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Abstract
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Hua Wang, Doctor of Philosophy, 1993
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This dissertation addresses issues in the control of nonlinear instabilities in
high performance engineering systems. Specifically, we consider nonlinear control
systems near the limits of their operating envelope. These are highly nonlinear
situations occuring in the high-performance operation of a wide variety of sys-
tems. Such systems tend to exhibit nonlinear stabilities in terms of a jump to
a new low-performance operating point, oscillatory behavior, chaotic behavior
or system collapse in the absence of appropriate control action. Such situations
necessitate the study of controlling nonlinear phenomena such as bifurcations
and chaos.

A new approach to the control of chaotic dynamical systems is introduced,
namely control of routes to chaos. The theme is to design feedback control laws
which ensure a sufficient degree of stability for a primary bifurcation in the routes
to chaos. A thermal convection loop is used as a vehicle to illustrate the idea.
Moreover, as the period doubling cascade is one of the most famous routes to
chaos, the stabilization of period doubling bifurcations for general n-dimensional

discrete-time nonlinear systems is investigated. The technique presented here



affords considerable flexibility in terms of achievable behavior of the nonlinear
system over a range of parameter values.

One contribution is the modeling, analysis and control of voltage collapse
in electric power systems. A new mechanism of voltage collapse is suggested
based on the framework of catastrophic bifurcations. Bifurcation control laws
are designed to control these nonlinear phenomena at the inception of voltage
collapse. The control laws are shown to result in improved performance of the
system for a greater range of parameter values.

Another important application considered is the stall phenomenon in axial
flow compressors. A combination of bifurcation analysis and nonlinear control
is used to study the dynamics and active control of rotating stall in an axial
flow compressor model. Both smooth and nonsmooth feedbacks are considered.

Successful experimental verifications have been reported on these results.
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Chapter 1

Introduction

Every engineering system has limits on its operating envelope, past which it will
no longer function in a useful manner. In response to today’s ever-increasing
demands on the performance of many engineering systems, there is considerable
interest in operating systems near the edge of these limits. These are highly
nonlinear situations occurring in the high-performance operation of a wide vari-
ety of systems. This dissertation focuses on the control of nonlinear instabilities
in high performance engineering systems. These belong to the type of problems
that cannot be adequately addressed without recourse to results from nonlinear
dynamics. For instance, one needs to study control of nonlinear phenomena such
as bifurcations and chaos. Theoretical problems as well as applications in search
of theory are considered. Applications are drawn from thermal convection, elec-

tric power systems and jet engine dynamics.



1.1 Motivation

The angles of the boundary of stability

are always directed outside,

driving a wedge into the domain of instability.

This is apparently the consequence of a very general principle,

according to which everything good is fragile.

- Vladimir Arnold [17]

The important role played by concepts from bifurcation theory in the sci-
ences, engineering and the social sciences is well-established. Nonlinear phe-
nomena such as the appearance of limit cycles, divergence to new steady states,
and transition to chaotic behavior have been observed and studied for a great
variety of systems. Only recently have issues of the control of such nonlinear
phenomena been given serious consideration (e.g., [2], [3], [58], [60], [77], [21],
[101], [9], [62], [103], [104]). Interest in these control problems is partially due to
the increased performance that is potentially achievable in modern engineering
systems when operating near their stability limits. Systems which function at
or near the limits of their operating envelopes tend to experience bifurcations
under moderate disturbances. These bifurcations can results in:

e A jump to a new low-performance operating point

¢ Oscillatory behavior

¢ Chaotic behavior

¢ System collapse

Examples of the consequences of operating a system close to its inherent

limits include:



e Aircraft stall in supermaneuvers;

e Blackout of a heavily loaded electric power system; and

o Aircraft engine stall.

Although a system is operated within physical limits, it may still undergo
such catastrophic events if operated too close to these limits. In such an oper-
ating mode, the system is highly vulnerable to even small or moderate external
disturbances. Very often, one finds that in this type of operating mode, mathe-
matical models which are relevant must be nonlinear. That is, linearized models
cannot be used to predict the system’s response subsequent to a destabilizing
disturbance.

Despite the foregoing observations, interest exists in a variety of applica-
tion areas in operating a system very near the limits of its envelope. This is
in response to today’s ever-increasing demands on the performance of many
engineering systems. Achieving increases in performance while maintaining an
acceptable safety margin presents an important current engineering challenge.
An essential aspect of this challenge is the design of control systems for these
stressed nonlinear systems. This is the type of control problem considered in
this dissertation.

To understand any of the complex behaviors which may characterize the
instability of a stressed nonlinear system, one resorts to mathematical modeling.
Since transients dominate these phenomena, useful mathematical models fall in
the broad class of dynamic models. That is, one deals with systems of evolution
equations in an independent time parameter. These may include differential or
difference equations of various types. Of course, the evolution equations may be

subject to algebraic constraints, boundary conditions, etc.



Qualitative changes in the behavior of nonlinear systems subjected to distur-
bances is an issue closely linked to concepts of bifurcation theory. This theory
has become an indispensable tool in the analysis of many problems of modern
applied mathematics. Bifurcation theory, whose history is so closely linked with
applications, has been applied successfully in diverse problems of science and
technology.

One purpose of this dissertation is to study various bifurcation phenomena in
some real world systems. In doing so the objective is to determine the mechanism
of certain catastrophic events, such as voltage collapse in power systems. The
analysis involves study of local and global bifurcations, including those involving
chaotic motions.

In the control of stressed nonlinear systems, interest exists in the implications
of bifurcation theory for the control of nonlinear systems with a small margin of
stability. A heavily load electric power systems is an example of a highly stressed
nonlinear system with a small margin of stability. A variety of bifurcations, static
and dynamic, local and global, occur in power system models exhibiting voltage
collapse, In order to control voltage collapse in these power system models,
one has to design control laws to deal with these various nonlinear phenomena,
namely, bifurcations, chaos and crises.

Similar concepts can be applied to the control of axial flow compressor jet
engines. Compressor stall is a kind of bifurcation phenomenon of jet engines [4]
characterized by large drops in mass flow ( in average ) which lead the engine to
run at a very inefficient operating condition. In particular, the rotating stall type
of stall is very difficult to recover from, usually requiring a complete shutdown

and subsequent re-start [44]. Since the most efficient operating condition is at



the point where the compressor is about to stall, the normal operating condition
will be very close to the stall point. Therefore, the engine has a nonnegligible
possibility to run into stall following a large disturbance or during a transition
period. Design active control to improve the operability in the vicinity of stall
point and to recover the engine to go back to the normal operating conditions
in the face of disturbance will be very useful.

Investigations have also been carried out regarding control of chaotic systems,
i.e., deterministic systems which can display seemingly random behavior. Since
period doubling route to chaos is one of the most important routes to chaos,
stabilization of period doubling bifurcations and the implication for control of

chaos are explored.

1.2 Linear Control, Nonlinear Control and Bi-
furcation Control

Traditionally, approximate linearization and linear control design have been the
main methodology for the development of control theory and applications. The
control laws are mostly designed with reference to a fixed operating condition,
such as a fixed equilibrium point. Later, gain scheduling control design is em-
ployed to adjust to different (changing) operating conditions.

From the beginning, control engineering is concerned with performance of
nonlinear control systems. Questions often asked are: is linearization a reason-
able step? Are the results adequate? In the process of evaluating the perfor-
mance of nonlinear control systems, people start being interested in the nonlinear

dynamics of control systems. Most existing results linking nonlinear dynamics

<t



to control are of this type [19] [45] [40] [23] [67] [25].

Chang and his co-workers have done systematic work on the dynamics of con-
trol systems [23], [67], [25]. It is well known that the stability criteria established
in linear control theory are valid only in the local neighborhood of a set point for
a nonlinear system. Away from this immediate neighborhood, other attracting
equilibrium states, which cannot be studied with the localized linear model, can
destroy the global stability of the locally stabilized set point and, with it, much
of the power of the linear theories. In [23] [67] [25] a bifurcation approach is pro-
posed to study the bifurcation characteristics and global dynamics of controlled
nonlinear systems. The main idea is to treat the controller gain as a bifurcation
parameter and study the qualitative change of the system behavior as the con-
troller gain varies. In particular, [23] studies the bifurcation characteristics of
nonlinear systems under conventional PID control. A substrate inhibition model
of bioreactors is used to illustrate the richness of dynamic behaviors that can
be instigated by a simple controller. These dynamic behaviors in the closed-
loop system includes multiple equilibrium points, limit-cycles, tori and strange
attractors. In another work [67] the global dynamics of an autothermal reactor
under linear feedback control is also studied. It is found that the global stability
of the set point is destroyed as the control gain crosses beyond the marginal
value, and that further variation of the control gain results in loss of stability at
a Hopf bifurcation point. In the case of a subcritical Hopf bifurcation, a locally
stable set point can coexist with a large amplitude, stable limit-cycle. This is an
example of a so-called “dangerous” stability boundary [92]. Continuing the work
of [23], [67], the global effects of controller saturation on closed-loop dynamics

are investigated in [25].



In this dissertation, we are mainly interested in the control of nonlinear dy-
namics. The main framework is bifurcation control. The type of work of Chang
and his co-workers is closely related to bifurcation control but there are major
differences. In the study of nonlinear dynamics of control systems, the bifurca-
tion characteristics and dynamics of controlled systems are analyzed passively.
Whereas bifurcation control involves design of feedback controls to actively mod-
ify the stability and amplitude of bifurcated solutions in general nonlinear control
systems.

There has been increased interest in the implications of bifurcation theory
for the control of nonlinear systems with a small margin of stability [2], [3], [58],
[60], [101], [9], [62], [103], [104]. In [2], the local stabilization control for systems
displaying Hopf bifurcation is considered. In [3], local feedback stabilization
and bifurcation control are studied for systems displaying stationary bifurcation.
In [58], [59], the results of [2] are extended by employing washout filter-aided
dynamic feedbacks. The main advantage of using washout filters in the feedback
loop is the preservation of all system equilibria even under uncertainty. Also
considered in [59] are washout filter-aided control laws for systems possessing
a stationary pitchfork bifurcation, and systems possessing double pairs of pure
imaginary eigenvalues. Concepts from bifurcation theory have been successfully
applied to control problems in high angle of attack flight [58, 59], stall of jet
engines [62], [103], [14], oscillatory behavior of tethered satellites [60], electric
power system voltage collapse [104] as well as chaotic dynamical systems [101]
[9]. For a review of control of chaotic systems see [88].

Mehar [70] and Mehra, Kessel, Carroll [71] have studied global removal of

bifurcations by state feedback. Their control result applies only to stationary



bifurcations, since it is obtained bby appealing to a global implicit function
theorem. This differs markedly from the local bifurcation control problems con-
sidered here, in which one seeks only to modify the stability properties of the
bifurcated solutions.

Optimal control and optimization of bifurcating systems have been considered
by several authors. Theoretical work on this topic has been reported by Qin
[82] and Russell [86]. Doedel, Keller and Kernévez have considered the global
numerical optimization of bifurcation problems.

A related subject is the so-called structural or branching control of nonlinear
systems [90], [89], [91]. In this approach, the branching (“bifurcation”) phe-
nomena for degenerate systems are realized by synthesis problems for attractors
having a prescribed nature in a neighborhood of a fixed point. Specifically, the
problem considered is how to synthesize a feedback for a completely controllable
nonlinear dynamic system to ensure that the dynamics of the closed-loop system
is qualitatively equivalent to the dynamics of the original system. The results
are applied to synthesize stable periodic trajectories in a given neighborhood of
equilibrium. There the idea is to augment the system with a parameter dynamics

and then apply the Hopf Bifurcation Theorem to the supercritical case.

1.3 Outline

The development of this dissertation is as follows. In Chapter 2, some basic
concepts related to bifurcation along with notation and terminology are reviewed.
Basic results related to local and global bifurcations are collected. Complex

nonlinear phenomena such as chaos and crises are discussed. Finally, washout



filters and some of their basic properties are introduced.

In Chapter 3, a new approach to the control of chaotic dynamical systems
is presented. The idea is illustrated in the context of a thermal convection loop
model. A washout filter-aided feedback control stabilizes a primary bifurcation in
a sequence of bifurcations leading to chaos. For the example considered, the pri-
mary bifurcation is a Hopf bifurcation. A feedback control achieving a sufficient
degree of stability for this bifurcation also extinguishes chaos. The technique
results in equilibrium preservation even in the face of model uncertainty.

In Chapter 4, continuing the work of controlling bifurcations and chaos, the
stabilization of period doubling bifurcations for discrete-time nonlinear systems
is investigated. Both static and dynamic feedback controllers have been studied.
It is shown that generically such bifurcations can be stabilized using smooth
feedback, even if the linearized system is uncontrollable at criticality. In the
course of the analysis, expressions are derived for bifurcation stability coefficients
of general n-dimensional systems undergoing period doubling bifurcation. A
connection is determined between control of the amplitude of a period doubled
orbit and the elimination of a period doubling cascade to chaos. For illustration,
the results are applied to the Hénon system.

In Chapter 5, modeling, analysis and control of voltage collapse in a model
electric power system are considered. We challenge the existing theory of linking
voltage collapse exclusively to a saddle node bifurcation by showing a variety
of nonlinear phenomena existing in power system models exhibiting voltage col-
lapse. These nonlinear phenomena include local and global bifurcations, chaos
and crises. A new view of voltage collapse is suggested based on the framework

of catastrophic bifurcations. Bifurcation control laws are designed to control the



nonlinear phenomena at the inception of voltage collapse. The control laws are
shown to result in improved performance of the system for a greater range of
parameter values.

In Chapter 6, another example of an engineering system near the limits of its
operating envelope is considered, namely, stall phenomena in axial flow compres-
sors. A combination of theoretical and computational nonlinear analysis tech-
niques is used to study the scenario of bifurcations at the inception of rotating
stall in an axial flow compressor model. Using the throttle opening as a control,
it 1s found that the bifurcations to stall are not linearly stabilizable. Nonlinear
stabilization techniques are necessary. Both smooth and nonsmooth feedback of
the first mode amplitude are considered. The operability and nonlinear stability
of the compression system near the stall point are improved.

Conclusions and suggestions for further research are collected in Chapter 7.

10



Chapter 2

Nonlinear Phenomena: Preliminaries

In this chapter, we review some basic results relating to bifurcation theory, chaos
and crises. Some mathematical tools such as multilinear functions are also dis-
cussed. The summary follows [7] and [97]. Since washout filters are employed in
the design of control laws in later chapters, basic results on washout filters are

recalled as well.

2.1 Local bifurcations

There are many types of bifurcations. Of particular interest in many practical
engineering systems are the local bifurcations, i.e., those which result from loss
of stability of an equilibrium. Global bifurcations are those which take place

over some domain in state space.

2.1.1 Low-Dimensional Examples

The term bifurcation refers to qualitative changes in the phase portraits of dy-

namical systems occurring with slight variation in system parameters. A pa-

11



rameter value at which such a change occurs is called a critical parameter value.
Originally, Poincaré [81] used the term “bifurcation” to describe the splitting of
equilibrium solutions for a family of differential equations. Bifurcations involv-
ing only equilibrium points are known as stationary or static bifurcations. There
are also bifurcations, such as the Hopf bifurcation, which involve both equilibria

and periodic solutions. Consider a system

&= f(z,n) (2.1)

where 2 € R is the system state and u € R¥ denotes a k-dimensional param-
eter; k can be any positive integer. In this work, we restrict k to be 1 so that u
is a scaler. The equilibrium solutions are given by the solutions of the equation
fu(z) = 0. By the implicit function theorem, as u varies, these equilibria are
smooth functions of u as long as D, f,, the Frechet derivative of f,(z) with
respect to z, does not have zero eigenvalue. The graph of each of these func-
tions of equilibria in (z, 1) space is a branch of an equilibrium of the system. An
equilibrium point for a given parameter value is called a “stationary bifurcation
point” if several equilibria join at that point. A necessary condition for an equi-
librium (2°, f10) to be a (stationary) bifurcation point is that the Jacobian D,f,
has a zero eigenvalues.

Bifurcations are often classified according to the codimension of D, f. Using

a linear coordinate transformation, D,f can be represented in block-diagonal

A. 0
0 A

form

where A, is the Jordan block corresponding to the critical modes and A, in-

volves the remaining stable modes. Bifurcations from an equilibrium of codi-
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mension 1 and 2 fall into one of the following situations:

Codimension 1 bifurcations:
1. A. =0, a scalar. (This is associated with stationary bifurcation.)

2. A_.is 2x2 and has a pair of pure imaginary eigenvalues. (This is associated

with Hopf bifurcation.)
Codimension 2 bifurcations:

1. A.is 2 x 2 and is nondiagonalizable with a double zero eigenvalue, that is

0 1
Ac:( ) (2.3)
00

2. A, is 2 x 2 and is diagonalizable with a double zero eigenvalue, that is

0 0
AC—_—( ) (2.4)
0 0

3. A is 3 x 3 and has one zero and one pair of pure imaginary eigenvalues,

that is
0 —w 0
Ac={w. 0 0 (2.5)
0 0 0

4. A.1s 4 x 4 and has two pairs of pure imaginary eigenvalues, that is
0 —w O 0
wi 0 0 0
0 0 0 —w;
0 0 w, 0

13



By using the center manifold reduction technique and normal form transfor-
mations, we can reduce system (2.1) to a lower order simplified system called a
normal form. Normal forms preserve the qualitative properties of the solutions
near the bifurcation. Analyzing the dynamics of normal forms yields a qualita-
tive picture of the solutions for each type of bifurcation. The normal forms of
codimension one bifurcations are summarized as follows:

1) Saddle-node bifurcation: The normal form is given by
&= p— (2.7)

The bifurcated equilibrium solutions exist for ¢ > 0 and are given by
z = *,/p. The branch z = ,/u, is stable while the other branch,
T = —,/i, is unstable.

ii) Transcritical bifurcation: The normal form is given by
T = pz — a° (2.8)

The bifurcated equilibrium, = = g, exists for both ¢ >0 and g < 0. For
p >0 (resp. p < 0), the bifurcated branch is stable (resp. unstable).
iii) Pitchfork bifurcation: The normal form (for the supercritical case) is

given by
3

&= pxr—1z°. (2.9)

There are two bifurcated equilibrium branches, z = +,/p, for p > 0,

and they are both stable.
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iv) Hopf bifurcation: The normal form is given by

& = —y+z(u-(2®+y?)); (2.10)

gy = z+y(p—(®+y?). (2.11)

The associated bifurcated solutions are nonconstant periodic trajectories.

2.1.2 Bifurcation Theorems

Bifurcations, especially catastrophic bifurcations, play a decisive role in certain
catastrophic events to be studied in this thesis. Chaos is also very closely related
to bifurcations. Therefore, it is felt that a more detailed discussions of some
bifurcations which arise is in order. Generally, we are interested in nonlinear
autonomous systems (2.1).

Suppose that (2.1) possesses an equilibrium point zg(x) for a range of values
of the parameter p of interest. We assume that this is an asymptotically stable
equilibrium for a large portion of this range. Thus, the equilibrium can qual-
ify as a possible operating condition for the physical system modeled by (2.1).
When the system operates in a highly stressed condition, it is possible for the
equilibrium zo(p) to lose stability for some parameter value p.. At such a loss
of stability, the nonlinear system (2.1) typically undergoes a local bifurcation.
Such a bifurcation can give rise to new equilibria or periodic orbits of (2.1).

In applications, it may happen that an asymptotically stable equilibrium
loses stability through a stationary bifurcation, but the equilibrium solution
itself survives. In such a case, either a transcritical bifurcation or a pitchfork

bifurcation occurs. This is treated in the following theorem.
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Theorem 2.1 (A Stationary Bifurcation Theorem) [51] Suppose f of sys-
tem (2.1) is sufficiently smooth with respect to both x and p, f(0,1) = 0 for p
near the critical value p, = 0, and the Jacobian of f, A(n) := D.f(0,u), pos-
sesses a simple eigenvalue A\(p) such that at the critical parameter value p, = 0,
A(0) =0,

N(0) := % 0?0 (2.12)

and all the remaining eigenvalues of Ap have strictly negative real part. Then:

i) There is an € > 0 and a function
() = pre + pae® + O(e?) (2.13)

such that if puy # 0, there is a nontrivial equilibrium x(p) near v =0
for each € € {[—€0,0) U (0,€0]}; of 1 = 0 and pz > 0 (resp. < 0),
there are two equilibrium points z4(u) near z =0 for each p € (0, €
(resp. u € [—€o,0)).

ii) Ezactly one eigenvalue B(e) of the Jacobian evaluated with respect to each
of the nontrivial equilibrium points in (i) approaches 0 as ¢ = 0 and it

is given by a real function

Ble) = pre + fae + O(€%). (2.14)

The coefficient B3y of this function satisfies By = —N(0)p1. The nontrivial
equilibrium x_ (resp. x4 ) is stable (resp. unstable) if

Bre < 0 and is unstable (resp. stable) if fre > 0. The nominal equilib-
rium point is unstable at bifurcation. If By = 0, then By = —2X(0)u.,
and the nontrivial equilibria are asymptotically stable if B, < 0 and are

unstable if B, > 0.
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Figure 2.1: Saddle node bifurcation

The assumptions of the theorem above are not generic for the case of a
single parameter p. A result that is generic is one which gives conditions for
a saddle node bifurcation. In this case the bifurcation of zo(y) is the merging
of this nominal, stable equilibrium with another, unstable equilibrium. Figure
2.1 depicts a saddle node bifurcation for the case of a scalar state vector. Of
course, the terminology saddle node bifurcation is inspired by the generalization
to systems of dimension two or higher, but the figure addresses the scalar case
for simplicity.

To state a theorem on saddle node bifurcation, we consider system (2.1)
where f is sufficiently smooth and f(0,0) = 0. Express the expansion of f(z, )

in a Taylor series about z = 0, ¢ = 0 in the form
F(o, 1) = Az + by + Qa,2) + - (2.15)

Note that A = D, f(0,0) is simply the Jacobian matrix of f at the origin for
p# = 0. The next hypothesis is basic to the saddle node bifurcation, as well as

other stationary bifurcations of equilibria.

17



—

(SN1) The Jacobian A possesses a simple zero eigenvalue.

Let (SN1) hold, and denote by r (resp. 1) the right column (resp. left row) eigen-
vector of the critical Jacobian A corresponding to the zero eigenvalue. Normalize
r and [ by setting the first component of r to 1 and then chosing I so that Ir = 1.
(This may require one to interchange the position of the first state variable with
that of another state variable.) The next hypothesis, along with (SN1), ensures

that Eq. (2.1) undergoes a saddle node bifurcation from the origin at u = 0.
(SN2) Ib+# 0 and IQ(r,r) # 0.

The precise statement is given in the following theorem. Note that usually this
result is stated for a one-dimensional reduced system model, whereas we give a

statement which applies directly to a general n-dimensional system [7].

Theorem 2.2 (Saddle Node Bifurcation Theorem) With the notation and
assumptions above, if (SN1) and (SN2) hold, then there is an €g > 0 and a func-
tion

w(€) = pze® + O(€%) (2.16)

such that pgy # 0 and for each € € (0,¢], Eq. (2.1) has a nontrivial equilibrium
z(e) near 0 for p = u(e). The equilibrium point T = 0 is unstable at bifurcation,

i.e., for uy =0.

This is the type of bifurcation which has been linked to voltage collapse in
[34], [15]. From the point of view of this work, the most important feature of
the saddle node bifurcation is the disappearance, locally, of any stable bounded
solution of the system (2.1). In the following subsections, we give other, more

complicated (nonlocal) examples of bifurcations displaying this same feature.
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Suppose that the instability of the nominal equilibrium zo(g) is the result of
a pair of eigenvalues of the system linearization crossing the imaginary axis in
the complex plane. Then, as is well known [47], [65], generically it will be the
case that a small amplitude periodic orbit of (2.1) emerges from the equilibrium

zo(x). The following hypotheses are invoked in the theorem statement below.

(H1) The Jacobian D f(0,u) possesses a pair of complex-conjugate simple

eigenvalues A(p) = a(p) + w(u), AM(p), such that a(0) = 0, o’(0) # 0

and w; := w(0) > 0.

(H2) Ziw, are the only pure imaginary eigenvalues of the critical Jacobian

D, £(0,0).

Theorem 2.3 (Hopf Bifurcation Theorem) Suppose the vector field f of
system (2.1) is sufficiently smooth and f(0,p) = 0. Given (H1) and (H2) above,
then the following hold:

(a) (Ezistence) There is a € > 0 and a smooth function p(e) = pze? + O(%),
such that for each ¢ € (0, €] there is a nonconstant periodic solution p.(t)
of system (2.1) near xo(p) for p = p(e). The period of p(t) is a smooth
function T(e) = 27w 1 + T2€?] + O(€®), and its amplitude grows as O(e).

(b) (Uniqueness) If puy # 0, there is a €; € (0,¢o) such that for each ¢ € (0, ¢],
the periodic orbit p. is the only periodic solution of system (2.1) for n =

p(e) lying in a neighborhood of xo(u(e)).

(c) (Stability) Exactly one of the characteristic exponents of p.(t) approaches 0
as € | 0, and it is given by a real smooth function B(e) = 26>+ O(€®). The
relationship

P2 = —2a'(0) g (2.17)
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holds. Moreover, if all eigenvalues of D, f(0,0) besides tiw, have negative

real parts, then p(t) is orbitally asymptotically stable with asymptotic phase
if B(e) < 0 but is unstable if B(e) > 0.

The theorems above are of course not sufficient to address all types of catas-
trophic or jump phenomena in nonlinear systems. Besides these local bifurca-
tions, other bifurcations involving considerations which are not localized in state
space near an equilibrium point, can and do arise. However, since an engineering
system normally functions at a stable operating point, it is the equilibrium con-
dition which must yield, after one or several bifurcations, the decisive bifurcation
after which collapse ensues. In the next section we discuss mechanisms of global
bifurcation, namely blue sky bifurcations, by which a limit cycle or a strange
attractor may disappear through interaction with other invariant sets. First,
however, some common mathematical tools largely used in bifurcation analysis

are collected.

2.1.3 Multilinear Functions

Multivariate Taylor series expansions are used extensively in our derivation of
local stability conditions for bifurcating systems and critical systems. It is very
convenient in dealing with these expansions to employ the notation of multilin-
ear functions. The following are some basic definitions and properties of these

functions.

Definition 2.1 Let Vi, V,,...,V, and W be vector spaces over the same field.
Amapyp : Vi x Vax ... X Vo = W is said to be multilinear (or k-linear) if it

is linear in each of its variables. That is ([20], p. 76), for arbitrary v',%" € V;,
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1=1,...,k, and for arbitrary scalars a,d, we have

(vl ... a0’ + 37, .. ., 0F)

=ap(vl,... v, ..., 0%) Fayp(l,..., T, ..., 0F). (2.18)

We refer to k as the degree of the multilinear function . In particular,
multilinear functions of degree two, three and four are referred to as bilinear,
trilinear and tetralinear functions, respectively.

We shall in the sequel deal exclusively with multilinear functions ¢ whose
domain is the product space of k identical vector spaces Vi =V, =... =V, = V.

For such multilinear functions, we have the following notion of symmetry.

Definition 2.2 A k-linear function ¥ : V xV x ... x V = W s symmetric if,

for anyvi € V,i=1,...,k, the vector

(vt 0%, 0) (2.19)
is invariant under arbitrary permutations of the argument vectors v'.

With an arbitrary multilinear function %, we associate a symmetric multi-
linear function ¥, by the symmetrization operation ([20], pp. 88-89). Given
a multilinear function ¥ (z!,z2%,...,2%), define a new (symmetric) multilinear
function Sym % as follows:

Sym (z!, 2%, ..., 2F) := % > Pz, z?,..., "), (2.20)
" (1412 yeemik)
where the sum is taken over the k! permutations of the integers 1,2, ..., k.
An important property of homogeneous functions represented in terms of

multilinear functions is given next.
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Proposition 2.4 [39] Let ¢ : (IR")* — IR™ be a symmetric k-linear function.

For any vector v € ",

Dy(n,m,...,n) -v = kp(n,n,...,7,v). (2.21)

2.1.4 The Fredholm Alternative

Consider the system of linear equations
Ar=1b (2.22)

where A is a real n x n matrix and b € R". It is natural to seek necessary and
sufficient conditions for (2.22) to possess solutions z € R™. If the coefficient
matrix A is nonsingular, then (2.22) has a unique solution, given by A~1b. Exis-
tence of solutions for cases in which A is singular is the subject of the Fredholm
Alternative. Below, we first present this result for the general case of a singular
coefficient matrix A, and then employ it for the particular case in which A has

a simple zero eigenvalue.

Theorem 2.5 (The Fredholm Alternative) [96] Let N (A) be k-dimensional,
with basis ..., %, and dual basis I*,...,1*. Then (2.22) has at least one solu-
tion in R" if and only if I'b=0 fori=1,...,k. Moreover, in such a case, the

general solution of (2.22) has the representation
k .
z=a+) o (2.23)
=1
where 2° is any particular solution of (2.22) and the o; are arbitrary real scalars.

Suppose now that A has a simple zero eigenvalue. Let r and ! denote right

(column) and left (row) eigenvectors of A, respectively, corresponding to the
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zero eigenvalue, and require that these be chosen to satisfy Ir = 1. Under these
conditions, the Fredholm Alternative asserts that (2.22) has a solution if and
only if Ib = 0. Moreover, the Fredholm Alternative also implies that, if (2.22)
has a solution z°, then the totality of solutions is given by the one-parameter
family z = 2% + ar where a € R is arbitrary. The solution is rendered unique
upon imposing a normalization condition which specifies the value of Iz.
Introduce subspaces E¢, E* C R" as follows: E° is the one-dimensional sub-

space
E° := span{r}, (2.24)

and E’ is the (n — 1)-dimensional subspace
E° = {2z € R"| lz = 0}. (2.25)

From the foregoing, we have in particular that if b = 0 then the system
Az = b, Iz = 0 has a unique solution. Fquivalently, (2.22) has a unique solution
in E° for any vector b € E°. This proves that the restriction ([48], p. 199) A|.
of the linear map A to E° defines an invertible (one-to-one and onto) map. In
the next result, we exhibit the unique solution which lies in E*of the system

Az = b, [z = 0. The proof is elementary [3].

Proposition 2.6 Suppose A has a simple zero eigenvalue. Then the unique

solution of Az = b, lx = 0 given that Ib= 0 is
= (ATA+1T1) 1A s, (2.26)
This result motivates the following introduction of notation:

A" = (ATA+ 1)) AT, (2.27)
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Thus, the inverse of the restricted map A|g. exists and is given by

(Alg.) P =A". (2.28)

2.2 Global Bifurcations, Chaos and Crises

Thompson and Stewart [97] (p.268) refer to a type of global bifurcation in state
space involving the discontinuous disappearance of a limit cycle through colli-
sion with an equilibrium point as a blue sky catastrophe. This is not a local
bifurcation. However it does possess the feature noted above for the saddle node
bifurcation, namely the disappearance of the attractor by collision with a sad-
dle, in this case a saddle equilibrium point. Here, we find it useful to refer to
this and other bifurcations also as blue sky bifurcations since they possess the
same feature, namely the disappearance of a (stable) solution of the system (2.1)
by a collision with a saddle invariant motion. Thus in this sense saddle node
bifurcation may be viewed as a blue sky bifurcation of a stable equilibrium.
The blue sky bifurcation for a periodic orbit is the sudden disappearance of a
limit cycle trough collision with a saddle equilibrium point. Prior to the critical
parameter value u. at which the collision occurs, a saddle equilibrium coexists
with the limit cycle. At y. the limit cycle and a branch of both the stable and
unstable manifolds of the saddle point coincide, forming a homoclinic connection.
Past p. the limit cycle no longer exists. Collision with a saddle fixed point is a
typical mechanism by which a limit cycle can abruptly vanish from state space.
This blue sky bifurcation can take two forms: the disappearance of a stable limit
cycle and the disappearance of an unstable limit cycle. Moreover, it is a global,

discontinuous or catastrophic bifurcation. It also serves as a prototype of a blue
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sky bifurcation for a strange attractor (an attractor exhibiting chaotic behavior).

Chaos is an irregular, seemingly random dynamic behavior displaying ex-
treme sensitivity to initial conditions {78, 97]. Nearby initial conditions result,
at least initially, in trajectories that diverge exponentially fast.

One type of global bifurcation involving a strange attractor is the sudden
death of the attractor. Such a blue sky bifurcation occurs commonly for strange
attractors of differential equations. Like the blue sky bifurcation for a limit
cycle, a chaotic blue sky bifurcation involves a collision with an object of saddle
type and is analogous to the blue sky disappearance of a limit cycle discussed
above. The chaotic blue sky bifurcation is also known by another term, namely
the boundary crisis of a strange attractor.

The term crisis was introduced in [42], [43], and applies to sudden qualitative
changes in strange attractors with quasistatic changes in parameters. A crisis
involving the sudden destruction of a strange attractor through collision with
a saddle point, an unstable periodic orbit, or the stable manifold of such, is
known as a boundary crisis. In a boundary crisis, a strange attractor exists
for parameter values up to the critical value, at which the collision takes place.
Subsequent to this value, the strange attractor no longer exists, but it leaves
a signature, namely a transient chaotic motion. The transient chaotic motion
appears chaotic for a relatively long time (depending on the initial condition),
and then suddenly experiences a sharp excursion either to another, probably
distant attractor, or to infinity. This excursion occurs through a “tunnel” in state
space which necessarily follows the unstable manifold of the saddle point or orbit
with which the collision takes place. The result is a discontinuous, catastrophic

disappearance of the strange attractor. Such a bifurcation is always a global
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bifurcation involving a homoclinic or heteroclinic event. In this thesis, we shall
use the terms chaotic blue sky bifurcation and boundary crisis of a strange
attractor synonymously, although boundary crisis was originally introduced for

one-dimensional maps.

2.3 Catastrophic Bifurcations

In the classification of bifurcations, it is very useful to distinguish between con-
tinuous and discontinuous (or catastrophic) bifurcations. In the case of discon-
tinuous bifurcations, the system exhibits a jump from the nominal to another
attractor, possibly infinity. While in the case of continuous bifurcations, the sys-
tem evolves continuously onto another attractor. The saddle node bifurcation,
in which a pair of equilibria (a saddle and a node) disappear simultaneously as
a parameter passes a critical value, is a fundamental bifurcation in nonlinear
dynamics. It is also the simplest example of a discontinuous or catastrophic
bifurcation. Other examples of catastrophic bifurcations are all the bifurcations
appearing in subcritical form, e.g., subcritical Hopf bifurcation and subcritical
pitchfork bifurcation.

In the case of saddle node bifurcation, the interrupted path of the attractor
(stable equilibrium) indicates a discontinuous bifurcation. A contrasting case is
the stable (supercritical) pitchfork bifurcation which is a continuous bifurcation.

One way to define a discontinuous or continuous bifurcation is to use the
so-called parameter-phase function, which maps each parameter value y to the
corresponding attractor-basin portrait [97]. Using this notion, a discontinuous

bifurcation occurs at a parameter value p where the parameter-phase function is
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Figure 2.2: Schematic parameter-phase space diagrams of continuous and discon-
tinuous bifurcations at p = po; attractrix paths P continue across the bifurcation

point, while paths Q are interrupted

discontinuous.

Schematic diagrams of continuous and discontinuous bifurcation y = g are
shown in Fig. 2.2 [97]. We shall use the terms discontinuous bifurcation and
catastrophic bifurcation synonymously for any bifurcation in which some at-
tracting set paths are interrupted. A theoretical framework for these ideas can
be found in [11].

Based on the observation of catastrophic and continuous bifurcations, the

supercritical bifurcations result in a more desirable system response than the



subcritical bifurcations, locally near u = p.. This constitutes our main philoso-
phy in the local stabilization of bifurcations from equilibria of system (2.1). The
control strategy is to design a feedback to transform a subcritical bifurcation

into a supercritical one or to enhance the stability of a supercritical bifurcation.

2.4 Washout Filters

Washout filters are used commonly in control systems for power systems [16] and
aircraft [68]. The main advantage of using these filters is the resulting robustness
of the system operating point to model uncertainty and to other control actions
which may be used. In this section, we give a brief discussion of these filters,
their use in control of parametrized systems and especially bifurcation problems.

A washout filter (or washout circuit) is a stable high pass filter with transfer

function (38, p. 477]

G(s) = y(s) _ s

z(s) a(s +a)

Here, a > 0 is the inverse of the filter time constant. Letting

1
= 2.
z(s) o a)x(s), (2.30)
the dynamics of the filter can be written as
z=ux—az, (2.31)
and
y=1zc—az. (2.32)
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Feedback through washout filters results in equilibrium preservation in the
presence of system uncertainties and other control mechanisms that they inher-
ently offer. Indeed, the most striking property of a system controlled through
a washout filter is that all the original equilibria are preserved. Thus, one can
concentrate on the design of controllers emphasizing the increase in performance
achieved for a particular equilibrium, without the risk of affecting the location
of other equilibria. As has been observed in [6], even with careful curve-fitting,
it is possible that extraneous equilibria will be brought very close to the nominal
equilibrium, significantly increasing the stability vulnerability of that equilib-
rium. Here, vulnerability occurs because the domain of attraction for the nom-
inal equilibrium will be compromised in the direction of a nearby extraneous
equilibrium.

Equilibrium points represent, in some sense, a system’s capability to perform
in a certain manner at steady state. There are cases in which such a capability
should not be altered by the introduced control strategy. For instance, in the
problem of lateral control design for an aircraft, the yaw rate signal is fed back
to the rudder to increase the Dutch roll damping factor. The control is usually
designed assuming a level flight condition. That is, one works with a linearized
model obtained relative to a level flight condition. Unfortunately, this type
of feedback tends to oppose the aircraft’s tendency to turn. To remedy this
situation, a washout filter is included in the feedback loop. This filter, which
rejects steady-state input signals, has the effect of “washing out” the yaw rate
signal at steady-state and thus minimizes the tendency opposing a steady turn.
In other words, the lateral control designed for level flight does not impact the

open-loop equilibrium for turning flight. Moreover, if the controller is purely
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nonlinear, the linear stability of each equilibrium point will also be preserved.

Washout filters reject steady-state inputs, while passing transient inputs.
At steady-state,

T

the output y = 0, and the steady-state input signal has been washed out.

Consider a system
z = f(z,u) (2.34)
with
f(ze,0) =0, (2.35)
where u is the control input and z. is an equilibrium point for the system with
zero input. Let the control input u be a function of y, defined in Eq. (1.3b): u

= h(y), and let h satisfy
1(0) = 0. (2.36)

From Eq. (2.31)-(2.32), it is clear that y vanishes at steady-state. Hence

f(ze, h(ye)) = f(ze,0) =0, (2.37)

and z. remains an equilibrium point of the closed-loop system. This shows that
by incorporating a washout filter in the feedback, the equilibrium points of the

original system are preserved.
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Chapter 3

Bifurcation Control of Chaotic

Dynamical Systems

In this chapter nonlinear system which exhibits bifurcations, transient chaos,
and fully developed chaos is considered. This is to illustrate the role of two
ideas in the control of chaotic dynamical systems. The first of these ideas is
the need for robust control, in the sense that, even with an uncertain dynamic
model of the system, the design ensures stabilization without at the same time
changing the underlying equilibrium structure of the system. The second idea
is that focusing on the control of primary bifurcations in the routes to chaos
can result in the taming of chaos. The latter is an example of the ‘bifurcation
control’ approach. When employed along with a dynamic feedback approach to
equilibrium structure preservation, this results in a family of robust feedback

controllers by which one can achieve various types of ‘stability’ for the system.
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3.1 Introduction

Recently, significant attention has been focused on developing techniques for the
control of chaotic dynamical systems [93, 77, 85, 37, 99, 52, 88]. Of course, at
the outset, one must realize that there is no obvious way to define the ‘control
of chaos’ problem. This is in direct contrast to more traditional dynamical
system control problems, such as the textbook problem of stabilization of an
equilibrium position of a nonlinear system. Although even this textbook problem
allows for various interpretations for the achieved margin of stability, decay rate,
etc., these can all be viewed within the same basic framework. Chaos, on the
other hand, is a rich, global dynamic behavior, and its ‘stabilization’ can have
vastly differing interpretations. For example, references [77, 85] employ a small
amplitude control law in a restricted region of the state space, thereby stabilizing
a pre-existing equilibrium or periodic orbit. Since the control vanishes in most
of the state space, closed-loop system trajectories follow erratic paths for some
time, until they enter part of the neighborhood in which the control is effective,
after which they are attracted to the equilibrium or periodic orbit of interest.
Other authors apply nonlocal linear or nonlinear feedback to stabilize nominal
equilibrium points [93, 99]. Also, some authors are taking a control systems
approach to the analysis of chaos, which may prove useful in control design (see
[69, 19, 41]). This summary of previous work on control of chaos is of necessity
very brief, and the reader is referred to the original papers for details.

In general, the techniques for feedback control of chaos presented thus far in
the literature have some common features, which we feel are important to briefly
summarize. The control is usually designed for parameter values where the sys-

tem is known to exhibit chaotic motion, and is typically of the form u = u(x —xo)
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where z is the system state vector, and zy is an unstable equilibrium of inter-
est, which lies on a chaotic attractor. The control function u is not necessarily
smooth. Thus, the control consists of direct state (or output) feedback around
To, a specific equilibrium of interest. Note that z¢ can also be a periodic orbit,
as observed in [77, 85].

The approach pursued in the present thesis is directed toward nonlinear sys-
tems which undergo bifurcations, and possibly chaotic motion, as a parameter
is quasistatically varied. Such systems naturally possess several, and possibly
infinitely many, equilibria and periodic orbits. The approach is of particular
relevance to systems for which the model possesses a high degree of uncertainty.
Often, an engineering system is designed to perform well, and to be stable, for
a large range of parameter values. However, technological demands are pushing
systems to the limits of their performance, and many engineering systems are
being operated under conditions which may be viewed as ‘stressed.” It is this
stressed operation which gives rise to nonlinear dynamic phenomena, such as
bifurcations leading, in some cases, to chaos. We take an approach which is in
mathematical synergy with this description.

We consider nonlinear systems depending, for simplicity, on a single bifurca-
tion parameter. For the ‘usual’ values of the parameter, the system operates at
a stable equilibrium, and perturbations away from this mode of operation tend
to be attenuated (stability). As the parameter is varied, the equilibrium loses
stability at a bifurcation point, giving rise to new equilibria or periodic orbits,
perhaps. If any of the bifurcated solutions is stable, the system may operate at
such a solution. For greater variations of the parameter, these bifurcated solu-

tions may also lose stability, and so on. There are several scenarios by which
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successive bifurcations can result in a chaotic invariant set; these are discussed
extensively in the chaos literature. What is important about these scenarios
from a control of chaos perspective, however, is that the appearance of chaos
depends heavily on various aspects of the succession of bifurcations. Suppose
a particular control significantly reduces the amplitude of a bifurcated solution,
or significantly enhances its stability, over a nontrivial parameter range. Then,
one might expect that the occurrence of chaos might be ‘delayed’ to even greater
variations in the parameter, or might be extinguished completely.

This work differs from previous techniques in another respect, related to
nonlinear model uncertainty. Under model uncertainty, a nonlinear static state
feedback controller designed relative to a given equilibrium will influence not
only the stability, but also the location, of this and other system equilibria. To
circumvent this difficulty, we employ a form of dynamic feedback which exactly
preserves all system equilibria. This uses washout filters in a way which re-
tains sufficient freedom to stabilize bifurcations, and to delay their occurrence
if desired (see [58]). Besides preserving system equilibria, the incorporation of
washout filters in the feedback control facilitates the design of a control which
does not depend on the bifurcation parameter. This is also important to achiev-
ing a control which is effective over a range of parameter values, instead of at

one specific parameter value.
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Figure 3.1: Schematic description of the experimental apparatus

3.2 Thermal Convection Loop: Homoclinic &

Heteroclinic Orbits

Singer, Wang and Bau [93] study a thermal convection loop using a combination
of experimentation, modeling, and simulation. The analytical model used in [93]

is given by the third order system

Ty = —pzx;+ py, (3.1)
ii?g = —I1¥3 — T3, (32)
Ii‘g = 1Ty — T3 — R. (33)

where z;,© = 1,2,3, are real, and p and R are positive parameters. The ex-
periment studied in [93] involves thermal convection in a toroidal vertical loop
heated from below and cooled from above as depicted in Figure 3.1. The variables
x1,Tq, 3 correspond, respectively, to the cross-sectionally averaged velocity in
the loop, the temperature difference along the horizontal direction (side to side),

and the temperature difference along the vertical direction (top to bottom). The
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parameter R is the Rayleigh number, which is proportional to the net heating
rate, and p denotes the Prandtl number. It is observed experimentally that, as
the heating rate increases, the fluid flow in the loop goes through transitions.
For a low heating rate, the fluid is in the no-motion state. As the heating rate
increases, a state of steady convection arises (clockwise or counterclockwise).
Further increases in the heating rate result in temporally oscillatory, and, even-
tually, chaotic motion of the fluid.

The transitions above are also reflected by the model (3.1)-(3.3). In par-
ticular, it is found that a invariant chaotic set is born through a pair of blue
sky catastrophes [97] (homoclinic connection). But initially this chaotic set is
not attracting, which is responsible for the transient chaotic motion in the sys-
tem for a range of parameters. This invariant chaotic set becomes an attractor
through heteroclinic connections (“crisis”) at parameter R varies. This is the
beginning of chaotic motion in the system. In the thesis, we note that birth of
the homoclinic orbits, which may be viewed as being ‘caused’ by the subcriti-
cality of the Hopf bifurcations, are important to the appearance of the transient
chaotic and chaotic motions of the model studied here. (The model also exhibits
chaotic behavior in other, distant parameter ranges arising from period doubling
cascades.) In this thesis an array of feedback controllers will be designed to
achieve the goal of taming chaos as well as other types stability objectives for
this system. The washout filter-aided bifurcation control approach will be the
main tool for control design.

To facilitate discussion of this model, set p = 4.0 and view R as the bifurca-
tion parameter. A bifurcation diagram related to this model is given in Fig. 3.2.

In this diagram, a solid line represents a stable equilibrium, a dashed line rep-
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Figure 3.2: Bifurcation diagram for open loop system

resents an unstable equilibrium, and an open circle represents the maximum
amplitude of an unstable periodic orbit of (3.1)-(3.3). The bifurcation diagram
is obtained by employing the package AUTO [35]. The model (3.1)-(3.3) pos-
sesses symmetry, in that replacing (z1, s, x3) with (—z1, —22,z3) results in the
same set of equations. This symmetry is reflected in the bifurcation diagram of
Fig. 3.2.

For R < 1.0 the system (3.1)-(3.3) has a single, globally attracting, equilib-
rium point. This equilibrium, given by #; = 22 = 0,23 = —R, corresponds to the
no-motion state. At R = 1.0 two additional equilibrium points appear through
a pitchfork bifurcation. These equilibria, which are present for all R > 1.0, are
given by (z; = z = £v/R — 1,23 = —1.0). Denote these equilibria by C and
C_, respectively. These two equilibrium points represent the states of steady
convection in the counterclockwise or clockwise directions, respectively. The no-

motion equilibrium state (0,0, —R) loses its stability at the pitchfork bifurcation
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Figure 3.3: A transient chaotic orbit of open loop system for R = 14

point, i.e., at R = 1.0. The convective equilibria (+v/R — 1,+vR — 1,~1.0)
lose their stability in Hopf bifurcations occurring at R = p(p+4)/(p—2) = 16.0,
as depicted in Fig. 3.2. The bifurcation diagra‘m of Fig. 3.2 illustrates that the
Hopf bifurcations at the convective equilibria result in unstable periodic solu-
tions, i.e., these bifurcations are subcritical. Moreover, Fig. 3.2 also illustrates
the disappearance of the unstable periodic orbit in a blue sky catastrophe [97]
at the approximate value R = 7.3198. Not discernible from Fig. 3.2 is the fact
that the model (3.1)-(3.3) admits erratic behavior for a large range of values of
R. This erratic behavior may or may not be chaotic. To be more precise, one
observes trajectories which appear chaotic for a long time interval, after which
they settle to an equilibrium. One also observes trajectories which are chaotic
in the usual sense. The former type of behavior is often referred to as “transient
chaos.” Transient chaos is observed in simulations of (3.1)-(3.3) for parameter

values 7.3198 < R < 15.9, for some initial conditions. (Extensive simulation
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Figure 3.4: A chaotic orbit of open loop system for R = 19

shows that initial conditions resulting in transient chaos are more common for
larger values of R in this interval. See Fig. 3.3 for a typical transient chaotic
trajectory of the system at R = 14.) At approximately R = 15.9 the transient
chaos is converted to a chaotic attractor by a crisis. Thus for the relatively nar-
row range 15.9 < R < 16, there are three possible attractors, namely C,, C_. and
a chaotic attractor, while for R > 16, typical trajectories of the system (3.1)-
(3.3) are chaotic. Figure 3.4 shows a typical chaotic trajectory of the system at
R=19.

The foregoing is a necessarily brief description of the qualitative behavior
of (3.1)-(3.3) and its dependence on the parameter R. There are, however,
intricate details associated with the various behaviors and their bifurcations. For
instance, there are several stable periodic orbit windows for some large values of
R. Within these windows there are three kinds of bifurcations involving periodic

orbits, namely, the saddle-node bifurcation, the symmetry breaking bifurcation
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and the period doubling bifurcation [95]. The most noticeable periodic orbit
window corresponds roughly to the parameter range 125 < R < oo.

Not only do Egs. (3.1)-(3.3) resemble the Lorenz equations, but there is a
simple transformation mapping the Lorenz system into (3.1)-(3.3). The Lorenz

equations are

T = —oz+ oy, (3.4)
y = re—y—zz, (3.5)
z = zy— bz, (3.6)

where o, and b are three positive parameters. Equations (3.1)-(3.3) can be

obtained from the Lorenz equations by the transformation

T, = =, (3.7)
2 = Y, (38)
T3 = z-—r, (3.9)

with the identifications R = r,p = o and b = 1. Hence, studies of the Lorenz
equations have a direct bearing on the system (3.1)-(3.3). We should note that
the homoclinic orbits at R = 7.3198, which may be viewed as being ‘caused’ by
the subcriticality of the Hopf bifurcations, are important to the appearance of
the transient chaotic and chaotic motions of the model studied here. Indeed,
the transient chaos occurring near the homoclinic bifurcation results from a
Sil’'nikov-type bifurcation [92], [95]. (The model also exhibits chaotic behavior
in other, distant parameter ranges arising from period doubling cascades.) Before
pursuing the design of feedback control laws for the system above, it is necessary

to briefly summarize results on bifurcation control.
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3.3 Bifurcation Control Laws

Consider a one-parameter family of nonlinear autonomous control systems

&= fu(z,u). (3.10)

where « € IR" is the state vector, u € IR is the system parameter, f, is a smooth
map from IR™ x IR to IR" and u is a scalar input. Local bifurcation control deals
with the design of smooth control laws v = u(z) which stabilize a bifurcation
occurring in the one-parameter family of systems (3.10). These control laws
exist generically, even if the critical eigenvalues of the linearized system at the
equilibrium of interest are uncontrollable. The direct state feedback control
designs of [2] result in transforming a subcritical (unstable) Hopf bifurcation to
a supercritical, and hence stable, bifurcation. This was extended to stabilization
of Hopf bifurcations using dynamic feedback through washout filters in [59).
The washout filter-aided feedback control law developed in [58], [59] has many
desirable features. The control law does not require an accurate knowledge of
the system equilibria and it exactly preserves all system equilibria. Also the
incorporation of washout filters in the feedback control facilitates the design of a
control which does not depend on the bifurcation parameter. This is important

to achieving a control which is effective over a range of parameter values.

3.3.1 Hopf Bifurcation Formulae

In this subsection, a stability criterion for Hopf bifurcation derived in [51], [2] is
briefly reviewed. The criterion is based on the Taylor series expansion of the vec-
tor field and the eigenvector computations. No center manifold transformation

or normal form transformation are necessary.
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Consider a nonlinear autonomous system

& = fu(z), (3.11)

where z € R" is the state vector, 4 € IR is the system parameter, f : R" — R"
is sufficiently smooth in zp and f,(z.,) = 0, i.e., z., is an equilibrium point
of (3.11) at system parameter . Suppose for g = p. the following hypothesis
holds:

(H) The Jacobian matrix D,f,.(ze,u.,0) has a simple pair of pure imaginary
eigenvalues A\;(p.) = jw. and A(p.) = —jw, with w, # 0, the transversality
condition @%&H # 0 is satisfied, and all the remaining eigenvalues are in the

open left half complex plane.

The Hopf Bifurcation Theorem [47], [65] asserts the existence of a one-
parameter family p.,0 < € < ¢ of nonconstant periodic solutions of system (3.11)
emerging from z = =z, at the parameter value p. for ¢ sufficiently small.
The periodic solution p(t) occurring at parameter values y(¢) have period near
27w, . Exactly one of the characteristic exponents of p. governs the asymptotic

stability and is given by a real, smooth and even function
Ble) = Ba€® + Pac + - --. (3.12)

That is, pe is orbitally asymptotically stable if B(e) < 0 but is unstable if §(¢) >
0. Generically the local stability of the bifurcated periodic solutions p is typically
decided by the sign of the coefficient 5;. Note the sign of 3, also determines the
stability of the critical equilibrium point z. .. Therefore, a feedback control law
u = u(z) which renders B, < 0 will stabilize both the Hopf bifurcation point
and the bifurcated periodic solutions. An algorithm for computing the “stability

coefficient” G, is given as follows [2].
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Step 1. Express (3.11) in the series form

3 = Aot +Qo(8,8)+ Co(d,8,8) + -

+Hi(Aid + Qu(&,8) + ) + A + -+, (3.13)

where & =z — 2., i = p— e, Qi(Z, E) and C;(&, £, &) are the second order (in
&) terms and third order (in &) terms generated by a vector valued symmetric
bilinear form Q;(z,y) and a vector valued symmetric trilinear form Cj(z,y, 2)
respectly. With proper rearranging the order of state variables if necessary, let
r be the right eigenvector of Ay with respect to eigenvalue jw. with the first
component of r equal to 1. Let [ be the left eigenvector of Ay corresponding to
the eigenvalue jw,, normalized such that Ir = 1.

Step 2. Solve the equations

At = —-%Qo(r, ), (3.14)

(2wl — Ao)b = %Qo(r, r) (3.15)

for a and b.

Step 3. The stability coefficient 8, is given by

B2 = 2Re{21Qo(r, a) + 1Qo(F, d) + %lco(r, r,7)}. (3.16)

3.3.2 Stabilization of Hopf Bifurcations

Consider control system (3.10). Equation (3.10) is the natural extension of
Eq. (3.11) to allow an additional, smooth dependence on a scalar control input
u. Assume that hypothesis (H) of Section 3.3.1 holds for v = 0 with p. a critical

value of p and z. ,, the corresponding nominal equilibrium. Set y = p.. Rewrite

43



(3.10) in the series form (here & := z — z,,,.)
& = Aok +uy+udid + Qo(3,2) (3.17)
+ulAot + uQq (g, %) + Co(&, &, 2) + -+ . (3.18)
Assume a control of the form
u=iTQ.% + Cu(%,%,2), (3.19)

where (), is a real symmetric n X n matrix and C, is a cubic form generated
by a scalar-valued symmetric trilinear form. No quartic or higher order terms
are included in the feedback since it is clear from the formula (3.16) that these
terms do not affect §;. Applying the algorithm in Section 3.3.1 to the closed-loop
system, upon application of the control (3.19) we obtain the closed-loop stability
coefficient

B = B2 + 2ReA (3.20)

where

A = 2l[rTQua*’y—Qo(r,%(TTQuF)AEI’Y)]

HIFQuEy + Qo(F, 57 Qur) 2jese] — Ao) ™)

+%lCu(r, )Y + il[Q(TTQuf)Alr F0TQu AT (3.21)
and

« L _ | -
a* = —§A01Q0(r,7")—E(rTQur)Aolfy (3.22)

= e = ) Qulrr) + (2 — AT Qur). (3:23)

From Eq. (3.20), it is clear that stability of the Hopf bifurcation point and of
the local bifurcated periodic solution p, can be achieved if ReA can be assigned
by feedback of the form (3.19). To further analyze the stabilizability, two cases

are discussed separately.
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Linearly controllable critical mode

From the well known Popov-Belevitch-Hautus(PBH) test [55], controllability of
the critical mode is equivalent to the requirement Iy # 0. By setting @, = 0 in

the control law (3.19), Eq. (3.21) reduces to
3 _
A= ZCu(r, r,7)ly. (3.24)

Since the coefficients of Cy(z,y,2) can be arbitrarily assigned, the value of A
can be assigned arbitrarily in the complex plane. Thus, we have the following

result [2].

Theorem 3.1 Suppose the system (3.10) satisfies hypothesis (H) and the critical
mode is linearly controllable (Iy # 0). Then there exists a purely nonlinear
(cubic) feedback u(&) of the form (3.19) which stabilizes the equilibrium point at
criticality and the periodic solution emerging from that equilibrium for parameter

values p near the critical parameter value u..

Linearly uncontrollable critical mode

In this case Iy = 0, and Eq. (3.21) becomes

A = —2Qu4, 507 Qur)AT") +1Qu(F, 37 Qur) 2] — Ao))

+%l[2(rTQuF)A1r + (1T Qur) Qa7 (3.25)

Note that only the quadratic terms in the feedback influence A. Require the

(real) matrix @), to be such that [2]

Im Q,r =0 and Re Q,r #0. (3.26)
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Letting p = (Re r)TQ,(Re r), we have

1 |
A = P{—QIQO(T>5A51’Y)+1Q0(F7§(2ch1—140)—17)

+il[2A1r + A}, (3.27)
A sufficient condition for stabilizability is as follows [3].

Theorem 3.2 Suppose the system (3.10) satisfies hypothesis (H) and the critical
mode is linearly uncontrollable (Iy = 0). Then there is a quadratic feedback u(&)
with u(0) = 0 which stabilizes the Hopf bifurcation point (the critical equilibrium
point) and the periodic solutions emerging from that bifurcation point for the

parameter values i near ., provided that

[N R

Re{=21Qu(r, %Aglv) +1Qo(F, ~(jwel — Ao)™)

+il[2A1r + A7)} # 0. (3.28)

There are several concerns about using direct state feedback control as in
the foregoing development. Usually the argument of u is £ = z — z. ,,, but this
limits the control to one parameter value p, since f,(z. ., u(z — z¢ . )) does not
necessarily vanish for ¢ # p.. Here z., is an equilibrium point of f,(z.,,,0).
Another option is to take the argument of the control function to be &, = r—z. .
Clearly this requires knowledge of the whole branch of equilibria within the
neighborhood of z., of interest, and, more severely, requires the control u to
depend on the parameter p. Even if z., can be determined accurately, if the
system has multiple equilibrium branches, i.e., there is at least one equilibrium
point z; , # ., the control above still does not preserve other branches such as
z, ,- These concerns motivate the employment of the outputs of washout filters

as the arguments of the control « [58, 59].
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3.3.3 Control of Hopf Bifurcations through Washout

Filters

In Eq. (3.10), for each system state variable z;, ¢ = 1,...,n, introduce a washout

filter governed by the dynamic equation

Z;=x; —d;2; (3.29)
along with the output equation

Y, = x; — d;z;. (3.30)

Here, the d; are positive parameters (this corresponds to using stable washout
filters). In this formulation, n washout filters, one for each system state, are
present. In fact, the actual number of washout filters used, and hence also the
resulting increase in system order, can usually be taken less than n.

The advantages of using washout filters in this way stem from the result-
ing properties of equilibrium preservation and automatic equilibrium (operating
point) following. For instance, if v = u(y) with u(0) = 0 where y is a washout
filter output (3.30), clearly y vanishes at steady state. Hence the x components
of a closed loop equilibrium are identical with the corresponding components of

the open loop equilibrium. Also, since Eq. (3.30) can always be written as
Yy, = r; — d,'zi = (.’E,’ - -'L'ie,“) - di(zi - Zie,u)v (331)

the control function v = u(y) is guaranteed to center at the correct operating
point. Moreover it is shown in [59] that, at a Hopf bifurcation point, the extended
system (3.10) and (3.29) has the same stability coefficient 8, as that of the

original system (3.10).
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It is well known that only the quadratic and cubic terms occurring in a
nonlinear system undergoing a Hopf bifurcation influence the value of 8;. Thus
only the linear, quadratic and cubic terms in an applied control u have potential
for influencing B;. Now assume any linear feedback, which may be used to modify
the critical parameter value p., is already reflected in the nominal system (3.10)

and (3.29). Then the feedback control u may be assumed to be of the form

u=y" Quy + Culy,¥,¥), (3.32)

where y is the vector of washout filter outputs y; = z; —d;z;, Q. is a real symmet-
ric n X n matrix and C, is a cubic form generated by a scalar-valued symmetric
trilinear form. Such a control law is independent of the equilibrium points, and,
because of its nonlinearity, preserves the linear stability characteristics of the
original system.

In the following, we only briefly summarize the results for the situation that
the critical eigenvalues of the linearized system at the equilibrium of interest are
controllable, which is the case for the convection loop dynamics to be considered
in the next section. That is, Iy # 0. As in Section 3.3.2, it is shown in [59] that
a cubic stabilization feedback exists. That is @, can be set to 0 in Eq. (3.32).
For simplicity, let the washout filter parameters d; all be given by a common
value, say d > 0. The closed-loop stability coefficient 8 of the overall system

(3.10), (3.29), (3.30) and (3.32) (with Q, = 0) is given by [59]:
B: = By + 2ReA, (3.33)

where f; is the stability coefficient of the original system (3.10) or the extended
system (3.10), (3.29) and A is given by

_ 3wl (we +4d)

A= @ +uy

Cu(r,r,7)ly. (3.34)
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where r, I, v, d and w, are as above. From this we see the control can be any
cubic function Cy(y,y, y) resulting in ReA sufficiently negative to ensure 85 < 0.
Such a control stabilizes the Hopf bifurcation point and the periodic solutions

emerging from the Hopf bifurcation point for a range of parameter values.

3.4 Bifurcation Control of Routes to Chaos in

Convection Dynamics

In this section, we employ the bifurcation control results above to determine
control laws for suppressing both the transient chaotic and chaotic motion of the
system (3.1)-(3.3). In the course of seeking control laws for suppression of chaos,
we shall also employ feedback to achieve other, subsidiary goals. For instance, in
the next subsection we consider use of feedback to delay to higher values of the
Rayleigh number the occurrence of the Hopf bifurcations from the convective
equilibria Cx. This addresses a question which arises rather naturally in the
context of using feedback to modify the phase portrait of system (3.1)-(3.3) in
useful ways. The control laws developed for achieving this delay in Hopf bifur-
cation parameter values have a feature which occurs throughout this chapter:
they do not result in any change in the set of equilibria, even in the presence
of model uncertainty. This is achieved using dynamic feedback incorporating

washout filters, as proposed in [59], [58] and discussed in the foregoing section.

3.4.1 Delaying the Hopf Bifurcations

Recall that the convective equilibria Cy lose their stability at two Hopf bifurca-

tions occurring at R = 16. In this subsection, we give controllers which result
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in changing this critical value of R to some prescribed value. In practice, the
prescribed value would likely be greater than the nominal (open loop) value, so
as to result in an increase in the range of parameter values for which the system
exhibits stable steady motion.

Linearizing the model (3.1)-(3.3) at the upper equilibrium C. of Fig. 3.2, we
find that, for R = 16, the Jacobian matrix has a pair of imaginary eigenvalues
+iw, where w, = 4.47214 (recall that p = 4). Next we present a feedback control
scheme which allows one to modify the critical value of R at which the Hopf
bifurcations occur, and to do so without modifying the equilibria of (3.1)-(3.3).
The state variable z3 is readily observable.

A linear washout filter aided feedback with measurement of z3 is a dynamic

feedback described as follows. The closed loop system is given by

Ty = —pz1+ pxy, (3.35)
Ty = —T1T3— To, (3.36)
i3 = @@z —as— R+, (3.37)
Ty = x3—dzy, (3.38)

where z4 is the washout filter state, and where the control u is of the form
u = —ky, (3.39)
with y an output variable, given by
y := x3 — dzy4. (3.40)
Here, k; is a scalar (linear) feedback gain.
This control preserves the symmetry inherent in the model (3.1)-(3.3). Thus,

in discussing the effects of the controller above, remarks specific to the upper

equilibrium branch €, apply also to the lower branch C_.
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Figure 3.5: Two-parameter curve of Hopf bifurcation points for linear ‘delaying’

control

The control above is a dynamic feedback control. By adjusting the linear
control gain k; one can delay the Hopf bifurcations to occur at any desired
parameter value. The relationship between the critical parameter value R and
the control gain k; can be determined by finding the conditions under which the
Jacobian of the overall system (3.35) - (3.40) possesses a pair of pure imaginary

eigenvalues. This relationship translates to the conditions

(Rd — 2p + 2Rp + dp)?

+ (24 d+ k + p)*(—2dp + 2Rdp)

—(2+d+ki+p)(Rd—2p+2Rp

+dp)(R+2d+ ki +p+dp+kip) =0, (3.41)
ki+p+d+2>0, and R> 1 (3.42)

In the case p = 4.0 and d = 0.5, these conditions are tantamount to the
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restriction

—15<k <2 (3.43)

on the gain k;. To delay occurrence of the Hopf bifurcations, however, one must
further restrict k; to be positive. Indeed, negative values of k; in the interval
—1.5 < k < 2 result in moving the Hopf bifurcations to smaller values of R.
Figure 3.5 shows the 2-parameter (k; and R) curve of the Hopf bifurcation points,
i.e., the relationship between k; and critical parameter value R. Figures 3.6(a)
and 3.6(b) depict the bifurcation diagrams for the closed loop system with (a)
ki = 0.182538 and (b) k = —0.234191, respectively. In Figure 3.6(a), the Hopf
bifurcations are delayed to R = 21, while in Figure 3.6(b), the Hopf bifurcations
are moved ahead to R = 11.

The foregoing discussion has resulted in linear, dynamic feedback control
laws which can be tuned to result in moving the Hopf bifurcation points to any
desired value of R > 1. These control laws also ensure asymptotic stability of the
convective equilibria for all values of R up to the desired critical value. Despite
this positive conclusion, the closed loop system incorporating the control laws
given above still exhibits chaotic and transient chaotic behavior. This chaotic
behavior is delayed to greater values of R if 0 < k; < 2, and moved ahead to
lesser values if —1.5 < k; < 0.

From the discussion above it is clear that linear feedback can stabilize the
convective equilibria for arbitrary ranges of the parameter. Also as shown below,
further increases in the control gain result in the annihilation of the Hopf bifur-
cations. These, however, do not imply that such a feedback can suppress chaos
in the system. The transient chaos and chaos which occur due to the presence

of homoclinic orbits in the open loop system can be suppressed by this type
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of linear dynamic feedback with a higher feedback gain. Specifically, for gains
ki > 2 and for p = 4,d = 0.5, it can be shown that both the upper and lower
convective equilibria are rendered asymptotically stable, and that the system no
longer exhibits chaos or transient chaos that arise through the homoclinic orbits
and loss of stability of the convective equilibria. However, the chaotic motion in
the open loop system which results from period doubling cascades persists for
the closed loop system with linear feedback. Moreover, for large values of R (e.g.
R > 275), besides the two stable convective equilibria as attractors, there are
large amplitude stable period orbits.

We proceed to investigate two alternatives to linear feedback of the type
considered above. First, a nonlinear feedback control law can be designed to
stabilize the Hopf bifurcations and introduce a small amplitude stable limit cycle
which surrounds the equilibrium for parameter values at which it is unstable.
Second, one can employ a combined linear-plus-nonlinear feedback to suppress
chaos in the closed loop system. The linear part of the feedback is tuned to
delay the Hopf bifurcations to a desired value of R, and the nonlinear part of
the feedback is chosen to stabilize the Hopf bifurcations occurring in the closed
loop system. The linear-plus-nonlinear feedback control alternative is the more
versatile of these.

Before proceeding to issues of nonlinear control design, we remark that the
control introduced in the foregoing does not affect the stability of the nominal
equilibrium branch, (0,0, —R,—R/d). This is easy to prove by examining the

associated characteristic polynomial

Do(s) = s*+2+d+k+p)s®+(14+2d+ ki +2p+dp+ kip— pR)s?

+(d+p+2dp + kip — pR — dpR — kipR)s + dp — dpR.  (3.44)
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Clearly for R > 1, Do(s) is not a Hurwitz polynomial, i.e., (0,0, —R, ~R/d) is

unstable for R > 1. This is the same as in the open loop case.

3.4.2 Stabilizing the Hopf Bifurcations

Suppose a dynamic linear feedback has been introduced as in the foregoing sub-
section, resulting in positioning the Hopf bifurcations to a desired value of R.
One result of such a control is to affect the bifurcated periodic solutions which
emerge at the two Hopf bifurcations. Recall that these bifurcations are sub-
critical for the open loop system (see Fig. 3.2). The subcriticality of the Hopf
bifurcations is crucial to the appearance of transient chaos and chaos in the
model for various values of R. Thus the question arises as to whether or not
the feedback controller of the previous subsection can be modified to result in
stabilization of the Hopf bifurcations. Next, we summarize some positive results
in this direction.

From formulae (3.33) and (3.34) it can be seen that any cubic function
Cu(y,y,y) such that ReA is sufficiently negative to ensure 3; < 0 will serve to
stabilize the Hopf bifurcations. In other words, there is a family of stabilizing,
purely cubic nonlinear controllers. We now choose the simplest such stabilizing
control law. The closed loop system again takes the form (3.35)-(3.40), except

that now the controller is

u = —k,y°. (3.45)

Here, k, is the nonlinear feedback gain.
Again this control preserves the symmetry inherent in the model (3.1)-(3.3).
Thus, in discussing the effects of the controller above, remarks specific to the

Hopf bifurcation associated with the upper equilibrium branch C, apply also to
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that of the lower branch C_.

To illustrate the utility of such a nonlinear control law, we state a simple
result obtained using formulae (3.33) and (3.34) for B; in the case p = 4.0 and
d=0.5:

B3 = B2 — 2.42505k,,. (3.46)

The open loop quantity f; can be computed using either a known algorithm
(e.g., [2]) or the software package BIFOR2 [47]. Using BIFOR2 we obtain
B2 = 0.02027 £ 0.001087. Thus, any choice of control law (3.45) with &, > 0.009
stabilizes the Hopf bifurcations occurring at R = 16. This is a local result. To
assess the degree to which this is reflected in the global dynamics of the system,
one resorts to extensive computation. Figure 3.7 shows the bifurcation diagram
for the closed loop system with &k, = 0.009. Solid circles indicate stable limit
cycles. The maximum amplitude of a stable limit cycle is given by a solid cir-
cle. The periodic orbits emerging from the Hopf bifurcation points themselves
undergo further bifurcations. In the closed loop system, the stable periodic or-
bits emerging from the Hopf bifurcation points lose stability through cyclic fold
bifurcations (CFB) [97]. The resulting unstable periodic orbits regain their sta-
bility at the secondary Hopf bifurcations (or Hopf bifurcations involving periodic
orbits). In the interval between the cyclic fold and secondary Hopf bifurcations,
the Ruelle-Takens route to chaos from the secondary Hopf bifurcations takes
place. Simulations suggest that for k, = 0.009, this interval in parameter space
is the only range of parameter values where chaos is present. Simulations along
with application of the bifurcation analysis tool AUTO [35] indicate that slightly
larger values of the gain k, result not only in annihilation of the Ruelle-Takens

route to chaos, but also in a reduced amplitude of the stable limit cycles. This
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Figure 3.7: Bifurcation diagram for nonlinear ‘stabilizing’ control with k, =

0.009

is illustrated in Figure 3.8, which shows superimposed bifurcation diagrams for
the closed loop system with various control gains k,. Figure 3.9 shows a typical
system trajectory for the closed-loop system with k, = 2.5 at R = 19.

With this type of control, transient chaos is successfully suppressed, and the
previous chaotic trajectories are replaced by small amplitude stable limit cycles
near the convective equilibria. Moreover, extensive simulations demonstrate that
the periodic orbit windows cease to exist, as does the chaos arising from the
period doubling bifurcations associated with these windows.

We conclude this subsection with a few comments on the Ruelle-Takens route
to chaos and our proposed control. By taking the control gain k, near 0.009,
we in fact transfer the chaos scenario associated with the original system to a
new one, namely, the Ruelle-Takens route to chaos. More significantly, slight

increases in k, result in annihilation of this route to chaos. Thus, the proposed
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Figure 3.8: Superimposed bifurcation diagrams for nonlinear ‘stabilizing’ control

with different control gains k,: a. 0.009, b. 0.025, c¢. 0.1, d. 2.5

control may also be a candidate for the control of the Ruelle-Takens route to
chaos in systems with dimension greater than three. The effect of transferring

between different chaos scenarios is also an interesting subject.

3.4.3 Delaying and Stabilizing the Hopf Bifurcations

As shown in the previous subsections, a linear feedback control can be used to
delay the Hopf bifurcations and a nonlinear one can be employed to stabilize
the Hopf bifurcations. The linear feedback control is only effective to a limited
extent in suppressing chaos. The nonlinear control, on the other hand, is very
effective in suppressing chaos without affecting the linear stability of the original
system. However, the linear feedback does increase the stability margin of the
steady convective equilibria. Thus a natural extension to the control laws above

is a combined linear-plus-nonlinear feedback control. The linear part of the
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Figure 3.9: A trajectory of closed loop system under nonlinear ‘stabilizing’ con-

trol with &k, = 2.5 for R =19

feedback is chosen to delay the Hopf bifurcations to a desired value of R, and
the nonlinear part of the feedback is chosen to stabilize the Hopf bifurcations
occurring in the closed loop system. Again choosing the simplest such control
laws, the closed loop system takes the form (3.35)-(3.40), except that now the

controller is

u=—ky — k,y>. (3.47)

The control can be designed in two stages. In the first stage, adjustment of
k; is used to delay the parameter value at which the Hopf bifurcations occur to
an acceptable value. In the second stage, k, is adjusted to stabilize the Hopf
bifurcation points and the bifurcated periodic solutions resulting from the Hopf
bifurcations. Figure 3.10 shows a bifurcation diagram of the closed loop sys-
tem with one such linear-plus-nonlinear feedback control. Note that the control

law (3.47) effects both a delay in the occurrence of the Hopf bifurcations, and
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Figure 3.10: Bifurcation diagram for linear-plus-nonlinear control with &k =

0.182538 and k, = 2.5

stabilization of these bifurcations.

With this type of control, both transient chaos and chaos are successfully
suppressed. The linear component in the control allows one to have control of
the stability margin of the steady convective equilibria. The nonlinear term in
the control not only stabilizes the Hopf bifurcations but also removes the periodic
orbits windows. Thus one expects a significantly improved transient response of
the system than that achieved using linear feedback alone.

So far all the proposed control approaches preserve the “symmetry” of the
system because of the way the control is introduced. Only the asymmetric
component z3 of the states is used in constructing washout filters and con-
trollers. This results in identical control action for the upper and lower equi-
librium branches. The two Hopf bifurcations (upper branch and lower branch

respectively) are relocated and/or stabilized in unison and the resulting stable
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convective equilibria and/or the stable limit cycles coexist, each with its respec-
tive basin.

Surely these approaches are very effective to relocate or suppress chaos, but
for a given initial condition it is not very clear beforehand to which convective
equilibrium or limit cycle the trajectory converges. It may be desirable not only
to suppress chaos but also to be able to direct a trajectory to the neighborhood of
a specified equilibrium. This motivates the design of another class of controllers,
which imparts preference for one equilibrium over another. This is the subject

of the next subsection.

3.4.4 Targeting Control

We now carry out the design of control laws to “target” a particular equilibrium
of the system. That is, other equilibria or periodic orbits surrounding them are
rendered unstable, while the target equilibrium, or a periodic orbit surrounding
it, is stabilized. This is achieved by using the readily observable symmetric com-
ponent z, of the state vector in constructing the controllers. A linear feedback
is employed to increase the stability margin of one convective equilibrium and
at the same time to decrease that of another convective equilibrium. A pure
nonlinear feedback, on the other hand, is designed to stabilize the Hopf bifurca-
tion of one equilibrium branch, leaving the linear stability of the original system
and the stability of the other Hopf bifurcation unchanged. As in the case of the
symmetry preserving control laws in the previous subsections, one can employ a
combined linear-plus-nonlinear feedback approach to achieve other more flexible

types of stability.

Targeting an Equilibrium Recall that the convective equilibria Cy4 lose their
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stability at Hopf bifurcations occurring at R = 16. In Section 3.4.1, a linear
feedback control is employed to modify the critical value of R at which both the
Hopf bifurcations occur. Here, we give controllers which result in changing the
critical value of R to two different values for the C; branch and the C_ branch
respectively. In other words, while the critical value of R at which the Hopf
bifurcation associated with the Cy (C-) branch occurs is modified to a larger
value of R, the critical value of R associated with the C_ (C ) branch is modified
to a lesser value of R. In doing so, the stability margin of one equilibrium is
increased while that of the other is decreased. Hence, one equilibrium is preferred
to the other (“targeted”).

A linear washout filter aided feedback with measurement of z; is a dynamic

feedback. The state variable z, is readily measurable. The closed loop system

is given by
Ty = —px1+ pxa, (3.48)
Ty = =—T1T3 — I, (3.49)
533 = I1T9 — I3 — R + u, (350)
¢4 = T9— dIE4, (351)

where the x4 is the washout filter state, and where the control u takes the form
u = kiy, (3.52)

with y an output variable, given by
Y= Ty — dzy. (3.53)

Here, k; is a scalar (linear) feedback gain.
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Figure 3.11: Two-parameter curves of Hopf bifurcation points for linear ‘target-

ing’ control

The control does not preserve the symmetry inherent in the model (3.1)-(3.3),
though it does preserve the (symmetric) equilibrium structure of (3.1)-(3.3).
However, the closed loop system (3.48)-(3.53) possesses symmetry involving the
control gain k;. That is, replacing (z1, 23, T3, z4) and k; with (=1, —22, T3, —24)
and —k;, respectively, results in the same set of equations. Thus, the sign of
k; alone determines which equilibrium is stabilized. The effect of positive k; on
the system is opposite to that of negative of k;. This can also be seen from the
characteristic polynomials evaluated at Cy and C_. For positive (negative) k;
the stability margin of C (C-) is increased in the parameter space and that of
C- (C4) is decreased.

Figure 3.11 illustrates the 2-parameter (k; and R) curves of the Hopf bifur-
cation points, i.e., the relationship between k; and the critical values of R at

which the Hopf bifurcations occur. Figure 3.12 shows a bifurcation diagram of
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the closed loop system for k; = 2.5. It can be seen that C, is rendered sta-
ble up to R = 36.0043, and C_ is unstable for R > 1.08538. In the interval
1.08538 < R < 36.0043 , C is stable and C_ is unstable. Hence typical system
trajectories converge to Cy. Also note that the Hopf bifurcation at R = 36.0043
is still subcritical, while the Hopf bifurcation at R = 1.08538 is rendered super-
critical. Switching the sign of ki, say, ky = —2.5, the situation is reversed: C_
is rendered stable in the same interval. So by reversing the sign of k; one can
switch the asymptotic behavior of the system from one equilibrium to another.

The relationship between k; and the critical values of R at which the Hopf

bifurcations occur is quantified by the conditions

(=2p+dp + kipvV/R — 1+ dR + 2pR)? + (2dpR — 2dp)(2 + d + p)*
~(2d+p+dp+kivR—1+ R)(—2p+dp

+kpVR—1+dR+2pR)(2+d+p) =0, (3.54)
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—2p+dp+kp/yR—1+dR+2pR>0, and R>1. (3.55)

Simulation evidence suggests that for some choices of k; there are further bi-
furcations involving periodic orbits even for moderate values of R. (Recall that
the open loop system as well as the closed loop with a linear feedback delaying
Hopf bifurcations also experience bifurcations involving periodic orbits for some
larger values of R.) However, simulations also suggest that for |k| < 2.5, such
bifurcations are unlikely to occur. This in turn limits the ability of the proposed
control to modify the critical values of R, therefore the ability to affect the stabil-
ity margin of Cx. One way to accommodate this limitation is to apply a control
strategy that combines the Hopf bifurcation delaying control and the targeting
control discussed here. The presence of these ‘unwelcome’ bifurcations of pe-
riodic orbits signals the need for caution in applying linear control. Moreover,
the closed loop system incorporating the control laws given above still exhibits
chaotic and transient chaotic behavior. This chaotic (and transient chaotic) be-
havior is delayed to greater values of R. Also the chaotic (and transient chaotic)
trajectories tend to spend more time around the preferred equilibrium. Next, we
present a nonlinear feedback control which not only suppresses chaos but also
targets a periodic orbit in the vicinity of a given equilibrium.

Before proceeding to issues of nonlinear control design, we again remark
that the control introduced in the foregoing does not affect the stability of the
nominal equilibrium branch, i.e., the (0,0, —R,0) branch. This is easy to verify

by examing the associated characteristic polynomial.

Targeting the Vicinity of an Equilibrium In Section 3.4.2 a nonlinear dy-
namic feedback is designed to stabilize the Hopf bifurcations and the resulting

closed loop system shows no chaotic behavior. In the previously chaotic region,
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two stable small amplitude periodic orbits coexist. Here we employ a similar
type of nonlinear feedback but with the goal of introducing only one of these
two periodic orbits. That is, one periodic orbit is rendered unstable, while a sta-
ble periodic orbit is introduced near the targeted equilibrium. This is achieved
by stabilizing the Hopf bifurcation of one equilibrium branch, while not affect-
ing the linear stability of the original system and the stability of the other Hopf
bifurcation.

Using the bifurcation control techniques of Section 3.3, one can again show
that there is a family of stabilizing, purely cubic nonlinear controllers. With the
simplest such control law, the closed loop system again takes the form (3.48)-

(3.53), except that now the controller is
u = kyy°. (3.56)

Here, as before, k, denotes a scalar (nonlinear) feedback gain.
Applying the Hopf bifurcation formulae (3.33) and (3.34) to the Hopf bifur-

cation associated with C; at R = 16, we find

B3 = B2 — 0.35291k,. (3.57)
For the Hopf bifurcation associated with C_, we have

B; = B2 +0.35291k,. (3.58)

Recall that 8, = 0.02027 4 0.001087.

Again one can see that the sign of k, can be used for switching between
the equilibria (actually, between periodic orbits in their vicinity). Also for
k, > 0.06233, the control u = k,y> is a stabilizing control for the Hopf bifurca-

tion associated with C4. For £, < —0.06233 the control u stabilizes the Hopf
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Figure 3.13: Bifurcation diagram for nonlinear ‘targeting’ control with k, = 2.5

bifurcation associated with C_. By changing the sign of k, one can switch the
asymptotic behavior of the system from one periodic orbit to another. These are
local results. Bifurcation analysis and simulation evidence indicate that larger
values of |k, | increase the stability margin in parameter space and also ensure a
smaller amplitude of the periodic orbits. Figure 3.13 shows a bifurcation diagram
of the closed loop system with &k, = 2.5. Note that the Hopf bifurcation point as
well as the bifurcated periodic solutions associated with C; are stabilized while
those associated with C_ are rendered unstable.

From a stability point of view, this approach results in the system preferring
one periodic orbit to another. However, simulations show that though chaos is
no longer present, the domain of attraction of the preferred (targeted) periodic
orbit is not the whole space. Although one might hope that generally trajectories
of the closed loop system converge to the preferred period orbit (the only attrac-

tor), simulations indicate that some trajectories diverge to infinity. The stable
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manifold of the nominal saddle equilibrium separates the domains of attraction
for the target periodic orbit and infinity. In the closed loop system, even the
stable convective equilibrium for which the associated Hopf bifurcation is still
subcritical has its domain of attraction significantly reduced as compared with
the case for the open loop system. These undesirable effects can, fortunately, be
circumvented by the scheme described next. This scheme is basically the same
as that used in [77], except that in [77] linearization and pole placement are
employed.

Define a neighborhood D(Cy,€) around C4 or C_. The neighborhood D can
be of any shape, e.g., a ball. Denote ¢ the minimum distance from the points
on the boundary of D to Ci. The size of D can be changed by adjusting e.
Now suppose the target periodic orbit is near Cy, i.e., the objective is such
that for almost all initial conditions in the basin of the chaotic attractor, the
dynamics of the system converges to the desired periodic orbit surrounding C,.
Continue to use the nonlinear control function (3.56). However, activate the
control only if a trajectory from any given initial condition reaches D. Usually
the trajectory is locked onto the desired attractor. In case the trajectory does
wonder away from D, then deactivate the control and wait for the trajectory
to enter D again. The ergodic nature of the chaotic dynamics ensures that the
state trajectory eventually enters into this neighborhood. A typical trajectory
experiences a chaotic transient. This may prove to be undesirable in some cases.
Again, by switching the control, i.e., the sign of k, we can switch the system
dynamics from one periodic orbit to another.

Let us conclude this section with some remarks on the relationship among

the various controllers presented. First, note that linear feedback and nonlinear
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feedback are presented separately in this subsection. However, they may be
combined to yield a controller of the form u = ky + k,y® which introduces
further freedom in the achievable dynamical structure of the system and its limit
sets. Moreover, one can also combine the targeting control results of the current
subsection with control laws for delaying bifurcations and those for stabilizing
bifurcations presented in previous subsections. In general, these control laws
illustrate how the bifurcation control approach may be employed to yield various
stability goals related to the bifurcations displayed by a given system, without

modifying its equilibrium structure.

3.5 Concluding Remarks

Using bifurcation control ideas, control laws have been systematically designed
for the suppression of both transient chaotic and chaotic motion in a thermal
convection system model. The control laws exactly preserve all the equilibrium
branches of the system, and can be designed to simultaneously stabilize both
convective equilibrium branches. This stabilization can take one of two forms.
One can literally stabilize the equilibria using linear dynamic feedback. But
the closed loop system can still exhibit transient chaotic and chaotic motion for
some value (larger) of the Rayleigh number R due to bifurcations of periodic
orbits. Alternatively, it is possible to re-locate the Hopf bifurcations to occur
at higher values of the Rayleigh number R, and then employ nonlinear control
to ensure stability of these bifurcations. In this way, a small amplitude stable
limit cycle is introduced which surrounds the equilibrium for parameter values

at which it is unstable. Simulations show that this control scheme is effective
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in suppressing chaos for any parameter range. For some parameter ranges the
choice between linear feedback and linear-plus-nonlinear feedback depends on
several factors, including degree of confidence in the model and available net
gain. However, both types of feedback are related in their structure, especially
in their incorporation of washout filters and preservation of model symmetry.
Other controllers are also designed so that in addition to the goal of taming
chaos, one can “target” a particular equilibrium or its vicinity. That is, other
equilibria or periodic orbits are rendered unstable, while the target equilibrium
or periodic orbit is stabilized. By changing the signs of the controllers, one can
switch the asymptotic behavior of the system from one equilibrium or periodic
orbit to another.

Although this chapter has focused on a particular model with a particular set
of bifurcations, the approach itself may be viewed in the following general terms.
Design of feedback control laws directed at primary bifurcations in a succession
of bifurcations leading to chaos is a viable technique for the taming of chaos.
Chaos can be suppressed, relocated in parameter and state space, and its type
may be changed. Moreover, this can be achieved in a robust fashion, maintaining
the positions of system equilibria even in the presence of model uncertainty. The
resulting controllers do not depend on the bifurcation parameter and are effective

over a range of parameter values.
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Chapter 4

Stabilization of Period Doubling
Bifurcations and Implications for

Control of Chaos

The stabilization of period doubling bifurcations for discrete-time nonlinear sys-
tems is investigated. Both static and dynamic feedback controllers are studied.
It is shown that generically such bifurcations can be stabilized using smooth
feedback, even if the linearized system is uncontrollable at criticality. In the
course of the analysis, expressions are derived for bifurcation stability coeffi-
cients of general n-dimensional systems undergoing period doubling bifurcation.
A connection is determined between control of the amplitude of a period doubled
orbit and the elimination of a period doubling cascade to chaos. For illustration,

the results are applied to the Hénon system.
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4.1 Introduction

There are many examples of dynamical system models which undergo a cascade
of period doubling bifurcations, resulting in chaotic motion [97], [46]. The sce-
nario involves a dynamical system depending on a real parameter . For a range
of values of this parameter, the system possesses a periodic orbit. For a certain,
critical value of p, the periodic orbit undergoes a period doubling bifurcation.
This means that another periodic orbit, initially of exactly twice the period of
the given orbit, emerges from the original orbit. The bifurcated orbit then un-
dergoes another period doubling bifurcation. This sequence of period doublings
continues in a cascade, resulting in a chaotic invariant set. This chaotic invariant
set is often also a strange attractor, i.e., it is asymptotically stable, in which case
the system can be expected to display chaotic motion.

The purpose of this chapter is to give a technique for the design of feedback
control laws which allow one to control the degree of stability, and the ampli-
tude, of a given period doubled orbit. We prove that if this degree of stability
can be made sufficiently large, then the cascade of period doublings to chaos is
eliminated. We employ notation analogous to our previous work on local sta-
bilization of bifurcations from equilibria of differential systems [2], [3]. We also
consider the possibility of robustly stabilizing period doubling bifurcations and
the associated route to chaos, in a sense analogous to that of Chapter 3. That
is, the control is designed using a dynamic state feedback which ensures that low
frequency orbits of the system are retained in the closed loop system, with only
the transient dynamics and higher frequency orbits modified. In Chapter 3, this
is accomplished using washout filters in the feedback. Here, a similar technique

is found to be useful.
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To facilitate the design of stabilizing feedback for period doubling bifurca-
tions, we seek general yet simple formulae for determining the stability charac-
teristics of period doubling bifurcations. Previous results have been obtained
using center manifold reduction and coordinate transformations. For example,
the paper [80] uses such methods in the calculation of stability characteristics
of period doubling bifurcations. This approach results in calculations which are
not readily useful as a basis for stabilizing control design. The general bifurca-
tion calculations presented in this chapter form the basis for our control design
results. The results are then applied to the period doubling route to chaos in
the Hénon system. The control law used in that example preserves all system

equilibria even in the face of model uncertainty.

4.2 Bifurcation Formulae for Period Doubling
Consider a discrete-time nonlinear system

Terr = ful@i) (4.1)

where z; € R"™ for each integer k, and p € R is the bifurcation parameter.
Suppose that the origin is an equilibrium point of (4.1) for u = 0, i.e., fo(0) = 0.
Since p is a real parameter, there are three generic bifurcations for (4.1). These
are the the fold bifurcation, the period doubling bifurcation, and the Neimark-
Sacker-Moser bifurcation.

In this work, we focus on the period doubling bifurcation. In designing
stabilizing control laws for the period doubling bifurcation, it is useful to have a
framework for the analysis of these bifurcations and, specifically, their stability.

We pursue such a framework next. The approach used below and the formulae we
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obtain do not involve transformations of variable or center manifold reduction,
and are applicable directly to system (4.1). This approach is an instance of the
Projection Method [53].

Expanding the map of (4.1) in a Taylor series, we have

To determine conditions for a period doubling bifurcation, consider without loss
of generality the case in which (4.1) possesses a period-1 orbit (fixed point) at
the origin for y = 0. We seek conditions under 'which a period-2 orbit bifurcates
fromz =0 at = 0.

The hypotheses associated with the occurrence of a period doubling bifur-
cation for Eq. (4.1) from the period-1 orbit 0 are as follows. Let an eigenvalue

A1(p) of the linearization of (4.1) be such that:
)‘1(0) =-1,
and |[X(0)] <1 for :=2,...,n.

Let £ := the left eigenvector of A associated with the eigenvalue —1, and r :=
the right eigenvector of A associated with the eigenvalue —1.
Period doubling bifurcation from the period-1 orbit 0 can now be analyzed.

First, repeating (4.1), we have
zre1 = A(p)zk + Q(zk, 2x) + Czky Thy Tk) + - - - (4.3)
Next, applying the recursion above to z;,;, we have

Thez = A'(w)ae + A(W)Q(zk, zi) + A()C Tk, Th, Ta) + - .
+Q(A(W)zr + Qz,x) + ..y Alp)zi + Q(zx,zi) +-.)

+CO(A(p)Tr + Q(Th, Xk) + ooy ooy o)+
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A period-2 orbit z, if one exists, must satisfy

0 = (4% ) - Dz + A(p)Q(z,z) + A(W)C(z,z,2) + ...
—I—Q(A(;L)JJ-FQ(:U,I‘)%-..., A(p)x—i—Q(ac,x)—}-...)
+C(A(p)e + Q(z,z)+ ..oy oovy o)+ .0

= A(p)z+ Q(z,z) + C(z,z,z) +...

Alp) = A*(p) -1
Qz,z) = A(0)Q(z,z)+ Q(A(0)z, A(0)z)
C(z,z,z) = A(0)C(z,z,z)+2Q(A(0)z, Q(z,z)) + C(A(0)z, A(0)z, A(0)x)

we have

= (A%0) = D)r =0, €(A%0)—1)=0

Thus, A(0) possesses a zero eigenvalue, which is seen also to be simple, by the
Spectral Mapping Theorem. Also by this theorem we find that E%AI(A(;L))I 4=0
is nonzero if (—i%)\l(A(ﬂ))|“=o # 0. This latter condition is therefore taken as a
further condition for period doubling bifurcation, and, together with the previous
conditions, the foregoing is a sketch of a proof for a theorem on period doubling
bifurcation.

We have shown, by reducing the problem to one of standard stationary bi-
furcation analysis, that the system (4.1) possesses a nontrivial period doubled

orbit x(¢) emanating from x = 0 for ¢ = p(c) near 0.
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To determine the stability of the period doubled orbit, we obtain formulae
for bifurcation stability coefficients. These are simply coefficients in the Taylor
expansions in an amplitude parameter € of the critical eigenvalue of the period

doubled orbit. Let this eigenvalue be given by

B(e) = Pre + fae’ + - -- (4.4)

Then, using formulae obtained in [3] for stationary bifurcation stability coeffi-

cients, we find:

p = Q(r,r)
= LA(0)Q(r,r) + Q(A(0)r, A(0)r)]
= —Q(r,7) + (Q(—r, —7)
= —LQ(r,r) +£Q(r,7)
= 0.

Thus, #; = 0. As for 3;, we have:
Br = 2(C(r,r,r) = 20(r, A"Q(r,7))] (4.5)

Here

A- = (ATA4(Tp)1AT

This analysis shows that #; = 0 and that, generically 3, # 0. Hence, we have
that if A;(0) = —1, A{(0) # 0, B2 # 0, then there is a pitchfork bifurcation for
the sped-up system, giving two period-2 orbits occurring either supercritically
or subcritically. For the original system, this means there is a single period dou-

bled orbit occurring either supercritically or subcritically. Whether the period
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doubled orbit is supercritical or subcritical is determined by the sign of ;. The
period doubled orbit is supercritical if §; < 0 but is subcritical if 8 > 0. The

next hypothesis is invoked in the theorem below.

(P) The map f of Eq. (4.1) is sufficiently smooth and has a fixed point at
z = 0 for all u. The linearization of (4.1) possess an eigenvalue A;(x) with
A1(0) = —1 and Aj(0) # 0. All remaining eigenvalues have magnitude less

than unity.

Theorem 4.1 (Period Doubling Bifurcation Theorem) If (P) holds, then a pe-
riod doubled orbit bifurcates from the origin at p = 0. The period doubled orbit

is supercritical and stable if By < 0 but is subcritical and unstable if B, > 0.

The computations above can be carried out readily for nonlinear systems of
any finite order, given in discrete-time form. Another approach (see, e.g., [45])
uses center manifold reduction and focuses on the one-dimensional case. Next we
establish a connection between the results obtained above and following theorem

quoted from Guckenheimer and Holmes [45, Theorem 3.5.1].

Theorem 4.2 [45, Theorem 3.5.1] Let f, : IR — IR be a one-parameter family

of mappings such that f,, has a fized point xo with eigenvalue —1. Assume

of 02 0? af 0? 0 o*f

= Ou 0
o= (L) (L)) 0 o

Then there is a smooth curve of fized points of f, passing through (zo, pto), the

stability of which changes at (zo,po). There is also a smooth curve  passing
through (zo, o) so that v — {(zo, p0)} is a union of hyperbolic period 2 orbits.

The curve v has quadratic tangency with the line IR x {0} at (<o, fto).
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Here the quantity (F1) is the u-derivative of df,/dz along the curve of fixed
points. In (F2) the sign of a determines the stability and direction of bifurcation
of the orbits of period 2. If a is positive, the orbits are stable; if a is negative
they are unstale.

Applying Theorem 4.1 and formula (4.5) to f, for the one dimensional case,
it is easy to see that condition ;" # 0 in hypothesis (P) is precisely condition

(F1) in Theorem 4.2. Moreover, it is not difficult to verify that

ﬂz = —2a

Thus, the computations and results obtained in this section for period doubling
bifurcation in n-dimensional systems specialize to familiar calculations for the

one-dimensional case.

4.3 Control of Period Doubling Bifurcation

We now consider the control of a period doubling bifurcation. Suppose we are

given a discrete-time one-parameter family of nonlinear systems

Tepr = fu(zr, ) (4.6)

where z; € IR" for each integer k, u is a scalar control input, ¢ € R is the
bifurcation parameter, and the vector field f, is sufficiently smooth. In the

sequel the system
Try1 = fo(il'lm U) (4-7)

which is simply (4.6) with g = 0, will also be of interest.
The goal of this section is develop control laws u(zx) which stabilize a period

doubling bifurcation occurring in (4.6). By stabilizing the bifurcation, regular
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behavior can often be ensured over a wide range of parameter values. Note
that we allow arbitrary dependence of the system equations on the control w.
However, in some applications, it happens that the system equations involve the
parameter y and the control u only through the sum u + u. In such cases, one
naturally asks if it is instead possible to select a parameter value i for which
the system is stable, and simply take the control to be a constant which adjusts
for changes in the value of p. A serious argument against such an approach is
that it would require precise knowledge of the current value of the parameter
p and of the system dynamics (4.6). In practice, we are often confronted with
uncertain models. By instead employing a feedback control of the type we seek
here, a degree of robustness to model uncertainty is achieved. Moreover, the
control energy spent in the feedback control methodology is small for initial
conditions near the desired fixed point or periodic orbit, while the adjust-as-
you-go approach would involve large control effort even for small excursions
from the desired solution.

The following hypothesis is invoked in the synthesis of feedback controls
u = u(zy) achieving certain stability properties for each of the descriptions (4.6)

and (4.7).

P’) Eq. (4.6) has a period-1 orbit at the origin when v = 0. Furthermore, the
8

linearization of the uncontrolled version of (4.6) at x = 0 possesses a simple

eigenvalue Ay (x) with A1(0) = —1, M (0) # 0. The remaining eigenvalues

A2(0),...,2,(0) have magnitude less than unity.

By Theorem 4.1, hypothesis (P’) implies a period doubling bifurcation for
the uncontrolled version of Eq. (4.6). Two stabilization problems are addressed

by the results of this section. One of these pertains to Eq. (4.6) and the other
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to Eq. (4.7). For Eq. (4.6), the goal is to ensure local asymptotic stability and
sufficient stability margin of the bifurcated period doubled orbit. This will be
referred to as the local period doubling bifurcation control problem. For the de-
scription (4.7), the same control laws solve the local feedback stabilization problem
for the period-1 orbit 0.

Rewrite Eq. (4.6) by expanding the vector field in a Taylor series:

Ty = fu(xkv U)
= Azp + plyzi + ulizp + ub+ Q(z, k)
+1 Loag + pQ1(wr, 71) + uQr(ak, Ti)

+C(:L'k, Tk, xk) + ...
Take the control u to be of the form
u(zg) = x{quk + Cu(k, Tk, k)

where @, is a real symmetric n x n matrix and C,(z,z,z) is a cubic form gen-
erated by a scalar valued symmetric trilinear form Cy(z,y, ). Note that u(zy)
contains no constant terms or terms linear in z;. A constant term would phys-
ically represent a continuous expenditure of control energy. Also, the absence
of a linear term in the feedback ensures that the left and right eigenvectors cor-
responding to the critical eigenvalue —1 (also those of the zero eigenvalue of
the sped-up system), and the value of x at criticality, will be unaffected by the
feedback control. Further discussion on nonlinear vs. linear feedback control of
bifurcating systems can be found in [3]. It suffices to note here that this work
may be viewed as belonging to the general approach in which local calculations

are employed near equilibrium points to achieve the controls containing linear
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and nonlinear terms. The linear terms is used to modify the location of the bi-
furcation, while the nonlinear terms are used to modify the stability properties.
This general approach was also used in Chapter 3.

The closed loop dynamics with a feedback of this form are given as follows

(starred quantities below denote values after feedback):

Ttre1 = Azk+ Q*(xk, zk) + C*(zk, T4, TH)

+uLyzg + ptLazg + . ..

where

Q*(z,z) = (2TQuz)b+ Q(z,z)
C*(z,z,2) = Culz,y,2)b+ C(z,z,2) + (27 Quz) L1z

Symmetric bilinear and trilinear forms Q*(z,y), C*(z,y, z) generating the

quadratic and cubic forms Q*(z, z) and C*(z, z, z), respectively, are now chosen:

Q" (z,y) (z"Quy)b + Q(z,y)
C*(z,y,z) = Cu(z,y,2)b+C(z,y,2)

1 . 1 . 1 L
+3("Quu) iz + (5" Qua) Ly + 34" Quz) 1=

For the sped-up system after feedback,

A = A*—1]
Q*(z,y) = AQ*(z,y) + Q*(Az, Ay)

C*(z,y,2) = AC*(w,y,2)+2Q*(Az,Q*(y,2)) + C*(Az, Ay, Az)
Substituting Q*(z,y) and C*(z,y, z) into the expressions above gives

Q" (,y) = AG@TQu)b+ AQ(x,y) + ((Az)" Qu(Ay))b + Q(Az, Ay)
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C*(z,y,2) = AC.(z,y,2)b+ AC(z,y,2) + A(zTQuy) L,z
+2(A2)TQu((y" Quz)b + Q(y, 2))b
+2Q(Az, (y' Qu2)b + Q(y, 2))
+C.(Az, Ay, Az)b+ C(Az, Ay, Az) + ((Az)TQ.(Ay)) [1(Az)

To compute 8; and f; note that

Q(r,r) = (A+D(rTQur)b+(A+1)Q(r,r)
= Q(r,r)+ (A+ D)(r"Qur)b)
C*(r,r,r) = (A= DCu(r,r, b+ (A= DC(r,r,r) + A(rTQur) Lir
=2r7Qu((rTQur)b + Q(r,))b
=2Q(r, (r"Qur)b) = 2Q(r, Q(r, 1))
—(rTQur) LT
= C(r,r,r) + (A= DCu(r,r,r)b+ AGTQ,r)Lar
~2rTQu((rT Qur)b + Q(r,7))b
=2Q(r, (r"Qur)b) = (r" Qur) Lur
Thus after feedback, the coefficient §; becomes
B = 1Q*(rr)
= 1[Q(r,r) + (A+ D)(r"Qur)d]
= 1Q(r,r) + (=1 + )(r" Qur)b

= A/ +0

As for 8, we have:

g3 = 2(C*(r,ryr)) —2Q7(r, A=Q(ry1)))
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= B+ A (4.8)
where A is given by

A = —4lC,(r,r,r)b
—Al[(r"Qur)Lar + rTQu((rTQur)b + Q(r,7))b
+Q(r, (rTQur)b)]
+41[Q(r, A~(A + I)(rTQur)b)
+(rTQuA™((A+ D(r"Qur)b + (A+ 1)Q(r, 7)))b]
+4[Q(r, AA~ (A + I)(r7 Qur)b)

1T QuAA((A+ D(TQurb+ (A+ DR (49)

It remains to use Eq. (4.9) to find conditions under which B can be made
negative and of some desired magnitude. This will be achieved by determining
criteria under which A can be set to any desired value by feedback control. (See
the discussion following Theorem 4.4 below for elaboration of the importance of
|B2| to system behavior.)

The case Ib # 0 deserves special consideration, since from the Popov-Belevitch-
Hautus (PBH) eigenvector test for controllability of modes of linear time-invariant
systems [55], the critical mode is then controllable for the linearized system.
Hence a linear stabilizing feedback exists in this case. Interestingly, Eq. (4.9)
shows that if Ib # 0 a cubic stabilizing feedback also exists. To see this, simply
set Q, = 0 and consider the effect of the cubic terms in the feedback control.

The outcome is that since /A reduces to
A = —4C(r,r, )b (4.10)

and Cy(r,r, 1) can be assigned any real value by appropriate choice of the trilinear
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form Cy(z,y, z), the origin is certainly local stabilizable if Ib # 0.

Theorem 4.3 Suppose that hypothesis (P') is satisfied and that lb # 0. That
is, the critical eigenvalue is controllable for the linearized system. Then there is
a feedback u(zy) with w(0) = 0 which solves the local period doubling bifurcation
control problem for Eq. (4.6) and the local smooth feedback stabilization problem
for Eq. (4.7). Moreover, this can be accomplished with third order terms in u(z}),

leaving the critical eigenvalue unaffected.

Under the controllability assumption of Theorem 4.3, it is known that a
linear feedback exists which stabilizes the origin at criticality. It is therefore
natural to question the utility of results (such as Theorem 4.3) giving nonlinear
stabilizing feedback controls. There are indeed several reasons for using nonlinear
feedbacks, two of which are noted next. First, the effect of a linear feedback
control designed to stabilize the linearized version of the critical system (4.7) on
the one-parameter family of systems (4.6) may be difficult to determine. Indeed,
at least for small feedback gains, one can expect that the bifurcation will reappear
at a different value of the parameter p. The stability of this new bifurcation is
not easily determined. Hence, simply using a linear stabilizing feedback may be
unacceptable if the goal is to stabilize a bifurcation and not merely to stabilize an
equilibrium point for a fixed parameter value. Second, it should not be surprising
that in some situations a linear feedback which locally stabilizes an equilibrium
may result in globally unbounded behavior, whereas nonlinear feedbacks exist
which stabilize the equilibrium both locally and globally [3]. Hence, even if
stabilization, rather than bifurcation control, is the issue being studied, nonlinear

feedback controls can be superior.
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Next the case in which [b = 0 will be considered. By the PBH test, this
corresponds to the critical mode being uncontrollable for the linearized system.

Observe that the expression for A now simplifies to

A = —4TQ,r)Lyr — 4Q(r, (rTQ.r)b)
+41Q(r, A~ (A + D)(rTQ.r)b)

+4lQ(r, AA~(A+ )(rTQ,r)b) (4.11)

Introducing the parameter p := rT Q,r and recalling that Q is a bilinear form,

Eq. (4.11) becomes

A = —4p{lLir +1Q(r,b) — 1Q(r, A"(A+ I)b)

—1Q(r, AA~(A+ 1)D)}. (4.12)

The next result gives a sufficient condition for stabilizability in the case Ib = 0.
The derivation also indicates how a stabilizing feedback might be chosen. Simply
choose p of the proper sign (depending on the sign of the expression in (4.13))

and large enough magnitude.

Theorem 4.4 Suppose that hypothesis (P') is satisfied and that b = 0. Then
there is a feedback u(xy) with u(0) = 0 which solves the local period doubling bi-
furcation control problem for Eq. (4.6) and the local smooth feedback stabilization
problem for Eq.(4.7), provided that

0 # Ly +1Q(r,b) — 1Q(r, A"(A+ I)b)

—1Q(r, AA~(A + I)b). (4.13)

Period doubling bifurcation occurs when a periodic orbit loses stability. In

the period doubling route to chaos, period doubled orbits also lose stability with
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slight parameter variation. If the stability of one such period doubled orbit (or
the original fixed point) is enhanced sufficiently, then one would at the minimum
expect a delay in the next period doubling bifurcation. Moreover, one would
hope that guaranteeing a sufficient degree of stability for one period doubling
bifurcation in the route to chaos might eliminate the route to chaos altogether.

For systems (4.6), feedback control laws of the form u = u(z) are said to be
static or direct control laws. The control laws developed in this section are of this
type. Suppose that (4.6) is an approximate model of an actual system. In such a
case, a direct state feedback designed with reference to a particular equilibrium
will affect not only the stability of the equilibrium but possibly also the location
of this and other system equilibria. Also precise knowledge of the equilibrium of
interest is needed for not only the critical parameter value but also over a range
of parameter values. This in turn often means the control law will depend on
the system bifurcation parameter. Other, so-called dynamic feedback controllers
of a special form can be employed instead which guarantee preservation of all
system equilibria even under uncertainty. No accurate knowledge of the system
equilibria is required. Specifically, we are extending the preceding results em-
ploying dynamic feedback through so-called washout filters. The results, which
are presented in the next section, are similar in spirit to previous work of the
authors on control of bifurcations and chaos for continuous-time systems (e.g.,

[101], [58]).
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4.4 Control of Period Doubling Bifurcation

through Washout Filters

Next, we present results on control of period doubling bifurcation through “discrete-
time washout filters.”

Specifically, for z; in Eq. (4.6), the dynamics of the washout filters is given
as follows:

zkp1 = xp — (d = 1)z (4.14)

and the output function is defined as
Yk = T — dz, (4.15)

where 0 < d < 2 corresponds to using stable washout filters. In this formulation,
n washout filters, one for each system state, are present, although often fewer
washout filters suffice.

The decisive property of washout filters is that they reject steady-state inputs,

while passing transients inputs. To see this for (4.14)-(4.15), note at steady-state,
Tr = dz

the output yx = 0 (ref. Eq. (4.15)) and the steady-state input signal has been
washed out.

Now let the control input u be a function of yi, v = u(yx) with u(0) = 0.
Since y;, vanishes at steady-state, the z components of the closed loop equilibria
are identical with the corresponding components of the open loop equilibria.
Therefore, by incorporating washout filters in the feedback, the equilibria of the

system are preserved.
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As in Section 4.3, hypothesis (P’) is invoked in the synthesis of a feedback
control u = u(yx) for each of the descriptions (4.6) and (4.7). Again the local
period doubling bifurcation control problem for Eq. (4.6)) and the local feedback
stabilization problem for Eq. (4.7) are considered.

As before, rewrite Eq. (4.6) by expanding the map in a Taylor series:

Tky1 = fu(wk’ u)
= Az + plize + ulizi + ub + Q(zk, 1)
+12 Loz + pQi(zx, ) + uQi(zk, T

+C(zg, xpy Tk) + - - -

Denote

Tk
C 2=

2k
then the extended system (the system with washout filters appended) becomes

(barred quantities below indicate values reflecting inclusions of washout filters)

Gor = AG + pLyC + ulaCe + urb + Q(Cr, Gr)

+1*Lozy + Qu(Crs C) + @y (Ce, Gb)

+C(Cey Gy k) + - - (4.16)
Here,
_ A 0 _ b
= , b:= ,
I —(d-1)I 0
< L, 0 _ Th, T
Ll = ) Q(Ckack) = Q( * k) 3
0 0 0
- C(xg, g,
)= ’“O" o)
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Take the control u to be of the form

u = yi Quyk + CulYrs Y, Yi) (4.17)

where @), is a real symmetric n X n matrix and C, is a cubic form generated
by a scalar valued symmetric trilinear form C,(z,y, z). Writing Eq. (4.17) in ¢

coordinates, we have
u= Cl:cTQuCk -+ éu(Ck’ Ck, (k)

where

_ Qu —dQ.
Qu = )

—dQu szu

Cullh, Gk &) = Culzp — dzy, 7 — dzi, 33 — d2)
= Cu(.’l:k, T, :L'k) - 3dCu(IEk, Tk, Zk) + 3d2Cu(a:k, Zk, Zk)

—d3C'u(z;c, Zk, Zk).

In order to investigate the influence of washout filters on the stability coeffi-
cients f; and f,, the eigenvectors of the extended system are expressed in terms

of the eigenvectors of the original system, namely, r and I. We have that

To see this, note that

and
_ Ar —r B
Ar = = = ~—F
d—1 1
r—a" a-a’
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Thus I and 7 are the left and right eigenvectors of A associated with eigenvalue
—1. Note that
l.i=1.r=1.

It is easy to check that the coeflicient $; remains zero for the closed loop sys-
tem with washout filters. As for §;, following similar arguments as in Eqs. (4.8)

and (4.9), we have

B3 = 52 +A
where
By = 207, 7, 7) — 2Q(7, A Q(F, )]
with
A= A2
Q(¢,0) = AQ(¢, ) + QAL A¢)
C(¢,¢,¢) = AC((,¢,0) +2Q(A, Q(¢,0)) + C(AC, A¢, A¢)
- =T = A\ 1 =T
i = ( A+i’-"l) i

and A is given by

A = —4IC,(7,7,7)b
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To simplify the expression for 3;, we need the following lemmas. The idea is
to express the quantities of the extended system in terms of those of the original

system.

Lemma 4.5 The following matriz identity holds

= - “T= A\ -1 =T A—. 0
A= (A A+ZTJ) il -
A21 A22
where
Ay = ! (A= (d-1)DA- Ap = ——1
i VA A 2T ¢ —2d
and we use the rotation
A== (ATA4 1T 1AT
Proof
-r= | A= 0
(ATA + F‘z)
A21 A22
ATA+ (A= (d-1DDT(A—-(d-1)D) +171 (& -2d)(A—(d—1I)T
(d? — 2d)(A — (d = D)) (d? — 2d)2]
A- 0
—im (A= (d=- 1A~ ZiT
( (ATA+ITDA- (A—(d-DI)T
\ 0 (d* —2d)I
[ it (A= (d-1)ID)T

Q.E.D
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Lemma 4.6 The extended system (4.16) has the same open-loop stability coef-

ficient as the original system (4.6), that is,
Bz = B2

Proof

C(r,r,r)
( AC(r,r,r) —2Q(r,Q(r,r)) — C(r,r,T)

C(r,r,7)
( C(rryr)
C(r,r,1)
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Using Lemma 4.5, we have

P / i- r, T
A = A= 0 Q(r,r)
\A21 Az Q(r,7)

A=Q(r,r)
\ Am@(", r) + AnQ(r,r)

— Ar AA—Q(T',T)
+Q Ao .
(( =4 ) ( A=Q(r,r) = (d = 1)(AnQ(r,r) + AnQ(r, 7)) ))

_ | AQ(r, AQ(rr) + Q(Ar, AAZQ(r,T))
Q(r, A~Q(r,1))

A
_ 20,0) C(r,r,r) _9 AQ(r, A=Q(r,r)) + Q(Ar, AA=Q(r,T))
C(r,r,r) Q(r, A=Q(r, 7))

= 2C(r,r,r) — 2A(AQ(r, A~Q(r,7)) + Q(Ar, AA=Q(r,7)))]
= 2[C(r,r,r) = 2Q(r, A=Q(r,T))]
= B
Q.E.D
As a result of Lemma 4.6, we have
B; = B+ A
= B+ A
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As before it remains to use Eq. (4.18) to find conditions under which f; can
be made negative and of some desired magnitude. This will be achieved by
determining criteria under which A can be set to any desired value by feedback
control. Again some simplifications of A of Eq. (4.18) are needed. Two cases
are discussed separately.

The case Ib # 0 corresponds to the case that the critical mode is controllable
for the linearized system. We obtain a similar result to Theorem 4.3 in that a
cubic feedback control law exists. To see this, note first that /5 = [b and then
simply set (), = 0, now consider the effect of the cubic terms in the feedback

control. The outcome is that since A reduces to

A = —4C, (7,7 F)b
d d d
= —4C,(r — d_zr,r T_oh" d_2r)lb
8
= 4(2 _d)3Cu(r,r, r)lb
8
= ool (4.19)

where A = —4C,(r,r,7)lb is the same as Eq. (4.10) in the static feedback de-
sign. It is easy to see that C,(r,r,r) (or A can be assigned any real value by
appropriate choice of the trilinear form C,(z,y, z), the origin is certainly local
stabilizable if Ib # 0. The effect the washout filters on the stability coefficients
appears as a scaling factor in Eq. (4.19). Since 0 < d < 2 the scaling factor
enables the washout filter-aided to use a smaller gain to achieve the same extent

of stability.

Theorem 4.7 Suppose that hypothesis (P') is satisfied and that 1b # 0. That

is, the critical eigenvalue is controllable for the linearized system. Then there is



a washout filter-aided feedback u(yx) which solves the local period doubling bifur-
cation control problem for Eq. (4.6) and the local smooth feedback stabilization
problem for Eq. (4.7). Moreover, this can be accomplished with third order terms

in u(yx), leaving the critical eigenvalue unaffected.

Next the case in which /b = 0 will be considered. This corresponds to the
critical mode being uncontrollable for the linearized system. Observe that the

expression for A now simplifies to

+
+4IQ(7, AA~ (A + I)(FT Q.7)b) (4.20)

where p = rTQ,r is the same quantity used in the static feedback synthesis.

Note that
ae i- 0 A+1 0 A-(A+I) 0
A@A+D= =
An Ag / I —(d-2)I Ay A%y
e ([ 4 0 A(A+I) 0
AA (A+1) =
I —(d-1)1 A) Al
( AA~(A+1) 0

AL AL
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Eq. (4.20) becomes

A = —4p{ILi7 +1Q(7,b) — IQ(7, A (A + I)b)

- _4(_2;“_(1)-5,,{@ +1Q(r,b) — 1Q(r, A~(A + I)b)

—1Q(r, AA~(A + 1)b)}
4

= Gl (4.21)

where A is the same as Eq. (4.12) in the static feedback design. Thus we obtain a
similar result to Theorem 4.4 giving a sufficient condition for stabilizability in the
case [b = 0. The derivation again indicates how a washout filter-aided stabilizing
feedback might be chosen. Simply choose p of the proper sign (depending on
the sign of the expression in (4.22)) and large enough magnitude. The effect of

washout filters again appears in the form of an advantageous scaling factor.

Theorem 4.8 Suppose that hypothesis (P') is satisfied and that b = 0. Then
there is a washout filter-aided feedback u(yy) which solves the local period doubling
bifurcation control problem for Eq. (4.6) and the local smooth feedback stabiliza-

tion problem for Eq.(4.7), provided that

0 # Ly +1Q(r,b) —1Q(r, A"(A+ I)b)
—1Q(r, AA=(A + I)b). (4.22)

Note that the condition (4.22) is precisely the same as condition (4.13) in
Theorem 4.4. The discussion following Theorem 4.4 in Section 4.3 for the impli-
cation of stabilization of period doubling to controlling chaos applys here as well.

In the next section, an example is given showing the nature and advantages of

washout-filter based control of period doubling bifurcation.

96



4.5 Hénon System: Period Doubling Route to

Chaos

Consider the nonlinear Hénon system

Totr = p—Th+ PYn (4.23)
Yntl = Tn (4.24)

where p and p are real parameters. In the following, we fix p = 0.3 and view p as
the bifurcation parameter. We present results for p € (0,1.4). The software tool
Dynamics [75] was used to assist in the calculations. Fig. 4.1 shows a bifurcation
diagram of the Hénon system under these parameter settings. There is a period
doubling cascade to chaos. This period doubling cascade is the focus of our
control design.

In Fig. 4.1, the fixed point (z*,y*) of interest is given by

(p—1+\/(1—1’)2+4p P—1+\/(1—P)2+4p)
) ’ )

and the associated Jacobian matrix is

From this we can determine the critical p. at which the first period doubling

takes place:
Pec = %(1 - [))2-
This translates to p. = 0.3675 for the case p = 0.3.

Now consider the Hénon system subject to control

Tpy1 = p— 1?1 + PYn + Uy (42‘))

Yn+1 = Ty (426)
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0-p-14 —-25 -x- 2.5
Figure 4.1: Bifurcation diagram of open-loop Hénon system

where u,, is the control input. Note that this control input can be interpreted as
a perturbation to the bifurcation parameter p. The system linearization at the
fixed point (z*,y*) is controllable at the critical parameter value p. (indeed, for
all values of p).

There are several considerations in choosing the form of control function u,.
To apply the results of static feedback design in Section 4.3, we have to take
the u, to be of the form u, = u,(z, — z*,y, — y*). Clearly this requires the
precise knowledge of (z*, y*) over a range of parameter values. More severely this
requires the control to depend on the parameter p. Also this choice of controller
does not preserve the other existing fixed point of the system (4.23)-(4.24). These
considerations lead to the employment of the outputs of the washout filters as

the arguments to the control u, in the following.
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4.5.1 Robust Nonlinear Bifurcation Control

We employ a dynamic feedback control law which results in the overall system

description
Tap1 = p— 25+ pYa+up (4.27)
Yoy1 = Tn (4.28)
Wpp1 = T+ (1 —d)w, (4.29)
Z, = z,—dw, (4.30)
Uy, = k27 (4.31)

This involves the use of a discrete-time washout filter. Here, w,, is the washout
filter state variable, z, is the output function and 0 < d < 2 is related to
the washout filter time constant. Note that only one washout filter is utilized.
The controller u,, (4.31) is a function of the output z, and does not depend on
knowledge of (z*,y*) and/or p.

From Theorem 4.7, the control law above ensures, locally, that the degree of
stability can be made sufficiently large. Thus further period doubling bifurcation
is prevented in the parameter range of interest. The period doubling route to
chaos is therefore at least delayed to greater parameter values. Fig. 4.2 shows
a bifurcation diagram which applies with this choice of control for k; = 1.8.
Fig. 4.3 shows a time response of the Hénon system starting in a chaotic motion

and settling to a period-2 orbit upon activation of the control law.

4.5.2 Robust Linear Bifurcation Control

Finally, we consider linear washout filter-aided control laws for delaying the

occurrence of period doubling bifurcation in the Hénon system. The closed-loop
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Figure 4.2: Bifurcation diagram of Hénon system with dynamic cubic control:

kp =18
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Figure 4.3: Sample time response of Hénon system with cubic control (k; = 1.8)

activated after initial chaotic motion for the case p = 1.4
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system is now given by Eqgs. (4.27)-(4.30) along with the linear control law
Un = kozp, (4.32)

With this control, the first period doubling bifurcation is postponed to greater
values of p. The accompanying period doubling cascade and chaos are also post-
poned. The critical p. at which the period doubling takes place after feedback

is given by

N 2(1—0p 1
pc=p6+ ( ) ng

gd 2t (2 — d)

Fig. 4.4 shows the effect of switching among several values of the linear feed-
back gain k; over time, for p = 1.2. Note that initially, with zero control, the
system behaves chaotically. It then settles to orbits of various periods, depend-
ing on the gain k;. The sequence of control gains used in generating Fig. 4.4 is
as follows: 0, 0.165, 0.175, 0.2, 0.4, 0.7. The orbits achieved are not unsta-
ble orbits embedded in a chaotic attractor, but rather are orbits of the system
for parameter values en route to chaos through the period doubling cascade.
This differs from the approach of Ott, Grebogi, and Yorke [77], which entails

stabilization of unstable periodic orbits embedded in a chaotic attractor.

4.6 Concluding Remarks

This chapter has investigated the design of stabilizing feedback control laws for
period doubling bifurcation. The approach applies directly to nonlinear systems
of any finite order, given in discrete-time form. The use of the method to remove
or postpone the occurrence of a period doubling cascade to chaos was considered.
Both static and dynamic feedback controllers have been studied. The dynamic

feedback controllers employ washout filters and do not affect the location of
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Figure 4.4: Sample time response of Hénon system under linear control with

gain-switching
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system fixed points. The controllers do not use measurement of the system

parameter and are effective over a range of parameter values.
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Chapter 5

Analysis and Control of Voltage

Collapse in a Model Power System

In this chapter, the analysis and control of voltage collapse in a model elec-
tric power systems is investigated. Dynamic bifurcations, including Hopf and
period-doubling bifurcations, are found to occur in a power system dynamic
model recently employed in voltage collapse studies. The occurrence of dynamic
bifurcations is ascertained in a region of state and parameter space linked with
the onset of voltage collapse. The presence of the dynamic bifurcations, and
the resulting implications for dynamic behavior, necessitate a re-examination of
the role of saddle node bifurcations in the voltage collapse phenomenon. It is
shown that voltage collapse can occur “prior” to the saddle node bifurcation.
Moreover, a new dynamical mechanism for voltage collapse is determined: the
boundary crisis of a strange attractor or synonymously a chaotic blue sky bi-
furcation. This mechanism results in solution trajectories containing both an
oscillatory component (as predicted by recent analytical work), and a sharp,
steady drop in voltage (as observed in the field). More generally, catastrophic

bifurcations are identified as important mechanisms for voltage collapse.
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Since nonlinear phenomena, such as bifurcations and chaos, are determined
to be crucial factors in the inception of voltage collapse in power system models,
in the second part of this chapter, the problem of controlling voltage collapse
in the presence of these nonlinear phenomena is addressed. The bifurcation
control approach is employed to modify the bifurcations and to suppress chaos.
The control law is shown to result in improved performance of the system for a

greater range of parameter values.

5.1 Introduction

Voltage collapse in electric power systems has recently received significant at-
tention in the literature (see, e.g., [64] for a synopsis). This research has been
motivated by increases in power demand which result in operation of electric
power systems near their stability limits. A number of physical mechanisms
have been identified as possibly leading to voltage collapse. From a mathemat-
ical perspective, voltage collapse has been viewed as arising from a bifurcation
of the power system governing equations as a parameter is varied through some
critical value. In a number of papers (e.g., [34], [26], [100], [57], [28]), voltage
collapse is viewed as an instability which coincides with the disappearance of the
steady state operating point as a system parameter, such as a reactive power
demand, is quasistatically varied. In the language of bifurcation theory, these
papers link voltage collapse to a fold or saddle node bifurcation of the nominal
equilibrium point.

An essential distinction exists between the mathematical formulation of volt-

age collapse problems and transient stability problems. In studying transient
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stability, one often is interested in whether or not a given power system can
maintain synchronism (stability) after being subjected to a physical disturbance
of moderate or large proportions. The faulted power system in such a case has
been perturbed in a severe way from steady-state, and one studies the possibil-
ity of the post-fault system returning to steady-state (regaining synchronism).
In the voltage collapse scenario, however, the disturbance may be viewed as a
slow change in a system parameter, such as a power demand. Thus, the dis-
turbance does not necessarily perturb the system away from steady-state. The
steady-state varies continuously with the changing system parameter, until it
disappears at a saddle node bifurcation point. It is because of this that saddle
node bifurcation was viewed as the route to voltage collapse.

However, the presence of a saddle node bifurcation in a dynamical system
does not preclude the presence of other, possibly more complex, bifurcations.
In fact, the recent papers [5], [8], [27], [15] have shown that other bifurcations
do occur in the example power system model studied in [34). The bifurcations
found in this model include Hopf bifurcations from the nominal equilibrium, a
cyclic fold bifurcation, period doubling bifurcations, as well as a period dou-
bling cascade leading to chaotic behavior. (See, e.g., [97] and references therein
for a general discussion of these phenomena.) Other papers have also studied
bifurcations in voltage dynamics in other power system models [1], [83], [98].

The fact has therefore now been established that a variety of bifurcations,
static and dynamic, occur in power system models exhibiting voltage collapse.
The objective of this chapter is to determine the implications of these bifurcations
for the voltage collapse phenomenon and to address the issue of voltage collapse

control.
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5.2 Towards a Theory of Voltage Collapse

5.2.1 A Power System Model

Dobson and Chiang [34] postulated a mechanism for voltage collapse tied to the
saddle node bifurcation, stressing the role of the center manifold of the system
model at the bifurcation. In the same paper, they introduced a simple example
power system containing a generator, an infinite bus, and a nonlinear load. The
saddle node bifurcation mechanism for voltage collapse [34] was investigated
for this example in subsequent papers, including [26] and [15]. On the other
hand, instead of attributing voltage collapse to a single bifurcation mechanism,
[98] refined the term of voltage collapse to distinguish transitions resulting from
finite-sized disturbances in state space from bifurcations in parameter space.
Thus in the terminology of [98], the saddle node bifurcation mechanism of voltage
collapse is classified as a parametric voltage collapse.

In our work [8], a link was suggested between the voltage collapse phe-
nomenon and the occurrence of dynamic bifurcations: specifically, we showed
the possible role of an oscillatory transient in voltage collapse. In the proposed
research, we will continue the study of dynamic bifurcations and voltage collapse,
showing the possible role of catastrophic bifurcations, including crises of strange
attractors [42], [43] in voltage collapse.

In this part of the research, we will focus on the model introduced by [34].
The power system is depicted in Fig. 5.1. In the study of electric power networks,
one may wish to focus on a particular generating unit and nearby transmission
lines and loads. Figure 5.1 is to be viewed as an equivalent circuit for a local

area of interest connected to a large network. The network is modeled as an
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Figure 5.1: Power system model

infinite bus, i.e., a voltage source providing constant voltage magnitude and
phase regardless of power flow. In Fig. 5.1, the infinite bus has terminal voltage
Fo/0 (a phasor). Here, Ey > 0 is the voltage magnitude, and 0 is taken as
the voltage phase angle. The generator terminal voltage is F,, /é,,. Figure 5.1
also shows the complex admittances of the transmission lines connected to the
generator and infinite bus terminals, a load and a capacitor. Note that the load
voltage 1s V /4.

The system dynamics is governed by the following four ordinary differential

equations [34] (P(6,,,6,V), Q(6:m,6,V) are specified below):

b = w (5.1)
Mo = —dpw+ Py, + EpVYysin(é — 6, — 0,,)

+E2Y,, sin 0, (5.2)

Kpb = —KpoV?— KV + Q(6m,6,V) — Qo — Qq (5.3)

TKpwKpV = KpkKpV: 4 (KpoKgp — Ky Kpo)V

+I{qw(P(6m,6s V) - PO - Pl)

109



(@6, 6, V) — Qo — Qu) (5.4)

In these equations, the state variables are é,, (the generator voltage phase angle,
closely related to the mechanical angle of the generator rotor), w (the rotor
speed), 6 (the load voltage phase angle) and V (the magnitude of the load
voltage). A dot signifies differentiation with respect to time ¢. The functions
P(6m,6,V), Q(6m,6,V) appearing in these equations represent, respectively, the

real and reactive powers supplied to the load by the network. They are given by

P(6,,6,V) = —EVYy sin(6+0)) — EnVYsin(§ — 8 + 0)
+(Yy sin 6, + Y, sin,,)V? (5.5)
Q(8,.,,6,V) = E/VYy cos(§+0y) + E VY, cos(§ — 6, + 0.)

—(Y!cos¥. +Y,, cosf,,)V? 5.6
0 0

In the above equations, instead of including the capacitor in the circuit, it is
convenient to derive the Thévenin equivalent circuit with the capacitor. The
adjusted values are [20]

Eo
(14 C?Y5 %2 —2CY; ! cos 8,)1/2
Y, = Yo(1+ C¥; 2 —20Y; cos By)!/?

CYy 'sin g
1 - CY; " cos by

E, =

0, = 0o+tan™{

Other quantities appearing in Eqgs. (5.1)-(5.6) are constant parameters, relating
to either the load or the network and generator. All of these parameters will
be fixed next, except for J;, the reactive power demand of the load; @}; will be
taken as the bifurcation parameter. The load parameter values are

Ky, =04, K, =03, K, = —-0.03, K,;, = —2.8, K, = 2.1,

T= 857 P() =0.6, QQ = 1.3, P1 =0.0
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The network and generator parameter values are
Yo = 20.0, 6y = 5.0, By = 1.0, C =12.0, Y, = 8.0, 6; = —12.0,
E, = 2.5, Y,, =500, = -50, E, = 1.0, P, = 1.0, d,, = 0.05,
M =0.3.
All angle values noted above are given in degrees.

This model has been used in [26], [34], [15] and other papers to illustrate the
view that voltage collapse arises at a saddle node bifurcation. Given the highly
nonlinear nature of the power system, we anticipate that a variety of nonlinear
phenomena would play possible roles in voltage collapse. In the next few sections,
we will use this model as well as its variations to study the dynamics associated

with voltage collapse.

5.2.2 Dynamic Bifurcations and Voltage Collapse
Bifurcations

In this section, results of a detailed bifurcation study of the model (5.1)-(5.6)
are presented. The continuation/bifurcation software package AUTO [35] is em-
ployed to assist this analysis. A representative bifurcation diagram for the system
(5.1)-(5.6) appears in Fig. 5.2. This diagram relates the voltage magnitude V' to
the bifurcation parameter (; (the reactive power demand). Essential features
of the bifurcation diagram are summarized next.

To simplify the discussion, note first that there are six bifurcations depicted in
Fig. 5.2. These are labeled HBQD), CFB®), PDB@), PDB@, HB® and SNB®.
For simplicity, we may also refer to these bifurcations through their numbers
@-®), respectively. The acronyms indicate types of bifurcations, as follows:

¢ HB: Hopf bifurcation
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¢ CFB: Cyclic fold bifurcation

e PDB: Period doubling bifurcation

¢ SNB: Saddle node bifurcation
For ease of reference, we denote the values of the parameter @), at which the bifur-
cations (I)-® occur by Q1®-Q1©>, respectively. In Fig. 5.2, the solid curve repre-
sents the locus of a locally asymptotically stable equilibrium point, while dashed
curves correspond to unstable equilibrium points. For @ < QICD = 10.9461.. .,
a stable equilibrium point exists with voltage magnitude in the neighborhood
of 1.2. (Upper left in Fig. 5.2.) As @, is increased, an unstable (“subcritical”
in the sense of increasing ();) Hopf bifurcation is encountered at the point la-
beled HBQ in Fig. 5.2. As @, is increased further, the stationary point regains
stability at @Q; = Ql@ through a stable (“supercritical”) Hopf bifurcation. This
stable equilibrium merges with another, unstable stationary branch and disap-
pears in the saddle node bifurcation labeled SNB®) in Fig. 5.2. The numerical
computations show that the family of periodic solutions emerging from the Hopf
bifurcation at @) and the family of periodic solutions emerging from the Hopf
bifurcation at(}) are one and the same.

Besides the bifurcations of the nominal equilibrium described in the forego-
ing, the periodic solutions emerging from the Hopf bifurcations at @) and )
themselves undergo (secondary) bifurcations. Determining the location and na-
ture of all of the associated bifurcations is not an easy computational task, since
it involves using numerical continuation to follow the bifurcated periodic solu-
tions, as well as other solutions bifurcated from them, and so on. However, we
discuss a few of these bifurcations to give an idea of the possibilities.

Since HB(@ is a subcritical Hopf bifurcation, it results in a family of unsta-
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Figure 5.2: Bifurcation diagram of the model.

ble periodic solutions occurring for @) slightly less than Q1® In Fig. 5.2, the
minimum value of this family of periodic solutions in the variable V is indicated
by the circles appearing from () and extending to the left. Open circles indicate
unstable periodic solutions; filled circles denote stable orbits. At Q; = Q1® , the
unstable periodic solution undergoes a cyclic fold bifurcation. Thus, in Fig. 5.2,
the continuation of the periodic solutions for @}; near Q1® exists for ) slightly
greater than 1® . A cyclic fold bifurcation is simply a saddle node bifurcation
of periodic solutions. Thus, the unstable periodic solution gains stability at
@ =q@.

The second Hopf bifurcation is supercritical. For Ql@ << Q1©, i.e., just
before the saddle node bifurcation SNB@®), the equilibrium is stable. Thus, in a

©®

sufficiently small neighborhood of the parameter value @;~, the system remains

at the steady-state if its initial condition is at the nominal equilibrium. This is in
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agreement with the results of [Dobson & Chiang, 1989] and [Chiang et al., 1990].
Of course, it is also true that the system would in all likelihood not be operating
at this equilibrium, due to the effects of the bifurcations discussed above.

The appearance of a window of stable large amplitude periodic orbits (see
Fig. 5.2) in the parameter range Q1® <@ < Ql@ as a result of the cyclic
fold bifurcation CFB@) can be verified by careful simulation. Indeed, Fig. 5.3a
shows a stable periodic orbit which belongs to this family, occurring for @, =
10.8615. The initial condition used to generate this orbit is (,, = 0.727011,w =
0.0345679,6 = 0.13899,V = 0.89).

This large-amplitude periodic orbit loses stability at the period doubling bifur-
cation PDB@®). At this bifurcation, a new periodic orbit appears which initially
coincides with the original orbit, except that it is of exactly twice the period.
The original orbit necessarily loses stability at such a bifurcation. The branch of
period-doubled orbits is not shown in Fig. 5.2, nor any further bifurcations from
that branch. However, note that another period doubling bifurcation is found to
occur from the periodic orbits emanating from HB®); this bifurcation is labeled
PDB@®) in Fig. 5.2.

Simulations of the system in the parameter range corresponding to the “Hopf
window” indicate the presence of further bifurcations of periodic orbits, and
of aperiodic (chaotic) orbits. This is expected [33]. There are further period
doublings (not shown) just beyond the period doublings PDB indicated in the
figure. This indicates there is a period doubling cascade, with the resulting
chaotic orbit. Indeed one surmises there are an infinite number of periodic
branches, of higher and higher period, paralleling the single exhibited branch
from PDB@) to PDB@. These consist almost entirely of unstable orbits. The
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Figure 5.3: Period doubling cascade to chaos: (a) @1 = 10.8615; (b) @, =
10.8791; (c) @1 = 10.8825; (d) @ = 10.8942.

115



stable dynamical behavior is chaotic—there is some kind of strange attractor.
This is what is observed. Figure 5.3(a-d) shows the period doubling cascade to
chaos emerging from PDB(®). (The initial condition used to generate the orbits
in Fig. 5.3(b-d) agrees with that of Fig. 5.3a). Chaotic orbits resulting from this
cascade occur in the approximate range @; = 10.89 — 10.8943. There is also a
period doubling cascade to chaos emerging from PDB®@ (but in reverse order,
w.r.t. Q;). Figure 5.4 shows a chaotic orbit resulting from this cascade, for the
parameter value Q1 = 11.377. (The initial condition used to generate this orbit
is (8, = 0.3503,w = 0.001,6 = 0.13899,V = 0.915).) Fig. 5.4a represents the
time simulation of V' vs. time, and Fig. 5.4b gives the corresponding simulation
projected in phase space onto V vs. é,, coordinates. Chaotic orbits resulting
from this cascade occur in the approximate range (; = 11.377 — 11.3825. Note
that [27] have calculated Liapunov exponents and power spectra as evidence for
the presence of chaotic invariant sets. More interestingly, the strange attractor
near the HB(D) disappears suddenly at )7 = 10.89434... and the strange attractor
near the HB®) disappears at approximately Q;[ = 11.376. In chaos literature,
the sudden death of these strange attractors is known as a boundary crisis [42],
[43]. Here we surmise for the strange attractor nearer to HBQD it is the unstable
limit cycle born through the subcritical Hopf bifurcation that collides with the
strange attractor. For the strange attractor near HB(), it is the low voltage

saddle point that collides with the strange attractor.

Voltage Collapse

Analysis of the bifurcation scenario discussed in the foregoing section is impor-

tant for organizing our understanding of the dynamics of voltage collapse for the
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model power system under consideration. To consider the implications of the
bifurcations studied above in terms of the system dynamics, assume that the pa-
rameter ()7 is quasistatically increased. For the ‘usual’ values of the parameter
@1, the system operates at the stable equilibrium, At Q1® , we cross the cyclic
fold bifurcation point. At this point, a stable/unstable limit cycle pair is born
and coexists with the stable equilibrium point. The sets of initial conditions
which asymptotically approach each of the two attractors is separated by the
stable manifold of the saddle limit cycle born during CFB@). As @; varies from

1® to Q@, this periodic solution also loses stability, but in doing so gives birth
to a new stable (period doubled) periodic orbit. This scenario repeats itself in
a cascading fashion, each time making available a stable periodic orbit, until a
strange attractor emerges. This strange attractor then disappears at Q. Notice
that all these bifurcations take place prior to the HB@). Thus, in the interval
of Q1® - @)%, there exists a partial hysteresis loop, i.e., in addition to the stable
equilibrium, there is another coexisting attractor. This means voltage collapse
can occur through two different routes in this system.

In the interval of Q1® - @7, if the system is perturbed away from the sta-
ble equilibrium, the system may settle down to the coexisting attractor. The
coexisting attractor, depending on the parameter value, is either a stable limit
cycle or a strange attractor. Then as @)y is quasistatically increased, a bound-
ary crisis of the strange attractor is encountered at @, at which point voltage
collapse occurs. On the other hand, even after the disappearance of the strange
attractor, the nominal equilibrium of the system is still stable until the Hopf bi-
furcation HB(). Hence another possible mechanism of voltage collapse is linked

to the subcritical Hopf bifurcation as suggested in [8]. As () passes the Hopf
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bifurcation point, the excursion of voltage exhibits increasing oscillations and
then a sharp decrease. Note that subcritical Hopf bifurcation is a form of catas-
trophic bifurcation. Hence in this example, voltage collapse is triggered either
by a boundary crisis or by a catastrophic Hopf bifurcation.

We remark that for parameter values very near the saddle node bifurcation
there exists a range of stable operating conditions for the system. Depending on
the parameter value, this stable operating condition can be a stable equilibrium,
a stable periodic orbit, or a strange attractor. However, it is also true that the
system would in all likelihood not be operating at these conditions, since voltage
collapse would probably have already occurred as a result of the mechanisms
discussed above.

Fig. 5.5 shows an example of a typical voltage collapse within the Hopf win-
dow. The parameter value used for Fig. 5.5 is Q; = 11.25. The initial conditions
used to generate the simulation of Fig. 5.5 is (6, = 0.3503,w = 0.001,6 =
0.13899,V = 0.915). Note the oscillatory nature of the solution, and the pro-
nounced drop in V. Fig. 5.6 shows a simulation of a “cooked” example in which
collapse occurs in a nonoscillatory fashion just after the first Hopf bifurcation
point (i.e., for @, slightly greater than QICD) The parameter value used for this
simulation is ¢J; = 11.0. What is cooked about this example is the choice of
initial conditions. For the same parameter value, “most” other choices of initial
conditions near the nominal stationary point give rise to oscillatory collapse, of
the type illustrated in Fig. 5.5.

Fig. 5.7 shows a typical collapse simulation near to the saddle node bifurca-

tion. This is a very sharp collapse as predicted in [34]. However, it should be

noted that this behavior only occurs if the initial condition is near the nominal

119



0.5 -

1 " " " ' 1 " A " L 1

10 20 30

Time(sec)

Figure 5.5: Typical voltage collapse in Hopf window.

T T T T T T
1t a
>0.5 b -
[ o -
1 | VRSO0 SSUNE TR T KT ST SN UUUNE 0T S S S
0 02 0.4 0.6 0.8 1
Time(sec)

Figure 5.6: “Cooked”

voltage collapse in Hopf window.

120



L T T T T
3 4
08 -

08 -
04| .

0.2 -

L2 R RSN TSP SO WA SO,
4

0 1 2 3

Time(sec)

Figure 5.7: Voltage collapse near the saddle node bifurcation.

equilibrium for parameter values near Q1© Such an initial condition is hardly
likely, since the previous bifurcations discussed above will have resulted in an

excursion away from the nominal equilibrium.

5.2.3 Chaotic Blue Sky Catastrophe and Voltage Col-
lapse
Modification of the Power System Model

The power system under consideration in this section is related to one previously
considered in Section 5.2.1 [34]. The example system of Section 5.2.1 includes
a capacitor in parallel with a nonlinear load. The capacitor is included to raise
the voltage magnitude to nearly 1 per unit. The parameter (), is taken as the

bifurcation parameter of the system. It is found that the value of this parameter
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Figure 5.8: Modified power system model

at the saddle node bifurcation is approximately 11.41 per unit. This is a rather
high value, and is a consequence of inclusion of the capacitor in the example
system. It seems that it is rather difficult to reach this level of reactive load at
normally encountered power factors.

For this reason, we modify the power system example of [34], mainly through
deletion of the capacitor from the system of [34]. This reduces the reactive power
load parameter prior to collapse to approximately 2.56 per unit, while reducing
the voltage magnitude to approximately 0.65 per unit. The resulting power sys-
tem model is depicted in Figure 5.8. Possible compromises in which a capacitor
is included to raise the voltage magnitude without a large increase in load, are
not given priority in this work. It follows from [34] that the system dynam-
ics (with no capacitor) is governed by the following four differential equations

(P(6,8,V), Q(6m,6,V) are specified below):

b = w (5.7)
Mo = —dpw+ Py — E,VY,sin(6,, — 6) (5.8)
Kpb = =KoV =KoV A4 Q(6,m,6V)—Qo— Q1 (5.9)
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TKpWwk,V = KpKpoV:+ (KpwKey — KpwKpo)V
+Kp(P(6m,6,V) — Py — P))

“I(PW(Q(‘S‘VM 4, V) — Qo — Ql) (5'10)

The notation is basically identical to that of Section 5.2.1, with the caveat that
there is no need for primed quantities. Primes are used to indicate Thévenin
equivalent circuit values, a step which is made unnecessary since the capacitor
is no longer included in the system.

The load includes a constant PQ) load in parallel with an induction motor.

The real and reactive powers supplied to the load by the network are

P(6,6,V) = —EoVYsin(§) + EnVY,, sin(6, — 6) (5.11)

Q60,8 V) = EgVY;c05(8) + En VY cos(6m — 6) — (Yo + Y )V2(5.12)

Most of the parameter values used in the present study agree with those
of Section 5.2.1. The parameters given in Section 5.2.1 correspond to a large
generator. The choice of parameter values here corresponds to a medium sized
generator (500MW). Of the parameter values used here, those which differ from

values given in Section 5.2.1 are as follows:
M =0.01464, Qo = 0.3, E,,, = 1.05, Y5, = 3.33, 6y =0 and 6,, = 0.
Those which coincide with values given in Section 5.2.1 are as follows:

Ky =04, K,, =03, K, = —0.03, K,, = —2.8, K ., = 2.1,
T=85, PO =06, P1 :00,
Ey=10,Y,, =5.0, P, = 1.0, d,, = 0.05.

All values are in per unit except for angles, which are in degrees.
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Figure 5.9: V vs. () at system equilibria
Bifurcation Analysis

In this section, the results of a bifurcation analysis of the model (5.7)-(5.12) are
given. Figure 5.9 shows the dependence of the voltage magnitude V at system
equilibrium points, as well as the stability of these equilibria, as a function of the
bifurcation parameter ();. A solid line corresponds to stability of an equilibrium,
while a dashed line corresponds to instability. Figure 5.10 depicts a blown-up
bifurcation diagram, detailing some of the bifurcations which occur in the boxed
region of Figure 5.9.

To simplify the discussion, note first that Fig. 5.9 depicts two bifurcations,
and Fig. 5.10 depicts a total of five additional bifurcations. These seven bi-
furcations are labeled HB(Q), SNB@), CFB@), PDB®@, PDB®), BSKY® and
BSKY(®. Each of the seven bifurcations shown in Figures 5.9 and 5.10 is of one

of the following types, with the corresponding acronyms:
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figure

e HB: Hopf bifurcation

e SNB: Saddle node bifurcation

o CFB: Cyclic fold bifurcation

e PDB: Period doubling bifurcation

e BSKY: Blue sky bifurcation
The technical connotations of these terms will be clarified in the sequel. For ease
of reference, we denote the values of the parameter @); at which the bifurcations
- - occur by QED-Q@, respectively. For (; < Q1®, a stable equilibrium point
exists with voltage magnitude in the neighborhood of 0.7. (Upper left in Fig. 5.9.)
As @, is increased, an unstable (“subcritical”) Hopf bifurcation is encountered
at the point labeled HBQ) in Fig. 5.9. This coincides with the point labeled

HB@® in Fig. 5.10. As @, is increased further, the nominal stationary point
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(now unstable) disappears in the saddle node bifurcation (SNB@) in Fig. 5.9) at
0 =%

Besides the bifurcations of the nominal equilibrium described in the fore-
going, the periodic solution emerging from the Hopf bifurcation at HBQ) itself
undergoes bifurcations. The bifurcation HB(Q) is a subcritical Hopf bifurcation,
resulting in a family of unstable periodic solutions occurring for ¢); slightly less
than Q1® In Fig. 5.10, the minimum of the variable V for members of this
family of periodic solutions is indicated by the circles appearing from Q) and
extending to the left. Open circles indicate instability of the periodic orbits. At
Q: = Ql@, the unstable periodic solution undergoes a cyclic fold bifurcation.
Thus, in Fig. 5.10, the continuation of the sequence of circles of periodic solu-
tions for ); near Q1® exists for (), slightly greater than Ql@ A cyclic fold
bifurcation is simply a saddle node bifurcation of periodic solutions. Thus, the
unstable periodic solution gains stability at @, = Ql@. The solid circles ema-
nating from CFB@) depict the continuation of the periodic solutions; they are
solid to indicate stability.

This stable periodic orbit born at CFB@) loses stability at the period dou-
bling bifurcation PDB@). At this bifurcation, a new periodic orbit appears which
initially coincides with the original orbit, except that it is of exactly twice the
period. The original orbit necessarily loses stability at such a bifurcation. The
branch of period-doubled orbits is also shown in Fig. 5.10. This branch, depicted
by the solid circles emanating to the right from PDB@), undergoes a further pe-
riod doubling bifurcation in short order. This occurs at PDB® in Fig. 5.10.
These two period doubling bifurcations are followed by a cascade of period dou-

bling bifurcations, resulting in a strange attractor for some values of ();. These
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further period doublings are not depicted in Fig. 5.10. However, Fig. 5.10 shows
the continuation of the periodic orbits appearing at the cyclic fold bifurcation
CFB@® and the period doubling bifurcation PDB@). Note that each of these
periodic orbits disappears in a collision with the unstable (saddle) low voltage
equilibrium point. These collisions are known by various names, including the
blue sky bifurcation [97]. Thus, the disappearance of these orbits is indicated by
BSKY® and BSKY (@ in Fig. 5.10. Since the system undergoes a cascade of pe-
riod doubling bifurcations, one expects that each period doubled orbit undergoes
such a blue sky bifurcation.

Figure 5.11 depicts several stable periodic orbits in the sequence of period
doublings discussed above, along with the strange attractor resulting from the
period doubling cascade.

Let us pause to consider the implications of the bifurcations studied above
for the system dynamics, assuming the parameter }; is quasistatically increased.
For the ‘usual’ values of the parameter ();, the system operates at the stable
equilibrium. As the parameter is increased, the equilibrium loses stability at the
Hopf bifurcation point, giving rise to an unstable periodic orbit. Since this orbit
gains stability at the cyclic fold bifurcation, a stable periodic orbit surrounds
the equilibrium at and slightly beyond the Hopf bifurcation point. The system
then operates at this stable periodic orbit. For greater values of the parameter
()1, this periodic solution also loses stability, but in doing so gives birth to a
new stable (period doubled) periodic orbit. This scenario repeats itself in a
cascading fashion, each time making available a stable periodic orbit, until a
strange attractor emerges. The system operates on the strange attractor until

the strange attractor disappears (“crisis”). After this crisis, there is no stable
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invariant set in the vicinity of the nominal equilibrium at which to operate.
Thus, the system must now undergo a large transient excursion. In the next
section, this excursion (“voltage collapse”) is tied to the disappearance of the

strange attractor.

Boundary Crises, Chaotic Blue Sky Bifurcations and Voltage Collapse

The bifurcations uncovered in the foregoing analysis, and especially the sudden
disappearance of the strange attractor, are crucial to the understanding of volt-
age collapse for the model power system under consideration. We claim that,
for the model under study, voltage collapse is triggered by the boundary crisis of
the strange attractor [42], [43] or chaotic blue sky bifurcation [97], i.e., its sudden
destruction through collision with the low voltage saddle point.

Recall that a boundary crisis or a chaotic blue sky bifurcation involves the
sudden destruction of a strange attractor through collision of the strange attrac-
tor with a saddle point, an unstable periodic orbit, or the stable manifold of such.
In a boundary crisis or a chaotic blue sky bifurcation, a strange attractor exists
for parameter values up to the critical value, at which the collision takes place.
Subsequent to this value, the strange attractor no longer exists, but it leaves a
signature, namely a transient chaotic motion. The transient chaotic motion ap-
pears chaotic for a relatively long time (depending on the initial condition), and
then suddenly experiences a sharp excursion either to another, probably distant
attractor, or to infinity. This excursion occurs through a tunnel in state space
which necessarily follows the unstable manifold of the saddle point or orbit with
which the collision takes place. Note the distinction with the center manifold

based view adopted in [34], [15]).
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With this summary of boundary crises, we can return to the example at
hand. An attracting invariant set exists for parameter values (); up to the
critical value, @7, at which the boundary crisis takes place. Voltage collapse
occurs precisely at the parameter value ()3 = Q7. This gives a clear alternative
to the previous view [34] that the critical value of @; at which voltage collapse
occurs is that associated with the saddle node bifurcation, ¢J; = Q@ Note that
one may view the Hopf bifurcation as an signal of impending voltage collapse,
especially considering the very short interval in parameter space between the
Hopf bifurcation (at ¢y = Q1® = 2.55919...) and the boundary crisis of the
strange attractor (at 1 = Q7 = 2.560378...).

Significantly, the current proposal serves to reconcile two seemingly contra-

dictory pieces of evidence:

o First, the steady, sharp decrease in voltage observed in practice in voltage

collapse; and

e Second, the presence of nonlinear phenomena such as oscillations and
chaotic motion in dynamic models used in the study of voltage collapse,

which is determined from analysis.

Figure 5.12 shows a projection of the dynamics onto the w, V plane for a
value of @; slightly below @Qj. Figure 5.13 shows the same projection, for a
value of @; slightly greater than Q7. The low voltage saddle point has one real
positive eigenvalue, one real negative eigenvalue and a pair of complex conjugate
eigenvalues with negative real part. Thus in both figures, the unstable manifold
and only a section of the stable manifold of the low saddle point are shown. These

manifolds are important to understand the underlying dynamics near crisis. At
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@1 = @7 the closure of one of the branches of the unstable manifold of the low
voltage saddle point is the strange attractor, while the stable manifold of the
low voltage saddle point forms the boundary of the basin of attraction for the
strange attractor for @1 < @7 [43]. In Figure 5.12, the chaotic invariant set
is a strange attractor, i.e., is stable. Since the strange attractor is bounded,
system trajectories are confined to a bounded subset of the state space. One
of such trajectories is shown as thousands of points that flesh out the strange
attractor. In Figure 5.13, the strange attractor no longer exists, and is replaced
by a transient chaotic motion followed by passage of system trajectories near
the low voltage saddle point, after which the trajectories follow the other branch
of the unstable manifold of the saddle point. This results in a sharp decrease
(“collapse”) in the system voltage. Figure 5.14 represents a time simulation of
V vs. time for the same value of ); as that of Figure 5.13. The transient chaotic
behavior and the pronounced collapse are illustrated in Figure 5.14. (Note the

small magnitude of the transient oscillatory behavior.)

5.2.4 Catastrophic Bifurcations and Voltage Collapse

Related Voltage Collapse Phenomena : Differential-Algebraic Equa-

tions

The models of three preceding subsections are in the form of ordinary differ-
ential equations. This is because a dynamic load model is assumed. However,
traditionally power system models are subject to algebraic constraints. More

precisely, they are governed by parameter dependent differential-algebraic sys-
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tems of the form

T = f(way,P)v f: R"™+?  R™ (5.13)

0 = g(z,y,p), ¢:R"™™?" > R" (5.14)

A natural question arises as to whether the voltage collapse mechanisms un-
covered in the pre\;ious two subsections are applicable to the differential-algebraic
system above. In [98], it was shown that in a rudimentary but representative
power system model, a (parametric) voltage collapse occurs following either a
subcritical Hopf bifurcation or a saddle node bifurcation as control gain and
load are varied as parameters. The model is essentially two dimensional, and
thus doesn’t admit a strange attractor. Also the model in [98] is subject to
algebraic system constraints in the form of load flow equations and thus is a
differential-algebraic system. Despite the existence of singularities in the state
space due to the constraints, the occurrence of the parametric voltage collapse is
still triggered by catastrophic bifurcations, namely subcritical Hopf and saddle
node bifurcations. In the classification of voltage collapse phenomena in [98],
another type of voltage collapse is the so-called dynamic (state space) voltage
collapse. Dynamic voltage collapse occurs when the post fault state lies outside
the transient stability region and so the quantification of this nonlinear stability
characteristic requires computing the basins of attraction of the stable equilibria.
In this work, we focus on the parametric aspect of the voltage collapse phenom-
ena. Of course, the understanding of voltage dynamics will not be complete
without performing analysis in the entire state space and the entire parameter

space (or a relevant region), which is beyond the scope of this study.

Voltage Collapse and Catastrophic Bifurcations
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Generally speaking voltage collapse may be linked with the sudden loss of
stable bounded solutions of a power system model in the vicinity of a pre-collapse
operating condition. In this thesis, based on the study of our research and those
of other research groups, we suggest a theory of voltage collapse in electric power
systems. Our main idea is that voltage collapse is triggered by some form of
catastrophic bifurcations. Two types of stability margin will be introduced: a
static stability margin and a dynamic stability margin. The static stability margin
is measured in parameter space from the point where the nominal equilibrium
loses its stability. The dynamic stability margin is measured in parameter space
from the point where voltage collapse takes place. These two stability margins
are not necessarily the same.

The route to voltage collapse will differ from system to system. The responsi-
ble catastrophic bifurcation can be a catastrophic bifurcation of an equilibrium,
a limit cycle, a torus or a chaotic attractor. The main ingredients of our theory
are stated as follows.

From a practical point of view, the distinction between subtle and catas-
trophic bifurcations has very important implications. Generally we can say that
a catastrophic bifurcation occurs at a dangerous boundary, while a subtle bifur-
cation occurs at a safe boundary. Thus a real system, such as an electric power
system, evolving slowly along an equilibrium path, along a trace of limit cycles,
or along a trace of strange attractors, due to the slow (quasistatical) variation
of a parameter would experience a rapid, dynamic jump to a remote attractor
at a dangerous boundary but not at a safe boundary. The type and form of
the bifurcation locally tells us nothing about the new remote final state after a

catastrophic jump: a saddle node bifurcation could for example trigger a jump
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to a remote equilibrium, a remote limit cycle, a remote chaotic attractor, or
even infinity. This is in complete contrast to the subtle bifurcation, where the
type of the bifurcation tells us precisely the qualitative form of the attractor to
which an evolving system would make a gradual smooth transition. There are
basically three types of catastrophic bifurcations. One is the subcritical types
of bifurcations. The second is the explosive birth of a different attractor. The
third is the sudden death of an attractor.

In the following, we consider topological types of bifurcation that occur as a

single parameter is varied, e.g.,
&= fu(z) (5.15)

where p is the distinguished bifurcation parameter. We organize the various
bifurcations according to the topological dimension of the attractor on either
side of the bifurcation point. Equilibrium points are zero-dimensional, limit
cycles are one-dimensional, and the torus is a two-dimensional manifold. For
simplicity, mappings are treated as Poincaré mappings of flows, and attractor
dimension refers to the flow rather than to the mapping. Chaotic attractors are
treated as three-dimensional attractors in the sense of embedding dimension, i.e.,
they require a phase space of at least three dimensions in order to be realized.
However, it should be noted that chaotic attractors themselves are not three-
dimensional manifolds, and certain rules for computing their dimension such as

the Hausdorff dimension yield non-integer values greater than 2 [78].
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5.3 Control of Nonlinear Phenomena at Incep-
tion of Voltage Collapse

In this section, we consider local control of voltage collapse at its inception. That
is, we design controllers which can delay the occurrence of voltage collapse, as
opposed to controllers for recovery from voltage collapse. The controllers we
seek do not involve forced system operation in parameter ranges where voltage
collapse does not occur, but are designed to work in the parameter ranges of
difficulty. In order to control voltage collapse in power system models such as
the one studied in the preceding section, one has to design control laws to deal
with bifurcations, chaos and crises. In Chapter 3 and 4, we have seen that
control laws which significantly reduce the amplitude of a bifurcated solution, or
significantly enhance its stability over a nontrivial parameter range, are viable
tools in the taming of chaos. Here similar techniques will be employed to control
the bifurcations, chaos, and crises. In doing so we expect to increase the stability
margin of the system in parameter space. In other words, voltage collapse will
be ‘postponed’ so that stable operation of the system will be allowed beyond
the point of impending collapse in the open loop system. In particular, the
control laws are designed to increase two types of stability margin: a static
stability margin and a dynamic stability margin. The static stability margin is
measured in parameter space from the point where the nominal equilibrium loses
its stability. The dynamic stability margin is measured in parameter space from
the point where voltage collapse takes place. As discussed in the previous section,
these two stability margins are not necessarily the same. In the system models

of under study, the static stability margin is measured from the Hopf bifurcation
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point QICD In the model of Section 5.2.1, dynamic stability is measured either
from Q1® or the crisis point )7 depending on the route to collapse. In the model
of Section 5.2.3, the dynamic stability is measured from the crisis point Q7.

In the models under study, the stable equilibrium point loses its stability
through the subcritical Hopf bifurcation HB(@). The subcriticality of the Hopf
bifurcation has several negative effects on the system: the system may exhibit a
jump from the stable equilibrium to the coexisting attractor under perturbation,
and the boundary crisis is also a direct consequence of the subcriticality of the
Hopf bifurcation. Moreover, the region of attraction of the stable equilibrium is
bounded by the stable manifold of the unstable limit cycle, and so this region
shrinks as criticality is approached. These factors motivate the design of feedback
control laws directed at the Hopf bifurcation which reduce the negative effects
and increase the stability margin of the system in parameter space. As shown in
[101], [9], such control action can also suppress the chaos and crises by ‘squeezing’
the period doubling cascades. Next we present a brief summary of the bifurcation
control approach in the context of Hopf [2] and period doubling [9] bifurcation
control and then proceed to use these techniques in the voltage collapse control

problem.

5.3.1 Nonlinear Bifurcation Control

Consider a one-parameter family of nonlinear autonomous control systems

&= fu(z,u). (5.16)

where z € IR" is the state vector, p € IR is the system parameter, f, is a smooth

map from IR" x IR to IR™, and u is a scalar input. Local bifurcation control deals
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with the design of smooth control laws u = u(z) which stabilize a bifurcation
occurring in the one-parameter family of systems (5.16). These control laws
exist generically, even if the critical eigenvalues of the linearized system at the
equilibrium of interest are uncontrollable. The feedback control designs of [2]
transform a subcritical (unstable) Hopf bifurcation to a supercritical (stable)
bifurcation.

For Hopf bifurcation, the design procedure recalled in Section 3.3.2 aims
to ensure the asymptotic stability of the Hopf bifurcation point as well as or-
bital asymptotic stability of the periodic solutions emerging from the bifurcation
point for a range of parameter values. It is well known that only the quadratic
and cubic terms occurring in a nonlinear system undergoing a Hopf bifurca-
tion influence the value of 8;. Thus only the linear, quadratic, and cubic terms
in an applied control v have potential for influencing 3;. If the critical mode
is controllable, a linear stabilizing feedback exists. Interestingly, as discussed in
Section 3.3.2, a cubic stabilizing feedback also exists in such a case. On the other
hand, if the critical mode is uncontrollable, the system may still be stabilizable
by a quadratic feedback control law.

Now suppose the periodic solution emerging from the Hopf bifurcation point
undergoes a cascade of period doubling bifurcations to chaos. As shown in
Chapter 4 and in [9], nonlinear feedback control laws can be designed which
influence the degree of stability and amplitude of a given period-doubled orbit.
If the amplitude of such an orbit can be constrained sufficiently, then the cascade

of period doublings to chaos can be eliminated.
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5.3.2 Voltage Collapse Control I

In this subsection, we carry out the design of controllers for voltage collapse
in the model (5.1)-(5.4). Consider system (5.1)-(5.4) subject to a frequency-
dependent control u = u(w) by adding a control function u to the right side of

Eq. (5.4) to give

by = w (5.17)
M6 = —dpw+ P+ E,VYpsin(8 — &, — 6,,)

+ELY,, sin 6, (5.18)

Kb = —KpaV2~KpV +Q(6,,6,V) = Qo — Q1 (5.19)

TKyKpV = KpuKpaV? + (KpwKpo — Koo Ko )V
4+ Kgu(P(6,6,V) — Py — P,)

Ky Q(6my 6, V) = Qo — Q1) + u(w) (5.20)

where P(6,,6,V), Q(6m,6,V) are given by (5.5) and (5.6).

Note that the control is implemented by injecting a speed signal into the load
node. The speed signal needs no washout since it does not affect the system
equilibrium structure at steady state. Note also that such a controller does not
affect the position of the saddle node bifurcation SNB@).

One control law design transforms a subcritical Hopf bifurcation into a super-
critical bifurcation and ensures a sufficient degree of stability of the bifurcated
periodic solutions so that chaos and crises are eliminated. This control law al-
lows stable operation very close to the point of impending collapse (saddle node
bifurcation). Because the critical mode in this case is controllable, a purely
cubic control is designed to handle all these tasks. Another control design in-

volves changing the critical parameter value at which the Hopf bifurcations occur
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through a linear feedback control. Because of the special structure of the system
under study, this linear feedback law eliminates the Hopf bifurcations and the
resulting chaos and crises. Thus, the linearly controlled system can operate at a

stable equilibrium up to the saddle node bifurcation.

Nonlinear Bifurcation Control

To render the Hopf bifurcation HB() supercritical, we employ a cubic feedback
with measurement of w. The closed loop system is Eq. (5.17)-(5.20) and u is of

the form

u = kw® (5.21)

where k,, > 0 is the nonlinear (cubic) feedback gain.

Values of k, which give a supercritical HB are determined by computing the
stability coefficient (3, of the closed loop system. Since transforming HBQ to
a supercritical Hopf bifurcation is strictly a local result, computational analysis
techniques must be used to assess the effects of the nonlinear control on the
global dynamical behavior of the closed-loop system. As shown in [101], [9],
larger values of the gain k, not only enhance the stability of the bifurcation
but also result in a reduced amplitude of the stable limit cycle over a range of
parameter values. Recalling the discussion in Subsection 5.3.1, if the amplitude
of the periodic orbit can be constrained sufficiently, then the cascade of period
doublings to chaos can be eliminated. Figure 5.15 shows a bifurcation diagram
for the closed loop system with control gain k, = 0.5. In the closed-loop sys-
tem, HB(Q) is rendered supercritical. Moreover, the period doubling bifurcations,
including the two period doubling cascades and the resulting two strange attrac-

tors and their crises are all eliminated. The benefits of changing HBQD to a
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supercritical bifurcation can be seen in Fig. 5.17 where the dynamic response of
the system to increasing (; to a value beyond HB() is shown. Transient trajec-
tory (a) shows the increasing oscillations and ultimate voltage collapse without
control. With nonlinear control and identical initial conditions, however, we see
that the voltage settles to a small amplitude oscillation in trajectory (b) rather
than collapsing.

Evidently such a control has a very favorable effect on the voltage collapse
dynamics. By transforming the Hopf bifurcation HB({) to a supercritical bifur-
cation, the multistability near HBQ) is eliminated and hence the occurrence of
jump behavior of the system operating point under perturbation is prevented.
More significantly, the system can operate at a small amplitude limit cycle as ()4

crosses the previous collapse point Q1<D and this transition can be done in a con-
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tinuous fashion. Also because of the supercriticality of the Hopf bifurcation in
the closed loop system, the region of attraction of the nominal stable equilibrium
is increased. As @}y increases further, the nominal equilibrium regains stability
at Q = Ql@ through the supercritical Hopf bifurcation HBG). The operation
of the system takes yet another continuous transition from the small periodic
orbit to the stable equilibrium as (); crosses Ql@ The system can operate at the
stable equilibrium until the saddle node bifurcation point SNB(®) is encountered.
Then a sharp drop in voltage collapse takes place.

Note that by introducing an alternative type of operating condition (a stable
small amplitude limit cycle), though the static stability margin of the system
remains the same as in the open loop case, the dynamic stability margin is
increased up to the saddle node bifurcation point. Thus, in the closed loop
system, the fatal voltage collapse then occurs at the saddle node bifurcation

point (now agreeing with the scenario in [34]).

Linear Bifurcation Control

Since the critical mode is controllable, a linear stabilizing control exists for the
stabilization of the Hopf bifurcation point. However, in the context of voltage
collapse control, one has to consider the effect of such a control over a range
of parameters. The effect may be difficult to determine since linear feedback
will affect all the eigenvalues and eigenvectors. In particular, a high gain linear
feedback may well destabilize modes that are open-loop stable. Also it should not
be surprising that in some situations a linear feedback which locally stabilizes an
equilibrium may result in globally unbounded behavior [3]. For small feedback

gains, however, one can expect that the bifurcation will reappear at a different
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parameter value. Fortunately, in this particular example, linear feedback with

measurement of w in the form

u = kw (5.22)

can impart desirable effects on the system. In (5.22), k; > 0 is the (scalar) linear
feedback gain.

Since system (5.17)-(5.20) is a parametrized system, it is very difficult to
study the effect of the linear control (5.22) over a range of parameter values
by standard pole placement techniques directed at a particular equilibrium for
a particular parameter value. However, if we consider the control gain k; as
a second parameter in the system in addition to the parameter ();, the effect
of linear control can be tracked with two-parameter continuations of the Hopf
bifurcation points (HBQ@ and HB®)). Recall that the control design does not
affect the position of SNB®).

Fig. 5.16a shows a two-parameter (depending on k; and (1) curve of the Hopf
bifurcation points () and (). It can be seen that as k; increases from 0, HBQ)
and HB®) move closer to each other with HB() having a much faster pace. As
k; increases further, HBQ) merges with HB®) leading to their disappearance.
Figs. 5.16b, 5.16c and 5.16d show that the Hopf window shrinks and ceases to
exist. The benefits of eliminating the Hopf window are seen in trajectory (c) of
Fig. 5.17, where increasing (); to a point which is beyond the location of the
original HB( results in the system settling down to the original, high voltage
equilibrium branch. The initial conditions of trajectory (c) coincide with those
of (a) and (b).

With linear bifurcation control (5.22), both the static and dynamic stability

margins can be increased. When the Hopf bifurcations cease to exist (approxi-
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mately for k; > 0.0245), the static and dynamic stability margins are maximized
in that the system can operate at a stable nominal equilibrium up to the saddle
node bifurcation. Also, all the dynamic bifurcations, including Hopf bifurca-
tions, period doubling bifurcations, period doubling cascade to chaos and crises,

are extinguished.

Composite Bifurcation Control

The two types of control law given above, namely the cubic control (5.21) and
the linear control (5.22), can be combined to result in a composite control law.

The closed loop system is Eq. (5.17)-(5.20) with u of the form
u = kw + kyw? (5.23)

where k; > 0 and k, > 0 are the (scalar) linear and nonlinear feedback gains,
respectively.

With this composite control, the designer has the freedom to choose proper
static and dynamic stability margins. Besides the flexibility in terms of achiev-
able behavior of the system under such control (over a range of parameter values),

the nonlinear term in the control may be used to improve the transient response.

5.3.3 Voltage Collapse Control II

In this section, we consider local control of voltage collapse at its inception in
the model of Section 5.2.3. The results parallel those of the subsection above,
which were obtained for the model of Section 5.2.1.

In the model of Section 5.2.3, the stable equilibrium point loses its stability

through the subcritical Hopf bifurcation (local), and the boundary crisis (global)
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of the strange attractor triggers the voltage collapse. The subcriticality of the
Hopf bifurcation has several negative effects on the system as we discussed before.
The same control strategy is employed as in the previous subsection. It can be
easily seen in this example that this is an approach to influence the various
aspects of the global bifurcations (e.g., blue sky catastrophes) through local
control.

We carry out the design of controllers for voltage collapse control for the
model (5.7)-(5.10) subject to control v which is inserted additively at the right
hand side of Eq. (5.10).

The objectives of control are 1) to prevent the occurrence of the jump behav-
ior, 2) to increase the region of attraction of the stable equilibrium point, and 3)
to delay the collapse (in parameter space). One control law design transforms
the subcritical Hopf bifurcation into a supercritical bifurcation and ensures a
sufficient degree of stability of the bifurcated periodic solutions over a range of
parameter values of interest. These control laws allow stable operation close to
the point of saddle node bifurcation. Another control design involves chang-
ing the critical parameter value at which the Hopf bifurcations occur through
a linear feedback control. The voltage collapse can be delayed by such a linear

control. Note that controllability of the critical mode facilitates the design.

Stabilizing the Hopf Bifurcation

To render the Hopf bifurcation HB(Q) supercritical, we employ a cubic feedback

with measurement of w. The control u is of the form
u = —k,w® (5.24)

where —ky, > 0 is the (scalar) cubic feedback gain.
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Figure 5.18: Superimposed bifurcation diagrams for cubic control with different

gains: a. -0.1; b. -0.5; c¢. -1.0; d. -5.0

Fig. 5.18 shows superimposed bifurcation diagrams for the closed loop system
with various control gains k,. This along with simulation evidence indicates that
larger values of the gain |k,| result in a reduced amplitude of the stable limit
cycle. Note that the boundary crisis is delayed and the possible operating range

of the system in parameter space is increased.

Delaying the Hopf Bifurcation

A linear control exists for delaying the Hopf bifurcation point:
Uu = —klw. (525)

where —k; > 0 is the (scalar) linear feedback gain.
Such a control is found to be able to delay the subcritical Hopf bifurcation

HB(@ to parameter values extremely close to QQ , where the saddle node bifur-
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Figure 5.19: Relationship between critical ¢); at which the Hopf bifurcation

occurs and gain k; of linear control

cation SNB(®) takes place. The relationship between the critical value Q1® and

the gain k; in the closed loop system is found by a two-parameter (Q; and k)
continuation of the Hopf bifurcation and is depicted in Fig. 5.19. Also another
interesting consequence is that chaos and the boundary crisis can be eliminated
by such a control.

Figure 5.20 illustrates the system responses for a value of (); greater than the
critical crisis value Q7. Trajectory (a) is with no control, (b) is with nonlinear
control (5.24), and (c) is with linear control (5.25).

The two types of control law given above, namely the cubic control (5.24)
and the linear control (5.25), can be combined to result in a composite control

law which both delays and stabilizes the Hopf bifurcation.
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5.4 Concluding Remarks

Nonlinear phenomena, including bifurcations and chaos, occurring in power sys-
tem models exhibiting voltage collapse have been studied in this chapter. A new
theory of voltage collapse is suggested. The theory emphasizes the role of catas-
trophic bifurcations in voltage collapse in electric power systems. The presence
of the various nonlinear phenomena have also been determined to be crucial fac-
tors in the inception of voltage collapse in these models. Moreover, the problem
of controlling voltage collapse in the presence of these nonlinear phenomena is
addressed. The bifurcation control approach is employed to modify the bitur-
cations and to suppress chaos. The control law is shown to result in improved
performance of the system for a greater range of parameter values. Although
the relative importance of the effects of these nonlinear phenomena in general
power systems under stressed conditions is still a topic for further research, the
bifurcation control approach appears to be a viable technique for control of these

systems.
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Chapter 6

Active Control of Stall in Axial Flow

Compressors

In this chapter, active stabilization of stall instabilities in axial flow compressors
is pursued using a combination of bifurcation analysis and nonlinear control. A
low-order discretization of a PDE compressor model is found to exhibit a sta-
tionary (pitchfork) bifurcation at the inception of stall. Using throttle opening
as a control, analysis of the linearized system at stall shows that the critical
mode (zero eigenvalue) is unaffected by linear feedback. Hence, nonlinear sta-
bilization techniques are necessary. A nonlinear (quadratic) feedback control
of the first mode amplitude is proposed based on the lower-order model and
is found to eliminate or reduce the hysteresis for both the low order and high
order discretizations. This improves the nonlinear stability of the compression
system near the stall limit. Furthermore, the issue of designing nonsmooth feed-
back control laws is addressed. The merits of employing nonsmooth feedback
are illustrated by bifurcation analysis of both the low order and high order dis-

cretizations. A possible mechanism for the nonsmooth feedback is suggested.
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6.1 Introduction

Recent years have witnessed an increasing interest in axial flow compressor dy-
namics, both in terms of analysis of stall phenomena and their control [44]-[66],
[50], [18]. This interest is due to the increased performance that is potentially
achievable in modern gas turbine jet engines by operation near the maximum
pressure rise. The increased performance comes at the price of a significantly re-
duced stability margin, since the steady, spatially-uniform gas flow loses stability
when the system is operated near peak pressure-rise conditions. The resulting
post-instability behavior leads to decreased operating performance of the com-
pressor and to mechanical damage of the compression system.

In general there are two fundamentally different post-instability behaviors:
surging flow and rotating stall [44]. Compressor surge occurs when the plenum
gas pressure exceeds the compressor pressure rise and so low frequency (in time)
oscillations of the mean gas flow rate develop. Rotating stall is a local aerody-
namic phenomenon that occurs when the gas passing through the rotor disen-
gages from the blade surface, reducing the local gas flow rate [31]. In this case,
the bulk gas flow remains constant in time, but flow measurements taken along
the circumferential coordinate (8 of Fig. 6.1) of the compressor rotor will reveal
spatial variations of the local gas flow. This means the local gas velocity takes
the form of a traveling wave, rotating about the compressor annulus.

Greitzer [44] developed a nondimensional fourth-order compression system
model and introduced a nondimensional parameter, B, which he found to be a
determinant of the nature of post-instability behavior. A global bifurcation of
periodic solutions and other bifurcations were found for this model, and were

used to explain the observed dependence of the dynamical behavior on the B
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parameter [5], [61]. Moore and Greitzer [72] introduced a refined model to de-
scribe stall phenomena in axial flow compression systems. This model accounts
for nonaxisymmetric flow patterns, whereas the model of Greitzer [44] had no
means of explicitly describing spatial effects.

Our work begins with a modification [103] to the 2-dimensional partial differ-
ential equation model of Moore and Greitzer [72] to include viscous dissipative
forces in the unsteady performance of a compressor blade row. The resulting
compression system model, while somewhat more complicated that the original
Moore-Greitzer model, is still amenable to formal local stability and bifurcation
analysis. Detailed studies about the transition from steady, spatially-uniform
flow to nonuniform and time-dependent gas axial velocity profiles in this modi-
fied model are presented in [13]. It is found that the first stalled-flow solution is
born through a subcritical bifurcation, meaning the bifurcating solution is born
unstable. The practical importance of the subcritical stall bifurcation, however,
is that when the uniform-flow operating point is subject to perturbations, the
system will jump to a large amplitude, fully developed stall cell. Subcritical
bifurcations also imply hysteresis, and so returning the throttle to its original
position may not bring the system out of stall.

Several techniques have been proposed for active control of stall instabilities
in axial flow compressors (e.g., [79], [50], [18]). From an analytical point of view,
these methods employ linear control for avoiding or delaying the occurrence of
stall. Of course the physical mechanisms of a proposed control implementation
differ among the proposed active control schemes. The present work and that of
[62], however, begin with the recognition of the importance of local bifurcations

as determinants of the nature of post-instability behavior of axial low compres-
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sion systems. In [62] a nonlinear state feedback law was proposed for the Moore
and Greitzer model [72] simplified to three ordinary differential equations with a
low-order Galerkin discretization. The control philosophy of this work and that
of [62] is similar to that of Abed and Fu [3]. This entails determining feedback
control laws which ensure the stationary bifurcation results in only stable bifur-
cated solutions. Thus, even though the nominal equilibrium is not stabilizable
within the framework of linear theory, it may be possible to stabilize a neighbor-
hood of the nominal solution for a range of parameter values including the stall
value of the throttle opening parameter, to finite amplitude perturbations. The
control law is designed analytically based on the low-order discretization and is
applied to both the low-order and high-order spectral discretizations of the full
system. Bifurcation analysis of a high-order discretization is used to assess the
effectiveness of the controller.

In addition to the smooth feedback control design, it is found that some
nonsmooth feedback controllers render surprisingly superior performance over
smooth feedback designs. The merits of the nonsmooth feedback controllers
are judged by bifurcation studies. Though theoretically bifurcation analysis of
nonsmooth systems is still a largely open area, the results revealed in this study
appear to point out a new avenue in terms of control of bifurcating systems and
critical system stabilization.

The chapter proceeds as follows. In Section 6.2, modification of the Moore-
Greitzer model is presented [103]. In Section 6.3, analytical computations useful
in the analysis of stationary bifurcations are reviewed. These results are applied
to study the stability of a low order discretization of the axial flow compression

system in the vicinity of the stall point. The low order model is obtained by
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Figure 6.1: A schematic of the compressor geometry

applying Galerkin’s method to the full PDE model. A pitchfork-type stationary
bifurcation is observed in the model at the stall point. In Section 6.4, a throttle
opening control law is given. This nonlinear control law circumvents the un-
controllability of the zero eigenvalue of the linearized model at stall. A purely
quadratic state feedback using measurement of the asymmetric flow disturbance
amplitude is given, and found to result in local stabilization of the bifurcation
leading to stall not only in the low order model, but also in high-order discretiza-
tions of the compression system model. In Section 6.5, the use of nonsmooth

feedback is discussed.

Nomenclature

a,,b,, A, mode amplitude coefficients

B plenum/compressor volume

c wave speed

f axisymmetric compressor characteristic
fo shut-off head

F throttle characteristic

H pressure rise scaling factor



k controller gain

l. overall compressor length
m exit duct length factor

n mode number

u control input

v axial velocity perturbation
Vo perturbation at = 0

V mean axial velocity

Viee total local axial velocity

w mean velocity scaling factor
o internal compressor lag

0% throttle opening

Yo nominal throttle opening
A, plenum-atmosphere pressure rise
n axial coordinate

0 circumferential coordinate
An n’th eigenvalue

© viscosity

T time

6.2 Modification of the Moore-Greitzer Model

The model is based on Moore and Greitzer’s model [72], but a term which

accounts for momentum transfer in the compressor section by viscous transport
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is also included [103]. A local momentum balance describing the two-dimensional
flow in the compressor and its associated ducting gives the partial differential

equation:

Ap = f(V+'l)0) -—lc:i; —ma—T

—00

2a

dV 8 ’ 1 0v0 a’Uo 62’00
/’Ud?]-— [2—6';_"1' 90 ”W . (61)

Note that our notation differs considerably from the original notation of Moore
and Greitzer [72]: V denotes the annulus-averaged (mean) gas axial velocity;
v is the axial velocity perturbation evaluated at 5 = 0 (the inlet face of the
compressor); A, is the plenum-to-atmosphere pressure rise; 7,0 are the axial
and angular coordinates, respectively; and p is the gas viscosity.

The compressor pressure rise f(V,) is particular to each compressor and
is obtained from experiments in the stable operating range and estimated in
the nonuniform-flow range. Following Moore and Greitzer [72] we use a cubic

equation in axial velocity

f(Wac)=fo+H[1+g(‘i’:° —1) —%(‘2 —1)3l (6.2)

where Vi,. = V 4+ vy (the total local axial flow) and the characteristic parameters
used throughout this work are given in Table 6.1, with [, fixed at a representative
value [72, 73]. If there are no spatial variations of gas density and pressure in

the plenum, an overall material balance on the gas over the plenum gives:

dn, 1

ot =1 [V(r) - F(&,)] (6.3)

where the throttle characteristic is given by the orifice equation

FY(Dy) = 1/Dy. (6.4)

The parameter v is proportional to the throttle opening.

160



Parameter | Value Description
a 1/3.5 internal compressor lag
l. 8.0 overall compressor length
m 1.75 exit duct length factor
H 0.18 | compressor characteristic height factor
w 0.25 | compressor characteristic width factor
fo 0.3 shut-off head
I 0.01 fluid viscosity

Table 6.1: Values of Compressor Parameters

6.3 Stability Analysis

In this section we first recall some bifurcation-theoretic results on stability of
one-parameter families of nonlinear systems. They then will be applied to study

the dynamic behavior of axial flow compression systems.

6.3.1 Bifurcation Formulae

Consider a one-parameter family of nonlinear autonomous systems

= fu(z), (6.5)

with f,(z.,) =0, where z € R", p is a real-valued parameter, f, is sufficiently
smooth in « and u, and ., is the nominal equilibrium point of the system as a

function of the parameter p. Suppose the following hypothesis holds:

(S) The Jacobian matrix of system (6.5) at the equilibrium z., possesses a

simple eigenvalue A1(p) with A1(0) = 0, A(0) # 0, with the remaining cigen-
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values A3(0),::+,A,(0) lie in the open left-half complex plane for y within a

neighborhood of px, = 0.

Theorem 2.1 asserts that hypothesis (S) leads to a stationary bifurcation
from z.p at u = 0 for Eq. (6.5). That is, new equilibrium points bifurcate from
Teo at g = 0. Recall that near the point (z.p,0) of the (n + 1)-dimensional
(z, u)-space, there exists a parameter ¢ and a locally unique curve of critical
points (z(€), u(€)), distinct from z. , and passing through (z.,0), such that for
all sufficiently small |¢|, z(¢) is an equilibrium point of (6.5) when g = p(e).

The parameter € may be chosen so that z(e), u(€) are smooth. The series

expansion of z(¢), u(€) can be written as

pe) = e+ poe® +- - (6.6)

z(€) = Top+xi€+ TPl + -1 (6.7)
If yy # 0, the system undergoes a transcritical bifurcation from z., at g = 0.
That is, there is a second equilibrium point besides z., for both positive and
negative values of g with |g| small. If gy = 0 and g2 # 0, the system undergoes
a pitchfork bifurcation for |u| sufficiently small. That is, there are two new
equilibrium points for either positive or negative values of g with |p| small. The
new equilibrium points have an eigenvalue # which vanishes at g = 0. The series

expansion of 8 in € is given by

Ble) = Pre+ foc® + - - (6.8)
with
B = —mX(0), (6.9)
and, in case f8; = 0, 8, is given by

Bz = =23 (0). (6.10)
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Thus, the system exhibits an ezchange of stabilities at the bifurcation point .o
(at g =0).

The stability coefficients 5, and 3; can be determined solely by eigenvector
computations and the coefficients of the series expansion of the vector field.

System (6.5) can be rewritten in the series form

i = Lg+Qud,2)+Cu(&,2,8)+-
= Lot +pLli& + p?Lyd + -+
+Qu(, &) + uQa(#,8) + -
+Co(#,8,8) + - - (6.11)

Here, 2 := £ — ¢, L,, Lo, L1, L, are n x n matrices, Q,(z, z), Qo(z, ), Q1(z, z)
are vector-valued quadratic forms generated by symmetric bilinear forms, and
Cu(z,z,z),Co(z, z, ) are vector-valued cubic forms generated by symmetric tri-
linear forms.

By assumption, the Jacobian matrix Lo has only one simple zero eigenvalue
with the remaining eigenvalues stable. Denote by [ and r the left (row) and
right (column) eigenvectors of the matrix Lo corresponding to the simple zero
eigenvalue, respectively, where the first component of r is set to 1 and the left

eigenvector [ is chosen such that Ir = 1. It is easy to check [51, 65] that
N(0) =1Ly (6.12)

Stability criteria for system (6.11) can be summarized in the following two lem-

mas. For details, see [3].

Lemma 6.1 The bifurcated solutions of (6.11) for p near 0, which appear only

for u > 0 (resp. p < 0) when ILyr > 0 (resp. ILir < 0), are asymptotically
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stable if B1 = 0 and B, < 0, and are unstable if B, = 0 and 32 > 0. Here,

B = 1Qo(r,r) (6.13)
and B2 = 20{2Qo(r, x2) + Co(r,r,7)} (6.14)

with xo satisfying the following equation:
L0X2 = —-QQ(T, T). (615)

Lemma 6.2 Suppose the value of By given in (6.13) above is negative. Then
the bifurcated solution occurring for p > 0 (resp. p < 0) is asymptotically stable

when ILyr > 0 (resp. 1Lir < 0).

The criterion given in Lemma 6.1 corresponds to the pitchfork (stationary)
bifurcation, while the one in Lemma 6.2 is for the transcritical (stationary)
bifurcation. Examples of these bifurcation diagrams can be found in many books

on bifurcation theory, e.g., [53].

6.3.2 Stability Analysis of Rotating Stall

The rotating stall equilibria born at the stall bifurcation point are spatial waves
of local axial velocity, rotating at a constant speed around the annulus. Rather
than computing these traveling wave solutions as limit cycles in the Fourier
coefficient space, a more efficient method is to introduce a rotating coordinate
frame 0 + 6 + c7 so that the amplitude coefficients of the traveling waves can

be found as fixed points. Making this coordinate change affects the PDE (6.1)

only:
1]
. dv dv  Odv
By = fV+v0) = o - m_ZO [o55 + ;97](117
1. Ovy _Ovg Ovg 0%vg
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Near the bifurcation point, the amplitude of the bifurcating mode will dominate
the shape of the stall cell. Thus, in the neighborhood of the bifurcation point we
can approximate v by the eigenfunction associated with the critical eigenvalue
An

v = exp(nn) [a, cos(nb) + b, sin(nb)] (6.17)

(and so vy = @, cos(nb) + a,sin(nd)), substitute (6.17) into (6.16) to form the
residual, use Galerkin’s method to determine the amplitude coefficients, and

constrain the Fourier coeflicients by the relationship

we obtain the greatly simplified, third-order set of ODEs (c.f. eqns (58-61) of
Moore and Greitzer (1986) [72]):

ma+ndA,  [3HV pn? 3H .
na dr [ 2w? (0 =V) - 2a] An = 8w? Aws (6.19)
dVv HV? 3H 9
lcE_‘ = =8+ fot 23 (Bw-V)+ D(W - V)A;, (6.20)
dA, 1
=" = [V —m/0,). (6.21)

Our control design will be carried out based on the stability analysis of system
(6.19)-(6.21) for the case n = 1 (the first harmonic of the flow disturbance). The
controller, however, will be applied to a high-order discretization in the ensuing
numerical analysis. To solve for an equilibrium point of (6.19)-(6.21), it is easy to
see that A; = 0 is always a solution of dA,/dr = 0 for the right hand side of Eq.
(6.19). However, A; = 0 may not be the necessary condition for the existence
of equilibrium point for (6.19)-(6.21). Denote & = (0, V, AP)T as an equilibrium
point for (6.19)-(6.21) at v = 4°. V and A, should then satisfy the relationships

V= 7\/Ap and AP = f(f/) Under the assumption 4; = 0, Z denotes a uniform
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flow equilibrium point for the axial flow compression model (6.19)-(6.21), which
depends on the throttle control parameter 4°. In the following, we consider the
stability conditions for the uniform flow equilibrium 2 and treat + as a bifurcation
parameter to seek possible bifurcating stalled-flow solutions emanating from
such that A; # 0.

Let X = (z1,%2,73)7 denote the state variation of the third order model

above near the uniform flow equilibrium point Z, where z; = A,z =V -V

and z3 = A, — A\,. The linearization of (6.19)-(6.21) at & for v = ° is

dX
— = LpX, (6.22)
dt
where
[3211;1(2&) - V) - % mo(11+l 0 0
Lo = 0 MWow-V)E % . (6.23)
0 1 2
4B2lo 8B2\/—A;Ic

From (6.23), the linearization of (6.19)-(6.21) has one zero eigenvalue when

3HV
203

(2w —V) = #. This implies a stationary bifurcation may occur from the
equilibrium point & for some value of 4p. The bifurcation calculations of the
preceding subsection will now be applied to derive the conditions for existence
and stability of such a bifurcation.

Let Z be the equilibrium point at which %4}—;7—(2(,0—‘7) = fory = 4°. Taking

the Taylor series expansion of (6.19)-(6.21) at the point (&,7°), we have

dX
_Jf_ = L()X =+ Qo(X,X) + CQ(X,X,X) + (’7 - ’)/O)LlX + e (624)
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where Lg is as in (6.23) and

#ﬂi—g(w bl V)$1CE2

Qo(X, X) = | H(w-TV)(a2+ 2L |, (6.25)

¥ 2

- =T
32B2cAp\A, S

——a_SH (43 4 45122)

mo+1 8w
Co(X, X, X) = | -U(Gelzra+32)E |, (6.26)
— 3
64B2c A2\ /A, 2
e M, V)Y 0 0
L= 0 Ll - V)gL 0

S T [ _ %}1]
8B2\/ Aplc 2AP 8y
(6.27)
Choose [ = (1,0,0) and r = IT as the left and right eigenvectors correspond-
ing to the zero eigenvalue of Ly. The dynamical behavior of (6.19)-(6.21) with
respect to variation of v near the unstalled point Z is obtained as follows.

The transversality condition IL;r # 0 is obtained as

a 3H

ma+ 1 ws

ILyr = —(w - V)—— #0, (6.28)

and the bifurcation stability coefficients are calculated, using Eqgs. (6.13) and
(6.14), as

B = 1Qo(r,r)=0 (6.29)

:82 = QI{QQO(T';Xz)‘*’CO(TaT,T)}

= @ B3H e ye-1) (6.30)

ma + 1 4w3

where

R (6.31)
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3H(V —w)y°

= - - S (6.32)
6HV (2w — V)y° — 8uw3\/A,
Note that at v = 4°
SHV . 7
53 (2w—-V)= %0 (6.33)

The next result follows readily from Lemma 6.1 and the discussions above.

Theorem 6.3 (Stability) Suppose the quantity ILir given in (6.28) is nonzero
as is the stability coefficient B, given in (6.30). Then system (6.19)-(6.21) ez-
hibits a pitchfork-type stationary bifurcation with respect to the small variation
of v at the point (&,~%), where Eq. (6.33) holds. Moreover, if B2 < 0 (resp.
B2 > 0) the local bifurcated solutions near & will be asymptotically stable (resp.

unstable).

The uniform-flow equilibrium point becomes unstable after the parameter
crosses the critical value 7°, the stall bifurcation point. Moreover, according to
Theorem 6.3 the local bifurcated solutions, near the stall point, may not be sta-
ble. If such a condition occurs, the compression system will exhibit a jump from
the stable nominal equilibrium when the parameter v crosses the critical value
7°. Also the subcritical nature of the stall bifurcations along with secondary
limit-point bifurcations leads to operating conditions featuring multistability:
conditions where the locally stable uniform flow solution coexists with a locally
stable fully developed stall cell. This results in a hysteresis loop of the stable
equilibria with respect to the parameter v near the stall point. Practically this
means that the system will jump from the uniform-flow operating point to a
fully developed stall cell under perturbations in the range of multistability.

Numerical bifurcation analysis was carried out to verify the predicted com-

pression system behavior and to study the bifurcation behavior of the stalled-flow
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Figure 6.2: Subcritical pitchfork stationary bifurcations in the open loop axial

flow compression system

solutions outside the range of validity of the local analysis. The results are shown
in Fig. 6.2. In Fig. 6.2, a solid curve represents a locus of locally asymptotically
stable equilibrium points, while dashed curves correspond to unstable branches.
There are two pitchfork stationary bifurcations, one stable and the other un-
stable. The numerical analysis vividly demonstrates the large magnitude of the
jump resulting from the hysteresis loop associated with the unstable bifurca-
tion point. It is not possible to observe the pitchfork bifurcation phenomena
in Figs. 6.2(b), 6.2(c), and 6.2(d) since the stalled-flow solutions (A, V,A)
possess the symmetry V(4;) = V(—A;) and A,(4;) = A, (—Ay).

169



6.4 Stabilization of Rotating Stall Using

Smooth Feedback

In this section, we seek possible feedback control laws based on regulating the
throttle setting which improve the operability near the stall point by eliminating
the hysteresis loop and preventing the jump behavior associated with the unsta-
ble stall bifurcation. So v = 4° + u is substituted into the plenum mass balance
(6.3). This type of control appears to be simpler to implement than those tech-
niques depending on directly affecting the flow field in the compress inlet duct

[79], [32]. Moreover, successful experimental results have been reported [36].

6.4.1 Low-Order Model

Denote (%,7°) as the stall point and let v := 4°+u, where u is the control input.

We then can rewrite system (6.19)-(6.21) as a throttle control system given by

ma+ndA,  [3HV pn? 3H
na dr [ 2w3 (2w —V) - 2a ] An = 8w? Aw (6.34)
dv HV? 3H 9
loo = —Lptfot 555 (Bw = V)+ 4—‘_03(“’ - V)A;, (6.35)
b—=" = 5 [V = (1° +u)y/D,] . (6.36)

We observed from (6.34) that A; = 0 is an invariant submanifold of (6.34)-
(6.36) unaffected by the value of control input u, which implies that (6.34)-
(6.36) is uncontrollable. Moreover, it is not difficult to check that system (6.34)-
(6.36) possesses an uncontrollable zero eigenvalue at the stall point. This means
that we can not extend the range v where the uniform-flow solution is locally

asymptotically stable with any type of state feedback in (6.34)-(6.36).
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Next, we consider the design of a control law which guarantees stability of the
local bifurcated solutions near the stall point. From the property of the exchange
of stability, the system will not jump from the stable uniform-flow equilibrium
near the stall point if the local bifurcated solutions are stable. In the following,
for simplicity, we consider the control input u to be a purely nonlinear feedback

of the state variations as given by
U = kll'f + k2$1$2 + k‘3$1.’133 + k4.’1)§ + k5(L‘2(L’3 + k‘e.’lfg + U(.’L’l, CL'g,.’L'3) (637)

where U is a high order function. Using formulae (6.13) and (6.14) to calculate
the stability coefficients 8; and G5 for the controlled model (6.34)-(6.36) at z,

we obtain

Bi = B=0 (6.38)

,3; — ,62 +4 a 3H ‘A/ k‘l ZAP

( — -
= B2+ Chks (6.39)

——w E——
3 0 N
ma+ 1w 2%———2/A,,

where (3 and j; are the stability coefficients of the uncontrolled version of (6.34)-
(6.36). It is observed from the expression of #; that only the quadratic feedback
k1 A? contributes to the determination of system stability. We have the following

result

Theorem 6.4 (Stabilization) The stationary bifurcation of (6.34)-(6.36) at the
point (%,7°) can be guaranteed to be a supercritical pitchfork bifurcation by a
purely quadratic feedback control if C # 0. The feedback control is of the form

The numerical results for the controlled case are given in Fig. 6.3. By Theo-

rem 6.4, we find that purely quadratic feedback control laws will stabilize bifur-
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Figure 6.3: Supercritical pitchfork bifurcations in the closed-loop axial flow com-

pression system

cated equilibrium solutions. The control input is given by
u =k A} (6.40)

with k; = 0.5. It is not difficult to see that the hysteresis loops of the stable

system equilibria shown in Fig. 6.2 no longer exist in Fig. 6.3.

6.4.2 High-Order Models

We have designed the control law based on a highly truncated discretization of

the flow field perturbation. To test the controller in a more realistic manner, the
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gas axial velocity perturbation v is approximated by
N
v =Y exp(nn) [a, cos(nb) + by, sin(nd)] (6.41)
n=1
and, as before, the axial velocity profile at the inlet guide vanes is denoted vy (at
7 = 0). Substituting the Fourier expansion into the local momentum balance

PDE and using Galerkin’s method to determine the amplitude coefficients, we

obtain
{ﬁ+l}' _17f (n0)do — £ g, — g (6.42)
n Py Ay, = - / cos(n ﬂan 20 n .
m 11. 17 pn? n
{Z + Z} b, = - 0/ fsin(nf)db — %bn + 5o On (6.43)
along with the ODEs
v 17
oo = —Ap+ 0/ fdb (6.44)
dA, 1 » .
ot = g VO -F,). (6.45)

The only nonlinearities in the ODEs above are the throttle and compressor
performance characteristics. One of the advantages of using the cubic compressor
characteristic is that the integrals can be evaluated explicitly. These results are
discussed in detail by Adomaitis [13] and are given in Appendix 6.A. Thus,
we obtain a large set of ordinary differential equations in time describing the
dynamics of the Fourier mode amplitude coefficients.

Denoting 7° as the nominal stall point of the throttle opening parameter and
letting v := «° + u, where u is the control input, we consider feedback of only

the amplitude of the first Fourier mode of the flow disturbance in the controller:

u = k(a} + b?). (6.46)
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Figure 6.4: Bifurcation diagram of open loop high-order system

Using the same numerical bifurcation analysis techniques discussed in the
previous section and extensive simulation studies, we find controller (6.46) is
effective in eliminating the hysteresis loop in the vicinity of stall point for high-
order discretizations (large N in (6.41)). Thus the occurrences of jump behavior
of the stable system equilibria are prevented.

For the results reported in this work, we take N = 2. See [14] for represen-
tative results on N = 6. Figure 6.4 is a bifurcation diagram of the open-loop
system. Note that the stall bifurcation is a subcritical Hopf bifurcation. The
bifurcated solution becomes stable through a cyclic fold bifurcation, resulting a
hysteresis loop near the stall point. Since the Hopt bifurcation is linearly un-
controllable, results from Section 3.3.2, especially Theorem 3.2 show that only
quadratic terms in the feedback control can influence the value of stability coef-
ficient 8. Thus control function (6.46) is a logical choice.

To see the effect of the nonlinear controller (6.46), bifurcation analysis of the

high-order discretization under control is carried out. In Fig. 6.5 a bifurcation
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Figure 6.5:

Figure 6.6:
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diagram of the closed-loop system with & = 2.5 is shown. Locally the stall
bifurcation is now a supercritical Hopf bifurcation. However, the bifurcating
stalled flow solution becomes unstable giving rise to a hysteresis loop. Even
with increased controller gain (Fig. 6.6 k£ = 5), the hysteresis loop still persists
(not discernible from Fig. 6.6, but can be seen if the region near the stall point
is magnified) but with a reduced range in parameter space. While hysteresis is
not completely eliminated in this case, the stability of the system to finite sized
perturbation in the axial velocity profile is still improved and the range of the

hysteresis is also reduced under this control.

6.5 Stabilization of Rotating Stall Using Non-

smooth Feedback

As shown in the last section, the hysteresis can not be completely eliminated by
the controller (6.46) with even a rather large gain. So far in this dissertation,
we have only considered smooth feedback. Our theory results in a quadratic
controller. The topological characteristic of the controller of the form u = ka?

is (See Fig. 6.7)
e symmetricin
e monotone in |z|.

Based on this observation, we conjecture that any controller having these
two properties at least locally around z = 0 would locally stabilize the stall

bifurcation.
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Figure 6.7: Qualitative characteristic of control functions
6.5.1 Low-Order Model

The conjecture above is supported by the bifurcation analysis of the low-order

system under the following nonsmooth feedback control:
u = k|A;] (6.47)

and

= ky/|Ay] (6.48)

Figure 6.8 illustrates the effect of such nonsmooth controllers. It can be
clearly seen that the use of such nonsmooth controllers has significant advan-
tages. With less control energy, the nonsmooth controllers effectively eliminate
the hysteresis loop. More significantly, the pressure rise can be kept at a high
level beyond the stall point.

We remark that the two controllers above are just a subset of a family of
controllers that will show such advantages over the smooth feedback design. For

example any controller of the form

w=k|A PP B, < By (6.49)
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belongs to such a family. Next we consider the use of nonsmooth feedback in

the high-order discretization models.

6.5.2 High-Order Models

Two representative controllers are applied to the high-order model:
w=ky/a? + b2 (6.50)

and

u = k(a? + b2)5. (6.51)

Figure 6.9 the illustrates the effect of the two controllers above vs. the
open-loop case and that of smooth feedback. The nonsmooth controllers can
completely eliminate the hysteresis loop with less control energy than smooth
feedback. Also the pressure rise is kept at a high level beyond the stall point.

This brings up the natural question, presently under investigation, of the
bifurcation mechanisms associated with nonsmooth systems. General theory on
bifurcation of nonsmooth systems is in general an open area. Some case studies
[76] exist in the literature. In terms of controllers (6.48) and (6.51) etc., the
common feature is that the derivatives of the control function at the origin are
infinity (see Fig. 6.7 and 6.10). This indicates “infinite local stabilizing power.”
In this regard, there is a strong resemblance to the terminal attractor theory of
[106]. In the case of controllers (6.47) and (6.50), though the local stabilizing
power is not infinite, it is still larger than those of controllers (6.40) and (6.46).
The use of nonsmooth feedback in bifurcation control theory or even the general

control theory is a worthy new avenue.
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Figure 6.10: Plot of f(z,y) = (z? + y*)'/4

Controllers such as (6.46), (6.47), (6.50) have been successfully implemented

in experiments [36].

6.6 Concluding Remarks

This chapter has investigated the design of stabilizing feedback control laws for
rotating stall in axial flow gas compressors. The proposed approach begins with
recognizing the importance of local bifurcations in determining the nature of
post-instability behavior of axial flow compression systems. The controllers are
(analytically) designed based on a highly-truncated discretization of a compres-
sor model, and then are applied to both the low-order model and high-order
discretizations. Although the results are obtained using a particular dynamical
model, the bifurcation based control approach appears to be a viable technique

for control of these systems.
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Appendix 6.A

The integral found in the average momentum balance ODE is [13]:

1 _ HV*Bw—-V) 3Hw-V)&, ,
Zr-offdo = P + 5egd ) (a? +02)

i=

H N
S? .Z a;aj(2ai—j + ait;) + 3aib;(bj—i — bi_j + biy ;)]

for arbitrary truncation number N. Evaluation of the cos(nf) moment gives

27
1 3HV (2w -V 3H(w —V) &
;/fCOS(”e)dH = (2w3 )an + (4w3 ) Zl [ai(@i—n + Qign + an—;)
0 i=
H N
+bi(bi—'n+bi+n n—1 _8_2 a] 2(11 e n+2az—]+n+a1+] n+az+]+n+an — ]) )

+3aib;(bj—i—n + bj—in + bitjcn + bitjn — bicjop — bizjpn — bu_i_j)]

and the sin(n#) moment gives

2T
1 : 3HV(2w -V 3H N
—/fsm(nﬁ)d& - (211; )bn + Z 1 z+n - z n + bn—i)]
T 4 w i=1
H N
T8t Z [3aia;(2bi—jin = 2bijn + bitjin + buoioj — biyj-n)

+ 0ibj (2bicjin = 2bimjon + bivjon — bivjin — buoij)].
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Chapter 7

Conclusions and Suggestions for

Further Research

We have focused on the the control of nonlinear instabilities in high performance
engineering systems. These belong to the class of problems that cannot be
adequately addressed without recourse to results from nonlinear dynamics. As
system parameters vary to satisfy the high performance requirement, nonlinear
phenomena grow and dominate the control problems. In such cases one needs
to study control of nonlinear phenomena such as bifurcations and chaos.

A new approach to the control of chaotic dynamical systems has been pre-
sented, namely the bifurcation control approach. The idea has been illustrated in
the context of a thermal convection loop model. A washout filter-aided feedback
control stabilizes a primary bifurcation in a sequence of bifurcations leading to
chaos. It has been shown that feedback controls achieving a sufficient degree of
stability for the primary bifurcation also extinguishes transient chaos and chaos.
The technique results in equilibrium preservation even in the face of model un-
certainty.

To further complement the work on bifurcation control of routes to chaos,
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the stabilization of period doubling bifurcations for discrete-time nonlinear Sys-
tems has been investigated. Both static and dynamic feedback controllers have
been studied. It has been shown that generically such bifurcations can be sta-
bilized using smooth feedback, even if the linearized system is uncontrollable at
criticality. In the course of the analysis, expressions have been derived for bifur-
cation stability coefficients of general n-dimensional systems undergoing period
doubling bifurcation. A connection has been determined between control of the
amplitude of a period doubled orbit and the elimination of a period doubling
cascade to chaos. For illustration, the results have been applied to the Hénon
system.

Most of the major electric power system breakdowns in recent years have
been caused by the dynamic response of the system to disturbances. Moreover,
in response to today’s ever-increasing demands for increased performance, there
is considerable interest in operating a power system ever close to the edge of
the stability boundary. Thus dynamic security assessment of power systems is
becoming increasingly important. One type of system instability which occurs
for a heavily loaded electric power system is voltage collapse. In this disserta-
tion, the analysis and control of voltage collapse in electric power systems have
been considered. We have challenged the existing theory of linking voltage col-
lapse exclusively to a saddle node bifurcation by showing a variety of nonlinear
phenomena existing in power system models exhibiting voltage collapse. A new
mechanism of voltage collapse has been suggested based on the framework of
catastrophic bifurcations. More significantly, active control of voltage collapse
has been addressed. Bifurcation control laws have been designed to control the

nonlinear phenomena at the inception of voltage collapse. The control laws have
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been shown to result in improved performance of the system for a greater range
of parameter values.

Another very important example of engineering systems near the limits of
their operating envelope is the stall phenomena in modern axial gas flow com-
pressors. The operation of compression systems is prone to the dynamic instabil-
ities of surge and rotating stall, either of which can lead to catastrophic failure
of the compression system. In this dissertation, we have used a combination
of bifurcation analysis and nonlinear control to study the dynamics and active
control of rotating stall in an axial flow compressor model. It has been found
that the stalled flow solutions are born in subcritical bifurcations and the effect
of secondary bifurcations leads to hysteresis. Practically this means that the sys-
tem will jump from the uniform-flow operating point to a fully developed stall
cell under perturbations. Moreover, because of hysteresis the system cannot re-
cover from stall by returning the throttle to its original position. Using throttle
opening as a control, it was also found that the stall bifurcations are not lin-
early stabilizable. Hence nonlinear stabilizing control laws have been designed.
A nonlinear (quadratic) feedback control of the first mode amplitude has been
proposed based on the lower-order model and has been found to eliminate or
reduce the hysteresis for both the low order and high order discretizations. This
control design has improved the nonlinear stability of the compression system
near the stall margin. Furthermore, the issue of designing nonsmooth feedback
control laws has been addressed. The merits of employing nonsmooth feedback
have been illustrated by bifurcation analysis of both the low order and high order
discretizations. A possible mechanism for nonsmooth feedback was suggested.

Successful experimental results have been reported regarding both the smooth
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and nonsmooth feedback controllers designed in this work.
To further extend the research covered in this dissertation, several possible
directions are noted as follows. Some of these problems are currently under

investigation.

1. Most of the existing results on controlling chaos are directed towards low-
dimensional systems. By contrast, our methodology is applicable to sys-
tems with arbitrary (finite) dimensions. Some intriguing applications are

 These cases usually

“controlling weather” and “controlling turbulence.’
deal with systems with very high dimensionality. A good starting point
is the two-layer quasi-model introduced by Lorenz [63], but with modi-
fications to include the beta effect and bottom topography [56], [24]. It
is our hope that our research on controlling chaos can serve as a hum-

ble step towards the seemingly impossible task of controlling weather and

turbulence.

2. The stabilization of period doubling bifurcations is achieved in the setting
of discrete time systems. However, to apply the results to continuous-time
nonlinear systems, one has to first construct a Poincaré map. The proce-
dure for constructing the Poincaré map is usually very unsystematic and in
most cases it is impossible to get an analytical form for this map. Thus it is
highly desirable to extend the results to continuous-time nonlinear systems.
One possible approach to this problem is to use the exchange of stability
property which is well known in bifurcation theory. Combining this prop-
erty with the describing function method, it can be determined whether

the bifurcated period-doubled orbits occur supercritically or subcritically.
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This determines their stability, and further calculations determine the de-

gree of stability.

. To extend the results on voltage collapse in electric power systems, one
can add an excitation system to the models considered in this dissertation.
Similar techniques can be used then to study the relationship between

voltage collapse and excitation control.

. Another problem currently under investigation is the control of nonlinear
systems near fold bifurcations. The idea is to extend the operating range ot
a system by introducing secondary attractors beyond the fold bifurcation

point.

. We have demonstrated that nonsmooth feedback can deliver surprisingly
superior performance in the active control stall in axial flow compressors.
The impact is two-fold: 1) The theory on bifurcation analysis of nonsmooth
systems is still a largely open problem; ii) The bifurcation control, critical
system stabilization or even the general nonlinear control theory will be

reshaped by developments in nonsmooth feedback design.
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