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Abstract

The PhotoDissociation Region Toolbox provides comprehensive, easy-to-use, public software tools and models
that enable an understanding of the interaction of the light of young, luminous, massive stars with the gas and dust
in the Milky Way and in other galaxies. It consists of an open-source Python toolkit and photodissociation region
(PDR) models for analysis of infrared and millimeter/submillimeter line and continuum observations obtained by
ground-based and suborbital telescopes, and astrophysics space missions. PDRs include all of the neutral gas in the
interstellar medium where far-ultraviolet photons dominate the chemistry and/or heating. In regions of massive
star formation, PDRs are created at the boundaries between the H II regions and neutral molecular cloud, as
photons with energies 6 eV< hν< 13.6 eV photodissociate molecules and photoionize metals. The gas is heated
by photoelectrons from small grains and large molecules and cools mostly through far-infrared (FIR) fine-structure
lines like [O I] and [C II]. The models are created from state-of-the art PDR codes that include molecular freeze-
out; recent collision, chemical, and photorates; new chemical pathways, such as oxygen chemistry; and allow for
both clumpy and uniform media. The models predict the emergent intensities of many spectral lines and FIR
continuum. The tools find the best-fit models to the observations and provide insight into the physical conditions
and chemical makeup of the gas and dust. The PDR Toolbox enables novel analysis of data from telescopes such as
the Infrared Space Observatory, Spitzer, Herschel, the Stratospheric Terahertz Observatory, the Stratospheric
Observatory for Infrared Astronomy, the Submillimeter Wave Astronomy Satellite, the Atacama Pathfinder
Experiment, the Atacama Large Millimeter/submillimeter Array, and the JWST.

Unified Astronomy Thesaurus concepts: Photodissociation regions (1223); Astronomy software (1855); Molecular
gas (1073); Interstellar atomic gas (833)

1. Introduction

Over 20 years ago, we created the PhotoDissociation
Region Toolbox (PDRT), a web-based interface that allowed
users to analyze the line and continuum emission from
photodissociation regions (PDRs; Pound & Wolfire 2008).
Back then, web programming meant Common Gateway
Interface (CGI) and Perl was the workhorse scripting
language. Single-pixel detectors were cutting-edge technol-
ogy, and the submillimeter window had just begun to be
explored. We put together PDRT with Perl, HTML, Apache
1.3, FITS files, Concurrent Versioning System, shell scripts,
and a sense of humor. PDRT became a leading on-line site
for analyzing PDRs and developed an international user base
with users in over 35 countries. It garnered many refereed
citations, and the output plots have been used directly in
published papers, and in posters and presentations, As
new telescopes arrived, we added spectral lines and low-
metallicity models. Browser-free scripting interfaces were
created by users. Although funding for the project ran out, we
continued to add spectral lines when users requested and kept
the service running. Single-pixel detectors gave way to
cameras, and the submillimeter science matured. Now, thanks
to renewed funding, we have rebuilt PDRT as an open-source
Python 3 package called pdrtpy with far more capabilities

than the original CGI scripts. The PDR Toolbox website1

remains the central clearing house to keep users apprised of our
work, with the code now moved to GitHub. The pdrtpy
version at the time of writing is 2.2.9.
In this paper, we describe the scientific motivation to develop

pdrtpy, its architecture, and primary capabilities. In Section 2,
we discuss the astrophysics of PDRs. Section 3 describes our
development paradigm. In Section 4, we describe the modeling
physics and code. In Section 5 we review pdrtpyʼs core
capabilities, and in Section 6 we outline the development we
would like to pursue in the near future. To Improve readability,
example code listings are given in the Appendix rather than in
the main text. The code listings are downloadable2 and can be
used to reproduce Figures 2–9 in this paper.

2. The Importance of PDRs

The interstellar medium (ISM) plays a central role in the
lifecycle of stars and galaxies. The coldest phases of the ISM, the
molecular clouds, give rise to star formation. Stars return energy to
their surroundings in the form of photons and kinetic energy from
winds and supernovae explosions. In addition, stars enrich the ISM
with metals that affect the gas cooling. Thus, understanding the
production, chemistry, thermal balance, and evolution of the ISM
is essential to understanding star formation and the evolution of
galaxies.
The infrared line and continuum emission from atoms,

molecules, and dust provide the observational diagnostics of
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the stellar feedback. The line and continuum emission arise
primarily from PDRs. Classical PDRs are largely neutral
regions that are photodissociated and heated by far-ultraviolet
(FUV; 6 eV< hν< 13.6 eV) photons from nearby massive
stars (Tielens & Hollenbach 1985; Wolfire et al. 2022). The
same physical and chemical processes that dissociate, partially
ionize, and heat the gas in these classical PDRs are also
Important for the ISM as a whole, and PDRs are now generally
taken to include all regions where FUV photons play an
important role in the chemistry and/or heating of the gas.
These regions include diffuse and translucent H I clouds and
the warm neutral medium in the ISM (Wolfire et al. 2003), the
surfaces of molecular clouds illuminated by the ambient
radiation field and by nearby stars (Kaufman et al. 2006), the
warm dust envelopes surrounding newly formed stars (e.g.,
Visser et al. 2012), and the neutral ISM in the disk and nuclei
of normal and starburst galaxies (Roussel et al. 2007; Kennicutt
et al. 2011; Herrera-Camus et al. 2015). Most of the nonstellar
baryons within galaxies are in PDRs.

While gaining a conceptual understanding of PDRs is
relatively easy, extracting the physical conditions and underlying
physics from the observations is difficult. For example,
observers often use a simple large velocity gradient (LVG)
model to analyze line ratios. Such a model is appropriate for
emission from large clouds where there is an overall velocity
gradient but not appropriate for individual star-forming regions
where PDR lines arise. In addition, LVG models typically do not
account for the temperature distribution in thermal equilibrium
and abundance profiles in chemical balance through the emitting
layer. See Wolfire et al. (2022) for a review citing additional
examples of PDRs, PDR models, and their applications.

3. Development Philosophy and Framework

Our approach is open-source development, user-friendliness,
sensible and consistent interfaces, good documentation and
examples, and responsive user support. We use a GitHub open-
source public repository3 that includes the Python code, text
documentation files, and FITS files of the models. The model
FITS files can also be browsed and downloaded from the PDR
Toolbox website. Using GitHub Actions at code check-in, the
code is checked against the PEP8 coding style,4 regression and
integration tests are run, and the code coverage of tests is
calculated. A separate repository contains Jupyter5 notebooks6

that demonstrate how to do analysis with pdrtpy. (Notebooks
are convenient but not required). The repositories are governed
by a GPL3 license. We make use of major Python libraries
such as astropy (Astropy Collaboration et al. 2013, 2018),
lmfit-py (Newville et al. 2021), matplotlib (Hunter
2007), numpy (van der Walt et al. 2011), scipy (Virtanen
et al. 2020), and emcee (Foreman-Mackey et al. 2013). The
full list of dependencies is given in the repository. pdrtpy is
installed via pip or by cloning the Git repository. We use
sphinx 7 to generate documentation from code comments and
text files, which is then hosted on Read The Docs.8 Where
applicable, we make an effort to “promote” keywords to our

APIs from, e.g., matplotlib and astropy, which many
users will already be familiar with. This can be especially
helpful in creating plots where users may want more fine-
grained control than our default plots, which we already strive
to make publication quality.
The fitting tools in the Toolbox inherit from a common

parent class ToolBase, which defines a few common
attributes and properties, and the run() interface, which all
child classes must implement. The workflow for the user is to
instantiate a fitting tool, optionally set some attributes, and
invoke run() to perform the fit. Subsequently, users
instantiate the companion plotting tool, which is similarly
derived from a parent PlotBase, to explore the fit results.
As astronomers who research PDRs, we have a reasonable

idea of the kinds of tools that users need but welcome
suggestions for desired functionality. For example, model
phase-space plotting with data overlay was requested by
members of the Stratospheric Observatory for Infrared
Astronomy (SOFIA) FEEDBACK (Schneider et al. 2020)
team, so we prioritized its development and worked with them
to beta test and to refine its functionality. It found immediate
use in publications and talks (Tiwari 2022; Tiwari et al. 2022).

4. The PDR Models and Model Codes

In the pdrtpy distribution, all models are precomputed
from PDR model codes, currently either the “Wolfire–Kauf-
man” code, which we have developed, or the KOSMA-tau code
(Rollig et al. 2013; Röllig & Ossenkopf-Okada 2022). The
models are computed using a given set of parameters (Table 1)
and presented as grids of intensity or intensity ratio as a
function of the hydrogen nucleus density n and radiation field
strength FFUV. The results, collectively called ModelSet, are
stored as FITS images in subdirectories organized by the
modeling code origin and major parameters such as metallicity.
A list of the available ModelSets is given in Table 2.
The current set of distributed models, both Wolfire–Kauf-

man and KOSMA-tau, are most appropriate for the “classical”
PDRs described in Wolfire et al. (2022), where stars illuminate
nearby molecular clouds. The maximum depths from the cloud
surface are larger than those found in diffuse or translucent
molecular clouds, where AV∼ 1–2, and the illumination is only
on the front side where for diffuse clouds the illumination
would be on both the front and back sides. Although a soft
(E< 100 eV) X-ray spectrum is included in the Wolfire–
Kaufman PDR code, neither set of PDR models is appropriate
for gas illuminated by hard X-ray radiation as would be emitted
by an active galactic nucleus (see also Wolfire et al. (2022) for
a comparison of PDR-dominated and X-ray-dominated mod-
els). The models cover a wide range of spectral lines that can be
observed by many different telescopes (Figure 1). The
telescopes listed in Figure 1 are not an exhaustive list. Other
telescopes such as the Atacama Pathfinder Experiment, the
Kölner Observatorium für Submillimeter Astronomie, the
Antarctic Submillimeter Telescope and Remote Observatory,
and the Heinrich Hertz Telescope have observed CO and CI,
and high-z spectral lines can be redshifted into observable
bands of existing instruments.
The Wolfire–Kaufman PDR model code is based on the

work of Tielens & Hollenbach (1985) but with many updates
since the early versions. It assumes a plane-parallel geometry
with a UV radiation field, cosmic rays, and soft X-rays incident

3 https://github.com/mpound/pdrtpy
4 https://peps.python.org/pep-0008/
5 https://jupyter.org
6 https://github.com/mpound/pdrtpy-nb
7 https://www.sphinx-doc.org/
8 https://pdrtpy.readthedocs.io
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on one side. The main input parameters are the radiation field
strength in units of Habing (Habing 1968) fields (G0) and a
constant hydrogen nucleus density n. Alternatively, the density
can be derived self-consistently from an input pressure. The
code finds the gas temperature in thermal equilibrium and
abundances of atomic and molecular species in chemical
balance. The non-LTE level populations are calculated for the
dominant coolants and the emitted line intensities are found
using an escape probability formalism. Updates to the code are
described in Wolfire et al. (2010), Kaufman et al. (2006),
Hollenbach et al. (2012), and Neufeld & Wolfire (2016). More
recent updates, and in particular those included in the
“wk2020” models, feature the photorates and dependence with
the depth as given in Heays et al. (2017), 13C chemistry and
line emission, and O collision rates from Lique et al. (2018) as
given in the MOLCAT (Schoier et al. 2005) database.

In addition to the hydrogen density and radiation field
strength, a large number of parameters could potentially be
varied including the gas-phase metallicity, the abundance of
grains and large molecules, the microturbulent line width, and
the PDR depth. The values for these parameters are given in
Table 1 and are discussed in more detail in previous papers.
Note that in the “wk2020” models we adopt a lower PDR depth
( =A 7V Max, ) compared to previous models to avoid possible
time-dependent effects in the deeper layers. We also turn off
chemistry on grain surfaces—a constraint that will be lifted in

future models. Similarly, sets of models with low AV,
appropriate for diffuse or translucent clouds, can be computed
from this PDR model code.
The KOSMA-tau models and PDR model code are described

in Rollig et al. (2013) and Röllig & Ossenkopf-Okada (2022).
The geometry of the KOSMA-tau models differ from those of
the Wolfire–Kaufman code. Instead of a plane-parallel
geometry, KOSMA-tau uses an ensemble of spherical clumps
with a spectrum of masses (“clumpy”) or a single clump (“non-
clumpy”). Further, whereas the Wolfire–Kaufman code has a
fixed incident spectral energy distribution (that of the
interstellar radiation field) and grain model (interstellar medium
grains with RV= 3.1), the KOSMA-tau code can independently
vary them (see Table 2). We were provided with FITS files of
model spectral line intensity ratios and intensities by the
KOSMA-tau authors for use in PDRT.
The choice of PDR model can have significant effects on the

predicted line intensities (see Figure 2). This can give physical
insight into the PDR conditions, for instance, whether the data
are better represented by a clumpy or plane-parallel medium.

5. Capabilities

5.1. Data Representation

Observations in pdrtpy are represented by the Measure-
ment class. A Measurement consists of a value and an error.

Table 1
Example Parameters of PDR Models

Parameter Units Symbol WK2020 KOSMA-tau
(1) (2) (3) (4) (5)

Carbon abundance XC 1.6 × 10−4 2.34 × 10−4

13C abundance X13C 3.2 × 10−6 3.2 × 10−6

Oxygen abundance XO 3.2 × 10−4 4.47 × 10−4

18O abundance X18O L 8.93 × 10−7

Silicon abundance XSi 1.7 × 10−6 3.17 × 10−6

Sulfur abundance XS 2.8 × 10−5 7.41 × 10−6

Iron abundance XFe 1.7 × 10−7 1.0 × 10−6

Magnesium abundance XMg 1.1 × 10−6 3.2 × 10−6

Nitrogen abundance XN 0 8.32 × 10−5

Fluorine abundance XF 1.8 × 10−8 6.68 × 10−9

Helium abundance XHe 0.1 8.51 × 10−2

PAH abundance XPAH 2 × 10−7 La

Dust and metals with respect to local ISM Z 1 1
Dust abundance relative to diffuse ISM δd 1 1
FUV dust opacity/visual extinction τFUV/τV 1.8 Lb

Maximum optical depth AV Max, 7 Lc

Dust visual extinction per H atom cm−2 σV 5.26 × 10−22 Ld

Formation rate of H2 on dust s−1 Rform 6 × 10−17 Le

Turbulent Doppler velocity km s−1 δvD 1.5 Lf

Cosmic ray ionization rate per H nucleus s−1 ζCR 2.0 × 10−16 g 2.0 × 10−16

Cloud H density cm−3 n 101 − 107 103 − 107h

Incident UV fluxi erg cm−2 s−1 FFUV 10−3.3 − 103.7 10−2.5 − 103.4

Notes.
a Following the Weingartner & Draine (2001a) prescription, the PAH abundance is not specified.
b Depends on the dust model; see Table 4 of Rollig et al. (2013).
c Depends on the mass and density of the model.
d Depends on the dust model: WD01-7: 5.24 × 10−22, WD01-21: 5.05 × 10−22, WD02-25: 4.88e × 10−22.
e Computed following Cazaux & Tielens (2004, 2010).
f Doppler velocity computed from the Larson (1981) mass–line width relation.
g Assumes that the ionization rate falls as ζCR/(1 + N/1.0 × 1021 cm−2) with a minimum of 2.0 × 10−17 s−1.
h This is the density at the surface. KOSMA-tau assumes a certain profile, typically leading to a central density ∼11 times higher and a mean density that is ∼1.9 times
the surface density.
i Draine (1978) spectral energy distribution.
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These can be single-valued, an array of values, or an image and
can be in intensity units (equivalent to erg cm−2 s−1 sr−1) or in
K km s−1, which is typical of millimeter/submillimeter spectral
line observations. In the typical case of an image observation,
the Measurement is a representation of a FITS file with two
header data units (HDUs): the first HDU is the spatial map of
intensity and the second HDU is the spatial map of the errors.
An image-based Measurement carries a world coordinate
system and traditional FITS-like header. Measurement is
based on the CCDData class of astropy with additional
properties such as beam parameters and support for arithmetic
operators. In arithmetic operations, errors and units are
correctly propagated through the underlying astropy code.
Users identify their Measurements with one of pdrtpyʼs
predefined ID strings, e.g., “CII_158” for the [C II] 158 μm
spectral line. These identifiers are used by pdrtpy to match
observations with models that are similarly identified.

The models in pdrtpy are two-dimensional grids of either
intensities or ratios of intensities as a function of the hydrogen
nucleus volume density (cm−3) and incident FUV field, FFUV

(erg cm−2 s−1 or equivalent). As these are stored on disk as
FITS images, they are also represented internally as Mea-
surements, but with no errors. Because of the built-in
operator support, this makes straightforward arithmetic opera-
tions that involve both observations and models. There are
different conventions for the units of FFUV depending on
different approximations to the local interstellar radiation field–
cgs units, Habing units (Habing 1968; 1 Habing=G0= 1.63×
10−3 erg cm−2 s−1), Draine units (Draine 1978; 1 Draine=
χ= 2.72× 10−3 erg cm−2 s−1), and Mathis units (Mathis et al.
1983; 1 Mathis= 1.81× 10−3 erg cm−2 s−1); pdrtpy defines
each as an astropy Quantity to convert seamlessly between
them. This allows the user to, for instance, create plots in their
preferred unit (see, e.g., Listing A.1 and Figure 2).

Table 2
PDR Models Currently Supported

PDR Code Name Version Medium Z Massa RV
b

Me

(1) (2) (3) (4) (5) (6) (7)

Wolfire/Kaufman wk2006 2006 constant density 1.0 L 3.1
Wolfire/Kaufman wk2006 2006 constant density 3.0 L 3.1
Wolfire/Kaufman wk2020 2020 constant density 1.0 L 3.1
Wolfire/Kaufman smcc 2006 constant density 0.1 L 3.1
Wolfire/Kaufman lmcd 2020 constant density 0.5 L 3.1
KOSMA-tau kt2013wd01-7 WD01-7 clumpy 1.0 100.0 3.1
KOSMA-tau kt2013wd01-7 WD01-7 non-clumpy 1.0 100.0 3.1
KOSMA-tau kt2013wd01-21 WD01-21 clumpy 1.0 100.0 4.0
KOSMA-tau kt2013wd01-21 WD01-21 non-clumpy 1.0 100.0 4.0
KOSMA-tau kt2013wd01-25 WD01-25 clumpy 1.0 100.0 5.5
KOSMA-tau kt2013wd01-25 WD01-25 non-clumpy 1.0 100.0 5.5
KOSMA-tau kt2013wd01-7 WD01-7 clumpy 1.0 10.0 3.1
KOSMA-tau kt2013wd01-7 WD01-7 non-clumpy 1.0 10.0 3.1
KOSMA-tau kt2013wd01-21 WD01-21 clumpy 1.0 10.0 4.0
KOSMA-tau kt2013wd01-21 WD01-21 non-clumpy 1.0 10.0 4.0
KOSMA-tau kt2013wd01-25 WD01-25 clumpy 1.0 10.0 5.5
KOSMA-tau kt2013wd01-25 WD01-25 non-clumpy 1.0 10.0 5.5
KOSMA-tau kt2013wd01-7 WD01-7 clumpy 1.0 1.0 3.1
KOSMA-tau kt2013wd01-7 WD01-7 non-clumpy 1.0 1.0 3.1
KOSMA-tau kt2013wd01-21 WD01-21 clumpy 1.0 1.0 4.0
KOSMA-tau kt2013wd01-21 WD01-21 non-clumpy 1.0 1.0 4.0
KOSMA-tau kt2013wd01-25 WD01-25 clumpy 1.0 1.0 5.5
KOSMA-tau kt2013wd01-25 WD01-25 non-clumpy 1.0 1.0 5.5
KOSMA-tau kt2013wd01-7 WD01-7 clumpy 1.0 0.1 3.1
KOSMA-tau kt2013wd01-7 WD01-7 non-clumpy 1.0 0.1 3.1
KOSMA-tau kt2013wd01-21 WD01-21 clumpy 1.0 0.1 4.0
KOSMA-tau kt2013wd01-21 WD01-21 non-clumpy 1.0 0.1 4.0
KOSMA-tau kt2013wd01-25 WD01-25 clumpy 1.0 0.1 5.5
KOSMA-tau kt2013wd01-25 WD01-25 non-clumpy 1.0 0.1 5.5
KOSMA-tau kt2013wd01-7 WD015.5 clumpy 1.0 1000.0 3.1
KOSMA-tau kt2013wd01-7 WD01-7 non-clumpy 1.0 1000.0 3.1
KOSMA-tau kt2013wd01-21 WD01-21 clumpy 1.0 1000.0 4.0
KOSMA-tau kt2013wd01-21 WD01-21 non-clumpy 1.0 1000.0 4.0
KOSMA-tau kt2013wd01-25 WD01-25 clumpy 1.0 1000.0 5.5
KOSMA-tau kt2013wd01-25 WD01-25 non-clumpy 1.0 1000.0 5.5

Notes.
a For clumpy models, this is the maximum clump mass. For non-clumpy models, it is the mass of a single spherical clump.
b KOSMA-tau models use dust properties from Weingartner (2001b).
c Limited set of models for the Small Magellanic Cloud.
d Limited set of models for the Large Magellanic Cloud.

4

The Astronomical Journal, 165:25 (15pp), 2023 January Pound & Wolfire



Collections of models are managed by the ModelSet class.
A ModelSet represents a coherent collection of models that
were created using the same modeling code and physical
parameters (e.g., Table 1). The list of currently available
ModelSets is given in Table 2. Users retrieve individual
models from a ModelSet using their identifiers. Listing A.1
shows an example of instantiating a ModelSet, retrieving
individual models from it, and plotting a model (Figure 2).

Another way to visualize the models is through a phase-space
diagram that can plot lines of constant n and FFUV as a function of
the spectral line intensity or intensity ratio. Adding observed data
to the plot lets the astronomer understand the conditions in
different regions, as was done by Tiwari et al. (2021) for RCW 49
(Listing A.1, Figure 3). Phase-space diagrams can also be useful
for making predictions of the line strength or estimating density
and radiation field when the user does not have enough
observations to fit with LineRatioFit.

5.2. Fitting Observations and Plotting Results

5.2.1. Intensity Ratios

It has been shown that far-infrared line and continuum
observations can be used to determine the physical properties of
PDRs including the incident FUV radiation field, the gas density,
and the surface temperature (Wolfire et al. 1990; Kaufman et al.
1999, 2006). These authors showed that the ratios of intensities
are particularly effective for determining n and FFUV as to the first
order the beam filling factors cancel out.9

In pdrtpy, the LineRatioFit tool takes intensity
Measurements and a ModelSet as input, computes the
intensity ratios that have entries in the ModelSet, and finds
the best-fit n and FFUV. The fit result matches the input—single
value, array, or spatial image. The available fitting algorithms
are nonlinear least-squares (NLS) minimization or the Monte
Carlo Markov Chain (MCMC) to determine the posterior
probability density function (PDF) of the fitted parameters.
Both are managed through lmfit, which capably delegates
via easy-to-use high-level interfaces to scipy.optimize for
NLS or emcee for MCMC.
Listing A.2 gives an example of determining n and FFUV from

single-pixel (or single-beam) observations using LineRatiofit

Figure 1. Spectral lines and metallicities currently available in PDRT and the
upcoming additions. The Species column lists the spectral line designation;
Wavelength gives the rest wavelength range covered by the models for the line
(s). A dot in a Telescope column means that spectral line is observable with a
given telescope (not including lines highly redshifted into the telescope bands).

Figure 2. Examples of model plots. (top) WK2020 model for the ratio of the
sum of the [O I] 145 μm and [C II] 158 μm intensities divided by the far-
infrared intensity integrated between 8 μm and 1 mm, IFIR, computed as a
function of the H nucleus density n and FUV field G0. (bottom) Same model
intensity ratio as that computed in the kt2013wd01-7, clumpy, M = 100 Me,
RV = 3.1 model. The user-friendly flexibility of pdrtpy allows the choice of
Habing units for G0, log normalization for the image intensities with a color-
blind friendly color map, and labeled black contours. See Listing A.1.

9 We note that, for unresolved observations, the beam filling factors may not
cancel, and an additional correction to normalize the filling factors may be
needed. See the detailed procedure given in Kaufman et al. (2006) and
additional caveats in comparing models with observations in Wolfire et al.
(2022).
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and plotting the results with LineRatioPlot. Integrated
intensity observations of [O I] 63μm, [C I] 609μm, CO(J=
4–3), and [C II] 158 μm are used to create three ratios, and the run
() method invokes NLS minimization to determine the best-fit
quantities. The results can be inspected with print statements, ratio
plots (Figure 4), overlay plots, and chi-square plots (Figure 5). In
Listing A.3, we show how to fit n and FFUV using MCMC and
how to create the traditional corner plot with the desired axes
(Figure 6).

Listing A.3 shows how to fit the Measurements from
Listing A.2 using the MCMC method by passing the
appropriate arguments to LineRatioFit.run(). The
emcee package is used, and keywords specific to emcee
can be passed in, e.g., steps, indicating how many samples
to draw from the posterior distribution for each walker. Listing
A.3 also shows how to create a custom corner plot of the results

(Figure 6) using the corner package (Foreman-
Mackey 2016).
One of the significant improvements that pdrtpymakes over

the old web version is the ability to operate on images, creating
maps of the best-fit n and FFUV. Listing A.4 (Figure 7) shows an
example using the [C II] 158 μm, [O I] 63 μm, and far-infrared
continuum maps in the Small Magellanic Cloud N22 star-
forming region from Jameson et al. (2018). In this example,
models computed using a low metallicity (Z= 0.3) were used to
match the conditions of the SMC. To fit the 4768 nonblanked
pixels takes ∼17 s in a Jupyter notebook on a late-model laptop
using a single CPU. We have not yet implemented multi-
threading speedups. The fit was done with the NLS method;
using emcee on so many pixels would be prohibitive (about
14 s per pixel or over 18 hr for the entire map).

Figure 3. An example of a phase-space plot showing lines of constant n and G0 as a function of the spectral line intensity ratios. The plot uses WK2020 models and
[C II], CO(3-2), and FIR data in the RCW 49 PDR from Tiwari et al. (2021). The crosses are the observed [C II]/FIR and [C II]/CO(3-2) intensity ratios for four
regions in RCW 49. See Listing A.1.

Figure 4. Plots created in Listing A.2 using the LineRatioPlot.ratios_on_models method showing the observed ratios with errors overlaid on the matching
models. The observational errors (1σ) are shown as shaded regions around the solid observation line. Axis units, colors, contours, and other plot parameters can be
modified by the user via the API. The data are values chosen for demonstration purposes.
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5.2.2. H2 Excitation Diagrams

From the observed, extinction-corrected intensity I of an H2

spectral line we can calculate the column density in the upper
state, Nu:

( )p=
D

N
I

A E
4 , 1u

where A is the Einstein A coefficient, and ΔE is the energy
difference between the upper and lower states of the transition.

More typically one is interested in the normalized upper-state
column density Nu/gu for each transition, where gu is the
statistical weight of the upper state.
An excitation diagram plots the upper-state energy of the

transition Eu/k on the x-axis versus ( )log N gu u on the y-axis.
The statistical weight gu= (2I+ 1)× (2J+ 1), where I is the
total nuclear spin and J is the rotational quantum number of the
upper level. Ortho hydrogen molecules have the spins of both
the nuclei in the same direction I= 1, and odd J; para
molecules have nuclei that spin in opposite directions I= 0,
and even J. In LTE at temperatures T 200 K, the ortho-to-
para ratio (OPR) of molecules is 3 to 1. In nonequilibrium
environments, the OPR can be less than 3, and the actual Nu/gu
will increase over its LTE value (see discussions in Burton
et al. 1992 and Sheffer et al. 2011). In such cases, on a
traditional plot that assumes OPR= 3, Nu for odd J will be too
low. This creates the so-called “zigzag” pattern in the excitation
diagram (Fuente et al. 1999; Neufeld et al. 1998; Sternberg &
Neufeld 1999).
Often, excitation diagrams show evidence of both “hot” and

“cold” gas components, where the “cold” gas dominates the
intensity in the low-J transitions and the “hot” gas dominates in
the high-J transitions, leading to a curved line in the diagram.
Given data over several transitions, one can fit for Tcold, Thot,
Ntotal=Ncold+Nhot, and OPR. The Tcold is usually a good
approximation for the gas kinetic temperature as the lower levels
are collisionally excited. The Thot is generally a result of UV
fluorescence to the excited levels. One needs at least five data
points to fit the temperatures and column densities (slope and
intercept× 2), though one could compute (not fit) them with only
four points. To additionally fit the OPR six data points are
required. The cold, hot, and total column densities are computed
using N0 determined from y-axis intercepts and the partition
function ( ) [ ( )]= - - -Z T T T0.0247 1 exp 6000 1 , where T
is one of Tcold or Thot (Herbst et al. 1996). As with the n and FFUV
fitting, the user can fit single pixels or full maps. For H2 map
inputs, PDRT will fit the excitation diagram at every pixel and
produce maps of Tcold, Thot, Ntotal, Ncold, Nhot, and OPR. The

Figure 5. Plots created in Listing A.2 using the LineRatioPlot.
overlay_all_ratios and LineRatioPlot.chisq methods. (top)
Observed ratios used in the fit overlaid on the model space; solid lines are
observed values, and shaded regions are 1σ errors. The intersection of the lines
indicates the region of the model space where the most likely density and
radiation field lie. (bottom) Contour plot of reduced chi-square from the fit. The
red cross indicates the minimum χ2 and best-fit density and radiation field. The
plot parameters are modifiable by the user via the API.

Figure 6. Corner plot showing the histogram probability density functions of
the density n and radiation field χ from the MCMC fit in Listing A.3. The blue
lines indicate the most probable values.
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method H2ExcitationFit.explore lets users interactively
probe the resultant maps and excitation fits.

Listing A.5 gives an example of fitting the excitation
conditions given observations of six H2 rotational lines. The
data are of NGC 2023 and taken from Figure 9 of Sheffer et al.
(2011), adding an artificial point for the J= 6 line to allow for
the fitting of the OPR. Figure 8 shows the result of the fit. We
find the same temperatures and OPR, within errors, as Sheffer
et al. (2011).

For both LineRatioFit and H2ExcitationFit, the
fit results are stored per pixel in an FitMap object, which is
derived from astropy.nddata.NDData. The FitMap
will contains lmfit.model.ModelResult objects for
H2ExcitationFit or lmfit.minimizer.Minimi-
zerResult objects LineRatioFit. The user can thus
examine in detail the fit at any pixel.

5.3. H II Region Diagnostics

Observations of fine-structure line ratios arising in ionized gas
can be used to estimate the electron density, ne, and gas
temperature, Te, in an H II region. In general, lines that arise from
different energies above ground give estimates of the gas
temperature, while lines that arise from similar levels above
ground but with different collision strengths give estimates of the
gas density. We focus on lines that are expected to be bright in
JWST observations of Galactic H II regions, namely, those arising
from Fe+, Ar+2, and Ar+4. In particular, Fe+ has great potential
for producing diagnostic line ratios due to the large number of
levels excited in an H II region, but with caveats as noted here.
Low-level Fe+ line emission is also produced in the neutral gas
within the PDR, and thus the same species could trace physical
conditions continuously from ionized to neutral gas.

We assume that the line emission is in the optically thin limit
so that the ratio of intensities is given by the ratio of the volume

emissivity. For Ar+2 and Ar+4 we use CHIANTI (Del Zanna
et al. 2021; Dere et al. 1997) using the default values for the A
values and collision strengths. For Fe+, we substituted the
default values in CHIANTI with A values from Deb & Hibbert
(2011) and collision strengths from Smyth et al. (2019). The
emissivity ratios are found in the temperature range from
Te= 103 K to 104 K, and the density ranges from ne=102 cm−3

to 106 cm−3. FITS files of the resulting values are constructed,
and phase-space plots and data overlays can then be made
using the tools discussed in Section 5.1. A sample figure is
shown in Figure 9. We note, however, that for [Fe II] fine-
structure lines the published A values and collision strengths
vary between different authors and in some cases do not agree

Figure 7. Maps of the hydrogen nucleus density n (cm−3; left) and radiation field G0 (Habing; right) in the SMC star-forming cloud N22 as determined by
LineRatioFit. The fit uses a ModelSet computed with the metallicity of the SMC (Z = 0.3). See Listing A.4.

Figure 8. Example of PDRT fitting of a molecular hydrogen rovibrational line
excitation diagram to determine the temperature and column density for both
hot and cold gas components, total column density N(H2), and OPR. Eu/k is the
upper-state energy of the transition, and Nu/gu is the normalized upper-state
column density. The blue dots are data from Sheffer et al. (2011), and the black
triangles are the data adjusted for the fitted OPR. See Listing A.5.
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with the observations (e.g., Koo et al. 2016), so the [Fe II] plots
must be considered tentative until the atomic data can be
further verified by observations, laboratory work, or quantum
calculations.

6. Future Development

Below we describe a few future enhancements to the PDR
model code, model data, and analysis tools that we intend to
undertake. This is not an exhaustive list; we encourage users to
submit other requests via GitHub. We also encourage
developers to pitch in!

6.1. Changes to the Wolfire–Kaufman Model Code

6.1.1. Additional Viewing Angles

The Wolfire–Kaufman PDR models are designed to predict
emission line intensities for a face-on geometry in which the
line of sight and direction of illumination are parallel.
However, there are many PDRs that are observed edge-on in
which the line of sight and direction of illumination are
perpendicular, and the layers of the PDR are spread across the
sky (e.g., Orion Bar). The line intensities are then a function of
the position. The peak line intensities and dust continuum can
either increase or decrease significantly, compared to face-on,
depending on the layer thickness along the line of sight. We
will add grids of edge-on models following the prescription
given in Pabst et al. (2017), which accounts for optical depth
effects in the lines. Using a similar technique we will also
provide emitted line intensities for a viewing angle of 45°.
Having the three cases, face-on, edge-on, and 45°, will help
users better understand the geometries of their sources and how
the viewing angle can affect the observed intensities.

6.1.2. Deuterium Chemistry

The lowest HD rotational line at 112 μm is much easier to
excite than H2 due to its 4 times lower energy above ground.
When combined with PDR models, HD provides a particularly
good measure of the warm molecular gas mass as well as the
D/H ratio, which is important for cosmological simulations. It
is also a prime target in protostellar disk observations. We will
add deuterium chemistry to the PDR model using a simple
network (Le Petit et al. 2002) with reaction rates updated, for
example, from the Kinetic Database for Astrochemistry10 and
collision rates updated from Wan et al. (2019). The output will

be the IR rotational and vibrational line emission as a function
of n and FFUV.

6.1.3. Improved Treatment of the Metallicities

A large database of PDR observations are available covering a
range of metallicities. For example, the Key Insights on Nearby
Galaxies: A Far-Infrared Survey with Herschel survey (Kennicutt
et al. 2011) mapped galaxies with a metallicity range of 0.04–5
relative to the solar metallicity while SOFIA and Herschel have
mapped regions in the LMC (0.5 solar; Chevance et al. 2016;
Lebouteiller et al. 2019; Lee et al. 2016, 2019; Okada et al. 2019)
and the SMC (0.2 solar; Jameson et al. 2018; Requena-Torres
et al. 2012). Although traditionally modelers have used the same
scaling for the dust (responsible for extinction and heating) and
metal (responsible for gas cooling) abundances, it is now known
that these scalings diverge for metallicity Z< 0.2 relative to the
local ISM (Remy-Ruyer et al. 2014). We will provide a series of
models that cover the metallicity range 0.03–5 while accounting
for the expected scaling in dust and metals.

6.2. Changes to the pdrtpy Code

6.2.1. Correction for the [O I] and [C II] Absorption

It has become increasingly apparent that the [O I] 63 μm, and
[C II] 158 μm lines can be self-absorbed, thereby affecting the
interpretation of the integrated line intensities (Bonne et al.
2022; Goldsmith et al. 2021; Graf et al. 2012; Guevara et al.
2020; Kabanovic et al. 2022). This is most often noticed by a
[O I] 145 μm/63 μm ratio greater than 0.1 or a central dip in
velocity-resolved profiles seen in one isotope but not another
(e.g., [12C II] versus [13C II]). Note that PDR models use an
escape probability formalism for the line transfer that accounts
for the absorption within the PDR but not for cold foreground
absorption. It is not known a priori what the correction for
absorption should be, and observers usually adopt a correction
factor of 2–3x increase in the observed [O I] line intensity so
that other line ratios are physically realistic (e.g., Goldsmith
et al. 2021; Schneider et al. 2018). We will assist users by
providing plots of appropriate correction factors to use for both
the [O I] 63 μm and [C II] 158 μm lines as functions of the
foreground gas temperature and column density and as
functions of the line center optical depth. We realize these
are not perfect solutions, but they do provide a better
understanding of the source environment and direct users to
physically motivated solutions.

6.2.2. Regularization for Image-based Fitting

When determining best-fit density and radiation field maps in
instances where the observations are few or are of low signal-
to-noise ratio, it is possible for a fitting algorithm to oscillate
between two nearly equally good solutions (Figure 10). The
best way to break this degeneracy would be to obtain additional
observations that further constrain the solution, but this is often
not practicable, so another method is needed.
When a fitted solution depends discontinuously upon the

initial data, as in our example, it is a symptom of an ill-posed
(or ill-conditioned) problem. A common method to resolve an
ill-posed problem is to employ a regularization technique
(Tikhonov & Arsenin 1977). Simply put, regularization means
replacing the problem with a different problem whose solution
roughly matches the desired solution (has low bias), is less

Figure 9. Example of PDRT diagnostic plot for electron density, ne, and gas
temperature, Te, from the [Fe II] line ratios [Fe II] 1.64 μm/[Fe II] 5.34 μm vs.
[Fe II] 1.60 μm/[Fe II] 1.64 μm. Squares are sample data points with error bars.
See Listing A.1.

10 https://kida.astrochem-tools.org
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sensitive to noise (has low variance), and has a parameter that
allows bias-variance tradeoff.

One way to do this is to add a “penalty” to the usual
minimization function M that can be used as an additional
constraint:
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where yi
obs is the set of observed data, yi

model is the model
calculation, v is the set of variables in the model to be
optimized in the fit, σi is the estimated uncertainty in the data,
and λ is the bias-variance tuning parameter.
Because observed maps are typically smooth over several

pixels (e.g., Figure 10(c)), a reasonable choice would be a
penalty function that enforces local smoothness. For instance,
an inverse-distance weighted sum of the spatial derivatives of
the observed maps could act as a penalty (“the solution cannot
be locally less smooth than the observations”). The choice of λ
is key and can vary with different sets of observations. Another
regularization technique is to characterize the spatial structure
of the observational and fitted solution maps with a wavelet
transform (Allys et al. 2019; Mallat 2012) and to favor
solutions that have the wavelet components found in the
observations. This method can be computationally quick and
has been successful in medical imaging (Guerquin-Kern et al.
2009).
We will explore different regularization methods, test them

against real and simulated data, and implement those that
perform well (e.g., low-to-modest computational cost, few
corner cases, robust to adding or subtracting data). We will
provide guidance to users on choosing λ as well as explore
ways to have PDRT choose it for them, for instance, by
examining the Akaike information criterion (Burnham &
Anderson 2003), which is already calculated for every pixel
by PDRT. The regularization enhancement will also apply to
the H2 excitation fitting tool in its map mode.

7. Summary

The PDR Toolbox is a mature, versatile package for analysis
of photodissociation regions with a wide range of physical
conditions. It is applicable to observations from many
telescopes from the infrared to the submillimeter regimes. It
can also be used to compare models from different PDR codes.

We are grateful for the support from the NASA Astrophysics
Data Analysis Program award #80NSSC19K0573, from the
SOFIA Legacy Program, FEEDBACK, provided by NASA
through award SOF070077 issued by USRA to the University
of Maryland, and from JWST-ERS program ID 1288 through a
grant from the Space Telescope Science Institute under NASA
contract NAS5-03127 to the University of Maryland. We are
grateful for helpful conversations with and manuscript com-
ments from the FEEDBACK and PDRs4All teams. Special
thanks to Maitraiyee Tiwari for significant beta-testing. We
thank Markus Röllig and Volker Ossenkopf-Okada for
providing the KOSMA-tau models. Support for the early
development of the PDRT CGI version came from NASA
Astrophysics Data Program and Applied Information Systems
Research Program grants. We thank the anonymous referee for
helpful comments.
Software: Astropy (Astropy Collaboration et al. 2013, 2018),

emcee (Foreman-Mackey et al. 2013), lmfit-py (Newville et al.
2021), matplotlib (Hunter 2007), numpy (van der Walt et al.
2011).

Figure 10. Example of when fitted solutions get into trouble. (a) Overlay
diagram in the model space (n, G0) of the ratios of three common observations:
[C II], [O I], and FIR intensity; the width of lines indicate observational
uncertainties. Potentially valid solutions appear at crossing points in two very
different locations of the model space. (b) Least-squares fitted density map of
NGC 1333 from observations. Mirroring the behavior of (a), adjacent pixels
can have very different derived densities, despite that the observations (c) are
smooth on a larger spatial scale.
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Appendix
Code Listings

A.1. Models, Modelsets, and ModelPlot

#############################################
### Listing A.1: models, ModelSet, and ModelPlot ###
#############################################

from pdrtpy.modelset import ModelSet
from pdrtpy.plot.modelplot import ModelPlot]
from pdrtpy.measurement import Measurement
import pdrtpy.pdrutils as utils
import astropy.units as u
from astropy.nddata import StdDevUncertainty
# Get the Wolfire-Kaufman 2020 Z = 1 models
ms = ModelSet(’wk2020’,z = 1)
# Get KOSMA-tau R = 3.1 model
mskt = ModelSet(’kt2013wd01-7’,z = 1,mass = 100,medium = ’clumpy’)
# Example of how to fetch a given model, the [OI] 63 micron/[CII] 158 micron intensity ratio.
# The returned model type is pdrtpy.measurement.Measurement.
model = ms.get_model(’OI_63/CII_158’)
modelkt = mskt.get_model(’OI_63/CII_158’)
# Find all the models that use some combination of CO(J = 1-0), [C II] 158 micron,
# [O I] 145 micron, and far-infrared intensity. This example gets both intensity
# and ratio models, though one can specify model_type = ’intensity’
# or model_type = ’ratio’ to get one or the other.
# The models are returned as a dictionary with the keys set to the model IDs.
mods = ms.get_models([’CII_158’,’OI_145’, ‘CO_10’, ‘FIR’],model_type = ’both’)
print(list(mods.keys()))
# Output of above: [’OI_145’, ’CII_158’, ’CO_10’, ’CII_158/OI_145’, ’CII_158/CO_10’,
# ’CII_158/FIR’, ’OI_145+CII_158/FIR’]
# Plot a selected model and save it to a PDF file. Note in this example,
# we request Habing units for the FUV field.
# WK
mp = ModelPlot(ms)
mp.plot(’OI_145+CII_158/FIR’,yaxis_unit = ’Habing’,

label = True, cmap = ’viridis’, colors = ‘k’,norm = ’log’)
mp.savefig(’example1a_figure.pdf’)
# KT
mpkt = ModelPlot(mskt)
mpkt.plot(’OI_145+CII_158/FIR’,yaxis_unit = ’Habing’,

label = True, cmap = ’viridis’, colors = ‘k’,norm = ’log’)
mpkt.savefig(’example1b_figure.pdf’)
rcw49 = []
label = ["shell","pillar","northern cloud","ridge"]
format_ = ["k+","b+","g+","r+"]
# The data files are in the testdata directory of the pdrtpy installation
for region in ["shell","pil","nc","ridge"]:

f1 = utils.get_ testdata(f"cii-fir-region.tab")
f2 = utils.get_ testdata(f"cii-co-region.tab")
rcw49.append(Measurement.from_table(f1))
rcw49.append(Measurement.from_table(f2))

mp.phasespace([’CII_158/FIR’,’CII_158/CO_32’],nax1_clip = [1E2,1E5]*u.Unit(’cm-3’),
nax2_clip = [1E1,1E6]*utils.habing_unit, measurements = rcw49,label = label,
fmt = format_,title = "RCW 49 Regions")

mp.savefig(’example1c_figure.pdf’)
# Example ionized gas line diagnostic diagram
i1 = Measurement(identifier = ’FEII_1.60/FEII_1.64’,

data = [0.1,0.05,0.2],
uncertainty = StdDevUncertainty([0.025,0.005,0.05]),unit="")

i2 = Measurement(identifier = ’FEII_1.64/FEII_5.34’,
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data = [0.3,0.1,1.0],
uncertainty = StdDevUncertainty([0.1,0.05,0.25]),unit = "")

mp.phasespace([’FEII_1.60/FEII_1.64’,’FEII_1.64/FEII_5.34’],
nax2_clip = [10,1E6]*u.Unit(’cm-3’),nax1_clip=[1E3,8E3]*u.Unit(’K’),
measurements = [i1,i2],errorbar = True)

mp.savefig(’example1d_figure.pdf’)

A.2. Fitting Intensity Ratios for Single-pixel Observations

#############################################
### Listing A.2: Fitting intensity ratios for single-pixel observations ###
#############################################

from pdrtpy.measurement import Measurement
from pdrtpy.modelset import ModelSet
from pdrtpy.tool.lineratiofit import LineRatioFit
from pdrtpy.plot.lineratioplot import LineRatioPlot
import pdrtpy.pdrutils as utils
from astropy.nddata import StdDevUncertainty
from lmfit import fit_report
# Example using single-beam observations of [OI] 163 micron, [CI] 609 micron, CO(J = 4-3),
# and [CII] 158 micron lines. You create ‘Measurements‘ for these using the constructor
# which takes the value, error, line identifier string, and units. The value and the error
# must be in the same units. You can mix units in different Measurements; note we use
# K km/s for the CO observation below. The PDR Toolbox will convert all ‘Measurements‘
# to a common unit before using them in a fit. You can also add optional beam size
# (bmaj,bmin,bpa), however the tools requires all ‘Measurements‘ have the same beam size
# before calculations can be performed. (If you don’t provide beam parameters for any of
# your Measurements, the Toolbox will assume they are all the same).
myunit = ’erg s-1 cm-2 sr-1’ # default unit for value and error
m1 = Measurement(data = 3.6E-4,uncertainty = StdDevUncertainty(1.2E-4),

identifier = ’OI_63’,unit = myunit)
m2 = Measurement(data = 1E-6,uncertainty = StdDevUncertainty([3E-7]),

identifier = ’CI_609’,unit = myunit)
m3 = Measurement(data = 26,uncertainty = StdDevUncertainty([5]),

identifier = ’CO_43’,restfreq = ’461.04077 GHz’, unit = ’K km/s’)
m4 = Measurement(data = 8E-5,uncertainty = StdDevUncertainty([8E-6]),

identifier = ’CII_158’,unit = myunit)
observations = [m1,m2,m3,m4]
ms = ModelSet(’wk2020’,z = 1)
# Instantiate the LineRatioFit tool giving it the ModelSet and Measurements
p = LineRatioFit(ms,measurements = observations)
p.run()
# Print the fitted quantities using Python f-strings and the fit report via lmfit
print(f"n = p.density:.2e\nX = utils.to(’Draine’,p.radiation_field):.2e")
print(fit_report(p.fit_result[0]))
# Create the plotting tool for the LineRatioPlot,
# then make plots of the observed ratios overlayed on the model ratios
plot = LineRatioPlot(p)
plot.ratios_on_models(yaxis_unit = ’Draine’,colorbar = True,norm = ’log’,
cmap = ’cividis’,label = True,ncols = 3,figsize = (23,7))
plot.savefig(’example2_figure.pdf’)
plot.overlay_all_ratios(yaxis_unit = ’Draine’,figsize = (6,7))
plot.savefig(’example3_figure.pdf’)
# Plot the reduced chisquare, with only contours and legend
plot.chisq(image = False,colors = ’k’,label = True,legend = True,yaxis_unit = ’Draine’,
figsize = (6,7))
plot.savefig(’example4_figure.pdf’)

12

The Astronomical Journal, 165:25 (15pp), 2023 January Pound & Wolfire



A.3. Fitting Intensity Ratios for Single-pixel Observations with MCMC

###############################################
### Listing A.3: Fitting intensity ratios for single-pixel observations with MCMC ###
###############################################

from pdrtpy.measurement import Measurement
from pdrtpy.modelset import ModelSet
from pdrtpy.tool.lineratiofit import LineRatioFit
from pdrtpy.plot.lineratioplot import LineRatioPlot
import pdrtpy.pdrutils as utils
from astropy.nddata import StdDevUncertainty
from copy import deepcopy
import corner
import numpy as np
myunit = ’erg s-1 cm-2 sr-1’ # default unit for value and error
m1 = Measurement(data = 3.6E-4,uncertainty = StdDevUncertainty(1.2E-4),

identifier = "OI_63",unit = myunit)
m2 = Measurement(data = 1E-6,uncertainty = StdDevUncertainty([3E-7]),

identifier = "CI_609",unit = myunit)
m3 = Measurement(data = 26,uncertainty = StdDevUncertainty([5]),

identifier = "CO_43",restfreq = "461.04077 GHz", unit = "K km/s")
m4 = Measurement(data = 8E-5,uncertainty = StdDevUncertainty([8E-6]),

identifier = "CII_158",unit = myunit)
observations = [m1,m2,m3,m4]
ms = ModelSet(’wk2020’,z = 1)
# Instantiate the LineRatioFit tool giving it the ModelSet and Measurements
p = LineRatioFit(ms,measurements = observations)
p.run(method = ’emcee’,steps = 2000)
res = p.fit_result[0]
# the value of the Draine unit in cgs
scale = utils.draine_unit.cgs.scale
# copy the results table
rescopy = deepcopy(res.flatchain)
# scale the radiation _ field column of the table to Draine since it is in cgs
rescopy[’radiation_ field’] / = scale
# now copy and scale the ‘best fit’’ values where the cross hairs are plotted.
truths = np.array(list(res.params.valuesdict().values()))
truths[1] / = scale
fig = corner.corner(rescopy, bins = 20,range = [(1E4,1.2E5), (10,500)],

labels = [r’$n~{\rm [cm^{-3}]}$’,r’$\chi~{\rm [Draine]}$’]],
truths = truths)

fig.savefig(’example5_figure.pdf’,facecolor = ’white’,transparent = False)

A.4. Fitting Intensity Ratios for Map Observations

#####################################
### Listing A.4: Fitting intensity ratios for map observations ###
#####################################

from pdrtpy.measurement import Measurement
from pdrtpy.modelset import ModelSet
from pdrtpy.tool.lineratiofit import LineRatioFit
from pdrtpy.plot.lineratioplot import LineRatioPlot
import pdrtpy.pdrutils as utils
# Get the input filenames of the FITS files in the testdata directory
# utils.get_testdata() is a special method to locate files there.
# These are maps from Jameson et al. 2018.
print(’Test FITS files are in: %s’%utils.testdata_dir())
cii_flux = utils.get_testdata(’n22_ cii_flux.fits’) # [C II] flux
cii_err = utils.get_testdata(’n22_ cii_error.fits’) # [C II] error
oi_flux = utils.get_testdata(’n22_oi_flux.fits’) # [O I] flux
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oi_err = utils.get_testdata(’n22_oi_error.fits’) # [O I] error
FIR_flux = utils.get_testdata(’n22_FIR.fits’) # FIR flux
# Output file names
cii_combined = ’n22_ cii_flux_error.fits’
oi_combined = ’n22_oi_flux_error.fits’
FIR_combined = ’n22_FIR_flux_error.fits’
# create the Measurements and write them out as FITS files with two HDUs.
Measurement.make_ measurement(cii_flux, cii_err,

outfile = cii_combined, overwrite = True)
Measurement.make_measurement(oi_flux, oi_err,

outfile = oi_combined, overwrite = True)
# Assign a 10% error in FIR flux
Measurement.make_measurement(FIR_flux, error = ’10%’,

outfile = FIR_combined, overwrite = True)
# Read back in the FITS files to Measurements
cii_meas = Measurement.read(cii_combined, identifier = "CII_158")
FIR_meas = Measurement.read(FIR_combined, identifier = "FIR")
oi_meas = Measurement.read(oi_combined, identifier = "OI_63")
# Here we will use the Small Magellanic Cloud ModelSet that have Z = 0.1
# These are a limited set of models with just a few lines covered.
smc_ms = ModelSet(’smc’,z = 0.1)
p = LineRatioFit(modelset = smc_ms, measurements = [cii_meas,FIR_meas,oi_meas])
p.run()
plot = LineRatioPlot(p)
plot.density(contours = True,norm = "log",cmap = ’cividis’)
plot.savefig(’example6_n_figure.pdf’)
plot.radiation_field(units = ’Habing’,contours = True,norm = ’simple’,cmap = ’cividis’)
plot.savefig(’example6_g0_figure.pdf’)
# Save the results to FITS files.
p.density.write(’N22_density_map.fits’,overwrite = True)
p.radiation_field.write(’N22_G0_map.fits’,overwrite = True)

A.5. Creating and Fitting H2 Excitation Diagrams, Including Ortho-to-para Ratio (OPR)

#########################################################
### Listing A.5: Creating and fitting H2 excitation diagrams including ortho-to-para ratio (OPR) ###
#########################################################

from pdrtpy.measurement import Measurement
from pdrtpy.tool.h2excitation import H2ExcitationFit
from pdrtpy.plot.excitationplot import ExcitationPlot
from astropy.nddata import StdDevUncertainty
intensity = dict()
intensity[’H200S0’] = 3.003e-05
intensity[’H200S1’] = 3.143e-04
intensity[’H200S2’] = 3.706e-04
intensity[’H200S3’] = 1.060e-03
intensity[’H200S4’] = 5.282e-04
intensity[’H200S5’] = 5.795e-04
observations = []
for i in intensity:
m = Measurement(data = intensity[i],
uncertainty = StdDevUncertainty(0.75*intensity[i]),
identifier = i,unit = "erg cm-2 s-1 sr-1")
observations.append(m)
# Create the tool to run the fit
hopr = H2ExcitationFit(observations)
# Instantiate the plotter
hplot = ExcitationPlot(hopr,"H2")
# Set some plot parameters appropriate for manuscript figure;
# these pass through to matplotlib
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hplot._plt.rcParams["xtick.major.size"] = 7
hplot._plt.rcParams["xtick.minor.size"] = 4
hplot._plt.rcParams["ytick.major.size"] = 7
hplot._plt.rcParams["ytick.minor.size"] = 4
hplot._plt.rcParams[’font.size’] = 14
hplot._plt.rcParams[’axes.linewidth] = 1.5
hplot.ex_diagram(ymax = 21)
hplot.savefig(’example9_figure.png’,dpi = 300)
# Fit a two temperature model allowing OPR to vary
hopr.run(fit_opr = True)
hplot.ex_diagram(show_fit = True,ymax = 21)
hplot.savefig(’example10_figure.png’,dpi = 300)
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