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 Physical activity preserves neurocognitive functioning in older adults by 

increasing brain blood flow and preserving neurotransmitter activity.  Because the frontal 

lobes show the greatest decline, the most apparent difference was expected between 

physically inactive versus active individuals when performing tasks that challenge frontal 

lobes.  Adults (66-92 years) with varied physical activity levels were administered 

binaural auditory oddball and go-nogo tasks.  The nogo trials challenged executive 

processes through response inhibition.  Physical activity was indexed with the Yale 

Physical Activity Survey.  EEG was recorded from frontal, central, and parietal sites.  

Multiple regression analysis revealed that the overall relationship of P300 amplitude to 

age and physical activity was significant during nogo trials at site F3, F (2, 75) = 3.61, p

= .032 and at site FZ, F (2, 75) = 6.26, p = .003.  In summary, physical activity is 

associated with a specific effect on the aging brain revealed during executive challenge.
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CHAPTER I

INTRODUCTION

As we age, our physical and mental abilities change considerably.  Similarly, 

central nervous system functioning also changes as we get older.  The body and brain 

mature rapidly during the early years of life, enabling us to gain mastery of our 

surroundings.  As we mature into the second decade, most physical and central nervous 

systems are matured, and maintained for a short time (Roberts, 1972).  Starting in the 

40’s, and continuing during the remainder of life, a gradual deterioration of behavioral 

and biological functioning occurs within the brain and body.  There is much variability 

however, in the loss of functionality that occurs with aging.  Many are able to maintain 

their physical and mental prowess, while others struggle to think clearly and perform 

daily activities.  Recent investigations have suggested that physical activity may benefit 

not only our physical bodies, but our mental functioning as well.  A case has been made 

for the slowing of the cognitive aging process through physical activity.  The following 

study will examine the relationship of cognitive function in an elderly population with 

physical activity from a neurobiological perspective.  

 It is estimated that by 2025 25% of Americans will be over the age of 65.  It is 

also predicted that in 2025, over eight million Americans will be 85 years of age or older 

(U.S. Census Bureau, 1990).  Cognitive function and emotional well-being are imperative 

to the quality of life in older adults.  Unfortunately, dementia and depressive disorders are 

prevalent in this population.  One factor that has been demonstrated empirically to 



2

influence the decline of neural processes during aging in a positive manner is physical 

activity.  

Researchers agree that there are many physical and emotional benefits of physical 

activity.  A brisk walk or a swim can improve sleep (Brassington & Hicks, 1995) and 

help regulate blood glucose levels (Giacca, Shi, Marliss, Zinman, & Vranic, 1994).  

Long-term participation can improve cardiovascular functioning, increase muscle 

strength, and enhance balance and flexibility (WHO, 1997; ACSM, 1999).  The 

physiological benefits of physical activity apply equally to almost all persons regardless 

of their age.  In addition, a number of remarkable psychological benefits accrue from a 

lifestyle of physical activity for those who are able to participate.   Psychological benefits 

of physical activity include improved mood state (Landers & Petruzzello, 1994; Nieman, 

Warren, Dotson, Butterworth, & Henson, 1993) and relaxation.  Physical activity can also 

help older persons adjust to the social pressures of aging.  Due to factors such as death of 

friends and loved ones, financial hardship, retirement, and ill health, many older persons 

have difficulty adjusting to old age (McPherson, 1990).  Enhanced life satisfaction, 

increased self-confidence, and better cognitive functioning (Berger & Hecht, 1990; 

McAuley & Rudolph, 1995; O’Connor, Aenchbacher, & Dishman, 1993) are some of the 

long-term benefits of a life of physical activity.  

In the process of normal aging, the human brain begins to lose tissue early in the 

third decade of life.  It is estimated that 15% of the cerebral cortex and 25% of cerebral 

white matter is lost between ages 30 and 90 (Colcombe et al., 2003).  Given the projected 

rapid growth in the aged population in developed countries (Tang, Antolin, & Oxley, 
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2001), and the staggering costs associated with cognitive deterioration, identifying 

interventions to protect against structural and functional declines of the central nervous 

system is rapidly emerging as an imperative public health goal.  Cognitive decline is most 

evident for those processes mediated by the frontal lobes of the brain (Dempster, 1992; 

Haug & Eggers, 1991; West, 1996).  

Early research into the relationship between age and physical activity relative to 

cognitive performance focused on simple and choice reaction time.  Spirduso (1975) 

showed that older active men reacted faster and performed similarly to younger active 

men than their less active counterparts or young non-active men.  It was concluded that 

aerobic fitness is associated with improved performance on cognitive functioning and 

psychomotor speed (Spirduso, 1980).  Additional studies have found age-related 

differences in performance on some cognitive tasks are attenuated in participants with 

high- compared to low-physical exercise (Dustman et al., 1984; Spirduso, 1980; Baylor 

& Spirduso, 1988), although strong effects are not always obtained (cf. Blumenthal & 

Madden, 1988; Dustman, Emmerson, & Shearer, 1994).  Older persons who are 

aerobically fit have demonstrated superior ability in attention, processing speed, short-

term and effortful memory, fluid intelligence, and perceptual set shifting (Bashore & 

Goddard, 1993; Chodzko-Zajko, Schuler, Solomon, Heinl, & Ellis, 1992; Christensen & 

Mackinnon, 1993; Dustman et al., 1984; Etnier, Landers, Petruzzello, Han, & Nowell, 

1997; Hassmen, Ceci, & Backman, 1992; Kramer et al., 1999; Landers & Arent, 2001; 

Powell & Pohndorf, 1971).   Kramer et al. (1999) found evidence to support the notion 

regarding the specificity of exercise and executive processes while measuring several 
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executive functions before and after six months of either an aerobic walking program or 

anaerobic toning and stretching program.  Participants in the aerobic group showed 

greater improvement than the anaerobic group on task switching, stopping, which 

measures the ability to abort a preprogrammed action, and response compatibility, which 

measures the ability to ignore stimuli irrelevant to the task.  Additionally, there were no 

differences between groups for the reaction time on non-switch trials but this difference 

from the other cognitive measures was expected since non-switch reaction time does not 

depend on executive control functions.  Furthermore, selective benefits were not found 

for spatial attention, visual search, digit-digit and digit-symbol comparison tasks, all of 

which do not rely on frontally mediated executive processes (Kramer et al., 1999).

Recent examinations of the link between cardiovascular exercise and CNS health 

that used animal models have shown positive effects of aerobic fitness on a wide range of 

brain health markers.  These effects are exerted by a chain of cellular and molecular 

cascades including increased levels of brain-derived neurotrophic factor, serotonin, 

capillary density (Cotman & Berchtold, 2002), and neurogenesis (van Praag, 

Kempermann, & Gage, 1999).  These changes result in a well-preserved brain that is 

more plastic and adaptive to change. It has been shown that physical activity also has 

beneficial effects on the human brain, reversing the aging process in these areas by 

preserving blood flow and neurotransmitters (Spirduso, 1980; Chodzko-Zajko & Moore, 

1994; West, 1996; Colcombe & Kramer, 2003).  Upregulation of brain-derived 

neurotrophic factor (nutrition for the brain) is increased in individuals who are physically 

active, leading to the promotion of neurogenesis, and improvements in learning (Cotman 
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& Berchtold, 2002).  This effect extends into the frontal lobe of the brain (C.W. 

Cotman, 2003, personal communication, June 3, 2003).  Because the frontal area ages 

fastest, the differences between fit and unfit elderly individuals may be most apparent for 

frontally mediated cognitive processes.

One of the ways to record basic cognitive processing is to measure the brain’s 

activity.  Electroencephalography is the measurement of cerebral cortical activation.  This 

tool can be useful for understanding cortical topographical activity in response to a 

behavioral challenge.  Averaging the cortical responses to such behavioral challenges 

over a number of trials can result in the discernment of event-related potentials (ERPs) 

that contain a number of components. These components index various neural processes 

involving sensory (i.e., exogenous) and cognitive (i.e., endogenous) events.  The P300 is 

an “endogenous” rather than an “exogenous” component because it is independent from 

the stimulus evoking it and is associated with cognition.  Of the endogenous event-related 

potential components, the P300 appears to be one of the most robust (Ortiz, Loeches, 

Miguel, Abdad, & Puente, 1994).  The P300 waveform is a positive deflection in the 

resulting time series that occurs at least 300 ms beyond stimulus presentation that can be 

characterized by both amplitude and latency.  Amplitude is defined as the voltage 

difference between a prestimulus baseline and the largest positive-going peak of the ERP 

waveform within a latency range (e.g., 300-650 ms). According to Polich (1996) P300 

amplitude is related to the neural resources allocated in decision-making or stimulus 

recognition and typically decreases with age.  P300 latency (ms) is defined as the time 

from stimulus onset to the point of maximum positive amplitude within the latency 
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window and provides an index of the time involved to process the stimulus. (Polich, 

1996).  Latency of the P300 is increased in older adults, indicating a delay in cognitive 

processing (Brown, Marsh, & LaRue, 1983).  ERPs can be recorded during varying types 

of cognitive challenge. One basic distinction in this regard is the classification of 

executive and non-executive type cognitive processes.  Executive processes require high 

levels of attention and are susceptible to degradation with increasing age.   Executive 

processes are effortful processes involved with the selection, inhibition, scheduling and 

coordination of the computational processes that are responsible for perception, memory, 

and action (Kramer et al., 1999).  Non-executive tasks rely on processes that are not 

dependent on the frontal lobe but depend instead on other areas of the brain.  Such 

automatic processes depend on component task processes that are mostly perceptual and 

action related (Kramer et al., 1999).   The former can be assessed in a basic manner with 

ERPs via a response inhibition task, the go-nogo, which elicits a P300 during the nogo 

trials. In this protocol the amplitude and latency of the P300 component of the resulting 

ERP indicates the integrity of cortical response to a basic executive challenge. 

Research has supported that executive function is mediated by the frontal lobes.  

Weisbrod, Kiefer, Marzinzik, and Spitzer (1999) noted that schizophrenic patients suffer 

from severe deficits in executive function, likely due to degenerative processes in the 

frontal lobes.  In this regard Roth, Horvath, Pfefferbaum, and Kopell (1980) reported that 

schizophrenics also displayed decreased amplitude of frontal P300 when compared with 

controls during an executive task paradigm.  This decrement was particularly pronounced 

in the left frontal area. Older men and women are also known to suffer from degeneration 
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of the frontal lobes.  Blood flow, brain weight, and cortical thickness show remarkable 

signs of decrease in this region (Dempster, 1992).  Functionally, such older individuals 

show significant executive deficits.  Therefore, older men and women are also likely to 

reveal reduced left frontal P300 amplitude during basic executive challenges when 

compared to younger individuals.  However, exercise participation has clearly been 

shown to attenuate the deficit in frontally mediated (i.e., executive) cognitive function in 

older men and women (Kramer et al., 1999).  Logically, it can be deduced from the 

studies above that exercise participation should reduce left frontal (F3) deficit in the 

elderly, also resulting in heightened P300 amplitudes in those who are more physically 

active.     

Therefore, in light of the beneficial effects of exercise on the frontal lobe it would 

seem that the P300 elicited at F3 during a response inhibition task would be positively 

associated with physical activity in a group of older individuals. The purpose of the 

present study is to examine the relationship of the frontal P300 amplitude to physical 

activity history in older men and women.

Statement of Problem

From the previous investigations, most research to date on the effects of the aging 

brain on the P300 have not considered the role of physical activity as a mediating 

influence on the age-related change.  Physical activity is a major contributor to 

maintaining a healthy lifestyle into old age because it appears to preserve brain structures 

related to cognitive function.  Cognitive tasks requiring response inhibition are affected 



8

by physical activity in a positive manner (Kramer et al., 2001), whereas tasks requiring 

little such effort are not affected by physical fitness.  Aerobic exercise specifically targets 

areas of the brain where executive control functions are processed, leading to 

improvements on tasks related to executive control.  However, no research has been 

reported to date in which activation of the frontal lobes has been assessed during the 

performance of such tasks in older individuals who vary in their participation in physical 

activity.  As such, a number of investigators have examined the specific effects of 

exercise on cognitive function (Kramer et al., 1999) and on brain processes in animals 

(Cotman & Berchtold, 2002), but the relationship between exercise and neurobiological 

function in the human brain is still in need of further study.  

A positive relationship is predicted between physical activity and cognitive 

function but it appears reasonable that the greatest benefits would be in the frontal region 

of the brain, which mediates executive processes such as response inhibition.  The 

purpose of the present study was to determine if superior frontal lobe function during 

executive challenges is associated with a more physically active lifestyle in older 

individuals relative to those who are sedentary.

Hypotheses

Hypothesis 1:

A positive relationship is predicted between P300 amplitude at the left frontal 

(F3) site and physical activity level during the nogo trials of the go-nogo task.  
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Hypothesis 2:

A negative relationship (i.e., negative slope) is predicted between P300 latency 

and physical activity level for left frontal (F3) in the nogo trials of the go-nogo task.

Note 1: 

No such relationships, as outlined in hypotheses 1 and 2, were predicted for P300 

amplitude and latency at site F3 during the rare or target trials of the oddball task.

Note 2:

In an exploratory manner, the same regression analyses as specified for amplitude 

and latency at site F3 will be conducted on all remaining sites to determine the 

relationship between global topographical cortical responses and physical activity level 

during the rare or target trials of both the go-nogo and oddball tasks.  In general, it was 

expected that any such relationships would be stronger during the target trials of the go-

nogo task relative to the oddball task.

Definition of Terms

1.  P300:  an endogenous component of a stimulus evoked event-related potential in the 

brain which occurs at approximately 300 ms that provides an index of basic cognitive 

function.

2.  Response Inhibition:  The ability to inhibit a response to a particular stimulus 

requiring cognitive effort.
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3.  Physical Activity:  Any type of voluntary bodily movement that is produced by 

skeletal muscles.

4.   Exercise:  Activity that requires physical or mental exertion, especially when 

performed to develop or maintain fitness.

5.  Fitness:  The measure of how well an individual is adapted to a specific work demand. 

This adaptation results is heightened capacity to perform maximal work and in greater 

efficiency (i.e., reduced strain) during the performance of sub-maximal work.

Delimitations

1.  The participant population were primarily healthy adults 66 years of age and older.  

(Ages ranged from 66-92 with the average age of 79.1)

2.  The participant population was high functioning independent living educated adults 

(55 female, 23 male).

Limitations

1.  This study was cross-sectional in nature, therefore only relationships may be 

demonstrated, not causation.
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CHAPTER II

REVIEW OF LITERATURE

The following review will examine the literature in a variety of areas associated 

with age, physical activity, and cognition.  Changes in brain structure and function related 

to aging will be identified.  Event-related potentials will be discussed relating to cognitive 

function and age.  Specifically, the P300 event-related potential will be discussed.  Next, 

the relationship between central nervous system functioning and physical activity will be 

considered.  The research will then be expanded to cover the relationship between 

physical activity, aging, and cognitive function.  Specifically, the effect of physical 

activity in an aging population on the P300 event-related potential will be discussed.

The Aging Brain

Decrements in brain weight and cortical thickness in midfrontal, superior 

temporal, and other cortical association areas have been observed in aging (Coffey et al., 

1992; Jernigan et al., 1991; Terry, DeTeresa, & Hansen, 1987).  Histological 

examinations indicate age-related changes in higher-order association cortices that are 

thought to occur as a consequence of cell loss (Brizzee, 1981; Brody, 1973; Henderson, 

Tomlinson, & Gibson, 1980; Kemper, 1984; Scheibel & Scheibel, 1975) and/or shrinkage 

of large neurons (Terry, DeTeresa, & Hansen, 1987).  Reduced density of neuronal spines 

and synaptic connections (Feldman, 1976; Katzman &Terry, 1983; Mervis, 1978; 

Scheibel, 1979) and the loss of horizontal dendrites (Scheibel & Scheibel, 1975) result in 
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a loss of complex programming functions within the brain and an impairment of extra-

and intracortical communication.  Also, degradation of neurotransmitter activity is 

believed to be an important element that contributes to neural degeneration and age-

related changes in behavior (Carlsson, 1987; Petkov, V.D, Petkov, V.V. & Stanciieva, 

1988).  These changes are most pronounced in the frontal area of the brain.  Dempster 

(1992) reported that the frontal lobes are one of the first areas in the brain to show signs 

of deterioration with age and that blood flow, brain weight, and cortical thickness 

decreases in this region.  Kramer and colleagues (1999) observed age-related decreases in 

the performance of executive tasks mediated by the frontal lobes.  These executive 

processes involve planning, scheduling, response inhibition, working memory, suggesting 

that frontal lobe decline is responsible for these decrements.  A basic task such as a go-

nogo paradigm tests response inhibition- or the stoppage of a response to a particular 

task. Older individuals would be expected to perform poorly relative to younger 

individuals.  Such a task elicits an event-related potential that can be examined to assess 

cortical inhibitory ability.  Specifically, the P300 component of this event-related 

potential yields both latency and amplitude measures.  Older individuals tend to have 

longer latencies and decreased amplitudes than younger individuals.

In regard to frontal lobe decline, schizophrenics can serve as a model of extreme 

aging.  Weisbrod, Kiefer, Marzinzik, and Spitzer (1999) noted that schizophrenic patients 

suffer from severe cognitive and attentional deficits, particularly from failure of executive 

control functions.  Roth, Horvath, Pfefferbaum, and Kopell (1980) reported that 

schizophrenics displayed decreased amplitude of frontal P300 when compared with 
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controls on an executive task paradigm.  This decrement was particularly pronounced in 

the left frontal area.  The P300 component of the event-related potential elicited by a 

basic attention task is a basic quantitative index of cognitive function.  When challenged 

with a task not involving response inhibition (i.e. executive control), schizophrenics 

performed similarly to controls (Weisbrod, Kiefer, Marzinzik, & Spitzer, 1999).   As 

such, event-related potentials were sensitive to the neurophysiological substrate of this 

dysfunction. Frontal amplitude was decreased in schizophrenics indicating that their brain 

activity is not as vigorous as normal patients.  Although not characterized by such severe 

frontal decline, frontal amplitude of the P300 is also decreased in older individuals.  In 

this manner, brain responses in older adults are directionally similar to those of 

schizophrenic patients, indicating a decline in frontal lobe function.  

Alzheimer’s disease is another brain disorder that occurs in older persons.  In a 

study by Frodl et al. (2002) P300 amplitudes were significantly diminished and latencies 

were significantly prolonged in patients with Alzheimer’s disease suggesting that P300 

amplitudes and latencies may be an accurate, inexpensive, noninvasive, clinically 

available marker for Alzheimer’s disease.  Event-related potentials may provide future 

insight to many pathways in the brain.  

The P300 Component of the Event-Related Potential

The P300, or P3, is a component of the event-related potential evoked by a 

detected improbable signal which contains a late positive component.  (Sutton, Braren, 

Zubin, & John, 1965; Squires, Squires, & Hillyard, 1975; Simson, Vaughan, & Ritter, 

1977; Ritter, Simson, Vaughan, & Friedman, 1979; Naatanen, Simpson, & Loveless, 
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1982).  An event-related potential (ERP) reflects a time series of fluctuating voltages 

recorded from the scalp surface in response to a target stimulus.  Topographically, the 

P300 component is represented by a parietal maximum.  The P300 component of the ERP 

has demonstrated considerable utility in the study of aging because it is thought to result 

from neural activity associated with memory and attentional processes.  This positive 

peak occurs about 300 ms after a specific event in young adults.  Picton, Stuss, 

Champagne, and Nelson (1984) found that the P300 component of the event-related 

potential shows consistent and significant age-related changes because of changes in 

human cerebral function.  It has also been used to evaluate mental function in patients 

with neurological and psychiatric disorders (Brown, Marsh, & LaRue, 1982; Goodin, 

Squires, Henderson, & Starr, 1978a; Hansch et al., 1982; Pfefferbaum, Ford, Wenegrat, 

Roth, & Kopell, 1984b; Squires, Chippendale, Wrege, Goodin, & Starr, 1980).  In a study 

investigating Alzheimer’s disease, Ortiz, Loeches, Miguel, Abdad, and Puente (1994) 

found the P300 useful for diagnosing dementia.  P300 latency and amplitude were 

measured in normal and demented individuals.  Significant differences between control 

and dementia groups were noted in the P300 latency, but not amplitude in the left 

temporal and parietal areas of the brain.  The above findings suggest that the P300 may 

be a robust neurophysiological marker in dementia.  

The simplest way to record this component requires that the participant attend to a 

series of regularly occurring stimuli in order to detect occasional targets that differ from 

the standard stimuli by some simple physical characteristic.  This has often been called 

the “oddball” paradigm (Picton, Stuss, Champagne, & Nelson, 1984).   The P300 is 
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measured by quantifying its amplitude (size) from baseline and latency (timing) from 

stimulus presentation.  Amplitude is defined as the voltage difference between a 

prestimulus baseline and the largest positive-going peak of the ERP waveform within a 

latency range (e.g., 300-650 ms, although the range can vary depending on participant 

characteristics, stimulus modality, task conditions, etc.).  Latency (ms) is defined as the 

time from stimulus onset to the point of maximum positive amplitude within the latency 

window (with 300 ms being the modal latency when the component is elicited by using 

auditory stimuli in young adults- hence the name). In addition, P300 scalp distribution is 

defined as the change in component amplitude across the midline recording sites from the 

Fz (frontal), Cz (central), and Pz (parietal) locations.  Scalp distribution effects are of 

substantial importance because variation in amplitude from the manipulation of task or 

subject variables has been used to infer information about P300 neural generators 

(Johnson, 1993).  The usual interpretation of P300 latency is that it is a metric of stimulus 

classification speed (Kutas, McCarthy, & Donchin, 1977; Magliero, Bashore, Coles, & 

Donchin, 1984; Polich, 1986c, 1987a), is generally unrelated to response selection 

processes (Duncan-Johnson & Donchin, 1982; McCarthy & Donchin, 1981; Pfefferbaum, 

Christensen, Ford, & Kopell, 1986; Ritter, Simson, Vaughan, & Macht, 1983), and is, 

therefore, independent of behavioral response time (Duncan-Johnson, 1981; Novak, 

Ritter, Vaughan, & Wiznitzer, 1990).  Indeed, it is these very properties that make the 

P300 a valuable tool for the assessment of cognitive aging.  

At least two factors go into the determination of P300 amplitude.  One is the 

amount of information received by the participant, which is a function of the a priori 
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uncertainty of the event’s occurrence minus an information loss due to the a posteriori 

uncertainty of having correctly perceived the event (Ruchkin & Sutton, 1977).  A second 

factor determining P300 amplitude is attention, a factor that also operates on some level 

to affect the amount of information the participant receives.  Instructions that induce the 

participant to allocate more attention to the stimuli increase P300 amplitude (e.g., 

Squires, N.K., Squires, K.C, & Hillyard, 1975; Squires, K.C., Donchin, Herning, & 

McCarthy, 1977).  

The P300 component has been related to many aspects of human information 

processing.  It is called an “endogenous” rather than an “exogenous” component because 

it is independent from the stimulus evoking it.  The P300 increases in amplitude when the 

target becomes more improbable and therefore more informative (Duncan-Johnson & 

Donchin, 1977; Campbell, Courchesne, Picton, & Squires, K.C.; Fitzgerald & Picton, 

1983).  Bashore, Osman, and Heffley (1989) concluded from their meta-analysis of 28 

studies that the P300 was delayed by some specific stage of processing rather than the 

complexity of the task.  In addition, the P300 has been related to cognitive processes that 

occur after incoming information has been analyzed.  Donchin (1981) hypothesized that 

the P300 component represents the updating of memory once sensory information has 

been analyzed.  According to Polich (1996), P300 amplitude indexes attentional resource 

allocation when memory updating is engaged; P300 latency indexes the time taken to 

allocate resources and engage memory updating.  
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These theoretical views of P300’s neuropsychological meaning will serve as a 

basis for how this ERP component measures the cognitive changes brought on by normal 

aging.  

P300 and age

Event-related potentials provide a somewhat different approach for studies of 

CNS functioning compared to cognitive assessments as they yield a functional measure 

of the “brain in action”, i.e. the processing of internal and external events.  

The initial demonstration that the P300 component changed with age was reported 

by Goodin, Squires, Henderson, and Starr (1978a), who used an auditory oddball task in 

which P300 components were recorded at the scalp from normal participants who varied 

in age.  Goodin, Squires, Henderson, and Starr (1978a) were the first to suggest that 

ERPs might be a useful tool for investigating age-related changes in cognition and that 

P300 latency provides a sensitive neuroelectric index of these changes.  The P300 has 

been studied extensively across the lifespan in order to evaluate the neurophysiological 

basis of the changes in cognition that occur with aging.  

Goodin and colleagues (Goodin, Squires, Henderson, & Starr, 1978a; Goodin, 

Squires, & Starr, 1978b) initially reported that the P300 component of the evoked 

potential to detected auditory signals was longer in latency in older participants than in 

young.  This has been replicated using both auditory and visual tasks (Squires, 

Chippendale, Wrege, Goodin, & Starr, 1984; Syndulko et al., 1982; Pfefferbaum, Ford, 

Wenegrat, Roth, & Kopell, 1984; Polich, Howard, & Starr, 1983).  Although there is an 

overall increase in P300 latency with increasing age, there appears to be a marked change 
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in old age (Beck, Swanson, & Dustman, 1980).   Beck, Swanson, and Dustman (1980) 

reported a latency increase of .8 ms per year until the age of 63 years and then a latency 

increase of 1.6 ms per year afterwards.  Brown, Marsh, and LaRue (1983) found no 

significant age-related change in the P300 latency of individuals below the age of 45 

years, although the P300 latency increased at a rate of 3.14 ms per year after age 45.  

Although there is an apparent discrepancy in the literature regarding the latency of P300, 

the overall agreement is a support of age-related latency increases.

Additionally, a number of studies have shown that the P300 amplitude decreases 

with age (Goodin, Squires, Henderson, & Starr 1978a; Goodin, Squires, & Starr, 1978b; 

Brown, Marsh, & LaRue, 1983).  In a study by Brown, Marsh, & LaRue (1983), the later 

ERP components showed prolonged latency and decreased amplitude in older 

participants while earlier components were not affected.  According to Goodin, Squires, 

Henderson, and Starr (1978a), age is a factor which should be carefully considered when 

attempting to reach conclusions from an evoked potential waveform.  This is particularly 

true in a clinical situation where a majority of neurological patients are substantially older 

than the population of college aged participants on whose data most of evoked potential 

research is based (Goodin, Squires, Henderson, & Starr, 1978a).  

Physical Activity and Cognitive Function

Several studies have found age-related decrements in performance on some 

cognitive tasks are attenuated in participants with high- compared to low-physical 

exercise (Dustman et al., 1984; Spirduso, 1980; Baylor & Spirduso, 1988), although 

strong effects are not always obtained (cf. Blumenthal & Madden, 1988; Dustman, 
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Emmerson, & Shearer, 1994).  Older persons who are aerobically fit have shown 

superior ability in attention, processing speed, short-term and effortful memory, fluid 

intelligence, and perceptual set shifting (Bashore & Goddard, 1993; Chodzko-Zajko, 

Schuler, Solomon, Heinl, & Ellis, 1992; Christensen & Mackinnon, 1993; Dustman et al., 

1984; Etnier et al., 1997; Hassmen, Ceci, & Backman, 1992; Kramer et al., 1999; 

Landers & Arent, 2001; Powell & Pohndorf, 1971).   Kramer et al. (1999) found 

compelling evidence to support the notion regarding the specificity of exercise and 

executive processes while measuring several executive functions before and after six 

months of either an aerobic walking program or anaerobic toning and stretching program.  

Individuals in the aerobic group showed greater improvement than the anaerobic group 

on task switching, stopping, which measures the ability to abort a preprogrammed action, 

and response compatibility, which measures the ability to ignore stimuli irrelevant to the 

task.  Further, there were no differences between groups for the reaction time on non-

switch trials but this difference from the other cognitive measures was expected since 

non-switch reaction time does not depend on executive control functions.  Additionally, 

selective benefits were not found for spatial attention, visual search, digit-digit and digit-

symbol comparison tasks, all of which do not rely on executive processes (Kramer et al., 

1999).

Exercise and Central Nervous System Effects in Animals

Dustman, Emmerson, and Shearer (1994) noted that the findings from animal 

studies strongly suggest there is a positive relationship between physical exercise and 

CNS health which occurs, at least in part, because of improved neurotransmitter 
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functioning, preservation of dopaminergic cells, increased vascularization, and increased 

cell hypertrophy and complexity.  Voluntary exercise in rats increased levels of brain-

derived neurotrophic factor (BDNF) and other growth factors, stimulated neurogenesis, 

and improved learning and mental performance (Cotman & Berchtold, 2002).  Evidence 

of improved dopamine receptor site binding as well as heightened striatal dopamine 

levels in brains of older rats has been associated with treadmill running (Spirduso, 1983).  

Furthermore, Isaacs, Anderson, Alcantara, Black, and Greenough (1992) found that both 

motor skill learning and repetitive physical exercise stimulated angiogenesis in the adult 

rat cerebellar cortex.  

Exercise, Aging, and Central Nervous System Function

In humans it also appears that exercise has benefits for overall health and 

cognitive function, particularly in later life.  Rogers, Meyer, and Mortel (1990) found 

higher levels of cerebral blood flow, associated with superior cognitive function, in 

retirees who were active as compared to sedentary individuals. These exercise-induced 

effects have been labeled the neurotrophic and cerebral circulation or oxygenation 

hypotheses, respectively (Van Boxtel et al., 1997).  

Additionally, Kramer et al. (1999) have advanced the notion that differences in 

cognitive function between fit and less fit elderly individuals is most apparent for tasks 

that involve frontal function (i.e. executive processes).  This difference makes sense in 

light of the relative magnitude of age-related decline in the frontal lobe as discussed 

earlier. Furthermore, Gazzaniga and colleagues (Gazzaniga, Ivry & Mangun, 2002) note 

that the cerebellum and basal ganglia are highly involved in the performance of executive 
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challenges.  It seems logical to assume that physical activity would preserve the integrity 

of these physical movement related structures.  

Effect of Exercise on P300

Current research has supported the notion that exercise has specific beneficial 

effects on cognitive function.  The following is a review of the literature associated with 

the P300 event-related potential and physical activity.  Nakamura, Nishimoto, Akamatu, 

Takahashi, and Maruyama (1999) examined the effect of jogging on P300 event-related 

potentials.  They administered an auditory oddball paradigm to seven well-trained 

joggers.  ERPs were measured before and after thirty minutes of jogging.  Amplitudes of 

the P300 increased after jogging compared to values recorded before jogging.  This 

suggests that jogging has a facilitative effect on cognitive processes involving the P300.  

Additionally, Magnie et al. (2000) compared P300 event-related potentials before and 

after a maximal cycling test in a group of cyclists and a group of sedentary individuals.  

Results showed a significant P300 amplitude increase and latency decrease in all 

subjects.  This further supports that notion of the arousing effect of exercise on the brain.  

Additional support was provided by Polich and Lardon (1997) for the effects of intensive 

physical exercise on P300 amplitude.   ERPs were recorded separately during auditory 

and visual oddball task conditions and compared in subjects who engage in high and low 

amounts of physical activity, respectively.  P300 amplitude was affected by exercise 

frequency, such that increased amounts of exercise were associated with increased 

amplitude.   Although these studies reveal the sensitivity of the P300 response to physical 

activity they are limited in their relevance to the purpose of the present study in that they 
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examined the relationship between activity and cortical response in an acute exercise 

setting (Magnie et al., 2001; Nakamura, Nishimoto, Akamatu, Takahashi, & Maruyama, 

1999) and focused on younger populations (Magnie et al., 2001; Nakamura, Nishimoto, 

Akamatu, Takahashi, & Maruyama, 1999; Polich & Lardon, 1997).

In a study of age, fitness level, and P300 latency, Bashore (1989) found that 

elderly men who were physically fit did not show an expected age related slowing of the 

P300 component.  Dustman et al. (1990) found that physically active men had shorter 

ERP latencies, stronger central inhibition, better neurocognitive performance, and better 

visual sensitivity compared to low fit men.  However, the older individuals in Dustman’s 

study were limited to persons aged 50-60 years. In an attempt to overcome this limitation 

McDowell, Kerick, Santa Maria, and Hatfield (2003) compared younger (18 – 30 years)

and older individuals (65 – 75 years) and supported the notion that physical activity 

attenuates the decline of cognitive function in older men and women.  They reported that 

physically active relative to inactive older individuals exhibited a more efficient cognitive 

response during an auditory oddball task as indexed by a reduced area under the curve for 

P300 amplitude. Based on this finding they suggested that a reduction in neural resources 

in response to a cognitive challenge (i.e., efficiency) is associated with greater physical 

activity in the elderly.  However, it would seem that a response inhibition task such as the 

nogo would be even more sensitive to detecting activity-related differences in cortical 

function in the elderly

Accordingly, the comparison of such P300 responses from the frontal area of 

older individuals (aged 66 and older), who differ in physical activity status, while 
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performing an executive cognitive challenge (i.e. go-nogo task), may yield important 

insights into the effects of physical activity participation on the aging brain.  In light of 

the predominant decline in frontal processes associated with aging, exercise may show 

the greatest effect during the performance of executive tasks.  As such, the P300 elicited 

during the nogo trials of a go-nogo task is an event-related potential component that may 

be particularly sensitive to the benefits of exercise on frontal brain cognitive function.
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CHAPTER III

METHODS AND PROCEDURES

The following chapter includes a description of the methods used to accomplish 

the stated purpose of the study, that is, to examine the relationship between aging, an 

event-related potential (P300), and physical activity.  

Participants

Participants consisted of 78 individuals (55 female, 23 male) 66 years of age and 

older.  The mean participant age was 79 years (sd = 5.5).  In addition, the mean number 

of years of education was 15.5 (sd = 2.8) with most participants having at least an 

undergraduate degree.  They possessed a wide range of physical activity status and were 

free of any disease which may affect the central nervous system. Participants were 

screened with a standard screening questionnaire to record health status, demographic 

variables, medication usage, and use of tobacco or alcohol.  Any participant who 

indicated usage of medication that could affect the CNS was eliminated from further 

participation.  All participants were right-handed. Participants gave their informed 

consent by signing a form approved by the Institutional Review Board. Participants 

completed the Mini-mental status exam (MMSE; Folstein, Folstein, & McHugh, 1975) to 

screen for dementia.  A score below 26 would indicate dementia and would eliminate 

those participants from further participation.  A measure to test IQ was used, the 

Kaufman Brief Intelligence Test (K-BIT; Kaufman & Kaufman, 1990).  It was used to 

determine the relative intelligence of the participant population for demographic 
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purposes.  Each participant was screened for stable EEG across a 2-min sampling period 

prior to recording resting brain activity in accordance with the tasks.  See table 1 for a 

summary of participant characteristics.

Table 1. Means and Standard Deviations of Participant Characteristics

Variables Combined   (sd) Men   (sd) Women   (sd)

Height (cm) 165.58   (9.32) 176.52   (6.5) 161.04   (5.9)

Weight (kg) 70.4   (14.5) 80.1   (12.01) 66.4   (13.6)

Age 79   (5.5) 79.7   (5.6) 78.9   (5.5)

Education (yrs) 15.5   (2.8) 16.5   (3.45) 15.0   (2.4)

Yale Energy 
Expenditure (kcals)

5232   (2684) 4849   (2173) 5386   (2867)

Yale Hours of Activity 24.90   (11.1) 23.05   (11.7) 25.64   (10.8)

MMSE total 28.62   (1.58) 28.45   (1.6) 28.69   (1.6)

Kaufman Composite
Percentile Rank

85.67   (12.96) 89.38   (9.3) 84.22   (13.9)

Behavioral Challenges

Participants performed a binaural auditory procedure.  Two tasks were employed: 

an oddball and a go-nogo task.  During the oddball task, participants were subjected to 

three blocks of 100 tones (80 common, 20 rare in each block) and were asked to press a 

button when they heard the target or rare tones.  Participants were asked to count the 

number of rare tones they heard in each of the trials and were asked to report the number 

at the termination of each block   In the go-nogo task, participants heard three blocks of 
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100 tones (80 common, 20 rare) and were asked to respond to the common tones only, 

withholding their response to the rare or target tones (inhibition).  Participants were not 

asked to count the tones in the go-nogo task.  Participants were instructed to look straight 

ahead at a target, and focus on the tones they heard in each of the tasks.  Tones were 

presented in the ear canal via a soft earplug insert.  Low tones (common tones) were 1000 

Hz and high tones (rare or target tones) were 2000 Hz.  The interstimulus interval was set 

at 2.00 seconds.  Tones were 80 db in the go-nogo task.  Tones were 95 db in the oddball 

task.

Measures

Physical Activity 

In order to determine the physical activity level of the participants, the Yale 

Physical Activity Survey (YPAS; DiPietro, Caspersen, Ostfeld, & Nadel, 1993) was 

employed.  The YPAS is a comprehensive instrument designed to examine a range of 

activities including household, leisure, and exercise settings (Young, Jee, & Appel, 

2001). The strengths of this instrument are its ability to assess moderate and vigorous 

physical activities and low-intensity physical activities such as leisurely walking and 

general daily activities (i.e., household chores, stair climbing). The participants were 

asked to estimate the amount of time spent in a list of twenty-five activities that they may 

have performed in a typical week during the last month. Weekly Energy Expenditure 

(kcal.week-1) is calculated by multiplying the time spent in each activity by an intensity 

code and then summing across all the activities. Additionally, the Total Time index is 

calculated by summing the time spent in each activity. Furthermore, individuals were 
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asked to categorize the frequency and duration of time spent in each of five physical 

activity dimensions; Vigorous Activity, Leisurely Walking, Moving, Standing, and 

Sitting. An index of each dimension is created by multiplying the duration and frequency 

together and then multiplying by the appropriate weighting factor for each given 

dimension. A Summary Index is calculated by summing across each activity dimension 

(Young, Jee, & Appel, 2001).  

The validity of the YPAS has recently been examined (Young, Jee, & Appel, 

2001).  In a study of 59 participants between the ages of 60-80, it was found that the 

global activities and vigorous activity indices correlated with the corresponding measures 

of the Stanford 7-day physical activity recall (PAR; Blair, Haskell, Ho, Paffenbarger, 

Vranizan, Farquhar, & Wood, 1985). The results for the low-intensity activity were not as 

clear, as corresponding measures for low-intensity activity have yet to be determined 

(Young, Jee, & Appel, 2001). In summation, the YPAS appears to provide a reliable and 

valid estimation of activity in an older adult population as it is a measure of stable 

activity patterns over time.  The independent variable, activity level, was represented in 

this study by the calculated weekly energy expenditure in kilocalories, which ranged 

from 1530 kcal to 19,887 kcal with a mean of 5232 kcal (sd = 2684).

EEG

EEG was recorded from nine sites of the scalp corresponding to Fz, F3, F4, Cz, 

C3, C4, Pz, P3, and P4 of the International 10-20 electrode placement system (Jasper, 

1958), referenced to the right mastoid (A2), and grounded to FPz.  EEG signal processing 

was conducted off-line with Neuroscan software (Neuroscan Labs, Neurosoft, Inc., 
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version 4.1.1, Sterling, VA).  EEG was re-referenced by linear derivation to average 

mastoids.  Ocular correction was performed and eye blinks were corrected using the eye 

correction algorithm in NeuroScan 4.1.1 (Semlitsch, Anderer, Schuster, & Presslich, 

1986).  Filter settings during data collection were .01 Hz and 100 Hz for the high-pass 

and low-pass settings, respectively. The time series data were epoched into 1100-msec 

segments, and baseline corrected based on a 100-msec prestimulus interval.  Artifact 

rejection procedures resulted in the removal of any epochs containing amplitudes greater 

than +- 100 µV from further analysis.  The common and rare epochs for the oddball and 

go-nogo tasks were sorted according to trial type.  The go trials, nogo trials, oddball 

common trials, and the oddball rare trials, were then averaged in the time domain to yield 

four averaged time series with event-related potentials resulting in response to the nogo 

trials of the go-nogo task and the rare trials of the oddball task.  The averaged time series 

were filtered further from 1-15 Hz. Waveforms were analyzed by peak picking with a 

latency window of 300-650 ms (Donchin et al., 1978; Eimer, 1993; Kopp, Mattler, 

Goertz, & Rist, 1996) and entered into an SPSS spreadsheet. Additionally, average 

amplitudes over this time window were created by averaging P300 amplitudes using 

Neuroscan version 4.2 algorithm.  These too were entered into SPSS version 11.5 for 

analysis.

Testing Procedures

Participants were required to complete two days of testing each consisting of 

approximately two hours.  On day 1, participants provided their informed consent, 

completed a battery of questionnaires designed to examine physical activity (YPAS), 
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intelligence (K-BIT), and mental status (MMSE).  The data used in this investigation 

was part of a larger investigation.

On day 2 the participants were fitted with a electrode cap housing tin electrodes 

for the electroencephalographic recording. Gold electrodes were placed above and below 

the right eye for recording of eye blinks, to the side of each eye for the recording of 

horizontal eye movement, and on the mastoids to serve as reference. With these 

electrodes in place, the participants were fitted with a nylon/spandex electrode cap 

(electro-cap international, Dallas, TX) for the placement of scalp electrodes. When the 

cap was in place, electro-conductive gel was inserted, via a hollow tipped plastic syringe, 

into the eye and reference electrodes as well as electrode sites Fz, F3, F4, Cz, C3, C4, Pz, 

P3, P4, and Fpz, which served as ground (International 10-20 system, Jasper, 1958). 

Impedances were checked and brought below 10 Kohms. Participants were instructed to 

sit quietly in a chair and look straight ahead.  They were asked to count the target tones in 

the oddball task and report them upon completion of each trial.  For each task, accuracy 

and response latencies as generated by a button press (or inhibition of button press in 

appropriate trials – i.e., nogo) were recorded for all trials in the experimental blocks. 

Accuracy was determined by the percentage correct out of the total number of trials in the 

block.  Failing to respond on a trial resulted in an incorrect answer.  In addition, 

responding when instructed to withhold a response also resulted in an error (i.e., nogo 

trials).  Continuous EEG was recorded during the three blocks of 100 trials each during a 

binaural auditory go-nogo task and an oddball task.  EEG was acquired at a sampling rate 

of 256 Hz and amplified 20,000 times, while the eye channels were amplified 5,000 times 
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using Grass model 12A5 Neurodata Acquisition amplifiers with band-pass filter settings 

of 0.1-100 Hz (96-db/octave). Amplifiers were calibrated prior to each testing session 

with a 10-Hz, 50-µV sinusoidal input signal that was presented to all channels 

simultaneously. Data sampling was controlled by Neuroscan software (Neuroscan Labs, 

Neurosoft, Inc., Sterling, VA) installed on a Gateway 2000 Pentium computer (Gateway, 

North Sioux City, SD).

Statistical Analysis

Separate regression analyses were employed to examine the direction and 

magnitude of the relationship between physical activity and average left frontal P300 

amplitude during the target trials of (1) the nogo and (2) the oddball tasks.  In order to 

control for any effects of age on the P300 response the full regression model included 

both age and physical activity (weekly Kcal activity expenditure) as predictors. Age was 

entered first in the equation. The peak amplitude and latency of the P300 component at 

site F3 were also separately regressed on age and physical activity during the target trials 

of the go-nogo and oddball tasks in a similar manner.  Average amplitudes, peak 

amplitudes, and peak latencies of the P300 component recorded at all other locations (Fz, 

F4, Cz, C3, C4, Pz, P3, and P4) during the target trials of the two tasks were similarly 

subjected to such analyses in order to assess the extent of the relationship of physical 

activity with cortical response across the entire montage.

Note:  P300 amplitudes (average and peak) and latencies were also regressed on a subset 

of the weekly activity expenditure, that is, the vigorous exercise participation category, 
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and a number of significant effects were noted.  See Appendix A for a summary of these 

results. 
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CHAPTER IV

RESULTS AND DISCUSSION

Overview

The results will be organized in the following manner.  The hypotheses will be 

restated and the respective results reported for both the go-nogo and oddball tasks at site 

F3 will include a full model regression analysis of the P300 (i.e., amplitude or latency) 

based on age and physical activity, as well as the explained variance (R square) in the 

variable of interest from the predictors.  Scatterplots will be used to illustrate the 

relationship (i.e., intercept and slope) between the P300 component of interest and 

physical activity.  The results obtained from the exploratory analyses (remaining sites) 

will follow.  As indicated earlier, executive task performance was predicted to show 

differences based on physical activity level as determined by the weekly energy 

expenditure, meaning that more physically active individuals should exhibit higher 

amplitudes and shorter latencies than those who are less active.  

Results 

Descriptive statistics of the current data provided support that the amplitude of the 

P300 component of the event-related potential was characterized by a parietal maximum.

In the rare nogo trials, the maximum average amplitude of the P300 was at site Pz (mean 

= 7.24 µV).  Parietal sites P3 and P4 follow, respectively.  In the middle of the amplitude 

range, central sites Cz, C3, and C4 were exhibited.  Lastly, frontal sites (Fz, F3, and F4) 

revealed the lowest amplitudes.  The oddball rare trials were also defined by maximum 

amplitude at site Pz (mean = 5.79 µV).   This was followed by sites P4 and P3.  Central 
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sites C4, C3, and Cz followed in regard to magnitude of the amplitude, with the frontal 

sites F4, Fz, and F3 revealing the lowest amplitudes.  

Hypothesis One

A positive relationship was predicted between P300 amplitude and physical 

activity for F3 during the nogo trials of the go-nogo task.  Support was found for this 

hypothesis.  Multiple regression analysis revealed that the overall relationship of P300 

amplitude to age and physical activity was significant at site F3 during the executive 

control task, F (2, 75) = 3.61, p = .032.  The full model (age and activity) accounted for 

9% of the variance in P300 amplitude at this site.  The slope of the relationship between 

physical activity and amplitude was significant (t = 2.55, p = .013) indicating that those 

who were more physically active presented higher amplitudes as the standardized 

regression coefficient (β) for kilocalorie expenditure was .281.  See figure 1 for a 

scatterplot of this regression.  

In contrast, a non-significant relationship between P300 amplitude and physical 

activity was revealed at site F3 during the target trials of the oddball task, F (2, 74) = 

.021, p = .979.  

In addition, an extreme contrast of the most physically active (n=5) and least 

physically active (n=5) was plotted to compare the grand average waveforms produced.  

See figure 2 for a depiction of these waveforms. Line A marks the high active group 

while line B marks the low active group.  High active individuals exhibited higher 

amplitudes (mean= 8.738 µV) than low active individuals (mean= 5.474 µV).  High 
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active participants also had shorter latencies (mean= 400 ms) than the low active group 

(mean= 440 ms).
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Figure 1.  Scatterplot of P300 amplitude at site F3 during nogo trials regressed on 

physical activity
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Figure 2.  Grand average waveforms of extreme contrast between high vs. low physical 

activity groups during nogo trials

Table 2 provides a summary of the regression analyses for average amplitudes 

during the nogo trials of the go-nogo task at the remaining electrode sites.  Exploratory 

analyses revealed additional support for hypothesis one.  Multiple regression analysis 

revealed that the overall relationship of P300 amplitude to age and physical activity was 

significant at site Fz during the executive control task, F (2, 75) = 6.26, p = .003.  The 

full model (age and activity) accounted for 14% of the variance in P300 amplitude at this 

site.   The slope of the relationship between physical activity and amplitude was 

significant (t = 3.39, p = .001) indicating that those who were more physically active 

presented higher amplitudes as the standardized regression coefficient (β) for kilocalorie 

expenditure was .363. See figure 3 for a scatterplot of this regression analysis.
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Figure 3.  Scatterplot of P300 amplitude at site Fz during nogo trials regressed on 

physical activity

Multiple regression analysis also revealed that the overall relationship of P300 

amplitude to age and physical activity was significant at site C4 during the executive 

control task, F (2, 75) = 3.57, p=.033.  The full model (age and activity) accounted for 

9% of the variance in P300 amplitude at this site.  The slope of the relationship between 

physical activity and amplitude was significant (t = 2.47, p = .016) indicating that those 

who were more physically active presented higher amplitudes as the standardized 

regression coefficient (β) for kilocalorie expenditure was .273. See figure 4 for a 

scatterplot of this regression analysis.  
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Figure 4.  Scatterplot of P300 amplitude at site C4 during nogo trials regressed on 

physical activity
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Table 2.  Regression analysis of P300 amplitude on age and physical activity:  Overall 

summary of results for amplitudes elicited at all remaining sites during nogo trials.

Dependent 
Variable

Predictor df Beta t p

FZ Amplitude Activity 2,75  0.363  3.394  0.001
Age 2,75 -0.105 -0.979  0.331

F4 Amplitude Activity 2,75  0.200  1.781  0.079
Age 2,75 -0.103 -0.914  0.364

CZ Amplitude Activity 2,75  0.163  1.439  0.154
Age 2,75 -0.107 -0.948  0.346

C3 Amplitude Activity 2,75  0.217  1.924  0.058
Age 2,75 -0.035 -0.313  0.755

C4 Amplitude Activity 2,75  0.273  2.471  0.016
Age 2,75 -0.112 -1.011  0.315

PZ Amplitude Activity 2,75  0.220  1.950  0.055
Age 2,75 -0.008 -0.069  0.945

P3 Amplitude Activity 2,75  0.208  1.838  0.070
Age 2,75  0.017  0.150  0.881

P4 Amplitude Activity 2,75  0.222  1.968  0.053
Age 2,75 -0.031 -0.276  0.783

Hypothesis Two

A negative relationship was predicted with P300 latency and physical activity at 

site F3 in the nogo condition of the go-nogo task.  This relationship was not supported, 

(F= .151, p = .860).  The slope of this relationship was not significant (t = .327, p = .745) 

as the standardized regression coefficient (β) for kilocalorie expenditure was .038.
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As a comparison, the relationship between P300 latency and physical activity at 

site F3 in the oddball target trials was examined.  This relationship was not supported, 

(F= 1.775, p = .177).  The slope of this relationship was not significant (t = 1.550, p = 

.126) as the standardized regression coefficient (β) for kilocalorie expenditure was .184.

Exploratory analyses will now be discussed and significant findings presented 

with an illustration of each relationship provided. Table 3 has been provided to 

summarize the overall results of the relationship between P300 latency, age, and physical 

activity to the target responses during a nogo task at all remaining recording sites.  

Multiple regression analysis revealed that the overall relationship of P300 latency 

to age and physical activity was significant at site P4 during the executive control (nogo) 

task, F (2, 74) = 4.23, p=. 018.  The full model (age and activity) accounted for 10% of 

the variance in P300 latency at this site.  The slope of the relationship between physical 

activity and latency was significant (t = -2.20, p = .031) indicating that more physically 

active individuals present shorter latencies as the standardized regression coefficient (β) 

for kilocalorie expenditure was -.243.  Figure 5 shows a scatterplot of this regression 

analysis.
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Table 3.  Regression analysis of P300 latency on age and physical activity:  Overall 

summary of results for latencies elicited at all remaining sites during nogo trials

Dependent 
Variable

Predictor df Beta t p

FZ Latency Activity 2,74  0.082  0.717  0.476
Age 2,74  0.148  1.291  0.201

F4 Latency Activity 2,74 -0.010 -0.089  0.929
Age 2,74  0.067  0.581  0.563

CZ Latency Activity 2,74 -0.088 -0.776  0.440
Age 2,74  0.220  1.946  0.055

C3 Latency Activity 2,74 -0.136 -1.204  0.232
Age 2,74 0.187  1.652  0.103

C4 Latency Activity 2,74 -0.013 -0.110  0.913
Age 2,74  0.164  1.434  0.156

PZ Latency Activity 2,74 -0.200 -1.802  0.076
Age 2,74  0.230  2.078  0.041

P3 Latency Activity 2,74 -0.176 -1.567  0.121
Age 2,74  0.192  1.714  0.091

P4 Latency Activity 2,74 -0.243 -2.205  0.031
Age 2,74  0.210  1.911  0.060
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Figure 5.    Scatterplot of P300 latency at site P4 during nogo trials regressed on physical 

activity

In addition, multiple regression analysis revealed that the overall relationship of 

P300 latency to age and physical activity was significant at site Pz during the executive 

control task, F (2, 74) = 3.76, p=. 028.  The full model (age and activity) accounted for 

9% of the variance in P300 latency at this site.   However, the slope of the relationship 

between physical activity and latency was not significant (t = -1.80, p = .076). The slope 

of the relationship between age and latency was significant (t = 2.08, p = .041).  These 

results indicate that with advancing age, latency increases.  See figure 6 for a scatterplot 

of this relationship.
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Figure 6.  Scatterplot of P300 latency at site Pz during nogo trials regressed on age

 The following section reports the P300 amplitude and latency responses during 

the target trials of the oddball task at all remaining recording sites other than F3.  No 

significant relationships were predicted between weekly physical activity and these 

measures during this non-executive task. Table 4 summarizes the results for average 

amplitude.
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Table 4.  Regression Analysis of P300 amplitude on age and physical activity:  Overall 

summary of results for amplitudes elicited at all remaining sites during rare oddball trials

Dependent 
Variable

Predictor Df Beta t p

FZ Amplitude Activity 2,74 -0.037 -0.320  0.750
Age 2,74 -0.033 -0.285  0.776

F4 Amplitude Activity 2,74  0.100  0.867  0.389
Age 2,74 -0.022 -0.191  0.849

CZ Amplitude Activity 2,74  0.137  1.185  0.240
Age 2,74  0.063  0.546  0.587

C3 Amplitude Activity 2,74 -0.024 -0.209  0.835
Age 2,74  0.078  0.672  0.504

C4 Amplitude Activity 2,74  0.088  0.762  0.448
Age 2,74 -0.013 -0.116  0.908

PZ Amplitude Activity 2,74  0.054  0.461  0.646
Age 2,74  0.055  0.472  0.638

P3 Amplitude Activity 2,74 -0.016 -0.136  0.892
Age 2,74 -0.023 -0.194  0.847

P4 Amplitude Activity 2,74  0.062  0.533  0.596
Age 2,74  0.029  0.253  0.801

Table 5 provides a summary of the results of the relationship between P300 

latency, age, and physical activity at the remaining sites to the target responses during an 

oddball task.   
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Table 5.  Regression Analysis of P300 latency on age and physical activity:  Overall 

summary of results for latencies elicited at all remaining sites during rare oddball trials

Dependent 
Variable

Predictor df Beta t p

FZ Latency Activity 2,74  0.084  0.697  0.488
Age 2,74  0.057  0.474  0.637

F4 Latency Activity 2,74  0.043  0.360  0.720
Age 2,74  0.219  1.844  0.070

CZ Latency Activity 2,74  0.106  0.876  0.384
Age 2,74  0.034  0.285  0.776

C3 Latency Activity 2,74  0.006  0.052  0.959
Age 2,74  0.239  2.027  0.047

C4 Latency Activity 2,74  0.022  0.183  0.855
Age 2,74  0.077  0.637  0.526

PZ Latency Activity 2,74 -0.085 -0.699  0.487
Age 2,74 -0.002 -0.013  0.990

P3 Latency Activity 2,74 -0.121 -1.006  0.318
Age 2,74  0.074  0.613  0.542

P4 Latency Activity 2,74 -0.083 -0.690  0.493
Age 2,74  0.078  0.644  0.522

Although the overall relationship of P300 latency at site C3 to age and physical 

activity was not significant, F, (2,68), p = .135, a relationship was found between P300 

latency and age, t  = 2.027, p = .047.  Standardized regression coefficient (β) for age was 

.239.  R² accounted for 6% of the variance in the full model.  The slope of this 

relationship indicated that with an increase in age, latency increases.  See figure 7 for a 

scatterplot of this regression analysis. 
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Figure 7.  Scatterplot of P300 latency at site C3 during rare oddball trials regressed on 

age

Reaction Time Results 

Participants in this study had a mean reaction time of 457 ms (sd= 8.6) with a 

minimum reaction time of 250 ms and a maximum of 760 ms on the rare trials of the 

oddball task.  The overall relationship between reaction time on the rare oddball trials, 

physical activity, and age was not significant, F, (2,75), p = .328.  

The average error rate on the target nogo and oddball tasks was 4.7%  +/-  5.7% 

(mean  +/-  sd) for commission errors (pressing the button with incorrect stimuli).  The 
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average error rate was 5.6 +/-  7.6 % (mean  +/- sd) for omission errors (missing the 

target stimuli).

Discussion

The current study was designed to investigate the relationship between physical 

activity, age, and cognitive performance on both executive and non-executive tasks in 

older adults.  More specifically, the hypotheses proposed that older adults with higher 

physical activity levels would exhibit higher amplitudes in the left frontal region during 

an executive task and that a relationship would also occur between physical activity level 

and P300 latency at this site. Because of the specific relationship posited between frontal 

lobe integrity and physical activity participation no such relationships were predicted 

during the execution of the nonexecutive (i.e., oddball) task. These predictions were 

largely supported by the present findings. 

In the aging process there is a generalized slowing of nervous system functioning 

that is observed at peripheral, brain stem, sensory receiving, and cognitive-integrative 

levels.  Inhibition weakens during normal aging (Dustman & Shearer, 1987; Roberts, 

1972; Shagass, 1972).  An inability to inhibit external and internal stimuli might result in 

distractibility and impaired attention and concentration (Botwinick, 1973; Hoyer & 

Plude, 1980; Schaie, 1958; Strommen, 1973; White, 1965).  The nogo condition of the 

present study provided an executive task challenge, which requires response inhibition.  

The independent variable of interest in this study was weekly physical activity 

involvement.  Specifically, physical activity is an appropriate variable to examine in the 

current population as it engages a broader population segment as opposed to exercise for 
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fitness benefits which is characteristic of a rather small population especially in the age 

range examined herein.  The Yale Physical Activity Survey (YPAS), employed in the 

present study, has been proven a valid measure of activity specific to older populations.  

The YPAS is a measure of stable activity patterns over time and was useful to use with 

the current study participants who were engaged in stable patterns of activity for at least 

five years. This procedure along with the assessment of typical weekly Kcal expenditure 

captured long-term physical activity patterns as opposed to acute bouts of physical 

activity.  Most participants in the present study did not engage in intense aerobic 

activities, suggesting that moderate physical activity is beneficial for cognitive brain 

function.  Participants who performed moderate physical activity incorporated it into their 

lifestyle.  According to Etnier, Salazar, Landers, Petruzzello, Han, and Nowell (1997), 

physical activity that is acute may be inconsequential when small and temporary changes 

in physiological parameters occur.  The influence of activity becomes larger as the size or 

permanence of changes increase.  

Physical activity provides many benefits specific to brain function.  There is 

evidence that physical activity has an angiogenic effect on the cerebellum which also 

plays a role in executive function (beyond that of the frontal lobes) (Isaacs et al, 1992).  

This suggests that physical activity may target areas of the brain where executive control 

functions are processed, leading to less of a decline in performance in these areas.  

Investigators have suggested that because of the beneficial effects that strenuous physical 

activity has on the cardiovascular system, appropriate exercise may benefit CNS health.  

Specifically, physical activity has beneficial effects on the hippocampus (Cotman & 
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Berchtold, 2002), which is an area of the brain that is affected by Alzheimer’s disease.  

Cotman and Berchtold (2002) suggest that exercise may help protect against aging in the 

brain through upregulation of brain-derived neurotrophic factor (BDNF) as well as other 

growth factors.  This stimulates neurogenesis, and can lead to improved learning and 

mental function.  This neurotrophic effect is predominantly in the hippocampal area of 

the brain, but extends to other areas including the frontal lobe.  Therefore, because 

hippocampal degeneration is a primary factor in Alzheimer’s disease it would appear that 

physical activity would help protect the hippocampus and be beneficial towards warding 

off such dementia.  

Overall, support was shown for frontal lobe effects related to physical activity in 

the present study.  Increased kilocalorie expenditure was positively related to amplitude 

in the frontal area (F3) of the brain during the nogo trials of a go-nogo task, which is an 

executive task.  This supports the finding of Kramer et al. (1999) in which aerobic 

exercise training increased executive control performance, particularly in the frontal 

region of the brain.  This area is one of the fastest to decline with advancing age.  

Specifically, blood flow, brain weight, and cortical thickness decreases in this region 

(Dempster, 1992).  In addition, midline frontal activation was also related to physical 

activity and P300 amplitude providing further support for the frontal lobe hypothesis.  

Right central activation was also positively related to physical activity levels.  A reason 

for this could be that executive tasks require effortful cognitive processing in several 

areas throughout the brain.  Interestingly, the amplitude of F3 recorded during the oddball 

task was not related to physical activity in this study.  The oddball task is traditionally 
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thought of as a non-executive task.  The performance of a non-executive task is 

relatively independent of frontal lobe function.  Therefore, brain response during an 

oddball task would not be expected to show the same magnitude of benefit, as it would 

during a go-nogo task.  As such, there appears to be a degree of specificity in the kind of 

cognitive function that declines with age.  

Advancing age is related to an increase in latency in the P300 as discussed earlier 

(Beck, Swanson, & Dustman, 1980; Brown, Marsh, & LaRue, 1983).  Latency at site F3 

was not related to weekly physical activity level, however, at site P4, kilocalorie 

expenditure was significantly related to P300 latency in the nogo condition of the go-

nogo task, indicating that more physically active individuals revealed shorter latencies.  

This provides additional support for the relationship between executive control processes 

and physical activity.

There are several possible explanations for the findings in the current study.  The 

participants were high functioning adults residing in an independent living facility.  Most 

of the residents who participated in this research study appeared to be moderately active.  

Additionally, the sample included mostly men and women with at least an undergraduate 

degree and several held graduate degrees.  Participants’ scores on the MMSE indicated 

that they were high functioning.  The mean score on the MMSE for both men and women 

was 28.62 (sd = 1.58) (MMSE; Folstein, Folstein, & McHugh, 1975).  A measure to test 

IQ was used, the Kaufman Brief Intelligence Test (K-BIT; Kaufman & Kaufman, 1990).  

It was used to determine the relative intelligence of the participant population for 

demographic purposes.  Participants’ mean percentile rank on the K-BIT was 85.67 (sd = 
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12.96) out of 100.  More years of education and higher intelligence may mean that those 

individuals have less room for cognitive improvement due to physical activity because 

they are already mentally stimulated and make efforts daily to keep mentally active.  In 

other words, an educated group may have less frontal lobe decline and thus, less potential 

improvement on executive functioning when they are physically active as related to a 

more challenged group (dependent living).  In this regard the present study provided a 

rather conservative test of the relationship between physical activity participation and 

brain function in the elderly.

On a behavioral level, participant’s number of errors on the tasks varied, however, 

participants performed very well on the tasks.  The frequency of executive task (nogo) 

errors made by the participants consisted predominantly of zero, one, or two errors total.  

The maximum number of total errors an individual made was 26 in the nogo condition.  

These low frequencies of error imply that the participants were able to inhibit their 

response, or they were correct in responding.  Participants also made only zero, one, or 

two errors most frequently during the non-executive task (oddball).  The maximum 

number of total errors in the oddball condition for an individual was 43. The EEG level 

of analysis revealed a different picture than the behavioral but it may be that behavioral 

differences would emerge if the tasks were sustained over a longer period of time.

Also, in the present study, no reaction time effects were found with physical 

activity during the oddball task.  In addition, no amplitude effects were found.  Because 

of the many factors that affect reaction time beyond P300 latency and amplitude, it is also 
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possible that more sustained behavioral challenges would have revealed differences in 

reaction time that were related to physical activity level. 

In summary, results of the current study are consistent with findings in the 

literature supporting the notion of an increase in P300 amplitude and decrease in P300 

latency with physical activity.  Support has been provided for the beneficial effects of 

physical activity on cognitive function in older adults, specifically related to executive

tasks.  Many of the participants in the current study reported that they took steps to keep 

mentally active in addition to their physical activity participation.  Cognitive challenges, 

too, may be beneficial to an aging brain.



52

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

Physical activity appears to have neurobiological benefits.  The current study 

provides support for previous investigations conducted in the last two decades, which 

have suggested that physical activity may help prevent cognitive decline associated with 

age.  Executive processes, which characterize frontal cognitive processes, are positively 

related to physical activity in the present sample.  The frontal area of the brain declines 

more rapidly than other areas as we get older (West, 1996).  Slowing this decline would 

make a person’s quality of life greater.  There are several reasons why the frontal area 

might be preserved in older persons who engage in physical activity.  First, increased 

oxygen and cerebral blood flow (CBF) occurs during motor behavior (Spirduso, 1980).   

Second, neurogenesis is promoted through upregulation of brain-derived neurotrophic 

factor (BDNF) which improves learning and mental function (Cotman & Berchtold, 

2002).  Additionally, neural structures appear to be maintained in the frontal region in 

those who are physically active (Colcombe & Kramer, 2003).  

The amplitude of the P300 event-related potential was positively related to 

physical activity in this population, specifically in the left frontal area, which supports the 

previously stated research.  Exploratory analyses revealed that additional support was 

found in the central region of the brain as well.  Support was not found for a relationship 

(i.e. slope) between age, P300 latency, and physical activity in the nogo trials of a go-

nogo task in the frontal area.  However additional analyses revealed a relationship in the 
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parietal region for physical activity and age.  This indicates that as a person’s activity 

increases, their latency decreases.  Additionally, this provides support for the notion that 

as we age, we process things slower.  A positive relationship between P300 amplitude, 

activity, and the midline parietal region was not supported during the oddball task.  As 

was previously stated, the oddball task is a non-executive task which does not require 

effortful cognitive processing; therefore the results may indicate that this was an easy 

task for the participants.  A positive relationship in the central region of the brain was 

found between age and P300 latency, indicating that with an increase in age, latency 

increases.  

Conclusions

The results of the current study revealed:

1. Regular physical activity is beneficial for frontal areas of the brain, particularly 

for left frontal areas (F3).

2. Additional memory-dependent tasks should be explored relative to cognitive 

function to provide further support for the beneficial effects of physical activity in 

an aging population.

Directions for Future Research

Several suggestions for future research follow: A less homogeneous sample of 

participants, a longitudinal study with event-related potentials for various age groups, 

several methods of cognitive challenge, and introduction of genetic influences.  

Additionally, future investigations should explore other possible factors that may 
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influence frontal lobe processes in the elderly other than physical activity, such as 

genetics, intelligence, education, and nutrition.
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Appendix A

Regression analysis of P300 amplitude on age and vigorous exercise:  Overall summary 

of results for amplitudes and latencies elicited at all recording sites during target oddball 

and nogo trials

Site Predictor Nogo 
P300 
Average 
Amplitude

p

Nogo 
P300 
Latency

p

Oddball 
P300 
Point 
Estimate 
Amplitude
p

Oddball 
P300 
Average 
Amplitude

p

Oddball 
P300 
Latency

p

FZ Exercise  0.061  0.669  0.092  0.320  0.749
Age  0.191  0.243  0.748  0.660  0.637

F3 Exercise  0.032  0.777  0.704  0.463  0.625
Age  0.211  0.711  0.932  0.750  0.265

F4 Exercise  0.015  0.580  0.261  0.045  0.422
Age  0.156  0.651  0.733  0.540  0.056

CZ Exercise  0.065  0.031  0.525  0.036  0.704
Age  0.189  0.019  0.657  0.930  0.881

C3 Exercise  0.032  0.006  0.308  0.074  0.625
Age  0.446  0.027  0.517  0.716  0.041

C4 Exercise  0.101  0.290  0.025  0.001  0.727
Age  0.190  0.107  0.592  0.427  0.581

PZ Exercise  0.151  0.068  0.247  0.022  0.577
Age  0.710  0.019  0.761  0.975  0.892

P3 Exercise  0.114  0.009  0.646  0.291  0.925
Age  0.850  0.026  0.921  0.709  0.493

P4 Exercise  0.118  0.027  0.531  0.137  0.842
Age  0.550  0.023  0.926  0.958  0.475

Note:  No significant results were found between exercise, age, and P300 point estimate 
amplitudes during nogo trials.  As such, they were not reported.
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Appendix B

Task Instructions

Oddball Task

For this experiment, you will be seated in this chair listening to tones through the 

earplugs that are in your ears.  You will only need a button to participate in this study.  

Once the experiment begins, you will hear a series of tones.  Specifically, you will 

hear two types of tones:  low tones and high tones. Your task is to listen to each tone and 

to respond only to the high tones by pressing the button.  For example, if you hear a low 

tone followed by another low tone, followed by a high tone, you would only respond to 

the last tone.  Try to count the high tones as they are presented, and I will ask you to tell 

me the number at the end of the task.  Please look straight ahead at the target on the wall.

Again, you will hear a series of low and high tones.  You are asked to listen to 

each tone carefully and to only respond to the high tones by pressing the button.  Please 

do not respond to the low tones.  

If this isn’t clear right now, don’t worry.  I am going to give you some practice 

tones to get you comfortable with the experiment before we begin.  

Lastly, please try to refrain from any excessive movements during the experiment.  

If you need to scratch, cough, etc. feel free to do so, but if you can hold off until between 

trials, it would be greatly appreciated.

Do you have any questions before we begin?
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Appendix C

Task Instructions

Go-nogo Task

For this experiment, you will be seated in this chair listening to tones through the 

earplugs that are in your ears.  You will only need a button to participate in this study.  

Once the experiment begins, you will hear a series of tones.  Specifically, you will 

hear two types of tones:  low tones and high tones. Your task is to listen to each tone and 

to respond only to the low tones by pressing the button.  For example, if you hear a low 

tone followed by another low tone, followed by a high tone, you would only respond to 

the first two tones.  Please look straight ahead at the target on the wall.

Again, you will hear a series of low and high tones.  You are asked to listen to 

each tone carefully and to only respond to the low tones by pressing the button.  Please 

do not respond to the high tones.  

If this isn’t clear right now, don’t worry.  I am going to give you some practice 

tones to get you comfortable with the experiment before we begin.  

Lastly, please try to refrain from any excessive movements during the experiment.  

If you need to scratch, cough, etc. feel free to do so, but if you can hold off until between 

trials, it would be greatly appreciated.

Do you have any questions before we begin?
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Appendix D

The Yale Physical Activity Survey For Older Adults

INTERVIEWER: PLEASE MARK TIME:  ______: ______: ______
                                                                     HR       MIN      SEC

INTERVIEWER:  (Please hand the subject the list of activities while reading this 
statement.) Here is a list of common types of physical activities. Please tell me which of 
them you did during a typical week in the last month. Our interest is learning about the 
types of physical activities that are a part of your regular work and leisure routines.

For each activity you do, please tell me how much time (hours) you spent doing this 
activity during a typical week. (Hand subject card #1.)

Intensity
Time Code *
(Hrs/wk)         (Kcal/min)

Work

Shopping (e.g., grocery, clothes) ______ 3.5

Stair climbing while carrying a load ______ 8.5

Laundry (time loading, unloading, hanging, folding only) ______ 3.0

Light housework: tidying, dusting, sweeping, collecting 
trash in home, polishing, indoor gardening, ironing ______ 3.0

Heavy housework: vacuuming, mopping, scrubbing floors
and walls, moving furniture, boxes, or garbage cans ______ 4.5

Food preparation (10+ minutes in duration): chopping, ______ 2.5
stirring, moving about to get food items, pans

Food service (10+ minutes in duration: setting table, ______ 2.5
carrying food, serving food

Dish washing (10+ minutes in duration): clearing table, ______ 2.5
washing/drying dishes, putting dishes away

Light home repair: small appliance repair, ______ 3.0
light home maintenance/repair
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Heavy home repair: painting, carpentry, ______ 5.5
washing/polishing car

Other: ________________________________________ ______ ____#

Intensity
Time Code *
(hrs/wk)         (Kcal/min)

Yardwork

Gardening: planting, weeding, digging, hoeing ______ 4.5

Lawn mowing (walking only) ______ 4.5

Clearing walks/driveway: sweeping, shoveling, raking ______ 5.0

Other: ______________________________________ ______ ____#

Caretaking

Older or disabled person (lifting, pushing wheelchair) ______ 5.5

Childcare (lifting, carrying, pushing stroller) ______ 4.0

Exercise

Brisk walking (10+ minutes in duration) ______ 6.0

Pool exercises, stretching, yoga ______ 3.0

Vigorous calisthenics, aerobics ______ 6.0

Cycling, Exercycle ______ 6.0

Swimming (laps only) ______ 6.0

Other: _____________________________________ ______ ____#

Recreational Activities

Leisurely walking (10+ minutes in duration) ______ 3.5

Needlework: knitting, sewing, needlepoint, etc. ______ 1.5
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Dancing (mod/fast): line, ballroom, tap, square, etc. ______ 5.5

Bowling, bocci ______ 3.0

Golf (walking to each hole only) ______ 5.0

Racquet sports: tennis, racquet ball ______ 7.0

Billiards ______ 2.5

Other: ______________________________________ ______ ____#

INTERVIEWER: (Please read to subject.) I would now like to ask you about certain 
types of activities that you have done during the past month. I will ask you about how 
much vigorous activity, leisurely walking, sitting, standing, and some other things that 
you usually do. 

1. About how many times during the month did you participate in vigorous
activities that lasted at least 10 minutes and cause large increases in breathing, 
heart rate, or leg fatigue or caused you to perspire? (Hand subject card #2)

Score: 0 = Not at all (go to Q3)
1 = 1-3 times per month
2 = 1-2 times per week
3 = 3-4 times per week
4 = 5+ times per week
7 = refused
8 = don’t know Frequency score = __________

2. About how long do you do this vigorous activity(ies) each time? (Hand 
subject card #3)

Score: 0 = Not applicable
1 = 10-30 minutes
2 = 31-60 minutes
3 = 60+ minutes
7 = refused
8 = don’t know Duration score = __________

weight =   5
VIGOROUS ACTIVITY INDEX SCORE:
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FREQ SCORE ____ x DUR SCORE ____ x WEIGHT _____ = __________
(Responses of 7 or 8 are scored as missing.)

3. Think about the walks you have taken during the past month. About how 
many times per month did you walk for at least 10 minutes or more without 
stopping which was not strenuous enough to cause large increases in 
breathing, heart rate, or leg fatigue or cause you to perspire? (Hand subject 
card #2)

Score: 0 = Not at all (go to Q5)
1 = 1-3 times per month
2 = 1-2 times per week
3 = 3-4 times per week
4 = 5+ times per week
7 = refused
8 = don’t know Frequency score = __________

4. When you did this walking, for how many minutes did you do it? (Hand 
subject card #3)

Score: 0 = Not applicable
1 = 10-30 minutes
2 = 31-60 minutes
3 = 60+ minutes
7 = refused
8 = don’t know Duration score = __________

weight =    4
LEISURELY WALKING INDEX SCORE:

FREQ SCORE ____ x DUR SCORE ____ x WEIGHT ____ = __________
(Responses of 7 or 8 are scored as missing.)

5. About how many hours a day do you spend moving around on your feet while 
doing things? Please report only the time that you are actually moving. (Hand 
subject card #4)

Score: 0 = Not at all
1 = less than 1 hr per day
2 = 1 to less than 3 hrs per day
3 = 3 to less than 5 hrs per day
4 = 5 to less than 7 hrs per day
5 = 7+ hrs per day
7 = refused
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8 = don’t know Moving score = __________
weight =     3

MOVING INDEX SCORE:
FREQ SCORE ____ x WEIGHT ____ = __________

(Responses of 7 or 8 are scored as missing.)

6. Think about how much time you spend standing or moving around on your 
feet on an average day during the past month. About how many hours per day 
do you stand? (Hand subject card #4)

Score: 0 = Not at all
1 = less than 1 hr per day
2 = 1 to less than 3 hrs per day
3 = 3 to less than 5 hrs per day
4 = 5 to less than 7 hrs per day
5 = 7+ hrs per day
7 = refused
8 = don’t know Standing score = __________

weight =     2
STANDING INDEX SCORE:

FREQ SCORE ____ x WEIGHT ____ = __________
(Responses of 7 or 8 are scored as missing.)

7. About how many hours did you spend sitting on an average day during the 
past month? (Hand subject card #5)

Score: 0 = Not at all
1 = less than 3 hours
2 = 3 hrs to less than 6 hrs
3 = 6 hrs to less than 8 hrs
4 = 8+ hrs
7 = refused
8 = don’t know Sitting score = __________

weight =    1
SITTING INDEX SCORE:

FREQ SCORE ____ x WEIGHT ____ = __________
(Responses of 7 or 8 are scored as missing.)

8. About how many flights of stairs do you climb up each day? (Let 10 steps = 1 
flight.)

__________
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9. Please compare the amount of physical activity that you do during other 
seasons of the year with the amount you just reported for a typical week in the 
past month. For example, in the summer, do you do more or less activity than 
what you reported doing in the past month? (INTERVIEWER: PLEASE 
CIRCLE THE APPROPRIATE SCORE FOR EACH SEASON.)

Lot Little Little Lot Don’t
More More Same Less Less know

Spring 1.30 1.15    1.0 0.85 0.70 --
Summer 1.30 1.15    1.0 0.85 0.70 --
Fall 1.30 1.15    1.0 0.85 0.70 --
Winter 1.30 1.15    1.0 0.85 0.70 --

SEASONAL ADJUSTMENT SCORE = SUM OVER ALL SEASONS/ 4 _________

INTERVIEWER: PLEASE MARK TIME:  ______: ______: ______
   HR       MIN      SEC



64

Card #1
Weekly Physical Activities

Work

Shopping  (e.g., grocery, clothes)

Stair Climbing while carrying a load

Laundry

Light Housework: tidying, dusting, sweeping, collecting 
garbage in home, polishing, indoor 
gardening, ironing

Heavy Housework: vacuuming, mopping, scrubbing floors and 
walls, moving furniture, moving boxes or 
garbage cans

Food preparation (+10 min.): chopping, stirring, moving around to get 
food items, pots or pans

Food service (+10 min.): setting table, carrying food, serving food

Dish washing (+10 min.): clearing table, washing and drying dishes, 
putting dishes away

Light home repair: small appliance repair, light household 
maintenance and repair tasks

Heavy home repair: painting, washing and polishing car, 
carpentry

Other: _______________________________

Yardwork
Gardening: pruning, planting, weeding, hoeing, digging

Lawn mowing (walking only)

Clearing walks and driveway: raking, shoveling, sweeping

Other: _______________________________
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Caretaking
Older or disabled person: lifting, pushing wheelchair

Childcare: lifting, pushing stroller

Exercise
Brisk walking for exercise (10 + min.): causes large increases in heart rate, 

breathing or leg fatigue

Stretching exercises, yoga, pool exercise

Vigorous calisthenics, aerobics: causes large increases in heart rate, 
breathing or leg fatigue

Cycling, exercycle

Lap swimming

Other: _____________________________

Recreational Activities

Leisurely walking (10+ min.)

Hiking

Needlework: knitting, sewing, crocheting, needlepoint

Dancing (mod/fast): line dancing, ballroom, square, tap, etc.

Bowling, bocci

Golf (walking each hole only)

Racquet sports: tennis, racquetball

Other: _____________________________
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Card #2

Not at all
1-3 times per month
1-2 times per week
3-4 times per week

5 or more times per week
Don’t know

Card #3

10-30 minutes
31-60 minutes

60 or more minutes
Don’t know

Card #4

Not at all
Less than 1 hour per day

1 to less than 3 hours per day
3 to less than 5 hours per day
5 to less than 7 hours per day

7 or more hours per day
Don’t know

Card #5

Not at all
Less than 3 hours per day

3 to less than 6 hours per day
6 to less than 8 hours per day

8 or more hours per day
Don’t know
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Appendix E

Mini-Mental State Examination (MMSE)

Date ___________________
Patient’s Name ______________________
Examiner’s Name ____________________

Maximum Score Score ORIENTATION
5 (      ) What is the (year) (season) (date) (day) (month)?

5 (      )             Where are we: (state) (county) (town or city)                              
(hospital) (floor)?

0
3 (      ) REGISTRATION

Name 3 common objects (eg, “apple, table, 
penny”):  Take 1 second to say each.  Then ask the 
patient to repeat all 3 after you have said them.  
Give 1 point for each correct answer.  Then repeat 
them until he/she learns all 3.  Count trials and 
record.  
Trials:

5 (      ) ATTENTION AND CALCULATION
Serial 7’s backwards.  Give 1 point for each correct 
answer.  Stop after 5 answers.  Alternatively, spell 
“WORLD” backwards.  One point for each correct 
letter.

3 (      ) RECALL
Ask for the 3 objects repeated above. Give 1 point 
for each correct answer (Note: Recall cannot be 
tested if all 3 objects were not remembered during 
registration.)

0
0 2 LANGUAGE

2 (      ) Name a “pencil,” and “watch.”
1 (      ) Repeat the following: “No ifs, ands, or buts.”
3 (      ) Follow a 3-stage command:

“Take a paper in your right hand, 
  fold it in half, and 
  put it on the floor.”

1 (      ) Read and obey the following:
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Close your eyes.
1 (      ) Write a sentence.
1 (      ) Copy the following design:

Total Score _________

0
0
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