In the present paper, we continue the
study of dynamic bifurcations and voltage collapse, showing the dominant role of a boundary

crisis of a strange attractor [16], [17] or synonymously a chaotic blue sky bifurcation [14] in
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voltage collapse. The present paper is based on our paper [6] where the role of a boundary
crisis of a strange attractor in voltage collapse was first reported. The power system example
used in the present paper and in [6] is similar to that of [3], but differs from it in several
ways detailed in Section 3.

The remainder of the paper proceeds as follows. In the next section, we give a brief
summary of some local bifurcations and more importantly, the blue sky bifurcations. In
Section 3, we present the power system model which is used in the ensuing analysis. This
model and the model of [3] differ only in the choice of parameter values. Bifurcations
occurring in this model, including the emergence of a strange attractor and its disappearance
in a boundary crisis (or a chaotic blue sky bifurcation), are studied. In Section 5, the
implications of the bifurcations studied in Section 4 for the voltage collapse phenomenon are

discussed. Conclusions are collected in Section 6.

2 Local and Blue Sky Bifurcations

2.1 Local bifurcations

Bifurcations, especially catastrophic bifurcations, play a decisive role in the voltage collapse
mechanisms to be studied in this paper. Therefore, it is felt that a brief summary of some

bifurcations which arise is in order. Generally, we are interested in nonlinear autonomous

systems
= f(z,p) 1)
Suppose that (1) possesses an equilibrium point zo(u) for a range of values of the param-
eter u of interest. We assume that this is an asymptotically stable equilibrium for a large
portion of this range. Thus, the equilibrium can qualify as a possible operating condition for
the physical system (say, a power system) modeled by (1). When the power system operates
in a highly stressed environment, it is possible for the equilibrium zo(x) to lose stability

for some parameter value u.. At such a loss of stability, the nonlinear system (1) typically

undergoes a local bifurcation. Such a bifurcation can give rise to new equilibria or periodic
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Figure 1: Saddle node bifurcation

orbits of (1).

In the case that the bifurcation of zo(y) is the merging of this nominal, stable equilibrium
with another, unstable equilibrium, the bifurcation is said to be a saddle node bifurcation.
Figure 1 depicts a saddle node bifurcation for the case of a scalar state vector. Of course,
the terminology saddle node bifurcation is tailored for systems of dimension two or higher,
but the figure addresses the scalar case for simplicity.

To state a theorem on saddle node bifurcation, we consider the system (1) where f is
sufficiently smooth and f(0,0) = 0. Express the expansion of f(z, ) in a Taylor series about
z = 0,4 = 0 in the form

F(@) = Az -+ b+ Q(a,7) + -+ @)

Note that A = D, f(0,0) is simply the Jacobian matrix of f at the origin for 4 = 0. The next

hypothesis is basic to the saddle node bifurcation, as well as other stationary bifurcations of

equilibria.
(SN1) The Jacobian A possesses a simple zero eigenvalue.

If (SN1) holds, denote by r (resp. [) the right column (resp. left row) eigenvector of the
critical Jacobian A corresponding to the zero eigenvalue. Normalize r and [ by setting the

first component of r to 1 and then chosing [ so that Ir = 1. (This may require one to



interchange the position of the first state variable with that of another state variable.) The

next hypothesis, along with (SN1), ensures that Eq. (1) undergoes a saddle node bifurcation

from the origin at p = 0.
(SN2) b+# 0 and IQ(r,r) # 0.

The precise statement is given in the following theorem. Note that usually this result is
stated for a one-dimensional reduced system model, whereas we give a statement which

applies directly to a general n-dimensional system [15].

Theorem 1 (Saddle Node Bifurcation Theorem) With the notation and assumptions above,
if (SN1) and (SN2) hold, then there is an €g > 0 and a function

1(e) = pa€® + O(€) (3)

such that py # 0 and for each € € (0,¢0], Eq. (1) has a nontrivial equilibrium z(¢) near 0
for p = p(e). The bifurcation point x = 0 for p = 0 is unstable.

This is the type of bifurcation which has been linked to voltage collapse in [3], [8]. From
the point of view of this work, the most important feature of the saddle node bifurcation is
the disappearance, locally, of any stable bounded solution of the system (1). In the following
subsections, we give other, more complicated (nonlocal) examples of bifurcations displaying
this same feature.

Suppose that the instability of the nominal equilibrium zo(y) is the result of a pair of
eigenvalues of the system linearization crossing the imaginary axis in the complex plane.
Then, as is well known [13], [12], generically it will be the case that a small amplitude

periodic orbit of (1) emerges from the equilibrium z¢(x). The following hypotheses are

invoked in the theorem below.

(H1) The Jacobian D, f(0,u) possesses a pair of complex-conjugate simple eigenvalues

AMup) = a(p) +1w(p), Mu), such that «(0) =0, ¢/(0) # 0 and w, := w(0) > 0.
(H2) iw, are the only pure imaginary eigenvalues of the critical Jacobian D, f(0,0).
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Theorem 2 (Hopf Bifurcation Theorem) Suppose the vector field f of system (1) is suffi-
ciently smooth and f(0,p) = 0. Given (H1) and (H2) above, then the following hold:

(a) (Eristence) There is a € > 0 and a smooth function p(e) = pre® + O(€®), such that for
each € € (0, €] there is a nonconstant periodic solution p(t) of system (1) near zo(p)
for = p(e). The period of p.(t) is a smooth function T () = 2rw; {1 + T2€?] + O(€%),

and its amplitude grows as O(e).

(b) (Uniqueness) If pq # 0, there is a €, € (0, €0] such that for each € € (0, €], the periodic
orbit p, is the only periodic solution of system (1) for p = u(e) lying in a neighborhood
of zolu(€)).

(c) (Stability) Ezactly one of the characteristic exponents of p.(t) approaches G ase | 0, and
it is given by a real smooth function B(€) = B2€* + O(€). The relationship

By = —2d/(0) 2 (4)

holds. Moreover, if all eigenvalues of D, f(0,0) besides *iw, have negative real parts,
then p.(t) is orbitally asymptotically stable with an asymptotic phase if B(e) < 0 but is
unstable if B(e) > 0.

The two theorems above are of course not sufficient to address all types of jump phe-
nomena in nonlinear systems, of which voltage collapse is a special case. Besides these local
bifurcations, other bifurcations involving considerations which are not localized in state space
near an equilibrium point, can and do arise. However, since an electric power system nor-
mally functions at a stable operating point, it is this condition (an equilibrium) which must
yield, after one or many bifurcations, the decisive bifurcation after which collapse ensues.
Generally speaking voltage collapse may be linked with the sudden loss of stable bounded
solutions of a power system modeled by (1) in the vicinity of a pre-collapse operating con-
dition. Next we discuss mechanisms of global bifurcation, namely blue sky bifurcations,

by which a limit cycle or a strange attractor may disappear through interaction with other

invariant sets.
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Figure 2: The blue sky catastrophe in which a homoclinic connection results in a limit cycle
disappearing into the blue. [Caption and figure from Thompson and Stewart [14] (Fig. 13.5,
p.271)]

2.2 Blue sky bifurcations

Thompson and Stewart [14] (p.268) refer to a type of global bifurcation in state space
involving the discontinuous disappearance of a limit cycle as a blue sky catasirophe (see
Figure 2). This is not a local bifurcation. However it does possesses the feature noted above
for the saddle node bifurcation, namely the disappearance of the attractor by collision with
a saddle, in this case a saddle equilibrium point. Here, we find it useful to refer to this and
other bifurcations also as blue sky bifurcations since they possess the same feature, namely
the disappearance of a (stable) solution of the system (1) by a collision with a saddle point
or orbit. Thus in this sense saddle node bifurcation may be viewed as a blue sky bifurcation
of a stable equilibrium.

The blue sky bifurcation for a periodic orbit is the sudden disappearance of a limit cycle



trough a collision with a saddle equilibrium point. Prior to the critical parameter value
e at which the collision occurs, a saddle equilibrium coexists with the limit cycle. At u.
the limit cycle and a branch of both the stable and unstable manifolds of the saddle point
coincide, forming a homoclinic connection. Past u. the limit cycle no longer exists. Collision
with a saddle fixed point is the typical mechanism by which a limit cycle can abruptly
vanish from state space. This blue sky bifurcation can take two forms: the disappearance
of a stable limit cycle and the disappearance of an unstable limit cycle. Moreover, it is a
global, discoﬁtinuous or catastrophic bifurcation. It also serves as a prototype of a blue sky
bifurcation for a strange attractor or a boundary crisis of a strange attractor, as we shall see
next.

One type of global bifurcation involving a strange attractor is the sudden death of the
attractor. Such a blue sky bifurcation occurs commonly for strange attractors of differential
equations. Like the blue sky bifurcation for a limit cycle, a chaotic blue sky bifurcation
involves a collision with an object of saddle type and is analogous to the blue sky disap-
pearance of a limit cycle discussed above. The chaotic blue sky bifurcation is also known by
another term, namely the boundary crisis of a strange attractor.

The term crisis was introduced in [16], [17], and applies to sudden qualitative changes
in strange attractors with quasistatic changes in parameters. A crisis involving the sudden
destruction of a strange attractor through collision with a saddle point, an unstable periodic
orbit, or the stable manifold of such, is known as a boundary crisis. In a boundary crisis, a
strange attractor exists for parameter values up to the critical value, at which the collision
takes place. Subsequent to this value, the strange attractor no longer exists, but it leaves a
signature, namely a transient chaotic motion. The transient chaotic motion appears chaotic
for a relatively long time (depending on the initial condition), and then suddenly experiences
a sharp excursion either to another, probably distant attractor, or to infinity. This excursion
occurs through a tunnel in state space which necessarily follows the unstable manifold of
the saddle point or orbit with which the collision takes place. The result is a discontinuous,

catastrophic disappearance of the strange attractor. Such a bifurcation is always a global
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Figure 3: Power system model

bifurcation involving a homoclinic or heteroclinic event. In this paper, we shall use the
terms chaotic blue sky bifurcation and boundary crisis of a strange attractor synonymously,

although boundary crisis was originally introduced for one-dimensional maps.

3 A Power System Model

The power system under consideration in this paper is related to one previously considered
by Dobson and Chiang [3]. Dobson and Chiang [3] employed a simple power system example
to illustrate ideas, also presented in [3], which relate to the dynamics of voltage collapse.
In [3], the example was chosen such that a nominal equilibrium undergoes a saddle node
bifurcation as a reactive power loading parameter @), is varied. Their example system in-
cludes a capacitor in parallel with a nonlinear load. (See Figure 3 of [3].) The capacitor is
included to raise the voltage magnitude to nearly 1 per unit. The parameter Q; is taken as
the bifurcation parameter of the system. It is found that the value of this parameter at the
saddle node bifurcation is approximately 11.41 per unit. This is a rather high value, and is
a consequence of inclusion of the capacitor in the example system. It seems that it is rather
difficult to reach this level of reactive load at normally encountered power factors.

For this reason, in the present study we modify the power system example of [3], mainly

through deletion of the capacitor from the system of [3]. This reduces the reactive power



load parameter prior to collapse to approximately 2.56 per unit, while reducing the voltage
magnitude to approximately 0.65 per unit. The resulting power system model is depicted
in Figure 3. Possible compromises in which a capacitor is included to raise the voltage
magnitude without a large increase in load, are not given priority in this work. It follows
from [3] that the system dynamics (with no capacitor) is governed by the following four

differential equations (P(6,,,6,V), Q(6x,68,V) are specified below):

b = w (5).
Mé = —dpw+ Pn — EpVYpsin(6, — 6) (6)
Kpbd = —KpoV? = KpV + Q6,6 V) — Qo — Q4 (7)

TKypwKpV = KpwK2V?:+ (KpuKyw — KowKpe)V
+ K yo(P (6,6, V) — Py — Py)
~Kpu(Q(6m, 8, V) — Qo — Q1) (8)

The notation is basically identical to that of [3]|, with the caveat that in the present paper
there is no need for primed quantities. Primes are used in [3] to indicate Thévenin equivalent

circuit values, a step which is made unnecessary since the capacitor is no longer included in

the system. (See [3] for details.)

The load includes a constant PQ load in parallel with an induction motor. The real and

reactive powers supplied to the load by the network are

P(6p,6, V) = —EVY%sin(6) + E, VY, sin(é, — §) (9)

Q(6m,8,V) = EqVYycos(d) + E,VYr, cos(bm — 8) — (Yo + Yo ) V2 (10)

Most of the parameter values used in the present study agree with those of [3]. The
parameters given in [3] correspond to a large generator. Qur choice of parameter values

corresponds to a medium sized generator (500MW). Of the parameter values used here,

those which differ from values given in [3] are as follows:
M =0.01464, Qo = 0.3, E,, = 1.05, Y5 =3.33, 6o = 0 and 6,, = 0.

Those which coincide with values given in [3] are as follows:
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Kpy = 0.4, Ky, = 0.3, K, = —0.03, K,y = —2.8, Kppp = 2.1,
T =8.5, Py = 0.6, P, = 0.0,
Eo=1.0,C =120, Y, = 5.0, P,, = 1.0, d,, = 0.05.

All values are in per unit except for angles, which are in degrees.

4 Bifurcation Analysis

In this section, the results of a bifurcation analysis of the model (5)7(1.0) are given. The
software package AUTO [21] is employed to assist this analysis. Figure 4 shows the depen-
dence of the voltage magnitude V at system equilibrium points, as well as the stability of
these equilibria, as a function of the bifurcation parameter @Q;. A solid line corresponds to
stability of an equilibrium, while a dashed line corresponds to instability. Figure 5 depicts a
blown-up bifurcation diagram, detailing some of the bifurcations which occur in the boxed
region of Figure 4.

To simplify the discussion, note first that Fig. 4 depicts two bifurcations, and Fig. 5
depicts a total of five additional bifurcations. These seven bifurcations are labeled HBQ),
SNB®), CFB®, PDB®@, PDB®), BSKY® and BSKY®. Each of the seven bifurcations
shown in Figures 4 and 5 is of one of the following types, with the corresponding acronyms:

e HB: Hopf bifurcation

¢ SNB: Saddle node bifurcation

e CFB: Cyclic fold bifurcation

e PDB: Period doubling bifurcation

e BSKY: Blue sky bifurcation
The technical connotations of these terms in the context of this paper will be clarified in
the sequel. For ease of reference, we denote the values of the parameter Q; at which the
bifurcations @)-@) occur by Q@-QICD, respectively. For @)y < Q1®7 a stable equilibrium
point exists with voltage magnitude in the neighborhood of 0.7. (Upper left in Fig. 4.)

As @ is increased, an unstable (“subcritical”) Hopf bifurcation is encountered at the point
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Figure 5: Magnified bifurcation diagram for boxed region in Fig. 4
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labeled HB(@ in Fig. 4. This coincides with the point labeled HBQ) in Fig. 5. As @Q; is
increased further, the nominal stationary point (now unstable) disappears in the saddle node
bifurcation (SNBQ) in Fig. 4) at @y = Q1®

Besides the bifurcations of the nominal equilibrium described in the foregoing, the peri-
odic solution emerging from the Hopf bifurcation at HBQ) itself undergoes bifurcations. The
bifurcation HBQ) is a subcritical Hopf bifurcation, resulting in a family of unstable periodic
solutions occurring for (), slightly less than Q1® In Fig. 5, the minimum of the variable V
for members of this family of periodic solutions is indicateci by the circles appearing from
(D and extending to the left. Open circles indicate instability of the periodic orbits. At
Q= Q@, the unstable periodic solution undergoes a cyclic fold bifurcation. Thus, in Fig.
5, the continuation of the sequence of circles of periodic solutions for (J; near Ql@ exists for
@1 slightly greater than Ql@ A cyclic fold bifurcation is simply a saddle node bifurcation
of periodic solutions. Thus, the unstable periodic solution gains stability at @, = Q@ The

1

solid circles emanating from CFB@®) depict the continuation of the periodic solutions; they
are solid to indicate stability.

This stable periodic orbit born at CFB(@) loses stability at the period doubling bifurcation
PDB@®. At this bifurcation, a new periodic orbit appears which initially coincides with the
original orbit, except that it is of exactly twice the period. The original orbit necessarily loses
stability at such a bifurcation. The branch of period-doubled orbits is also shown in Fig. 5.
This branch, depicted by the solid circles emanating to the right from PDB®@), undergoes a
further period doubling bifurcation in short order. This occurs at PDB®) in Fig. 5. These
two period doubling bifurcations are followed by a cascade of period doubling bifurcations,
resulting in a strange attractor for some values of Q;. These further period doublings are not
‘depicted in Fig. 5. However, Fig. 5 shows the continuation of the periodic orbits appearing
at the cyclic fold bifurcation CFB@) and the period doubling bifurcation PDB@. Note
that each of these periodic orbits disappears in a collision with the unstable (saddle) low
voltage equilibrium point. These collisions are known by various names, including the blue

sky bifurcation {14]. Thus, the disappearance of these orbits is indicated by BSKY®) and
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Figure 6: Period doubling cascade to chaos

BSKY(@® in Fig. 5. Since the system undergoes a cascade of period doubling bifurcations,
one expects that each period doubled orbit undergoes such a blue sky bifurcation.
Figure 6 depicts several stable periodic orbits in the sequence of period doublings dis-
cussed above, along with the strange attractor resulting from the period doubling cascade.
Let us pause to consider the implications of the bifurcations studied above for the system
dynamics, assuming the parameter @, is quasistatically increased. For the ‘usual’ values
of the parameter @1, the system operates at the stable equilibrium. As the parameter is

increased, the equilibrium loses stability at the Hopf bifurcation point, giving rise to an
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unstable periodic orbit. Since this orbit gains stability at the cyclic fold bifurcation, a stable
periodic orbit surrounds the equilibrium at and slightly beyond the Hopf bifﬁrcation point.
The system then operates at this stable periodic orbit. For greater values of the parameter
@1, this periodic solution also loses stability, but in doing so gives birth to a new stable
(period doubled) periodic orbit. This scenario repeats itself in a cascading fashion, each
time making available a stable periodic orbit, until a strange attractor emerges. The system
operates on the strange attractor until the strange attractor disappears (“crisis”). After this
crisis, there is no stable inv.ariant set in the vicinity of the nominal equilibrium at which to
operate. Thus, the system must now undergo a large transient excursion. In the next section,

this excursion (“voltage collapse”) is tied to the disappearance of the strange attractor.

5 Boundary Crises, Chaotic Blue Sky Bifurcations
and Voltage Collapse

The bifurcations uncovered in the foregoing analysis, and especially the sudden disappearance
of the strange attractor, are crucial to the understanding of voltage collapse for the model
power system under consideration. We claim that, for the model under study, voltage collapse
is triggered by the boundary crisis of the strange attractor [16], [17] or chaotic blue sky
bifurcation [14], i.e., its sudden destruction through collision with the low voltage saddle
point.

Recall that a boundary crisis or a chaotic blue sky bifurcation involves the sudden de-
struction of a strange attractor through collision of the strange attractor with a saddle point,
an unstable periodic orbit, or the stable manifold of such. In a boundary crisis or a chaotic
blue sky bifurcation, a strange attractor exists for parameter values up to the critical value,
at which the collision takes place. Subsequent to this value, the strange attractor no longer
exists, but it leaves a signature, namely a transient chaotic motion. The transient chaotic
motion appears chaotic for a relatively long time (depending on the initial condition), and

then suddenly experiences a sharp excursion either to another, probably distant attractor, or

15



to infinity. This excursion occurs through a tunnel in state space which necessarily follows
the unstable manifold of the saddle point or orbit with which the collision takes place. Note
the distinction with the center manifold based view adopted in (3], [8].

With this knowledge of boundary crises, we can return to the example at hand. An
attracting invariant set exists for parameter values @; up to the critical value, @7, at which
the boundary crisis takes place. Voltage collapse occurs precisely at the parameter value
@1 = Q. This gives a clear alternative to the previous view [3] that the critical value
of ()1 at which voltage collapse occurs is that associated with the saddle node bifurcation,
O = Q1® Note that one may view the Hopf bifurcation as an signal of impending voltage
collapse, especially considering the very short interval in parameter space between the Hopf
bifurcation (at ¢; = QSD = 2.55919...) and the boundary crisis of the strange attractor (at
Q1 = Q7 = 2.560378...). Note also that the view adopted here is in agreement with that
offered in our recent paper [5], which also shows an example in which voltage collapse occurs

prior to the saddle node bifurcation.

Significantly, the current proposal serves to reconcile two seemingly contradictory pieces

of evidence:

o First, the steady, sharp decrease in voltage observed in practice in voltage collapse;

and

e Second, the presence of nonlinear phenomena such as oscillations and chaotic motion

in dynamic models used in the study of voltage collapse, which is determined from

analysis.

Figure 7 shows a projection of the dynamics onto the w, V plane for a value of ); slightly
below Q7. Figure 8 shows the same projection, for a value of Q; slightly greater than Q7.
The low voltage saddle point has one real positive eigenvalue, one real negative eigenvalue
and a pair of complex conjugate eigenvalues with negative real part. Thus in both figures,
the unstable manifold and only a section of the stable manifold of the low saddle point are

shown. These manifolds are important to understand the underlying dynamics near crisis.
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Figure 7: Just before boundary crisis: Strange attractor, unstable and stable manifolds of

lower saddle point
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Figure 8: Just after boundary crisis: Transient chaos, unstable and stable manifolds of lower

saddle point
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1 = 2.5603783206

0.7

V-

0.3

4600 -t — 4800
Figure 9: A time simulaton of transient chaos and voltage collapse just after boundary crisis

At Q1 = Q7 the closure of one of the branches of the unstable manifold of the low voltage
saddle point is the strange attractor, while the stable manifold of the low voltage saddle
point forms the boundary of the basin of attraction for the strange attractor for ); < Q7
{17]. In Figure 7, the chaotic invariant set is a strange attractor, i.e., is stable. Since the
strange attractor is bounded, system trajectories are confined to a bounded subset of the
state space. One of such trajectories is shown as thousands of points that flesh out the
strange attractor. In Figure 8, the strange attractor no longer exists, and is replaced by
a transient chaotic motion followed by passage of system trajectories near the low voltage
saddle point, after which the trajectories follow the other branch of the unstable manifold of
the saddle point. This results in a sharp decrease (“collapse”) in the system voltage. Figure
9 represents a time simulation of V vs. time for the same value of (); as that of Figure
8. The transient chaotic behavior and the pronounced collapse are illustrated in Figure 9.

(Note the small magnitude of the transient oscillatory behavior.)
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6 Related Voltage Collapse Phenomena

In this section, we discuss the mechanism of voltage collapse in the example of Dobson
and Chiang [3]. That example also admits strange attractors (as reported in [8], [7] and
[5]). In that example, the strange attractor nearest the first Hopf instability disappears
as (Jy is quasistatically increased. Unlike the analogous observation in this paper, how-
ever, the disappearance occurs prior to the first Hopf bifurcation. Thus in the model of
[3], voltage collapse can follow two different routes. In the interval of parameter values
10.85... < @1 < 10.89434..., hysteresis is present, i.e., in addition to the stable equilibrium,
there is another coexisting attractor (see [5]). The coexisting attractor, depending on the
parameter value, is either a stable limit cycle or a strange attractor. In this interval, if the
system is perturbed away from the stable equilibrium, the system may still operate on the
coexisting attractor. Then as ()1 is quasistatically increased, the coexisting attractor under-
goes further bifurcations, including a crisis at Q] = 10.89434... leading to the disappearance
of the attractor, at which point voltage collapse occurs. On the other hand, even after the
disappearance of the strange attractor, the nominal equilibrium of the system is still stable
until the Hopf bifurcation. Hence another possible mechanism of voltage collapse, in this ex-
ample, is linked to the subcritical Hopf bifurcation as suggested in [5]. As @, passes the Hopf
bifurcation point, the excursion of voltage exhibits increasing oscillations and then a sharp
decrease. Note that subcritical Hopf bifurcation is a form of catastrophic bifurcation. Hence
in this example, voltage collapse is triggered either by a boundary crisis or by a catastrophic
Hopf bifurcation.

Finally, we remark that the crisis leading to the disappearance of the strange attractor
is different from the one discussed in previous section. In the model of this paper, the crisis
occurs as the strange attractor collides with the low voltage saddle point. In the example
of (3], however, analysis and computations show that the crisis does not involve the low
voltage saddle point. We surmise that it is rather the unstable limit cycle born through
the subcritical Hopf bifurcation that collides with the strange attractor. Nevertheless, the

mechanism is still a boundary crisis.
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7 Conclusions

Voltage collapse is triggered by catastrophic bifurcations, in particular the blue sky bifur-
cations, for sample power system models. These blue sky bifurcations include the blue sky
bifurcation of a limit cycle and the boundary crisis of a strange attractor. Boundary crises
of stranger attractors near the collapse have indeed been identified, a numerical example
in which such a bifurcation triggers the collapse has been given. The importance of these
bifurcations and of the boundary crisis (or chaotic blue sky -bifurcation) to the voltage col-
lapse phenomenon have been argued. Moreover, the results serve to reconcile two seemingly
contradictory pieces of evidence on the nature of voltage collapse, one based on analysis and

the other on empirical evidence.
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