
ABSTRACT

Title of dissertation: DISCRETE OPTIMIZATION METHODS
FOR SEGMENTATION AND MATCHING

Ming-Yu Liu, Doctor of Philosophy, 2012

Dissertation directed by: Professor Rama Chellappa
Department of Electrical and Computer
Engineering

This dissertation studies discrete optimization methods for several computer

vision problems. In the first part, a new objective function for superpixel segmen-

tation is proposed. This objective function consists of two components: entropy

rate of a random walk on a graph and a balancing term. The entropy rate favors

formation of compact and homogeneous clusters, while the balancing function en-

courages clusters with similar sizes. I present a new graph construction for images

and show that this construction induces a matroid. The segmentation is then given

by the graph topology which maximizes the objective function under the matroid

constraint. By exploiting submodular and monotonic properties of the objective

function, I develop an efficient algorithm with a worst-case performance bound of

1
2
for the superpixel segmentation problem. Extensive experiments on the Berkeley

segmentation benchmark show the proposed algorithm outperforms the state of the

art in all the standard evaluation metrics.

Next, I propose a video segmentation algorithm by maximizing a submodular

objective function subject to a matroid constraint. This function is similar to the

standard energy function in computer vision with unary terms, pairwise terms from

the Potts model, and a novel higher-order term based on appearance histograms. I

show that the standard Potts model prior, which becomes non-submodular for multi-

label problems, still induces a submodular function in a maximization framework.

A new higher-order prior further enforces consistency in the appearance histograms

both spatially and temporally across the video. The matroid constraint leads to a

simple algorithm with a performance bound of 1
2
. A branch and bound procedure

is also presented to improve the solution computed by the algorithm.

The last part of the dissertation studies the object localization problem in

images given a single hand-drawn example or a gallery of shapes as the object

model. Although many shape matching algorithms have been proposed for the

problem, chamfer matching remains to be the preferred method when speed and

robustness are considered. In this dissertation, I significantly improve the accuracy

of chamfer matching while reducing the computational time from linear to sublinear

(shown empirically). It is achieved by incorporating edge orientation information in

the matching algorithm so the resulting cost function is piecewise smooth and the

cost variation is tightly bounded. Moreover, I present a sublinear time algorithm for

exact computation of the directional chamfer matching score using techniques from

3D distance transforms and directional integral images. In addition, the smooth

cost function allows one to bound the cost distribution of large neighborhoods and

skip the bad hypotheses. Experiments show that the proposed approach improves

the speed of the original chamfer matching up to an order of 45 times, and it is

much faster than many state of art techniques while the accuracy is comparable. I

further demonstrate the application of the proposed algorithm in providing seamless

operation for a robotic bin picking system.

DISCRETE OPTIMIZATION METHODS

FOR SEGMENTATION AND MATCHING

by

Ming-Yu Liu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry Davis
Professor K. J. Ray Liu
Professor Min Wu
Professor David Jacobs

c© Copyright by

Ming-Yu Liu
2012

Acknowledgments

This dissertation would not exist without the encouragement and support of

many people, to whom I express my deepest gratitude.

Foremost I would like to thank my advisor Prof. Rama Chellappa who pro-

vided me the opportunity, and resources to pursue my dissertation. I have learned a

lot from Prof. Chellappa about research and life. The amount of enthusiasm Prof.

Chellappa shows for all tasks is unmatchable. I always felt full of energy after dis-

cussing ideas with him. I am deeply impressed by the broad perspective that Prof.

Chellappa brings to research and teaching. I was fortunate to have experienced it

as a graduate teaching fellow for the Image and Video Processing course in Spring

2011. I appreciated the way Prof. Chellappa seamlessly connected the theories to

the applications, reached out to the class with his humor, and made the challenging

material an enjoyable experience for everyone.

I am thankful to Dr. Oncel Tuzel, Dr. Ashok Veeraraghavan, and Dr. Sriku-

mar Ramalingam for their mentorships and for providing me the opportunity to pur-

sue challenging problems at Mitsubishi Electric Research Lab (MERL). I learned a

lot from them, from analyzing a problem to designing experiments to validate one’s

hypothesis. I would also like to thank MERL for providing an excellent academic

environment and for the financial support during my visit. I thank Prof. David

Jacobs, Dr Aswin Sankaranarayanan, Dr. Amit Agrawal, Dr Yuichi Taguchi, and

Dr. Tim Mark for mentoring me at various times during the course of my PhD. I

also thank Dr. Xiaoqian Jiang for the intensive discussions on submodular functions

ii

during the time we shared an apartment in Cambridge. Those discussions largely

arouse my interest in discrete optimization. Thanks should go to Sofien Bouaziz

and Su Yan, who gave me wonderful company during my internship at MERL.

I would also like to thank Prof. Larry Davis, Prof. K.J. Ray Liu, Prof.

Min Wu, and Prof. David Jacobs for serving on my dissertation committee and

providing valuable feedback. The thesis would not have taken the shape it did

without the feedback, encouragement, and support of my fellow group members. I

particularly thank Aswin Sankaranarayanan, Dikpal Reddy, Pavan Turaga, Kaushik

Mitra, Raghuraman Gopalan, Nitesh Shroff and Ruonan Li. Things would come to

a standstill at UMD without the crucial support provided by Janice Perrone, Arlene

Schenk, members of ECE staff, UMIACS computing staff, and OIS staff. A big

thanks to them.

During my stay at UMD I seldom felt I was away from home. Anyone would

feel so with the support of wonderful friends I was fortunate to have. I thank Gimmy

Liao, Yuan-Shuo Chang, Chien Min Lin, Raulf Cheng, Peggy Chuo, Yu-Hsuan Chen,

Ruei-Ping Kuo, Hui-Ting Wen, Pei-Chun Chen, Yu-Han Yang, Mu-Tien Chang, Lai-

Huei Wang, Cindy Wu, Chao-Wei Chen, Ming Du, Qiang Qiu, Ruonan Li, Jingjing

Zheng, Jie Ni, Jun-Cheng Chen, Vicky Tu, Evelyn Cheng, Allen Chiang, Dikpal

Reddy, and Balaji Vasan. I thank my roommates through the years Yi-Jung Lo,

Yuan-Shuo Chang, Vicky Tu, Evelyn Cheng, Yu-Han Yang, Mu-Tien Chang, and

Chih-Wei Chang for maintaining a comfortable academic environment at home.

Words will not be enough to express my gratitude to my mother, father, grand-

mother, aunts, and sister. They have been the foundation of my life and have

iii

sacrificed much for me. This is as much their dissertation as it is mine.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 4
2.1 Discrete Optimization . 4
2.2 Submodular Function . 5
2.3 Matroid . 7

2.3.1 Definition . 8
2.3.2 Basis . 8
2.3.3 Circuit . 9
2.3.4 Restriction . 10
2.3.5 Rank Function . 10
2.3.6 Span . 11

2.4 Matroid Examples . 12
2.4.1 Vector Matroids . 12
2.4.2 Cycle Matroids . 13
2.4.3 Transversal Matroids . 14
2.4.4 Partition Matroid . 15
2.4.5 Uniform Matroid . 16

3 Entropy Rate Clustering: Cluster Analysis via Maximizing a Sub-
modular Function Subject to a Matroid Constraint 17
3.1 Introduction . 17

3.1.1 Related Work . 20
3.1.1.1 Graph-theoretic approaches 21
3.1.1.2 Random walk modeling 22
3.1.1.3 Submodular objective functions 23
3.1.1.4 Superpixel segmentation 24

3.1.2 Contribution . 25
3.2 Preliminaries . 27
3.3 Problem Formulation . 29

3.3.1 Graph Construction . 29
3.3.2 Entropy Rate . 30
3.3.3 Balancing Function . 33

3.4 Optimization and Implementation . 35
3.4.1 Greedy Heuristic . 36
3.4.2 Efficient Implementation . 38

3.5 Experiments . 39
3.5.1 Clustering experiments . 42
3.5.2 Superpixel segmentation experiments 47

v

3.6 Summary . 54
3.7 Proofs . 54

4 Submodular Function Maximization with Higher-Order Priors for
Video Segmentation 61
4.1 Introduction . 61

4.1.1 Contribution . 64
4.2 Preliminaries . 65
4.3 Submodular Function Maximization 67

4.3.1 Pseudo-Boolean Representation 68
4.3.2 Partition Matroid Constraint 69

4.4 Histogram Similarity Prior . 71
4.5 Optimization . 73
4.6 Experiments . 76
4.7 Conclusion . 80
4.8 Proof . 81

4.8.1 Monotonically Increasing Property of f 81
4.8.2 Proof of the submodularity of the KL Divergence 82

4.8.2.1 Proof of Lemma 1 82
4.8.2.2 Proof of Lemma 2 83
4.8.2.3 Proof of the submodularity of the KL Divergence . . 84

5 Fast Object Localization and Pose Estimation in Heavy Clutter for
Robotic Bin Picking 88
5.1 Introduction . 88

5.1.1 Visual Perception in Industrial Robotics 89
5.1.2 A Practical Vision-Based Robotic Bin-Picking System 91

5.2 Related Work . 93
5.3 Fast Directional Chamfer Matching 97

5.3.1 Chamfer Matching . 97
5.3.2 Directional Chamfer Matching 99
5.3.3 Line-Based Representation . 100
5.3.4 Three-Dimensional Distance Transform 103
5.3.5 Integral Distance Transform Tensor 105
5.3.6 Search Optimization . 106

5.3.6.1 Bound in the Hypotheses Domain 106
5.3.6.2 Bound in the Spatial Domain 107
5.3.6.3 Empirical Evidence of Sublinear Complexity 107

5.4 Pose Estimation for Robotic Bin Picking 109
5.4.1 System Overview . 109
5.4.2 MFC Imaging and Depth Edge Extraction 111
5.4.3 Database Generation . 115
5.4.4 One-dimensional Search . 116
5.4.5 Multi-View Pose Refinement 118
5.4.6 Error Detection and Pose Correction in the Gripper 121

vi

5.5 Experiments . 123
5.5.1 Pose Estimation for Robotic Bin Picking 124

5.5.1.1 Synthetic Examples 124
5.5.1.2 Real Examples . 128
5.5.1.3 Bin-Picking System Performance 132
5.5.1.4 Pose Estimation in the Gripper 134

5.5.2 Deformable Object Detection 136
5.5.3 Human Pose Estimation . 140

5.6 Conclusion . 141

6 Conclusion 144

Bibliography 146

vii

List of Tables

3.1 Clustering performance comparison: clustering accuracy 40
3.2 Clustering performance comparison: rand index 41
3.3 Clustering performance comparison: performance rank averages in clus-

tering accuracy and rand index. 41

5.1 Detection failure rates and processing time in highly cluttered scene
with multiple objects . 126

5.2 Comparison of the average absolute pose estimation error between
the one-view and two-view approaches. 128

5.3 Pose estimation errors on three action sequences. Errors are measured
as the mean absolute pixel distance from the ground truth marker
locations. 140

viii

List of Figures

2.1 Example of a Cycle Matroid . 13
2.2 Example of a transversal matroid. 15
2.3 Example of a partition matroid. 16

3.1 Graph Construction . 30
3.2 Entropy Rate Term . 31
3.3 Transition probabilities . 32
3.4 Balancing Term . 34
3.5 Natural scene recognition dataset . 42
3.6 MPEG-7 shape dataset . 42
3.7 Dichotomization of a dataset consisting of five Gaussian clouds 43
3.8 Performance metrics . 47
3.9 Superpixel segmentation examples . 48
3.10 Nonphotorealistic rendering using superpixels 48
3.11 Superpixel size distribution . 50
3.12 Effect of the balancing preference on the performance metrics 50
3.13 Effect of the kernel bandwidth on the performance metrics 50

4.1 Graphical representation of the partition matroid 70
4.2 Illustration of the histogram similarity prior 72
4.3 Performance Comparison . 78
4.4 Segmentation results . 79
4.5 Parameter sensitivity analysis . 79

5.1 Matching costs for an edge point . 100
5.2 Line-based representation. 102
5.3 Computation of the integral distance transform tensor 102
5.4 Empirical evidence of sublinear time complexity 108
5.5 Robotic grasping system . 109
5.6 System flowchart. 110
5.7 Illustration of the principle of multi-flash camera 112
5.8 MFC edges versus Canny edges . 113
5.9 Database generation . 115
5.10 One-dimensional search . 117
5.11 Foreground extraction . 123
5.12 Examples of successful pose estimation on the synthetic dataset . . . 127
5.13 Detection rate versus percentage of occlusion. 128
5.14 Results using real examples . 129
5.15 Results from real examples. 131
5.16 Effect of depth variation on pose estimation. 133
5.17 Example eight views captured with different wrist rotation angles. . . 136
5.18 Pose estimation errors in the gripper using different numbers of views. 136
5.19 Two-view pose estimation in the gripper. 137

ix

5.20 Receiver operating characteristic (ROC) curves on the ETHZ shape
dataset . 138

5.21 Several localization results on the ETHZ shape dataset. 142
5.22 Human pose estimation results . 143

x

Chapter 1

Introduction
Many tasks in computer vision can be formulated as a discrete optimization

problem where one searches for the most meaningful way of assigning each image

primitive a label from a finite set of labels. For example, in image segmentation, we

assign each pixel a label so that the assignment best represents the scene structure.

The object localization problem can be formulated as a problem of finding the

maximum object evidence in a discrete space of image grids. In correspondence

problems, the goal is to search for a match, which optimally relates feature points

in two different images. These problems admit different structures, but they all

embrace discrete optimization as a crucial component.

While this discrete optimization perspective provides a unified view of various

computer vision problems, it does not lead to a unified approach. Different tasks

utilize various problem structures, priors, and objective functions; they often require

different discrete optimization methods. Moreover, they tend to result in NP-hard

problems where a global optimum is difficult to find. Thus, further progress in

computer vision hinges on the analysis of discrete optimization methods for various

problem structures and on the development of effective algorithms with provable

theoretical guarantees. This is precisely the goal of this dissertation.

1

In this dissertation, I study discrete optimization methods for several computer

vision problems, including image segmentation, video segmentation, and object lo-

calization. Particular emphases are placed on the analysis of submodular functions,

matroids, integral images, and their applications to the various computer vision

problems. Submodular functions are related to convex functions in continuous do-

mains but, at the same time, share similarity with concave functions. A matroid is a

combinatorial structure that generalizes the concept of linear independence in vector

spaces. Both submodular functions and matroid play an important part in discrete

optimization problems. An integral image is an image data structure, which allows

efficient evaluation of various image evidence. It finds use in improving computa-

tional efficiency for various detection algorithms. In the dissertation, I propose a

novel variant of the integral image structure, which enables the integration of image

evidence along various directions. Based on this structure, I develop a fast shape

matching algorithm.

The main contributions of this dissertation are listed below:

• I designed submodular objective functions for superpixel and video segmenta-

tion problems.

• I showed that matroids naturally fit into the superpixel and video segmenta-

tion problems. This enables the use of algorithms developed in the discrete

optimization society for solving computer vision problems.

• I showed that the Potts energy minimization problem is an instance of maxi-

mizing a submodular function subject to a matroid constraint.

2

• I developed an approach to improve the chamfer matching algorithm both in

terms of speed and accuracy.

The dissertation has the following organization. In Chapter 2, I present a

review of some necessary background material needed for the following disserta-

tion. Chapter 3 demonstrates the application of submodular functions and matroids

for data clustering and superpixel segmentation problems. In Chapter 4, a video

segmentation algorithm by maximizing a submodular objective function under a

matroid constraint is presented. Chapter 5 is about the fast directional chamfer

matching algorithm and its application in robotic bin-picking. Chapter 6 concludes

the dissertation.

3

Chapter 2

Background
In this chapter, I first define the discrete optimization problem. It is followed

by a brief review to submodular functions and matroids. Most of the materials

presented in this chapter are based on the discussions in [97] [78].

2.1 Discrete Optimization

Let E = 1, 2, ..., n be a finite set of n elements called the ground set. Let

2E denote the power set of E, which is the set of all subsets of E. A discrete

optimization problem can be formulated as a problem of

max
A∈I

f(A) (2.1)

where f : 2E → R is a real-valued objective function mapping a subset of E to a real

number and I is a collection of subsets of E, I ⊆ 2E , denoting the set of feasible

subsets.

It is sometimes convenient to use a vector of Boolean variables to represent a

subset A ⊆ E. Let x = (x1, x2, ..., x|E|)
T where xi’s are binary variables so that

xi =

{ 1 , if i ∈ A

0 , otherwise.

(2.2)

4

An element is in A if and only if the corresponding Boolean variable has the value

one. The Boolean vector x is called the set characteristic vector. It allows us

to represent a set function as a pseudo-Boolean function, which maps a Boolean

vector to a real number. The discrete optimization problem in (2.1) then can be

equivalently represented by a pseudo-Boolean Optimization problem given by

max
x

f(x) subject to h(x) ≤ 0 (2.3)

where the set function h : 2E → R draws the boundary of feasible subsets: h(x) ≤ 0

if and only if the subset A corresponding to x is in the collection of feasible subsets

I.

2.2 Submodular Function

Let E be a finite set. A set function f : 2E → R is submodular if

f(A1 ∪ {a})− f(A1) ≥ f(A2 ∪ {a})− f(A2) (2.4)

f(A1 ∪ {a})− f(A1) ≤ f(A2 ∪ {a})− f(A2) (2.5)

f(A1 ∪ {a})− f(A1) = f(A2 ∪ {a})− f(A2) (2.6)

for all A1 ⊆ A2 ⊆ E and a ∈ E \A. The set function f is called supermodular if the

reversed inequality holds true for every pair of subsets. Finally, f is called modular

if it is both submodular and supermodular.

The submodularity is often referred to as the diminishing return property,

which holds the gain obtained by including an element is less when included at a later

5

stage. Other ways to express the submodularity exist; all of them are equivalent.

For example, (2.4) is equivalent to

f(A) + f(B) ≥ f(A ∪B) + f(A ∩ B) (2.7)

or

f(A) ≤ f(B) +
∑

a∈A\B

ρa(B \ {a})−
∑

a∈B\A

ρa(A ∪ B \ {a}) (2.8)

where A,B are two subsets of E and

ρa(A) ≡ f(A ∪ {a})− f(A) (2.9)

is the marginal gain.

Let also define monotonicity. A set function f is monotonically increasing if

f(A) ≤ f(A ∪ {a}) for all A ⊆ E and a ∈ E \ A. For a monotonically increasing

submodular function f , the inequalities in (2.4) and (2.8) can be enhanced to

f(A1 ∪ {a})− f(A1) ≥ f(A2 ∪ {a})− f(A2) ≥ 0 (2.10)

and

f(A) ≤ f(B) +
∑

a∈A\B

ρa(B \ {a}) (2.11)

respectively.

Submodular functions can be related to convex functions through Lovász ex-

tension [78]. Let f : {0, 1}|E| → R be a set function. Let Pf be a polyhedron

associated with f given by

Pf = {w ∈ R
|E| :

∑

i∈A

wi ≤ f(A) for all A ⊆ E} (2.12)

6

where wi is the ith entry of w. The Lovász extension of f , fL : [0 1]|E| → R, is a

convex function given by

fL(x) = max
w∈Pf

xTw. (2.13)

It is shown that f(A) = fL(xA) for all A ⊆ E where xA is the Boolean vector with

the ith entry equal to one if i ∈ A and zero otherwise. Lovász further proves that

min
A
f(A) = min

x∈{0 1}|E|
f(x) = min

x∈[0 1]|E|
fL(x). (2.14)

In other words, minimizing a submodular function can be solved by minimizing a

convex function.

While each submodular function induces a convex function, it is also similar to

a concave function in many ways. For example, submodularity can be characterized

by the monotonically decreasing property of the marginal gain function in (2.9),

which is akin to the monotonically decreasing property of the derivative function of

a concave function. In another example, a set function f(|A|), a real-valued function

defined on the cardinaity of the subset, is submodular if and only if f is a concave

function defined R+.

2.3 Matroid

A combinatorial structure, a matroid generalizes the concept of linear inde-

pendence in vector spaces. It was first discovered by Hassler Whitney in the paper

“On the abstract prosperities of linear dependence” in 1935. Below, I give a brief

introduction to the matroid theory. I leave most of the properties and results stated

7

in the section unproved and refer the interested readers to the book on matroid

theory [97].

2.3.1 Definition

A matroid M is an ordered pair (E, I) consisting of a finite ground set E and

a collection I of subsets of E satisfying the following three axioms:

1. ∅ ∈ I.

2. If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.

3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1 such

that I1 ∪ {e} ∈ I.

The third axiom is often referred as the independence augmentation axiom. The

members of I are the independent sets of M . We shall often write I(M) for I

and E(M) for E. Such notations are particularly helpful when several matroids are

considered.

2.3.2 Basis

A maximal independent set in M is called a basis of M where the maximality

is defined with respect to set inclusion. I use B(M) to denote the collection of bases

of M . Bases have the same cardinality; i.e., if B1, B2 ∈ B(M), then |B1| = |B2|.

Given x ∈ B1 \B2, one can further show that there is an element y of B2 \B1 such

that

(B1 \ {x}) ∪ {y} ∈ B(M). (2.15)

8

This condition is referred as the basis exchange axiom .

The collection of bases B provides a more elegant way of specifying a matroid

M . Let E be a finite set and B be a collection of subsets of E satisfying:

1. B is non-empty.

2. The basis exchange axiom in (2.15).

Then M = (E, I) defines a matroid where I is the collection of subsets of E that

are contained in some member of B. Note that B is the collection of bases of M .

2.3.3 Circuit

A minimal dependent set in M is a subset of E(M) such that it is not inde-

pendent and removing any element from it will result in an independent set in M .

A minimal dependent set in M is also called a circuit of M . We shall denote the

collection of circuits of M by C or C(M). Since the collection of independent sets

I(M) can be derived from the collection of circuits C(M), one can define a matroid

by a ground set and the collection of circuits. Specifically, let C be a collection of

subsets of E satisfying

1. ∅ /∈ C

2. If C1 and C2 are members of C and C1 ⊆ C2, then C1 = C2.

3. If C1 and C2 are distinct members of C and e ∈ C1∩C2, then there is a member

C3 of C such that C3 ⊆ (C1 ∪ C2) \ {e}.

The third condition is called the circuit elimination axiom.

9

2.3.4 Restriction

I now define the matroid restriction operation. Let M be a matroid (E, I). If

X is a subset of E, then the pair (X, I|X) defines a matroid where I|X represents

{I : I ⊆ X, I ∈ I}. This matroid is called the restriction of M to X or the deletion

of E \X from M . It is denoted by M |X . The collection of circuits for M |X can be

easily derived from C(M).

C(M |X) = {C : C ⊆ X, C ∈ C(M)} (2.16)

2.3.5 Rank Function

With the matroid restriction operation, we can now derive the rank function

for a matroid. A rank function r of a matroid M = (E, I) is a set function that

maps a subset of E to a non-negative integer: r : 2E → Z
+ ∪ {0}. Its value is given

by the size of a basis B of the restricted matroid M |X . Specifically, r(X) = |B|

where B ∈ B(M |X). A matroid rank function r has the following properties:

1. If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

2. If X ⊆ Y ⊆ E, then r(X) ≤ r(Y).

3. If X and Y are subsets of E, then

r(X ∪ Y) + r(X ∩ Y) ≤ r(X) + r(Y) (2.17)

The third property is reminiscent of the identity

dim(V +W) + dim(V ∩W) = dim(V) + dim(W) (2.18)

10

that holds true for vector spaces V and W . Note well the third inequality is the

submodular inequality; every matroid rank function is a submodular function!

We can specify a matroid by a rank function. Let E be a set and r be a

function that maps 2E into the set of non-negative integers and satisfies the above

three properties. Let I be the collection of subsets X of E for which r(X) = |X|.

Then (E, I) is a matroid having rank function r.

2.3.6 Span

The matroid span operator is a generalization of the span operator in linear

algebra. Let X be a subset of E and r be the rank function of the matroid. The

span operator is a function that maps a subset in 2E to a subset in 2E given by

span(X) = {x : x ∈ E, r(X ∪ {x}) = r(X)} (2.19)

One can show that the span function satisfies the following properties

1. If X ⊆ E, then X ⊆ span(X).

2. If X ⊆ Y ⊆ E, then span(X) ⊆ span(Y).

3. If X ⊆ E, then span(span(X)) = span(X).

4. IfX ⊆ E, x ∈ E, and y ∈ span(X∪{x})−spspan(X), then x ∈ span(X∪{y}).

Similarly, a rank function defines a matroid, so we can also define a matroid

by a span function. Let E be a set and span be a function from 2E to 2E satisfying

the above four properties. Let

I = {X : X ⊆ E, x /∈ span(X \ {x}) ∀x ∈ X}. (2.20)

11

Then (E, I) is a matroid having the span operator span.

2.4 Matroid Examples

I have briefly introduced the matroid theory. Below, several matroid examples,

including vector, cycle, partition, uniform, and transversal matroids, are given.

2.4.1 Vector Matroids

Let A be a matrix of n columns, and let E = {1, 2, ..., n} be the index set of

the columns. Suppose that I is the collection of subsets of E such that the columns

referred by each member of I are linearly independent. Then (E, I) defines a

matroid, which is called a vector matroid. It is often denoted by M [A].

Example 2.1. Let A be the matrix

Column index 1 2 3 4 5

A =







1 0 0 1 1

0 1 0 0 1







. (2.21)

Then (E, I) defines a matroid where

E(M [A]) = {1, 2, 3, 4, 5}, (2.22)

I(M [A]) = {∅, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}, (2.23)

C(M [A]) = {{3}, {1, 4}, {1, 2, 5}, {2, 4, 5}}. (2.24)

12

2.4.2 Cycle Matroids

Let E be the edge set of a graph G, and let I be the collection of subsets of

edges having no cycles. Then (E, I) is a matroid. It is called the cycle matroid of

G, denoted by M [G]. An edge set A ⊆ E is independent in M [G] if and only if

G[A], the subgraph induced by A, is a forest.

Example 2.2. Let G be a graph consisting of three nodes and five edges as shown

in Figure 2.1.

Figure 2.1: Example of a cycle matroid [97].

Then (E, I) defines a matroid where

E(M [G]) ={e1, e2, e3, e4, e5}, (2.25)

I(M [G]) ={∅, {e1}, {e2}, {e4}, {e5}, {e1, e2}, {e1, e5}, {e2, e4},

{e2, e5}, {e4, e5}}, (2.26)

C(M [G]) ={{e3}, {e1, e4}, {e1, e2, e5}, {e2, e4, e5}}. (2.27)

Note well the cycle matroid M [G] is isomorphic—structure preserving mapping—to

the vector matroid M [A] in Example 2.1.

13

2.4.3 Transversal Matroids

Let E be a finite set, and let J = {1, 2, ..., m}. A family of subsets of E is a

finite sequence A = (A1, A2, ..., Am) = (Aj : j ∈ J) such that Aj ⊆ E for all j ∈ J .

Note that Ajs may not be disjoint. A transversal of the family (Aj : j ∈ J) is a

subset (e1, e2, ..., em) of E such that ej ∈ Aj for all j ∈ J . We say a subset X of

E is a partial transversal of (Aj : j ∈ J) if X is a transversal of (Aj : j ∈ K) for

some subset K of J . Let I be the set of partial transversals of A. Then M = (E, I)

defines a matroid called a transversal matroid.

The transversal matroid relates to bipartite graph matching. Let E and

J denote two sets of nodes of different types in a bipartite graph. Let A =

(A1, A2, ..., Am) be a sequence of subsets of E where Aj consists of nodes in E

that can be matched to node j ∈ J . Then, a partial matching of the bipartite graph

G = (E × J,A) is an independent set of the transversal matroid.

Example 2.3. Let E = {x1, x2, x3, x4}, A1 = {x1, x3}, and A2 = {x1, x2, x4}.

Then, the bipartite graph for the family of subsets A = (A1, A2) can be visualized in

Figure 2.2.

Note that {x1, x2}, {x1, x4}, {x3, x1}, {x3, x2}, and {x3, x4} are transversals

of A, {x1} and {x3} are partial transversals of A for subset {1}, and {x1}, {x2},

and {x4} are partial transversals of A for subset {2}.

14

Figure 2.2: Example of a transversal matroid.

2.4.4 Partition Matroid

Let {E1, E2, ..., Em} be a partition of a finite set E where Ei’s are disjoint—

E = ∪mi Ei and Ei ∩Ej = ∅ for all i 6= j. Suppose that I is a collection of subsets of

E satisfying the property that each member of I has at most ki elements from the

partition Ei for some nonnegative integers ki’s, that is

I = {A ⊆ E : |A ∩ Ei| ≤ ki, ∀i = 1, ..., m}. (2.28)

Then the ordered pair M = (E, I) is a partition matroid.

Example 2.4. Let E be the product of two node sets of different types, {1, 2, 3} and

{x1, x2}. Let E1 = {(1, x1), (1, x2)}, E2 = {(2, x1), (2, x2)}, and E3 = {(3, x1), (3, x2)}

be a partition of E. Define

I = {A ⊆ E : |A ∩ E1| ≤ 2, |A ∩ E2| ≤ 0, |A ∩ E3| ≤ 0}. (2.29)

Then M = (E, I) is a matroid with the collection of independent sets given by

I = {∅, {(1, x1)}, {(1, x2)}, {(1, x1), (1, x2)}, }. (2.30)

15

Figure 2.3: Example of a partition matroid.

as illustrated in Figure 2.3.

2.4.5 Uniform Matroid

Let m and n be non-negative integers such that m ≤ n. Let E be an n-element

set and B be the collection of m-element subsets of E. Then it is simple to check

that B is the set of bases of a matroid on E. We denote this matroid by Um,n and

call it a uniform matroid of rank m on an n-element set. Clearly

I(Um,n) = {X : X ⊆ E : |X| ≤ m} (2.31)

and

C(Um,n) =

{ ∅, if m = n,

{X : X ⊆ E, |X| = m+ 1}, if m < n.

(2.32)

16

Chapter 3

Entropy Rate Clustering: Cluster

Analysis via Maximizing a

Submodular Function Subject to a

Matroid Constraint

3.1 Introduction

Clustering is a fundamental task in many domains such as machine learning,

dimensionality reduction, vector quantization, computer vision, marketing, and biol-

ogy. In almost every scientific field dealing with empirical data, researchers attempt

to obtain a first impression on their data by identifying groups of similar character-

istics. Several clustering methods have been proposed in different fields, and many

of them have performed promisingly. However, many of the existing approaches

are problem dependent; it is difficult to compare one criterion with another. Fur-

thermore, most desirable criteria lead to NP-hard problems. Thus, further progress

in clustering hinges on the careful design of new objective functions applicable to

17

existing or newer problems with provable theoretical guarantees and promising per-

formance on standard datasets. This chapter has precisely that goal.

Among a wide variety of clustering algorithms in the literature, some compute

clusters using a single objective function, some obtain clusters recursively using

intermediate cost functions, and a few others identify clusters based on a particular

projection (subspace, manifold) of data points. This work belongs to the first class.

I formulate the clustering problem as a graph topology selection problem where data

points and their pairwise relations are respectively mapped to the vertices and edges

in a graph. Clustering is then solved by finding a graph topology that maximizes

the objective function.

Various objective functions have been proposed to measure a given cluster’

quality. However, the notion of a ‘good’ cluster is problem dependent. It is fre-

quently possible to generate an example for which a given objective function fails.

In this chapter, I am interested in obtaining compact, homogeneous, and balanced

clusters. In a compact cluster, data points appear close to each other. In a homo-

geneous cluster, data points share similar inter-element properties. The notion of

balanced clusters refers to avoiding large clusters that group samples aggressively.

To obtain clusters with these qualities, I propose a novel objective function consist-

ing of two components: 1.) The entropy rate of a random walk on a graph, and

2.) A balancing term on the cluster distribution. The entropy rate favors compact

and homogeneous clusters where the balancing term encourages clusters with similar

sizes. They are largely motivated by the principle of maximum entropy [55]: I seek

a graph topology so the resulting random walk and cluster membership distribution

18

yields a large uncertainty.

My formulation leads to an algorithm with a performance bound on the solu-

tion. I show that the objective function is a monotonically increasing submodular

function. Submodularity appears in many real world applications such as facility

location, circuit design, and set covering. It can be related to convexity through

the Lovász extension, while also shares some similarities to concavity [78]. Knowing

whether a function is submodular enables us to gain a better understand the un-

derlying optimization problem. In general, maximization of submodular functions

leads to NP-hard problems, for which the global optimum solution is difficult to

obtain. Nevertheless, by using a greedy algorithm and exploiting the matroid in my

problem formulation, one obtains a bound of 1
2
on the optimality of the solution.

Recently, maximization of submodular functions with various constraints has been

applied in several real word problem domains: sensor placement [49] (subject to a

cardinality constraint), outbreak detection in networks [70] (subject to a modular

cost constraint) , and word alignment [73] (subject to a matroid constraint).

The proposed algorithm is evaluated using standard datasets in the UCI repos-

itory and compared to the state-of-the-art clustering algorithms. In addition, I study

a particular clustering problem in computer vision — the superpixel segmentation

problem [101]. The superpixel segmentation process divides an image into disjoint

and perceptually uniform regions, termed superpixels. A superpixel representation

greatly reduces the number of primitives in an image and provides a coherent spa-

tial support for feature computations. It has become a common preprocessing step

for many advanced vision algorithms [87][61][51][98]. The desired properties of a

19

superpixel segmentation algorithm depend on the application. Some general desired

properties are listed below:

• Every superpixel should overlap with only one object.

• The set of superpixel boundaries should be a superset of object boundaries.

• The mapping from pixels to superpixels should not reduce the achievable per-

formance of the intended application.

• The above properties should be obtained with as few superpixels as possible.

I demonstrate the proposed objective function effectively models these required

properties. Specifically, the entropy rate favors compact and homogeneous clusters

— encouraging division of images on perceptual boundaries, whereas the balancing

term encourages superpixels with similar sizes — avoiding large superpixels strad-

dling multiple objects.

3.1.1 Related Work

A large body of work exists in clustering. Some well-known examples include

k-means, mixture models, normalized cut [104], maximum margin clustering [128],

correlation clustering [4], and affinity propagation [43]. While these algorithms en-

code some fundamental notions of clusters, they do not universally apply. Their

performances on real datasets depend on how well the mechanism generating the

dataset meets underlying assumptions. For example, when data does not exhibit a

centroid-like distribution, centroid-based methods such as k-means and k-medians

20

are not appropriate. In order to bridge the gap, some works propose learning a

proximity measure that is tuned to the assumptions of a clustering algorithm [127].

Several attempts have looked to unveil the embedded structure of data [10]. Re-

cently, several works have adapted existing clustering algorithms to incorporate

additional knowledge for improving the performance [122][136][11][115]. Below I re-

view only a few related classes of works and refer the interested reader to survey

papers such as [54][14][129][40].

3.1.1.1 Graph-theoretic approaches

Cluster analysis from a graph partition perspective has a long history [133][126]

[104][4]. These approaches are especially preferred when only the pairwise relations

of data are available. In [133], clustering is formulated as a problem of dividing

the minimal spanning tree into disjoint sets. The algorithm first constructs a min-

imal spanning tree from the data graph, then sequentially deletes the edges whose

distances are significantly larger than those of their neighbors for partitioning the

graph. The edge deletion process uses a single threshold and hence it cannot ac-

commodate intra-cluster variation.

The graph partition problem is usually posed in an optimization framework.

In a pioneering paper, Wu and Leahy [126] propose using the min-cut algorithm

to bisect the graph iteratively. The min-cut cost can be solved optimally within

each iteration. Nevertheless, it prefers dividing a small set of isolated vertices and

is vulnerable to outliers. A seminal paper cleverly handled this drawback with

21

normalized cut (NCut) [104] using a normalization term. NCut relates spectral

clustering [60][92]. While NCut is effective, computing an NCut solution requires

eigen-decomposition, which is computationally intense for large-scale problems [130].

This work falls in the class of graph-theoretic approach. I formulate clustering

as a graph topology selection problem and propose an objective function favoring the

formation of compact, homogeneous, and balanced clusters. The proposed algorithm

is efficient and can be easily extended to handle large datasets. In addition, it

does not require an initial solution, and the computed solution is guaranteed to

be within 1
2
of the optimal objective value. In the discrete optimization field, my

problem formulation is closely related toK-balanced partitioning problem [66]. Here

a graph is partitioned to K connected components where the number of elements in

each component remains approximately the same. On the other hand, the balancing

function in my problem formulation imposes a soft constraint for obtaining clusters

of similar sizes.

3.1.1.2 Random walk modeling

Meilă and Shi [83] discover the link between the NCut objective function and

random walk models. They show that solving the NCut partition is equivalent to

finding the low conductivity set in a random walk. Harel and Koren [50] propose a

separation operator, based on the escape probability in a random walk, to sharpen

the distinction between intra-cluster links and inter-cluster links. The operator is

applied repeatedly until the graph divides into several disconnected components.

22

Random walk models can also benefit clustering algorithms by providing a

robust distance measure. Yen et al. [132] propose a distance metric called the

Euclidean commute time for improving the distance measure between data points.

The Euclidean commute time is based on average passing time between two states in

a random walk. To compute this metric, one needs to solve the pseudo inverse of the

graph Laplacian matrix, which is computationally expensive. In [46], an interactive

image segmentation algorithm based on random walk models is presented. With

user-specified labels on some pixels, this algorithm computes the probabilities that

a random walk reaches these labeled pixels starting at an unlabeled pixel. That

pixel is then assigned the label with the largest probability. The process is repeated

for all the unlabeled pixels for image segmentation.

The proposed work differs from these approaches in using the entropy rate of a

random walk as a clustering objective function, which is easier to compute compared

to the escape probability [50].

3.1.1.3 Submodular objective functions

Submodularity has been previously exploited for clustering. Narasimhan et

al. [89] present two submodular clustering objective functions. The first one is

based on the minimal distance between elements of different clusters; whereas the

second is related to the description length of the clusters. Clustering with these

objective functions leads to submodular function minimization problems and can be

solved optimally in polynomial time. On the contrary, my formulation leads to a

23

constrained submodular maximization problem. Recently, Jegelka and Bilmes [57]

propose a submodular cost function for image segmentation named the cooperative

graph cut. It gives biases to the cutting edges exhibiting cooperative patterns. To

solve the cooperative cut problem, the authors derive a bounding function and show

that the st-cut algorithm [18] can be used iteratively to minimize the bounds to

produce the desired graph partitions.

3.1.1.4 Superpixel segmentation

Graph-based image segmentation work of Felzenszwalb and Huttenlocher (FH) [36],

mean shift [25], and watershed [119] presents three of the most popular superpixel

segmentation algorithms. FH and watershed are extremely fast; mean shift is ro-

bust to local variations. However, they produce superpixels with irregular sizes and

shapes which tend to straddle multiple objects as discussed in [71][117].

Ren and Malik [101] propose using NCut for superpixel segmentation. NCut

has the nice property of producing superpixels with similar sizes and compact shapes

which are preferred for some vision algorithms [101][87]. NCut has a drawback with

computational requirement— it takes several minutes for segmenting an image of

moderate (481x321) size. Levinshtein et al. [71] propose the TurboPixel algorithm

as an efficient alternative for achieving a similar regularity. TurboPixel is based

on evolving boundary curves from seeds uniformly placed in the image. Recently,

Veksler et al. [117] pose the superpixel segmentation problem as a GraphCut [19]

problem. The regularity is enforced through a dense patch assignment technique for

24

allowable pixel labels.

These methods produce good image tessellations, as shown in [101][71][117].

Nevertheless, they tend to sacrifice finer image details owing to their preference

for smooth boundaries. This is reflected in the low boundary recall as reported

in [71][117]. In contrast, my balancing objective, which regularizes the cluster sizes,

avoids the over-smoothing problem, preserving object boundaries.

Moore et al. [85][84] propose an alternative approach for obtaining superpixels

aligned with a grid. In [85], a greedy algorithm is used to cut images sequentially

along some vertical and horizontal strips; whereas in [84], the problem is solved

using a GraphCut algorithm [20].

Superpixel segmentation can also be jointly solved with stereo matching. Taguchi

et al. [111] propose an EM-like iterative procedure to estimate scene depth and seg-

mentation jointly using various cues. Bleyer et al. [15] pose the joint estimation

problem in an energy minimization framework.

3.1.2 Contribution

The main contributions of this chapter are listed below:

• I pose the clustering problem as a maximization problem on a graph and

present a novel objective function on the graph topology. This function con-

sists of an entropy rate and a balancing term for obtaining clusters with desired

properties.

• I prove that the entropy rate and the balancing function are monotonically

25

increasing and submodular.

• By embedding the problem in a matroid structure and using the properties of

the objective function, I present an efficient greedy algorithm with an approx-

imation bound of 1
2
.

• Using standard datasets, I demonstrate that the proposed algorithm results

in improved performance in various clustering performance metrics.

• I show that the proposed algorithm significantly outperforms the state-of-the-

art superpixel segmentation algorithms in the standard performance metrics on

the Berkeley segmentation benchmark— a reduced undersegmentation error

up to 50%, a reduced boundary miss rate up to 40%, and a tighter bound

on achievable segmentation accuracy. In addition, the proposed algorithm is

highly efficient— taking only about 2.5 seconds to segment an image of size

481x321.

The chapter is organized as follows. The notations and background materials

are given in Section 3.2. I present the objective function in Section 3.3 and discuss

its optimization in Section 3.4. Extensive experimental validations are provided in

Section 3.5. I conclude and discuss some promising future research directions in

Section 3.6. A preliminary version of this work appeared as a superpixel segmenta-

tion algorithm in [75]. In this chapter, I extend it for tackling the general clustering

problem and provide additional experimental validation.

26

3.2 Preliminaries

Graph representation: I use G = (V,E) to denote an undirected graph,

where V is the vertex set and E is the edge set. The vertices and edges are denoted

by vi and ei,j respectively. The similarity between vertices is given by the weight

function w : E → R
+∪{0}. In an undirected graph, the edge weights are symmetric,

i.e., wi,j = wj,i.

Graph partition: A graph partition S refers to a division of the vertex set

V into disjoint subsets S = {S1, S2, ..., SK} such that Si ∩ Sj = Ø for i 6= j and

⋃

i Si = V . I pose the graph partition problem as a subset selection problem. My

goal aims to select a subset of edges A ∈ E such that the resulting graph (V,A)

consists of K connected components/subgraphs.

Entropy: The uncertainty of a random variable is measured by entropy H .

The entropy of a discrete random variable X with a probability mass function pX is

defined by H(X) = −
∑

x∈X pX(x) log pX(x), where X is the support of the random

variable X . The conditional entropy H(X|Y) quantifies the remaining uncertainty

of a random variable X given that the value of a correlated random variable Y is

known. It is defined as

H(X|Y) =
∑

y∈Y

pY (y)H(X|Y = y) = −
∑

y∈Y

pY (y)
∑

x∈X

pX|Y (x|y) log pX|Y (x|y) (3.1)

where Y is the support of Y , and pX|Y is the conditional probability mass function.

Entropy rate: The entropy rate quantifies the uncertainty of a stochastic

process XXX = {Xt|t ∈ T} where T is some index set. For a discrete random process,

27

the entropy rate is defined as an asymptotic measure

H(XXX) = lim
t→∞

H(Xt|Xt−1, Xt−2, ..., X1), (3.2)

which measures the remaining uncertainty of the random process after observing

the past trajectory. For a stationary stochastic process, the limit in (3.2) always

exists. In the case of a stationary 1st-order Markov process, the entropy rate has

a simple form H(XXX) = limt→∞H(Xt|Xt−1) = limt→∞H(X2|X1) = H(X2|X1). The

first equality is due to the 1st-order Markov property, whereas the second equality

is a consequence of stationarity. For more details, one can refer to [26, pp.77].

Random walks on graphs: Let XXX = {Xt|t ∈ T,Xt ∈ V } be a random

walk on the graph G = (V,E) with a nonnegative similarity measure w. I use a

random walk model described in [26, pp.78]— the transition probability is defined

as pi,j = Pr(Xt+1 = vj|Xt = vi) = wi,j/wi where wi =
∑

k:ei,k∈E
wi,k is the sum of

incident weights of the vertex vi, and the stationary distribution is given by

µµµ = (µ1, µ2, ..., µ|V |)
T = (

w1

wT

,
w2

wT

, ...,
w|V |

wT

)T (3.3)

where wT =
∑|V |

i=1wi is the normalization constant. For a disconnected graph, the

stationary distribution is not unique. However, µµµ in (3.3) is always a stationary dis-

tribution. It can be easily verified through µµµ = P Tµµµ where P = [p]i,j is the transition

matrix. The entropy rate of the random walk can be computed by applying (3.1)

H(XXX) = H(X2|X1) =
∑

i

µiH(X2|X1 = vi)

= −
∑

i

∑

j

wi,j

wT

log
wi,j

wT

+
∑

i

wi

wT

log
wi

wT

(3.4)

28

Submodularity: Let E be a finite set. A set function F : 2E → R is

submodular if

F (A ∪ {a1})− F (A) ≥ F (A ∪ {a1, a2})− F (A ∪ {a2})

or, equivalently, δFa1(A) ≥ δFa1(A ∪ {a2}) (3.5)

for all A ⊆ E and a1, a2 ∈ E \ A where δFa1(A) ≡ F (A ∪ {a1}) − F (A) is the

marginal gain obtained by adding the element a1 to the set A. This property is also

referred to as the diminishing return property, which says that the gain of a module

is lesser if used in a later stage [91].

3.3 Problem Formulation

Clustering is viewed as a graph partitioning problem. To partition the graph

into K clusters, one searches for a graph topology that has K connected subgraphs

and maximizes the proposed objective function.

3.3.1 Graph Construction

I map a dataset to a graph G = (V,E) with vertices denoting the data points,

and the edge weights denoting the pairwise similarities given in the form of a sim-

ilarity matrix. One can generating such a mapping in many ways. Some examples

include the fully-connected graph, a local fixed-grid graph, or a nearest-neighbor

graph. The proper choice of the graph structure itself presents an important prob-

lem in clustering [88]; however, it is not the focus of the dissertation. I simply map a

29

wi,i wj,j

ei,j selected ei,j unselected

wi,i ← wi,i+wi,j wj,j ← wj,j+wi,j

wi,j wi,j←0

Figure 3.1: Illustration of the graph construction. If an edge ei,j is unselected in cluster

formation, its weight is redistributed to the loops of the two vertices.

dataset into a k-nearest neighbor graph for clustering. For superpixel segmentation,

I exploit the image grid structure and use an 8-connected graph.

My goal aims to partition the graph into disjoint components. It is achieved by

selecting a subset of edges A ⊆ E such that the resulting graph, G = (V,A), contains

exactly K connected subgraphs. In addition, I also assume that every vertex of the

graph has a self-loop. Although the self-loops do not affect graph partitioning, they

are necessary for the proposed random walk model. When an edge is not included

in A, I increase the edge weight of the self-loop of the associated vertices so that

the total incident weight for each vertex remains constant (See Figure 3.1).

3.3.2 Entropy Rate

I use the entropy rate of the random walk on the constructed graph as a

criterion to obtain compact and homogeneous clusters. The proposed construction

leaves the stationary distribution of the random walk (3.3) unchanged where the set

30

(a) Entropy Rate = 0.81 (b) Entropy Rate = 0.43

3 3

33

5
5

5
5

(c) Entropy Rate = 0.64 (d) Entropy Rate = 0.61

4 4

44

3 6

25

Figure 3.2: I show the role of entropy rate in obtaining compact and homogeneous clus-

ters. I use a Gaussian kernel to convert the distances, the numbers next to the edges,

to similarities. Each of these clustering outputs contains six different clusters shown as

connected components. As described in Section 3.3, every vertex has a loop that is not

shown. The entropy rate of the compact cluster in (a) has a higher objective value than

that of the less compact one in (b). The entropy rate of the homogeneous cluster in (c)

has a higher objective value than the less homogeneous one does in (d).

functions for the transition probabilities pi,j : 2
E → R are given below:

pi,j(A) =







wi,j

wi
if i 6= j and ei,j ∈ A,

0 if i 6= j and ei,j /∈ A,

1−
∑

j:ei,j∈A wi,j

wi
if i = j.

(3.6)

Consequently, the entropy rate of the random walk on G = (V,A) can be written as

a set function:

H(A) = −
∑

i

µi

∑

j

pi,j(A) log(pi,j(A)) (3.7)

31

v1

v2

v3

p(v1|v1) =
3
5

p(v2|v2) = 0

p(v3|v3) =
3
4

p(v2|v1) =
2
5

p(v1|v2) =
2
3

p(v3|v2) =
1
3

p(v2|v3) =
1
4

Figure 3.3: Illustration of the transition probabilities, given selecting edges e1,2 and e2,3.

Although inclusion of any edge in set A increases the entropy rate, this increase is

larger when selecting edges that form compact and homogeneous clusters, as shown

in Figure 3.2.

I illustrate the computation of the entropy rate under the proposed graph

construction using the following example, which is also shown in Figure 3.3. Given

a graph with three vertices {v1, v2, v3} and the input similarity matrix

W =











− 2.0 3.0

2.0 − 1.0

3.0 1.0 −











(3.8)

the task is to compute the entropy rate, H({e1,2 ∪ e2,3}); i.e., the entropy rate of

the random walk when selecting the edges e1,2 and e2,3 (as shown in Figure 3.3).

From (3.3) the stationary distribution of the random walk equals µµµ = (5
12
, 3
12
, 4
12
)T ,

32

and the transition matrix takes the following form

P =











3
5

2
5

0

2
3

0 1
3

0 1
4

3
4











. (3.9)

The entropy rate then equals H({e1,2 ∪ e2,3}) = 0.905.

I establish the following result on the entropy rate of the random walk model.

Theorem 3.1. The entropy rate of the random walk on the graph H : 2E → R is

a monotonically increasing submodular function under the proposed graph construc-

tion.

Clearly, the entropy rate is monotonically increasing, given the inclusion of

any edge increases the uncertainty of a jump of the random walk. The diminishing

return property stems from the fact that the increase in uncertainty from selecting

an edge is less in a later stage because it is shared with more edges. The proof is

given in Section 3.7.

3.3.3 Balancing Function

I utilize a balancing function that encourages clusters with similar sizes. Let A

be the selected edge set, NA be the number of connected components in the graph,

and ZA be the distribution of the cluster membership. For instance, let the graph

partitioning for the edge set A be SA = {S1, S2, ..., SNA
}. Then the distribution of

ZA is equal to

pZA
(i) =

|Si|

|V |
, i = {1, ..., NA}, (3.10)

33

(a) Balancing Function = -1.00 (b) Balancing Function = -1.19

Figure 3.4: I show the role of the balancing function in obtaining clusters of similar

sizes. The connected components show the different clusters. The balancing function has

a higher objective value for the balanced clustering in (a) compared to the less balanced

one in (b).

and the balancing term is given by

B(A) ≡ H(ZA)−NA = −
∑

i

pZA
(i) log(pZA

(i))−NA. (3.11)

The entropy H(ZA) favors clusters with similar sizes; whereas NA favors fewer num-

ber of clusters. In Figure 3.4, I show an example of this preference in which a more

balanced partitioning is preferred for a fixed number of clusters.

Similar to the entropy rate, the balancing function is a monotonically increas-

ing and submodular function, as stated in the following theorem:

Theorem 3.2. The balancing function B : 2E → R is a monotonically increasing

submodular function under the proposed graph construction.

The proof is given in Section 3.7.

The objective function combines the entropy rate and the balancing function,

and therefore favors compact, homogeneous, and balanced clusters. Clustering is

34

achieved via optimizing the objective function with respect to the edge set:

max
A

H(A) + λB(A)

subject to A ⊆ E and NA ≥ K,

(3.12)

where λ ≥ 0 is the weight of the balancing term. Linear combination with non-

negative coefficients preserves submodularity and monotonicity [91], therefore the

objective function is also submodular and monotonically increasing. The additional

constraint on the number of connected subgraphs enforces exactly K clusters since

the objective function is monotonically increasing.

The proposed formulation is closely related to the principle of maximum en-

tropy, which states that the probability distribution that best represents ones’ knowl-

edge of the underlying problem has the largest entropy. This distribution makes the

minimal assumption of the problem and is the least biased one [55]. My objective

function encourages a graph partition such that the random walk in the graph has

a large entropy rate and the cluster membership distribution has a large entropy.

3.4 Optimization and Implementation

In this section, I present a greedy optimization scheme, its efficient implemen-

tation for the proposed objective function, and analyze its optimality and complex-

ity.

35

3.4.1 Greedy Heuristic

One standard approach for maximizing a submodular function works with a

greedy algorithm [91]. The algorithm starts with an empty set (a fully disconnected

graph, A = Ø) and sequentially adds edges to the set. At each iteration, it adds the

edge that yields the largest gain. The iterations cease when the number of connected

subgraphs reaches a preset number, NA = K.

To achieve additional speedups, I place an additional constraint on the edge

set A such that it does not include cycles. This constraint immediately ignores

additional edges within a connected subgraph and reduces the number of evaluations

in the greedy search. Note: these edges do not change the partitioning of the graph.

Although this constraint leads to a smaller solution space (only tree-structured

subgraphs are allowed) compared to the original problem, in practice the clustering

results are similar.

This cycle-free constraint together with the cluster number constraint NA ≥ K

leads to an independent set definition, which induces a matroid M = (E, I). I

establish this in the following theorem:

Theorem 3.3. Let E be the edge set, and let I be the set of subsets A ⊆ E which

satisfies: 1.) A is cycle-free and 2.) A constitutes a graph partition with more than

or equal to K connected components. Then the pair M = (E, I) is a matroid.

The proof is given in Section 3.7.

The graph partition problem is then posed as a submodular function maxi-

36

Algorithm 1: Pseudocode of the greedy algorithm. The objective function is

defined as F ≡ H + λB.

Data: G = (V,E), w : E → R
+, K, and λ

Result: A

A← Ø, U ← E

repeat

â← argmax F(A ∪ {a})−F(A)

a ∈ U

if A ∪ {â} ∈ I then

A← A ∪ {â}

end

U ← U − {â}

until U = Ø

mization problem subject to a matroid constraint:

max
A

H(A) + λB(A)

subject to A ∈ I.

(3.13)

Maximization of a submodular function subject to a matroid constraint has been an

active subject in combinatorial optimization; it is shown in Fisher et al. [42] that the

greedy algorithm gives an 1
2
approximation bound. Following the same argument,

I achieve the same (1
2
approximation) guarantee on the proposed greedy algorithm.

A pseudocode is given in Algorithm 1.

37

3.4.2 Efficient Implementation

In each iteration, the greedy algorithm selects the edge that yields the largest

gain in the objective function subject to the matroid constraint. A naive implemen-

tation of the algorithm, as given in Algorithm 1, loops O(|E|) times to add a new

edge into A. At each loop, it scans through the edge list to locate the edge with

the largest gain; therefore the complexity of the algorithm is O(|E|2).1 Since each

vertex in the graph connects a constant number of few neighbors, the complexity of

the algorithm is O(|V |2). By exploiting the submodularity of the objective function,

I can achieve a more efficient implementation that is called lazy greedy [70].

Initially, I compute the gain of adding each edge to A and construct a max

heap structure. At each iteration, the edge with the maximum gain is popped from

the heap and included with A. The inclusion of this edge affects the gains of some of

the remaining edges in the heap; therefore, the heap needs to be updated. However,

the submodular property allows an efficient update of the heap structure. The key

observation is that, throughout the algorithm, the gain for each edge can never

increase — a diminishing return property. Therefore, it is sufficient to retain a heap

structure where the gain of the top element is updated, but not necessarily the

others. Since the top element of the heap is updated and the values for the other

elements can only decrease, the top element is the maximum value.

Although the worst case complexity of the lazy greedy algorithm isO(|V |2 log |V |),

in practice the algorithm runs much faster than the naive implementation. On aver-

1Note that an edge gain can be computed in constant time.

38

age, few updates are performed on the heap at each iteration, hence the complexity

of the algorithm approximates O(|V | log |V |). In my superpixel segmentation ex-

periments, it provides a speedup by a factor of 200–300 for image size 481x321, and

on average requires 2.5 seconds.

I present a method to adjust the balancing weight λ automatically. Given an

initial user-specified value λ′, the final balancing parameter λ is adjusted based on:

1.) The number of clusters, K and 2.) The data dependent dynamic parameter,

β. The cluster number K emphasizes the balancing term more when given a large

number of clusters is required. The data dependent term is computed from the

input data. It is given by the ratio of the maximum entropy rate increase and

the maximum balancing term increase upon including a single edge into the graph

β =
maxei,j H(ei,j)−H(Ø)

maxei,j B(ei,j)−B(Ø)
. This choice has the effect of compensating for the magnitude

difference between the two terms in the objective function. The final balancing

parameter is given by λ = βKλ′.

3.5 Experiments

I conducted extensive experiments on clustering and superpixel segmentation

to evaluate the proposed algorithm. Throughout the experiments, λ′ = 0.5 is used

to determine the balancing weight.

39

Table 3.1: Clustering performance comparison: clustering accuracy.

Dataset Proposed NCut AP K-means CPMMC

Ionosphere 92.59 83.19 70.94 70.00 75.48

Letters 94.45 94.28 91.83 93.38 95.02

Satellite 99.51 97.50 62.30 94.10 98.79

Digits 0689 98.24 91.83 90.31 78.46 96.74

Digits 1279 95.97 91.70 85.51 89.32 94.52

Breast Cancers 92.97 92.09 93.32 91.04 n/a

Iris 94.00 86.67 86.00 83.33 n/a

Wine 96.63 98.31 93.82 96.63 n/a

Glass 50.93 55.14 40.19 45.33 n/a

Movement Libras 53.06 50.83 46.94 44.44 n/a

Natural Scenes 47.36 56.36 43.64 47.70 n/a

MPEG-7 Shapes 74.00 71.64 69.14 n/a n/a

40

Table 3.2: Clustering performance comparison: rand index.

Dataset Proposed NCut AP K-means CPMMC

Ionosphere 0.86 0.72 0.59 0.58 0.65

Letters 0.90 0.89 0.85 0.88 0.92

Satellite 0.99 0.95 0.53 0.89 0.97

Digits 0689 0.98 0.93 0.92 0.87 0.97

Digits 1279 0.96 0.92 0.87 0.90 0.96

Breast Cancers 0.87 0.85 0.88 0.84 n/a

Iris 0.93 0.86 0.85 0.83 n/a

Wine 0.96 0.98 0.92 0.95 n/a

Glass 0.73 0.70 0.66 0.70 n/a

Movement Libras 0.92 0.92 0.91 0.91 n/a

Natural Scenes 0.82 0.84 0.81 0.83 n/a

MPEG-7 Shapes 0.99 0.99 0.99 n/a n/a

Table 3.3: Clustering performance comparison: performance rank averages in clustering

accuracy and rand index.

Algorithm Proposed NCut AP K-means CPMMC

CA 1.5 2.2 3.8 3.7 2.0

RI 1.4 2.1 3.6 3.6 1.8

41

Figure 3.5: Example images from the natural scene recognition dataset [95]. From left

to right, the image classes are coast, forest, highway, inside city, mountain, open country,

street, and tall building. The images of the same class exhibit great variation due to

different imaging conditions such as locations and seasons.

apple device elephant ray octopus

Figure 3.6: Example silhouettes from the MPEG-7 shape dataset [56]. The dataset

contains 70 different shape classes and each class has 20 instances in various deformation

and articulation. I show four instances for apple, device, elephant, ray, and octopus classes.

3.5.1 Clustering experiments

I conducted clustering experiments using both standard and challenging vi-

sion datasets. They include the ionosphere, letters, satellite, digits, breast cancers,

iris, wine, glass, and movement libras datasets from the UCI repository. In the

preprocessing step, the samples were normalized to have a zero mean and unit vari-

ance for each feature dimension. To measure the distance between the samples, the

Euclidean distance is used. Two vision datasets were also used for performance eval-

42

−4 −2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

−4 −2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

−4 −2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

−4 −2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

(a) (b) (c) (d)

Figure 3.7: I show the intermediate results of dichotomizing a dataset consisting of five

Gaussian clouds. After the first few iterations, I recover the 5 Gaussian clouds in different

clusters in (a). The subsequent combinations results in 4 , 3 , and 2 clusters, as shown in

(b), (c), and (d) respectively.

uation: the natural scene recognition dataset [95] and the MPEG-7 shape database

(MPEG-7) [56]. The natural scene dataset contains images from eight different na-

ture scenes ranging from coast, forest, highway, inside city, mountain, open country,

street, to tall building. Some of the images are shown in Figure 3.5. This dataset

present many challenges: images of the same scene usually differ greatly due to

the various locations and seasons when they were captured, while images of dif-

ferent scenes can be very similar due to the common spatial layout. In order to

measure the pairwise similarity, I used GIST descriptors [95], the spatial envelope

of the image. I used the Euclidean distance in the GIST descriptor space as the

distance measure. The MPEG-7 datasets contains 1,400 shapes evenly distributed

among 70 object classes. Some of the shapes appear in Figure 3.6. Samples in the

dataset exhibit great intra-class variations including deformation and articulation.

I applied the inner distance shape context (IDSC) algorithm [74] to compensate for

the intra-class variations.

43

The proposed algorithm requires pairwise similarity scores as inputs. I use a

Gaussian kernel, given by w(vi, vj) = exp(−d(vi,vj)
2

2σ2), to convert the above distance

measures to similarity scores, where d(vi, vj) is the pairwise distance between sam-

ples i and j and σ is the kernel bandwidth. I then construct a neighbor graph where

each sample is connected to its 30 nearest neighbors prior to clustering.

In the experiments, I set the number of clusters equal to the true number K

for all the algorithms. For comparison, I use two standard clustering performance

metrics: 1) clustering accuracy and 2) rand index.

• Clustering accuracy (CA) is a classification-accuracy like performance met-

ric. Let C = {C1, C2, ..., CK} be the ground truth distributions of clusters

where Ci is the set of indices for samples in the ith cluster. Similarly, let

S = {S1, S2, ..., SK} be the computed cluster distribution with Si denoting

the index set of samples assigned to the ith cluster. The clustering accuracy

is given by

CA = max
J

1

n

∑

i

|Ci ∩ SJ(i)| (3.14)

where n is the total number of samples in the dataset, and J represents any

possible permutation of the sequence {1, 2, ..., K}. Equation (3.14) requires

searching for the best permutation solved using the Hungarian algorithm.

• Rand index (RI) measures similarity between two clusterings: the ground

truth and the estimated. Let TP be the number of sample pairs in the same

cluster for both of the ground truth and the estimated clusterings, TN be

the number of sample pairs in different clusters for the ground truth and the

44

estimated clusterings, FP be the number of sample pairs in different clusters

for the ground truth clustering but are in the same cluster for the estimated

clustering, and FN be the number of sample pairs that are in the same clus-

ter for the ground truth clustering but in different clusters for the estimated

clustering. In other words, TP , TN , FP , and FN correspond to the counts

of true positive, true negative, false positive, and false negative sample pairs,

respectively. The rand index is given by percentage of agreed cluster assign-

ment

RI =
TP + TN

TP + TN + FP + FN
. (3.15)

I compare my results with state-of-the-art clustering algorithms including

AP [43], K-means, NCut [104], and the cutting plane maximum margin cluster-

ing algorithm (CPMMC) [123]. They represent a variety of clustering methods from

example-based, centroid-based, graph-theoretic, to maximum margin-based meth-

ods. For AP, the performance parameters implicitly control the number of clusters;

a binary search on the parameter value is performed to obtain the output with

the desired number of clusters. I used the implementation available from the au-

thor’s website. The K-means algorithm is sensitive to initialization. I initialized

the K-means algorithm with 100 different configurations using the implementation

available in MATLAB, and report the best performances achieved. Both the NCut

algorithm and the proposed algorithm have a kernel bandwidth parameter. Fol-

lowing the setup in [123], I exhaustively searched a range of the parameter values

and report the best performance obtained for each of the algorithms. Specifically, I

45

computed the minimum and the maximum distance for all the sample pairs prior to

clustering. The kernel bandwidth values were then varied from 20% of the minimum

distance to the maximum distance linearly in 240 steps. I used the implementation

of NCut available provided in [104]. The performance numbers of the CPMMC algo-

rithm were duplicated from a recent paper [123]. The results in clustering accuracy

and rand index appear in Table 3.1 and Table 3.2 respectively.

From Tables 3.1 and 3.2, I note that the proposed algorithm produces slightly

better performances in clustering. It outperforms the competing algorithms in 7

of the 12 datasets according to the clustering accuracy measure. I also achieve

better performance under the rand index criteria: better in 8 of the 12 datasets.

For the two challenging vision datasets, all the algorithms did not perform well.

This is due mainly to the insufficiency of the descriptors in modeling the intra-

class and inter-class variations of the datasets. I obtain a better clustering accuracy

for the MPEG-7 shape dataset, despite my results being inferior to NCut in the

natural scene clustering task. I summarize the performances using their average

performance ranks and present them in Table 3.3. The proposed algorithm has an

average performance rank of 1.5 and 1.4 in terms of clustering accuracy and rand

index, which performs significantly superior to all the other algorithms.

In the next experiment, I demonstrate the agglomerative nature of the pro-

posed clustering algorithm to dichotomize a dataset consisting of five Gaussian

clouds as shown Figure 3.7. Clearly, it first discovers the five Gaussian clouds in Fig-

ure 3.7(a) and subsequently combines proximate ones until the number of remaining

clusters equal to two, as shown in Figure 3.7(b)(c)(d). The agglomerative property

46

200 250 300 350 400 450 500 550
0

0.2

0.4

0.6

0.8

1

U
nd

er
se

gm
en

ta
tio

n
er

ro
r

Num. of superpixels per image

GraphCut (ConstInt)
GraphCut (Compact)
NCut
FH
Turbo
Proposed

200 300 400 500 600
0.6

0.65

0.7

0.75

0.8

0.85

0.9

B
ou

nd
ar

y
re

ca
ll

Num. of superpixels per image

GraphCut (ConstInt)
GraphCut (Compact)
NCut
FH
Turbo
Proposed

100 200 300 400 500
0.9

0.92

0.94

0.96

0.98

1

A
ch

ie
va

bl
e

se
gm

en
ta

tio
n

ac
cu

ra
cy

Num. of superpixels per image

GraphCut (ConstInt)
GraphCut (Compact)
FH
Turbo
Proposed

(a) (b) (c)

Figure 3.8: Performance metrics: (a) undersegmentation error curves, (b) boundary

recall curves, and (c) achievable segmentation accuracy curves. The proposed algorithm

performs significantly better than the state-of-the-art in all the metrics at all the superpixel

counts.

is useful for identifying the internal structure of dataset and scientific visualization.

3.5.2 Superpixel segmentation experiments

I conducted experiments on superpixel segmentation using the Berkeley seg-

mentation benchmark [82]. The benchmark contains 300 grey images with human-

labeled ground truths. To compute the pairwise similarity between neighboring

pixels, I adopt the function exp(− (‖p−q‖2|I(p)−I(q)|)2

2σ2) where p and q are pixel coor-

dinates, ‖p − q‖2 is their L2 distance, and |I(p) − I(q)| is the absolute value of

their intensity difference. The kernel bandwidth is set to σ = 5.0 throughout the

superpixel segmentation experiments.

Superpixel segmentation has a different goal than object segmentation, there-

fore the performance metrics also differ. I computed three standard metrics that

are commonly used for evaluating the quality of superpixels: undersegmentation

47

Figure 3.9: Superpixel segmentation examples. The images contain 100 superpixels.

The ground truth segments are color-coded and blended on the images. The superpixels

(boundaries shown in white) respect object boundaries and tend to divide an image into

similar-sized regions.

Figure 3.10: Nonphotorealistic rendering using superpixels. The images are divided into

150 superpixels, and each pixel is colored by the average color of the superpixel it belongs

to. The balanced-size objective renders an artistic effect capturing the style of thick

application of paintbrush common in post-impressionism.

error [71][117], boundary recall [101] and achievable segmentation accuracy [94]. I

first describe these metrics for the sake of completeness. I use G = {G1, G2, ..., GnG
}

to represent a ground truth segmentation with nG segments and |Gi| denotes the

segment size.

• Undersegmentation error (UE) measures fraction of pixel leak across

48

ground truth boundaries. It evaluates the quality of segmentation based on

the requirement that a superpixel should overlap with only one object. I utilize

the undersegmentation error metric used in Veksler et al. [117],

UEG(S) =

∑

i

∑

k:Sk∩Gi 6=Ø |Sk −Gi|
∑

i |Gi|
. (3.16)

For each ground truth segment Gi I find the overlapping superpixels Sk’s and

compute the size of the pixel leaks |Sk−Gi|’s. I then sum the pixel leaks over

all the segments and normalize it by the image size
∑

i |Gi|.

• Boundary recall (BR) measures the percentage of the natural boundaries

recovered by the superpixel boundaries. I compute BR using

BRG(S) =

∑

p∈δG I(minq∈δS‖p− q‖ < ǫ)

|δG|
, (3.17)

which is the ratio of ground truth boundaries that have a nearest superpixel

boundary within an ǫ-pixel distance. I use δS and δG to denote the union

sets of superpixel boundaries and ground truth boundaries respectively. The

indicator function I checks if the nearest pixel is within ǫ distance. In my

experiments, I set ǫ = 2.

• Achievable segmentation accuracy (ASA) is a performance upperbound

measure. It gives the highest accuracy achievable for object segmentation that

utilizes superpixels as units. To compute ASA, I label each superpixel with the

label of the ground truth segment that has the largest overlap. The fraction

of correctly labeled pixels is the achievable accuracy,

ASAG(S) =

∑

k maxi |Sk ∩Gi|
∑

i |Gi|
. (3.18)

49

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2
Segmentation with 200 superpixels

su
pe

rp
ix

el
 s

iz
e

di
st

rib
ut

io
n

superpixel size in pixel
0 500 1000 1500

0

0.05

0.1

0.15

0.2
Segmentation with 400 superpixels

su
pe

rp
ix

el
 s

iz
e

di
st

rib
ut

io
n

superpixel size in pixel
0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2
Segmentation with 600 superpixels

su
pe

rp
ix

el
 s

iz
e

di
st

rib
ut

io
n

superpixel size in pixel

Figure 3.11: Superpixel size distribution. I plot the distributions on superpixel sizes

obtained by segmenting the image into (a) 200 superpixels, (b) 400 superpixels, and (c)

600 superpixels. Each of the distributions has a bell shape. The proposed algorithm

divides the images into similar-sized regions and avoids producing superpixels with small

or large spatial support.

200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

U
nd

er
se

gm
en

ta
tio

n
er

ro
r

Num. of superpixels per image

λ’= 10.0
λ’= 2.0
λ’= 1.0
λ’= 0.5
λ’= 0.1

200 300 400 500 600
0.75

0.8

0.85

0.9

B
ou

nd
ar

y
re

ca
ll

Num. of superpixels per image

λ’= 10.0
λ’= 2.0
λ’= 1.0
λ’= 0.5
λ’= 0.1

200 300 400 500 600
0.9

0.92

0.94

0.96

0.98

1

A
ch

ie
va

bl
e

se
gm

en
ta

tio
n

ac
cu

ra
cy

Num. of superpixels per image

λ’= 10.0
λ’= 2.0
λ’= 1.0
λ’= 0.5
λ’= 0.1

Figure 3.12: Effect of the balancing preference on the performance metrics.

200 300 400 500 600
0

0.1

0.2

0.3

0.4

U
nd

er
se

gm
en

ta
tio

n
er

ro
r

Num. of superpixels per image

σ= 0.1
σ= 0.5
σ= 1.0
σ= 2.0
σ= 5.0
σ= 10.0

200 300 400 500 600
0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
re

ca
ll

Num. of superpixels per image

σ= 0.1
σ= 0.5
σ= 1.0
σ= 2.0
σ= 5.0
σ= 10.0

200 300 400 500 600

0.9

0.92

0.94

0.96

0.98

A
ch

ie
va

bl
e

se
gm

en
ta

tio
n

ac
cu

ra
cy

Num. of superpixels per image

σ= 0.1
σ= 0.5
σ= 1.0
σ= 2.0
σ= 5.0
σ= 10.0

Figure 3.13: Effect of the kernel bandwidth on the performance metrics.

These performance metrics are plotted against the number of superpixels in an

image. Algorithms producing better performances with a smaller number of super-

pixels are preferable.

In the first experiment, I compare my results with FH [36], GraphCut su-

50

perpixel [117], Turbopixels [71] and NCut superpixel [101] methods using the three

evaluation metrics. The results were obtained by averaging all the 300 gray images

in the dataset.

Figure 3.8(a) shows the undersegmentation error curves, and the curves for the

other methods are duplicates from the original paper [117]. The proposed algorithm

outperforms the state-of-the-art at all the superpixel counts where the error rate is

reduced by more than 50%. It achieves an undersegmentation error of 0.13 with

350 superpixels while the same performance is achieved with 550 superpixels using

GraphCut superpixel segmentation [117]. With 550 superpixels, my undersegmen-

tation error is 0.06.

In Figure 3.8(b), I plot the boundary recall curves. Again, the curves for the

other methods are duplicated from the original paper [117]. The proposed algorithm

reduces the missed boundaries by more than 30% compared to the state-of-the-art

at all the superpixel counts. The recall rates of the presented algorithm are 82%

and 92% with 200 and 600 superpixels, respectively. The recall rates with the same

superpixel counts are 76% and 86% with FH.

In Figure 3.8(c), I plot the achievable segmentation accuracy curves. In this

experiment, I generated the curves for the other methods using the original im-

plementations. The proposed algorithm yields a better achievable segmentation

upperbound at all the superpixel counts—particularly for smaller number of super-

pixels. The ASA is 95% with 100 superpixels where the same accuracy can only be

achieved with 200 superpixels for the other algorithms.

In the second experiment, I evaluate the segmentation results visually. Several

51

examples are shown in Figure 3.9 where the images are partitioned into 100 super-

pixels. For better visualization, the ground truth segments are color-coded and

blended on the images, and the superpixel boundaries recovered by the algorithm

are superimposed in white. It is difficult to notice pixel leaks, and the superpix-

els tend to divide an image into similar-sized regions that are important for region

based feature descriptors.

In the third experiment, I illustrate the application of the proposed algorithm

for nonphotorealistic rendering. Several examples appear in Figure 3.10, which

are computed by first dividing the images into 150 superpixels and coloring each

pixel by the average color of the superpixel to which it belongs. Apparently, similar

effects can be achieved by other image smoothing techniques, the proposed algorithm

renders similar-sized segments and the smoothing effect captures the style of thick

application of paintbrush — a style popular in post-impressionism.

In Figure 3.11 I plot the distributions on superpixel size. I applied the proposed

algorithm to segment the benchmark images with different numbers of superpixel

counts, namely 200, 400, and 600. The superpixels computed using the same count

are pooled to obtain the size distribution for the count. Clearly, although theses

distributions have different counts, they also have a similar bell shape. Most of the

superpixel sizes are close to the average size. The superpixels with very small spatial

supports or very large spatial support are rare.

In the last experiment, I analyze the effects of the balancing term, λ′, and

the kernel bandwidth, σ, parameters on the quality of segmentation. I observe

that competitive segmentation results are achieved with a wide range of parameter

52

selection.

In Figure 3.12, I plot the performance curves for a range of λ′ values for a fixed

σ = 5.0. I observe that smaller λ′ results in better boundary recall rates especially

for smaller superpixel counts, while the results remain largely invariant to this pa-

rameter for larger superpixel counts. I further observed that better performances on

undersegmentation error and achievable segmentation accuracy are achieved with

a larger λ′. In general,a tradeoff exists among different metrics based on the λ′

parameter, and I found empirically that λ′ = 0.5 yields a good compromise among

these metrics.

In Figure 3.13, I plot the performance curves for a range of σ values for a fixed

λ′ = 0.5. I observe that a large range of σ values results in comparable performances,

namely from 0.5 to 5. The superpixels are largely insensitive to the selection of the

σ parameter.

The proposed algorithm is among the fastest superpixel segmentation algo-

rithms and takes an average of 2.5 seconds to segment an image on the Berkeley

benchmark (481×321 pixels) using an Intel Core 2 Duo E8400 processor. Compared

to the state-of-the-art methods, it is faster than the Graphcut superpixel [117] (6.4

seconds), turbopixel [71](15 seconds), and NCut (5 minutes), whereas it is slower

than FH [36](0.5 seconds).

53

3.6 Summary

I presented a novel objective function for cluster analysis, being a conical

combination of the entropy rate of a random walk on the data graph and a balancing

criterion. The property of this objective function and its optimization were analyzed.

I showed that, by exploiting its submodularity and a matroid structure, a simple

greedy algorithm can efficiently compute a performance-guaranteed solution. I have

achieved significant performance improvements for superpixel segmentation tasks

and competitive results compared to the state-of-the-art clustering algorithms on

standard datasets.

I plan to explore user-specified constraints in the clustering problem. Another

interesting research direction would be to study hyper-graph clustering where edges

are defined over a set of vertices.

3.7 Proofs

Here I present the proofs of the theorems. They are restated for ease of

reference. WLOG is used as the abbreviation for without loss of generality. I use

two as the base for the logarithm.

Theorem 1: The entropy rate of the random walk on the graph H : 2E →

R is a monotonically increasing submodular function under the proposed graph

construction.

Proof. The proof is divided into two parts. The first part proves the monotonicity.

In the second part, I show the submodularity.

54

Monotonicity: δHa1(A) ≥ 0 for all A ⊆ E and a1 ∈ E \A. WLOG let assume

a1 = e1,2. Under the selected set A∪{e1,2}, the loop weights for vertices v1 and v2 are

given by c1 ≡ w1−
∑

k:e1,k∈A∪{e1,2}
w1,k and c2 ≡ w2−

∑

k:e2,k∈A∪{e1,2}
w2,k respectively.

From (3.6) and with some simple algebraic manipulations, the marginal gain from

adding e1,2 to A is given by

δHe1,2(A) =
{w1,2 + c1

wT

log(
w1,2 + c1
wT

)−
w1,2

wT

log(
w1,2

wT

)

−
c1
wT

log(
c1
wT

)
}
+
{w2,1 + c2

wT

log(
w2,1 + c2
wT

)

−
w2,1

wT

log(
w2,1

wT

)−
c2
wT

log(
c2
wT

)
}

(3.19)

=
w1,2 + c1
wT

{ w1,2

w1,2 + c1
log(

w1,2 + c1
w1,2

) +
c1

w1,2 + c1
·

log(
w1,2 + c1

c1
)
}
+
w2,1 + c2
wT

{ w2,1

w2,1 + c2
log(

w2,1 + c2
w2,1

)

+
c2

w2,1 + c2
log(

w2,1 + c2
c2

)
}
≥ 0. (3.20)

The terms in the two curly bracket pairs in (3.20) are the entropy values of the

two binary random variables with distributions (w1,2

w1,2+c1
, c1
w1,2+c1

) and (w2,1

w2,1+c2
, c2
w2,1+c2

)

respectively. Given the entropy of a discrete random variable is nonnegative, I show

that δHe1,2(A) ≥ 0 and prove the monotonicity.

Submodularity: δHa1(A) ≥ δHa1(A ∪ {a2}) for all A ∈ E and a1, a2 ∈ E \ A.

Based on whether these edges share a common vertex, I discuss the following two

cases.

1.) a1 and a2 have no common vertex. WLOG, let assume a1 = e1,2 and

a2 = e3,4. Since e3,4 is not connected to either v1 or v2, the addition of e3,4 has no

55

effect on the loop weights of v1 and v2; therefore, I have the following equalities

c1 = w1p1,1(A ∪ {e1,2, e3,4}) = w1p1,1(A ∪ {e1,2}) (3.21)

c2 = w2p2,2(A ∪ {e1,2, e3,4}) = w2p2,2(A ∪ {e1,2}) (3.22)

where pi,j’s are the transition probabilities given in (3.6). As a result, δHe1,2(A ∪

{e3,4}) can also be simplified to (3.19), and δHe1,2(A ∪ {e3,4}) = δHe1,2(A).

2.) a1 and a2 share a common vertex. WLOG, let assume a1 = e1,2 and a2 =

e1,3 where v1 is the shared vertex. Due to the shared vertex, the loop weight for ver-

tex v1 and v2 after the addition of e1,3 are given by d1 ≡ w1−
∑

k:e1,k∈A∪{e1,2,e1,3}
w1,k =

c1 − w1,3 and d2 ≡ w2 −
∑

k:e2,k∈A∪{e1,2,e1,3}
w2,k = w2 −

∑

k:e2,k∈A∪{e1,2}
w2,k = c2 re-

spectively. The marginal gain from the addition of e1,2 to A ∪ {e3,4} is equal to

δHe1,2(A ∪ {e3,4}) =
{w1,2 + d1

wT

log(
w1,2 + d1
wT

)

−
w1,2

wT

log(
w1,2

wT

)−
d1
wT

log(
d1
wT

)
}
+
{w2,1 + d2

wT

·

log(
w2,1 + d2
wT

)−
w2,1

wT

log(
w2,1

wT

)−
d2
wT

log(
d2
wT

)
}

(3.23)

By subtracting (3.23) from (3.19), we have

δHe1,2(A)− δHe1,2(A ∪ {e3,4}) (3.24)

=
{w1,2 + d1 + w1,3

wT

log(
w1,2 + d1 + w1,3

wT

)

−
d1 + w1,3

wT

log(
d1 + w1,3

wT

)
}
−

{w1,2 + d1
wT

log(
w1,2 + d1
wT

)

−
d1
wT

log(
d1
wT

)
}
= g(

d1 + w1,3

wT

)− g(
d1
wT

) > 0 (3.25)

The last equation is an application of the strictly increasing property of g(x) ≡

(x+ ξ) log(x+ ξ)− x log(x) where ξ = w1,2

wT
in this case.

56

From the above case discussions, I show that δHe1,2(A) ≥ δHe1,2(A ∪ {e3,4})

and complete the proof.

Theorem 2: The balancing function B : 2E → R is a monotonically increasing

submodular function under the proposed graph construction.

Proof. I prove the monotonicity and submodularity separately.

Monotonicity: δBa1(A) ≥ 0 for all A ⊆ E and a1 ∈ E \ A. WLOG let

assume a1 = e1,2, v1 be in cluster Si, and v2 be in cluster Sj . From (3.10), the

probability that a randomly chosen vertex is in Si and Sj is given by pZA
(i) = |Si|

|V |

and pZA
(j) =

|Sj |
|V |

respectively.

To prove the monotonicity, I discuss the case where i 6= j — v1 and v2 are in

two different clusters given A. 2 Let pi = pZA
(i) and pj = pZA

(j). The addition

of e1,2 to A merges Si and Sj, and the probability that a randomly chosen vertex

is in the merged cluster is equal to pZA
(i) + pZA

(j) =
|Si|+|Sj |

|V |
. The increase in the

balancing function is then given by

δBe1,2(A) = H(A ∪ {e1,2})−H(A)−NA∪{e1,2} +NA

= 1− (pi + pj) log(pi + pj) + pi log pi + pj log pj (3.26)

= 1 + pi log
pi

pi + pj
+ pj log

pj
pi + pj

(3.27)

≥ 1 + (pi + pj) log(
pi + pj

2(pi + pj)
) = 1− (pi + pj) ≥ 0. (3.28)

Note that the first inequality in (3.28) is an application of the log-sum inequality.

From (3.28) I prove the monotonically increasing property.

2If i = j, then δBa1
(A) = 0 and the monotonicity holds.

57

Submodularity: δBa1(A) ≥ δBa1(A∪{a2}) for all A ∈ E and a1, a2 ∈ E \A. To

prove the submodularity, I discuss the cases where the addition of a1 to A combines

two clusters. If it does not, both sides of the above equation equal zero and the

submodularity holds. WLOG let assume a1 = e1,2 and a2 = e3,4. Depending on

whether the addition of e3,4 combines two clusters, three derivative cases exist.

1.) Let assume the addition of e3,4 combines the clusters Si and Sj . This means

v1 and v2 are in the same cluster given A ∪ {e3,4}. Therefore the addition of e1,2 to

A ∪ {e3,4} has no effect on the graph partition. Both the number of clusters and

the cluster membership distribution remain the same; hence, δBe1,2(A) ≥ δBe1,2(A∪

{e3,4}) = 0.

2.) In the case that e3,4 combines some other clusters Sk and Sm where |{k,m}∩

{i, j}| = ∅ or e3,4 does not combine any clusters. The addition of e1,2 will still merge

Si and Sj. Moreover, pZA∪{e3,4}
(i) = pZA

(i) and pZA∪{e3,4}
(j) = pZA

(j). As a result

δBe1,2(A) = δBe1,2(A ∪ {e3,4}).

3.) Suppose that the addition of e3,4 combines Sk to Si. Let pk = pZA
(k). The

marginal gain obtained from adding e1,2 to A ∪ {e3,4} is given by

δBe1,2(A ∪ {e3,4}) = −(pi + pj + pk) log(pi + pj + pk)

+ (pi + pk) log(pi + pk) + pj log(pj) + 1. (3.29)

58

By subtracting (3.29) from (3.26), we have

δBe1,2(A)− δBe1,2(A ∪ {e3,4})

= (pi + pj + pk) log(pi + pj + pk)− (pi + pj) log(pi + pj)

− ((pi + pk) log(pi + pk)− pi log pi)

= g(pi + pj)− g(pi) ≥ 0 (3.30)

Note that the last inequality is an application of strictly increasing property of the

function g(x) = (x+ ξ) log(x+ ξ)− x log(x).

Theorem 3: Let E be the edge set, and let I be the set of subsets A ⊆ E

which satisfies: 1) A is cycle-free and 2) A constitutes a graph partition with more

than or equal toK connected components. Then, the pairM = (E, I) is a matroid.

Proof. The proof is given by showing that M satisfies the three matroid conditions.

1) It is straightforward to note that the empty set is an independent set of the

matroid — it contains no cycles and constitutes a |V |-partition where N∅ = |V | > K.

2) Let I ∈ I and I ′ ⊆ I. This implies that I has no cycles and NI ≥ K. Since

I ′ ⊆ I, the set I ′ can be obtained by removing edges from the set I. The removal

of edges does not add cycles and increases the number of connected components.

Therefore, the set I ′ also contains no cycles and NI′ ≥ K.

3) Let I1 and I2 be two independent sets in I such that |I1| < |I2|. The

independent set assumptions imply the associated connected components of I1 and

I2 satisfy the following relations: NI1 = |V | − |I1| ≥ K, NI2 = |V | − |I2| ≥ K, and

|I1| < |I2| =⇒ |V | − |I1| > |V | − |I2| ≥ K. From the above statements we have the

59

following equations.

NI1 > NI2 (3.31)

NI1 = |V | − |I1| ≥ K + 1 (3.32)

I now prove that there exists some e ∈ I2 − I1 such that NI1∪{e} ≥ K and the

set I1 ∪ {e} is cycle-free; i.e., I1 ∪ {e} is an independent set. Since adding one edge

to a graph decreases the number of connected components by at most one, (3.32)

implies NI1∪{e} ≥ K for e ∈ I2 − I1. The remaining part of the proof is achieved by

contradiction.

Let us assume there is no edge e ∈ I2 − I1 such that I1 ∪ {e} is cycle-free. In

other words, adding any edge e in I2 − I1 to the set I1 will result in a cycle and

leaves the number of connected components in the graph unchanged, NI1∪{e} = NI1 .

Thus by adding all the edges from I2 − I1 to the set I1, the number of connected

components will remain as NI1 , i.e., NI1∪(I2−I1) = NI1∪I2 = NI1 .

We know that the set I1∪I2 can also be obtained by adding edges from I1−I2

to I2. Since adding edges to a graph can only decrease the number of connected

components, we have the following relation NI1∪I2 ≤ NI2 =⇒ NI1 ≤ NI2 . This

contradicts (3.31), and thus the theorem is proved.

60

Chapter 4

Submodular Function

Maximization with Higher-Order

Priors for Video Segmentation

4.1 Introduction

Video segmentation methods in computer vision can be classified into two

categories: unsupervised [69, 21, 116, 48] and semi-supervised [22, 113, 24, 3, 124,

72]. The proposed algorithm belongs to the latter class where the user provides some

annotation such as the segmentation of the first frame, and the goal is to propagate

the information to other frames in a spatially and temporally consistent manner.

Most of the existing algorithms for semi-supervised video segmentation are

based on minimizing an energy function that models the pixel-wise likelihoods for

segmentation in unary terms and smoothness between neighboring pixels in pair-

wise terms. Several algorithms exist for this minimization problem, and graph cuts

presents one popular choice. Rother et al. [102] developed an interactive image seg-

mentation algorithm based on graph cuts, which was later extended for videos by

61

Wang et al. [124]. This extension for videos often requires substantial subsequent

user annotations. This drawback is later addressed in [3] with local classifiers, but

the approach tends to be unreliable for segmenting textureless objects. Recently,

Tsai et al. [113] incorporated optical flow in the energy function for video segmen-

tation. In contrast to the existing algorithms, I use a higher-order prior for video

segmentation based on histogram similarity; I also develop a novel optimization

algorithm.

Graph cuts [19] and message passing [131, 64] are two popular energy min-

imization algorithms for several vision problems like stereo, segmentation, optical

flow, and object recognition. A move-making algorithm like alpha-expansion[19] is

widely used for energy functions involving Potts model prior. Recently, higher-order

priors have been proven beneficial in several problems such as object class segmenta-

tion [62, 67], stereo [125], image segmentation [118, 63], image restoration [53], and

single view 3D reconstruction [98, 44]. Kolmogorov and Zabih [65] first showed the

transformation of submodular third order functions to pairwise functions, which can

be optimized with st-mincut. Several other researchers have considered the prob-

lem of higher-order functions by transforming them to pairwise ones [53]. Recently,

Jegelka and Bilmes [58] proposed cooperative cut, which can optimize a certain

class of higher-order energy functions. This technique was employed to solve image

segmentation problem consisting of thin regions.

In this chapter, I propose a higher-order energy function called histogram sim-

ilarity prior for video segmentation. It is based on the observation that appearances

of foreground and background objects tend to remain similar in several consecutive

62

frames of a video, despite articulation and deformation. Specifically, I encode the

appearance of the objects using a dictionary, compute a histogram of dictionary

words and pixel labels for each frame, and encourage a segmentation where the his-

tograms of consecutive frames resemble each other. This modeling is particularly

useful when the foreground and background objects have similar appearance. In

this case, the histogram similarity prior leads to additional robustness over energy

functions solely based on the Potts model because it encourages a spatially and

temporally coherent segmentation.

I use Kullback-Leibler (KL) divergence to measure the similarity between his-

tograms and propose minimizing the combination of Potts energy model and the his-

togram similarity prior for video segmentation. While minimizing the Potts energy

model alone can be solved efficiently with the graph cuts algorithm [19], minimizing

the combination leads to a NP-hard problem. For facilitating the prior, I carefully

analyze the resulting optimization problem. In particular, I establish the following

results:

1. the minimization of the Potts energy function is equivalent to the maximiza-

tion of a submodular function subject to a matroid constraint, and

2. the minimization of the histogram similarity prior is equivalent to the maxi-

mization of a submodular function subject to a matroid constraint.

Thus, one can minimize an energy function involving both the Potts model and his-

togram similarity prior by maximizing the associated submodular function subject

to a matroid constraint. Maximizing a submodular function subject to a matroid

63

constraint is NP-hard [91]; however, one can use the greedy algorithm to compute a

solution whose worst case performance is bounded by 1
2
of the optimal solution [42].

The use of the greedy algorithm for maximizing a submodular function subject to

a matroid constraint has been recently applied to several problems [49, 70, 73, 75].

In this chapter, I propose a branch and bound algorithm that can potentially lead

to the global optimum efficiently. This uses the greedy result as the initial solution,

and the bounding function is based on the submodularity of the associated set func-

tion. Since the initial solution is bounded by 1
2
, the incumbent—the current best

solution maintained in the branch and bound procedure—is also bounded by 1
2
.

4.1.1 Contribution

The chapter’s contribution is as follows:

• I propose the histogram similarity prior for video segmentation.

• I show that minimizing the Potts energy model, the histogram similarity prior,

and their combination can all be mapped to a problem of maximizing a sub-

modular function subject to a matroid constraint.

• The standard approach to maximize a submodular function subject to a ma-

troid constraint is based on the greedy algorithm, which is a 1
2
approximation

algorithm for this NP-hard problem. I further develop a branch and bound

procedure to improve the solution. The branch and bound procedure uses the

greedy solution as the initial solution; hence the worst case performance is also

bounded by 1
2
.

64

• I evaluate the proposed algorithm in a standard dataset and achieve compa-

rable or better performance with the state of the art.

The chapter is organized as follows. Background materials are reviewed in

Section 4.2. In Section 4.3, I establish the equivalence between the Potts model

energy minimization problem and a submodular function maximization problem.

The histogram similarity prior is introduced in Section 4.4. The optimization algo-

rithm is discussed in Section 4.5. I present the experiment results in Section 4.6 and

conclude the chapter in Section 4.7.

4.2 Preliminaries

For ease of explanation, throughout the chapter I refer to pixels as the basic

elements of the image/video. However, any other primitives can also be defined

such as superpixels, supervoxels, and image patches. In my experiments, I use

supervoxels. I use R to denote the set of real numbers and R+ to denote the set of

positive real numbers.

Matroids: A matroid M = (S, I) is a combinatorial structure consisting of

a ground set S and a collection I of subsets of S satisfying the following three

axioms [97]: (I1) ∅ ∈ I, (I2) If I2 ∈ I and I1 ⊆ I2, then I1 ∈ I, and (I3) If I1 and I2

are in I and |I1| < |I2|, then there is an element s of I2− I1 such that I1 ∪ {s} ∈ I.

A member of I is called an independent set of M . Note that the third axiom

implies that every maximal1 independent set is maximum or, equivalently, all maxi-

1inclusion-wise

65

mal independent sets have the same cardinality. A maximal independent set is also

called a basis B. The collection of bases of M is denoted by B. There are several

types of matriods, and I use the partition matroid in this paper.

Partition matroids: Let {S1, S2, ..., Sn} be a partition of a finite set S, i.e.,

S = ∪ni=1Si and Si ∩ Sj = ∅ for all i 6= j. A partition matroid is defined as

M = (S, I), where I is a collection of subsets of S satisfying the property that each

member of I has at most κi elements from the partition Si for some nonnegative

integers κi’s. In other words, the collection of independent sets is

I = {A ⊆ S : |A ∩ Si| ≤ κi, ∀i = 1, ..., n}. (4.1)

A basis is a maximal independent set, and the collection of bases is given by

B = {A ⊆ S : |A ∩ Si| = κi, ∀i = 1, ..., n} (4.2)

Submodular functions: Let S be a finite set. A set function f : 2S → R is

submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩ B) (4.3)

for all A,B ⊆ S. The set function f is called supermodular if the reversed inequality

holds true for every pair of subsets. Finally, f is called modular if it is both sub-

modular and supermodular. One can express the submodular inequality in other

ways; for example, (4.3) is equivalent to

f(A) ≤ f(B) +
∑

a∈A\B

ρa(B \ {a})−
∑

a∈B\A

ρa(A ∪ B \ {a}) (4.4)

where ρa(A) ≡ f(A ∪ {a})− f(A) is the marginal gain.

66

Monotonically increasing functions: A set function f is monotonically

increasing if f(A) ≤ f(A ∪ {a}) or ρa(A) ≥ 0 for all A ⊆ S and a ∈ S \ A.

Pseudo-Boolean function (PBF): A PBF takes a Boolean vector as input

and returns a real number [16]. Let us consider a Boolean vector x = (x1, x2, ..., x|S|) ∈

{0, 1}|S|. Note that x can also be seen as a subset A of a set S where xi = 0 when

i /∈ A and xi = 1 when i ∈ A. Thus, a PBF is a function φ : {0, 1}|S| → R. In this

paper, I use PBF to express the energy function for segmentation.

Energy minimization: Let V = {1, 2, ..., n} be a set of image pixels and L =

{1, 2, ..., |L|} be a set of labels. Many computer vision problems computes the label

vector y = (y1, y2, ..., yn) ∈ Ln so an associated energy function E : Ln → R+ ∪ {0}

is minimized. The energy function usually consists of many terms; each is defined

on a subset C of V, called a clique. It is written as E(y) =
∑

C∈C EC(yC), where C

is the set of all cliques and yC are the entries in y corresponding to the primitives

in C. The energy minimization problem is a problem of

argmin
y

∑

C∈C

EC(yC). (4.5)

When the clique size is one or two, they are usually referred to as unary or pairwise

terms, respectively.

4.3 Submodular Function Maximization

In this section, I design a new PBF in a way that the optimal solution of certain

class of energy functions in (4.5) can also be computed by maximizing the PBF under

a constraint. This is achieved by using a set of Boolean variables to denote the label

67

vector y. I demonstrates this PBF is submodular and the introduction of Boolean

variables leads to a partition matroid constraint.

4.3.1 Pseudo-Boolean Representation

I consider minimizing an energy function consisting of unary and pairwise

energy terms, i.e.,

E(y) =
∑

i∈V

Ei(yi) +
∑

(i,j)∈N

Eij(yi, yj) (4.6)

where N is the set of adjacent pixels. I assume a Potts pairwise model where

Eij(yi, yj) = 0 when yi = yj and Eij(yi, yj) = wij when yi 6= yj . Here, wij’s are

nonnegative location-dependent weights.

I will now show that the minimization problem given in (4.6) is equivalent to a

maximization problem of a carefully constructed monotonically increasing submod-

ular PBF. I represent the label vector y by a Boolean vector x = {xil : (i, l) ∈ V×L}

where

xil =
{ 1, yi = l

0, yi 6= l

(4.7)

With this representation, I define a new quadratic PBF given by

φ(x) =
∑

i∈V ,l∈L

Kixil −
∑

i∈V ,l∈L

Ei(l)xil −
∑

(i,j)∈N ,l1∈L,l2∈L

Eij(l1, l2)xil1xjl2. (4.8)

where

Ki ≡ max
l∈L

Ei(l) +
∑

(i,j)∈N

|L|wi,j, (4.9)

that ensure monotonicity of the set function φ. A quadratic PBF is submodular if

all the coefficients of the quadratic terms are non-positive [16]. Since the coefficients

68

of quadratic terms in (4.8) are either −wij or 0, φ(X) is submodular.

I further note that a 1-1 correspondence between y and x can be established

by the following constraint:

∑

l∈L

xil = 1, ∀ i ∈ V, (4.10)

which ensures that the Boolean vector x corresponds to a label vector y where every

pixel takes exactly one label. Given the constraint (4.10), φ(x) and E(y) is related

by

φ(x) = K − E(y) (4.11)

where K =
∑

i∈V Ki is a constant. Thus the problem of minimizing E(y) is

also equivalent to maximizing a submodular function φ(x) under the above con-

straint (4.10). In what follows, I will show that the constraint (4.10) can be replaced

by a partition matroid constraint.

4.3.2 Partition Matroid Constraint

I consider a partition matroid M = (S, I) whose bases are related to y. Each

element (i, l) in the ground set S denotes an assignment of a label l to a pixel i. Let

{S1, S2, ..., Sn} be a partition of the ground set S where elements in Si represent all

the possible label assignments for pixel i, i.e., {(i, l), (i, 2), ..., (i, |L|)}. The collection

of independent sets of the partition matroid M is given by

I = {A ⊆ S : |A ∩ Si| ≤ 1, ∀ i}, (4.12)

which constrains each pixel to have at most one label assignment. Fig. 4.1 illus-

trates the graphical representation of the partition matroid where pixel nodes i are

69

(a) (b)

Figure 4.1: (a) Graphical representation of the partition matroid M = (S,I). Each

node in the bottom row represents an image pixel; it has edges connecting to all the

label nodes in the top row. The edge is denoted by an ordered pair (i, l) where the

first index refers to the ith pixel node and the second index refers to the lth label node.

Edges connecting to a pixel node forms a partition of S, Si = {(i, l), ∀ l ∈ L}. The

independent set is given by subsets of S that have at most one edge for each partition,

I = {A ⊆ S : |A∩Si| ≤ 1,∀i}. (b) I illustrate the graphic representation of an independent

set containing elements {(1, 1), (2, 2), (3, 3), (4, 3)}. This independent set is a maximal

independent set or a basis. It corresponds to a label vector of y = (1, 2, 3, 3).

connected to label nodes l with edges (i, l).

A basis of a matroid is a maximal independent set, and therefore the collection

of bases in the above partition matroid is given by

B = {A ⊆ S : |A ∩ Si| = 1, ∀ i}. (4.13)

Now, it is easy to see that a 1-to-1 correspondence exists between bases and the

Boolean vector x under the constraint (4.10). Let f : 2S → R be a set function

corresponding to the pseudo-Boolean function φ(x). Maximizing φ(x) under the

constraint (4.10) is equivalent to solving the following problem

argmax
B∈B

f(B). (4.14)

70

Furthermore, the set function f is monotonically increasing and the details are

shown in the supplementary material. Thus, the bases or the maximal independent

sets of the partition matroid coincide with the local maxima of f . As a result, the

solution set of the problem in (4.14) is the same as the solution set of the problem

argmax
A∈I

f(A). (4.15)

I have shown that the energy minimization problem in (4.6) is equivalent to maxi-

mizing a submodular function subject to a partition matroid constraint.

4.4 Histogram Similarity Prior

The appearance distributions of foreground and background objects remain

approximately the same in short periods of time in a video. To model this high

order interaction, I introduce histogram similarity prior which penalizes the dissim-

ilarity of an appearance histogram of a given image segmentation from a reference

histogram. Let D be a dictionary of visual words and d = (d1, d2, ..., dn) ∈ Dn be a

vector mapping the image pixels to these visual words. The appearance histogram

of a given segmentation y ∈ Ln, H(y), contains |L|× |D| bins representing the joint

appearance and segmentation frequencies of |D| dictionary words, and |L| segmen-

tation labels in the image. I illustrate the histogram similarity prior in Fig 4.2.

One standard approach to measure the dissimilarity between two histograms

uses Kullback-Leibler (KL) divergence [26]. Let H1 and H2 be two histograms. The

71

Figure 4.2: Illustration of the histogram similarity prior. I compare the histogram sim-

ilarity between two candidate segmentations. Frame 1 is the reference frame where the

segmentation is given,which I use to guide the segmentation of Frame 2. I use a dictio-

nary to encode each pixel. Now for each candidate segmentation (corresponding to a label

vector), a histogram is induced. The histogram similarity prior prefers to the preference

of a segmentation with a histogram similar to the reference image.

KL divergence is given by

KL(H1||H2) =
∑

k

H1
k log

H1
k

H2
k

(4.16)

where the subscript k refers to the kth bin of the histogram. The KL divergence is

not symmetric, but a symmetric version can be obtained by defining

KLsym(H
1, H2) = KL(H1||H2) +KL(H2||H1). (4.17)

Let Hr be the reference histogram obtained from the segmentation of the first

frame, and H t be the histogram of following frames.2 The histogram similarity prior

2Note that this reference histogram can be also learned from a training set.

72

is modeled as a higher order term involving the set of all the pixels V.

EV(y) ≡
∑

t

KLsym(H
r, H t(y)). (4.18)

I establish the following result that enables us to minimize the above higher order

term using the same maximization formulation.

Theorem 4.1. The minimizing of the histogram similarity prior in (4.18) can be

solved by maximizing a monotonically increasing submodular function g : 2S → R

subject to the partition matroid constraint M = (S, I).

The proof is given in the supplementary material.

From the established equivalence in Theorem 4.1 and Section 4.3.2, the mini-

mization of an energy function comprising a Potts model and the histogram similar-

ity prior can be formulated as the maximization of a submodular function subject

to a matroid constraint

argmax
A∈I

(
f(A) + λg(A)

)
, (4.19)

where λ ≥ 0 is a weighting factor.

4.5 Optimization

I present a greedy algorithm to maximize the set function given in (4.19). The

algorithm starts with an empty set A = ∅ (all pixels are unlabeled). It adds an

edge a to A (assigns a label to an unlabeled pixel) at a time based on the maximum

increase in the set function (4.19) without violating the matroid constraint (every

pixel is assigned to, at most, one label). The iterations terminate when the set A

73

is a maximal independent set of the matroid M (when all the pixels are labeled).

It is shown in [42] that the greedy algorithm yields a solution that is guaranteed

to be within 1
2
of the optimal solution for maximizing a monotonically increasing

submodular function subject to a matroid constraint. Since the set function (4.19)

is monotonically increasing and submodular, this bound holds for my optimization

procedure.

I further present a branch and bound procedure to improve the optimization

in a limited time budget or to find the global optimum. This procedure is based

on a search tree structure where the root node corresponds to the original problem.

The root node has |L| child nodes, which correspond to subproblems after fixing the

label of a single pixel to one of the |L| segmentation labels. Further intermediate

nodes in the tree hierarchy correspond to reduced subproblems where labels of more

pixels are fixed, and the leaf nodes of the tree correspond to full labeling of the

image. Note that the search tree’s depth is n being the number of pixels.

I use a depth first search strategy—the deepest node in the tree is selected and

branched for further exploration at each iteration according to the greedy heuristic.

Therefore, the greedy solution serves as the initial incumbent, or the initial best

solution for the branch and bound procedure. For each branch, I compute a bound

for the subproblem. Whenever the bound is better then the incumbent, the branched

node remains in a pool of live nodes. However, if the bound is worse than the

incumbent, the branch is discarded because no feasible solutions of the subproblem

can be better than the incumbent. When a leaf node yields an objective value

better than the incumbent, I update the incumbent with the leaf node solution.

74

The algorithm reaches a global optimum when the pool of live nodes is empty.

The branch and bound algorithm requires a bounding function to discard

branches of the search tree that cannot contain an optimal solution. As explained

above, each intermediate node of the tree corresponds to a subproblem where labels

of exactly p pixels are fixed, and p is the depth of the node. I only need to compute

a bound on the label assignment for the remaining n−p pixels, which correspond to

the nodes from the current node down to the leaf node in the search tree. Let A∗
s be

the best solution for the subproblem where the labels of the first p pixels are fixed:

A∗
s = Ap ∪ A∗

n−p where Ap corresponds to the labels of the first p pixels and A∗
n−p

are the best labels for the remaining pixels. By using the submodularity property

given in (4.4), I have

f(A∗
s) ≤ f(Ap) +

∑

a∈A∗
s\Ap

ρa(Ap)−
∑

a∈Ap\A∗
s

ρa(Ap ∪ A
∗
s − {a}) (4.20)

= f(Ap) +
∑

a∈A∗
s\Ap

ρa(Ap) = f(Ap) +
∑

a∈A∗
n−p

ρa(Ap) (4.21)

≤ f(Ap) +
n∑

i=p+1

(
max
a∈Si

ρa(Ap)
)

(4.22)

where Si is the partition corresponding to the pixel at depth i in the search tree.

Note that the third term in (4.20) equals zero because Ap\A
∗
s = ∅, and the inequality

in (4.22) is simply due to the maximum operation. Therefore, the optimal solution

for the subproblem f(A∗
s) is bounded by (4.22).

Like many branch and bound algorithms, the efficiency of the proposed al-

gorithm depends on the tightness of the bounding function—a problem-specific

property and hard to analyze in general. Hence, I have no guarantee on the to-

75

tal execution time of the algorithm. However, for time-constrained applications,

one can simply terminate the branch and bound computation at any instance and

use the current incumbent as the final solution. Although the incumbent may not

be the global optimal solution, it is guaranteed to be within 1
2
of the global optimum

since the initial solution is from the greedy heuristic.

4.6 Experiments

Implementation: I divide the input video into several overlapping clips;

each clip contains five consecutive frames where the first frame overlaps with the

last frame of the preceding clip. I assume the segmentation of the first frame of

the video is given. For the following clip, I use the segmentation output of the last

frame of the preceding clip as the segmentation of the first frame. To reduce the

complexity of the optimization algorithm, I initially use a supervoxel segmentation

procedure that produces temporally and spatially coherent 3D volumes. This pro-

cedure extends the superpixel segmentation algorithm [75] for video by constructing

a spatiotemporal graph whose temporal connection is based on optical flow. With

this over-segmentation, a clip is divided into several hundred supervoxels, each con-

taining about 1, 000 pixels. The final video segmentation then becomes a task of

finding an optimal label assignment for the supervoxels.

My unary terms are based on the Gaussian mixture model as proposed in [102].

To compute the pairwise terms, I first construct a supervoxel adjacency graph in

76

the spatiotemporal domain. The pairwise term is then given by

γexp(−
1

β2
||ci − cj||

2) (4.23)

where ci and cj are the average RGB color of the supervoxels and β is the average

color difference of all pairs of neighboring supervoxels. I set γ = 500 in all my

experiments.

I construct a dictionary via clustering pixels in the first frame of each clip.

I used simple image features where pixels are represented by their RGB color and

normalized image coordinates.3 These vectors are divided into 30 clusters using K-

means. The cluster centers are used as dictionary words, and pixels in all the clip’s

frames are encoded using nearest neighbor assignment. Since I use |D| = 30 visual

words and the segmentation problem contains |L| = 2 classes, the joint appearance

and segmentation histogram contains 60 bins. The video segmentation is achieved by

solving the optimization problem given in (4.19) over the supervoxel representation.

Throughout the experiments, I set λ = 5, 000.

Results: I evaluated the proposed algorithm using the SegTrack dataset [113],

which contains six videos, namely Birdfall, Cheetah, Girl, Monkey–Dog, Parachute,

and Penguin. Pixel-level ground truth segmentations for all the frames in the videos

are available. The dataset is highly challenging, including similar foreground and

background colors, motion blur, occlusion, articulation, and compression artifacts.

The task aims to segment the video with a pre-specified binary segmentation of the

first frame.

3The coordinates are normalized by the image width.

77

(a) comparison with state-of-the-art (b) comparison on optimization techniques

Figure 4.3: (a) Performance comparison with the state-of-the-art on the SegTrack

dataset [113]. The proposed algorithm yields better average segmentation accuracy and

achieves best performance on three of the six challenging videos. (b) Performance com-

parison of the proposed energy function and optimization schemes with the Potts model

using graph-cuts optimization.

I compared my algorithm with the state-of-the-art and reported in Fig. 4.3(a);

the performance of the other algorithms were duplicated from a recent paper [69].

The performance metric used is the average number of error pixels per frame as

proposed in [113]. On three of six videos (Cheetah, Monkey–Dog, and Penguin),

the proposed algorithm achieved better segmentation accuracy whereas the perfor-

mance was slightly inferior to Lee et al. [69] for the Parachute video, and to Tsai

et al. [113] for the Birdfall and Girl videos. The Birdfall and Girl videos contained

significant motion blur, which resulted in errors in initial supervoxel segmentation,

reducing the performance of the proposed algorithm. On average, the proposed al-

gorithm achieved a better error rate of 723 pixel per frame over six video sequences,

whereas the second best method (Tsai et al. [113]) achieved 867 pixel per frame.

I show several segmentation examples in Fig. 4.4; and more can be found in the

78

Figure 4.4: Several examples of segmentation results from the six videos: Birdfall, Chee-

tah, Girl, Monkey–Dog, Parachute, and Penguin. The foreground boundaries are super-

imposed on the images. More examples can be found in the supplementary material.

(a) λ (b) γ (c) B&B time (sec.)

Figure 4.5: Parameter sensitivity analysis with respect to (a) the weighting factor on the

histogram similarity energy, λ, (b) the weighting factor on the pairwise term, γ, and (c)

time budget for the branch and bound procedure.

supplementary material.

In Fig 4.3(b), I illustrate the effect of the histogram similarity prior by compar-

ing the proposed energy function with the standard Potts model. I used the graph

79

cut [19] to optimize the Potts energy function, which produces the optimal result

for the given binary segmentation problem. In addition, I compared two subopti-

mal optimization schemes for the proposed Potts and histogram similarity energy

function: 1) Greedy, and 2) Branch and bound. Note that I terminated the branch

and bound algorithm after 1 second and returned the current best solution; hence

it only guarantees a 1
2
approximation bound inherited from the greedy algorithm.

As shown in Fig 4.3(b), the incorporation of the histogram similarity prior leads to

an improved performance over the Potts model even though a simple feature rep-

resentation is used. The improvement using branch and bound procedure over the

greedy scheme appears minor which I believe relates to the already good solution

found by the greedy algorithm and the limited time budget.

In Fig 4.5, I analyzed the segmentation’s sensitivity with to the parameter

values. I found that the proposed algorithm is largely insensitive to exact tuning of

the parameters and produces good results for a wide range of parameter values. In

Fig. 4.5(c), I analyzed the segmentation accuracy with respect to the time spent on

the branch and bound algorithm. The result indicated that the algorithm found a

suboptimal solution quickly and did not improve further in a limited time constraint.

4.7 Conclusion

I show an approach to convert the Potts energy minimization problem to a

matroid-constrained submodular function maximization problem. I introduce the

histogram similarity prior for video segmentation and show that it can be naturally

80

handled with the maximization framework. My framework is not limited to the

energy functions studied in the chapter; it can be applied to solve a higher-order

energy function that has an associated submodular set function in the maximization

form. In future, I plan to study the class of hard constraints occurred in computer

vision that can be enforced via matroids.

4.8 Proof

In this section, I present the proofs of the claims in the main paper.

4.8.1 Monotonically Increasing Property of f

I show that the set function f defined in Section 4.3 is monotonically in-

creasing. It is achieved by showing that the marginal gain, shown below, is always

nonnegative for all A ∈ S and (i, l) ∈ S \ A.

f(A ∪ {(i, l)})− f(A) = Ki − Ei(l)−
∑

(i,j)∈N ,(j,k)∈A,k 6=l

wij

=
(
max
l′∈L

Ei(l
′)− Ei(l)

)
+
(∑

(i,j)∈N

|L|wij −
∑

(i,j)∈N ,(j,k)∈A,k 6=l

wij

)
≥ 0 (4.24)

Note that Ki is given by

Ki ≡ max
l∈L

Ei(l) +
∑

(i,j)∈N

|L|wi,j, (4.25)

and the inequality in (4.24) is due to

max
l′∈L

Ei(l
′) ≥ Ei(l) (4.26)

81

and

∑

(i,j)∈N

|L|wij ≥
∑

(i,j)∈N ,(j,k)∈Sj,k 6=l

wij ≥
∑

(i,j)∈N ,(j,k)∈A,k 6=l

wij. (4.27)

4.8.2 Proof of the submodularity of the KL Divergence

I present the proof of Theorem 4.1. I first prove two lemmas where the first

lemma shows that the logarithm function 4 of a monotonically increasing modular

function is a monotonically increasing submodular function, and the second lemma

shows that the set function −q log q is submodular if q is a monotonically increasing

modular function.

4.8.2.1 Proof of Lemma 1

Lemma 4.1. Let S be a finite set and q : 2S → R be a monotonically increasing

modular function with q(∅) = 0. Then the set function log(q) is monotonically

increasing and submodular.

Proof. Let A be a subset of S and a ∈ S \A. The marginal gain of the set function

log(q) is given by

log(q(A ∪ {a}))− log(q(A)) = log(
q(A ∪ {a})

q(A)
) ≥ 0 (4.28)

This is because the monotonically increasing property of the set function q, i.e.,

q(A ∪ {a}) ≥ q(A).

4The logarithm function is defined on R+. In order to avoid log(0), I assume that a small

constant ǫ > 0 is added to the argument of the logarithm function. For the ease of presentation, I

use log(x) to denote log(x+ ǫ) where x ≥ 0 and omit ǫ for the rest of the supplementary material.

82

To prove the submodularity, I show the marginal gain in (4.28) is monotoni-

cally decreasing (Proposition 2.1 (iii) in [91]). Specifically, I consider

(

log(q(A ∪ {a}))− log(q(A))

)

−

(

log(q(A ∪ {a, b}))− log(q(A ∪ {b}))

)

(4.29)

where b ∈ S\(A∪{a}). With some algebraic manipulation, one can show that (4.29)

is equal to

log(
q(A ∪ {a})q(A ∪ {b})

q(A ∪ {a, b})q(A)
) (4.30)

= log(

(

q(A) + q({a})

)(

q(A) + q({b})

)

(

q(A) + q({a}) + q({b})

)

q(A)

) (4.31)

= log(

q(A)q(A) +

(

q({a}) + q({b})

)

q(A) + q({a})q({b})

q(A)q(A) +

(

q({a}) + q({b})

)

q(A)

) ≥ 0. (4.32)

Note that the inequality in (4.32) is due to q({a})q({b}) ≥ 0 (from the monotonically

increasing property of the set function q and q(∅) = 0).

4.8.2.2 Proof of Lemma 2

Lemma 4.2. Let S be a finite set and q : 2S → R be a monotonically increasing

modular function with q(∅) = 0. Then the set function −q log(q) is submodular.

Proof. Let A be a subset of S and a ∈ S \A. The marginal gain of the set function

−q log(q) is given by

δa(A) ≡ −q(A ∪ {a}) log q(A ∪ {a}) + q(A) log q(A) (4.33)

= −
(
q(A) + q({a})

)
log

(
q(A) + q({a})

)
+ q(A) log q(A). (4.34)

83

For a fixed a, the marginal gain in (4.34) is a function of q(A). Moreover, the

marginal gain is a monotonically decreasing function of q(A). Since q is a mono-

tonically increasing function of A, the marginal gain is a monotonically decreasing

function of A. From Proposition 1.1 in [78], the set function −q log(q) is submodu-

lar.

4.8.2.3 Proof of the submodularity of the KL Divergence

Proof. I first observe that the negation of the energy function is equal to

− EV(y) =
∑

t

(−KL(Hr||H t(y))−KL(H t(y)||Hr)) = (4.35)

∑

t

∑

k

(

Hr
k logH

t
k(y)−H

r
k logH

r
k +H t

k(y) logH
r
k −H

t
k(y) logH

t
k(y)

)

(4.36)

where Hr
k is constant, which denotes the percentage of pixels in the kth bin of

the histogram associated with the reference frame. Note that my joint appearance

and segmentation histogram is a 2-dimensional one where the two dimensions are

dictionary word index d and the segmentation label l, respectively. Hence, the

subscript k represents a tuple (d, l).

I represent the label vector y by a Boolean vector x = {xil : (i, l) ∈ V × L}

where xil = 1 when yi = l and xil = 0 when yi 6= l as defined in the main paper.

With this representation, I design a pseudo-Boolean function ψ(x) associated with

84

EV(y) given by

ψ(x) =
∑

t

∑

k

(
∑

i∈V , l∈L

ξixil

︸ ︷︷ ︸

modular

+Hr
k log

∑

i∈V , l∈L

H t
k(i, l)xil

︸ ︷︷ ︸

submodular

−Hr
k logH

r
k

︸ ︷︷ ︸

constant

+
∑

i∈V , l∈L

H t
k(i, l)xil logH

r
k

︸ ︷︷ ︸

modular

+
(∑

i∈V , l∈L

−H t
k(i, l)xil

)

log
∑

i∈V , l∈L

H t
k(i, l)xil

︸ ︷︷ ︸

submodular

)

(4.37)

where

ξi =−min
l′∈L

(
H t

k(i, l
′) logHr

k

)
−
(∑

(j,m)∈S

H t
k(j,m)

)
log

(∑

(j,m)∈S

H t
k(j,m)

)

+max
l′∈L

(∑

(j,m)∈S\{(i,l′)}

H t
k(j,m)

)
log

(∑

(j,m)∈S\{(i,l′)}

H t
k(j,m)

)
, (4.38)

which ensures the monotonicity of the set function ψ (shown later in the proof), and

H t
k(i, l) = 1 if pixel i is assigned to the kth bin of the histogram H t, and H t

k(i, l) = 0

otherwise. Note that given the constraint

∑

l∈L

xil = 1, ∀ i ∈ V, (4.39)

I have the following relation

∑

i∈V , l∈L

H t
k(i, l)xil = H t

k(y), (4.40)

and the pseudo-Boolean function ψ(x) and the energy function EV(y) is related by

ψ(x)−
∑

t

∑

k

∑

i∈V ξi = −EV(y). I further note that
∑

i∈V , l∈LH
t
k(i, l)xil in (4.40)

is a monotonically increasing modular function since H t
k(i, l) ≥ 0.

We can now prove that the set function ψ is submodular. From Lemmas 4.1

and 4.2, I know that the second and fifth terms in (4.37) are submodular. In addition,

85

the first and fourth terms in (4.37) are modular, which are also submodular. The

third term is simply a constant. Since submodularity is preserved under canonical

combinations, ψ is submodular.

I now show that ψ is monotonically increasing. Let g : 2S → R be the

corresponding set function of the pseudo-Boolean function ψ. The marginal gain of

g, shown below, is always nonnegative for all A ∈ I and (i, l) ∈ S \ A.

g(A ∪ {(i, l)})− g(A) =

ξi +Hr
k

(

log
(
H t

k(i, l) +
∑

(j,m)∈A

H t
k(j,m)

)
− log

(∑

(j,m)∈A

H t
k(j,m)

)
)

+H t
k(i, l) logH

r
k

+

(

−H t
k(i, l)−

∑

(j,m)∈A

H t
k(j,m)

)

log

(

H t
k(i, l) +

∑

(j,m)∈A

H t
k(j,m)

)

−

(
∑

(j,m)∈A

−H t
k(j,m)

)

log
∑

(j,m)∈A

H t
k(j,m) (4.41)

≥ξi +H t
k(i, l) logH

r
k

+

(

−H t
k(i, l)−

∑

(j,m)∈A

H t
k(j,m)

)

log

(

H t
k(i, l) +

∑

(j,m)∈A

H t
k(j,m)

)

−

(
∑

(j,m)∈A

−H t
k(j,m)

)

log
∑

(j,m)∈A

H t
k(j,m) (4.42)

Note that the derivation from (4.41) to (4.42) follows the monotonically increasing

property of the logarithm function. Let define a set function z given by

z(A) =

(
∑

(j,m)∈A

−H t
k(j,m)

)

log

(
∑

(j,m)∈A

H t
k(j,m)

)

, (4.43)

which will be used to simplify the notation. Then, ξi in (4.38) can be written as

ξi = −min
l′∈L

(
H t

k(i, l
′) logHr

k

)
− z(S) + max

l′∈L
z(S \ {(i, l′)}) (4.44)

86

Equation (4.42) can then be rewritten as

=H t
k(i, l) logH

r
k −min

l′∈L

(
H t

k(i, l
′) logHr

k

)
+

z(A ∪ {(i, l)})− z(A)− z(S) + max
l′∈L

z(S \ {(i, l′)}) (4.45)

≥z(A ∪ {(i, l)})− z(A)− z(S) + max
l′∈L

z(S \ {(i, l′)}) (4.46)

≥z(A ∪ {(i, l)})− z(A)− z(S) + z(S \ {(i, l)}) (4.47)

≥0 (4.48)

The derivations from (4.45) to (4.46) and from (4.46) to (4.47) are due to the

min and max operations respectively. The last inequality in (4.48) is due to the

submodularity of the set function z (Lemma 4.2).

I have shown that the set function g is monotonically increasing and submod-

ular. Using a similar argument as presented in Section 4.3, the energy minimization

problem

argmin
y

EV(y) (4.49)

can be solved by maximizing g subject to the partition matroid constraint

argmax
A∈I

g(A) (4.50)

87

Chapter 5

Fast Object Localization and Pose

Estimation in Heavy Clutter for

Robotic Bin Picking

5.1 Introduction

Building smarter, more flexible, and independent robots that can interact with

the surrounding environment is a fundamental goal of robotics research. Potential

applications are wide-ranging, including automated manufacturing, entertainment,

in-home assistance, and disaster rescue. One of the long-standing challenges in

realizing this vision remains the difficulty of “perception” and “cognition”—i.e.,

providing the robot with the ability to understand its environment and make in-

ferences that allow it to take appropriate actions. Perception through inexpensive

contact-free sensors, such as cameras are essential for continuous and rapid robot

operation. In this chapter, I address the challenge of robot perception in the context

of industrial robotics.

88

5.1.1 Visual Perception in Industrial Robotics

Computer vision has made rapid progress in the last decade, moving closer to

definitive solutions for longstanding problems in visual perception, such as object

detection [28, 120, 114], object recognition [33, 95, 32], and pose estimation [1, 108,

87]. While the huge strides made in these fields lead to important realizations, most

of these methods cannot be readily adapted to industrial robotics because many of

the common assumptions are either violated or invalid in such settings.

Material properties: One of the most common assumptions in traditional

vision algorithms relates to the characterization of the reflectance of materials in

the scene. Most vision algorithms characterize materials as Lambertian [7], i.e., the

appearance (radiance) of a single surface point is invariant to the location of the ob-

server (camera). A reasonable assumption in many scenarios, it does not apply well

to industrial vision tasks. Several common materials handled in industrial settings

such as metal, glass, ceramics, and some plastics differ wildly from Lambertian.

Hence, using the Lambertian assumption for such objects tends to result in poor

performance. This necessitates industrial robots to possess the ability to understand

and make inferences about objects that have complex reflectance characteristics.

Environmental challenges: The types of errors that afflict vision-based

systems in industrial settings also differ greatly from those in natural environments.

Several industrial assembly and manufacturing tasks must be accomplished in dark

or dimly lit environments with dust, dirt, grime, and grease. It is essential for

vision-based techniques to cope with such sources of error to attain success in such

89

environments.

Variable appearance: The most popular methods for object detection,

recognition, and pose estimation are based on the idea of feature descriptors, such as

Scale Invariant Feature Transform (SIFT) [81], Histogram of Gradients (HOG) [28],

and SURF [8]. The basic idea is to detect several keypoint locations on the surface of

each object and compute these feature descriptors at these keypoint locations. The

features of each object are then stored in a database. After acquiring a test image,

the keypoint locations and the feature descriptors for the test image are computed

and matched to the features stored in the database. An appropriately computed

matching score is used to detect and recognize objects, and the geometric relation-

ship between the matched keypoint locations in the test image and the database

are used to make inferences about the objects’ poses. This general principle is quite

popular, as seen in several object recognition methods [110, 68, 93]. Unfortunately,

this successful paradigm cannot be adapted easily to industrial robotics because

visual appearance features are unreliable in industrial settings. Variable material

properties, as well as uncontrolled illumination and environmental conditions, make

appearance-based descriptors unreliable and preclude the use of such techniques in

most industrial applications.

Background Clutter: The objects in a factory environment are usually

stacked in part containers, which produces additional challenges such as overlap-

ping parts, occlusions, cast shadows, and complex backgrounds. Therefore, most

commercial vision systems assume that parts are separated in a kitting stage before

operation. Machine vision systems capable of handling clutter, occlusions, and com-

90

plex backgrounds would eliminate the need for kitting stages, allowing such systems

to handle a complex bin of parts.

Model-based estimation: While industrial settings have the challenging

above-mentioned factors, they are also more structured and allow opportunities to

exploit this structure. For example, 3D CAD models of most of the industrial parts

are readily available. Even if some of them are not, the fact that most industrial

assembly lines repeatedly handle a finite set of discrete parts many times (on the

order of millions) makes CAD model acquisition cost-effective. The 3D CAD mod-

els provide a reliable source of information, potentially overcoming the challenging

reflectance and environmental conditions.

5.1.2 A Practical Vision-Based Robotic Bin-Picking System

In this chapter, I present a practical vision-based robotic bin-picking system

that overcomes the challenges described in Section 5.1.1. The system performs

detection and estimation of the 3D poses of objects that are stacked in a part

container, retrieves the parts from the container using an industrial robot arm,

performs pose verification and refinement while holding the part in the gripper, and

inserts the chosen part at a designated position. I have introduced two novel ideas

that allow us to achieve a reliable, fast, and accurate operation: (1) Novel imaging

hardware that provides reliable geometric features regardless of the object’s material

and surface characteristics; (2) Fast, robust, and accurate 3D pose estimation based

on the Fast Directional Chamfer Matching (FDCM) algorithm.

91

The fundamental challenges that arise due to non-Lambertian materials (e.g.,

metal, glass, ceramic), textureless parts (e.g., uniformly painted parts), and greasy

and dirty environments lead to the fact that photometric features such as color

and appearance descriptors are not sufficiently robust in industrial settings. This

motivates the need to develop features that are dependent on the geometry of the

part rather than its photometry. I use an inexpensive camera design, the multi-flash

camera (MFC) [99], that provides reliable geometric features: depth edges. The

location of depth edges on an object is dependent only on the pose of the object

with respect to the observer and the object geometry. Therefore, depth edges can

be used to determine the pose of the object uniquely. In addition, these geometric

descriptors allow easy and efficient incorporation of the 3D CAD models into my

system. Given the 3D CAD model of an object, I retrieve the object’s pose that

provides the best match between the observed features and the depth edges from

the CAD model. This allows us to bypass a time-consuming training phase for each

of the objects that would otherwise be necessary. A new part can be integrated into

my system in less than 10 minutes.

Although many shape matching algorithms have been proposed over the decades,

chamfer matching (CM) [6] remains among the fastest and most robust approaches

in the presence of clutter. I adapt traditional chamfer matching with a host of

techniques to improve reliability, accuracy, and speed. First, I exploit the geomet-

ric redundancies in the 3D structure of industrial parts by approximating the edge

features using line segments. This, along with a 3D integral distance transform rep-

resentation, allows us to both reduce the memory footprint and speed the matching

92

algorithm by orders of magnitude. Second, I incorporate a directional error term in

the distance transform definition that significantly improves the reliability, robust-

ness, and accuracy of matching. Further, I improve the pose estimation accuracy

using a continuous optimization procedure. The resulting system is capable of real-

time operation for several industrial assembly applications.

While the primary goal of this research is to develop a robust and reliable vision

system for industrial robotics, the FDCM algorithm also achieves state-of-the-art

performance in shape matching. I present two additional application domains that

benefit from FDCM: deformable object detection using a hand-drawn shape, and

human pose estimation.

The chapter is organized as follows. I briefly overview the related literature

in Section 5.2. I present the shape matching algorithm and its optimization in

Section 5.3. Pose estimation and the robotic bin-picking system are described in

Section 5.4. I report on my extensive experimental validation of the proposed system

and compare it to the state of the art in Section 5.5. The chapter concludes in

Section 5.6. An earlier version of this chapter was published in [76, 77].

5.2 Related Work

In recent decades, a considerable amount of work has occurred on automating

the process of part assembly using vision systems [105, 90, 2]. Though vision sys-

tems can successfully in identify, inspect, and locate parts in carefully engineered

manufacturing settings, it remains a great challenge to extend their applicability

93

to more general, unconstrained settings. Also, they often make use of simple geo-

metric features such as lines, circles, or ellipses and their spatial organization [121].

Changing a target object in the assembly process would require significant manual

adjustments or algorithmic modifications.

Model-based vision systems exploit 3D CAD models of objects, along

with either acquired 2D images or range sensor data, for image interpretation. Such

methods provide means for efficient detection, recognition, and pose estimation of

objects in cluttered environments [79, 80, 109, 59, 5, 31]. Methods such as [79, 80, 30]

rely on establishing correspondences between 2D image features and points in the

3D models in order to obtain an initial estimate of object pose. The estimate is later

refined using iterative algorithms. These correspondences are, however, difficult to

obtain reliably.

Since establishing 3D-to-2D correspondences using images is a difficult task,

several systems rely either directly or indirectly on 3D information. Such methods

greatly simplify the correspondence problem at the cost of increased hardware re-

quirements. The most common approach use a 3D range sensors either based on

structured light [103] or on time of flight [27]. This provides the ability to estab-

lish 3D-to-3D point correspondences by matching 3D point descriptors from the

CAD model to those in the acquired point cloud data. Several 3D point descrip-

tors [109, 59, 5] have been proposed for matching the 3D scene points to the model

points. To remove false matches, an interpretation tree procedure [47] can be applied

to find mutually consistent pairs. With these consistent pairs, one can use Horn’s

method [52] to estimate the object’s 3D pose. Unfortunately, these descriptors are

94

less reliable for pose estimation of industrial parts because these objects are mostly

made of planar surfaces, which leads to very few and uninformative features.

Recently, the use of the multi-flash camera [99] for object pose estimation

was proposed in [2]. The MFC, which was originally developed in the context

of non-photorealistic rendering, provides depth edge features that can be used for

pose estimation tasks. In this chapter, I significantly expand the scope and impact

of MFC for industrial robotics. While [2] presented a system capable of handling

isolated parts, here I present a system that can handle multitudes of parts randomly

placed in a cluttered bin. Further, I also present a novel shape-matching algorithm

that results in better accuracy and orders-of-magnitude improvement in matching

speed, allowing real-time system performance.

One of the main technical contributions of this work is the development of

the fast directional chamfer matching algorithm, which is widely applicable to sev-

eral problems that currently use shape matching. Below, I briefly discuss related

approaches in shape matching.

Shape matching has been an active area in robotic vision research. Several

authors have proposed shape representations and similarity measures that aim to be

invariant to object deformations [12, 74]. These methods actively handle intra-class

shape variations and achieve good performance in object recognition. However, they

require a clean segmentation of the target object. This renders them less suitable

for dealing with unstructured scenes due to the difficulty in foreground-background

separation.

Recent studies focus on the recognition and localization of object shapes in

95

cluttered images. In [13], the shape matching problem is posed as finding the op-

timal correspondences between feature points, which leads to an integer quadratic

programming problem. In [39], a contour segment network framework is proposed in

which shape matching is formulated as finding paths on the network similar to model

outlines. In [37], Ferrari et al. propose a family of scale-invariant local shape de-

scriptors (pair-of-adjacent-segment features) formed by k-connected nearly straight

contour fragments in the edge map. These descriptors are later utilized in a shape

matching framework [38] through a voting scheme on a Hough space.

Zhu et al. [135] formulate shape detection as a subset selection problem on

a set of salient contours. Due to the NP-hardness of the selection problem, they

compute an approximate solution using a two-stage linear programming procedure.

In [35], a hierarchical object contour representation is proposed to model shape

variation, and the matching is performed using dynamic programming. In [100], a

multi-stage approach is employed in which coarse detections, which are established

by matching subsets of contour segments, are pruned by building the entire contour

using dynamic programming.

These algorithms yield impressive results for matching shapes in cluttered

images. However, they share a common drawback, high computational complexity,

which makes them unsuitable for time-critical applications. Although proposed

decades ago, chamfer matching [6] remains the preferred method when speed and

accuracy are required, as discussed in [112]. In this chapter, I propose an improved

version of chamfer matching and demonstrate its superiority with respect to other

variants [45, 106]. My approach improves the accuracy of chamfer matching while

96

greatly reducing its time complexity, leading to a speed increase of up to two orders

of magnitude in several application scenarios.

5.3 Fast Directional Chamfer Matching

In this section, I introduce my fast directional chamfer matching algorithm,

which I use for object detection and pose estimation in industrial robotics and other

application areas.

5.3.1 Chamfer Matching

First, I briefly explain standard chamfer matching (CM) [6], a popular tech-

nique for finding the best alignment between a template edge map and a query edge

map. Let U = {ui}, where i = 1, 2, ..., |U |, be the set of edge pixels from a template

edge map, and let V = {vj}, where j = 1, 2, ..., |V |, be the set of edge pixels from

a query image edge map. The chamfer distance between U and V is defined as the

average over all pixels ui ∈ U of the distance between ui and its nearest pixel in V :

dCM(U, V) =
1

n

∑

ui∈U

min
vj∈V
‖ui − vj‖. (5.1)

where n is the number of template edge pixels, n = |U |.

LetW be a warping function defined on the image plane that is parameterized

by s. For instance, if W is a 2D Euclidean transformation, then s ∈ SE(2) can be

written as s = (θ, t̄x, t̄y), where t̄x and t̄y are translations parallel to the x and

y axes, respectively, and θ is the in-plane rotation angle. Its action on each image

97

point x ∈ R
2 is given via the transformation

W (x; s) =







cos(θ) − sin(θ)

sin(θ) cos(θ)







x+







t̄x

t̄y






. (5.2)

The best alignment parameter ŝ between the two edge maps is then given by

ŝ = arg min
s∈SE(2)

dCM(W (U ; s), V) (5.3)

where W (U ; s) = {W (ui, s)}, i = 1, 2, ..., |U |.

The chamfer matching cost can be computed efficiently using the distance

transform image

DTV (x) = min
vj∈V
‖x− vj‖, (5.4)

which specifies the distance from each pixel x in the distance transform image to

the nearest edge pixel in V . The distance transform can be computed in two passes

over the image using dynamic programming [34]. Using the distance transform, the

cost function (5.1) can be evaluated in linear time O(n) via

dCM(U, V) =
1

n

∑

ui∈U

DTV (ui). (5.5)

Chamfer matching provides a fairly smooth measure of fitness and can tolerate

small rotations, misalignments, occlusions, and deformations. However, it becomes

less reliable in the presence of background clutter due to an increase in the proportion

of false correspondences. To improve its robustness, several variants of chamfer

matching have been introduced that exploit edge orientation information. In [45,

29], the template and query image edges are quantized into discrete orientation

channels, and individual matching scores across channels are summed. Although

98

these methods improve performance in cluttered scenes, the cost function is sensitive

to the number of orientation channels and becomes discontinuous across channel

boundaries. In [106], the chamfer distance is augmented with an additional cost

for orientation mismatch, which is given by the average difference in orientations

between template edges and their nearest edge points in the query image. The

method is known as oriented chamfer matching (OCM).

5.3.2 Directional Chamfer Matching

Instead of an explicit formulation of the orientation mismatch, I generalize the

chamfer distance to points in R
3 to match directional edge pixels. Each edge pixel

x is augmented with a direction term, φ(x), and the directional chamfer matching

(DCM) score is given by

dDCM(U, V) =
1

n

∑

ui∈U

min
vj∈V

(‖ui − vj‖+ λ‖φ(ui)− φ(vj)‖π) (5.6)

where the parameter λ is a weighting factor between the location and orientation

terms. To compute the direction terms, I fit line segments to the edge points (as

explained in Section 5.3.3), and φ(x) is the orientation of the line segment associated

with point x. Note that the directions are written modulo π: 0 ≤ φ(x) < π, and

the orientation error is defined as the minimum circular difference between the two

directions:

‖φ(x1)− φ(x2)‖π = min
{
|φ(x1)− φ(x2)|,

∣
∣ |φ(x1)− φ(x2)| − π

∣
∣
}
. (5.7)

In Figure 5.1, I illustrate the differences between DCM and OCM [106]. The

proposed matching cost, DCM, is a piecewise smooth function of both the translation

99

Template

edge point

Corresponding query

edge point

Template

edge point

Corresponding

query edge point

(a) (b)

Figure 5.1: Matching costs for an edge point. (a) Oriented chamfer matching

(OCM) [106]. (b) Directional chamfer matching (DCM, proposed in this chapter).

Whereas in OCM the location error is augmented with the orientation difference

from the nearest edge point, DCM jointly minimizes location and orientation errors.

(tx, ty) and the rotation (θ) of the template pose. It is more robust to clutter, missing

edges, and small misalignments.

The computational complexity of existing chamfer matching algorithms is lin-

ear in the number of template edge points. Even though DCM includes an additional

direction term, my algorithm (derived in this section) computes the exact DCM score

with sublinear complexity.

5.3.3 Line-Based Representation

The edge map of a scene is not an unstructured binary pattern. On the con-

trary, the object contours comply with certain continuity constraints that can be

retained by combining line segments of various lengths, orientations, and transla-

tions. Based on this observation, I represent an edge image as a collection of m

line segments. Compared with a set of points which has cardinality n, its line-based

representation is more concise. Encoding an edge map using the line-based represen-

100

tation requires only O(m) memory size, where m << n, and is particularly suitable

when the storage space for templates is limited. When the object exhibits a curved

contour, more segments are required for good approximation, but the line-based

representation is still more concise than the set of edge pixels.

I use a variant of the RANSAC [41] algorithm to compute the line-based

representation of an edge map. The outline of the algorithm is as follows. The

algorithm initially hypothesizes a variety of line segments by selecting a small subset

of edge points and their directions. The support of each line segment is given by

the set of points that satisfies the line’s equation up to a small residual, ν ≥ 0, and

form a continuous structure. The line segment with the largest support is retained,

and its supporting points are removed from the set of edge points. The procedure

is repeated with the reduced set of edge points, until the support of the longest line

candidate becomes smaller than a few points.

The algorithm retains only edge points with continuity and sufficient support;

therefore, the noise and isolated edges are filtered. In addition, the directions re-

covered through the line fitting procedure are more precise than would be obtained

using local operators, such as image gradients. An example of the line-based repre-

sentation appears in Figure 5.2, where a set of 11,542 points is modeled with 300

line segments.

101

(a) (b)

Figure 5.2: Line-based representation. (a) Edge image. The image contains 11,542

edge points. (b) Line-based representation of the edge image. The image contains

300 line segments.

(a) (b) (c) (d) (e)

Figure 5.3: Computation of the integral distance transform tensor. (a) The set V

of points in the query edge map is mapped into a set of line segments through a

line-fitting procedure. (b) Edges are quantized into discrete orientation channels.

(c) Two dimensional distance transform of each orientation channel. (d) The three-

dimensional distance transform, DT3V , is updated based on the orientation cost.

(e) The 3D distance transform is integrated along the discrete edge orientations,

and the integral distance transform tensor, IDT3V , is computed.

102

5.3.4 Three-Dimensional Distance Transform

The matching score given in (5.6) requires finding the minimum matching

cost over location and orientation terms for each template edge point. Therefore, the

computational complexity of the brute-force algorithm is quadratic in the number of

template and query image edge points. Here, I present a three-dimensional distance

transform representation (DT3V) for computing the matching cost in linear time.

A similar structure was also used in [96] for fast evaluation of Hausdorff distances.

This representation is a three dimensional image tensor in which the first two

dimensions are locations in the image plane and the third dimension belongs to

a discrete set of edge orientations. I evenly quantize the edge orientation into q

discrete channels, Φ̂ = {φ̂i}, i = 1, 2, ..., q, which evenly divide the range [0 π).

Each element of the tensor encodes the minimum distance to an edge point in the

joint location and orientation space:

DT3V (x, φ(x)) = min
vj∈V

(

‖x− vj‖+ λ‖φ̂(x)− φ̂(vj)‖π
)

, (5.8)

where φ̂(x) is the nearest quantization level in the orientation space Φ̂ to the edge

orientation φ(x).

I present an algorithm to compute the DT3V tensor in O(q) passes over the im-

age by solving two dynamic programs consecutively. Equation (5.8) can be rewritten

as

DT3V (x, φ(x)) = min
φ̂i∈Φ̂

(

DTV {φ̂i}
+ λ‖φ̂(x)− φ̂i‖π

)

(5.9)

where DTV {φ̂i}
is the two dimensional distance transform of the edge points in V

that have edge orientation φ̂i.

103

Initially, I compute q two-dimensional distance transforms DTV {φ̂i}
, which

requires O(q) passes over the image using the standard distance transform algo-

rithm [34]. Subsequently, the DT3V tensor (5.9) is computed by using a second

dynamic program for each image pixel separately. The tensor is initialized with the

two dimensional distance transforms, DT3V (x, φ̂i) = DTV {φ̂i}
(x), and is updated

with a forward recursion

DT3V (x, φ̂i) = min{DT3V (x, φ̂i),DT3V (x, φ̂i−1) + λ‖φ̂i−1 − φ̂i‖π} (5.10)

and a backward recursion

DT3V (x, φ̂i) = min{DT3V (x, φ̂i),DT3V (x, φ̂i+1) + λ‖φ̂i+1 − φ̂i‖π} (5.11)

for each pixel x. Unlike the standard distance transform algorithm, special handling

is required for the circular orientation. The forward and backward recursions do not

terminate after a full cycle, i = 1, . . . , q or i = q, . . . , 1 respectively, but the values

of the tensor entries continue to be updated in a circular form until the value for

a tensor entry is not changed. Note that, at most, 1.5 cycles are needed for each

of the forward and backward recursions, therefore the worst time computational

cost is O(q) passes over the image. I illustrate the computation of the three dimen-

sional distance transform in Figure 5.3(a)–(d). Using DT3V , the directional chamfer

matching score of any template U can be computed as

dDCM(U, V) =
1

n

∑

ui∈U

DT3V (ui, φ̂(ui)), (5.12)

where the complexity is linear in n, the number of edge points in U .

104

5.3.5 Integral Distance Transform Tensor

Let l[x1,x2] represent the line segment in the image plane connecting pixels

x1 and x2. Let LU = {l[sj ,ej]}, j = 1, . . . , m, be the line-based representation of

template edge points U , where sj and ej are the start and end locations of the jth

line segment, respectively. For ease of notation, I sometimes refer to a line segment

with only its index, lj = l[sj ,ej]. I assume the line segment directions are restricted

to q discrete channels Φ̂, which is enforced in the line-based representation. I choose

the number of directions q large enough (in my experiments, q = 60) to avoid

quantization artifacts. The line-based representation of Figure 5.2(b) is generated

from the edge image in Figure 5.2(a) using q = 60 directions.

Since the edge points in a line segment all have the same orientation, which is

the direction of the line segment φ̂(lj), the directional chamfer matching score (5.12)

can be rearranged as

dDCM(U, V) =
1

n

∑

lj∈LU

∑

ui∈lj

DT3V (ui, φ̂(lj)). (5.13)

In this formulation, the kth orientation channel of the DT3V tensor, DT3V (x, φ̂k),

is only used for evaluating the matching scores of the line segments having the

direction φ̂k, achieved by summing over the points in the line segments.

Integral images are intermediate image representations used for fast calcula-

tion of region sums [120] and linear sums [9]. Here, I present an integral distance

transform representation (IDT3V) to evaluate the summation of costs over any line

segment in O(1) operations, as shown in Figure 5.3(e).

Let x0 be the intersection of an image boundary with the line that passes

105

through x and has direction φ̂i. Each entry of the IDT3V tensor is given by

IDT3V (x, φ̂i) =
∑

xj∈l[x0,x]

DT3V (xj , φ̂i). (5.14)

The IDT3V tensor can be computed in one pass over the DT3V tensor. Using

this representation, the directional chamfer matching score of any template U can

be computed in O(m) operations via

dDCM(U, V) =
1

n

∑

l[sj ,ej]∈LU

IDT3V (ej , φ̂(l[sj ,ej]))− IDT3V (sj , φ̂(l[sj ,ej])). (5.15)

5.3.6 Search Optimization

In this section I present two search optimization techniques based on the

bounds on the matching cost, and empirically show that the number of evaluated

line segments is sublinear in the number of template points n.

5.3.6.1 Bound in the Hypotheses Domain

The O(m) complexity is only an upper bound on the number of computations.

FDCM can be used for object detection and for localization. For object detection,

I need only to retain the hypotheses for which the template matching cost is less

than a detection threshold. For localization, I need only to retrieve the hypothesis

with the lowest matching cost.

I order the template line segments with respect to their lengths and start the

summation (5.15) from the longest line segment. A hypothesis is eliminated during

the summation if the cost is greater than the detection threshold or the current best

106

hypothesis. Since the lengths of the line segments roughly decay exponentially, for

most of the hypotheses only a few arithmetic operations are performed.

5.3.6.2 Bound in the Spatial Domain

The DCM cost function (5.6) is smooth and bounded in the spatial domain.

I utilize this fact to reduce significantly the number of hypotheses evaluated. Let

δ ∈ R
2 be a translation of the model U in the image plane. The DCM cost variation

due to translation is given by

dDCM(U + δ, V) =
1

n

∑

ui∈U

min
vj∈V
‖ui + δ − vj‖+ λ‖φ(ui)− φ(vj)‖π

≤
1

n

∑

ui∈U

min
vj∈V
‖ui − vj‖+ ‖δ‖+ λ‖φ(ui)− φ(vj)‖π = ‖δ‖+ dDCM(U, V).

(5.16)

From Equation (5.16), the cost variation is bounded by the spatial translation

|dDCM(U+δ, V)−dDCM(U, V)| ≤ ‖δ‖. If the detection threshold is τ and the cost of

the current hypothesis is ψ > τ , then a target cannot reside within the ‖δ‖ = |ψ−τ |

pixel range that has a matching cost lower than the detection threshold. Therefore,

I can skip the evaluation of the hypotheses within this region.

5.3.6.3 Empirical Evidence of Sublinear Complexity

Clearly, the sublinear complexity holds in the case of scaling the template

shape. As the number of edge points, n, increases with the template size, the cardi-

nality m of the line-based representation of the template remains the same. Hence,

the same number of arithmetic operations is required to compute the matching cost,

which means the matching complexity remains constant irrespective of the number

107

200 400 600 800 1000 1200 1400 1600
0.006

0.008

0.01

0.012

0.014
the fraction of evaluated lines to points

n

m̃
n

Figure 5.4: Empirical evidence of sublinear time complexity in the number of tem-

plate points. The graph plots the ratio of the number of evaluated lines m̃ to the

number of template points n vs. the number of template points. (If the complexity

were linear in n, the graph would be a horizontal line.)

of edge points.

I also provide empirical evidence that in a more general setup, as well, the

matching complexity is a sublinear function of the number of template points. As

explained above, the O(m) complexity is only an upper bound on the number of

evaluations, and, on average, I need to evaluate only a fraction of the m lines.

Empirically, I evaluate the m̃ longest lines, where m̃ is chosen to fit 20%– 30% of

the template points. Most of the energy is concentrated in only a few lines, and I

find that m̃ grows sublinearly with n. In Figure 5.4, I plot the number of template

points, n, on the x-axis and the ratio of the number of evaluated lines to the number

of template points, m̃
n
, on the y-axis. For this graph, m̃ is selected as the number

of lines that fit 30% of the template points. The curve is generated using 1,000

shape images from the MPEG-7 dataset. I observe that as the number of template

points increases, the fraction of evaluated lines decreases, which provides empirical

108

(a)

Part ContainerRobot Arm

Gripper Camera

Camera

LED

Gripper

(b) (c)

MFC

Figure 5.5: My robotic grasping system. A multi-flash camera (MFC), shown in

detail in (c), is mounted on the robot arm and used to perform detection and pose

estimation of objects (parts) placed in a container. The gripper camera is a standard

camera mounted above the robot’s wrist joint and aimed at the tip of the gripper.

The gripper camera performs error detection after an object is retrieved from the

container.

evidence that the algorithm is sublinear in the number of template points
(
< O(n)

)
.

5.4 Pose Estimation for Robotic Bin Picking

In this section, I present my robotic bin-picking system that uses the shape

matching algorithm described in Section 5.3.

5.4.1 System Overview

Figure 5.5 shows my system configuration. I mount an MFC and a standard

camera on an industrial robot arm. The MFC performs object detection and pose

estimation of objects that are randomly arranged in a part container. The robot arm

109

Capture
MFC images

Compute
depth edge

map

Match pose templates to
the computed depth edge

map using DCM

Multi-view
pose

refinement

Grasp and
pick up
object

CAD
model

Render depth edge
maps for each
database pose

Pose templates
Online

rendering

Offline Database Generation

Error detection and
pose correction
in the gripper

Perform
assembly

Figure 5.6: System flowchart.

uses the object’s estimated pose to grasp the object and lift it out of the container.

The standard camera, the gripper camera, focuses on the tip of the gripper performs

error detection after the object is retrieved. Both cameras are calibrated offline using

a checkerboard. The calibration determines internal parameters of the cameras, as

well as the poses of the cameras with respect to the robot coordinate system (hand-

eye calibration).

The flowchart in Figure 5.6 provides a summary of my system. I give an

overview of my algorithm below and explain the details of each process in the fol-

lowing subsections.

1. Offline database generation (Section 5.4.3): For each object, I render

the 3D CAD model according to a set of hypothesized poses, extract depth

edges, and compute the line-based representation (which was presented in

Section 5.3.3) of the depth edges.

2. MFC imaging and depth edge extraction (Section 5.4.2): I capture nine

images, using the eight different flashes of the MFC and one image without

any flash. The depth edges in the scene are computed using these images.

110

3. Object detection and pose estimation: Using the FDCM algorithm (which

was presented in Section 5.3), I retrieve the database pose and its in-plane

transformation parameters that have the minimum matching cost and use

them as a coarse pose estimate. The matching algorithm is accelerated using

a heuristic called one-dimensional search (Section 5.4.4). Further improvement

of the coarse estimate is achieved via a multi-view pose refinement algorithm

(Section 5.4.5).

4. Grasping and picking up the object: I use the estimated 3D pose to grasp

the object with the gripper and lift it out of the part container.

5. Error detection and pose correction (Section 5.4.6): I use the gripper

camera to detect grasping errors. I evaluate/re-estimate the object pose in

the gripper. The object pose is corrected if necessary.

6. Assembly: The pose-corrected object is ready for the next step of the assem-

bly task.

5.4.2 MFC Imaging and Depth Edge Extraction

I use an MFC [99] to detect depth edges (depth discontinuities) in the scene.

A depth edge is a robust geometric feature. It is invariant to the surface properties

of objects (textured, textureless, shiny, etc.) and is unaffected by oil, grime, or dirt

on the object surface, which are common in industrial environments. The MFC

is equipped with eight point light sources made of light-emitting diodes (LEDs).

They are evenly distributed around the camera in a circular fashion, as shown in

111

Figure 5.7: Illustration of the principle of multi-flash camera (MFC) imaging. The

scene is illuminated by flashing one LED at a time. Due to the different positions

of the LEDs, the shadows cast by the object change. While intensity values of

points such as P1 (on the top surface of the object) remain nearly constant when

illuminated by different LEDs, intensity values of points such as P2 (which is in

shadow for some of the LEDs) change. This property is exploited to detect depth

edges.

Figure 5.7. During the MFC imaging, these LEDs are sequentially switched on to

illuminate the scene. Only one LED lights at a time, and an image is taken. This is

repeated for each of the eight LEDs. I also take an image with all the LEDs turned

off to record the ambient illumination. The various LED positions result in different

illumination directions, so the positions of shadows change across the eight images.

This property can be exploited to detect the depth edges in the scene, as discussed

below.

Let Ii denote the image illuminated by the ith LED, after subtracting the

112

(a) Flash from right (b) Flash from left (c) Depth edges (d) Canny edges

Figure 5.8: Comparison between depth edges extracted using an MFC and stan-

dard Canny edges for a simple scene (top) and a highly cluttered scene (bottom).

(a, b) Two out of eight flash images captured with an MFC. Note the different

shadow locations. (c) Extracted depth edges. (d) Standard intensity edges com-

puted by using a Canny edge detector on an image captured without flash. Note

that the Canny edge results include both texture and depth edges and are affected

by shadows due to ambient lights.

ambient image. First, I construct the maximum image, Imax, where the shadows cast

by the flashes are removed. I consider each pixel location and find the maximum

intensity value at that location across the eight images:

Imax(x, y) = max
i

Ii(x, y). (5.17)

Next, I compute the ratio images

RIi =
Ii
Imax

. (5.18)

Ideally, if a pixel exists in a shadow region of image Ii (e.g., point P2 in Figure 5.7),

the ratio should be 0 because the contribution of the illumination from the ambient

113

source has been removed. In contrast, the ratio in other non-shadow regions (e.g.,

point P1 in Figure 5.7) should be close to 1 because these regions are illuminated

by all the flashes. Notice that a depth edge corresponds to a point of transition

from a non-shadow region to a shadow region along the illumination direction de-

fined by the LED position in each image. Therefore, for each ratio image, I detect

the transition using a Sobel filter whose direction is aligned with the illumination

direction, followed by non-maximum suppression. I then add the filter responses

across different flash images and use hysteresis thresholding similar to the Canny

edge detector [23] to obtain a depth edge image.

Comparison with Intensity Edges: Figure 5.8 compares depth edges ex-

tracted using an MFC to standard intensity edges, which were computed by using

a Canny edge detector on an image captured without flash. Note that the Canny

edge results include texture edges (e.g., the artificially painted object surface in

the top row, and small scratches on the surface of the shiny objects in the bottom

row). They are also affected by shadows due to ambient light (note the difference

of detected edge locations between the MFC depth edge results and the Canny

edge results). In contrast, my approach using MFC imaging provides depth edges

only, which can be used as robust geometric features for object detection and pose

estimation.

114

Figure 5.9: Database generation. I uniformly sample the rotation angles (θx and θy)

on the 2-sphere. Rendering the CAD model of the object at each of the sampled

rotations generates the template database.

5.4.3 Database Generation

An object exhibits different silhouettes in different poses. Although the match-

ing algorithm in Section 5.3 models in-plane rotation and translation, it does not

model rotations in depth, which can change an object’s depth-edge silhouette. To

accommodate these variations, I generate a set of templates across the range of pos-

sible rotations in depth, denoting this set of templates by {Uk}. The search problem

in (5.3) is generalized to find the best-matching template in this set, as follows:

arg min
k,s∈SE(2)

dDCM(W (Uk; s), V). (5.19)

Given a CAD model of the object, I generate a database of depth-edge tem-

plates by detecting the depth discontinuities in the model. In this simulation, a

virtual camera with the same internal parameters as the real camera is placed at

the origin, and its optical axis is aligned with the z-axis of the world coordinate

system. The CAD model of the object is then placed on the z-axis at a distance tz

115

from the virtual camera, which is equal to the actual distance of the part container

from the real MFC in the setup. The virtual flashes are switched on individually,

acquiring eight renderings of the object (including cast shadows). The depth edges

are detected using the procedure described in Section 5.4.2.

An arbitrary 3D rotation can be decomposed into a sequence of three elemental

rotations about three orthogonal axes. I align the first of these axes to the camera

optical axis and refer to the rotation about this axis as in-plane rotation (θz). The

other two axes are on a plane perpendicular to the camera optical axis, and I call

the rotation about these two axes out-of-plane rotation (θx and θy). Note that an in-

plane rotation results simply in an in-plane rotation of the observed images, and the

effect of an out-of-plane rotation depends on the 3D structure of the object. Due to

this distinction, I only include out-of-plane rotations of the object in the database.

I sample K out-of-plane rotations (θx and θy) uniformly on the 2-sphere, S2, as

shown in Figure 5.9, and generate the depth-edge template Uk for each rotation

k ∈ {1, . . . , K}.

5.4.4 One-dimensional Search

To retrieve the object’s coarse pose in the scene using (5.19), I sequentially

search all the database templates, Uk, where k = 1, . . . , K. For each template Uk,

searching for the best alignment ŝ = (θz, t̄x, t̄y) is computationally intensive (three

degrees of freedom). I present a heuristic method to reduce the search space greatly

(from three degrees to one degree of freedom), which exploits the fact that under

116

Template

Query Image

Figure 5.10: One-dimensional search. A template is rotated and translated such that

one template line segment (the blue line segment) is aligned with one line segment

in the query image (the green line segment). The template is translated along the

query line segment, and the directional chamfer matching cost is evaluated for each

translation.

the best alignment, the template and query image line segments are well aligned.

Additionally, the major lines of the template and the query images are reliably

detected during the line-fitting process, since the algorithm favors line segments

with larger support.

I order the sets of template and query line segments from longest to shortest,

and use a few major lines from the ordered sets of template and query line segments

to guide the hypothesis search. The template is initially rotated and translated so

a template line segment is aligned with the direction of a query image line segment

and the template line’s end point is translated to match the start point of the query

line segment, as illustrated in Figure 5.10. The template is then translated along

the query line segment direction, and the cost function is evaluated only at locations

where an overlap occurs between two segments. This procedure reduces the three-

117

dimensional search (in-plane rotation and translation) to a one-dimensional search

along only a few directions. The search time is invariant to the image size and is only

a function of the number of templates and query image lines and their lengths. With

this heuristic, I can efficiently find the minimum-cost template and its alignment

parameters.

5.4.5 Multi-View Pose Refinement

The minimum-cost template, together with its in-plane transformation param-

eters (θz , t̄x, t̄y), provide a coarse estimate of the 3D object pose. Let θx, θy be the

out-of-plane rotation angles, and let tz be the distance from the camera, which are

used to render the template. I back-project the in-plane translation parameters to

3D using the camera calibration matrix K, and obtain the initial 3D pose of the ob-

ject, p0, as the three Euler angles (θx, θy, θz) and a 3D translation vector (tx, ty, tz)
T .

The 3D pose p can also be written in matrix form

Mp =







Rp tp

0 1






∈ SE(3), (5.20)

where Rp is the 3 × 3 rotation matrix computed by a sequence of three rotations

around the x–y–z axes, RθzRθyRθx , and tp is the 3D translation vector.

The precision of the initial pose estimation is limited by the discrete set of

out-of-plane rotations included in the database. Below, I present a continuous opti-

mization method to refine the pose estimate. The proposed method is a combination

of the iterative closest point (ICP) [134] and Gauss-Newton [17] optimization algo-

rithms. It can work with any number (one or more) of views with known camera

118

poses.

Refinement Algorithm: Let M(j) ∈ SE(3) be the 3D rigid transformation

matrix representing the pose of the camera corresponding to the jth view in the

world coordinate system, and let P = (K 0) be the 3×4 projection matrix. As ex-

plained in Section 5.4.1, the projection matrix is known through camera calibration,

and the camera poses are known through hand-eye calibration and the motion of the

robot. The edge points detected in the jth view are given by the set V (j) = {v(j)
i }.

First, I establish a set of correspondences between the 3D CAD model points

ũ
(j)
i and the 2D detected edge points v

(j)
i . I find these 3D-to-2D point correspon-

dences via closest-point assignment on the image plane. To do so, I simulate the

multi-camera setup and render the 3D CAD model with respect to the current pose

estimate p. Let U (j) = {u(j)
i } be the sets of detected edge points in the jth syn-

thetic view and Ũ (j) = {ũ(j)
i } be the corresponding 3D CAD model points in the

jth camera coordinate system. For each point u
(j)
i ∈ U

(j), I search for the nearest

point in V (j) with respect to the directional chamfer matching cost as

arg min
v
(j)
k

∈V (j)

∥
∥u

(j)
i − v

(j)
k

∥
∥+ λ

∥
∥φ

(
u
(j)
i

)
− φ

(
v
(j)
k

)∥
∥
π

(5.21)

and establish 3D-to-2D point correspondences
(
ũ
(j)
i ,v

(j)
i

)
.

Using the found correspondences, my optimization algorithm minimizes the

sum of squared projection errors simultaneously in all the views:

ε(p) =
∑

j

∑

ũ
(j)
i

∥
∥PM(j)MpM

(j)−1
ũ
(j)
i − v

(j)
i

∥
∥2
. (5.22)

Both the 3D points ũ
(j)
i and their projections are expressed in homogeneous co-

ordinates, while the corresponding edge points are expressed in Cartesian image

119

coordinates. With a slight abuse of notation, in this formulation, I assume that the

projections of the 3D points have been converted to 2D image coordinates before

measuring the distances.

The nonlinear least squares error function given in (5.22) is minimized using

the Gauss-Newton algorithm. Starting with the initial pose estimate p0, I improve

the estimation via the iterations

pt+1 = pt +∆p. (5.23)

The update vector ∆p is given by the solution of the normal equations

(JT
ε
Jε)∆p = −JT

ε
ε, (5.24)

where ε ∈ R
N is the residual vector comprising the N summed error terms in (5.22),

and Jε is the N ×6 Jacobian matrix of ε with respect to p, evaluated at pt. Similar

to the ICP algorithm, the correspondence and minimization problems are solved

iteratively until convergence.

Implementation for Bin Picking: The pose refinement method could be

used with a single view to refine the coarse pose estimate. However, I found that

the estimation accuracy obtained using a single view is not sufficient for accurate

grasping. To increase the accuracy, I use a two-view approach. I move the robot

arm to a second location and capture the scene again with the MFC. The second

location is determined depending on the coarse pose estimate of a detected object,

such that in the second view the object is captured at the center of the image and

from a different out-of-plane rotation angle.

120

Since I perform the coarse pose estimation on the first view, typically the

projection errors in the second view are larger than those in the first view. This

holds particularly true when the distance between the camera and the objectdiffers

from the hypothesized distance tz that generated the database (Section 5.4.3). To

improve convergence, I first perform the refinement using the first view only, for

several iterations, and then jointly using both views. In general, I found that 20

iterations suffice for convergence.

5.4.6 Error Detection and Pose Correction in the Gripper

The estimated 3D pose of the object is used to grasp the object with the

gripper and lift it from the part container. The grasping will fail if the estimated

pose is inaccurate. Even if the estimated pose is correct, the grasping process may

introduce errors because of slippage and interference from the other objects. These

can result in a grasping failure (object is not retrieved) or in the object having the

wrong pose in the gripper, which would make it impossible to perform subsequent

assembly tasks. Therefore, after grasping, I use the gripper camera to detect these

errors and correct the object pose before the next stage in the assembly.

The goal of this error detection and pose correction process aims to determine

whether the object is grasped with the correct pose. I use a standard camera as the

gripper camera and mount it above the wrist joint of the robot arm, as shown in

Figure 5.5. The gripper camera is focused on the gripper’s tip and captures an image

of the object after it is lifted out the part container. I use the Canny edge detector

121

to extract edges from the image acquired by the gripper camera. The extracted

edges include both texture and depth edges, which are not as robust as the depth

edges extracted using the MFC. However, since the object is already isolated in the

gripper, these edges work well for error detection.

Since I know the ideal pose of the object in the gripper (the pose that would

occur if there were no error in the initial pose estimation and gripping process),

I use this ideal pose as the initial guess and apply the pose refinement algorithm

described in Section 5.4.5. If the refined pose is very different from the ideal pose or

the matching cost becomes larger than a threshold, then I detect it as an error and

drop the object back into the part container. Otherwise, I use the refined pose for

the subsequent assembly task. Since the gripper camera is located above the robot’s

wrist joint, I can obtain a second view of the object in the gripper with a different

pose by rotating the wrist and capturing another image using the gripper camera.

In the experiments (see Section 5.5.1.4), I show that single-view pose estimation is

sufficient for detecting errors, but for pose correction, two-view pose estimation is

preferable due to the higher accuracy required.

Foreground Extraction: I exploit robot motion to make the pose estimation

in the gripper more accurate and efficient. The idea is to move the robot arm during

the exposure time of the camera, while keeping the relative pose between the camera

and the gripper fixed. This can be achieved by fixing the joints of the robot that

are between the gripper and the arm segment to which the camera is attached (not

moving the wrist joint) and moving the other joints. This robot motion introduces

blur only in the background while keeping the foreground object sharp. As shown

122

(a) (b) (c) (d)

Figure 5.11: Foreground extraction. Images captured by the gripper camera (a)

while the robot arm is fixed and (c) during a robot arm motion in which the relative

pose between the object and the gripper camera is fixed. Note that in (c), the

background is blurred due to the motion, while the foreground object remains sharp.

Corresponding Canny edge detection results using the same threshold are shown in

(b) and (d).

in Figure 5.11, images captured during such a robot motion produce sharp edges

only on the foreground object (which is stationary relative to the camera), leading

to accurate and efficient pose estimation. I call this foreground extraction, because

it is essentially the reverse of standard background subtraction.

5.5 Experiments

I conducted extensive evaluations of the proposed algorithm for several appli-

cations using challenging real and synthetic datasets. In this section, I first demon-

strate results for the robotic bin-picking system described in Section 5.4 and then

present results of the proposed shape matching algorithm (described in Section 5.3)

123

for other applications: deformable object detection using a hand-drawn shape, and

human pose estimation.

Note that in all of my experiments, I emphasize my FDCM algorithm’s im-

provement in accuracy and speed compared to CM and OCM. For deformable object

detection and human pose estimation, the performance of FDCM is roughly com-

parable to state-of-the-art methods, and if desired the FDCM estimates could be

further refined by using them as initial hypotheses for more computationally expen-

sive point registration algorithms.

In all my experiments, I used q = 60 orientation channels. I set the weighting

factor λ = 180
6·π , which means that a 6◦ error in line orientation carries the same

penalty as a 1-pixel distance in image plane.

5.5.1 Pose Estimation for Robotic Bin Picking

5.5.1.1 Synthetic Examples

I quantitatively evaluated the accuracy of the proposed matching algorithm

to detect and localize objects in highly cluttered scenes on an extensive synthetic

dataset. The synthetic dataset was generated using 3D models of 6 objects, with

3D shapes of varying complexity, which were placed randomly one over the other to

generate several cluttered scenes. I computed depth-edge images by simulating the

MFC and its cast shadows in software using OpenGL. The average occlusion of each

part in the dataset was 15%, while the maximum occlusion was 25%. Moreover, in

order to simulate missing depth edges and other imperfections in MFC imaging,

124

a small fraction (about 10–15%) of the depth edges were removed. Furthermore,

the depth-edge images were corrupted with significant noise by adding uniformly

sampled line segments. There were a total of 606 such synthetic images rendered

under this setup, six of which are shown in Figure 5.12.

For each object in this experiment, I generated a database containing K = 300

shape templates, one for each of the uniformly sampled out-of-plane rotations (see

Section 5.4.3). For each query image, I retrieved the best template pose using a brute

force search scheme (over all in-plane rotation and translation parameters). Full 3D

pose of the objects were then recovered for a known depth using the estimated in-

plane transformation parameters together with the out-of-plane rotation parameters

that generated the template poses. An estimation was labeled as correct if the

position was within 5 mm, and the three estimated angles were each within 10◦, of

the ground truth pose.

Detection and Localization: I compared the performance of my proposed

FDCM to CM (described in Section 5.3.1) and OCM [106]. The detection failure

rates and processing times are shown in Table 5.1. Whereas CM had an average de-

tection failure rate of 0.24, the proposed FDCM algorithm had a failure rate of only

0.05. It also improved upon the error rate of the competing state-of-the-art match-

ing formulation (OCM) by a factor of 2. Notice that objects with discriminative

shapes, such as the diamond part and the circuit breaker part, are easier to detect

and localize. In contrast, the T-nut object, which has a simple shape, is relatively

difficult to detect, since false edges from clutter and other objects frequently mislead

the optimization algorithm. The FDCM algorithm is 40× faster than CM, and 90×

125

Table 5.1: Detection failure rates and processing time in highly cluttered scene with

multiple objects.

Algorithm Circuit Diamond Ellipse T-Nut Knob Wheel Avg. Time

Breaker Part Part (sec)

FDCM (ours) 0.03 0.01 0.05 0.11 0.04 0.08 0.05 0.71

OCM [106] 0.05 0.05 0.14 0.17 0.04 0.17 0.10 65.3

CM 0.11 0.22 0.26 0.34 0.26 0.22 0.24 29.1

faster than OCM: The average detection time of FDCM was 0.71 seconds, compared

to 29.1 seconds for CM and 65.3 seconds for OCM. Several examples of successful

detections for various objects in challenging scenarios are shown in Figure 5.12.

Robustness to Occlusion: I further quantitatively evaluated the robustness

of the FDCM algorithm to varying degrees of occlusion, from no occlusion to an

average occlusion of 30%. The results are presented in Figure 5.13. I achieved

greater than 99% detection rate up to 5% occlusion, and about 85% detection rate

when one-fourth (25%) of the object is occluded.

Two-View Pose Refinement: In this experiment, I evaluate the accuracy

of the pose refinement algorithm described in Section 5.4.5. Using the same set of 6

objects, I render one object at a time in random poses. After a coarse pose estimate

was computed, both the refinement schemes using one view and that using two views

were applied independently to further refine the estimates. The final pose estimates

were compared to the ground truth pose. The results in Table 5.2, averaged over 6

objects and 100 trials each, demonstrate that the two-view approach outperformed

126

(b) (c) (d)(a)

Diamond Part

Circuit Breaker Part

T-Nut

Ellipse Part

Knob

Wheel

Figure 5.12: Examples of successful pose estimation on the synthetic dataset.

(a) Photo of each part. (b) Sample depth-edge template. (c) Rendered query image.

(d) Pose estimation result.
127

0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

1

Degree of Occlusion

D
et

ec
tio

n
R

at
e

Figure 5.13: Detection rate versus percentage of occlusion.

Table 5.2: Comparison of the average absolute pose estimation error between the

one-view and two-view approaches.

Average tX tY tZ θX θY θZ

absolute error mm mm mm degree degree degree

1 View 0.127 0.165 1.156 0.674 0.999 0.349

2 View 0.094 0.096 0.400 0.601 0.529 0.238

the one-view approach. In the rendered images, 1 mm corresponded to about 6.56

pixels on the image plane, indicating that the two-view estimate achieves sub-pixel

accuracy.

5.5.1.2 Real Examples

Object Detection and Pose Estimation in Cluttered Scenes: To quan-

titatively evaluate performance, I performed several real experiments. Six different

types of objects were laid one on top of another in a cluttered manner as shown

in Figure 5.14. I then extracted depth edges using the MFC and performed object

detection and pose estimation on the resulting depth-edge images. In each trial of

128

Figure 5.14: Results using real examples. The system detected and accurately

estimated the pose for specular (shiny metal) objects, textureless objects (such as

the ones in the bottom center image), and objects that have potentially misleading

texture painted on them (such as the ones in the bottom right image). Overlaid on

each image is the top detector output for each of three different object types.

this experiment, I used the system to detect a single instance of an object type.

Over several hundred trials, the average detection rate was 95%. Shown in Figure

5.14 are some typical example trials of this experiment. On each image, I overlay the

silhouettes of the detector outputs for three different object types. Notice that some

of the parts have no texture, while others are quite specular. In such challenging

scenarios, methods based on traditional image edges (e.g., Canny edges) usually fail,

but the MFC enables us to robustly extract depth edges. Also notice that since the

depth edge features are not affected by texture, my method works robustly even for

parts that have artificial texture painted on them. This indicates that the method

129

can work in the presence of oil, grime, or dirt (which are all common in industrial

environments), all of which add artificial texture to the surface of objects.

Statistical Evaluation: In order to statistically evaluate the accuracy of the

proposed system, I need a method of independently obtaining the 3D ground truth

pose of the object. Since there was no simple way of obtaining this (especially when

objects were stacked on top of each other or piled in a bin), I instead devised a

method to evaluate the consistency of pose estimate across multiple viewpoints of

the camera. I placed an object in the scene and commanded the robot arm to move

to several rotations and translations, so that data are collected when the camera is

pointing at the object using many different camera poses. The camera poses were

maintained such that the distance along the z-axis between the camera and the

object is ±10 mm from the hypothesized distance tz that was used to generate the

database (Section 5.4.3). From each camera pose, MFC images were captured, and

my algorithm was used to estimate the pose of the object in the camera coordinate

system. Since the object is static, the estimated pose of the object in the world

coordinate system should be identical irrespective of the viewpoint of the MFC. For

each view, the estimated pose of the object was transformed to the world coordinate

system using the known position and orientation of the robot arm. I repeated

this experiment for 7 different objects, with 25 trials for each object (the object

was placed in a different pose for each trial). During each of these independent

trials, the robot arm was moved to 40 different viewpoints in order to evaluate the

consistency of the pose estimates. The histogram of the deviations from the median

pose estimate is shown in Figure 5.15. The results demonstrate that the algorithm

130

Figure 5.15: Results from real examples. Histograms of deviations from the median

pose estimate, in mm (top) and degrees (bottom), across multiple trials of pose

estimation.

computes consistent estimates, with a standard deviation of less than 0.5 mm in

the in-plane directions (x, y) and about 2 degrees in each of the three orientation

angles. The standard deviation of the estimate in the z direction (along the optical

axis of camera) is slightly larger (approximately 1.2 mm).

Effect of Depth Variation: In my experiments, the system was optimized

for a part container with a depth variation of 40 mm and a distance along the z-

axis of 275 mm from the camera to the top of the part container. As explained in

Section 5.4.3, the pose estimation algorithm requires a rough value of the distance,

tz, from the camera to the objects along the z-axis. In this experiment, I analyze

how deviations of the true object distance from the hypothesized distance tz affect

pose estimation accuracy.

131

I placed a single object in the scene and performed pose estimation at several

different camera poses with offsets along the z-axis from the hypothesized distance

of 275 mm. At each z offset (height), I repeated the pose estimation for 100 trials

by randomly changing the camera pose in the (x, y) directions. As in the previous

experiment, I used the median pose estimate as the ground truth pose. An estimate

is labeled as correct if the translation error, computed as the Euclidean distance

between the (x, y, z) translation vectors, is less than 3 mm and the rotation error,

computed as the geodesic distance between two 3D rotations, is less than 8◦. The

accuracy of the system is shown in Figure 5.16. The pose estimation algorithm

is quite robust to depth variations between [−20,+50] mm, which is significantly

larger than my target capture range. Outside of this range, my two-view pose

refinement algorithm failed to converge to the true solution for several trials, due to

the incorrect distance assumption causing large projection errors. This experiment

suggests that for part containers with larger depth variations, coarse pose estimation

should be performed at multiple scales, targeting different depths, to get a better

initial depth estimation. Alternatively, I could move the robot arm and change the

height of the capture position based on previous object pose estimates in order to

maintain a roughly constant distance between the camera and the objects.

5.5.1.3 Bin-Picking System Performance

I evaluated the performance of bin picking using the robotic system shown in

Figure 5.5. Figure 5.5 shows a part container (bin) containing a large number of

132

−40 −30 −20 −10 0 10 20 30 40 50

80

85

90

95

100

Camera Height Offset [mm]

S
uc

ce
ss

 R
at

e
[%

]

Figure 5.16: Effect of depth variation on pose estimation.

circuit breaker parts. The gripper (end effector) of the robot arm is designed to

grasp each of the objects by first inserting its three metal pins in the closed state

through a hole in the object. The gripper then opens by moving the three pins

radially outward, thereby exerting outward horizontal forces on the inside edges of

the hole. The gripper has a diameter of 3 mm in its closed state, while the hole in

the object has a diameter of about 6 mm. Therefore, in order to successfully insert

the gripper inside the hole (before lifting the object), the pose estimate error in the

(x, y) directions must be less than 1.5 mm. If the pose estimate error is greater, the

pins will not be inserted into the hole, resulting in a failure to grasp the object.

My system was able to successfully guide the robot arm in the grasping task,

achieving a grasping success rate of 94% over several hundred trials. There were

two main causes for the grasping failures in 6% of the trials: (1) This particular

target object has very similar depth edges when it is flipped upside-down, which

occasionally led to inaccurate pose estimates; (2) Even when the pose estimation was

133

correct, the hole of the object was occasionally occluded by other objects, resulting

in a grasping failure. It is important to note that all of these grasping failures were

detected by the error-detection process using the gripper camera, so they did not

affect the subsequent assembly task. Among the instances of successful grasping, a

few trials resulted in the object being picked up by the gripper in an incorrect pose,

due to interference from neighboring objects during the pickup process. These cases

were also detected and were corrected automatically by my system using the gripper

camera and my process for pose estimation and correction in the gripper (described

in Section 5.4.6).

Processing Time: The entire pose estimation process requires less than 1

second for an object in an extremely cluttered environment (on an Intel quad-core

3.4 Ghz CPU with 3 GB memory). The decomposition of processing time is 0.6

seconds for FDCM and 0.3 seconds for the multi-view pose refinement algorithm.

Almost all of the computation occurs during robot motion, so the computation time

has almost no effect on the system operation speed. In environments with minimal

clutter, the algorithm runs about twice as fast, since there are significantly fewer

edges in the captured images.

5.5.1.4 Pose Estimation in the Gripper

To evaluate the system’s potential for error correction in the gripper, I measure

the accuracy of pose estimation in the gripper using different numbers of views.

In this experiment, I picked up circuit breaker parts from the part container as

134

described in Section 5.5.1.3. After each pickup, I captured 8 images at different wrist

rotation angles, as shown in Figure 5.17, using the gripper camera and foreground

extraction during robot motion (described in Section 5.4.6). I performed the pose

refinement algorithm (Section 5.4.5) using from 1–8 views (for these experiments, I

used the ideal pose of the object as the initial guess).

Figure 5.18 shows pose estimation errors using different numbers of views.

Since the ground truth of the object pose in the gripper is not available, I used

the pose that was estimated using all 8 views as the ground truth, and compared it

with the poses estimated using different numbers (1–7) of views. The plots show the

average estimation errors and standard deviations of these estimation errors (error

bars) over 100 trials. Similar to my observations from synthetic data (shown in

Table 5.2), the translation errors on real data are smaller for two-view estimation

than for one-view estimation (see Figure 5.18, left). Two-view pose estimation is

sufficient for accurate pose correction (error less than 0.5 mm), and using more

than two views does not further improve the estimation. The rotation estimation

errors are roughly the same (< 2 degrees) for each number of views. Figure 5.19

shows a typical example of two-view pose estimation. The estimated pose of the

object matches the object’s outline in both views quite closely, illustrating the high

accuracy of the estimated pose. The difference between this estimated pose and the

ideal pose provides an idea of the typical size of the initial pose error in the gripper.

My system automatically estimates and corrects this error in the gripper.

135

Wrist rotation angle
45° 30° 15° 0° -15° -30° -45° -60°

Figure 5.17: Example eight views captured with different wrist rotation angles.

1 2 3 4 5 6 7
0

1

2

3

4

5

T
ra

ns
la

tio
n

E
st

im
at

io
n

E
rr

or
 [m

m
]

Number of Views
1 2 3 4 5 6 7

0

1

2

3

4

R
ot

at
io

n
E

st
im

at
io

n
E

rr
or

 [°]
Number of Views

Figure 5.18: Pose estimation errors in the gripper using different numbers of views.

5.5.2 Deformable Object Detection

I applied the FDCM algorithm to object detection and localization on the

ETHZ shape class dataset [39]. The dataset consists of 255 images, each of which

contains one or more objects from five different object classes: apple logos, bottles,

giraffes, mugs, and swans. The objects have large variations in appearance, view-

point, size, and non-rigid deformation. I followed the experimental setup proposed

in [39, 38], in which a single hand-drawn shape for each class is used to detect and

localize its instances in the dataset.

My detection system is based on scanning using a sliding window. I retain

all the hypotheses whose matching costs are less than the detection threshold. I

densely sampled the hypothesis space and searched the images at 8 different scales

136

1st View 2nd View

Ideal Pose
Estimated Pose

Figure 5.19: Two-view pose estimation in the gripper. The ideal pose is used as the

initial guess and refined to give the estimated pose. (Both poses are superimposed

on the input images of the two views).

and 3 different aspect ratios. The ratio between two consecutive scales is 1.2 and

between consecutive aspect ratios is 1.1. I performed non-maximal suppression by

retaining only the lowest-cost hypothesis among any group of detections that have

significant spatial overlap.

In Figure 5.20, I plot detection rate vs. false positives per image. The curve

is generated via altering the detection threshold for the matching cost. I compared

my approach with OCM [106] and two recent studies by Ferrari et. al. [39, 38]. My

approach outperforms OCM at all the false positive rates and is comparable to [38].

Compared to [38], my results are better for two classes (giraffes and bottles) and

slightly worse for the swans class, while for two other classes (apple logos and mugs),

the numbers are almost identical. As shown in the detection examples (Figure 5.21),

object localization is highly accurate. Note that [135] and [100] report slightly better

performance on this dataset, but I could not include their results in my graphs

because their results were only reported in graphical format (as precision-recall

137

Figure 5.20: Receiver operating characteristic (ROC) curves on the ETHZ shape

dataset comparing my proposed approach to OCM [106] and two recent studies by

Ferrari et. al. [39, 38].

138

curves). Also note that these methods are orders of magnitude slower than FDCM.

Complexity Comparison: The average number of points in the shape tem-

plates were 1, 610, computed over five classes. My line-based representation used an

average of 39 line segments per class. Note that the number of lines per class pro-

vides an upper bound on the number of computations required. Since the algorithm

retrieves only the hypotheses having a smaller cost than the detection threshold,

the summation was terminated for a hypothesis if the cost exceeded this value. By

using this bound in the hypothesis domain (see Section 5.3.6.1 for more details), on

average only 14 line segments were evaluated per hypothesis.

The average evaluation time for a single hypothesis was 0.40 µs using FDCM,

whereas this process took 51.50 µs for OCM and 17.59 µs for CM. The proposed

method is 43× faster than chamfer matching and 127× faster than oriented chamfer

matching. Note that the speed up is more significant for larger-sized templates, since

my cost computation is insensitive to the template size, whereas the cost of standard

chamfer matching increases linearly.

On average, I evaluated 1.05 million hypotheses per image, which took 0.42

seconds. Using the bound in the spatial domain presented in Section 5.3.6.2 enabled

91% of the hypotheses to be skipped, reducing the average evaluation time per

image to 0.39 seconds. Note that the speedup is not proportional to the fraction of

hypotheses skipped because in order to use the bound in the spatial domain, I could

no longer use the bound in the hypothesis domain (Section 5.3.6.1).

139

Table 5.3: Pose estimation errors on three action sequences. Errors are measured

as the mean absolute pixel distance from the ground truth marker locations.

Algorithm Walking Jogging Boxing Average

FDCM (ours) 7.3 12.5 9.7 9.8

OCM [106] 15.0 15.3 13.6 14.6

CM 9.3 13.6 10.6 11.2

5.5.3 Human Pose Estimation

I utilized my shape-matching framework for human pose estimation, which is

a highly challenging task due to the large set of possible articulations of the human

body. As proposed in [86], I matched a gallery of human shapes that have known

poses to each test image. Due to articulation, the size of the pose gallery needed for

accurate pose estimation is large. Hence, it becomes increasingly important to have

an efficient matching algorithm that can cope with background clutter.

The experiments were performed on the HumanEva dataset [107], which con-

tains video sequences of multiple human subjects performing various activities cap-

tured from different viewing directions. The ground truth locations of human joints

at each image were extracted using attached markers. Shape gallery templates were

acquired in two steps. First, I computed the human silhouettes via HumanEva

background subtraction code. Then, using the Canny edges around the extracted

silhouette outlines, I obtained the shape templates. I performed the experiment on

video sequences from one subject of three actions: walking, jogging, and boxing. For

140

each action, I included all of the images from the subject’s training sequence (about

1, 000–2, 000 images) in the shape gallery. I used this to estimate the subject’s pose

in the corresponding validation sequence. As I extracted Canny edges directly from

the validation images, they included us significant amount of background clutter.

The best shape template, together with its scale and location, were then retrieved

via the matching framework. I quantitatively evaluated the mean absolute error

between the ground truth marker locations and the estimated pose on the image

plane. The results, presented in Table 5.3, demonstrate significant improvements

in accuracy compared to OCM and CM. My proposed approach can evaluate more

than 1.1 million hypotheses per second, whereas CM and OCM can evaluate only

31, 000 and 14, 000 hypotheses per second, respectively. Examples of pose estimation

are shown in Figure 5.22.

5.6 Conclusion

I presented a practical robotic system that uses novel computer vision hard-

ware and algorithms for detection and 3D pose estimation of industrial parts in a

cluttered bin. My implementation of the system on a robotic arm achieves accu-

racies on the order of 1 mm (reduced to less than 0.5 mm with automatic error

correction) and 2◦, with a total processing time of less than 1 second. Given a CAD

model, a new object can be integrated into my system in less than 10 minutes. My

goal with this line of research is to make substantial progress towards more versatile

and easy-to-customize robotic bin-picking systems.

141

Figure 5.21: Several localization results on the ETHZ shape dataset. The images

are searched using a single hand-drawn shape shown in the lower right of the images

in the rightmost column.

142

Figure 5.22: Human pose estimation results. First row: Walking sequence. Second

row: Jogging and boxing sequences. Estimated poses and contours are overlayed on

the images.

143

Chapter 6

Conclusion
In this dissertation, several discrete optimization problems that arise in super-

pixel segmentation, video segmentation, and object localization were studied. For

superpixel segmentation, I proposed a clustering objective function which encour-

ages the formation of compact, homogeneous, and balanced clusters. I proved that

the objective function is monotonically increasing and submodular and showed that

by enforcing a matroid constraint, one obtains additional efficiency and worst-case

performance guarantee by using the greedy algorithm.

The dissertation proposed minimizing an energy function for video segmen-

tation. The energy functions consists of the Potts pairwise terms and a higher-

order histogram similarity prior term. I carefully studied the resulting optimization

problem and showed that the minimization of the Pott energy, the higher-order his-

togram similarity prior, and their combination can all be achieved by maximizing

an associated submodular function subject to a partition matroid constraint. This

discovery revealed the application of greedy algorithms in solving the video segmen-

tation problem. I further developed a branch and bound algorithm to further refine

the segmentation result.

I proposed the fast directional chamfer matching algorithm for the object lo-

144

calization problem, which approximates shapes of query objects using line segments

and evaluates the object evidence by accumulating the matching scores of the line

segments. I further developed a directional integral image structure and showed that

by evaluating the matching scores of longer line segments first one can significantly

improve the computational efficiency.

145

Bibliography

[1] Ankur Agarwal and Bill Triggs. Recovering 3d human pose from monocular
images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(1):44–58, 2006.

[2] Amit Agrawal, Yu Sun, John Barnwell, and Ramesh Raskar. Vision-guided
robot system for picking objects by casting shadows. International Journal of
Robotics Research, 29:155–173, February 2010.

[3] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro. Video snapcut:
robust video object cutout using localized classifiers. ACM Special Interest
Group on GRAPHics and Interactive Techniques (SIGGRAPH), 2009.

[4] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Ma-
chine Learning, 56(1-3):89–113, 2004.

[5] Prabin Bariya and Ko Nishino. Scale-hierarchical 3d object recognition in
cluttered scenes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2010.

[6] Harry G Barrow, Jay Martin Tenenbaum, Robert Coy Bolles, and Helen C
Wolf. Parametric correspondence and chamfer matching: Two new techniques
for image matching. In Proceedings of the 5th international joint conference
on Artificial intelligence, pages 659–663, 1977.

[7] Ronen Basri and David W. Jacobs. Lambertian reflectance and linear sub-
spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(2):218–233, 2003.

[8] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc J. Van Gool. Speeded-
up robust features (surf). Computer Vision and Image Understanding,
110(3):346–359, 2008.

[9] Csaba Beleznai and Horst Bischof. Fast human detection in crowded scenes
by contour integration and local shape estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2246–2253,
2009.

[10] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In The Neural Information Processing
Systems (NIPS) Foundation, pages 585–591, 2001.

[11] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization:
A geometric framework for learning from labeled and unlabeled examples.
Journal of Machine Learning Research, 7:2399–2434, 2006.

146

[12] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object
recognition using shape contexts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4):509–522, 2002.

[13] Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching and
object recognition using low distortion correspondences. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 26–33,
2005.

[14] Pavel Berkhin. Survey of clustering data mining techniques. Technical report,
2002.

[15] Michael Bleyer, Carsten Rother, Pushmeet Kohli, Daniel Scharstein, and
Sudipta Sinha. Object stereo — joint stereo matching and object segmen-
tation. In Proceeding of IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[16] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Journal of
Discrete Applied Mathematics, 123, 2002.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, March 2004.

[18] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Transactions
On Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.

[19] Yuri Boykov, Olga Veksler, and Ramin Zabih. Efficient approximate energy
minimization via graph cut. IEEE Transactions On Pattern Analysis and
Machine Intelligence, 20(12):1222–1239, 2001.

[20] Yuri Boykov, Olga Veksler, and Ramin Zabih. Efficient approximate energy
minimization via graph cut. IEEE Transactions On Pattern Analysis and
Machine Intelligence, 20(12):1222–1239, 2001.

[21] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis
of point trajectories. In Proceeding of European Conference on Computer
Vision, 2010.

[22] Ignas Budvytis, Vijay Badrinarayanan, and Roberto Cipolla. Semi-supervised
video segmentation using tree structured graphical models. In Proceeding of
IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[23] John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679 –698, 1986.

[24] Prakash Chockalingam, Nalin Pradeep, and Stan Birchfield. Adaptive
fragments-based tracking of non-rigid objects using level sets. In Proceeding
of IEEE International Conference on Computer Vision, 2009.

147

[25] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions On Pattern Analysis and Machine
Intelligence, 24(5):603–619, 2002.

[26] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley, 2 edition, 1991.

[27] Yan Cui, Sebastian Schuon, Chan Derek, Sebastian Thrun, and Christian
Theobalt. 3d shape scanning with a time-of-flight camera. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[28] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 886–893, 2005.

[29] Oscar Danielsson, Stefan Carlsson, and Josephine Sullivan. Automatic learn-
ing and extraction of multi-local features. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2009.

[30] Daniel DeMenthon and Larry Davis. Model-based object pose in 25 lines of
code. In Proceedings of the European Conference on Computer Vision, pages
335–343, 1992.

[31] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model glob-
ally, match locally: Efficient and robust 3d object recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
998–1005, 2010.

[32] Pinar Duygulu, Kobus Barnard, João F. G. de Freitas, and David A. Forsyth.
Object recognition as machine translation: Learning a lexicon for a fixed image
vocabulary. In Proceedings of the European Conference on Computer Vision,
pages 97–112, 2002.

[33] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–
611, 2006.

[34] Pedro Felzenszwalb and Daniel Huttenlocher. Distance transforms of sampled
functions. Technical Report TR2004-1963, Cornell Computing and Informa-
tion Science, 2004.

[35] Pedro Felzenszwalb and Joshua Schwartz. Hierarchical matching of deformable
shapes. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2007.

[36] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based im-
age segmentation. IJCV, 59(2):167–181, 2004.

148

[37] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour
segments for object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(1):36–51, 2008.

[38] Vittorio Ferrari, Frederic Jurie, and Cordelia Schmid. From images to shape
models for object detection. International Journal of Computer Vision,
87:284–303, 2010.

[39] Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. Object detection by
contour segment networks. In Proceedings of the European Conference on
Computer Vision, volume 3953, pages 14–28, 2006.

[40] Maurizio Filippone, Francesco Camastra, Francesco Masulli, and Stefano
Rovetta. A survey of kernel and spectral methods for clustering. Pattern
Recogn., 41:176–190, January 2008.

[41] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Graphics and Image Processing, 24(6):381–395, 1981.

[42] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analy-
sis of the approximations for maximizing submodular set functions - ii. Math-
ematical Programming, pages 73–87, 1978.

[43] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between
data points. Science, 315(5814):972–976, 2007.

[44] Andrew C. Gallagher, Dhruv Batra, and Devi Parikh. Inference for order
reduction in markov random fields. In Proceeding of IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

[45] Dariu M. Gavrila. Multi-feature hierarchical template matching using distance
transforms. In Proceedings of the IEEE International Conference on Pattern
Recognition, pages 439–444, 1998.

[46] Leo Grady. Random walks for image segmentation. IEEE Transactions On
Pattern Analysis and Machine Intelligence, 28(11):1768–1783, 2006.

[47] Eric Grimson and Tomás Lozano-Pérez. Model-based recognition and local-
ization from sparse range or tactile data. International Journal of Robotics
Research, 3:3–35, 1984.

[48] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient hier-
archical graph-based video segmentation. In Proceeding of IEEE Conference
on Computer Vision and Pattern Recognition, 2010.

[49] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research, pages 235–284, 2008.

149

[50] David Harel and Yehuda Koren. On clustering using random walks. In Founda-
tions of Software Technology and Theoretical Computer Science, volume 2245,
pages 18–41. Springer-Verlag, 2001.

[51] Derek Hoiem, Andrew N. Stein, Alexei A. Efros, and Martial Hebert. Recov-
ering occlusion boundaries from a single image. In ICCV, 2007.

[52] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society A, 4(4):629–642, 1987.

[53] Hiroshi Ishikawa. Higher-order clique reduction in binary graph cut. 2009.

[54] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264–323, 1999.

[55] E. T. Jaynes. Information theory and statistical mechanics. Physical Review,
106(4):620–630, 1957.

[56] S. Jeannin and M. Bober. Description of core experiments for mpeg-
7 motion/shape. Technical Report ISO/IEC JTC 1/SC29/WG 11
MPEG99/N2690, MPEG-7, 1999.

[57] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular energies:
Coupling edges in graph cuts. In Proceeding of IEEE Conference on Computer
Vision and Pattern Recognition, 2011.

[58] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular energies:
Coupling edges in graph cuts. In Proceeding of IEEE Conference on Computer
Vision and Pattern Recognition, 2011.

[59] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(5):433–449, 1999.

[60] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clustering: Good,
bad and spectral. In Proceedings. 41st Annual Symposium on Foundations of
Computer Science, 2000.

[61] Pushmeet Kohli, Lubor Ladicky, and Philip Torr. Robust higher order po-
tentials for enforcing label consistency. International Journal on Computer
Vision, 82:302–324, 2009.

[62] Pushmeet Kohli, Lubor Ladicky, and Philip Torr. Robust higher order po-
tentials for enforcing label consistency. International Journal on Computer
Vision, 82:302–324, 2009.

[63] Pushmeet Kohli, M. Pawan Kumar, and Philip H. S. Torr. P3 & beyond: Move
making algorithms for solving higher order functions. IEEE Transactions On
Pattern Analysis and Machine Intelligence, 31:1645–1656, 2009.

150

[64] V. Kolmogorov. Convergent tree-reweighted message passing for energy mini-
mization. IEEE Transactions On Pattern Analysis and Machine Intelligence,
28(10):1568–1583, 2006.

[65] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be min-
imized via graph cuts. IEEE Transactions On Pattern Analysis and Machine
Intelligence, 26(2):147–159, 2004.

[66] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. Partitioning graphs
in to balanced components. In In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms, 2009.

[67] Lubor Ladicky, Chris Russell, Pushmeet Kohli, and Philip H. S. Torr. Graph
cut based inference with co-occurrence statistics. Proceeding of European
Conference on Computer Vision, 2010.

[68] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2169–2178, 2006.

[69] Yong Jae Lee, Jaechul Kim, and Kristen Grauman. Key-segments for video
object segmentation. In Proceeding of IEEE International Conference on Com-
puter Vision, 2011.

[70] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. Cost-effective outbreak detection in net-
works. In SIGKDD, pages 420–429, 2007.

[71] Alex Levinshtein, Adrian Stere, Kiriakos N. Kutulakos, David J. Fleet, and
Sven J. Dickinson. Fast superpixels using geometric flows. IEEE Transactions
On Pattern Analysis and Machine Intelligence, 31(12):2290–2297, 2009.

[72] Yin Li, Jian Sun, and Heung-Yeung Shum. Video object cut and paste.
ACM Special Interest Group on GRAPHics and Interactive Techniques (SIG-
GRAPH), 2005.

[73] Hui Lin and Jeff Bilmes. Word alignment via submodular maximization over
matroids. In The 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Short Papers, pages 170–175,
2011.

[74] Haibin Ling and David W. Jacobs. Shape classification using the inner-
distance. IEEE Transactions On Pattern Analysis and Machine Intelligence,
29(2):286–299, 2007.

[75] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and Rama Chellappa. En-
tropy rate superpixel segmentation. In Proceeding of IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

151

[76] Ming-Yu Liu, Oncel Tuzel, Ashok Veeraraghavan, Rama Chellappa, Amit
Agrawal, and Haruhisa Okuda. Pose estimation in heavy clutter using a multi-
flash camera. In Proceedings of the IEEE International Conference on Robotics
and Automation, 2010.

[77] Ming-Yu Liu, Oncel Tuzel, Ashok Veeraraghavan, Yuichi Taguchi, Tim K.
Marks, and Rama Chellappa. Fast object localization and pose estimation in
heavy clutter for robotic bin picking. 2012.

[78] L. Lovász. Submodular functions and convexity. Mathematical Programming
- State of the Art, pages 235–257, 1983.

[79] David Lowe. Three-dimensional object recognition from single two-
dimensional images. Artificial Intelligence, 31(3):355–395, 1987.

[80] David Lowe. Fitting parameterized three-dimensional models to images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):441–450,
1991.

[81] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[82] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database
of human segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In ICCV, 2001.

[83] Marina Meilă and Jianbo Shi. A random walks view of spectral segmenta-
tion. In IEEE Interntaional Conference on Artificial Intelligence and Statis-
tics, 2001.

[84] Alastair P. Moore, Simon J.D. Prince, and Jonathan Warrell. ”lattice cut” –
construcitng superpixles using layer constraints. In CVPR, 2010.

[85] Alastair P. Moore, Simon J.D. Prince, Jonathan Warrell, Umar Mohammed,
and Graham Jones. Superpixel lattices. In CVPR, 2008.

[86] Greg Mori and Jitendra Malik. Estimating human body configurations us-
ing shape context matching. In Proceedings of the European Conference on
Computer Vision, volume 3, 2002.

[87] Greg Mori, Xiaofeng Ren, Alexei A. Efros, and Jitendra Malik. Recovering
human body configurations: Combining segmentation and recognition. In
CVPR, 2004.

[88] Miguel Carreira-Perpi nán and Richard S. Zemel. Proximity graphs for clus-
tering and manifold learning. In The Neural Information Processing Systems
(NIPS) Foundation, pages 225–232. MIT Press, 2004.

152

[89] Mukund Narasimhan, Nebojsa Jojic, and Jeff Bilmes. Q-clustering. In The
Neural Information Processing Systems (NIPS) Foundation, pages 979–986.
MIT Press, 2006.

[90] Bradley Nelson, N.P. Papanikolopoulos, and Pradeep Khosla. Robotic visual
servoing and robotic assembly tasks. IEEE Robotics and Automation Maga-
zine, 3(1):23–31, June 1996.

[91] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An anal-
ysis of the approximations for maximizing submodular set functions. Mathe-
matical Programming, pages 265–294, 1978.

[92] Andrew Ng, Micheal Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In The Neural Information Processing Systems (NIPS)
Foundation, pages 849–856. MIT Press, 2001.

[93] Juan Carlos Niebles and Li Fei-Fei. A hierarchical model of shape and appear-
ance for human action classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2007.

[94] Sebastian Nowozin, Peter Gehler, and Christoph Lampert. On parameter
learning in crf-based approaches to object class image segmentation. In ECCV,
2010.

[95] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International Journal on Computer
Vision, 42(3):145–175, 2001.

[96] Clark F. Olson and Daniel P. Huttenlocher. Automatic target recognition by
matching oriented edge pixels. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(1):103–113, 1997.

[97] James Oxley. Matroid Theory. Oxford University Press, 1992.

[98] Srikumar Ramalingam, Pushmeet Kohli, Karteek Alahari, and Philip H. S.
Torr. Exact inference in multi-label crfs with higher order cliques. In Pro-
ceeding of IEEE Conference on Computer Vision and Pattern Recognition,
2008.

[99] Ramesh Raskar, Kar-Han Tan, Rogerio Feris, Jingyi Yu, and Matthew Turk.
Non-photorealistic camera: depth edge detection and stylized rendering using
multi-flash imaging. ACM Transactions on Graphics, 23(3):679–688, 2004.

[100] Saiprasad Ravishankar, Arpit Jain, and Anurag Mittal. Multi-stage contour
based detection of deformable objects. In Proceedings of the European Con-
ference on Computer Vision, pages 483–496, 2008.

[101] Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmen-
tation. In ICCV, 2003.

153

[102] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ”grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM Special Interest
Group on GRAPHics and Interactive Techniques (SIGGRAPH), 23(3):309–
314, 2004.

[103] Daniel Scharstein and Richard Szeliski. High-accuracy stereo depth maps
using structured light. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2003.

[104] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions On Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[105] Y. Shirai and H. Inoue. Guiding a robot by visual feedback in assembling
tasks. Pattern Recognition, 5(2):99 –108, 1973.

[106] Jamie Shotton, Andrew Blake, and Roberto Cipolla. Multi-scale categorical
object recognition using contour fragments. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(7):1270–1281, 2008.

[107] Leonid Sigal and Michael J. Black. Humaneva: Synchronized video and motion
capture dataset for evaluation of articulated human motion. Technical report,
Brown University, 2006.

[108] Leonid Sigal and Michael J. Black. Measure locally, reason globally: Occlusion-
sensitive articulated pose estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2041–2048, 2006.

[109] Fridtjof Stein and Gérard Medioni. Structural indexing: Efficient 3-d object
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):125 –145, 1992.

[110] Erik B. Sudderth, Antonio Torralba, William T. Freeman, and Alan S. Willsky.
Learning hierarchical models of scenes, objects, and parts. In Proceedings of
the IEEE International Conference on Computer Vision, pages 1331–1338,
2005.

[111] Yuichi Taguchi, Bennett Wilburn, and C. Lawrence Zitnick. Stereo recon-
struction with mixed pixels using adaptive over-segmentation. In Proceeding
of IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[112] Arasanathan Thayananthan, Bjorn Stenger, Philip H. S. Torr, and Roberto
Cipolla. Shape context and chamfer matching in cluttered scenes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 127–133, 2003.

[113] David Tsai, Mathew Flagg, and James M. Rehg. Motion coherent tracking
with multi-label mrf optimization. In British Machine Vision Conference,
2010.

154

[114] Oncel Tuzel, Fatih Porikli, and Peter Meer. Pedestrian detection via classifi-
cation on riemannian manifolds. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(10):1713–1727, 2008.

[115] Oncel Tuzel, Fatih Porikli, and Peter Meer. Kernel methods for weakly super-
vised mean shift clustering. In Proceeding of IEEE International Conference
on Computer Vision, pages 48–55, 2009.

[116] Amelio Vazquez-Reina, Shai Avidan, Hanspeter Pfister, and Eric Miller. Mul-
tiple hypothesis video segmentation from superpixel flows. In Proceeding of
European Conference on Computer Vision, 2010.

[117] Olga Veksler and Yuri Boykov. Superpixels and supervoxels in an energy
optimization framework. In ECCV, 2010.

[118] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Joint optimization
of segmentation and appearance models. Proceeding of IEEE International
Conference on Computer Vision, 2009.

[119] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient al-
gorithm based on immersion simulations. IEEE Transactions On Pattern
Analysis and Machine Intelligence, 13(6):583 –598, 1991.

[120] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 511–518, 2001.

[121] VisionPro. http://www.cognex.com/visionpro/. Cognex.

[122] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained
k-means clustering with background knowledge. In International Conference
on Machine Learning, pages 577–584, 2001.

[123] Fei Wang, Bin Zhao, and Changshui Zhang. Linear time maximum margin
clustering. IEEE Transactions on Neural Networks, 21(2):319–332, 2010.

[124] Jue Wang, Pravin Bhat, R. Alex Colburn, Maneesh Agrawala, and Michael F.
Cohen. Interactive video cutout. ACM Special Interest Group on GRAPHics
and Interactive Techniques (SIGGRAPH), 2005.

[125] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction
under second-order smoothness priors. 2008.

[126] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation. IEEE Transac-
tions On Pattern Analysis and Machine Intelligence, 15(11):1101–1113, 1993.

155

[127] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J. Russell. Distance
metric learning with application to clustering with side-information. In The
Neural Information Processing Systems (NIPS) Foundation, pages 505–512,
2002.

[128] Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum
margin clustering. In The Neural Information Processing Systems (NIPS)
Foundation, 2004.

[129] Rui Xu and II Wunsch, D. Survey of clustering algorithms. Neural Networks,
IEEE Transactions on, 16(3):645 –678, May 2005.

[130] Donghui Yan, Ling Huang, and Michael I. Jordan. Fast approximate spectral
clustering. In The ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 907–916, 2009.

[131] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In The Neural Information Processing Systems (NIPS) Founda-
tion, 2000.

[132] Luh Yen, Denis Vanvyve, Fabien Wouters, Francois Fouss, Michel Verleysen,
and Marco Saerens. Clustering using a random-walk based distance measure.
In In Proceedings European Symposium on Artificial Neural Networks, 2005.

[133] C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Transactions on Computers, 20(1):68–86, 1971.

[134] Zhengyou Zhang. Iterative point matching for registration of free-form curves
and surfaces. International Journal of Computer Vision, 13(2):119–152, 1994.

[135] Qihui Zhu, Liming Wang, Yang Wu, and Jianbo Shi. Contour context selection
for object detection: A set-to-set contour matching approach. In Proceedings
of the European Conference on Computer Vision, pages 774–787, 2008.

[136] Xiaojin Zhu. Semi-supervised learning literature survey. Technical report,
Computer Sciences, University of Wisconsin-Madison, 2005.

156

