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When noncompliance happens to longitudinal experiments, the randomness 

for drawing causal inferences is contaminated. In such cases, the longitudinal 

Complier Average Causal Effect (CACE) is often estimated. The Latent Growth 

Model (LGM) is very useful in estimating longitudinal trajectories and can be easily 

adapted for estimating longitudinal CACE.  

Two popular CACE approaches, the Standard IV approach and the Mixture 

Model Based (MMB) approach, are both readily applicable to the LGM framework. 

The Standard IV approach is simple in modeling and has low computational burden, 

but it is also criticized for ignoring distributions of subgroups and leading to biased 

estimations. The MMB approach is capable of not only estimating the CACE but also 

answering research questions regarding distributions of subpopulations, but this 



  

method may yield unstable results under unfavorable conditions, especially when the 

estimation model is complicated.  

Previous studies laid out a theoretical background for applying LGMs to 

longitudinal CACE estimation using both approaches. However, 1) very little was 

known regarding the factors that might influence the longitudinal CACE estimation, 

2) the three compliance classes scenario was not thoroughly investigated, and 3) it 

was still unclear about how and to what extent the Standard IV approach would 

perform better or worse than the MMB approach in the longitudinal CACE 

estimation. 

The present study used an intensive simulation design to investigate the 

performance of the Standard IV and the MMB approaches while manipulating six 

factors that were related to most experimental designs: sample size, compliance 

composition, effect size, reliability of measurements, mean distances, and 

noncomplier-complier Level 2 covariance ratio. Their performance was evaluated on 

four criteria, estimation success rate, estimation bias, power, and type I error rate. 

With the analysis result, suggestions regarding experiment designs were provided for 

researchers and practitioners.    
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Chapter 1: Introduction 

Educational research is witnessing an upsurge of announcements declaring the 

most innovative and effective methods in improving education systems, enhancing 

student performance, boosting social development, and better preparing the younger 

generation for modern challenges. However, public resources are not ample enough 

to test every new proposal, so it is extremely critical for policymakers to scrutinize all 

study results and identify the ones that are meticulously conducted with proper 

scientific methodologies. 

1.1.Randomized Experiments 

Causal inference is a highly valued scientific approach in many research areas. 

Economists need to define and identify causal parameters to address policy issues 

(Heckman, 2008); biologists strive to disentangle complex patterns to search for the 

ultimate causal processes that can actually revolutionize agricultural or medical 

research (Shipley, 2002); for social study researchers, pinpointing causes can be a 

cure for problems that blight our social development. On one hand, it is a human 

inclination to think in causal terms; on the other, only with laborious arguments 

searching for the causal chain can one rule out confounding alternatives and 

demystify and highlight the veiled truth (Einhorn & Hogarth, 1986). Among various 

methods for drawing causal inferences, the randomized experimental design was 

considered as a “gold standard” (Shadish, Cook, & Campbell, 2002, p. 13).  

A randomized experiment is defined as an experiment in which units are 

randomly assigned to either the treatment group or the control group (Shadish et al., 
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2002). As Shadish et al. (2002) argued, randomized experimental designs were 

widely acclaimed in various areas because they promised control over confounding 

factors by creating two or more groups that were probabilistically equivalent on 

expectation even without physical isolation in laboratories. In this way, the existence 

and the magnitude of the treatment-control group difference can be credited to the 

treatment rather than pre-existed group differences before implementing an 

experiment. 

Many educational researchers (e.g., Boruch, De Moya & Snyder, 2002; 

Mosteller & Boruch, 2002; Slavin, 2002) have shown strong support for the use of 

randomized experiments for evaluations of educational interventions and policies. 

Slavin (2002) argued that randomized experiments would be applicable for 

educational programs “in every subject and every grade level” (p. 17) and for a large 

variety of important topics such as “school-to-work transitions, special education, 

gifted children, dropout prevention, English language learners, race relations, drug 

abuse prevention, violence prevention” (p. 7). These studies may involve political 

decisions that are as expensive as millions of dollars, or more importantly, they could 

help students to build a more successful future.  

 Historically, educational studies did not really embrace this powerful 

approach. In his Dewitt Wallace-Reader’s Digest Distinguished Lecture, Slavin 

(2002) lamented that while other academic communities had been “transformed” (p. 

15) by the use of randomized experiments in the 20th century, educational research 

was “finally entering the 20th century” (p. 15) at the beginning of the 21st century. He 

pointed out that, using a 6-point scale—Strong, Promising, Marginal, Mixed, Weak, 



 

3 

 

or No Effect (Herman, 1999)—to evaluate the effectiveness of 2,665 Comprehensive 

School Reform (CSR) grants awarded between 1998 and 2002, only 20.8% reached 

the level of having Strong evidence of effectiveness, and 63.2% did not even reach 

the standards of having Marginal evidence of effectiveness. At the same time, state 

officials who reviewed the CSR grants proposals were not showing determination to 

tighten up the standards for scientific evidence.  

Recognizing the urgency for educational research to have a scientific 

revolution, and the sluggish reaction among government officials and researchers, in 

2002 the U.S. Congress established the Institute of Education Science (IES). One 

clear duty for the IES is to promote “scientifically valid research in education” (H.R. 

3081, 2002, p. 6). In their later report, the IES once again emphasized their resolution 

of promoting the use of scientific designs, “especially randomized designs” 

(Whitehurst, 2008, p. 3).  

1.2.Noncompliance in Randomized Experiments 

There are multiple reasons that randomized experiments are formidable for 

researchers. Sometimes, randomized experiments are precluded because of legal, 

ethical (e.g., it is illegal and unethical to force participants to smoke for a smoking 

study), or logistical (e.g., it is hard to keep track of each individual’s group 

membership in a large scale multiyear project that involves a lot of unexpected 

changes) reasons (Shadish, Clark, & Steiner, 2008). Other times, researchers may be 

reluctant to adhere to stringent methodological principles because of practical 

challenges, such as higher research cost and limited resources (Hsieh et al., 2005). In 

addition, even with a successful randomization, another issue can make the estimation 
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of treatment effects problematic—noncompliance of assignment (Angrist, Imbens, & 

Rubin, 1996; Jo & Muthén, 2001; Little & Yau, 1998).  

Noncompliance of assignment arises when study participants fail to follow a 

randomized group assignment predetermined by researchers during the 

implementation of an experiment. One example of noncompliance is the JOBS II 

intervention study (Vinokur, Price, & Schul, 1995). This study was designed to 

improve mental health and facilitate reemployment for the recently unemployed 

through an intervention. At baseline, eligible participants were selected and randomly 

assigned to the control and treatment groups. The treatment group was provided with 

five job search training seminars, and the control group was only provided with a 

self-guided job-searching booklet. Although the researchers managed to achieve 

randomness before the study, only 54% of the treatment group members showed up in 

the seminars. In other words, only 54% of the treatment group members complied 

with their assignments, and the other 46% self-selected out of the intervention. In this 

study, control group members had no access to the seminar, so all control group 

members complied with their assignments. If the seminars were completely 

accessible to all individuals, it is possible to observe some control group members 

taking the treatment and therefore not complying with their assignments.  

With non-compliance, 1) if one just simply estimates the treatment effect 

using the mean difference between the treatment and control groups, the result is an 

estimation of the effect of the treatment assignment not the effect of the intervention, 

and 2) if one instead uses the mean difference between individuals who actually take 
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the treatment and those who do not, the treatment effect estimation will be 

confounded with selection bias (Little & Yau, 1998).    

There is a third choice when noncompliance happens: the Complier-Average 

Causal Effect (CACE) approach (Imbens & Rubin, 1997a, 1997b). The CACE 

approach is a special version of the instrumental variable analysis developed by 

Nobel-prize-winning economist James Heckman (1978).   

For instrumental variable analyses, the main independent variable is usually 

endogenous. In other words, the independent variable cannot be guaranteed to be 

entirely random by research designs; instead, it is contaminated by some internal 

factors related to the outcome variable over which researchers have no control. If 

there exists an exogenous instrumental variable that covaries with the independent 

variable and satisfies certain restrictions (Angrist et al., 1996), the instrumental 

variable can carve out the exogenous variation (i.e., the part decided by the 

instrumental variable) in the main independent variable and estimate its causal effect 

on the outcome variable with only this part (Murnane & Willett, 2010). The effect 

estimated with only the exogenous part is called the Local Average Treatment Effect 

(LATE) (Angrist et al., 1996). Exogenous here means that the variable is not in any 

way affected by participants in the experiment, and it should be determined by some 

external sources.   

The more general instrumental variable approach utilizes a wide selection of 

instrumental variables. In his study of the impact of educational attainment on 

individual’s civic engagement, Dee (2004) used a continuous variable, the distance 

between individual’s high school and the nearest two-year college, as the instrumental 



 

6 

 

variable. Angrist, Bettinger, Bloom, King, and Kremer (2002) used a binary variable, 

an exogenous offer of a scholarship, as the instrumental variable to estimate the 

LATE of using a scholarship on educational attainment.       

In the study of Angrist et al. (2002), low-income families (i.e., experiment 

subjects) in Columbia could win a scholarship (i.e., treatment) that helped to pay for 

tuition at private secondary schools by participating a lottery. Some scholarship 

recipients sent their children to a private school because of the financial aid, while 

other recipients did not do so; some nonrecipients could only enroll their children to a 

public school because of no financial aid, but other nonrecipients chose private 

schools nonetheless. If the research question was to investigate the effect of using the 

scholarship on educational attainment, the independent variable, using the scholarship, 

was not exogenous. However, the random assignment of the scholarship was 

exogenous and could thus serve as the instrumental variable to carve out the 

exogenous part of the independent variable. This is a special case of the LATE 

approach, and it is essentially estimating the average treatment effect for the 

compliers or the Complier-Average Causal Effect (CACE) (Imbens & Rubin, 1997a, 

1997b). In other words, using the random assignment variable, participants who 

complied with the assignment (i.e., compliers) were separated from participants who 

did not comply (i.e., non-compliers), and the treatment effect of the scholarship was 

estimated using only the compliers. More technical details about the CACE approach 

can be found in Chapter 2. 

Imbens (2014) described the estimation of the CACE as “an analysis in a 

second-best setting” (p. 20). When noncompliance nonetheless happens in a 
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randomized experiment, researchers are not able to answer the original research 

question with total credibility and precision. In this case, compliers are the only 

subpopulation that researchers have full confidence in identifying the average 

treatment effect for. With the estimated CACE, researchers are able to check if an 

intervention or a policy has an effect on the population who would actually receive 

the treatment.   

Two main estimation approaches are widely used to estimate the CACE. The 

first approach, the standard instrumental variable (Standard IV) estimation approach 

was first introduced by Bloom (1984) and then fully developed by Angrist et al. 

(1996) and Angrist and Imbens (1995). This approach does not incorporate the 

distribution of the outcome variable, and it is relatively easy to calculate. The second 

approach, by using the mixture model based (MMB) estimation method (Imbens & 

Rubin, 1997b) or a Bayesian framework (Imbens & Rubin, 1997a), can estimate the 

marginal distribution of the outcome variable for the complier subpopulation. 

Therefore, researchers are able to investigate not only the average difference between 

the treatment and control groups but also the whole distribution of the outcome 

variable. The main difference between these two approaches is that the MMB 

approach imposes nonnegativity on the marginal distribution of the outcome variables 

while the Standard IV approach is distribution free. In other words, the Standard IV 

approach only makes an unrestricted estimate of group mean difference, and the 

nonnegative outcome distribution cannot be imposed (Imbens & Rubin, 1997b).    

 Although Imbens and Rubin (1997b) argued that the Standard IV method 

could have a more biased result when comparing to the MMB approach, both 
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approaches were widely used in practice (e.g., Frumento, Mealli, Pacini, & Rubin, 

2012; Hirano, Imben, Rubin, & Zhou, 2000; Sussman & Hayward, 2010). 

1.3.Longitudinal Experimental Designs 

When conducting educational experiments, such as a psychological 

intervention or an implementation of a new educational policy, the treatment effect 

can be either short term or long term depending on the research purpose. When 

immediate results are the focus of a study, short-term experiments should be used. In 

other cases, some experiments might have long-term effects, some experiments might 

have different short-term and long-term effects, and some experiments might have an 

unclear timeline about the onset of the treatment effects (Farrington, Loeber, & 

Welsh, 2010). In these situations, outcome variables should be measured repeatedly 

to collect longitudinal data. This type of design is the longitudinal experimental 

design. 

Longitudinal designs involve at least two data collection points on the same 

individual and therefore allow more investigation of individual change (Fitzmaurice, 

Laird, & Ware, 2011). Compared to cross-sectional studies where response variables 

are measured only once, longitudinal designs have certain advantages, such as 

providing information about the development of outcome variables, helping to 

understand the onset of treatment effects, and displaying within-subject changes 

(Farrington et al., 2010). Therefore, if an experimental study focuses on finding any 

one or more of the listed features above, a longitudinal experimental design should be 

implemented.        
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1.3.1. Latent growth models  

When analyzing longitudinal data, there are multiple widely used methods, 

including some more traditional methods (e.g., analysis of variance [ANOVA], 

multivariate analysis of variance [MANOVA], analysis of covariance [ANCOVA], 

auto-regressive and cross-lagged multiple regression) and some newer methods 

emerging from the structural equation modeling (SEM) area, such as latent growth 

models [LGMs] (Hancock, Harring, & Lawrence, 2013). Despite their popularity 

among researchers, traditional longitudinal data-analysis techniques have significant 

drawbacks. Hancock et al. (2013) explained that traditional methods were “somewhat 

circumspect” (p. 172) with less ideal data structures and with hypotheses that focused 

on individual-level changes. LGMs, on the other hand, do not suffer from these 

limitations.      

LGMs can also accommodate external variables to predict different latent 

intercepts and trajectories across different levels of the variables (Hancock et al., 

2013), so the LGM technique can easily adapt to longitudinal experimental scenarios 

by introducing the treatment variable into the model as a predictor or by using multi-

group LGM to estimate the slope difference in the treatment and the control groups. 

Muthén and Curran (1997) defined the treatment effect of a longitudinal experiment 

under the framework of LGM as the difference in the growth trajectories of the 

treatment and control groups when randomization and treatment implementation were 

both conducted at the baseline. Similar to most SEM techniques, with a correct model 

specification, LGM approach can also improve the precision of the estimated 
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treatment effect with its ability to handle measurement errors at each time point (Jo & 

Muthén, 2003). 

1.3.2. Noncompliance in longitudinal experimental designs 

When conducting a longitudinal experiment, there are several variations for 

researchers to adapt to their specific research designs and data structure. Gao, Brown, 

and Elliott (2014) summarized three key factors: a) randomization occurrence, b) 

treatment implementation, and c) subjects’ compliance status assumption. In more 

detail, a) researchers can randomize their subjects to different treatment levels only 

once at the baseline (e.g., Vinokur et al., 1995) or more than once at different time 

points (e.g., Frangakis et al., 2004); b) treatment can be implemented once at the 

baseline (e.g., Vinokur et al., 1995) or multiple times over time (e.g., Frangakis et al., 

2004); c) with more than one implementation of a treatment, researchers may assume 

subjects’ compliance status to be time-invariant (e.g., Yau & Little, 2001) or time-

varying (e.g., Lin, Have, & Elliott, 2009) across all implementations.  

Given the current status quo of educational research, where randomization is 

difficult to implement, the present study only discussed baseline randomization. In 

addition, for most educational policy or intervention, one-time treatment application 

is fairly common (e.g., Campbell, Ramey, Pungello, Sparling, & Miller-Johnson, 

2002; Harris & Goldrick-Rab, 2012; Vinokur et al., 1995), so only the baseline 

treatment implementation was considered. Lastly, because only one-time 

implementation is included, there was no need to consider if subjects’ compliance 

statuses changed over time.       
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1.3.3. Latent growth model with noncompliance  

When noncompliance occurs, with the assumption of baseline randomization 

and treatment implementation and the assumption of time-invariant compliance status, 

the CACE can be defined as the difference in the growth trajectories of compliers in 

treatment and control groups. Previous research (Jo & Muthén, 2003; Muthén, 2002) 

has explained how to apply the LGM technique to estimate the longitudinal CACE 

using the MMB estimation method. 

For example, Jo and Muthén (2003) used the data from the Johns Hopkins 

Public School Preventive Intervention Study (JHU PIRC) (Ialongo et al., 1999) and 

estimated the longitudinal CACE with the MMB estimation method. This study was 

designed to investigate the respective effects of two interventions (i.e., classroom-

centered [CC] intervention and family-school partnership [FSP] intervention), when 

comparing to the same control condition, on improving school children’s academic 

achievement and reducing delinquencies. Jo and Muthén (2003) only focused on the 

comparison between the FSP intervention group and the control group.  

The FSP intervention required parents to implement 66 take-home activities 

within 6 months while the control group was not asked to do any of these activities. 

Students were assessed at three time points: before the intervention (Month 0), right 

after the intervention (Month 6), and 12 months after the intervention (Month 18). 

Parents and students were first randomly assigned to the intervention and the control 

groups. Noncompliance occurred because only part of the parents completed all 66 

activities. Therefore, for the intervention group, parents who completed at least 35 

activities were classified “compliers” and the rest were classified as “non-compliers”. 
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For the control group, none of the individuals had access to the intervention, so there 

was no “non-complier”.  

With the MMB based estimation of the CACE, they were able to estimate the 

unknown compliance status for each subject in the control group. Combining with the 

LGM framework, they were able to estimate the intervention-control group difference 

in trajectories among compliers. As a result, they found the intervention group had a 

significantly steeper trajectory than the control group. More technical details are 

included in Chapter 2.     

1.4.Purpose and Research Questions 

Previous studies have laid a theoretical background for applying LGM 

techniques to estimate longitudinal CACE using the MMB estimation method. 

However, very little is known about factors that might influence the accuracy and 

efficiency of the longitudinal CACE estimation. Jo (2002) investigated the influence 

of several factors (compliance rate, study design, outcome distributions, and covariate 

information) on statistical power for randomized interventions with noncompliance, 

but she only considered cross-sectional designs where the outcome variable was 

measured only once. It is relatively unclear about how these factors can affect the 

CACE estimation in a longitudinal setting. On one hand, longitudinal designs collect 

multiple data points on the same individual, thus more information can be used for 

class separation with the MMB estimation method. On the other, the LGM can also 

improve the estimation precision by isolating measurement errors for the outcome 

variable, which could also contribute to class separation. With the benefits of the 

LGM, it is questionable that the conclusion of the cross-sectional study would hold.    
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In addition, when noncompliance happens, there can be four types of 

subpopulations. Participants who always comply with their assignment are 

“compliers”; participants who always enroll themselves into the treatment condition 

regardless of their assignment are “always-takers”; individuals who always escape the 

treatment are “never-takers”; the last type is “defiers”, meaning choosing the opposite 

of their randomly assigned levels. One assumption of CACE is that there are no 

defiers (Angrist et al., 1996; Angrist & Imbens, 1995); hence defiers were not 

discussed in this study 

Past studies (Jo, 2002; Jo & Muthén, 2003), however, mainly included only 

two compliance statuses (complier and never-taker). Although some research designs 

are able to exclude always-takers by providing no access of treatment level to 

individuals assigned to the control group (e.g., Ialongo et al., 1999; Vinokur et al., 

1995), it is not possible to always eliminate always-takers for all studies. For 

example, in the evaluation of the private school voucher program in Dayton, Ohio, 

Washington, D.C., and New York City by Howell and Peterson (2003), although 

participants were randomly selected to receive a voucher that was financially helpful 

for children from low-income families to attend private schools, many of those 

offered a voucher did not use it (i.e., never-takers) while a small portion who were not 

offered still chose private schools (i.e., always-takers). The same situation happened 

in the study of Angrist et al. (2002). In these scenarios, it is impossible and unethical 

to force students to attend a certain type of school, and for researchers, there are three 

compliance statuses. Therefore, it is necessary to examine the situation with three 

compliance statuses. By adding one more compliance group, the model becomes 
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more complicated, and previous research results using only two compliance groups 

may not be generalizable to this situation.     

Last but not least, the well-known CACE estimation approach, the Standard 

IV approach, due to its simplicity in modeling and low computational burden, is also 

widely used in various studies. This approach can also adapt to the LGM framework 

to estimate longitudinal CACEs. Imbens and Rubin (1997b) demonstrated with a 

small simulation study with cross-sectional data that the Standard IV approach 

yielded more bias and less precision in estimating CACEs than the MMB approach. 

However, their simulation design only examined very limited conditions, and it is 

also unclear about how and to what extent the Standard IV approach would perform 

better or worse than the MMB approach for longitudinal CACE estimations.            

Therefore, the purpose of the present study is to expand the literature of the 

longitudinal CACE estimation while using the LGM framework. This study is 

motivated by the fact that as the need to address the noncompliance issue in 

longitudinal experiments increases, there is not enough guidance for researchers and 

practitioners to decide on what the more important factors are regarding the research 

design and which estimation method (Standard IV vs. MMB based) they should 

choose. Specifically, this study aimed to answer four research questions: 

1. Choosing from factors that previous studies have shown to influence the 

estimation of CACE, how will each of them affect the estimation success rate 

of the Standard IV and the MMB methods?  
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2. Among the six factors in Research Question 1, how will each affect the 

estimation accuracy (biased or unbiased estimation) of the Standard IV and 

the MMB methods?   

3. When the effect size is not zero, among the six factors in Research Question 1, 

how will each affect the statistical power of the Standard IV and the MMB 

methods? 

4. When the effect size is zero, among the other five factors in Research 

Question 1, how will each affect the empirical type I error rate of the Standard 

IV and the MMB methods?    

5. Considering all criteria above, which method is recommended? 

These questions were answered with findings from an intensive simulation 

design. The simulation was done by first generating datasets that differed in terms of 

the six investigated factors. The two estimation methods were then applied to each 

dataset respectively. In the end, the estimation results were aggregated for analysis  

and compared between the two estimation methods. With the analysis result, 

suggestions regarding experiment designs were provided for researchers and 

practitioners.    
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Chapter 2: Literature Review 

2.1.Causal Inference 

Almost in every Introduction to Statistics class, instructors always particularly 

emphasize the notion that correlation does NOT imply causation. A classic example 

to support this statement would be that in summer ice cream sales and crime rates are 

observed to be positively correlated (Salkind, 2010). It is obviously absurd to 

conclude that one causes the other, even without any statistical knowledge. A more 

rational explanation to this phenomenon could be that the pleasant temperature in 

summer increases the chance that people stay out late at night and it, therefore, 

increases the probability that burglaries, DUIs or other crimes occur. At the same 

time, high temperature also boosts the consumption of ice cream. Therefore, it is the 

temperature that causes the increase of ice cream sales and crime rates.  

While acknowledging that correlation does not imply causation, one needs to 

understand the definition of cause, effect, and causal relationship. Shadish et al. 

(2002) used Mackie’s definition of an inus condition –“an insufficient but non-

redundant part of an unnecessary but sufficient condition” (Mackie, 1974, p. 62) to 

describe most causes. In other words, there are many combinations of factors that can 

lead to the same effect. Each combination can independently cause the same effect. A 

single factor in that combination cannot lead to the effect unless there is only one 

factor in the combination, but each factor is necessary for that particular combination. 

Therefore, Shadish et al. (2002) described causal relationships as not deterministic 

but only increased the probability that an effect would occur.  
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The counterfactual model is widely used to describe an effect. Shadish et al. 

(2002) explained that it is only possible to observe what happens when people receive 

a condition level during an experiment. They describe that the counterfactual was the 

unobservable information of what “would have happened” (p. 5) to the same group of 

people if they had not received the condition in the experiment at the same moment. 

Therefore, an effect was the difference between what did happen and what would 

have happened. Holland (1986) summarized Rubin’s model for causal inference (i.e., 

the RCM) with mathematical notations: the effect of a variable T on unit i measured 

by outcome Y, denoted as , and relative to the effect of another variable C, 

denoted as , was the difference, denoted as , between and .  If T is 

the treatment condition and C is the control condition,  is the result of receiving 

the treatment level and  is the result of receiving the control level for subject i. 

Only one result can be observed at the same moment; hence, one of  and  

will become “what did happen” and the other will become the “what would have 

happened”. The effect of the treatment condition relative to the control condition on 

subject i is the difference between and , 

   (1) 

2.2.Experiment 

To establish a causal relationship between possible causes and effects, 

Shadish et al. (2002) summarized a theory by John Stuart Mill, a 19th-century 

philosopher, which states that a causal relationship existed if 1) the cause preceded 

( )1Y i

( )0Y i iδ ( )1Y i ( )0Y i

( )1Y i

( )0Y i

( )1Y i ( )0Y i

( )1Y i ( )0Y i
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the effect, 2) the cause was related to the effect, and 3) no plausible alternative 

explanation for the effect can be found other than the cause.  

Fortunately, an experiment would satisfy Mill’s three conditions if it 1) 

manipulates the presumed cause and observes a forthcoming outcome, 2) checks 

whether the variation in the cause is correlated with the variation in the effect, and 3) 

uses feasible methods (e.g., random assignment, matching) during the experiment to 

reduce the plausibility of other explanations for the effect as well as ancillary 

methods to explore the plausibility of those could not be ruled out. Therefore, 

following Shadish et al. (2002), Murnane and Willett (2010) defined an experiment as 

“an empirical investigation” in which an independent “outside agent” had total 

manipulation on assigning cause levels to research participants and after the 

investigation, the consequences for an outcome would be measured (p. 30).  

There are two types of experiments depending on how much control the 

“outside agent” has on the assignment of causal levels: in randomized experiments, 

the assignment is completely manipulated by researchers in order to achieve an 

entirely random assignment, and in quasi-experiments, researchers do not have full 

control over the assignment and as a result no randomness can be achieved. A well-

executed randomized experiment would satisfy Mill’s three conditions; therefore, a 

causal relationship could be easily inferred in randomized experiments.  

2.2.1. Randomized experiments 

 According to Holland (1986), there is a “Fundamental Problem of Causal 

Inference” (p. 947)—it is impossible to observe the values of  and  on the 

same unit i at the same moment; therefore, it was impossible to observe the effect of 

( )1Y i ( )0Y i
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T on i. He provided two solutions for this problem: the scientific solution and the 

statistical solution.  

The scientific solution was to exploit various homogeneity or invariance 

assumptions. Two methods could be used to apply the scientific solution. The first 

method assumed “temporal stability” (p. 948) and “causal transience” (p. 948). 

Temporal stability emphasized the constancy of response over time by assuming the 

value of  did not depend on when the sequence of applying C to i first then 

measuring Y on i occurred. Causal transience asserted the effect of the cause C and 

the measurement process that resulted in  was transient so it would not change i 

enough to influence  measured later. A lot of physical devices would meet the 

two assumptions. A made up example could easily explain the notions. For example, 

if the effect of air pollution on the calculation speed of a computer is of interest, one 

can simply measure the computer calculation speed in an environment with clean air 

and then take the same computer to a room with polluted air. It does not matter when 

to conduct the first part of the experiment, so the temporal stability assumption is met. 

Plus, neither the clear air nor the measurement of computer calculation speed is likely 

to change the computer; therefore, the second measurement conducted in a polluted 

environment is not affected by the first measurement. In this way, the causal 

transience assumption is met.  

The second method employed in the scientific solution only required unit 

homogeneity, that 
 
and 

 
for two units i1 and i2. Under 

this assumption the causal effect of T was . Take the previous 

( )0Y i

( )0Y i

( )1Y i

( ) ( )1 1 1 2Y i Y i= ( ) ( )0 1 0 2Y i Y i=

( ) ( )1 1 0 2Y i Y i−
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computer experiment as an example. If the researcher is convinced that the same type 

of computers would not differ in all relevant aspects, calculation speed or reaction to 

polluted air, for instance, the unit homogeneity is met and the causal effect of polluted 

air is the difference in calculation speeds for two computers measured separately in 

two conditions.  

However, in most experiments, neither method of the two scientific solutions 

would be applicable. That is when the statistical solution is engaged. Holland (1986) 

stated that the statistical solution tried to estimate the average causal effect, ∆ , of T 

(relative to C) over a population I, which is equal to the expected value of the 

difference, , over every unit i in I. This is defined as: 

 .  (2) 

It is worth noticing that for a given unit i only one of  or  could be 

observed based on i’s value on variable D. If i was assigned and attended to the 

treatment group T, then ; otherwise, . Therefore, data  for 

unit i could be observed. It was also known that 

 ,  (3) 

and 

 .  (4) 

In general,  because 
 
was the average value of 

 over only those exposed to treatment but  the average value of 
 

overall i in I. In other words, the former was the averaged value of a subpopulation 

while the later was the averaged value of a whole population. If the subpopulation 

( ) ( )1 0Y i Y i−

( ) ( ) ( )1 0 1 0   –    – E Y Y E Y E Y∆ = =
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0( | 0) ( | 0)DE Y D E Y D= = =

( ) ( )1 1|  1  E Y D E Y= ≠ ( )1 |  1E Y D =
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differs from the whole population on factors that may influence the outcome, their 

expectations of the outcome should also differ. Similarly, . 

However, when randomized experiments were used, the two subpopulations are 

randomly formed by randomly dividing the whole population, so the two 

subpopulations are not expected to deviate from the whole pupation. Accordingly, 

their expectation of the outcome under the treatment or control condition should be 

the same as the full population’s expectations under the two conditions. In equation,    

 ,   (5) 

and 

    (6) 

when random assignment is achieved. Therefore, the average casual effect  could 

be expressed as  

    (7) 

2.2.2. Randomized experiment with noncompliance.  

Unfortunately, randomized experiments cannot always be perfectly 

implemented. In some cases, although researchers can independently manipulate a 

potential cause and try to draw counterfactual inference about what would have 

happened in the absence of treatment, the random assignment process could be easily 

contaminated. Shadish et al. (2002) exemplified that non-randomness could happen 

because of self-selection, i.e., participants choosing which treatment group they 

wanted to join, or as a result of administrator selection, where, instead of random 

assignment, teachers, legislators, therapists, or others parties chose which participants 

( ) ( )0 0|  0  E Y D E Y= ≠

( )1 1( | 1)E Y D E Y= =

( )0 0( 0)|E Y D E Y= =

∆
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to receive certain treatments. Consequently, the randomization is invalidated by the 

noncompliance. 

Random experiments with noncompliance meet the first two of Mill’s three 

conditions for making causal inferences: 1) cause precedes effect, and 2) different 

levels of cause can lead to different levels of effects. However, the third condition of 

using random assignment to eliminate all other possible explanations for any 

differences in effect observed is violated by noncompliance. The control group may 

differ from the treatment group in many systematic ways other than the manipulated 

treatment conditions.  

In randomized experiments, the assignment of participants to treatment and 

the treatment level received are exogenous because the “outside agent” has total 

control over the assignment and receipt to ensure the randomness. With 

noncompliance, researchers have no direct control over what level of treatment is 

received by subjects. Therefore, the treatment received is considered to be 

endogenous. As a result, Equations 5 and 6 will not hold; therefore the average causal 

effect cannot be directly estimated using Equation 7. 

As discussed in the earlier section, the special version of the IV approach, the 

CACE approach, can be used with the occurrence of noncompliance. The IV method 

is regarded as the “most powerful weapon” (Angrist & Pischke, 2008, p. 114) among 

tools of estimating the causal effect. The exogenous instrumental variable can carve 

out the exogenous variation in the independent variable and estimate the causal effect 

on the outcome variable with only this part (Murnane & Willett, 2010). Therefore, an 
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“asymptotically unbiased estimate” of causal effect can be estimated even with an 

endogenous observed treatment variable (Murnane & Willett, 2010, p. 205). 

2.2.3. Compliers, always-takers, never-takers, and defiers  

In order to understand the mechanism of using the CACE approach to 

estimate the causal effect, the population of interest should be clearly defined first. 

Imbens and Rubin (1997b) characterized study participants as compliers, always-

takers, never-takers, and defiers. Compliers will always follow the assignment. In 

other words, if a complier is assigned to the treatment group, he or she will take the 

treatment, and if this complier is assigned to the control group, he or she will not take 

the treatment. Always-takers will always make themselves available for the treatment 

and take the treatment no matter whether they are assigned to treatment or control 

group. Never-takers, on the other hand, will always avoid taking the treatment 

regardless of their group membership. The last type of participant, defiers, will 

choose to take the different treatment that is the opposite of their own assignment: a 

defier being assigned to the treatment group will not take the treatment but will take 

the treatment once he or she is assigned to the control group.  

Let Zi be the binary assignment variable, for participant i, taking the value of 1 

if the ith participant is randomly assigned to the treatment group and 0 if randomly 

assigned to the control group. Let 
 
that will take two forms,  and 

.  and 
 
denote the treatment level received or observed giving the 

random assignment of Z.  If participant i is a complier, 
 
and . If 

participant i is an always-taker, . If participant i is a never-

( ) i i iD D Z= ( )1iD
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taker, . If participant i is a defier,  and 

.  

In most cases, the values for  and 
 
are observable, but the ith 

participant’s compliance status is usually unknown. For example, if a participant is 

assigned to the treatment group, , and he actually takes the treatment, 

, he can be a complier or an always-taker. Or if a participant is assigned to 

the control group, , but he actually takes the treatment, , he can be 

a never-taker or a defier. Because of this unknown compliance status, the estimation 

of the treatment effect becomes more complicated. 

2.2.4. Estimating causal effect with complete compliance  

If all participants comply with their assignments (i.e., there is no 

noncompliance), our experiment would be the typical randomized experiment where 

the causal effect of the treatment equals the intent-to-treat (ITT) effect, and 

  ,  (8) 

where  denoted the population mean of those who were assigned to the treatment 

group and  denoted the population mean of those who were assigned to the control 

group. Under the assumption of stable unit treatment value (SUTVA), which requires 

no correlation between the value of potential outcome for each participant and the 

treatment status of other participants in the sample (Rubin, 1974, 1980, 1990) and the 

assumption of random assignment of participants into different treatment groups, the 

unbiased estimate of the causal effect with full compliance is  
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,
 (9) 

where  is the sample mean outcome of participants assigned to the treatment group, 

and 
 
is the sample mean outcome of participants assigned to the control group. The 

SUTVA assumption and the random assignment assumption is explained in section 

2.2.5.  

To describe the ITT effect, consider a hypothetical research scenario where 

researchers are interested in the effect of a new teaching method on improving 

students’ performance on a reading test. Students are randomly assigned to take the 

new and the old teaching method without knowing which group takes the new 

method and which group takes the old method. Everything else is also kept the same 

for both groups. After a certain time, all participants are tested with the same reading 

test. If every student in the study follows the assignment, the difference between the 

group mean scores is an unbiased estimation of the treatment effect of the new 

teaching method. However, if there is noncompliance, the group mean difference is 

just an unbiased estimation of the assignment effect, i.e., the ITT effect. 

2.2.5. Estimating causal effect with noncompliance  

As discussed above, there can be compliers, always-takers, never-takers, and 

defiers in a sample, and each group of participants could have its own distribution of 

causal effect. When there is no noncompliance and it is feasible to create control and 

treatment groups that are expected to have the same proportion of each of the four 

subpopulations, the treatment effect can easily be estimated with the difference 

between the treatment and the control groups. When noncompliance is involved, the 

� �
1 0ITT Y Y∆ = = −

1Y

0Y



 

26 

 

difference between the group of subjects who are assigned to take the treatment and 

those who are assigned to take the control is merely the intent-to-treat effect that 

reflects the influence of assignment instead of treatment because there are no 

counterfactual groups in the sample for some compliance groups.   

If, however, it is possible that the researcher can force all subjects assigned to 

the treatment group to take the treatment (e.g., injection of a new vaccine) and leaves 

no access to the treatment for those assigned to the control group, the ITT effect is 

still the causal effect of this treatment on the whole population despite the underlying 

compliance statuses. The enforcement eliminates self-selection for the non-complier 

subpopulations. The effect estimated by the group difference is an unbiased 

estimation of the treatment effect overall subpopulations. 

However, the mixed treatment effect overall subpopulations might not be the 

focal effect of interest. For example, in an educational intervention study, 

policymakers are interested to know the effect of a type of tutorial software on 

students’ achievement under natural settings. Once out of the enforced experiment, 

students will be free to choose whether they want to use the software or not and there 

may be different averaged effects for each subpopulation. Therefore, the estimated 

causal effect observed by forcing every subject in the sample to comply with his or 

her own assignment cannot be generalized to the effect of interest. This is a downside 

associated with a forced compliance design.  

In addition, the situation of forced treatment and restricted access to treatment 

for the control group is very rare. In a lot of research settings, researchers can at most 

randomly assign subjects to the treatment or control group, but they have no further 
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control over whether subjects will actually comply with the assignment. After 

participants are randomly assigned to the treatment or control group, some subjects 

will comply with their assignment and some subjects will not comply. Table 1 

illustrates the composition of each group with the presence of noncompliance.  

Table 1  

Possible Composition of the Compliance Status for a Sample with Noncompliance  

 

The RCM (Holland, 1986; Rubin, 1974, 1980) explains the difference 

between the forced design and the design where the enforcement is not possible. 

According to RCM, every individual has two possible outcomes , if taking the 

treatment, and , if taking the control assignment, but only one outcome can be 

observed and the other outcome is intrinsically missing. Table 2 presents the observed 

and missing situations for both designs. Outcomes that are not formatted are observed 

outcomes, and outcomes that are underlined and shaded in grey are missing.  

For the forced compliance design, subjects assigned to the treatment group all 

miss their possible outcomes for the control level and subjects assigned to the control 

group all miss their possible outcomes for the treatment level. As subjects were 

randomly assigned to the treatment or control group, the two groups are expected to 

be equivalent on the outcome distributions. Therefore, the control group mean of 

Cell 1: Compliers Cell 2: Never-takers

Always-takers Defiers

Cell 3: Always-takers Cell 4: Compliers

Defiers Never-takers

Assignment (Z )

Actual Treatment Taking (D )

1 (Take Treatment) 0 (Not Take Treatment)

1 (Treat)

0 (Control)

( )1Y i

( )0Y i
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 is an unbiased estimation of the mean of the missing values on  in the 

treatment group.  

On the contrary, for the non-forced compliance design, only compliers and 

defiers have both observations,  and , across the two assigned groups. For 

always-takers and never-takers, neither potential outcome of the two levels of the 

assignment is observable. Therefore, it is impossible to estimate an unbiased 

treatment effect for always-takers and never-takers. As illustrated in Table 2, for 

always-takers, no matter which group they are assigned to, only  is observable. 

Similarly, for never-takers, only  is observable. Thus, the ITT effect is not an 

averaged causal effect over all subpopulations in non-forced compliance designs.   

Table 2 

Outcome Compositions for the Forced Compliance Design and the Non-Forced 

Compliance Design 

 

Note. Outcomes underlined and shaded in grey are missing 

One might be curious if it is conceivable to use the group difference between 

the group that actually takes the treatment (i.e. the  group) and the group that 

takes the control level (i.e. the  group) to estimate the treatment effect. 

( )0Y i ( )0Y i

( )1Y i ( )0Y i

( )1Y i

( )0Y i

Compliers Y1(i ) Y0(i ) Compliers Y1(i ) Y0(i )

Always Y1(i ) Y0(i ) Always Y1(i ) Y0(i )

Never Y1(i ) Y0(i ) Never Y1(i ) Y0(i )

Defiers Y1(i ) Y0(i ) Defiers Y1(i ) Y0(i )

Compliers Y1(i ) Y0(i ) Compliers Y1(i ) Y0(i )

Always Y1(i ) Y0(i ) Always Y1(i ) Y0(i )

Never Y1(i ) Y0(i ) Never Y1(i ) Y0(i )

Defiers Y1(i ) Y0(i ) Defiers Y1(i ) Y0(i )

0

Assignment

1

Forced Compliance Non-Forced Compliance

Actual Treatment Taking Actual Treatment Taking

1 0 1 0

 1D =

 0D =
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Unfortunately, the two groups are not equivalent. When noncompliance occurs, the 

 group has no never-takers while the  group has no always-takers. The 

intended group balance for using random assignment is not achieved in this situation. 

Therefore, using the group difference as the estimated treatment effect is not 

defendable.   

Fortunately, the compliers still have a balanced distribution of 
 
and 

 
across the two assigned groups. If it is somehow feasible separate the complier 

subpopulation, the treatment effect on the compliers (the CACE) can still be 

estimated. The IV method, with some restrictions, makes it possible. The CACE can 

be defined as 

    (10) 

where  denotes the population mean of compliers that have been assigned to the 

treatment group and  denotes the population mean of compliers that have been 

assigned to the control group. 

Assumptions when using the Standard IV method to estimate the CACE. It 

might seem easy to estimate CACE with Equation 10, but it is almost impossible to 

verify some participants’ compliance status. For example, in Cell 1 of Table 1 where 

Assignment (Z) takes 1 and Actual Treatment Taking (D) also takes 1, it is clear that 

participants who are assigned to take the treatment and as a result take the treatment, 

but it is implausible to distinguish, without further information, whether they just take 

the treatment because they are assigned to the treatment group (a complier) or 

whether they will take the treatment despite their membership (an always-taker). 

Likewise, in Cell 2 where Assignment (Z) takes 1 and Actual Treatment Taking (D) 

 1D =  0D =
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takes 0, one can know that participants in the cell are assigned to take the treatment 

but they fail to show up, and one can hardly sort out whether they just refuse to take 

any treatment (a never-taker) or they only take the opposite of their assignment (a 

defier). In fact, for a sample that has the exact composition shown in Table 1, it is 

impossible to identify any participant’s compliance status without additional 

information. 

Nonetheless, following the work of Angrist et al. (1996) and Angrist and 

Imbens (1995), five assumptions based on the RCM put more restrictions on the data 

and allows us to estimate the CACE. 

The first assumption, SUTVA, requires that potential outcomes for each 

individual should not be related to the treatment status of other subjects in the sample. 

An example in educational intervention could be an experiment that looks into the 

effect of class size on students’ academic performance. Students are assigned to two 

experiment groups, the treatment group, a smaller sized class, and the control group, a 

normal sized class. However, there are two good friends in the sample. Let’s call 

them Jack and James. Jack will perform particularly well if James is in the same 

classroom, and he will not focus enough if otherwise. As a result, the performance of 

Jack is not only influenced by his assignment but also by the presence of James.  If 

there are a lot of individuals similar to Jack in the sample, the treatment effect is 

further intertwined with the codependence among sample units and becomes 

impossible to estimate.   

The second assumption requires random assignment of subjects to the 

treatment and the control group. That is to say, the probability of being assigned to 
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 should be equal across all subjects and the same goes for the probability of 

being assigned to . Random assignment ensures that the assignment variable, 

Z, is exogenous and approximates the equivalence between the treatment and the 

control conditions. If random assignment is successfully done, the pretreatment 

characteristics between the two groups will be very similar, which provides a fair 

comparison between the two groups.  

As mentioned before, the assumption of SUTVA and random assignment 

ensures that the difference between the control and the treatment groups in the sample 

is an unbiased estimation of the ITT effect in the population. There are three more 

assumptions needed for an unbiased estimation of the CACE. 

The third assumption is the assumption of monotonicity: there are no defiers 

in the population. This assumption will hold if participants have no option other than 

to take their assigned treatment or there is no reason for someone to be a defier. The 

first condition is equivalent to the forced treatment mentioned above, whereas the 

second condition needs convincing and comprehensive arguments that rule out all 

possibilities of having defiers in the population. According to Angrist and Imbens 

(1995), the assumption of monotonicity is “fundamentally untestable” (p. 469) and 

the validity needs to be argued in a specific context. In most cases, defiers are 

considered as the least likely type of noncompliance, but the violation of this 

assumption can have a serious impact on the estimation of CACE using the IV 

method (Jo, 2002).  

Assumption 4 is the assumption of exclusion restriction: for never-takers and 

always-takers, the distributions of the potential outcome variable Y are not related to 

1iZ =

0iZ =
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the treatment assignment variable Z, which captures the notion that any effect of Z on 

Y must be via an effect of Z on D. In other words, never-takers and always-takers will 

always receive their preferred treatment irrespective of the original assignment ( ): 

Di always equals 1 for always-takers and always equals 0 for never-takers. 

The last assumption requires a nonzero-average causal effect of Z on D or the 

expected difference between the proportion of participants who actually receive 

treatment assignment and taking the treatment (  and ) and the 

proportion of participants who actually receive control group assignment but taking 

the treatment (  but ) is not zero (Little & Yau, 1998). More explanation 

is provided in the next section.  

2.3.Instrumental Variable  

2.3.1. Standard IV estimation  

With the five assumptions listed above, one can use the Standard IV 

estimation method to estimate the averaged causal effect among compliers. Following 

Imbens and Rubin (1997b) and Little and Yau (1998), this section demonstrates the 

mathematical derivation for the CACE estimation process with the Standard IV 

method.  

In Equation 8, the ITT effect is the difference between the population means 

of those assigned to the treatment group and those assigned to the control group. It 

can also be decomposed as a combined causal effect of the assignment Z on compliers 

and non-compliers, 

iZ

 1iZ =  1iD =

 0iZ =  1iD =
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   (11) 

where 
 
is the proportion of compliers in the population, 

 
is the proportion of 

non-compliers, 
 
is the averaged causal effect of the assignment on compliers (i.e. 

the CACE) and 
 
is the averaged causal effect of the assignment on all non-

compliers—defiers, always-takers, and never-takers. As the population consists of 

compliers and non-compliers, the sum of 
 
and 

 
should equal 1. Equation 11 can 

be further changed:    

 .  (12) 

 
can be decomposed into a combination of the averaged causal effects of 

the assignment on never-takers, always-takers, and defiers respectively,  

 ,  (13) 

where , , and 
 
are the population proportions of always-takers, never-

takers, and defiers respectively, , , and  are the averaged causal effects of 

the assignment on always-takers, never-takers and defiers correspondently.  

According to assumption 3, monotonicity, there are no defiers in the 

population. 
 
hence equals to 0. With the exclusion restriction, which assumes the 

potential outcome variable Y has distributions not related to the treatment assignment 

variable Z for never-takers and always-takers, the causal effects of the assignment on 

never-takers and always-takers are 0. Therefore,  as described below.  

1 0= =
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Figure 1 illustrates more of the exclusion restriction assumption by specifying 

the path model for each subpopulation when this assumption is met. The four 

numbers from Z to D denote the effects of the assignment variable on the treatment-

received variable for the four subpopulations. The different  from D to Y are the 

effects of the treatment-received variable on the outcome for the four subpopulations. 

Correspondingly, the products of the two numbers are the effects of the assignment 

variable on the outcome (i.e., , , , and ). As both Z and D are 

dichotomous variables, 1 from Z to D means Z and D always take the same level (i.e., 

compliers), -1 from Z to D means Z and D always take the opposite level (i.e., 

defiers), and 0 from Z to D means the value of D is not related to the value of Z (i.e., 

always-takers and never-takers). As a result, the causal effect of Z on Y for compliers 

is . For defiers is . Because monotonicity assumes no 

defiers, this part will not be added to . For always-takers, the causal effect of Z on Y 

is . Similarly, for never-takers, the causal effect of Z on Y is 

. Subsequently, with assumption 3 and 4, Equation 13 equals to 0 and 

Equation 12 can be simplified as  

 .  (14) 

 As mentioned above, 
 
is an unbiased estimation of  under the 

assumption of SUTVA and random assignment. Thus, the next step is to find an 

unbiased estimation of .  

sβ

c∆ at∆ nt∆ d∆

1c cβ∆ = × 1d dβ∆ = − ×
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0 0at atβ= × =∆

0 0nt ntβ= × =∆
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Figure 1. Model specifications for the four subpopulations. 

The proportion of compliers is equal to the proportion of compliers and 

always-takers minus the proportion of always-takers, 

   (15) 

where 
 
is the proportion of compliers and always-takers. Let 

 
be the 

proportion of participants who are assigned to the treatment group and actually take 

the treatment, i.e., the proportion of compliers and always-takers in the treatment 

group, and 
 
be the proportion of participants who are assigned to the control 

group but instead take the treatment, i.e., the proportion of defiers and always-takers 

in the control group. Due to the assumption of monotonicity, , so . 

Under assumption 2, 
 
is an unbiased estimation of 

 
and 

 
is an unbiased 

estimation of . Thereafter, an unbiased estimation of , denoted as , can be 

expressed as  
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   (16) 

As all participants are randomly assigned to take either 
 
or , 

 
and 

 
are expected to be equal in both 

 
or 

 
groups. Therefore, the 

 
for 

the 
 
group and the 

 
for the 

 
group are also equal to the 

 
and 

 

in the whole population, so the 
 
for the 

 
group and the 

 
for the 

 

group are an unbiased estimation of population 
 
and . The equation above 

can be further decomposed as 

   (17) 

where, as presented in Table 1, 
 
is equal to the sample size of Cell 1 plus Cell 2, 

 
is equal to the sample size of Cell 3 plus Cell 4, 

 
is equal to the sample 

size of Cell 1, and 
 
is equal to the sample size of Cell 3. The unbiased 

estimation of the causal effect of the treatment on the compliers is equal to the ITT 

effect divided by the difference in the proportion of compliers and always-takers in 

the assigned treatment group and the proportion of always-takers in the assigned 

control group.  

Assumption 5 requires a nonzero-average causal effect of Z on D, which is 

equivalent of expecting the difference between the proportion of participants who 
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actually receive treatment assignment and taking the treatment and the proportion of 

participants who actually receive control group assignment but taking the treatment to 

be not zero. As discussed above, the causal effect of Z on D can be decomposed into 

products of the effect of each subpopulation times each subpopulation’s proportion. 

In addition, the effects for the always-takers and never-takers are zero and the effect 

for compliers is 1. It is further assumed there are no defiers. Therefore, in order to 

have a nonzero-average causal effect of Z on D, the proportion of the compliers 

should not be zero. On the other hand, as demonstrated in the above paragraph, the 

proportion of the compliers can be estimated by the difference between the proportion 

of participants who actually receive treatment assignment and taking the treatment 

and the proportion of participants who actually receive control group assignment but 

taking the treatment; thus when the proportion difference is not zero, the proportion 

of the compliers is not zero and the average causal effect of Z on D is not zero. 

Although Assumption 5 requires that to be not zero and 

should be by definition nonnegative, the unbiased estimation 

 cannot be guaranteed to be bigger than zero. 

This is one drawback of using the Standard IV approach.   

There are different variants of the Standard IV estimation. When both the 

instrumental variable and the assignment variable are dichotomous, the Standard IV 

estimate presented in Equation 17 is called the Wald estimator (Brookhart, Rassen, & 

Schneeweiss, 2010; Murnane & Willett, 2010). A more general estimation method is 

the method-of-moments estimator, where all variables can be either dichotomous or 
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continuous (Murnane & Willett, 2010). The method-of-moments estimator can be 

expressed as 

   (18) 

where 
 
is the covariance between Y and Z, and  is the covariance between D 

and Z. Equation 18 is equivalent to Equation 17 when variable D and Z are 

dichotomous. 

When a study involves only one outcome variable, one assignment-taken 

variable, and one random assignment variable, both the Wald estimator and the 

method-of-moments estimator work well (Murnane & Willett, 2010). However, with 

more complex research designs, the two-stage least-square (2SLS) or the structural 

equation modeling (SEM) method are widely used. The two methods can easily 

accommodate various data-analytic settings, such as including multiple random 

assignments, assignment-taken, and outcome variables, and incorporating non-linear 

relationships among variables (Brookhart et al., 2010; Murnane & Willett, 2010). 

Modeling with a continuous assignment-taken variable. Firstly, consider 

when the assignment-taken and outcome variables are both continuous. The 2SLS 

method is a split process that uses two ordinary least square (OLS) regressions to 

estimate the treatment effect among compliers. The first stage uses the exogenous 

assignment variable, Z (it will be a vector symbol, Z, if there are more than one 

assignment variables), to carve out the exogenous part in the treatment-taken variable, 

D: 

    (19) 
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 The second stage then uses only the carved out exogenous part from stage 1 

( ) to predict the outcome variable, Y:  

    (20) 

where  is the estimated treatment effect among compliers. 

The SEM method fits Equation 19 and Equation 20 simultaneously and yields 

identical parameter estimates as the 2SLS method. Nonetheless, the SEM approach 

has two main advantages over the 2SLS method. The first advantage is that the SEM 

method depicts the relationships among all variables in a clearer way. For example, 

suppose there is one assignment variable Z, one assignment-taken variable D, and one 

outcome variable Y. If all assumptions discussed earlier are met, the path model is 

presented in Figure 2. There is no arrow pointing to the exogenous variable Z, which 

is consistent with the aforementioned assumption of random assignment. Also, there 

is no connection between Z and Y other than through D, which conforms to the 

assumption of exclusion restriction. In order to meet the last assumption of nonzero-

average causal effect of Z on D,  should not be 0. Parameters indicating causal 

effects in Figure 2 (
 
and ) are identical to parameters estimated from Equation 19 

and 20, so  is still the estimated treatment effect among compliers. 
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Figure 2. Path model presenting hypothesized relationships among an outcome 

variable Y, an endogenous assignment-taken variable D, and an exogenous 

assignment variable Z. 

Note that the first stage error, , is allowed to covary with the second stage 

error, . This specification is essential because it separates the variation that is not 

“caused” by Z in D and Y from the variation that is “caused” by Z. In this way, the 

exogenous part in D can be utilized to determine its effect on Y (i.e., ) (Murnane & 

Willett, 2010). By conducting a hypothesis test of the existence of the covariation 

between  and , it can be decided if the instrumental variable Z is required to 

estimate the causal effect of D on Y: if the covariation is not significant, the 

dependent variable Y can be simply regressed on D.  

The second advantage of the SEM method is that the outcome variable can be 

measured with multiple indicators and only the relatively “pure reflection of the 

variable of interest” (Hoyle, 2012, p. 12) will be used for treatment effect estimation. 

In this way, the outcome variable can be used as a latent factor and measurement 

errors from indicators can be adequately eliminated. This feature can easily be 

applied to LGM techniques where each measurement occasion can be treated as an 

indicator of the latent intercept and latent slope. In the current research, the author 

only focused on the SEM variant. 
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 Modeling with a dichotomous assignment-taken variable. If D is 

continuous, conventional SEM approach with common SEM packages (e.g., Amos 

[Arbuckle, 2006], EQS 6 [Bentler, 2006], LISREL 9.2 [Jöreskog & Sörbom, 2015], 

Mplus 8.1 [Muthén & Muthén, 1998-2018], the open source R package ‘lavaan’ 

[Rosseel, 2012]) are available to estimate all parameters in the path model and a z-test 

allows the examination of the significance of each parameter. However, when D is 

dichotomous, treating D as continuous will yield an estimation of  that is identical 

to the Wald estimator. To illustrate the computation of , a covariance matrix of the 

three observed variables for the path model is presented in Figure 3 according to 

Wright’s rule of tracing (1918, 1934).  can be calculated directly by dividing the 

covariance of Z and Y by the covariance of Z and D, which is equivalent to Equation 

18. As stated earlier, Equation 17 and 18 are equivalent with dichotomous Z and D. 

Therefore, using conventional SEM and treating variable D as continuous will result 

in an asymptotically unbiased estimation of the CACE when all other assumptions are 

met.  

  

Figure 3. Covariance matrix of variable Z, D, and Y. 

However, the standard errors estimated would be inaccurate because 

conventional SEM requires continuous dependent variables (Edwards, Wirth, Houts, 

& Xi, 2012) that are multivariate normal and have homoscedastic residuals (Kline, 
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2012). With the binary assignment-taken variable, none of the assumptions are met. 

Hence, the standard errors estimated by directly using the SEM model would be 

inaccurate and therefore lead to incorrect rejection or retain. Fortunately, 

bootstrapped standard errors are available for an empirical estimation of the standard 

error. Poi (2004) presented a clear illustration of this nonparametric technique. If the 

research interest was to estimate a parameter θ for population F and the current 

sample f of size n was randomly selected from F, the sample data can be used to 

obtain  as an estimation of . With bootstrapping, one can repeatedly draw 

random samples  of the size n with replacement from the original sample f, and 

from each randomly drawn parameter  can be estimated. After repeating this B 

times, all s will form an empirical sampling distribution for . With the sampling 

distribution, the standard deviation of the distribution can serve as the standard error 

of . With higher repetition, the bootstrap sampling distribution will approximate the 

real sampling distribution better (Poi, 2004); however, the total computation time will 

increase a lot. In this study, the repetition time was set to be 500 (B  = 500) as a 

compromise between computation time and standard error precision.  

2.3.2. Mixture model based method for the CACE estimation 

The Standard IV estimation method can give a causal interpretation for the 

compliers without requiring a functional form or constant treatment effect 

assumptions (Imbens & Rubin, 1997b). However, its merit of being simple and clean 

also leads to some limitations.  
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Imbens and Rubin (1997b) laid out the limitation of the Standard IV method 

and pointed out that the estimates were essentially based on the estimation of the 

density function of the outcome variable for the compliers. However, during the 

estimation process, the density function was not restricted to be positive, so the 

estimation results can be inaccurate. Their detailed explanations are provided below. 

Let  denote the distribution of the outcome 
 
in a subpopulation 

where the individuals take 
 
and . 

 
can be estimated with the 

observable empirical distribution  from a subsample where the subjects take 

 
and . Let  denote the distribution of the outcome Yi in a 

subpopulation where individuals take 
 
and . K is a latent variable 

describing subjects’ real compliance status and  can take on four possible values 

as follows, 

  

As monotonicity assumes that there are no defiers, 
 
would not take the 

value d. Because  is not directly observable for all individuals (i.e. one cannot 

distinguish compliers from always-takers in the treatment group and cannot 

distinguish compliers from never-takers in the control group either), the empirical 

distributions, , for all subgroups cannot be obtained and 
 
is not directly 

estimable for every subgroup.  
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However, the estimable distribution of  is available for deriving the 

distribution of . Because of randomization, the assignment variable Z is 

independent of subjects’ true compliance status K. Also because of exclusion 

restriction, the distributions for always-takers and never-takers on the potential 

outcome variable Y are the same irrespective of which value subjects take for Z. If the 

sample size is big enough, the observed empirical distribution of  for always-takers 

assigned to the control group, , enables the estimation of the distribution of 

 for always-takers in both assignment groups. The same logic also applies to the 

never-takers. Therefore, 

   (21) 

   (22) 

and 

   (23) 

   (24) 

For compliers assigned to the control or the treatment group, their distributions on the 

outcome variable are mixed with those of the always-takers and the never-takers. 

Therefore, the distribution of the subjects assigned to the treatment group and actually 

taking the treatment, , is a mixture of the two distributions: , for 

always-takers, 
 
and , for compliers, where 

   (25) 
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Similarly, the distribution of the subjects assigned to the control group and those that 

actually comply with their assignment, , is a mixture of the two distributions:  

, for never-takers and , for compliers, where 

   (26) 

Equation 25 and 26 can be inverted so that 
 
and 

 
can be expressed with 

all estimable terms:   

   (27) 

and 

   (28) 

Therefore, the empirical distribution of 
 
and 

 
can be expressed with the 

observable distributions and sample proportions as 

    (29) 

and 

   (30) 

From Equation 29 and Equation 30, both empirical distributions for compliers in the 

control and the treatment groups can be derived. 

The Standard IV method, on the other hand, only derives the means of the 

distributions. Imbens and Rubin (1997b) further displayed how the Standard IV 
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method is “implicitly based on” (Imbens & Rubin, 1997b, p. 560) the outcome 

distribution estimation method. From Equation 27 and Equation 28, it is known that  

   (31) 

and 

 , (32) 

where  is the mean of units with  and ,  with  and , 

 with  and , and  with  and .  

If subtracting Equation 32 from Equation 31, the CACE can be calculated as 

   (33) 

Equation 33 can also be estimated with Equation 16; therefore, the Standard IV 

estimation method is essentially based on the outcome distribution estimation 

method.   

The problem with the Standard IV estimation method is that it only uses the 

expectations of observed  conditional on the observed assignment variable  and 

the observed treatment taking variable . The underlying mixture structure implied 

by the model, expressed in Equations 25 and 26, is not taken into account in this 

approach. Specifically, the observed distributions,  and , are mixtures 

of the observable distributions  and 
 
and of the non-observable 
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distributions 
 
and . The density of all these distributions should be 

constrained to be non-negative. However, while estimating the distributions of 

interest, 
 
and , using Equations 29 and 30, negative density is likely to 

present due to sampling variation or violation of the assumptions. 

To demonstrate possible negativity due to sampling variance, simulation data 

were generated. All assumptions were met to exclude other reasons for negative 

density. Table 3 presents the means and proportions for subjects with different 

compliance statuses and different treatment levels received. In specific, compliers 

assigned to the treatment group had a population mean of 3 and assigned to the 

control group had a population mean of 0; always-takers had a population mean of 6 

no matter which group they were assigned; never-takers had -3 irrespective of the 

assignment. There were no defiers because of the assumption of monotonicity. 

Variances were all set at 1, and all distributions were normal. A total sample of 

20,000 subjects was selected from all the six distributions and the proportion of each 

subsample was also specified in Table 3. In order to make our exemplification easy, 

the proportion of each subsample was set to have no sampling variance—the 

subsample proportions equaled the subpopulation proportions. Each data point was 

forced to have only one place after the decimal so that the proportion of each data 

point approximated the integrated density for a small range of data points nearby. 

Because of the large sample size, the graph, which plotted the proportion of each data 

point against each data point, approximated the density plot of each distribution.  
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Table 3 

Subpopulation Means and Proportion 

 

Figure 4 depicts the comparison of the estimated density (symbolled with “●”) 

and the generated density (symbolled with “∆”) for compliers assigned to the 

treatment group, and Figure 5 presents the comparison for compliers assigned to the 

control group. The empirical distributions of the two figures were derived using 

Equations 29 and 30. As it is shown in Figure 4, the generated density is constantly 

positive, but towards the positive tail, the estimated density has some negative values. 

A similar pattern can be observed in Figure 5 where the generated density is 

constantly positive, but towards the negative tail, the estimated density has some 

negative values.   

 

Compliers (μ c1 = 3, 25%) Never-takers (μ c1 = -3, 15%)

Always-takers (μ c1 = 6, 10%)

Always-takers (μ c1 = 6, 10%) Compliers (μ c1 = 0, 25%)

Never-takers (μ c1 = -3, 15%)

Actual Treatment Taking (D )

1 (Take Treatment) 0 (Not Take Treatment)

Assignment (

1 (Treat)

0 (Control)

��		

��
	

��	


��
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Figure 4．Comparison of the estimated density and the generated density for 

compliers assigned to the treatment group. 

 

Figure 5. Comparison of the estimated density and the generated density for 

compliers assigned to the control group. 

To enforce non-negativity for 
 
and , Imbens and Rubin (1997b) 

proposed to build a mixture model and use maximum likelihood to estimate the 

parameters. They assumed that the outcome variable Y for compliers, always-takers, 

and never-takers all followed a normal distribution, but they have their own variance 

depending on their own compliance status and their own mean depending on their 

compliance and treatment level received. The likelihood for observed data  

can be expressed as  

  , (34) 
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where 
 
is the set of 

population parameters for compliers, always-takers, and never-takers, and 

 represents the normal distribution density function with a mean of   

and a variance of .   

To understand the likelihood above, the joint probability density function is 

displayed below. The joint probability density function is equal to the likelihood 

function of the three observed variables, Y, D, and Z, given the set of population 

parameters , ,   

  , (35) 

where n is the total sample size. Because Z is an exogenous variable, 

. Because D can be determined by (Z, K) and is irrelevant to , 

 
and . The 

integration changes into summation because K is a categorical variable and hence 

discrete. 

As D and Z are dichotomous variables, 
 
can be written as 
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   (36) 

By substituting the conditional form of Equation 35, the joint probability of variables 

Y, D and Z takes the form  

    (37) 

In the above equation, some conditional probabilities are equal to 0 (e.g.,
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and some probabilities are equal to 1 (e.g., , 

, , 

, 
 
and 

). Therefore, Equation 37 can be further reduced to  

  , (38) 
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constant. As a result, 
 
takes the same form as the likelihood function in 

Equation 34.   

Parameters  can be estimated with the maximum likelihood using the EM 

algorithm (Dempster, Laird, & Rubin, 1977; Redner & Walker, 1984). The EM 

algorithm is an approach that iteratively computes the maximum-likelihood estimates 

of population parameters that govern the distribution of variables in an observed 

incomplete data set (Dempster et al., 1977).  

In the scenario discussed here, observed values on variables Y, D, and Z along 

with values on the partially observed class status variable K can be viewed as 

complete data. With only vectors of Y, D, and Z, the data are incomplete and the 

likelihood function in Equation 34, , therefore corresponds to 

incomplete data. If the observed data set is complete, it is possible to analytically find 

a set of parameters  that maximize the likelihood function. With the incomplete 

data, unfortunately, it is impossible to find the analytical expressions for . 

To incorporate variable K into the likelihood function, a matrix of indicator 

variables is therefore introduced to solve the problem. Let . Each 

 is a k-dimensional vector of zero-one indicator variables,  and  

. 

As a result, the new log-likelihood function, assuming that the newly introduced 

matrix C can be fully observed, takes the form 
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   (39) 

After taking a logarithm on both sides, 

     (40) 

The EM algorithm manages to solve the problem with two steps for each 

iteration: the Expectation Step (the E-step) and the Maximization Step (the M-step). 

The goal of the E-step is to find the expectation of the complete likelihood regarding 

the unknown data on C given the observed data and the parameters estimated from 

the last iteration . The expectation function can be defined as 
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   (42) 

In addition, according to Bayes theorem,   

  , (43) 

whereas,  

  follows a 

normal distribution of , and . As a result,  
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   (46) 

and 

   (47) 

Therefore, 

  (48) 

In short, the E-step can be viewed as computing the posterior probability of each 

compliance class with respect to the parameters estimated at the (t-1)-th iteration for 

each individual in the study.  

The M-step then maximizes the expectation function from the E-step with 

respect to the vector of parameter and yields the parameter estimates for the t-th 

iteration. By setting the first derivative of  with respect to each element in 
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vector  equal to 0, the derivative functions can be solved and the updated 

parameters are obtained as   

   (49) 
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   (55) 
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   (58) 

and 

   (59) 

With the newly estimated parameters, the E-step will be repeated again to calculate 

another set of new posterior probability of each compliance class for every individual 

and the M-step will continue to yield a new set of parameters. The EM algorithm will 

eventually stop after the parameters estimated from the M-step reach a negligible 

change. In the present study, the MMB-EM estimation of CACE built in Mplus 8.1 

was used to estimate parameters and their standard errors. Mplus computes the MLR 

standard errors that are robust to non-normality and non-independence with a 

sandwich estimator (Muthén & Muthén, 1998-2018).                                   

{ }( 1)

_

{ 0, 0} { 1, 0}

( 1)

_ 1, 0

{ 0, 0}

( )

| , 0, 0,

| , 0, 0,
,i i i i

i i

i i

i nt i i i i

i it

nt

i

i

Z D Z D

i nt i i i Z D

Z D

YE c Y D Z Y

E c Y D Z n
µ

−

∈ = = ∈ = =
−

= =
∈ = =

 = = × 

 = = +

+
=



∑ ∑

∑

t

t

θ

θ

( )( 1)

_ 1

{ 1

2
(

, 1}

( 1)

)

_

{ 1,

(

1

1

)

}

2

| , 1, 1,

| , 1
,

, 1,

i i

i i

t

i c i i i i c

Z D

i c i i i

Z D

it

c

i

E c Y D Z Y

E c Y D Z

µ
σ

−

∈ = =
−

∈ = =

 = = − 

 =
=

= 

∑

∑

t

t

θ

θ

( )( 1)

_ 0

{ 0

2
(

, 0}

( 1)

)

_

{ 0,

(

0

0

)

}

2

| , 0, 0,

| , 0
,

, 0,

i i

i i

t

i c i i i i c

Z D

i c i i i

Z D

it

c

i

E c Y D Z Y

E c Y D Z

µ
σ

−

∈ = =
−

∈ = =

 = = − 

 =
=

= 

∑

∑

t

t

θ

θ

( ) ( )2 2
( ) ( )( 1)

_

{ 1, 1} { 0, 1}

( 1

2(

)

_ 0, 1

{

)

1, 1}

| , 1, 1,

| , 1, 1,
,i i i i

i i

i i

i at i i i i at i at

Z D Z D

t t

i i

i at i i i Z D

Z

t

at

i D

E c Y D Z Y Y

E c Y D Z n

µ
σ

µ−

∈ = = ∈ = =
−

= =
∈ = =

 = = − − 

 = = + 

+
=

∑ ∑

∑

t

t

θ

θ

( ) ( )2 2
( ) ( )( 1)

_

{ 0, 0} { 1, 0}

( 1

2(

)

_ 1, 0

{

)

0, 0}

| , 0, 0,

| , 0, 0,
.i i i i

i i

i i

i nt i i i i nt i nt

Z D Z D

t t

i i

i nt i i i Z D

Z

t

nt

i D

E c Y D Z Y Y

E c Y D Z n

µ
σ

µ−

∈ = = ∈ = =
−

= =
∈ = =

 = = − − 

 = = + 

+
=

∑ ∑

∑

t

t

θ

θ



 

59 

 

2.4.Latent Growth Models  

As it was discussed in the introduction section, a longitudinal experiment is 

required when an experimental study focuses on finding long-term effects. In a 

longitudinal experiment, outcome variables are measured repeatedly. Longitudinal 

experiments can vary on three main factors: a) randomization occurrence, b) 

treatment implementation, and c) subjects’ compliance status assumption (Gao et al., 

2014). Given the current status quo of educational research, the current study only 

considered baseline treatment randomization and implementation while assuming that 

subjects’ compliance status would not change over time.   

In addition, the present study mainly focused on using LGMs to analyze 

longitudinal experimental data because LGMs are compatible with various data 

structures, capable of testing hypotheses that focus on individual level changes, and 

able to improve the precision of the estimated treatment effect with its ability to 

handle measurement errors at each time point (Hancock et al., 2013). 

LGM techniques were first advocated by development specialists (e.g., 

Bayley, 1956; Bell, 1953, 1954) to investigate individual change or development 

growth over time. With multiple revisions over time (see, e.g., McArdle, & Epstein, 

1987; Rogosa, Randt, & Zimowski, 1982; Rogosa & Willett, 1985), the LGM 

approach is compatible with various data structures for a wide range of parameter 

estimations that answer a variety of research questions (Hancock et al., 2013).  

LGMs are essentially multilevel models because the repeated measurements 

are clustered within each person (Little, 2013); therefore, basic multilevel equations 
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can be applied for LGMs where the Level 1 intercept and slope can be predicted by 

the Level 2 intercept and slope: 

   (60) 

where T is the measurement occasion (T = 1, 2, 3, 4… The maximum number of T 

depends on the total number of measurements. For convenience, all measurement 

occasions are assumed to be equally distanced with total measurement occasions of 

four in this section unless mentioned otherwise.), yiT is the outcome for individual i at 

measurement occasion T, ηInt_i is the Level 1 intercept for individual i that captures i’s 

initial level performance, ηSlp_i is the Level 1 slope for each individual i as a function 

of measurement occasion T that captures i’s development trajectory, εiT is the Level 1 

error term that follows a joint distribution of N(0, σ2
ε) with mean vector of 0 and 

covariance matrix σ2
ε that equals , αInt and αSlp are the 

intercept and slope of the Level 2 equations and predict the Level 1 intercept (ηInt_i) 

and slope (ηSlp_i), and ζInt_i  and ζSlp_i are the Level 2 error terms that follow a joint 

distribution of  with mean vector of 0 and covariance matrix σ2
ζ that equals 

.  

λ0T is fixed to 1 for all Ts (i.e., ). Intuitively speaking, 

represents participants’ initial statuses and their initial statuses do not change over 
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time, so the loadings from the initial stage should not change. λ1Ts are usually 

prespecified to reflect researchers’ belief in the growth trajectory. The most common 

specification is to fit a linear growth model by fixing, if all measurement occasions 

are equally distanced, λ1T  to be equal to  T-1 (i.e., ) . It is also feasible 

to specify a nonlinear growth. An unconditional model does not force the growth to 

be strictly linear; therefore, only λ11 = 0 and λ12 = 1 will be prespecified, and all other 

λ1T(T>2) are freely estimated (Little, 2013). Due to limited time, the current study 

focused on the more common linear growth models. Further investigation regarding 

nonlinear models is necessary for a more generalized conclusion. For illustration, 

Figure 6a depicts a linear LGM with four equally spaced measured time points.  

[ ]0,1, 2,3 '=1λλλλ
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Figure 6. a. Basic form of latent growth models with T1 as the reference point.                

b. Basic form of latent growth models with T4 as he reference point.  

Within the LGM framework, one can estimate a wide range of parameters and 

conduct statistical tests for each parameter. In this way, a variety of research 

questions can be answered (Hancock et al., 2013). First of all, the LGM approach can 

estimate the means and variances of the latent intercept and the latent slope. The 
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mean intercept ( ) quantifies the group level average performance at the beginning, 

and the mean slope ( ) captures average group changing rate over time. Second, 

the variances of the intercept ( ) and the slope ( ) are also available for 

estimation. The two parameters respectively describe the variation and the 

distribution of individuals’ initial performances and the variation in their growth 

trajectories. Third, the LGM approach also allows the estimation of the covariance 

between the latent intercept and the latent slope ( ). This parameter reflects the 

relationship between subjects’ initial performance and their growth trajectory. Last 

but not least, by estimating variances of all error terms for each measurement point (

), the variances that are not a function of the latent growth constituent are 

eliminated from the observed outcomes.  

The error covariances are usually set to 0 (i.e., the off-diagonal elements of 

the covariance matrix σ2
ε are all 0) because in most studies theories consider errors as 

deviations between observed outcomes and expectations from latent models, so they 

can be results of measurement errors, instrument errors, rater unreliability or model 

misspecification (Hancock et al., 2013). Therefore, error terms are usually regarded 

as random at each time point, and error terms at two time points are usually 

considered uncorrelated. If the theory, however, supports covariance among error 

terms, one can also add covariances and then conduct a χ2 difference test to check if 

the more complicated model fits the data better. In the present study, only error terms 

with no covariation were considered.  

  The LGM approach can also adapt to different research assumptions and data 

structures (Hancock et al., 2013). First, in terms of the reference point, subjects’ 
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reference level can be placed at any time point—the beginning of the study, the end 

of the study, or even in the middle. In this way, researchers have the freedom to 

choose a reference point that makes the result interpretation easier. The LGM in 

Figure 6a uses the baseline time point as the reference level, and Figure 6b presents 

an LGM that uses the last measurement point as the reference.  

Second, LGMs can model both linear and non-linear development trajectories 

depending on different theoretical hypotheses. The basic linear trend model would 

only include a single latent linear slope and specify the slope loadings in a way that 

reflects the linear relationship in accordance with the assessment spacing. With 

nonlinearity, one can either specify the slope loadings to reflect a suspected nonlinear 

function for individuals’ trajectories (Figure 7a) or even leave the loadings 

unspecified after the second measurement (Figure 7b). 
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Figure 7. a. Slope loadings reflecting a nonlinear trajectory. b. Slope loadings not 

completely specified.  
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If the research interest is to subdivide a set of measurements into stages with 

theoretical implications and summarize the trend in each stage, piecewise LGMs are 

extremely useful (Bryk & Raudenbush, 1992). For example, in their study of career 

role change, Wille, Beyer, and De Fruyt (2012) collected data on seven occasions 

over 15 years. They placed the reference point at the fourth measurement occasion 

because it was believed that this point was the turning point where the steeper 

increase in career roles changed into less noticeable. For both stages, the growth 

trajectories were linear, but after measurement occasion 4, the linear growth just 

slowed down. Therefore, they used a piecewise LGM with one latent intercept and 

two latent slopes (Figure 8a). The first latent slope was associated with T1 through T3 

and the second slope was associated with T5 to T7. T4 had a loading of 0 from both 

slopes because it was the reference point. The two slopes had different means (  

and ) to reflect different growth rates.      

If, instead, multiple functional forms are hypothesized in a study, researchers 

also have the freedom to include both linear and quadratic factors to model the 

growth trajectories. Stoolmiller and colleagues (1993) proposed a quadratic growth 

curve model to analyze maternal resistance during therapy (Figure 8b). In this model, 

the quadratic growth factor captures the degree of quadratic curvature for all subjects. 

They fixed the loadings of the quadratic factor to be 1, -2 and 1, with the positive 

values indicating downward convexity and the negative value indicating upward 

convexity.  

Slp1α

Slp2α
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Figure 8. a. Wille, Beyer and De Fruyt’s (2012) piecewise growth model for career 

roles. b. Stoolmiller, Duncan, Bank, and Patterson’s (1993) quadratic growth curve 

model for maternal resistance during therapy. 
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Last but not least, the LGM approach enables the use of unequally spaced 

time points. One just needs to specify the coefficients from the latent slope variable(s) 

for each measurement time point accordingly.  

Although the LGM approach has remarkable advantages, it is not a panacea 

for all longitudinal analyses. Duncan, Duncan, and Strycker (2013) identified its two 

main limitations. First of all, LGM models, like most SEM models, include the 

assumption of multivariate normality and the requirement of large samples. The 

multivariate normality assumption makes it possible to test most parameter statistics. 

The statistical theory behind LGM is asymptotic in nature that requires a decent 

sample size to represent the whole population. The second limitation of the LGM 

approach is that it requires all individuals to be measured for the same amount of 

times and at the same assessment occasions.  

However, simulation studies found that the simplest growth model without 

missing data nor covariate required a sample size of 40 only in order to have a power 

of 0.81 to reject the null hypothesis of 0 growth rate (Muthén & Muthén, 2002). The 

sample size requirement actually depends on a lot of other factors, such as model 

specification, missing data, and effect size. As for the nonnormality issue, techniques 

such as bootstrapping (Nevitt & Hancock, 2001) or robust maximum likelihood 

estimation (Kline, 2012) appear to be promising.  

With regard to the second limitation, Duncan et al. (2013) first argued that 

most longitudinal panel data are typically designed to be collected for a same number 

of times and at the same occasion for all individuals. They also reasoned that, with 

certain parameter constraints, even if subjects were not measured for the same 
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number of times or at the same occasion, it was still possible to apply the LGM. For 

example, the planned missing data designs (Little & Rhemtulla, 2013) can be applied 

in LGM when individuals are not all measured at the same occasions.  In addition, 

some software packages (e.g., Mplus) can even accommodate scenarios where 

individuals are measured at varying time points.  

It is important for one to recognize the restrictions of the LGM approach in 

order to make an educated decision about model selection when analyzing 

longitudinal data. However, the LGM approach is very powerful and versatile for a 

wide range of research scenarios. It is flexible even under some limitations. Therefore, 

it is of great significance to expand the literature of LGM together with 

noncompliance issues. For simplicity of demonstration, the following section only 

used the model with a linear trajectory with four equally spaced time points, and there 

was no covariation among error terms at different measurement occasions. The 

following discussion can be easily applied to other latent growth models.  

2.4.1. Longitudinal experiments with LGMs  

As mentioned earlier, the LGM technique can easily adapt to longitudinal 

experimental scenarios by introducing the treatment variable into the model as the 

external variable or by using multi-group LGM to estimate the slope differences in 

the treatment and the control groups. 

For example, assume there is a longitudinal experiment with one exogenous 

categorical treatment assignment variable Z (Z = 1: Treatment; Z = 0: Control), and 

there is full compliance of treatment assignment (hence treatment effect is the same 

as treatment assignment effect). If the latent growth trajectories of the two groups are 
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both assumed to be linear, a multi-group LGM can be used. Within each group, the 

multilevel equations presented below would hold. The outcome variable y for 

individual i assigned to treatment z at time point T can be expressed as 

    (61) 

where  and are the same for both groups ( , ), 

 and  follow a joint distribution of N(0, σ2
ζz) with mean vector of 0 and 

covariance matrix σ2
ζz that equals  and  follow a joint 

distribution of N(0, σ2
ε_z) with a mean vector of zeros and covariance matrix σ2

ε_z that 

equals .  

All parameters followed with a subscript z indicate that the two treatment 

levels are essentially two different populations after the experiment. Only  and  

are constrained to be the same across the two groups. In fact, by assuming similar 

patterns and equations for the two groups, the assumption of configural invariance is 

implied; by holding  and  the same, the weak invariance is assumed (Little, 

2013). In the present study, the two invariance assumptions are made because they 

guarantee that an LGM is a good approximation of the latent growth trajectories for 

both groups and the two groups are both exhibiting a linear growth pattern. In real 

data analysis, the configural invariance assumption can be tested easily by fitting the 
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LGM model separately for each group and check if there is an acceptable model fit 

(Little, 2013). The weak invariance can be tested with a χ2 difference test of model fit 

between a more complicated model with  and  differing across the two groups 

and a more parsimonious model with them being invariant.  

The fact that other parameters are different across the treatment and control 

groups can be viewed as an “effect” of the treatment: by taking the treatment, 

individuals exhibit higher or low growth rate on average ( ), the growth rates 

become more homogeneous or heterogeneous among individuals ( ), or the 

ceiling effect becomes more or less prominent ( ).  

The parameterization can be simplified for the two latent growth rates. With

, the average slope equals to , and every one-unit increase in Z would 

increase the slope by γ units on average. As the treatment assignment variable Z is 

dichotomous, γ can represent the average slope difference of the group assigned to the 

treatment level and the group assigned to the control level. Therefore, 

 and .  

It is, however, reasonable to argue that other parameters can be the same 

across the two populations. With the first measurement at baseline before any 

treatment, the mean intercepts ( ) and the variances of the intercepts ( ) are 

the same because individuals are randomly assigned to different treatment levels and 

therefore they have the same expected initial performances and variations. As a result, 

.  In addition, most randomized 

experiments require that the treatment and control groups differ only on the treatment, 
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so random errors at a certain measurement occasion are expected to be similar for the 

two groups: .   

These parameters can be estimated, and their equivalence across the treatment 

and control groups can be tested using the structured mean modeling approach 

(Thompson & Green, 2013). The structured mean modeling approach is very flexible 

for scenarios where different groups have different variance structures.  

2.4.2. Latent class LGMs 

Similarly, if there is no exogenous treatment assignment variable Z but only 

growth mixture, where latent categorical variable K has m levels of compliance 

statuses (k = 1, 2,…,m), the outcome variable y for individual i with compliance status 

k at time point T can be expressed as 

    (62) 

where and are the same for all compliance statuses ( , 

),  and  follow a joint distribution of N(0, σ2
ζk) with mean 

vector of 0 and covariance matrix σ2
ζk that equals  and  follow a 

joint distribution of N(0, σ2
ε_k) with mean vector of zero and covariance matrix σ2

ε_k 

that equals .  
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Same as the two-treatment-level model, all parameters with a subscript k 

indicate that each compliance class can have different values on these parameters, and 

only λ0 and λ1 are constrained to be the same across all compliance classes for the 

assumptions of configural invariance and weak invariance. If K represents 

compliance statuses, there is no reason to constrain any other parameters to be the 

same across different compliance classes.   

2.4.3. Longitudinal CACE with LGMs 

If combining the two parts together—conducting a randomized longitudinal 

experiment given a population with m levels of compliance statuses, the outcome 

variable y for individual i with compliance status k at time point T can be expressed as   

   (63) 

where and are the same for all compliance statuses ( , 

),  and  follow a joint distribution of N(0, σ2
ζkz) with 

mean vector of 0 and covariance matrix σ2
ζkz that equals  ,  

follow a joint distribution of N(0, σ2
ε_kz) with mean vector of 0 and covariance matrix 

σ2
ε_kz that equals , and  is the effect of the treatment 

assignment variable Z for individuals with compliance status k (Jo & Muthén, 2003).  
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With noncompliance but meeting all assumptions of the IV estimation, there 

will be three compliance classes—compliers, always-takers, and never-takers. The 

model in Figure 9 is adapted from Jo and Muthén’s (2001) model of growth mixture 

CACE estimation with repeated outcome measures. K represents compliance class. It 

is surrounded with a circle and a rectangle because compliance classes are partially 

observable for some individuals. In this model, all parameters can be freely estimated 

within each compliance status. The arrow from the K to the path of Z to ηInt is set to 0 

for always-takers and never-takers, which as a result makes the treatment assignment 

effect to be 0 for the two subgroups (  ) and only the treatment assignment 

effect of Z for compliers ( ) is estimable. Within the complier group, treatment 

assignment effect equals the treatment effect. More discussion about Figure 9 was 

included below. 

0at ntγ γ= =

cγ
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Figure 9. Growth mixture CACE 

Although subscript kz indicates that individuals of different compliance 

classes and different treatment levels can have different values on the parameters, 

some parameters can be constrained to be the same even with different values of k or 

z. Other than the parameter constraints discussed earlier, the present study also 

constrained the Level 2 covariance matrices (  ) to be the same across the treatment 

and control groups ( ). For most intervention studies, the main 

focuses are the differences in growth trajectories ( ). Therefore, the mean 

vectors and covariance matrices for different each compliance classes considered in 

the present study are the same as included in Table 4. 
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Table 4 

Means and Covariance Matrices for Different Combination of Treatment Levels and Compliance Classes 

Mean vector (μ kz ) Covariance matrix (Σ kz )
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As it is shown in Table 4, there are two separate mean vectors for compliers 

assigned to the treatment and control groups and the treatment effect is represented 

with . Because of the constraints specified earlier ( and 

), compliers assigned to the treatment group have the same 

covariance matrix  ( , ). There are no separate rows 

for always-takers who are assigned to the treatment group and those who are assigned 

to the control group for the mean vector and the covariance matrix. This is because 

always-takers will end up in the treatment group irrespective of the assignment, so 

there is no difference between the two treatment assignment groups. A similar 

explanation applies to the never-takers.  

The modeling is reflected in Figure 9 too. Compliance class K has arrows 

pointing to the intercept factor and the growth factor, meaning that each compliance 

class has its own initial status and growth rate. Treatment assignment Z has only one 

arrow pointing to the slope factor, indicating that the treatment assignment adds an 

additional part to the growth rate. The additional part, however, becomes 0 for never-

takers and always-takers because of the arrow from K to the path of Z to . All 

parameters followed with subscript k can be estimated separately for that compliance 

class.  

The likelihood of the observed data , 

adapted from Yau and Little’s (2001) work, can be expressed with the following 

form: 
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   (64) 

where  follows a multivariate normal distribution with a mean vector 

 and a covariance matrix .  

The MMB based method can be used to estimate all parameters included in 

Table 4. Parametric standard errors can be computed with the observed information 

matrix of the maximum likelihood estimator. The MMB-EM estimation of CACE 

built in Mplus 8.1 was used to estimate parameters and their standard errors. 

2.4.4. Standard IV with LGMs 

Standard IV estimation approach will also yield an asymptotically unbiased 

estimation of γc when all assumptions are met. Figure 10 is adapted from the Standard 

IV estimation model (Figure 2) with a single outcome variable. Similar to the MMB 

estimation approach, the intercept factor is not affected by the treatment. Exogenous 

treatment variable Z has an effect on the slope factor through assignment-taken 

variable D. The error terms of D and the slope factor are allowed to covary, which 

separates the variation that is not “caused” by Z in D and the slope factor from the 

variation that is “caused” by Z. In this way, only the exogenous part in D is used to 

determine its effect on Y, which equals to γ.  
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Figure 10. Longitudinal CACE with Standard IV estimation 

With the model specified in Figure 10, the outcome variable y for the 

individual i at time point T can be expressed as   

   (65) 

where , , εZ, εD,  and  follow a joint distribution of 

N(0, σ2)with mean vector of 0 and covariance matrix σ2
ζkz that equals 
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vector of 0 and covariance matrix σ2
ε that equals , and  is the 

effect of the local treatment effect.  

As mentioned in the previous section, with a binary assignment-take variable 

D, the standard errors estimated would be inaccurate because conventional SEM 

requires continuous dependent variables (Edwards et al., 2012) that are multivariate 

normal and have homoscedastic residuals (Kline, 2012). In addition, covariance 

matrices can be heterogeneous across compliance classes, which also lead to 

inaccurate standard errors estimated. Fortunately, bootstrapped standard errors are 

available for an empirical estimation of all standard errors. Therefore, a bootstrapped 

standard error was used for the Standard IV approach. 

2.4.5. Previous studies on the Standard IV approach and the MMB approach 

Little and Yau (1998) first used the MMB method to estimate the CACE in a 

longitudinal study, but they did not analyze the longitudinal data within the 

framework of LGM. Nevertheless, the MMB approach was quickly included by other 

researchers to the LGM families (Jo & Muthén, 2001; Jo & Muthén, 2003; Muthén & 

Asparouhov, 2008). The Standard IV approach, on the other hand, was widely used in 

both cross-sectional studies (e.g., Altonji, Elder, & Taber, 2005; Brookhart, Wang, 

Solomon, & Schneeweiss, 2006; Kang & Sivaramakrishnan, 1995) and longitudinal 

studies (e.g., Bolton & Drew, 1991; Glewwe, Jacoby, & King, 2001; Hogan & 

Lancaster, 2004). However, the combination of the LGM and the Standard IV 

approach was not used in most previous longitudinal studies. One possible reason is 

that the Standard IV approach was mostly used in economic studies where latent 
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variables were rarely used. Therefore, the author did not find any literature that 

compared the two estimation methods for longitudinal CACE estimations within the 

LGM framework.       

The two estimation methods were compared within the cross-sectional 

settings. Imbens and Rubin (1997b) laid out the theoretical foundation for the MMB 

approach. They argued that the Standard IV method was essentially estimating the 

first moments of the two marginal distributions of the outcome variable under 

different treatment assignments for compliers but the MMB approach estimated the 

whole distribution for compliers first and then obtained the means from each 

distribution. The former was asymptotically equivalent to the latter, but with small 

samples or violations of the assumptions, results from the two estimation methods 

could deviate considerably.  

The authors first compared the estimation results of the two approaches using 

real data. The data was from the Angrist and Krueger’s (1991) study of the causal 

effect of education on earnings. Imbens and Rubin redefined the treatment variable as 

dichotomous (i.e., with or without twelve or more years of education) and the 

instrument was subjects’ quarter of birth (i.e., born in the first or the fourth quarter). 

The outcome variable was their weekly earning. The rough estimation of complier 

percentage was about 2%. They calculated the treatment effect with three estimation 

approaches: the OLS regression method (ITT), the Standard IV method, and three 

distributional based methods, including a normal MMB method (using the EM 

algorithm), a nonnegative IV method (using histogram estimates), and a multinomial 

MMB method (using constant density within a bin). Consistent with previous studies, 

the OLS method yielded the smallest treatment effect. However, the Standard IV 
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method, which was supposed to yield an asymptotically equivalent treatment effect as 

the three distribution based methods, overestimated the treatment effect. 

To interpret the findings, they conducted a small simulation study. They chose 

a sample size of 1,000 with . There were 10% compliers and 45% 

always-takers and never-takers. Compliers with  had a mean of 0.5, and the 

other half of compliers had a mean of −0.5. Always-takers and never-takers both have 

a mean of 0. Therefore, the CACE was 1, and the ITT was 0.1. All distributions had a 

unit variance. The same set of methods mentioned above was used in the simulation 

study as well. Among all five methods, the normal MMB method had the smallest 

bias. The nonnegative IV and multinomial MMB methods were more biased than both 

the normal MMB and Standard IV methods, but the MMB methods had much smaller 

parameter variations (more efficient) than the Standard IV method. All three 

distributional based methods tended to yield smaller effects than the real effect. The 

result indicated that the normal MMB method was the least biased and the most 

efficient among all methods.   

In terms of estimating the first moments for different distributions, both the 

real data analysis and the simulation study suggested that the normal MMB method 

was the best in terms of estimation accuracy and efficiency. For the higher order 

moments, the real data analysis results suggested that when the variances were not 

properly restricted, the estimation would be highly unreliable with the weak 

instrument (2% complier percentage), which agreed with common mixture model 

estimation results. As all distributions were set to have a unit variance, the simulation 

study did not include the estimation of variances for different distributions.   

The aim of Imbens’ and Rubin’s (1997b) paper was to lay a theoretical 

background for the MMB method, so their simulation study did not include more 
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conditions to compare this approach to the Standard IV method. Recognizing its 

“potential for increased efficiency of estimation over the traditional instrumental 

variable approach” (p. 157), Little and Yau (1998) called for more simulation studies 

to compare these two approaches.  

Jo (2002) conducted an extensive simulation study to compare how the 

empirical power in the ITT analysis and the MMB approach for CACE estimation 

were affected by noncompliance. The impact of four main factors was investigated: 

compliance rate, study design on cost control, outcome distribution, and covariate 

information. Only findings regarding the impact of compliance rate and outcome 

distribution on the MMB method were reviewed here. All results were based on 1,000 

replications. Power was defined as the proportion of significant results at α level of 

0.05.  was used for all conditions. Only compliers and never-takers 

were involved, which was consistent with both the JOBS II intervention study 

(Vinokur et al., 1995) and the JHU PIRC study (Ialongo et al., 1999).    

When looking into the effect of compliance rate, three rates were included: 

30%, 50%, and 70%. Compliers and never-takers both had a mean of 1.5, but the 

effect size for compliers were set to be 0.2, 0.5, and 0.8 across all conditions. All 

designs had a residual variance of 1.0 for both compliers and never-takers. The results 

suggested that compliance rate had a critical influence on maintaining statistical 

power. Therefore, with noncompliance, in order to have enough power, researchers 

should plan a bigger sample size, which usually led to a higher cost.                

When investigating the outcome distribution factor, the author manipulated 

means and outcome variances to investigate their influence on power. In both designs, 

the sample size was 300, compliers had an effect size of 0.5, and the compliance rate 

was fixed at 50%. First, when means were manipulated, the outcome was 1.0 for both 

Pr( 1) 0.5Z = =
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compliers and never-takers. The group mean was 1.0 for compliers but ranged from 

0.0 to 3.0 for never-takers. The results showed that the CACE analysis benefitted 

from more separated means: the larger the mean difference, the higher the statistical 

power. Second, when outcome variance was manipulated, both compliers and never-

takers had a mean of 1.5. The outcome variance was 1.0 for compliers and ranged 

from 0.25 to 2.0 for never-takers. As a result, for the CACE analysis, when the 

variance of never-takers became smaller than the variance of compliers (set to 1.0), 

more heterogeneity between these two variances led to higher statistical power. If the 

variance of never-takers became bigger than the variance of compliers, the statistical 

power remained stable. The author argued that the reason was that the CACE 

estimation would benefit from more distinguishable compliers and never-takers, but 

as the variance of never-takers became too large, the power in estimating the mean of 

never-takers would be compromised, which directly led to a less efficient estimation 

of the complier means.  

This study explored several important factors that would influence statistical 

power for the CACE analysis using the MMB method, and for each factor, a wide 

range of levels were also considered to fully investigate the factor. The results 

provided very useful information for practitioners to obtain more statistical power, 

such as planning a bigger sample size accordingly based on different compliance rate.     

However, this study did not include the Standard IV method as a comparison, 

so there was no information about the statistical power when using the Standard IV 

method. In addition, only two compliance groups were considered, and there was no 

evidence indicating that similar results could be extended to research scenarios where 

compliers, never-takers, and always-takers were all involved.  



 

85 

 

Compliance rate has been shown to be a major concern in previous studies 

(Imbens & Rubin, 1997b; Little & Yau, 1998). However, in this study, only in the 

first part (compliance rate and power), the compliance rate was investigated with 

three different values. For all other factors, the compliance rate was set to 50%. It 

would be useful to include compliance rate in the investigation of the outcome 

distribution factor and check if there was an interaction between the two factors. More 

low compliance rates could have been included because low compliance rate or weak 

instrument had been suggested to be a problem for instrumental variable analyses 

(Imbens & Rubin, 1997b; Rothenberg, 1984).  

Jo and Muthén (2003) expanded the investigation to longitudinal models. This 

study tried to use two models to estimate the treatment effect. The first model was an 

LGM model that defined the treatment effect as the difference in growth trajectories 

with and without treatment. The second model was an ANOVA model that defined 

the treatment as the difference in outcome measure at the last time point while 

controlling for the first time measurement. For all conditions, 500 replications were 

used with a sample size of 300 and 50%. They chose the true 

parameter values, effect size, and sample size, based on the LGM estimation result of 

the JHU PIRC study. The outcome variable was set to be measured four times with 

equal distances, and a linear trajectory was used. One thing worth pointing out is that 

the process of data generation did not strictly follow all assumptions of instrumental 

variable analysis (Angrist et al., 1996). In this study, two subpopulations were 

involved: high compliers and low compliers. High compliers had a treatment effect of 

0.2 and low compliers had a treatment effect of −0.1. Therefore, there was one more 

parameter—treatment effect for low compliers—included in the estimation, whereas 

in the MMB estimation for CACE from Imbens and Rubin (1997b), the treatment 

Pr( 1) 0.5Z = =
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effects for both always-takers and never-takers were 0. This condition was essentially 

a violation of the exclusion restriction, which cannot be handled with the Standard IV 

method, and the estimation using the MMB approach was, in fact, a full mixture 

modeling that estimated the low or high compliance membership for all individuals. 

The authors used estimation coverage and empirical power rate as two evaluation 

indices. Coverage was defined as the proportion of replications (out of 500) that had 

their 95% confidence intervals of treatment effects for both high and low compliers 

covering the true treatment effects. Empirical power was defined as the percentage of 

replications (out of 500) that had both treatment effects being significant at the 0.05 

level.  

Simulation results showed that the point estimates of the treatment effects and 

their standard errors were similar for both the LGM and the ANOVA models. Both 

models yielded a high coverage, more than 91% for both high and low compliers, but 

the power rates were much higher for the LGM model. The authors explained that the 

growth model used information from all four time points and excluded measurement 

error from the model; therefore, the power was higher.  

Due to a different research interest, the author did not probe deeper on how 

different factors would influence the coverage or power, but this study demonstrated 

that the LGM had great potential in estimating longitudinal CACE, which justified its 

usage in longitudinal experiments. 

Very limited research has been done to investigate the CACE estimation 

within the LGM framework. However, Tolvanen (2007) conducted an intensive 

simulation study investigating the functionality of the mixture LGM with respect to 

various factors. Specifically, measurement reliability, separation among latent classes, 

and sample size exemplified positive influence on estimation convergence rate, 
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parameter estimation bias, and standard error estimation bias. As the CACE 

estimation is partially mixture modeling, it is expected to have similar results. 

However, to what extent would they influence the estimation was still unclear. 

In summary, previous studies have recognized the great potential of the MMB 

approach in estimating the CACE under the LGM framework. However, very little 

was known about factors that might influence the accuracy and efficiency of 

longitudinal CACE estimation. Especially with the three compliance statuses 

condition, only one simulation study (Imbens & Rubin, 1997b) actually included all 

three statuses. In addition, the Standard IV was not involved in most simulation 

studies despite its great popularity among researchers.    

2.5.Objective of the Present Study  

This study purported to investigate the performance of two widely used 

longitudinal CACE estimation approaches, the Standard IV approach and the MMB 

approach, under different research scenarios. Past studies shed some light on this 

question, but investigations on the MMB approach mainly focused on cross-sectional 

designs (Jo, 2002). However, there was no evidence regarding how the same 

conclusions could be generalized to longitudinal CACE estimation.  

In addition, previous studies used only two compliance classes to generate 

data. It was unclear how the identified factors would affect the CACE estimation with 

one more compliance class. In fact, many real data applications included compliers, 

always-takers, and never-takers (e.g., Angrist & Krueger, 1991; Brookhart et al., 

2006). The factors identified to affect the CACE estimation could have a different 

influence when one more compliance class was included.  
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Moreover, the Standard IV method would yield an asymptotically unbiased 

estimation of the CACE when all assumptions were met. However, with a weak 

instrument or small sample size, the Standard IV approach could be less accurate and 

less efficient than the MMB approach (Imbens & Rubin, 1997b). However, LGMs 

could improve the precision in compliance status estimation by using the trajectory 

information (Jo & Muthén, 2003), but it was unclear whether this feature of LGM 

techniques would narrow the gap in performance between the Standard IV and the 

MMB approaches.  

Last but not least, past studies highlighted the influence of some factors, such 

as compliance rate, separation among latent classes, and variance difference among 

different compliance classes, but the influence of compliance rate was not 

investigated enough, especially for its interaction effect with other factors. Another 

important factor, measurement reliability, which has been demonstrated as a crucial 

factor for mixture modeling was not investigated in the CACE literature. As a result, 

further investing the complier rate factor and including the measurement reliability 

factor was another important goal of the present study. 

To address the issues that were not covered in previous studies, the present 

study tried to simulate scenarios where noncompliance was a problem for longitudinal 

experiments. Particularly, three compliance statuses were simulated, including never-

compliers, always-takers, and compliers. In order to cover as much factors that may 

influence a research design, six factors were considered: sample size, effect size, 

reliability of measurements, compliance composition, distances among mean latent 

intercepts and mean latent slopes of the three compliance classes (referred as “mean 

distance” below), and differences among variances of latent intercepts and slopes of 

the three compliance classes (referred as “noncomplier-complier Level 2 covariance 
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ratio” below). For the purpose of estimation methods comparison, both the Standard 

IV and the MMB based approaches were applied to each simulated dataset to estimate 

the longitudinal treatment effect respectively. In the end, results regarding estimation 

success rate, estimation bias, statistical power, and type I error rate were analyzed 

with respect to the six simulation factors and two estimation approaches. More 

detailed study design is included in Chapter 3. 

.
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Chapter 3: Method 

Previous chapters discuss that estimating the longitudinal CACE within the 

framework of the LGM is a solution for longitudinal experiments where 

noncompliance is an issue. On one hand, the LGM framework has a wide range of 

applications because of its ability to compare various data structures, capability of 

testing hypotheses that focus on individual-level changes, and ability to improve the 

precision of the estimated treatment effect by eliminating measurement errors at each 

time point and utilizing information from all measurement points. On the other hand, 

the CACE estimation is able to provide an estimation of the average causal effect for 

the compliers by using either the Standard IV approach or the MMB approach. Both 

approaches can easily adapt to the LGM framework for longitudinal CACE estimation. 

However, there is a need to know how the two approaches would perform within the 

LGM framework with respect to different research scenarios. The present study aimed 

to answer five research questions using a simulation design.      

This study assumed that an experiment was conducted by randomly selecting a 

sample from a population and randomly assigning each subject to the treatment group 

or the control group. For each sample subject, there was a 50% chance that he or she 

was assigned to the treatment group ( ) or the control group ( ). The 

population had three underlying subpopulations with different compliance behaviors. 

Subjects’ compliance behaviors were only partially observable, so a latent compliance 

membership variable K was used to describe subjects’ compliance statuses. Compliers 

( ) followed the same treatment level that they were assigned to. Always-takers 

( ) took the treatment level regardless of the original assignment, and never-

takers ( ) took the control level. The proportion of each subpopulation was one 

1Z = 0Z =

K c=

K at=

K nt=
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of the examined factors, as described below. All subjects’ values on the treatment-

taken variable (D) was recorded as  for taking the treatment level and    

the control level. The relationship of K, Z, and D can be expressed as 

   (66) 

For , the effect of the treatment assignment variable Z was zero.  

Longitudinal data were generated following the structure of the model 

described in Figure 9 and Equation 63. There were four measurement points 

( ). The mean vectors ( ) and covariance matrices ( ) took the 

form presented in Table 4. For the research question involving statistical power, only 

non-zero  conditions were involved. For the research question involving type I error 

rate, only zero  conditions were involved.  

The error variance-covariance matrix of the four measurement points had a 

structure where there was no covariation between any two time points. The magnitude 

of the error variances was determined by , where  

   (67)  

 was the reliability of the measurement Y at time T for subject i from 

compliance class k. The true mean intercept ( ), true mean growth rate ( ) 

and their variances (  and ) were set differently as part of the research 

design. Therefore, error variances also varied, but they took values with the restriction 

of the  vector, which was the same across compliance statuses. As different 
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research questions required different sets of parameter values, detailed parameter 

choices are discussed below.  

3.1.Replications  

As described below, this study involved 1,440 different configurations in total. 

With such a wide selection of simulation conditions, the author tried to reach a 

balance between the precision of the findings and keeping the study under a 

manageable scale. With only 100 replications for each configuration, the total 

computation time exceeded 72 hours with multithread computing using a powerful 

server. As a result, the author decided to use 1,000 replications. This replication 

number is consistent with similar simulation studies by Jo (2002) and Fan and Fan 

(2005). More rationale is provided in the Result section. 

3.2.Simulation Factors  

Six main factors that might affect the CACE estimation were examined: 

sample size [n], compliance composition [PC], effect size [d], reliability of 

measurements [rel], mean distances [md], and noncomplier-complier Level 2 

covariance ratio [var]. Each factor contained several levels so that a variety of 

research scenarios were covered.    

3.2.1. Sample size  

The estimation of CACEs is asymptotically accurate for both the Standard IV 

and the MMB methods. In other words, researchers can only trust their results with a 

large n. However, in most longitudinal studies, subjects are expensive to recruit, and 

attrition during the study span also further reduces the number of usable study units. 

As a result, it is extremely difficult to have an ideal n for all longitudinal experiments. 
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For example, the JHU PIRC study had only 313 subjects. The author did not find 

literature providing guidance on choosing proper n for the CACE estimation. 

Therefore, the present study used a selection of n levels ranging from small to big in 

order to understand the relation between estimation success rate, bias, power, type I 

error rate and sample size for both estimation approaches.  

Previous studies on latent growth mixture modeling (LGMM) suggested that 

in order to achieve reliable results in estimation, a small sample size (n = 50) only 

worked with big separation of latent means (i.e., standardized difference = 4 or 5) 

(Tolvanen, 2007). In addition, when the model was specified correctly, small sample 

size was found to lead to large standard errors. The situation deteriorated with the 

combination of lower measurement reliability. Parameter standard errors decreased to 

31% of the original values when sample size increased from 50 to 100 and 44% when 

the sample size was 500 (Tolvanen, 2007). As the present study also examined a few 

other factors that could influence the estimation results together with sample size, 

small n levels were included to investigate the estimation quality while other factors 

were more favorable. As a result n = 50, 100, 200, 500 or 1,000 were used. 

3.2.2. Compliance composition 

Compliance composition is a critical factor for the CACE estimation. Earlier 

studies warned researchers that a weak instrument (i.e., low complier rate) could 

severely distort the CACE estimation (Angrist et al., 1996; Imbens & Rubin, 1997b). 

Using the lowest complier proportion of 30%, Jo’s (2002) simulation study showed 

that with the presence of noncompliance, researcher should plan an even bigger 

sample size to compensated the influence of noncompliance. In other applied studies, 

the compliance rate of 30%, however, was not low enough. Imbens and Rubin’s 
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(1997b) study used a sample size of 1,000 to compensate for a low compliance rate of 

10%. Their real data analysis with Angrist and Krueger’s (1991) data has an 

incredibly large sample size (n = 162,515), but the compliance rate was only around 

2%. No simulation study has investigated the performance of the methods in the low 

compliance rate scenario, so it was unclear how the CACE estimation would behave. 

Therefore, the current study examined four levels of compliance rate, PC = 10%, 30%, 

50%, and 80%, to cover low to high compliance rates. Always-takers and never-takers 

were set to have the same proportions. 

As designs for effect size, measurement reliability, mean distance, and 

noncomplier-complier Level 2 covariance ratio are all inter-related, the following 

sections uses symbols for the true values of different parameters. A summary table is 

provided in the end. 

3.2.3. Effect size  

As mentioned earlier, the treatment assignment variable Z has no effect on 

always-takers and the never-takers. Therefore, setting the effect size of Z on the 

compliers is, in fact, setting the CACE. Jo (2002) demonstrated in her study that d 

was crucial for the CACE estimation: with a large effect size (0.8), empirical power 

could reach 0.8 with any sample size from 200 to 500 if PC = 0.5. However, it was 

not clear how d would influence the estimation of longitudinal CACE.     

Therefore, similar to Jo’s (2002) study, Cohen’s d was used to measure the 

treatment effect size. In the form of an equation,  , and 

 was the variance of compliers’ latent slopes. Values of d covered 0, 0.2, 0.5, 

and 0.8, representing no effect, weak effect, medium effect, and strong effect (Cohen, 
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1988; Cohen, 1992). When ,  was determined by the product of d and . 

 is discussed more in 3.2.6. The probability of mistakenly rejecting the null 

hypothesis when  is the type I error rate, and the probability of correctly 

rejecting the null hypothesis when  is the statistical power. Therefore, for 

research question 3, the discussion should be based on designs with ; while for 

research question 4, . 

3.2.4. Reliability of measurements  

The earlier section mentioned that reliability of the observed variable Y at time 

T for subject i from compliance class k  ( ) was equal to 

.  took the same value for all 

four measurement points and for all compliance classes (rel was used hereafter). The 

rationale for constraining the reliability to be the same across all measurement points 

was to control the ratio of the variance of random errors ( ) to the variance from 

the latent intercept and growth ( ) to be the same. 

Following the previous practice (Tolvanen, 2007), this study examined situations with 

low reliability (rel = 0.5) and high reliability (rel = 0.8).  

3.2.5. Mean distance  

Setting distances among mean latent intercepts and mean latent slopes of the 

three compliance classes was similar to setting the effect sizes. Cohen’s d was used to 

measure the mean distances. Means for always-takers were determined relative to the 

complier assigned to the treatment level and means for the never-takers were 

determined relative to the compliers assigned to the control level. The mean intercepts 
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were the same for compliers assigned to the treatment level and the control level, so it 

is denoted as . The pooled variance was used so that two groups’ variances were 

both involved. The following equations display more details. 

   (68) 

md values were set to be 0.2, 0.5, and 0.8 to represent a small, medium, and large 

mean distance (Cohen, 1988; Cohen, 1992). Variances of different groups are 

discussed more in the next section  

3.2.6. Noncomplier-complier Level 2 covariance ratio  

When setting differences among variances of latent intercepts and slopes of 

the three compliance classes, three conditions were considered. Using the Level 2 

covariance matrix of the compliers as the anchor, the Level 2 covariance matrices of 

the always-takers and the never-takers were set to be half, the same, or twice (var 

takes 0.5, 1, or 2) of that of the compliers. Always-taker and never-takers have the 

same Level 2 covariance matrices. 

In summary, most true values for these parameters depended on the values of 

d, md, rel, and var and the true parameters selected for compliers assigned to the 

control level (the c0 group). The mean vector and Level 2 covariance matrix of the c0 

group were set as the same as the values obtained from the real data analysis of Jo and 
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Muthén’s (2003) study, where the equivalent complier group, the high compliance 

group, had a mean vector and a Level 2 covariance matrix as  

 and . 

Table 5 provides a summary of how the four factors determine the true 

parameter values used for data generation. As a result, there were 1,440 different 

configurations (5[n]*4[PC]*4[d]*2[rel]*3[md]*3[var]) for data generation, and for 

each configuration, 1,000 replications were conducted. R studio (2009-2017) was 

used to generate data with these models. Specifically, the “mvrnorm” function of the 

“MASS” package was used to generate the multivariate normal data.
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Table 5 

Population Matrix Designs with Respect to the Four Factors 
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3.3.Estimation  

For each simulated dataset, both the Standard IV (Figure 10) and the MMB 

(Figure 9) methods were used to estimate the longitudinal CACE (γc) using Mplus 8.1 

(Muthén & Muthén, 1998-2018). 

As examining the effect of var was one goal of the present study, there were 

one third of the simulation designs (when var = 1) having homogeneous latent 

covariance matrices (  ) and therefore homogeneous error covariance matrices (

) across the three compliance classes, and the other two thirds (when var = 0.5 or 

2) were designed to be heterogeneous on these matrices.  

Fundamentally, the Standard IV approach did not use the latent class 

framework, so there was no need to consider covariance matrix heterogeneity when 

applying the Standard IV model. However, with the MMB estimation approach, one 

can specify the estimation models either by constraining  and  to be the same 

across different compliance classes or by allowing the two matrices to be freely 

estimated. One would assume that the correctly specified model would perform better 

than the incorrectly specified model. However, previous studies have shown that a 

model with more parameters to estimate was also more prone to estimation failure, 

and separately estimating the covariance matrices for each latent class would yield 

unreliable estimations of higher order moments (Imbens & Rubin, 1997b; Tolvanen, 

2007). Therefore, it was valuable to evaluate the estimation result with both the more 

parsimonious model by incorrectly constraining the covariance matrices across the 
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three latent classes and the more complicated model where the covariance matrices 

were freely estimated.  

As a result, this study used three estimation methods for each simulated 

dataset: two MMB estimation approaches and one Standard IV approach. 

1) The Standard IV approach [SIV]: All parameters were estimated without 

separating classes.  

2) The MMB No Constraint approach [MMB-NC]: All parameters, , 

, , , and  were freely estimated within the three compliance 

classes. It was the correct model for all datasets but unnecessary when 

compliers and non-compliers had the same Level-2 covariance matrices 

( ). 

3) The MMB Full Constraint approach [MMB-FC]: , , and  were 

freely estimated in the three compliance classes, but  and were 

constrained to be equal across the three classes. It was an incorrect model 

when compliers and non-compliers had different Level-2 covariance 

matrices ( ) and correct model when compliers and non-

compliers had the same Level-2 covariance matrices. 

For each estimation using the two MMB approaches, Mplus commands 

“STARTS 500 20” and “STITERATIONS = 20” were used. The first command 

requested Mplus to generate 500 sets of different random starting values for all 

parameters and to do 20 iterations of the maximization on all 500 sets. The second 

command then made use of the 20 sets of parameter estimates that had the best 
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likelihood values obtained from the first stage as the new starting values. It was 

possible to reduce the number of estimation problems by increasing these numbers, 

but the computation time would increase too. The influence of changing these 

parameters on estimation was out of the scope of the current study, so only “STARTS 

500 20” and “STITERATIONS = 20” were employed. 

3.4.Evaluation Criteria  

Six dependent variables were used to address the five research questions. The 

first dependent variable was used to answer Research Question 1, the second to the 

fifth dependent variables were for Research Question 2, and the sixth dependent 

variable was used for Research Question 3 and 4. The comparison of the two 

estimation methods, Research Question 6, was conducted using all six variables.  

The first dependent variable, the “Success Indicator”, conveyed the 

information about whether an estimation was successful or not. A successful 

estimation was defined as a converged estimation without any untrustworthy 

information.  

Estimations can fail or yield untrustworthy results due to various reasons, such 

as local maxima, non-positive definite variance estimates, and sample sizes not big 

enough for proper parameter estimations. In such cases, Mplus would generate a 

warning or an error message. If failed or untrustworthy results happen in a real data 

analysis, researchers have to make some changes—increasing the sample size, 

changing the starting values, increasing the iteration times, etc.—to fix the estimation 

errors. Sometimes it is unfixable, especially when the sample size is too small. In the 

current study, the post-estimation model revision was not part of the current research 

interest; therefore, only estimations free of warning or error messages were defined as 
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“successful estimations”. Consequently, the “Success Indicator” was defined as a 

dichotomous variable with three possible values: 1 = Successful Estimation, 0 = Non-

Successful Estimation, and NA = Excluded Datasets (see 3.5.1). All cases with “NA” 

were excluded from all analyses. This rule also applied to all other dependent 

variables. 

Research Question 3 and 4 were essentially about parameter significance, and 

parameter significance could be affected by both parameter estimation and standard 

error estimation. In the current study, all effect sizes were set to be equal to or greater 

than zero. Therefore, parameter overestimation and standard error underestimation 

would inflate rejection rate, and parameter underestimation and standard error 

overestimation would deflate rejection rate. As a result, in order to fully investigate 

statistical power and type I error rate, both parameter estimation bias and standard 

error estimation bias were included. Therefore, the second and third variables 

addressed the bias in parameter estimation, and the fourth and fifth variables were 

used to quantify the bias in standard error estimation. 

The second variable was defined as the “Simple Estimation Bias”, which was 

simply the difference between the estimated parameter and the true parameter, 

, where  was the true treatment effect of the i-th sample and  was the 

estimation of using the i-th sample.  The third variable was the “Relative 

Estimation Bias”, . It quantified the deviation of the estimated 

parameter from the true parameter, relative to the true parameter. The multiplication 

of the “100%” converted the bias to a percentage scale.  

$
c _ ciγ γ− cγ $

c _ iγ

cγ

$
c _ c

c

100%
iγ γ
γ

−
×



 

103 

 

For both measures, a positive value indicated that the i-th estimation was an 

overestimation, and a negative value indicated an underestimation. The absolute 

values of the two measures were the magnitudes of the estimation bias. Both variables 

were continuous, and NA represented removed datasets or non-successful estimations. 

Both the simple and relative bias measures are widely used in simulation 

studies, but both measures have their disadvantages. The simple bias is unscaled so 

the results are not comparable across different studies. Conclusions from one study 

are hardly meaningful for another, if only simple bias is used. The relative bias, 

however, requires the denominator (i.e., the true ) to be non-zero. Because d = 0 

was one design of the current study,  was an inevitable condition. As a result, 

both simple and relative measures were used for the estimation bias analysis, and all 

designs with d = 0 were not included for the Relative Estimation Bias analyses. 

Similar to the parameter estimation bias, there were two standard error bias 

measures, the “Simple Standard Error (SE) Bias” and the “Relative SE Bias”. The 

Simple SE Bias was defined as , where  was the estimated 

standard error of parameter  using the i-th replication sample and  was the 

empirical standard error of parameter . The empirical standard error was used 

instead of the true population standard error because the true population standard error 

could not be set the same way as the true population treatment effect. However, 

within each design cell, there were up to 1,000 replication samples (if no removed 

datasets or non-successful estimations) generated with exactly the same population 

configurations. The large number of samples formed an empirical sampling 

cγ

0cγ =

� $ $( ) ( )c ciSE SEγ γ− � $( )c iSE γ

$
cγ � $( )cSE γ

$
cγ



 

104 

 

distribution of the estimated parameter, and the standard deviation of this distribution 

resembled the population standard error, which was hence called the “empirical 

standard error”.   

Naturally, the “Relative SE Bias” was defined as . 

Similarly, the Simple SE Bias and the Relative SE Bias could be positive, indicating 

overestimation, and negative, indicating underestimation. They were continuous with 

NA representing removed datasets or non-successful estimations. 

The last dependent variable was the “Significant Indicator”, suggesting 

whether an estimated treatment effect was statistically significant at 0.05 level. This 

variable has three possible values: 1 = Significant, 0 = Non-Significant, and NA = 

removed datasets or non-successful estimations. This variable was used for both 

Research Question 3 and 4. When discussing statistical power, only simulation 

designs with should be included, and when examining type I error rate, only 

designs with  should be included.  

3.5.Result Analysis  

3.5.1. Excluded datasets 

This study generated 1,440,000 datasets using 1,440 design configurations 

[5SampleSize*4ComplierProportion*4EffectSize*2MsurementReliability*3MeanDistance*3 Noncomplier-

ComplierLevel2CovarianceRatio]. Each configuration was a unique combination of the different 

levels of the six factors. These unique combinations or configurations are sometimes 

referred to as “design cells” in this paper.  
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Among the 1,440,000 generated datasets, there were 6,075 datasets ending up 

with no always-takers in the Z = 0 group (i.e., D = 1 and Z = 0), 6,043 datasets 

having no never-takers in the Z = 1 group (i.e., D = 0 and Z = 1), and 367 of the 

11,751 datasets including neither. The MMB method requires to specify the number 

of compliance groups correctly. These 11,751 (0.8%) datasets nonetheless suggested 

an incorrect number of compliance groups, so they were removed from all analyses. 

For example, if a dataset had no always-takers in the Z = 0 group, one would assume 

that only never-takers and compliers were in the population and would incorrectly use 

an MMB model with only two compliance groups. However, the truth was that there 

was in fact three groups (because of the simulation design), and no always-takers in 

the Z = 0 group only happened because of random chance of sampling. In this case, 

the issue became incorrect specification of model and was not the research interest of 

the current study.   

3.5.2. Analysis with factorial ANOVA 

Simulation studies normally include a few categorical factors each having 

several levels, so the available information rapidly becomes overwhelming. Many 

researchers recommended using inferential statistics in analyzing simulation results 

(Bandalos & Gagné, 2012; Harwell, Rubinstein, Hayes, & Olds, 1992; Hauck & 

Anderson, 1984, Skrondal, 2000) to tease out peripheral information and therefore 

better focus on the core findings. Specifically, using a factorial ANOVA analysis to 

pinpoint the contribution of each factor, quantified by η2 or partial η2, was widely 

accepted by various researchers (Fan & Sivo, 2007; Bandalos & Gagné, 2012). 
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Therefore, in the current study, the factorial ANOVA procedure was employed as the 

preliminary analysis tool in selecting important factors. With the guidance of the 

ANOVA results, more detailed descriptive statistics and graphical techniques were 

followed for further investigation.      

Independent variables. All simulation factors, n, PC, d, rel, md, and var, were 

used as the independent variables for the factorial ANOVA analyses. They were all 

categorical. For certain analyses, some factors or factor levels were dropped. For 

example, when investigating Relative Estimation Bias, d = 0 was dropped because 

only datasets with none-zero Effect Size were included for analyses. 

Modeling. As some of the dependent variables were dichotomous and some 

were continuous, a generalized factorial ANOVA approach was applied. For 

continuous dependent variables, a linear regression model was used first, and for 

dichotomous dependent variables, a logistic regression model first. These models all 

included the main effect terms of the six independent variables and all of their 2- and 

3-way interaction terms. More than 3-way interactions were not included because 

high-way interactions are usually too complicated to interpret. 

For linear regression models, an analysis of variance was followed to calculate 

the variance explained by each term, and a partial η2 (in percentage form) was 

calculated for each term, , where SSA was the sum of 

squares for factor A and SSError was the error sum of squares (Cohen, 1973).  

2 A

A Error

Partial 100%
SS

SS SS
η = ×
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The reason for using the partial η2 instead of the non-partial one was that 

subsequently each term’s partial η2 was used to determine its importance by applying 

Cohen’s (Cohen, 1988) rule of thumb for one-way ANOVA. Cohen (1988) defined 

that in one-way ANOVA, η2 = 2% suggested a “small” effect, 6% “medium”, and 

14% “large”. While in factorial ANOVA with more than one predictor, the partial η2 

is a closer approximation of the one-way ANOVA η2, and the rule of thumb can thus 

readily be applied.  

The incremental type I sum of squares were used to calculate all partial η2s. 

When using the type I sum of squares, each effect is added into the model in a 

sequential order where later added terms are conditional on earlier added terms. For 

example, if a model contains factor A, factor B, and their interaction term AB, and the 

three terms are entered into the model by the order of A, B, and AB, using type I sum 

of squares, SSA is the sum of squares for factor A, SSB is the added sum of squares for 

factor B conditional on the model already including factor A, and SSAB is the added 

sum of squares for the interaction term AB conditional on the model already including 

factor A and factor B. 

With a balanced factorial design (the original design of this study), the factor 

entering order would not change the estimation of the sum of squares. However, due 

to the deletion of datasets because of the aforementioned reason (section 3.5.1), no 

always-takers in the Z = 0 group and/or no never-takers in the Z = 1 group, and the 

fact that non-successful estimations (see more in section 4.2) were also excluded from 

the final analyses, the final results did not preserve the balanced design. To 
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compensate for this downside, all regression models were run six times in order to 

rotate the entering order of the six factors. For example, the first model would enter 

the six factors in the order of n, PC, d, rel, md, and var (and their 2-way and 3-way 

interaction terms). The second model then would enter the six factors in the order of 

PC, d, rel, md, var, and n  (and their 2-way and 3-way interaction terms) by moving 

the last term in the earlier model to be the first term in the current model. The same 

rule was applied to all ANOVA analyses.  

For each model, the partial η2 was calculated for all terms. In the end, six 

partial η2s were obtained for each term. There might be great variation among the six 

partial η2s, but if the maximum partial η2 of a term was bigger than the “medium” 

effect size, 6%, that term was used for further investigation with tables and figures.          

For logistic regression models, an analysis of deviance was followed to 

calculate the deviance reduced by each term. A pseudo-partial η2  adapted from 

McFadden’s (1973) R2 to approximate the calculation of the partial η2 in linear 

regression was calculated for each term, 

 

where DA was the deviance reduced by adding factor A to the model and DResidual was 

the deviance difference between the null model and the model applied. DA was also 

calculated in the same way as the type I sum of square and therefore was subject to 

the entering order of the independent variables.  
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Note that only 10% of the result data were used for any logistic regression 

analysis because of the huge demand for computer memory and extremely lengthy 

computation time. In order to check if 10% of the total data were able to yield a 

reliable estimation of the pseudo partial η2 for each term, the analysis process was 

applied to three random samples. Each sample contained results from 10% of the total 

datasets, and the three samples had no overlap. For each sample, the six rotation 

procedure used for the linear regression model were implemented too. Therefore, for 

each term used for each sample, there was a maximum pseudo partial η2. 

Subsequently, the mean of the three maximum pseudo partial η2s was also calculated 

as the “Mean of All Maxes” for each term. All terms with their “Mean of All Maxes” 

value bigger than 6% were kept.  

The next step compared the three samples’ kept results to uncover potential 

discrepancies introduced by using only 10% of the data. If there was great variation 

among the three samples’ kept results, the process would start again with another 

three samples each containing a higher percentage of the total data (e.g., 20%). This 

process would not stop until the sample variation diminished. The rest of the 

procedure was the same as what was described in the linear regression section.  

Following the guidance of the factorial ANOVA results, descriptive statistics 

tables and plots were engaged for further examination. Specifically, all main effects 

were further examined with a table presenting the level means of the six factors and a 

figure graphically displaying these level means. For any selected interaction term, a 

table and a visual aid figure were included for further examination. 
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Last but not least, one important goal of simulation studies is to provide 

practical guidance for researchers and practitioners, especially on controllable factors. 

For example, simulation studies can answer questions such as “What is the minimum 

sample size in order to reach a satisfactory estimation success rate by using this 

method?” or “How reliable my measurements should be so that the parameter bias is 

still acceptable?” Among the six simulation factors used in this study, only Sample 

Size and Measurement Reliability were manipulable for researchers. Hence, for each 

research question, this study also included guidance on the two factors as a function 

of other simulation factors.  

For each research question, a cross tabulation table was created only using 

factors identified by the factorial ANOVA analysis. The tables highlighted simulation 

conditions that were favorable for each research question. 

For example, for Research Question 1, if the factorial ANOVA identifies that 

n and var are the only two important factors for successful estimations, the cross 

tabulation table will include three factors, n, rel, and var. The cross tabulation table 

will present all configurations across all levels of these three factors. In this 

imaginative case, there will be 30 (5[n]*2[rel]*3[var]) numbers included for the table. 

Each number is a summary of the 48 (4[PC]*4[d]*3[md]) design cells with regard to a 

specific combination of n, rel, and var. If, for instance, with n = 50, rel = 0.5, and var 

= 0.1, the number is 25%, it means that 12 out the 48 design cells have their mean 

successful estimation rate (across up to 1,000 replications for each cell) meeting a pre-
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specified criterion. If the number is 100%, it means that all 48 design cells meet the 

criterion.  

The criterion was chosen differently for each research question. For Research 

Question 1, the mean success rate was calculated, and the criterion was set to be at or 

above 90.91% (Gagne & Hancock, 2006). Using the example above, a number of 

25% means that 12 out of 48 design cells have their mean success estimation rate 

higher than or equal to 90.91%.  

For Research Question 2, only the Relative Estimation Bias and the Relative 

SE Bias variables were used, and a cross tabulation table was created for each 

variable.  According to Muthén, Kaplan, and Hollis (1987), relative bias of 10% could 

be considered as “negligible”. Therefore, the criterion was set to be between the 

bound of ±10%. In this case, a number from the two cross tabulation tables would 

indicate the percentage of design cells having mean bias within the bound of ±10%. 

For Research Question 3, the mean significant rate was calculated for designs 

with . Each number represents the percentage of design cells with cell average 

empirical power higher than or equal to the pre-specified satisfactory power rate, 

80%.  

For Research Question 4, the mean significant rate was calculated for designs 

with . Each number represents the percentage of cells with cell average type I 

error rate within the bound of 4.5% and 5.5%. This bound was chosen because the 

non-biased type I error rate should be 5% as all significance tests were conducted at 

0d ≠

0d =
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the level of 0.05. Following the aforementioned “negligible” rule of bias, a 10% 

interval was constructed around 5%, i.e., 4.5% to 5.5% (Bradley. 1978). 
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Chapter 4: Results 

This chapter first provides the rationale for using 1,000 replications for each 

design cell. The rest of the chapter is organized by the order of the research questions. 

Sections 4.1 and 4.2 address the first two questions. Section 4.3 discusses Research 

Question 3 and 4 together because power and type I error are both related to 

significance rate. Research Question 5 is addressed across the three sections where the 

two estimation methods are compared with respect to each criterion. 

4.1. Replication Check  

As mentioned in Chapter 3, for each design cell, the author generated 1,000 

replications. In order to examine if 1,000 replications was enough to yield reliable 

statistics for each cell, plots trying to depict the estimation of the six key variables 

along the increase of replication time were created. 

  

Figure 11.    Mean value of Simple Parameter Bias as a function of replication time for 

the three estimation methods    

Figure 11 is an example of these plots. This figure shows the mean value of 

Simple Parameter Bias as a function of replication time for the three estimation 

methods for the design cell with n = 500, PC = 0.3, d = 0, rel = 0.5, md = 0.2, and var 

= 0.5. With the increase of replication number, the mean value started to converge. 



 

114 

 

The variation of the mean values became minimum when replication approached 

1,000. This was an indication that replication of 1,000 was enough to yield reliable 

estimation of Simple Parameter Bias for that cell. Similar plots can be observed for 

other outcome variables, although the mean bias converged quicker than others. 

4.2.Success Rate  

This section presents the results regarding research question one: how will 

each of the six factors affect the estimation success rate of the Standard IV and the 

MMB methods? Success estimation indicator was used for the investigation.  

Section 4.2.1 presents the result of the factor effects. Section 4.2.2 provides 

guidance on choosing sample size and reliability value. Section 4.2.3 includes further 

analysis explanation of the other research questions as a result of the analysis of 

estimation success rate.   

4.2.1. Results of factor effects 

Following the analysis procedure described in section 3.5, three 10% random 

samples were used for the six-rotation factorial ANOVA analysis. For each sample, 

there was one maximum pseudo partial η2 (out of the six rotations) for each term 

included in the logistic regression model. As a result, each term had three maximum 

pseudo partial η2s (one for each sample). For terms with their “Mean of All Maxes” 

(i.e., the mean of the three maximum pseudo partial η2s) bigger than 6% were checked 

closely to inspect the degree of sample variation. All three samples had very similar 
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maximum pseudo partial η2s for the kept terms (“Mean of All Maxes” bigger than 

6%). Therefore, the procedure stopped with the three 10% samples. 

Table 6 

Factorial ANOVA Result: Significance Indicator 

 

Note. η2 ≥ 14%: bold and underlined ; 6% ≤ η2 < 14%: bold; η2 < 6%: grayed out. 

Table 6 presents the selected terms and their three maximum pseudo partial 

η2s. The last column contains the means of the three maximum pseudo partial η2s for 

terms presented in this table. All terms follow the order of the last column.  

Terms with the last column value meeting the 6% criterion are all presented in 

this table, but in order to include enough information, at least three terms are included 

for each estimation method (same rule applies to all other similar tables later). If a 

term has its “Mean of All Maxes” greater than or equal to Cohen’s “large” effect size, 

14%, that term’s partial η2s are bold and underlined; if greater than or equal to the 

“medium” effect size, 6%, but smaller than 14%, bold; if smaller than 6% but kept in 

the table because of “to include enough information”, grayed out. Throughout this 
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paper, all similar summary tables use the same formatting rule. The following 

discussion refers to the “Mean of All Maxes” column when discussing each term. 

The main effects of Sample Size and Measurement Reliability were important 

for all three estimation methods, and they were the only selected terms for the SIV 

and the MMB-FC methods. The main effect of factor n was the dominant term for all 

three estimation methods. Its pseudo partial η2 for the MMB-NC estimation approach 

was as high as 53.40%, meaning the main effect of n accounted for 53.40% of the 

sum of the deviance reduced by this term plus the residual deviance. Although slightly 

smaller than the pseudo partial η2 of the MMB-NC approach, the values were 20.44% 

for the SIV method and 26.57% the MMB-FC method. For all three estimation 

methods, term n had a “large” effect.  

The main effect of factor rel was the second most import term for the SIV and 

the MMB-FC approaches, accounting for 9.43% and 15.63% of the sum of the 

deviance reduced by this term plus the residual deviance respectively. While for the 

MMB-NC approach, term rel was the third most influential term, taking 13.78% of 

the sum of the deviance reduced by itself plus the residual deviance. For all three 

estimation methods, term rel at least had a “medium” effect.  

For the MMB-NC method, there was an extra term having a considerable 

effect on its success rate, the PC term. It was the second most important term and had 

a “large” effect with pseudo partial η2 = 29.69%. 
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The factorial ANOVA results suggested that none of the three methods was 

considerably influenced by any interaction terms on their success rate; therefore, the 

following discussion only focused on the main effects.  

Table 7 

Success Rate Means at each Level of the Factors for the Three Approaches 

 

Note. In the same row, the biggest value was bold, and the smallest was bold and underlined. 
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Figure 12. Success rate means at each level of the factors for the three approaches 

Table 7 displays the overall success rates for the three estimation methods in 

the first row. The rest of the table presents the success rates with regard to each 

individual level of the six factors. In the same row, the highest success rate is bold, 

and the lowest is bold and underlined. Figure 12 shows a plot for each factor and 

includes the level means for all three methods in one plot. The horizontal axis of each 

plot demonstrates different levels of a factor, and the vertical axis depicts the mean 

success rate. Note that in order to preserve the interval nature of the factors, the 
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numbers on the horizontal axis are not equally distanced. Each plot uses three 

different lines to represent the three estimation methods.  

Within each estimation method, it was consistent with the factorial ANOVA 

results. The factors selected in the factorial ANOVA analysis also showed obvious 

variations across their levels. A clear and positive trend was observed for the Sample 

Size factor for all three estimation approaches: the mean success rate went up as n 

increased. This trend was very noticeable for the MMB-NC approach—the mean 

success rate changed from 0.04% to 71.99% (71.93% increase) when n increased 

from 50 to 1,000. For this estimation method, the increase of the success rate was also 

relatively proportional to the increase of n. The line for this estimation method in the 

“Sample Size” plot approximated a straight line. While for the other two approaches, 

even n = 50 yielded a relatively high mean success rate, 81.13% for the SIV method 

and 67.53% for the MMB-FC method. When n reached 200, both methods had a 

success rate higher than 90%. For both estimation methods, the influence of n was 

most evident when changing Sample Size from 50 to 200. With n > 200, success rate 

approached 100%.  

The upsurge in estimation success brought by changing rel from 0.5 to 0.8 was 

also sizeable: the SIV method’s average success rate increased from 89.27% to 

97.79% (an 8.52% increase), the MMB-FC approach increased from 81.19% to 

96.94% (a 15.75% increase), and the MMB-NC approach increased from 22.07% to 

38.58% (a 16.51% increase). 
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As mentioned in the factorial ANOVA analysis section, the factor PC showed 

an evident effect on the success rate for the MMB-NC approach only. In the 

“Complier Proportion” plot of Figure 12, only the line of the MMB-NC approach 

fluctuated remarkably across different PC levels while the other two lines did not 

change too much. The trend caused by PC on the success rate while using the MMB-

NC approach suggested that the success rate went up when changing from low to 

medium PC. However, the success rate started to decrease when switching from 

medium to high PC. With PC = 0.5, the mean success rate culminated at 45.53%, 

while with a too high or too low PC, the mean success rate was lackluster (7.59% 

when PC = 0.1, 30.07% when PC = 0.8). For the other two estimation methods, the 

effect of PC was not too obvious, but there was a general positive trend for both 

methods. 

In terms of the other three factors, d, md, and var, their influence on the 

success rate was too small to exhibit a noticeable pattern in Figure 12. The only 

patterns worth mentioning was for the MMB-NC method with md and var. Factor md 

had a very small positive effect. Factor var had a nonlinear effect: when var = 1, the 

mean estimation success rate was the lowest.  

Comparing the three estimation methods, the SIV method (93.53%) and the 

MMB-FC method (89.06%) yielded a much higher overall estimation success rate 

than the MMB-NC method (30.33%). When looking at each individual level within 

the factors, the same pattern remained: the SIV method always had the highest 

success rate, the MMB-FC method had a slightly lower rate and the MMB-NC 
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method was always much lower. Only with bigger sample size or more reliable 

measurements, the difference between the SIV and the MMB-FC methods diminished. 

The improvement on only one factor, having PC = 0.5, also brought the success rate 

of the MMB-NC approach to be closer to the other two but their difference was still 

quite sizable. As it was shown below (Table 8), only when all three factors had the 

very favorable conditions, the success rate of the MMB-NC method would approach 

the other two.  

4.2.2. Guidance on choosing n and rel with respect to estimation success rate. 

Table 8 

Percentages of Cells with Cell Average Success Rate Higher than or Equal to the 

Satisfactory Success Ratea 

 

Note. Percentages equal to 100% were italicized, bold, and underlined.  

a"Satisfactory Success Rate” meant that the cell average success rate was 90.91% or higher. 

To provide guidance on choosing adequate sample size and measurement 

reliability to yield a satisfactory estimation success rate, Table 8 summarizes the 
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success rates with respect to the three factors identified above (i.e., n, PC, and rel). 

Within each estimation method, each number in this table is the percentage of cells 

with cell average success rate higher than or equal to 90.91%. For example, among 

the 36 cells (4[d]*3[md]*3[var]) with n = 50, rel = 0.8, and PC = 0.1, 2.78% of them 

(i.e., 1 cell) had cell mean success rate higher than or equal to 90.91%. Numbers equal 

to 100% are italicized, bold, and underlined.  

For the SIV approach, when Complier Proportion was 0.1, the minimum 

requirements for sample size and measurement reliability were 500 and 0.5, meaning 

that if a sample had only 10% compliers the minimum sample size for guaranteeing a 

satisfactory success rate across all considered levels on d, md, and var was 500 and 

the minimum measurement reliability could be as low as 0.5. When PC ≥ 0.3, 

conditions with n = 50 and rel = 0.8 or with n = 200 and rel = 0.5 would lead to a 

satisfactory convergence rate.  

For the MMB-NC approach, when PC = 0.1, none of the cells reached a 

satisfactory convergence rate, meaning that with such a low complier proportion even 

sample size reaching 1,000 together with using reliable measurements would not 

guarantee a satisfactory convergence rate across all considered levels on d, md, and 

var. When PC = 0.3 or 0.8, the minimum measurement reliability required was 0.8 

with a combination of a sample size of 1,000. When PC = 0.5, the minimum 

reliability was still 0.8 but the minimum sample size decreased to 500.  
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For the MMB-FC method, the minimum requirement for n was 500 when rel 

= 0.5, but a smaller n of 100 or 200 would also guarantee that all cells with the same 

configuration on n and rel meeting the satisfactory criterion if rel = 0.8. 

4.2.3. Selecting applicable conditions for the MMB-NC approach 

As discussed above, the MMB-NC estimation method had extremely restricted 

conditions where it could reach the satisfactory success rate. Even for the other two 

estimation methods, not all conditions met the satisfactory success rate.  It would be 

rather limiting to investigate the approaches if only conditions meeting the 

satisfactory criterion were included. In addition, for certain factor levels, the MMB-

NC approach could yield tremendously low success rate; therefore, the analysis 

results using these conditions could be particularly unreliable. For example, when n = 

50 and PC = 0.1, only 4 out of 72,000 datasets were successfully estimated using the 

MMB-NC method. In this case, any statistics computed with only these four data 

points would be very unreliable. Therefore, in order to explore the MMB-NC 

approach under fairly wide settings and to obtain trustworthy analysis results, a 

middle ground was chosen: only conditions within which the nested cells had 300 or 

more usable datasets should be used for the MMB-NC approach. All 1,440 

configurations included in the simulation design had 300 or more usable datasets for 

the other two estimation methods, so there was no need to select the “Applicable 

Conditions” for these two methods. 

As a result, the configurations with n ≥ 500 and PC ≥ 0.3 were defined as the 

“Applicable Conditions” for the MMB-NC approach. Only under the “Applicable 
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Conditions” were the MMB-NC approach’s results analyzed and were compared to 

the other two estimation approaches. Therefore, the analyses of other dependent 

variables included three stages. The first stage was to use all datasets to analyze the 

SIV and the MMB-FC methods. In this part, the effect of each factor on the two 

estimation approaches was identified, and the two estimation methods were compared 

first. The second stage was to only involve datasets under “Applicable Conditions” 

for the analysis of the MMB-NC method. In this part, the effect of each factor on the 

MMB-NC approach was identified, and the three estimation methods were compared 

under the “Applicable Conditions”. The last stage made recommendations for 

choosing sample size and measurement reliability as a function of the ANOVA 

selected factors.  

In the following discussion, only successfully estimated results are used for all 

analyses.  

4.3.Estimation Bias 

This section presents the results regarding research question two: how will 

each of the six factors affect the estimation accuracy (biased or unbiased estimation) 

of the Standard IV and the MMB methods? Simple Estimation Bias and Relative 

Estimation Bias were used for investigating parameter estimation bias; Simple SE 

Bias and Relative SE Bias were used for standard error estimation bias.  

Section 4.3.1 and 4.3.2 present the result for the two types of bias respectively. 

Within each of these two sections, the analysis results for the SIV and the MMB-FC 

approaches using all conditions are discussed first, the analysis results for the MMB-
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NC approach using only “Applicable Conditions” follows, and the recommendations 

on choosing sample size and measurement reliability are presented in the end.  

4.3.1. Parameter estimation bias 

Results of factor effects with all conditions. This section examined the two 

estimation bias measures for the SIV and the MMB-FC approaches using all 

simulation conditions. 

Table 9 

Factorial ANOVA Result: Estimation Bias Measures with the SIV and the MMB-FC 

Methods 

 

Note. η2 < 6%: grayed out. NA suggested that the term was not selected or was not one of the top three 

terms for the dependent variable.  

Table 9 presents a summary of the linear regression results using the Simple 

Estimation Bias and the Relative Estimation Bias as the dependent variables. This 

table includes the terms selected by using each dependent variable and their maximum 

partial η2s obtained from the six rotations. As mentioned before, at least three partial 
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η2s are presented in tables like this for each dependent variable within each estimation 

approach, but the ones not meeting the 6% cutoff criterion are grayed out. In this 

table, none of the partial η2s is bigger than or equal to 6%, so all partial η2s are grayed 

out. “NA” in this table indicates that this term is not chosen or is not one of the top 

three terms using the current variable but is chosen or is one of the top three term 

using another dependent variable. For example, in the first row, “NA” shows up in the 

Relative Estimation Bias column. It suggests that the term “Sample size*Complier 

proportion” is one of the top three terms with the biggest partial η2s for the dependent 

variable Simple Estimation Bias but not one of the top three for the dependent 

variable Relative Estimation Bias. Within each estimation method, the terms are 

ordered by the “Simple” column.   

After applying the 6% cutoff criterion to the maximum partial η2s, no term 

was selected for either estimation approach. Especially for the SIV approach, the 

biggest partial η2 was for the interaction term of “Sample Size*Complier Proportion”, 

although it was only 0.15%, meaning that the interaction between n and PC only 

explained 0.15% of the sum of variance of that term plus error variance. The MMB-

FC approach had a slightly better term: the interaction term of “Complier 

Proportion*Noncomplier-Complier Level 2 Covariance Ratio” had a partial η2 of 

3.53% when using the simple bias and 2.65% when using the relative bias. 

Considering that most partial η2s were extremely small, although the partial η2 for this 

interaction term was smaller than 6%, it was larger than the small effect criterion, 2%. 
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Therefore, an investigation of this interaction was included after the main effect 

examination.  

Table 10 summarizes the simple and relative bias means over different levels 

of the six factors. Figure 13 and Figure 14 plot these means for the two dependent 

variables respectively. As all mean values of the simple bias are relatively small, they 

are rounded to four decimal points in Table 10. Note that for all relative bias analyses, 

datasets with d = 0 were removed. All relative bias means are on a percentage scale. 

Relative bias columns are also shaded in light gray for distinction. Within one 

dependent variable and one single row, the bigger absolute value was bold and the 

smaller absolute value was bold and underlined.  
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Table 10 

Simple and Relative Estimation Bias Means at each Level of the Factors for the SIV 

and the MMB-FC Approaches 

 

Note. In the same row and within the same bias measure, the number with a bigger absolute value was 

bold, and a smaller absolute value was bold and underlined. 
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Figure 13. Simple Estimation Bias means at each level of the factors for the SIV and 

the MMB_FC approaches. 
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Figure 14. Relative Estimation Bias means at each level of the factors for the SIV and 

the MMB_FC approaches. 

The trends of the two bias measures over different levels of five factors were 

similar to each other. The only difference was found for the Effect Size factor. 

Comparing to the simple bias, where d did not show obvious impact, the relative bias 

was overtly under the influence of d. This was true for both estimation methods. 

However, note that as the Effect Size factor did not show substantial impact on the 

simple bias, the influence of Effect Size on the relative bias variable was mainly 

because of using the true treatment effect as the denominator. In other words, the 
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estimation quality did not improve with bigger effect size because the simple bias did 

not change with a bigger effect size.    

As the trends of the two bias measures are similar for both estimation 

approaches regarding the other five factors, the discussion below combines the two 

together. Overall, the SIV approach underestimated the treatment effect. The mean 

values across all conditions were −0.0252 measured by the simple bias and −27.14% 

by the relative bias. Among all six factors, Complier Proportion had the greatest effect 

on the estimation bias. The mean values started with very low negative numbers 

(Simple = −0.0607/Relative = −64.25%) when PC = 0.1. As PC increased, the mean 

values also increased but remained negative. At the same time, their absolute values 

decreased. When PC = 0.8, the mean values shrank to −0.0019 and −2.08% 

(0.0588/62.17% decrease in the magnitudes). The change in the mean values was 

almost proportional to the change of PC when PC < 0.5. There was not much change 

when increasing PC from 0.5 to 0.8. 

A similar pattern was found with respect to another two factors, Sample Size 

and Measurement Reliability, but their effects were almost negligible, especially for 

rel.  

Mean Distance had the second greatest effect on the estimation bias of the SIV 

method. The mean values of the Relative Bias changed from −9.45% to −43.69% 

(−0.0088 to −0.0410 in Simple Bias) with a 34.24% increase in magnitude when d 

increased from 0.2 to 0.8. Their bias directions did not change, but the magnitudes 

became more prominent and the bias means were further away from zero. Similarly, 
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Noncomplier-Complier Level 2 Covariance Ratio also demonstrated similar 

influence, but its influence was much smaller. For each factor, the change in the bias 

means was almost proportional to the change of factor levels. 

For the MMB-FC approach, although the mean values of the simple bias and 

the relative bias across all conditions were 0.0213 and 22.86%, showing 

overestimation, the mean values across different levels of several factors fluctuated 

greatly, both in their directions and magnitudes.  

Noncomplier-Complier Level 2 Covariance Ratio demonstrated the most 

evident effect among the six factors. Var = 1 and 2 led to positive means (Simple = 

0.0302/Relative = 33.38% and Simple = 0.1134/Relative = 123.02%), and var = 0.5 

led to negative means (Simple = −0.0830/Relative = −91.92%). When compliers and 

non-compliers had the same Level 2 covariance matrix, the mean values were positive 

and minimum in their magnitudes. For var = 2 and 0, the mean value difference was 

0.1964 in terms of the Simple Bias and 214.31 % in terms of the Relative Bias.   

Complier Proportion had the second biggest influence, but the change mainly 

concentrated on changing PC from 0.1 to 0.3. With PC = 0.1, the mean values were 

positive and had big magnitudes, Simple = 0.0960/Relative = 103.53%. The numbers 

quickly became negative and trivial, Simple=−0.0039/Relative=−4.30%, when PC 

increased to 0.3. There was not much variation in the mean values among PC levels 

of 0.3, 0.5, and 0.8. The difference was 0.1005 between the biggest (when PC = 0.1) 

and the smallest (when PC = 0.5) mean values of the simple bias and 108.61 % 

between the two mean values of the relative bias. Note because the interaction term of 
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var and PC had a small-sized effect, the effect of one factor on the estimation bias 

would change across different levels of the other factor. The interaction effect is 

discussed more below. 

Sample Size also had a considerable influence. With a small n, the mean 

values were sizable and positive. As n increased, the means became closer to zero. 

With n = 50, the mean values were 0.0684 for the Simple Bias and 74.89% for the 

Relative Bias, and with n = 500, they decreased to 0.0028 and 2.92%. However, as n 

kept increasing to 1,000, the mean values became negative with larger magnitudes, 

reaching −0.0111 and −12.23%. The difference was 0.0795 between the biggest 

(when n = 50) and the smallest (when n = 1,000) mean values of the simple bias and 

87.12 % between the two mean values of the relative bias. 

Mean Distance and Measurement Reliability demonstrated much smaller 

effects on estimation bias. The former had a minor negative effect, and the latter had a 

slight positive effect.  
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Table 11 

Simple and Relative Estimation Bias Means by Different Configurations of PC and 

Var for the SIV and the MMB_FC Approaches 

 

Note. In the same row and within the same bias measure, the number with a bigger absolute value was 

bold, and a smaller absolute value was bold and underlined. 
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Figure 15. Simple and Relative Estimation Bias means by different configurations of 

PC and var for the SIV and the MMB_FC approaches 

As discussed earlier, for both estimation bias measures, most partial η2s 

obtained from the factorial ANOVA analyses were particularly small; therefore, an 

investigation of the only interaction term, “Complier Proportion*Noncomplier-

Complier Level 2 Covariance Ratio”, that met the 2% criterion was conducted. Table 

11 summarizes the mean values of the simple and relative estimation bias by different 

configurations of PC and var for the SIV and the MMB_FC approaches. Figure 15 

displays the interaction of the factors with two rows, and each row uses one factor as 

the X-axis variable and the other factor as the controlling variable. For example, the 

top row plots the change of the mean values of the relative bias over the four levels of 

the PC factor across the three levels of the var factor. Each plot in this row represents 
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one level of var. The change of the lines across the three plots in this row represents 

the influence of PC over different levels of var. Similarly, in the bottom row, the 

change of the lines across the four plots characterizes the influence of var on the 

relative bias over different levels of PC. The pattern of the simple bias measure was 

similar to that of the relative bias and was hence not presented.  

In this figure, the lines for the SIV method changed slightly across different 

plots within a single row, suggesting the same conclusion from the factorial ANOVA 

analyses—the interaction effect between the two factors was small for the SIV 

method. In the main effect figure, as complier proportion became bigger or covariance 

ratio became smaller, the mean values of both bias measures for the SIV method 

decreased in their magnitudes and remained to be negative in their directions. After 

taking the interaction effect into consideration, the general trends of the two main 

effects did not shift much. The only observation worth mentioning was that the effect 

of PC was more prominent with var = 2 and the effect of var manifested itself more 

with PC = 0.1. The combination of a high var value and a low PC value led to more 

negative bias. With var = 2 and PC = 0.1, the mean values of the two bias measures 

reached the lowest, −0.0859 for the simple bias and −87.99% for the relative bias.    

The lines for the MMB-FC method had a more considerable change across 

different plots within a single row. In the main effect figure, only when PC = 0.1, the 

mean values of the two bias measures were positive (Simple = 0.0960/Relative = 

103.53%) and were all negative and very close to 0 at other PC levels. In a word, the 

main effect of the PC factor was not very clear. However, when controlling for the 
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var factor, the pattern became more evident. Within the same var level, the effect of 

PC could be summarized as “bigger complier proportion led to smaller bias 

magnitude, but different PC values were associated with different bias directions.” 

The directions of the mean values were mainly determined by var. Within a fixed PC 

level, the effect of var was similar to its main effect: when var = 0.5, the estimation 

bias was negative on average; when var = 1, the average estimation bias became 

much closer to 0; when var = 2, the mean estimaiton bias was positive with the largest 

magnitude among the three var levels.  

In conclusion, the combination of a lower PC and var = 0.5 led to a sizable 

negative bias, and the combination of a lower PC and var = 2 led to an especially 

large positive bias. With var = 0.5, the mean values were negative and had big 

magnitudes when PC = 0.1 (Simple = −0.1340/Relative = −149%) and PC = 0.3 

(Simple = −0.1384/Relative = −150.72%). With var = 2 and PC = 0.1, the mean 

values were positive with even larger magnitudes (Simple = 0.3020/Relative = 

327.58%). The smallest magnitude was obtained with var = 1 and PC = 0.8 (Simple = 

−0.0022/Relative = −2.07%). 

Comparing the two estimation methods, the MMB-FC method on average 

yielded positive and lower magnitude bias, 0.0213 for Simple Bias and 22.86% for 

Relative Bias, while the SIV approach overall produced negative and bigger 

magnitude bias, −0.0252 and −27.14%. However, the MMB-FC method was more 

susceptible to adverse conditions. When n was low (smaller than 200) or PC was low 

(0.1), the estimation bias using the MMB-FC method on average surged on a much 
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larger scale than the SIV method, but with more favorable sample size (bigger than 

200) or complier proportion (bigger than 0.1), the bias of the MMB-FC method on 

average was closer to zero.  

In addition, the MMB-FC method also reacted more to the var factor. Unequal 

noncomplier- complier Level 2 covariance matrices exacerbated the estimation of the 

MMB-FC method on a large scale, especially when noncompliers had larger Level 2 

covariance matrix. With var = 0.5, the estimation bias was on average negative, and 

with  var = 2, positive. The former had a smaller magnitude than the latter. Factor var, 

on the other hand, was not that influential for the SIV approach. The var = 0.5 

condition even yielded the smallest average estimation bias value for the SIV 

approach. Effect Size, Measurement Reliability, and Mean Distance had a similar 

influence on the magnitudes of the estimation bias means for both estimation 

methods. Only the directions were different. 

Moreover, although the interaction effect of PC*var did not meet the 6% 

criterion for the MMB-FC method, it was larger than 2%. As a result, for this 

estimation method, the combination of a low PC and var = 0.5 led to a sizable 

negative bias; the combination of a low PC and var = 2 led to an especially large 

positive bias. For the SIV method, the interaction effect was not evident.  

Results of factor effects with applicable conditions. This section examines the 

two estimation bias measures for the MMB-NC approach using only conditions that 

has more than 300 successfully estimated datasets per design cell. In other words, 
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Sample Size is bigger than or equal to 500, and Complier Proportion is bigger than or 

equal to 0.3. 

Table 12 

Factorial ANOVA Result: Estimation Bias Measures with the MMB-NC Method 

 

Note. η2 < 6%: grayed out. NA suggested that the term was not selected or was not one of the top three 

terms for the dependent variable.  

Table 12 is a summary of the factorial ANOVA analysis. None of the terms 

was bigger than or equal to 6%. The biggest partial η2 was only 0.02% for both the 

simple and relative bias measures.    

Similar to the section for the other two estimation methods using all 

conditions, Table 13 summarizes the mean values of the simple and relative bias 

measures over different levels of the six factors, and Figure 16 and Figure 17 plots 

these values for the two dependent variables separately. Note that comparisons across 

the three methods were included after the examination of the MMB-NC approach, so 

Table 13, Figure 16, and Figure 17 also includes the results of the other two 

estimation methods using only sample units under applicable conditions.  
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Table 13 

Simple and Relative Estimation Bias Means at each Level of the Factors for the Three 

Estimation Approaches under Applicable Conditions 

 

Note. In the same row and within the same bias measure, the number with a bigger absolute value was 

bold, and a smaller absolute value was bold and underlined. 
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Figure 16. Simple Estimation Bias means at each level of the factors for the three 

estimation approaches under Applicable Conditions. 
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Figure 17. Relative Estimation Bias means at each level of the factors for the three 

estimation approaches under Applicable Conditions. 

Because some n levels and PC levels that were very likely to lead to more 

extreme estimation bias were excluded from the analyses in this section, most mean 

values across different factor levels became much closer to zero, and there was less 

variation across different levels of a factor, especially for the SIV and the MMB-NC 

methods. To better display the trend for the MMB-NC method (although very small), 

the vertical axil limitations are set to be −0.03 to 0.005 for Figure 16 and −30% to 5% 

for Figure 17. For the MMB-FC estimation method, some mean values of the three 
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levels of var were out of these ranges, so in the “Noncomplier-Complier Level 2 

Covariance Ratio” plot of each figure, the two mean values at the var = 0.5 and 1 

levels could not be displayed.  

Similar to the conclusion of the All Conditions section, Effect Size seemed to 

have different effects on the simple and the relative bias measures. However, this 

difference was mainly because the relative bias used the true treatment effect as the 

denominator. Therefore, Effect Size in fact did not show any effect on estimation bias 

for the MMB-NC method either.  

Overall, the MMB-NC approach slightly underestimated the treatment effect 

(−0.0015/−1.69%). All main effects were extremely small, too. Factor var had the 

largest effect, where var = 1 led to the smallest bias on average. Complier Proportion 

had the second greatest effect. The influence of Sample Size, Measurement 

Reliability, and Mean Distance were negligible.  

Comparing the three estimation methods under the Applicable Conditions, all 

three methods on average yielded negative bias. The MMB-NC method had the 

smallest average bias magnitude, −0.0015/−1.69%, the SIV approach had a slightly 

more sizable mean bias, −0.0023/−2.7%, and the MMB-FC method had a much more 

substantial average bias magnitude, −0.0088/−9.63%. For most sublevels within each 

factor, the MMB-NC method also performed the best, and the SIV method was not 

too much biased. The MMB-FC approach, on the other hand, performed much worse 

than the other two.  
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As shown in Table 13, most numbers in the two columns under the “MMB-

NC” header were bold and underlined, indicating having the lowest absolute value 

among the three methods. Most numbers under the “MMB Full Constraint” header 

were just bold, indicating having the highest absolute value among the three methods. 

There are three exceptions. The first one was when PC = 0.8. The SIV and the MMB-

FC approaches both had lower absolute simple bias means, and the MMB-NC 

approach had the largest absolute simple bias mean among the three. In terms of the 

relative bias means, the MMB-NC approach still had the biggest magnitude, but the 

MMB-FC approach had the smallest magnitude. The second exception was when var 

= 0.5: the SIV method, instead of the MMB-NC method, had the smallest bias 

magnitude for both simple and relative bias means. The last exception was when var 

= 1: the SIV method, instead of the MMB-FC method, had the largest bias magnitude 

for both simple and relative bias means. 
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Guidance on choosing n and rel with respect to parameter relative bias. 

Table 14 

Percentages of Cells with Cell Average Relative Estimation Bias within the Negligible 

Boundsa 

 
Note. Percentages equal to 100% were italicized, bold, and underlined. NA were conditions excluded 

for the MMB-NC method. 

a"Negligible Bounds” meant that the cell average Relative Estimation Bias was smaller than or equal to 

10% and bigger than or equal to −10%. 

As none of the factors met the 6% criterion, the recommendations on n and rel 

with respect to parameter estimation bias would not be conditional on the other four 

factors. The Complier Proportion factor was added because usable cells for the MMB-

NC method conditioned on this variable. Therefore, Table 14 summarizes the 40 

configurations using Sample Size, Measurement Reliability, and Complier Proportion. 

Within each configuration, there are 27 cells (3[d]*3[var]*3[md]). Each number in 

Table 14 represents the percentage of cells having cell relative bias mean value within 

the negligible bounds, −10% to 10%.  All numbers equaling 100, indicating all cells 

with that configuration have mean values of their relative bias within the ± 10% 
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bounds, are italicized, bold, and underlined. Note that for the MMB-NC method, 

configurations excluded from the analysis are labeled with NA.  

For all three methods, the number of configurations that had nested cells all 

meeting the negligible criterion was very low. Most configurations meeting the 

criterion concentrated on design cells with large complier proportion, 0.5 or 0.8, 

mostly 0.8. When PC = 0.8, to guarantee all design cells having negligible mean 

values of estimation bias for the SIV approach, n could be as small as 200 with or 

without highly reliable measurements (i.e., rel = 0.8). However, the requirement 

became much more restricted when PC = 0.5. Only the most optimistic sample size 

and reliability combinations would guarantee that all cells had negligible means. The 

MMB-NC method worked with n = 500 and rel = 0.8 if PC = 0.8. With PC = 0.5, 

only sample size of 1,000 would be adequate, while rel was irrelevant. Lastly, for the 

MMB-FC method, only PC = 0.8 was eligible for further consideration. The least 

restricted requirement was with n = 500 and rel = 0.8. When n = 1,000, there was no 

requirement on rel.  
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4.3.2. Standard error estimation bias 

Results of factor effects with all conditions. 

Table 15 

Factorial ANOVA Result: SE Bias Measures with the SIV and the MMB-FC Methods 

 

Note. η2 ≥ 14%: bold and underlined ; 6% ≤ η2 < 14%: bold; η2 < 6%: grayed out. NA suggested that the 

term was not selected or was not one of the top three terms for the dependent variable.  

Table 15 is a summary of the linear regression results using the Simple SE 

Bias and the Relative SE Bias as dependent variables. In terms of the Simple SE Bias 

variable, for both the SIV approach and the MMB-FC approach, the “Sample Size” 

term and the “Sample Size*Complier Proportion” term met the 6% criterion and were 

therefore kept. The “Sample Size*Complier Proportion” term was the most influential 

term for the SIV approach, accounting for 21.48% of the sum of variance of that term 

plus error variance. This term had a “large” effect size. “Sample Size” had the second 

largest partial η2, 6.75%, for the SIV approach, meaning that this term explained 

6.75% of the sum of variance of that term plus error variance. The MMB-FC 

approach had the same two terms kept, but the Sample Size term had a larger partial 
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η2, 9.92%, and the interaction term of n and PC had the second largest partial η2, 

7.46%. In terms of the Relative SE Bias variable, on the other hand, only the “Sample 

Size*Complier Proportion” term was kept for the SIV approach (partial η2 = 7.26%). 

No term was kept for the MMB-FC approach.        

As one interaction term was kept, the following discussion presents the main 

effect results first and then the interaction effect. 

Table 16 

Simple and Relative SE Bias Means at each Level of the Factors for the SIV and the 

MMB-FC Approaches 

 

Note. In the same row and within the same bias measure, the number with a bigger absolute value was 

bold, and a smaller absolute value was bold and underlined. 
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Figure 18. Simple SE Bias means at each level of the factors for the SIV and the 

MMB_FC approaches. 
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Figure 19. Relative SE Bias means at each level of the factors for the SIV and the 

MMB_FC approaches. 

Table 16 summarizes the mean values of the simple SE bias and the relative 

SE bias over different levels of the six factors, and Figure 18 and Figure 19 plots 

these values for the two dependent variables separately. The SIV approach on average 

slightly underestimated the SE, resulting in an overall Simple SE Bias of –0.0548 and 

Relative SE Bias of −1.33%. The MMB-FC approach on average also underestimated 

the SE, but on a larger scale, especially for the Relative Bias. The overall Simple SE 

Bias was −0.0826, less than two times of that of the SIV approach, but the overall 

Relative SE Bias reached −15.17%, 11 times of that of the SIV approach.  
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The trends of the two bias measures over different levels of the six factors 

differed between the two bias measures. Therefore, the results of Simple SE Bias are 

discussed first, and the results of Relative SE Bias are next. 

In the matter of Simple SE Bias, PC and n had the most evident effects for 

both estimation approaches. The effect of PC was completely positive for the MMB-

FC approach but was partially positive for the SIV method. With the MMB-FC 

approach, the mean values of the simple SE bias increased together with PC and 

became the closest to zero with PC = 0.8. When PC = 0.1, the simple bias mean was 

−0.2530, but it quickly changed to −0.0633, when PC turned to 0.3. With PC = 0.8, 

the mean almost diminished to zero, −0.0010. The decrease in the magnitude of the 

mean values was 0.2520. The mean values for the SIV approach, by contrast, started 

with the lowest value, −0.2474, with PC = 0.1, culminated at 0.0187 when PC = 0.5, 

and decreased to 0.0016 when PC continued to change from 0.5 to 0.8. When PC = 

0.3 or 0.8, the mean values had smaller magnitudes. The difference between the 

largest and the smallest means was 0.2661, slightly bigger than that of the MMB-FC 

method.  

With bigger Sample Size, both the SIV method and the MMB-FC method had 

higher Simple SE Bias on average. The simple SE bias mean increased from −0.1229 

to 0.0036 with a 0.1265 increase when changing the sample size from 50 to 1,000 

using the SIV approach, and the change was from −0.1897 to −0.0232 with an 

increase of 0.1665 for the MMB-FC approach. For the SIV method, when n = 1,000, 

the mean turned to be positive while the means of all other n levels were negative. Its 
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magnitude, however, was still the smallest. As PC and n also had a sizable interaction 

effect, the effect of one factor might change across different levels of the other factor. 

The other four factors did not display as evident effects as the two factors 

mentioned above. The var factor had the third greatest effect for both estimation 

methods, but the effect was much smaller than PC and n. Across all levels of the var 

factor, the means were all negative for both methods. For the SIV approach, the 

means became more negative as var increased, and the bias magnitude was the 

greatest when var = 2. For the MMB-FC method, var = 1 led to the least negative bias 

mean, i.e., the smallest magnitude mean among the three var levels.  

The Effect Size factor, the Measurement Reliability factor and the Mean 

Distance factor had the fourth to sixth greatest impact on the Simple SE Bias for the 

SIV approach. For the MMB-FC approach, the Mean Distance factor, the 

Measurement Reliability, and the Effect Size factor ranked the fourth to sixth in terms 

of their impacts. For both estimation methods, the impacts of these three factors were 

very small.  

With regard to Relative SE Bias, PC and n also had the most evident effects 

for both estimation approaches. The trend patterns were also similar to those of 

Simple SE Bias. For the MMB-FC approach, PC had a completely positive effect on 

Relative SE Bias: the mean value of relative bias increased from −41.96% to −0.44% 

with PC changing from 0.1 to 0.8, resulting in an increase of 41.52%.  

For the SIV method, the effect of PC was partially positive. When PC 

increased from 0.1 to 0.5, the mean value of Relative Bias increased from −20.08% to 
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8.45%, but decreased to 1.21% when PC = 0.8. The highest mean value of bias was at 

PC = 0.5, but when PC = 0.8, the value was the closest to zero. The difference 

between the largest and the smallest mean values was 28.53%, much smaller than that 

of the MMB-FC method. 

For the MMB-FC method, the effect of the n factor on Relative SE Bias was 

similar to its effect on Simple SE Bias. With bigger n, the mean value of Relative SE 

Bias was higher. The value increased from −34.68% to −5.61% (29.07% difference) 

when n changed from 50 to 1,000. However, the effect of n did not have a clear 

pattern for the SIV approach. The biggest mean value for this estimation method was 

1.7% when n = 1,000, and the smallest was −3.75% when n = 50. Nonetheless, when 

n = 100, the mean value of bias was the closest to zero, −1.03%. The difference 

between the biggest and the smallest means across the five n levels was only 5.45%. 

The reason that the n factor exemplified different effects on the two bias measures 

was because that n had effect on the empirical SE. In the current case, the empirical 

SE became smaller with bigger sample size. Because the interaction term of n and PC 

also had a sizable effect, the effects of the two factors could also change across 

different levels of the other factor.  

The other four factors did not display as evident effects as n and PC for the 

Relative SE Bias measure either. Again, factor var, following n and PC, exhibited the 

third greatest effect for both estimation methods. The effect was positive but 

negligible for the SIV approach. As for the MMB-FC method, the effect was slightly 
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larger, and when var = 1, the mean value of bias was the highest and closest to zero 

among the three var levels.  

The other three factors had minimum influences on the two estimation 

methods, especially for the SIV method. The Effect Size factor, the Measurement 

Reliability factor, and the Mean Distance factor had the fourth to sixth greatest impact 

on the Relative SE Bias for the SIV approach. For the MMB-FC approach, rel, md, 

and d were the three factors having the fourth to sixth highest impact on the Relative 

SE Bias.  
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Table 17 

Simple and Relative SE Bias Means by Different Configurations of PC and N for the 

SIV and the MMB_FC Approaches 

 
Note. In the same row and within the same bias measure, the number with a bigger absolute value was 

bold, and a smaller absolute value was bold and underlined. 
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Figure 20. Simple SE Bias means by different configurations of PC and n for the SIV 

and the MMB_FC approaches 
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Figure 21. Relative SE Bias means by different configurations of PC and n for the 

SIV and the MMB_FC approaches 

As mentioned earlier, the interaction term “Sample Size*Complier 

Proportion” was kept for the SIV approach using both simple and relative SE bias 

measures and was chosen for the MMB-FC approach using the simple SE bias 

measure. Table 17 summarizes the means for each unique configuration of PC and n 

for both simple and relative measures. Figure 20 and Figure 21 depict the interaction 

effect. The result of the SIV approach is discussed first below. 

In Figure 20, the lines of the SIV method evidently changed across different 

plots within a single row. When only looking at the main effect of n, factor n 

displayed a positive effect: larger n was followed by larger mean value. Because the 
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mean values for all four levels (from n = 50 to 500) were negative, larger mean values 

indicated closer to zero values. When n = 1,000, the mean value was positive, but its 

magnitude was also the smallest and closest to zero. After accounting for PC, the 

impact of n changed considerably across different levels of the PC factor. With PC = 

0.1, the trend line was similar to the trend line in the main effect plot, only with a 

more evident magnitude change: the mean value of the simple bias increased from 

−0.4976 to 0.0122 (0.5098 change in magnitude). However, with larger PC values, 

the trend lines became very different. With PC = 0.3, the mean started with a negative 

value, −0.0888, when n was 50, but it became positive and closer to zero, 0.0425, 

when n changed to 100. As n kept increasing, the mean remained positive and became 

even closer to zero. When PC = 0.5 and 0.8, the impact of n became negative: larger 

n was followed by smaller mean value, and because the mean values at all five levels 

were positive, the magnitudes were getting closer zero. The only exception was when 

n = 1,000 and PC = 0.8, and the mean value of Simple SE Bias was −0.0001. 

However, the magnitude was too small to be considered as an exception. A similar 

pattern can be observed for Relative Bias, in Figure 21. The only difference was when 

PC = 0.3, the maximum mean value occurred with sample size of 200 instead of 100.       

The pattern change of the impact of PC on Simple SE Bias over different 

levels of n was displayed in the second row of Figure 20. Recall that the main effect 

of PC was positive first and then negative. The highest mean value occurred at PC = 

0.5, but when PC = 0.3 or 0.8, the means were very close to zero. After taking n into 

account, the impact of PC did not change drastically across n levels of 50 to 500. The 
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shapes of the four trend lines were similar to the trend line of the main effect: starting 

at a very low negative value, increasing first to become positive, and then decreasing 

with the magnitude getting close to zero. When n = 1,000, the mean value was 

positive and close to zero, 0.0122, even with PC = 0.1. As PC became bigger, the 

mean value decreased and approximated zero. Relative Bias, in the second row of 

Figure 21, almost had the same pattern and is hence not discussed more here.  

The general interaction effect of n and PC on the two bias measures for the 

SIV method could be summarized as this: low n and low PC yielded negative bias on 

average with especially large magnitude, and if increasing n or PC alone, the bias 

could become positive and eventually close to zero with a very favorable n level or 

PC level. 

In terms of the MMB-FC method, the general interaction effect of the two 

factors on its SE bias, both simple and relative, were almost the same as the 

interaction effect for the SIV approach. The only difference was that the SE 

estimation resulting from the MMB-FC method was more conservative than the SIV 

method. In other words, under conditions that were more likely to lead to SE 

underestimation, the MMB-FC method would yield more underestimation than the 

SIV method. Even under conditions where the SIV method had SE overestimation, 

the MMB-FC method was still more likely to yield underestimation. When both 

methods were accurate about their SE estimations, the two methods performed very 

similarly. The only exception was when n = 50 or 100 and PC = 0.1, the MMB-FC 

method had slightly less underestimation than the SIV method, where the former had 
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mean values of simple bias at −0.4976 and −0.4391 and the latter had −0.4080 and 

−0.3535. 

Comparing the two estimation methods, both methods yielded, on average, 

negative bias, but the MMB-FC approach had a larger magnitude. With respect to the 

same sublevel of a factor, the MMB-FC approach always had a smaller mean than the 

SIV approach. As shown in Table 16, when both the SIV and the MMB-FC 

approaches had negative means, the latter always had higher magnitude than the 

former. When the SIV approach had positive means, the MMB-FC method still had 

negative means. This was true for both simple bias and relative bias measures. In 

other words, the SE estimation of the MMB-FC method was more conservative than 

the SIV method, and the MMB-FC method would yield more underestimation than 

the SIV method. 

Both estimation methods were mostly influenced by n and PC. With bigger n 

or PC, both estimation methods yielded closer to zero simple bias means and relative 

bias means. The difference between the two estimation methods only diminished with 

the combination of higher sample size and complier proportion.  
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Results of factor effects with applicable conditions. 

Table 18 

Factorial ANOVA Result: SE Bias Measures with the MMB-NC Method 

 

Note.η2 < 6%: grayed out.  

Table 18 displays the factorial ANOVA analysis results for the MMB-NC 

approach using only applicable conditions. None of the terms met the 6% criterion. 

The largest partial η2, for the main effect of the var factor was only 0.55% with the 

Simple Bias measure and 0.68% with the Relative Bias measure. As no term was 

picked up, only the main effects were analyzed. 
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Table 19 

Simple and Relative SE Bias Means at each Level of the Factors for the Three 

Approaches 

 

Note. In the same row and within the same bias measure, the number with the biggest absolute value 

was bold, and the smallest absolute value was bold and underlined. 
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Figure 22. Simple SE Bias means at each level of the factors for the three approaches. 
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Figure 23. Relative SE Bias means at each level of the factors for the three 

approaches. 

Table 19 summarizes the mean values of the simple SE bias and the relative 

SE bias over different levels of the six factors, and Figure 22 and Figure 23 plot these 

values for the two dependent variables respectively. Note that Figure 22 restricts the 

vertical axis from −0.001 to 0.006, and Figure 23 restricts from −1% to 6% to display 

the small variations across different levels within a factor. Overall, the MMB-NC 

method slightly overestimated the SE. The overall mean value of Simple SE Bias was 

0.0027, and the mean value of Relative Bias was 3.05%. The variations among the 

mean values across different sublevels within one factor were extremely small. For 
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both bias measures, Complier Proportion had the greatest impact, and Effect Size had 

the smallest. As Simple Bias and Relative Bias behaved very similar for the MMB-

NC approach, they are discussed together below. 

The Sample Size factor, the Complier Proportion factor, the Measurement 

Reliability factor and the Mean Distance factor all had a negative effect on the SE 

bias: higher n, PC, rel or md value led to smaller and closer to zero bias means. There 

was no clear pattern for the Effect Size factor. While for the Covariance Ratio factor, 

var  = 1 led to the highest and farthest-from-zero bias, and var = 0.5 led to the lowest 

and close-to-zero bias.  

To summarize, under Applicable Conditions, the overall mean values for the 

MMB-NC method, 0.0027 and 3.05%, were the biggest and farthest from zero among 

the three estimation methods. The MMB-FC method had the smallest and closest to 

zero overall means. For most sublevels, the MMB-FC method also had the smallest 

and closest to zero means, and the MMB-NC method had the biggest and the farthest 

from zero means. The only exception was when var = 0.5, the SIV approach had the 

biggest mean and the MMB-NC method had the smallest. The differences among the 

three methods were very small, and they also became smaller with higher sample size, 

higher complier proportion, and higher measurement reliability. 
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Guidance on choosing n and rel with respect to standard error relative bias. 

Table 20 

Percentages of Cells with Cell Average Relative SE Bias Meeting the Negligible 

Criteriona 

 

Note. Percentages equal to 100% were italicized, bold, and underlined. NA were conditions excluded 

for the MMB-NC method.  

a"Negligible Criterion” meant that the cell average relative SE bias was within the bound of −10% and 

10%. 

Table 20 uses cross tabulation to summarize Relative SE Bias with respect to 

the two factors identified above (i.e., n and PC). Each number in this table is a 

summary of the 36 cells with the same configuration of n, PC, and rel. Each number 

represents the percentage of cells with cell average Relative SE Bias within the 

negligible bound, −10% to 10%. Numbers equaling 100% were italicized, bold, and 

underlined. Note that for the MMB-NC method, configurations excluded from the 

analyses were labeled with NA.  
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For the SIV approach, when PC was 0.1, none of the cells could yield an 

average relative SE bias within the negligible bounds. When PC = 0.3, Sample Size of 

500 and Measurement Reliability of 0.5 could guarantee an average relative SE bias 

within the negligible bounds for all cells nested within. If rel was improved to 0.8, the 

percentage actually became lower a little bit, 97.22%. However, 97.22% was very 

close to 100%, it could be mainly due to random variation. When PC = 0.5 and 0.8, 

Sample Size of 500 and 100 would respectively guarantee an average relative SE bias 

within the negligible bounds for all cells nested within, irrespective of the rel values.  

The MMB-NC approach had more limited conditions than the SIV approach. 

When PC = 0.3, none of the cells could yield an average relative SE bias within the 

negligible bounds. When PC = 0.5, only n = 1,000 could guarantee an average 

relative SE bias within the negligible bounds for all cells nested within. When PC = 

0.8, n = 500 was enough. 

For the MMB-FC approach, when PC was 0.1, none of the cells met the 

requirement. When PC = 0.3, Sample Size of 500 and Measurement Reliability of 0.5 

could guarantee an average relative SE bias within the negligible bounds for all cells 

nested within. If rel was improved to 0.8, the percentage actually became lower a 

little bit, 97.22%. Again, 97.22% was very close to 100%, it could be mainly due to 

random variation. When PC = 0.5, n = 200 was enough. With PC = 0.8, n could be as 

low as 100 or 200 with rel = 0.8. Even with rel = 0.5 (PC = 0.8 and n = 100 or 200), 

97.22% of the design cells nested within had mean Relative SE Bias within the 

negligible bounds. If n reached 500, rel became irrelevant. 
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4.4.Power and Type I Error 

This section presents the results regarding research questions three and four: 

how will the six factors affect the statistical power and the type I error rate using the 

SIV and MMB methods? The Significant Indicator was the dependent variable used in 

this section. Section 4.4.1 presents the analysis result of power, and section 4.4.2 type 

I error. Within each of these two sections, the analysis results for the SIV and the 

MMB-FC approaches using all conditions are discussed first, the analysis results for 

the MMB-NC approach using only “Applicable Conditions” follows, and the 

recommendations on choosing sample size and measurement reliability are presented 

in the end.  

4.4.1. Power 

Results of factor effects with all conditions. This section examined the 

empirical power for the SIV and the MMB-FC approaches using all simulation 

conditions. 

Table 21 

Factorial ANOVA Result: Power with the SIV and the MMB-FC Methods 

 

Note. η2 ≥ 14%: bold and underlined; 6% ≤ η2 < 14%: bold; η2 < 6%: grayed out. 
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Table 21organizes the results of the factorial ANOVA analyses for the SIV 

and the MMB-FC estimation methods with sample unites under all conditions. For the 

SIV approach, three main effect terms met the 6% criterion and were therefore kept. 

In fact, all three terms had “Large” effects because the values of their “Mean of All 

Maxes” all exceeded the 14% cutoff line. The Complier Proportion term was the most 

influential among all terms, accounting for 18.24% of the sum of the deviance 

reduced by this term plus the residual deviance. Sample Size and Effect Size had the 

second and third largest pseudo partial η2s, 14.17% and 14.10%. On the other hand, 

for the MMB-FC approach, only two terms met the 6% criterion. The term with the 

largest pseudo partial η2 was the interaction term of n*PC. This term had a Pseudo 

partial η2 of 7.46%. The main effect of factor d accounted for 7.33% of the sum of the 

deviance reduced by this term plus the residual deviance. The two terms both had a 

“Medium” sized pseudo partial η2.   
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Table 22 

Mean Values of Power at each Level of the Factors for the SIV and the MMB-FC 

Approaches 

     

Note. In the same row, the number with a bigger absolute value was bold, and a smaller absolute value 

was bold and underlined. 
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Figure 24. Mean values of power at each level of the factors for the SIV and the 

MMB-FC approaches 

Table 22 gives a summary of the mean values of power over different levels of 

the six factors, and Figure 24 provides a visual presentation.  

Overall, the SIV approach had a mean value of 0.2576. The three factors 

identified in the factorial ANOVA analysis, PC, n and d, displayed evident variations 

across their sublevels. All three factors showed a positive effect on the empirical 

power: higher proportion of compliers, higher sample size, or higher effect size gave 

rise to higher power. When PC increased from 0.1 to 0.8, the mean values of the 

power changed from 0.0832 to 0.4911 with a 0.4097 increase. While for the Sample 

Size factor, the mean values rose from 0.0946 to 0.4420, displaying a 0.3474 growth. 



 

172 

 

When d = 0.2, the mean value was only 0.0988. With d increased to 0.8, the mean 

value reached 0.4052, showing a 0.3064 increase. 

The other three factors also manifested some variations across their sublevels, 

but their impacts were much milder. Measurement Reliability had a positive impact as 

well. The var factor and the md factor both had small negative effects on the empirical 

power.  

The MMB-FC approach had higher power on average, 0.3760. When only 

looking at the main effects, the Effect Size factor manifested the greatest impact on 

the power, and the impact was positive. Increasing d from 0.2 to 0.8 caused the 

average values of power to rise from 0.2124 to 0.5261 (a 0.3137 increase). The 

positive trend was also true for Measurement Reliability, Mean Distance, and 

Noncomplier-Complier Level 2 Covariance Ratio, but their influences were on a 

much smaller scale.  

Factors n and PC both had a more complex influence on power. For both 

factors, the impact was negative at first and then turned to positive. When having a 

really low sample size of 50, the mean value was 0.3123, but decreased to 0.2812 if 

increasing n to 100. If n kept increasing, the mean value stopped dropping and started 

to climb until reaching 0.5106 when n = 1,000. The difference between the largest 

and smallest mean values was 0.2294. Analogous pattern was found for the PC factor. 

With PC = 0.1, the mean value of power was 0.3505, but when PC = 0.3, the mean 

value reached the lowest point, 0.2870. When PC = 0.8, the value hiked up to 0.5132. 

The difference between the two mean values when PC = 0.3 and 0.8 was 0.2262.  
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As the factorial ANOVA analysis suggested, there was a “medium” sized 

interaction between the Sample Size factor and the Complier Proportion factor. The 

following section explores more on this interaction effect.  

Table 23 

Mean Values of Power by Different Configurations of PC and N for the SIV and the 

MMB_FC Approaches 

 

Note. In the same row, the number with a bigger absolute value was bold, and a smaller absolute value 

was bold and underlined. 
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Figure 25. Mean values of power by different configurations of PC and n for the SIV 

and the MMB_FC approaches. 

Table 23 summarizes the mean values of power by different configurations of 

PC and n. Figure 25 displays the interaction effect with two rows. For both estimation 

approaches, their lines changed noticeably across different plots within a single row. 

The change was more salient for the MMB-FC approach, but it was definitely very 

evident for the SIV approach, too. Checking the factorial ANOVA result, the 

interaction term of n*PC was found to have a pseudo partial η2 of 4.35% for the SIV 

approach. Although it did not meet the 6% cutoff criterion, it was big enough to 

demonstrate itself in Figure 25.  
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For the SIV approach, the main effects of both n and PC were positive. 

However, after taking the interaction effect into consideration, the effects of both 

factors changed across different levels of the controlling factor. Specifically, with PC 

= 0.1, Sample Size had a negative effect first until it changed from 500 to 1,000. In 

addition, the variation among the five n levels within this PC level was very small: 

0.0680 to 0.1050 (0.0370 difference). With higher PC values, Sample Size 

demonstrated a clear positive effect, and the effect was the strongest with PC = 0.8, 

increasing from 0.1614 to 0.7766 with a change of 0.6152.  

The trend of the PC factor also showed considerable fluctuation across 

different levels of n. When n = 50 and 100, PC first had a negative effect on the 

power when changing 0.1 to 0.3, but the effect became positive when PC continued to 

increase from 0.3. With n = 50, the difference between the highest (0.1614) and 

lowest (0.0461) mean values was the smallest, 0.1153.  With higher n levels, PC 

always demonstrated a positive influence and the influence became stronger with 

higher n. With n  = 1,000, the mean values increased by 0.7002 from 0.0764 to 

0.7766.  

The MMB-FC approach had very comparable patterns as the SIV approach, 

only with more noticeable pattern changes across sublevels. In detail, with PC = 0.1, 

n had a negative effect, and the variation among the five sample size levels within this 

proportion level was quite sizeable, decreasing from 0.4902 to 0.2588 with a 0.2314 

decrease. With PC = 0.3 and 0.5, the effect of n became curvature. The mean values 

decreased first as n became larger, but this trend was turned around to become 
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positive with continuous increase of n. The only difference was that the lowest mean 

value occurred when n = 200 with PC = 0.3 and when n = 100 with PC = 0.5. With 

PC = 0.8, the effect of n was purely positive: the mean values changed from 0.2040 to 

0.7829 (0.5789 increase).  

The trend change of the PC factor was similar to that of the n factor. When n 

= 50, PC had a negative effect. With n = 100, 200, and 500, the effect of PC was 

curvature: decreasing first and then increasing. The only difference was the turning 

point. With n = 1,000, the influence of PC became completely positive. The effect of 

PC culminated with n = 1,000, creating a difference of 0.5241 by changing the mean 

values of power from 0.2588 to 0.7829.  

Inspecting the two estimation methods together, the MMB-FC method on 

average yielded a much higher power, 0.3760, than the SIV approach, 0.2576. Across 

the sublevels within each factor, the MMB-FC approach always had a higher mean. 

This was clear in Table 22, where the numbers under the “MMB Full Constraint” 

header were all bold, indicating being the larger values of the two estimation methods. 

This was also true for the interaction table too. Within each configuration of PC and 

n, the MMB-FC approach always yielded higher mean values of power than the SIV 

approach. Consequently, in Table 23, the numbers under the “MMB Full Constraint” 

header were all bold. The difference between the two methods diminished to almost 

negligible with PC = 0.8. 
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Results of factor effects with applicable conditions. This section examined 

the empirical power for the MMB-NC approach using applicable simulation 

conditions. 

Table 24 

Factorial ANOVA Result: Power with the MMB-NC Method 

 

Note. η2 ≥ 14%: bold and underlined; 6% ≤ η2 < 14%: bold; η2 < 6%: grayed out. 

Table 24 organizes the results of the factorial ANOVA analyses for the 

MMB-NC estimation method with sample units under applicable conditions. Two 

terms met the 6% criterion and were hence selected. The “Effect Size” term was the 

most influential one and had a “Large” effect, accounting for 30.70% of the sum of 

the deviance reduced by this term plus the residual deviance. The “Complier 

Proportion” term had the second largest pseudo partial η2s, 15.70%.  
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Table 25 

Mean Values of Power at each Level of the Factors for the Three Estimation 

Approaches under Applicable Conditions 

 

Note. In the same row, the number with the biggest absolute value was bold, and the smallest absolute 

value was bold and underlined. 

 



 

179 

 

 

Figure 26. Mean values of power at each level of the factors for the three estimation 

approaches under Applicable Conditions. 

Table 25 sums up the mean values of power over different levels of the six 

factors for the MMB-NC method, and Figure 26 is a graphical representation of Table 

25. For comparison, Table 25  and Figure 26 also include the other two estimation 

methods’ results using only sample units under applicable conditions.  

Overall, 54.41% of all used datasets yielded a significant result. The two terms 

pinpointed by the factorial ANOVA analyses demonstrated obvious positive effects: 

higher effect size or higher complier proportion led to higher mean. When d changed 

from 0.2 to 0.8, the mean values increased from 0.1925 to 0.8300, exhibiting an 

increase of 0.6375. When PC rose from 0.3 to 0.8, the mean climbed from 0.3539 to 

0.7498 with a 0.3959 growth.  
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The Sample Size factor and the Measurement Reliability factor also 

manifested positive effect on the power with a much smaller scale. Mean Distance 

had a very small negative effect. For the var factor, the lowest rate occurred with var 

= 1, and the highest with var = 0.5. The effect was also negligible. 

In summary, under the Applicable Conditions, the MMB-NC method had the 

highest average power, 0.5441, the MMB-FC approach had a slightly smaller mean 

value, 0.5298, and the SIV method had the smallest mean value, 0.4972. The 

difference among the three overall mean values was not too evident. For most 

sublevels, either the MMB-NC or the MMB-FC method yielded the highest average 

power, and the SIV method yielded the lowest. As shown in Table 25, most numbers 

under the “Standard IV” header are bold and underlined, indicating having the lowest 

absolute values among the three numbers in a row. Most numbers under either the 

“MMB-NC” header or the “MMB-FC” header are just bold, indicating having the 

highest absolute values. 

Guidance on choosing n and rel with respect to power. 
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Table 26 

Percentages of Cells with Cell Average Empirical Power Meeting the Satisfactory Criteriona 

 

Note. Percentages equal to 100% were italicized, bold, and underlined. NA were conditions excluded for the MMB-NC method. All designs with d = 0 were excluded. 

a"Satisfactory Criterion” meant that the cell average empirical power was bigger than or equal to 80%.
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To provide guidance on choosing acceptable sample size and measurement 

reliability combinations to yield adequate power, Table 26 uses cross tabulation to 

summarize the significant rates with respect to the three factors identified above (i.e., 

n, PC, and d). Only designs with d > 0 are used in this table, so this table is solely 

about empirical power. 

Each number in this table is a summary of the nine cells with the same 

configuration of n, PC, d, and rel. Each number represents the percentage of cells 

with cell average empirical power higher than or equal to the pre-specified 

satisfactory power rate, 80%. If all cells within a configuration have empirical power 

bigger than or equal to 80%, the number representing this configuration in Table 26  

will be 100% and is italicized, bold, and underlined. Note that for the MMB-NC 

method, configurations excluded from the analyses are labeled with NA.  

For the SIV approach, when PC was 0.1 or 0.3, none of the design cells could 

yield a satisfactory empirical power, since the numbers in these columns are all 0. 

Even with PC = 0.5, only the most optimistic combination of n, rel, and d could 

guarantee that all cells nested within would reach 80%. However, when PC reaches 

0.8, n = 500 and rel = 0.5 could guarantee all cells having empirical power bigger 

than 80%, if d = 0.8. With lower effect size of 0.5, the configurations should be either 

n = 500 and rel = 0.8 or just n = 1,000.  

 The MMB-NC approach had similar results as the SIV approach when PC = 

0.8. However, this estimation method was more lenient with the situation when 
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complier proportion was 0.5. With the biggest effect size and the more reliable 

measurement, a sample size of 500 was enough for guaranteeing satisfactory 

empirical power for all cells nested within. A sample size of 1,000 was required if the 

measurement reliability was 0.5.  

The MMB-FC approach had similar results as the SIV approach when 

complier proportion was 0.8. The only difference was that the configuration of n = 

200, rel = 0.8, d = 0.8, and PC = 0.8 could also guarantee empirical power for the 

cells nested within. However, when PC = 0.5, none of the available configurations 

would be acceptable. 
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4.4.2. Type I error 

Results of factor effects with all conditions. This section examined the 

empirical type I error rate for the SIV and the MMB-FC approaches using all 

simulation conditions. 

Table 27 

Factorial ANOVA Result: Type I Error with the SIV and the MMB-FC Methods 

 

Note. 6% ≤ η2 < 14%: bold; η2 < 6%: grayed out. 

 Table 27 organizes the results of the factorial ANOVA analyses for the SIV 

and the MMB-FC estimation methods with sample unites under all conditions. In 

terms of type I error rate, none of the terms was important enough for the SIV 

approach. For the MMB-FC approach, the Complier Proportion showed “Medium” 

effect, accounting for 9.20% of the sum of the deviance reduced by this term plus the 

residual deviance. The following discussion only explores the main effects of the six 

factors.  
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Table 28 

Mean Values of Type I Error at each Level of the Factors for the SIV and the MMB-

FC Approaches 

 

Note. In the same row, the number with the biggest absolute value was bold, and the smallest absolute 

value was bold and underlined. 
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Figure 27. Mean values of type I error at each level of the factors for the SIV and the 

MMB-FC approaches 

Table 28 gives a summary of the mean values of type I error over different 

levels of the six factors, and Figure 27 provides a visual presentation.  

Overall, the SIV approach had a mean value of 0.0441. Similar to the ANOVA 

analysis results, none of these factors displayed evident effects on the type I error rate. 

The MMB-FC approach had a much higher mean value of type I error rate, 0.1518. 

Among the six main effects, the Complier Proportion factor had the greatest impact 

on the type I error rate. Increasing PC from 0.1 to 0.8 caused the average type I error 

rate to decrease from 0.3084 to 0.0551 (a 0.2533 decrease). The same trend was also 
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true for the Sample Size factor, but its influence was on a much smaller scale. The 

effects of the other four factors were negligible. 

Inspecting the two estimation methods together, the SIV approach on average 

had closer to 0.05 type I error rate while the MMB-FC method on average yielded a 

much higher type I error rate, 0.1518. Across the sublevels within each factor, the 

MMB-FC approach always had a higher mean value too.  

Results of factor effects with applicable conditions. This section examined 

the type I error rate for the MMB-NC method using applicable simulation conditions. 

Table 29 

Factorial ANOVA Result: Type I Error with the MMB-NC Method 

 

Note.η2 < 6%: grayed out. 

 29 organizes the results of the factorial ANOVA analyses for the MMB-NC 

estimation method using applicable conditions. None of the terms was important 

enough for this approach. The following discussion only explores the main effects of 

the six factors.  
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Table 30 

Mean Values of Type I Error at each Level of the Factors for the MMB-NC Approach 

under Applicable Conditions 

 

Note. In the same row, the number with the biggest absolute value was bold, and the smallest absolute 

value was bold and underlined. 
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Figure 28. Mean values of type I error at each level of the factors for the MMB-NC 

approach under Applicable Conditions 

Table 30 gives a summary of the mean values of type I error over different 

levels of the six factors, and Figure 28 provides a visual presentation. As suggested by 

the ANOVA results, none of these factors demonstrated a clear impact on the type I 

error rate of the MMB-NC approach. 

Comparing the three estimation methods together under the applicable 

conditions, the MMB-NC method on average yielded a type I error rate (0.0486) that 

was the closest to the pre-specified significance level of 0.05. The SIV method had 

slightly more under estimation, resulting in an average type I error rate of 0.0450. The 
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MMB-FC method had a much higher type I error rate, 0.0891. Across the sublevels 

within each factor, the same conclusion remained.  

Guidance on choosing n and rel with respect to type I error rate. 

Table 31 

Percentages of Cells with Cell Average Empirical Type I Error Rate Meeting the 

Negligible Criteriona 

 

Note. Percentages equal to 100% were italicized, bold, and underlined. NA were conditions excluded 

for the MMB-NC method. All designs with d = 0 were excluded. 

a"Negligible Criterion” meant that the cell average empirical type I error rate was within the bound of 

4.5% and 5.5%. 

Table 31Error! Reference source not found. summarizes the empirical type 

I error rate with respect to Sample Size, Complier Proportion, and Measurement 

Reliability. Only designs with d = 0 are used for this table. 

Each number represents the percentage of design cells with cell average 

empirical type I error rate within the negligible bounds, 4.5% and 5.5%, among the 
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nine cells with the same configuration of the n, rel, and PC. None of the numbers in 

Table 31 was 100, indicating that none of these configurations could guarantee that all 

cells nested within had an average type I error rate within the 4.5−5.5% bounds.  

This chapter presents detailed analysis result with respect to the five research 

questions. The next chapter will summarize the result, highlight key findings, make 

connections among the findings of the five research questions, and prove implications 

for future studies.
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Chapter 5: Discussion 

Despite the popularity of using the LGMs for longitudinal experiments and the 

wide recognition of the noncompliance issue accompanying random experiments, 

addressing noncompliance while using the LGMs for longitudinal experiments is a 

relatively new approach. Although previous studies (Jo & Muthén, 2001, 2003) have 

explored how to use the mixture model based approach in such a scenario, the 

functionality of this approach needs more investigation, especially with three 

compliance classes. In addition, the SIV method is also commonly utilized for studies 

with noncompliance problems. It can be readily applied to the LGMs for the CACE 

estimation. The estimation of the treatment effect is asymptotically unbiased, and the 

standard errors can be empirically estimated with the bootstrap technique. The two 

approaches are asymptotically equivalent, but their performance may differ under 

different conditions. For example, one method can be more robust to extreme 

conditions than the other.  

The aim of this dissertation is to examine the functionality of the MMB and 

the SIV approaches in estimating the longitudinal CACE within the LGM framework 

with respect to a wide range of factors. The LGM chosen had four measurement 

points exhibiting a linear growth. There were three compliance classes representing 

compliers, always-takers, and never-takers. The effects of six factors on the treatment 

effect estimation using either the SIV or the MMB approach were examined. The 

MMB approach had two variants: the MMB-NC method estimated 
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 for each compliance class separately, and the MMB-FC 

method only allowed the , , and  to be freely estimated and constrained  

and  to be the same across different compliance classes. The estimation quality was 

evaluated with four main criteria: 1) estimation success rate, 2) estimation accuracy, 3) 

empirical power, and 4) empirical type I error rate.  

The six simulation factors were Sample Size, Complier Proportion, Effect Size, 

Measurement Reliability, Mean Distance, and Noncomplier-Complier Level 2 

Covariance Ratio. There were six levels for the Sample Size factor, 50, 100, 200, 500, 

and 1,000, four levels for the Complier Proportion factor, 0.1, 0.3, 0.5, and 0.8, four 

levels for the Effect Size factor, 0, 0.2, 0.5, and 0.8, two levels for the Measurement 

Reliability factor, 0.5 and 0.8, three levels for the Mean Distance factor, 0.2, 0.5, and 

0.8, and three levels for the Noncomplier-Complier Level 2 Covariance Ratio factor, 

0.5, 1, and 2. All six factors were fully crossed resulting in 1,440 configurations in 

total. Within each configuration, 1,000 replications were used.  Low complier 

proportion was specifically included in this study because it is fairly common for big 

intervention studies to have low compliance rate. For example, the Angrist and 

Krueger’s (1991) study of the causal effect of education on earnings was found to 

have compliance rate of only 2%. 

The estimation success rate was investigated first because non-successful 

estimations were likely to be more prevalent for the MMB-NC estimation approach 

than the other two. After examining the successful estimation rate, the author found 

that for most simulation conditions, the MMB-NC approach had an extremely low 
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success rate, so for the other dependent variables, this approach was only examined 

under simulation conditions that led to all design cells having at least 300 successful 

estimations. These conditions were called the “Applicable Conditions”. 

The estimation accuracy was examined next with two bias measures, the 

parameter estimation bias and the standard error estimation bias. Each measure was 

analyzed using both Simple Bias and Relative Bias.  

In the end, the statistical power and type I error rate were evaluated together 

by using the Significant Indicator variable because both criteria could be described as 

significant rate. When the true effect size was not zero, the significant rate was the 

empirical statistical power; when the true effect size was zero, the significant rate was 

the empirical type I error rate.  

5.1.Summary of Factor Effects 

This section summarizes the findings. Note that for the MMB-NC approach, 

only applicable conditions were used.   

5.1.1. Findings on success rate 

For all three estimation approaches, Sample Size and Measurement Reliability 

were two dominant factors for successful estimations. With higher n and/or higher rel, 

the probability of obtaining a successful estimation was higher. This result is 

consistent with the findings from previous studies (Gagne & Hancock, 2006; 

Tolvanen, 2007). In addition, for the MMB-NC approach, Complier Proportion was 

the second most important factor for estimation success, more influential than 
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Measurement Reliability. PC = 0.5 yielded higher average success rate than other PC 

levels. All influential terms for the three estimation approaches were main effect 

terms, indicating that their effects do not vary too much across different levels of 

other factors. 

Comparing the three approaches, the SIV method yielded the highest overall 

mean success rate and the highest individual level mean success rates within each 

factor. The MMB-FC method had slightly lower means, but the difference between 

the two estimation methods became minimum with higher n or higher rel. The MMB-

NC method, on the other hand, resulted in a much lower overall mean success rate 

and individual level mean success rates within each factor. The gap between this 

estimation method and the other two did not diminish to a negligible level by 

changing only one simulation factor. In fact, only with very favorable conditions on n, 

PC, and rel (i.e., n = 1,000, PC ≥ 0.3, and rel = 0.8 or n ≥ 500, 0.3 ≤ PC ≤0.5, and rel 

= 0.8) did the MMB-NC method yield an average success rate close to the other two.  

This finding is consistent with the study by Tolvanen (2007), where more 

complex models were followed with lower success rates. In the study of Tolvanen 

(2007), a Mean Distance equivalent factor was found to have a noticeable positive 

effect on estimation success rate, but the current study finds that the change of the 

mean success rates across different levels of md is minimum. The main reason is that 

the 2007 study included a much wider range of md values, ranging from 0.5 to 5, 

whereas the current study limits the md values to more realistic choices, 0.2 to 0.8. 

With the current choices, a small positive effect of md was observed for the two 
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MMB estimation approaches, but the increase was too small to be picked up by the 

factorial ANOVA analysis.    

5.1.2. Findings on estimation bias  

Parameter estimation bias. For all three estimation methods, none of the 

terms used in the factorial ANOVA analyses was kept, suggesting that there is too 

much variation on parameter estimation and the ANOVA model can barely explain 

anything. This result is consistent with Tolvanen’s 2007 study, where the proportion 

of the squared bias of the method was found to be extremely small.  

For the MMB-FC approach, PC*var was the most influential term for both 

estimation bias measures, and it was the only term that met the 2%, “small” effect, 

criterion, although it was actually smaller than the cutoff criterion, 6%. The 

interaction plot shows that smaller var value led to smaller estimated treatment effect: 

when var = 0.5, there was on average underestimation; when var = 1 or 2, there was 

on average overestimation, and var = 2 yielded a larger overestimation overall. The 

difference among the three var levels shrinked with higher PC. In conclusion, for the 

MMB-FC method, the model was misspecified when var = 0.5 or 2, and the 

misspecification can severely distort the estimation. The distortion is more 

exacerbated when combining with low PC.  

Imbens and Rubin (1997b) used a very small simulation study to generate 

cross-sectional data and found that the MMB method yielded a very small negative 

bias while the SIV approach yielded a much bigger positive bias. The current study 
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used a different model and manipulated a much wider range of factors. As a result, 

different results are found.  

Comparing the SIV and the MMB-FC approaches using all conditions, the 

MMB-FC method on average yielded a positive and lower magnitude bias, while the 

SIV approach overall produced a negative bias with a slightly bigger magnitude. 

However, the MMB-FC method was much more susceptible to unfavorable choices of 

n and PC (i.e., n < 200 and PC = 0.1). When n ≥ 200 or PC > 0.1, the MMB-FC 

method yielded sublevel mean values of bias with slightly smaller magnitudes than 

the SIV approach. In addition, the MMB-FC method had sublevel mean values of bias 

with higher magnitudes, when var = 0.5 or 2, while the SIV method was not much 

affected by the change of var. The two approaches did not differ much on the 

magnitudes of sublevel mean values of bias with respect to d, rel, and md. 

While comparing the three estimation methods under applicable conditions, all 

three methods on average yielded a small-sized negative bias. The MMB-NC method 

was the least biased, the SIV approach was slightly more biased, and the MMB-FC 

method was the most biased. For most sublevels within each factor, the same 

conclusion still held. Their differences diminished to a minimum when PC = 0.8. 
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Standard error estimation bias. In terms of the Simple SE Bias, PC and n 

were the two important factors for the SIV and the MMB-FC methods. The main 

effect of n and the interaction effect of n*PC were both selected by the two 

approaches. Because the two terms had very similar effects on both estimation 

approaches, the following description applies to both of them.  

The main effect of n on Simple SE Bias was positive for both approaches. As 

the average Simple SE Bias values across the sub-levels of n were all negative, the 

positive effect means that higher n value leads to closer-to-zero mean values. After 

taking PC into account, the effect of n changed considerably across different PC 

levels for both estimation approaches. Low n and low PC together yielded large 

negative mean values. With either high n or high PC, the bias became much less 

prominent. 

While with regard to Relative SE Bias, the factorial ANOVA analyses selected 

one term for the SIV approach, the interaction effect of n*PC, and selected none for 

the MMB-FC method. The conclusions on the interaction effect were the same for the 

Relative SE Bias and the Simple SE Bias.  

None of the terms was influential enough for the MMB-NC method. The 

reason that the MMB-NC approach was not greatly affected by the simulation factors 

is probably because that the analyses only included two big n levels, 500 and 1,000. 

With such high n values, none of the other factors can make too much change. 

Comparing the SIV and the MMB-FC approaches using all conditions, both 

methods on average underestimate the SE, but the MMB-FC approach yielded more 
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underestimation. This was true using both Simple and Relative SE Bias. Within each 

sublevel of a factor and within each combination of different n and PC levels, the 

MMB-FC approach also yielded more underestimation than the SIV approach, except 

when PC = 0.1 and n = 50 or 100.  

While comparing the three estimation methods under applicable conditions, all 

three methods on average yielded a positive bias with a small magnitude. The MMB-

NC method had a slightly larger bias than the other two, and the MMB-FC method 

had a slightly closer to zero overall bias. For most sublevels, the same order 

persevered. The only exception was when var = 0.5, the SIV approach had the biggest 

mean value of bias. The difference among the three estimation methods was 

extremely small and also diminished with higher sample size, higher complier 

proportion, and higher measurement reliability. 

5.1.3. Findings on power and type I error rate 

Empirical power and empirical type I error rate were both calculated as the 

significance rate. The only difference was that the former should use simulation 

designs with non-zero true effects while the latter should use designs with zero true 

effects.  

For empirical power, d and PC were two important factors for all three 

estimation methods, and n was selected for the SIV and the MMB-FC approaches. 

The reason that the MMB-NC approach did not select n as an influential factor is 

probably because that the analysis for this estimation method only included two big n 
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levels, 500 and 1,000. As both n values were relatively high, there was not much 

variation.  

For the SIV approach, the empirical power increased together with PC, n and 

d. The MMB-NC approach had a similar pattern regarding factor d and PC, but factor 

n did not show an effect as influential as PC and d. For the MMB-FC approach, its 

empirical power was also positively influenced by factor d, but the effect of n and PC 

was primarily shown through their interaction. With PC = 0.1, higher sample size 

unexpectedly led to lower power. When PC = 0.3 or 0.5, the power decreased at first 

and increased again along with the increase of n. When PC = 0.8, the power increased 

together with n. A similar pattern was observed when analyzing the effect of PC 

across different levels of factor n. When n = 50, higher complier proportion also led 

to lower power. With n = 100, 200 or 500, the trend decreased first and then increased. 

With n = 1,000, the power increased as PC became higher.     

Inspecting the SIV and the MMB-FC approaches using all conditions, the 

MMB-FC method on average led to a higher power than the SIV approach. Within 

each sublevel of all factors and within each configuration of n and PC, the MMB-FC 

approach also yielded higher power. Their difference diminished to a minimum with 

PC = 0.8.  

While only Applicable Conditions were used, the MMB-NC method, the 

MMB-FC approach, and the SIV method had the highest, the middle, and the lowest 

overall power respectively, but their differences were extremely small. For most 
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sublevels, either the MMB-NC or the MMB-FC method yielded the highest power, 

and the SIV method yielded the lowest.  

For type I error rate, only PC demonstrated an obvious effect for the MMB-FC 

method. As PC became larger, the type I error rate became closer to the pre-specified 

value, 0.05. Comparing the three estimation methods, the MMB-FC approach always 

performed much worse than the other two methods, under all simulation conditions 

and under applicable conditions. This method yielded a much higher average type I 

error rate than the other two. Although the SIV method yielded an average type I error 

rate slightly further from 0.05 than the MMB-NC method under applicable conditions, 

the difference was almost negligible. Under all simulation conditions, the SIV method 

performed much better than the MMB-FC method.   

Comparing the effects of these factors on power using the two MMB 

approaches to Jo’s (2002) study, similar results are only found for the var and md 

factors. Note in order to be comparable with Jo’s (2002) study, the results of the 

MMB-NC approach should be used for the var effect comparison and the results of 

the MMB-FC approach should be used for md. Although these factors are not selected 

by the factorial ANOVA analyses, the trends of the power across different levels of 

these two factors are the same as described in Jo’s (2002) study. The power was the 

highest when var = 0.5 and lowest when var = 1. The power increased as md 

increased.  

For other factors, Jo’s (2002) findings do not hold in the current study. Jo 

(2002) found that using the MMB-FC model, PC, n, and d had a positive effect on the 
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power and the trends always remained positive even after taking the interaction 

effects into account. The current study reaches a similar conclusion for d (always 

positive), but very different conclusions for PC and n with respect to the MMB-FC 

approach. As described above, when inspecting the interaction effect of n and PC, if 

one factor had an extremely low value, higher value on the other factor unexpectedly 

led to lower power, if one factor had an medium size value, higher value on the other 

factor first led to lower power and then higher, and if one factor had relatively high 

value, the effect of the other factor became purely positive. The main reason for this 

difference is because the current study included two more n levels and one more PC 

level, and the added levels are all very unfavorable. If only using the conditions 

chosen by Jo (2002), the trends are similar.  

5.1.4. Overall factor effects 

Table 32 is a summary of all findings regarding factor effects, and Table 33 is 

a summary of the comparisons among the three approaches. Note that in Table 33 the 

MMB-NC approach is only comparable with the other two approaches under 

Applicable Conditions for all dependent variables. Therefore, there are two columns 

for approach comparisons, one for comparisons between the SIV and the MMB-FC 

approaches and one for comparisons among all three. 
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Table 32 

Summary of Factor Effects 

 

Success Indicator

n  n↑, success rate↑

rel  rel↑, success rate↑

n  n↑, success rate↑

rel  rel↑, success rate↑

n  n↑, success rate↑

PC  n↑, success rate↑first then ↓. Peak at PC =0.5

rel  rel↑, success rate↑

Simple Estimation Bias

Standard IV --  --

MMB Full Constraint PC*var
b

 var =0.5: underestimation;

 var =1 or 2: overestimation, and var =2 has larger overestimation;

 low PC  leads to more bias.

MMB No Constraint
a --  --

Relative Estimation Bias --

Standard IV --

MMB Full Constraint PC*var
b

MMB No Constraint
a --

Simple SE Bias

n*PC
 Low n  and low PC  together, large negative bias means;

 High n or high PC , accurate estimation.

n  n↑, bias value↑and bias magnitude ↓

n  n↑, bias value↑and bias magnitude ↓

n*PC
 Low n  and low PC  together, large negative bias means;

 High n or high PC , accurate estimation.

MMB No Constraint
a --  --

MMB Full Constraint

MMB No Constraint
a

 Same as Simple Estimation Bias

Selected

Terms
Term Effect

Standard IV

Standard IV

MMB Full Constraint
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Table 32 (continued) 

 

Note. -- Not exist or not applicable. aOnly applicable conditions were used for this dependent variable. 

bThis term is smaller than the cutoff value of 6%, so it is not actually "selected". It is presented here 

because it is greater than 2%, and none of the other terms meet the 6% rule.

Relative SE Bias

Standard IV n*PC
 Low n  and low PC  together, large negative bias means;

 High n  or high PC , accurate estimation.

MMB Full Constraint --  --

MMB No Constraint
a --  --

Power

PC  PC↑, power↑

n  n↑, power↑

d  d↑, power↑

n*PC

 PC=0.1: n↑, power ↓;

 PC=0.3 or 0.5, n↑, power first ↓ then ↑;

 PC=0.8: n↑, power ↑.

 n=0: PC↑, power ↓;

 n=100, 200 or 500: PC↑, power first↓then ↑;

 n>200: PC↑, power ↑.

d  d↑, power↑

d  d↑, power↑

PC  PC↑, power↑

Type I Error

Standard IV --  --

MMB Full Constraint PC  PC↑, type I error ↓

MMB No Constraint
a --  --

Standard IV

MMB Full Constraint

MMB No Constraint
a

Selected

Terms
Term Effect
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Table 33 

Summary of Estimation Approaches Comparison 

 

All Conditoins Applicable Conditions

Success Indicator

Standard IV Highest (overall and sublevels). --

Simple Estimation Bias

Standard IV Overall, a negative and slightly bigger magnitude bias. Small negative bias (overall and most sublevels).

MMB Full Constraint
Overall, a positive and lower magnitude bias;

Much higher bias magnitude with low n , low PC , and unequal var

Small negative bias, most biased (overall and most

sublevels).

MMB No Constraint
a --

Small negative bias, least biased (overall and most

sublevels).

Relative Estimation Bias

Standard IV

MMB Full Constraint

MMB No Constraint
a

Simple SE Bias

MMB No Constraint
a --

Small positive bias, most biased (overall and

sublevels, except when var =0.5).

MMB Full Constraint

MMB No Constraint
a

Standard IV

MMB Full Constraint

Overall, a negative and bigger magnitude in bias.

Within sublevels, mostly negative and mostly bigger magnitude in bias, except

when PC =0.5 or 0.8.

Less sucetable to combination of n =50 or 100 and PC =0.1

Small positive bias, second most biased (overall

and sublevels, except when var =0.5).

Approach Comparison

Overall, a negative and smaller magnitude in bias.

Within sublevels, mostly negative and mostly smaller magnitude in bias, except

when PC =0.5 or 0.8.

More sucetable to combination of n =50 or 100 and PC =0.1

Small positive bias, least biased (overall and

sublevels).

Much lower (overall and sublevels). Difference with the other two disappear with

combination of high n , rel , and mid-level PC .
--

Same as Simple Estimation Bias

Slightly lower (overall and sublevels). Difference with Standard IV disappear with

higher n  and higher rel.
--
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Table 33 (Continued) 

 

Note. -- Not exist or not applicable. aOnly applicable conditions were used for this dependent variable.  

All Conditoins Applicable Conditions

Relative SE Bias

Standard IV

Overall, very small magnitude negative bias and much smaller magnitude in bias.

Within sublevels, mostly negative and mostly much smaller magnitude in bias,

except when PC =0.5 or 0.8.

Less sucetable to combination of n =50 or 100 and PC =0.1

Small positive bias, least biased (overall and

sublevels).

MMB Full Constraint

Overall, larger magnitude negative bias and much bigger magnitude in bias.

Within sublevels, all negative and mostly much bigger magnitude in bias, except

when PC =0.5 or 0.8.

More sucetable to combination of n =50 or 100 and PC =0.1

Small positive bias, second most biased (overall

and sublevels, except when var =0.5).

MMB No Constraint
a Small positive bias, most biased (overall and

sublevels, except when var =0.5).

Power

Type I Error

Standard IV Closer to 0.05(overall and across sublevels). Slightly smaller than MMB-NC

MMB No Constraint
a -- Highest

MMB No Constraint
a --

Higest overall;

highest for some sublevels.

MMB Full Constraint

Approach Comparison

Standard IV
Lower power (overall, across sublevels, and across combinations of n and PC).

Difference disappear with PC=0.8.
Lowest (overall and across most sublevels)

MMB Full Constraint
Higher power (overall, across sublevels, and across combinations of n and PC).

Difference disappear with PC=0.8.

Middle overall;

highest for some sublevels.

Much higher type I error rate (overall and across sublevels).

Difference disappear with PC =0.8.
Closest to 0.05
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Across the six dependent variables, n and PC were the two most influential 

factors for the SIV and the MMB-FC approaches, especially with respect to the 

Success Indicator, Power, and the two SE bias measures. The two estimation bias 

measures were not greatly affected by any simulation factor. Only the MMB-FC 

method was slightly influenced by the interaction term PC*var. Apart from n and PC, 

other factors exhibitted their influence only on specific dependent variables. 

Measurement Reliability was very influential for estimation success, and Effect Size 

was important for empirical power. Note that it does not mean that terms not selected 

do not have effects on the dependent variables. In fact, most terms are influential, but 

for a researcher who is having trouble deciding where to allocate limited resources in 

order to have the best return, the factors selected here have more practical influence 

than those not selected. This simulation study chooses factor levels that are realistic in 

real studies. Even if expanding the ranges of some factors can make them look 

influential, the non-realistic levels will not provide enough practical guidance for 

researchers.   

For the SIV and the MMB-FC approaches, the effects of the simulation 

factors are mostly as expected: favorable conditions lead to better estimation. 

However, there are several exceptions worth mentioning.  

1) When the three latent classes have different Level 2 Covariance matrices, 

using the MMB Full Constraint estimation leads to more parameter 

estimation bias. When noncompliers have a smaller covariance matrix 

than the compliers,  is underestimated. When noncompliers have a 

bigger covariance matrix,  is overestimated. 

c
γ

c
γ
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2) In terms of the SE bias measures, for both estimation approaches, the 

combination of low n and low PC leads to severe underestimation of the 

SE. However, either increasing n or PC will yield a much more accurate 

estimation.      

3) When PC is low, increasing n would not necessarily lead to a higher 

power if the MMB Full Constraint method is used. 

As for the MMB-NC approach, only the first dependent variable was analyzed 

with all simulation conditions. Similar to the other two, n and rel were two influential 

factors, but PC was only influential for this estimation approach. The effect of PC is 

also worth mentioning: with PC = 0.5, the success rate reached its highest average. 

Due to the prevalent estimation non-convergence while using the MMB-NC approach, 

only very high n levels and not so extreme PC levels were used for the analyses of the 

last five dependent variables. With the limited conditions, the results show that the 

factors did not explain much variation in the dependent variables. The only exception 

was for the empirical power where d and PC both had sizable positive influences. 

Comparing the three estimation approaches, the MMB-NC approach is out of 

discussion first because of its extremely low convergence rate under low n and low 

PC. The SIV approach should be the best choice considering all aspects. It has the 

highest overall success rate, the lowest estimation bias magnitude, and the lowest SE 

bias magnitude. Although the MMB Full Constraint method has much higher power, 

indicating higher empirical power, it is mainly due to the fact that this method on 

average overestimates  and underestimates its standard error. This is evident with 

one unexpected finding: when PC is low, increasing n would not necessarily lead to a 

c
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higher power if the MMB Full Constraint method is used. When PC and n are both 

very low,  is largely overestimated and its standard error is largely underestimated; 

hence, the significance rate was incorrectly inflated. As n becomes larger, the bias on 

both measures starts to shrink; therefore, the incorrectly inflated power also becomes 

closer to the truth. In practice, using this approach is likely to incorrectly detect a 

nonexistent treatment effect and therefore leads to a type I error. In fact, the MMB 

Full Constraint method did yield a much higher type I error rate than the other two 

methods. 

Even if a researcher has the luxury to have a large sample size (n ≥ 500) and a 

reasonable complier proportion (0.3 ≤ PC), the SIV approach and the MMB-NC 

approaches were two very compatible choices. The former slightly underestimates the 

parameter more, while the latter slightly overestimates the SE more. As a result, the 

two approaches yields very similar power and type I error rate and both approaches 

do not inflate or deflate the power or type I error rate incorrectly. The MMB Full 

Constraint method, on the other hand, remains to be a flawed choice due to its largely 

inaccurate estimation of , especially with unfavorable conditions.     

5.2.Summary of Practical Guidance on Sample Size and Measurement Reliability 

The current study also strives to provide guidance on how to choose n and rel, 

the two manipulable factors for most experiments, to meet certain criteria on success 

rate, estimation bias, power, and type I error rate. Therefore, for each of the four 

dependent variables (i.e., Success Rate, Relative Estimation Bias, Relative SE Bias, 

and Significance Indicator), there is one table using cross tabulation to summarize the 

dependent variable with respect to n, rel, PC, and any other ANOVA analyses 

c
γ

c
γ
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selected factors. PC is consistently included because the selection of usable cells for 

the MMB-NC method depends on this factor. 

Unfortunately, by using the selected factors together with any combination of 

n, rel, and PC, there is no guarantee, at least considering all simulation conditions 

used in this study, on all five measures. Specifically, none of the investigated 

configurations would lead to a 100% guarantee on type I error rate. With more 

preferable conditions, the probability of meeting the criteria is higher, but using n, rel, 

and PC alone, which are the selected factors for the dependent variable Significance 

Indicator, does not assure a negligible type I error rate.  

There is still merit in comparing the conditions that guarantee a 100% 

satisfactory rate (within the current simulation design) on other measures. Firstly, by 

mapping conditions that lead to satisfactory success rate, negligible estimation bias, 

and negligible SE bias together, it is at least a high probability assurance for 

researchers and practitioners to obtain a converged and accurate estimation. Note that 

only n, rel, and PC were used for the three measures in this study, so the following 

discussion is limited to the three factors, too. The results show that the SIV approach 

is the most lenient on acceptable conditions. With PC = 0.8, the SIV approach 

yielded acceptable results on all three criteria even with a sample size of 200 

regardless of measurement reliability. If PC was as low as 0.5, only the combination 

of n = 1,000 and rel = 0.8 satisfied all three measures. The MMB-NC approach and 

the MMB Full Constraint approach were much more limiting on the conditions. The 

former would only work with n = 1,000, rel = 0.8, and PC = 0.5 or 0.8, while the 
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latter would only work with PC = 0.8, n = 1,000, rel = 0.5 or 0.8 or PC = 0.8, n = 

500, and rel = 0.8. 

Second, after mapping empirical power together with the three criteria, the 

conditions became even more limiting. The following discussion is limited to the 

three factors above plus d. None of the three estimation approaches would guarantee 

satisfactory empirical power when d = 0.2. The SIV approach was still the most 

permissive approach among three. The smallest sample size with PC = 0.8 now 

increased to 500 with d = 0.8 for both measurement reliability values or with d = 0.5 

with only rel = 0.8. When PC = 0.5, only n = 1,000, rel = 0.8, and d = 0.8 could 

guarantee a satisfactory empirical power. For the MMB-NC approach, with n = 1,000, 

rel = 0.8, and PC = 0.5, only d = 0.8 would lead to a satisfactory empirical power, 

and with n = 1,000, rel = 0.8 and PC = 0.8, both d = 0.5 and d = 0.8 would work. 

For the MMB Full Constraint method, with PC = 0.8, n = 1,000, rel = 0.5 or 0.8 or 

with PC = 0.8, n = 500, and rel = 0.8, both d = 0.5 and 0.8 could yield a satisfactory 

empirical power.  

5.3.Limitations 

The results of the current study provide insights to researchers and 

practitioners. They also present some challenges for further research. The results are 

based on a latent growth model where only four time points were used and a linear 

growth was implemented. Previous studies have shown that additional measurements, 

especially additional measurements that could increase the over construct reliability 

(Hancock & Mueller, 2001) might decrease estimation bias, increase convergence and 

increase statistical power (Tolvanen, 2007; Hancock & Gagné2006). In addition, 
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latent growth models are also widely used for studies where nonlinear growth 

trajectories are involved. It is likely that the current findings can be applied to LGMs 

with nonlinear trajectories, but more exploration regarding this issue can be 

worthwhile. 

The exploration of the MMB-NC approach is somewhat limited due to the 

prevalent estimation non-convergence with regard to unfavorable sample size and 

complier proportion designs. Although the study provides useful suggestions for 

applied studies in terms of the model convergence, in order to probe more into the 

conditions yielding low convergence rate with respect to criteria (e.g., power, 

estimation bias), future studies can use some modification of the model estimation 

process.  

Useful approaches include raising the number of random starting values sets, 

increasing replication times until certain convergence rate is met, and using real 

parameter values as starting values. Researchers should also be careful that these 

approaches also have their drawbacks. The first two methods means that the 

computation time can be very lengthy. The current study used 500 sets of random 

starting values. Although parallel computing was used to shorten simulation time, the 

time for 10% of the total simulation amount was more than three days with a 

powerful server. Raising the number of random starting value sets and increasing the 

replication times will definitely add more simulation time. In addition, some design 

cells have extremely low convergences rates (a lot of 0% convergence in fact), simply 

increasing the number of \starting values or replication time may not necessarily solve 
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the problem. It is almost safe to conclude that the MMB-NC approach is a too 

complex model for research settings with low sample size or low complier proportion.  

Instead of trying to reach the adequate convergence rate while using small 

sample size designs, the more important question is to find the minimum sample size 

where “enough” number of datasets are converged and evaluation on other measures 

can proceed. The current study used 30% as the “enough” cutoff and classified n ≥ 

500 and PC ≥ 0.3 as applicable conditions. However, there is a gap between the next 

available sample size, 200, and the cutoff sample size, 500. Incorporating more n 

levels between 200 and 500 would reveal more information on the behavior of the 

MMB-NC approach.  

One goal of the present study is to compare the SIV method and the MMB 

method under broad conditions. The MMB method splits into two variants, one with 

full constraint and one with no constraint. While the no constraint approach cannot be 

applied to low sample size conditions, the full constraint approach is the only choice 

for the MMB method under such conditions. As covariance difference (var) is one 

design factor, the full constraint model is wrong for designs with var ≠ 1. The 

comparison of the SIV and the MMB-FC approaches did not specifically distinguish 

different var levels, so it is unclear if the SIV approach will still outperform the 

MMB-FC if only var = 1 is used. As it is generally not recommended to have full 

constraint across classes (Little, 2013), and it is not the main focus for the current 

study, this study did not delve more into this area. Future study can be done by 

focusing on this topic. It is possible that if the three classes are more different the 
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MMB-NC method will be a more defendable choice. Future studies may pay more 

attention to this. 

Compliance in this study was defined very clearly as taking treatment or not 

taking treatment. In reality, however, it is not always so well-defined. Low 

compliance can mean that participants partially follow the instruction of the 

experimental design. In other words, different participants may take different levels 

of dosage of the treatment. This issue is common in educational experiments, but the 

traditional CACE may not be a good approach for this scenario. A full mixture model 

can be a better solution here.   

In this study, participant attrition was not included in the simulation design. 

However, attrition is a common problem for longitudinal studies. It is unclear how the 

estimation of CACE would be affected by attrition. On one hand, attrition can cause 

missing values and leads to more estimation biased and less estimation precision. 

More investigation on missing value could help to understand the influence of 

attrition. On the other hand, attrition can be also caused by the change of compliance 

membership. For example, a complier can become a non-complier as a study 

progresses. In this case, using models that can accommodate compliance class 

changing would be a preferable solution. More investigation regarding attrition 

should be conducted. 

5.4.Implication for Future Studies 

This study expands the literature of the longitudinal CACE estimation while 

using the LGM framework. The present study provides important evidence about how 

different research conditions can affect the estimation of the longitudinal CACE in 
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terms of the estimation success rate, estimation bias, power, and type I error rate. 

Further, this study provides guidance on choosing sample size and measurement 

reliability for researchers and practitioners. Last but not least, the study compares two 

estimation methods and demonstrates that the Standard IV approach is an overall 

better selection. These findings are important because the conditions included in the 

present study are realistic conditions for applied studies and the two estimation 

methods investigated are widely used in applied studies. With the guidance, 

researchers and practitioners can make a more educated decision for their research 

designs. Despite the limitations, this study compliments existing literature and 

provides a good starting point for future investigation.  
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