

ABSTRACT

Title of thesis: IMPACT OF HARDWARE OBSOLESCENCE ON

SYSTEM SOFTWARE FOR SUSTAINMENT-
DOMINATED ELECTRONIC SYSTEMS

Degree Candidate: Arindam Goswami

Degree and Year: Master of Science, 2004

Thesis directed by: Associate Professor Peter A. Sandborn

The last two decades have witnessed manufacturers of sustainment-

dominated long field life electronic systems incorporate Commercial Off the Shelf

(COTS) technology products into their systems on a large scale. Many of these

products, however, have lifetimes of significantly shorter duration than the

systems they are incorporated into and as a result become obsolete long before the

system’s intended duration of useful life is over.

This problem is especially prevalent in avionics and military systems,

where systems may encounter obsolescence problems even before they are fielded

and always during their support life. Manufacturing that takes place over long

periods of time exacerbates this problem.

Many part obsolescence mitigation strategies exist including: lifetime buy,

last-time buy, part replacement, aftermarket source, uprating, emulation, re-

engineering, salvage, and ultimately redesign of the system. Design refresh (or

redesign) has the advantage of treating multiple existing and anticipated

obsolescence problems concurrently and additionally allows for functional

upgrades.

Hitherto, there have been studies concentrated on determining the

optimum combination of different obsolescence strategies by using life cycle cost

as the deciding criterion. However, these studies take into account only hardware

life cycle costs. In many systems, such as avionics systems, software life cycle

costs (redesign, rehosting and requalification) have a significant bearing on total

life cycle cost. Thus software redesign due to part obsolescence triggered

hardware redesign should also be addressed during life cycle management

planning.

This thesis describes a methodology and it’s implementation for

determining the hardware part obsolescence impact on life cycle sustainment

costs for system software based on future production projections, maintenance

requirements and part obsolescence forecasts. The methodology extends the

MOCA (Mitigation of Obsolescence Cost Analysis) methodology/tool that

determines the optimum design refresh plan during the field-support-life of the

product in order to minimize life cycle cost. The design refresh plan consists of a

set of design refresh activities and their respective calendar dates.

The methodology incorporates the use of two software commercial cost analysis

models: PRICE S and COCOMO.

The methodology developed in this thesis has been validated using a Navy

test case (VH-60N Digital Cockpit Upgrade Program). It has also been applied to

Honeywell International, Inc.’s AS900 engine controller. The results obtained

demonstrate the necessity of taking software redesign analysis into account during

life cycle management planning.

IMPACT OF HARDWARE OBSOLESCENCE ON SYSTEM SOFTWARE FOR

SUSTAINMENT-DOMINATED ELECTRONIC SYSTEMS

by

Arindam Goswami

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
 Master of Science

 2004

Advisory Committee:

Associate Professor Peter A. Sandborn, Chair
Professor Donald B. Barker
Associate Professor Omar Ramahi

© Copyright by

Arindam Goswami

2004

ACKNOWLEDGEMENTS

 I would like to express my gratitude to all those who have helped me along the

way to the point that I find myself at as I write this thesis. For starters, I wish to thank my

advisor, Dr. Peter Sandborn, for his guidance and support and a million other things that

have not only helped me during my research but will also stand me in good stead all my

life. As it is with pretty much every student in the Sandborn group, to him I owe a lot. I

am also grateful to the members of my dissertation committee: Dr. Donald Barker for

being very patient and accommodating as I wrote my thesis and postponed my defense

more than once and Dr. Omar Ramahi for having agreed to be on my committee at such

short notice.

 Thanks are due to all my lab mates and friends (together this list is big enough for

me to not take individual names – but you all know who you are), past & present, for all

their support.

 Finally, I would like to thank my family for their love and support. I can never put

into words all the gratitude that I feel – so, I shall not even try.

 ii

TABLE OF CONTENTS

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

Chapter 1 - Introduction ... 1

1.1 The Use of Commercial Off the Shelf (COTS) Technology in Avionic Systems 1

1.2 The Problem of Component Obsolescence ... 5

1.3 Motivation For Tackling Part Obsolescence in a Proactive Manner 7

1.3.1 Short-Term Obsolescence Mitigation .. 8

1.3.2 Long-Term Obsolescence Mitigation... 8

1.4 The Impact Of Part Obsolescence On System Software... 9

1.5 The Objective of this Thesis.. 11

Chapter 2 - Solution Architectures .. 13

2.1 Hardware Obsolescence Precipitated Change in System Software 13

 2.2 Software Design Refresh by Quantifying Change in the Number of Source

Lines of Code (SLOC) Due to a Hardware Part Obsolescence Event 14

2.3 Software Design Refresh by Fault Tree Based Analysis of Functional Blocks...... 22

2.4 Remarks... 28

 iii

Chapter 3 - Software Redesign Analysis Applied to Design Refresh Planning 30

3.1 Introduction ... 30

3.2 Overall MOCA Methodology And The Incorporation Of Software Redesign

Analysis.. 30

3.2.1 The Problem Addressed by MOCA ... 32

 3.2.2 MOCA Analysis Algorithm... 33

3.3 MOCA Interfaces For Collecting Inputs Pertinent To Software Redesign

Analysis ... 40

3.3.1 Board-Specific Parts List ... 41

3.3.2 Functional Blocks Data .. 43

3.3.3 PRICE S/COCOMO Data .. 45

3.4 Cost Analysis Models.. 47

3.4.1 PRICE S ... 47

3.4.2 COCOMO .. 50

3.5 Remarks... 57

Chapter 4 - Results.. 59

4.1 Introduction ... 59

4.2 Application of the Methodology to the AS900’s FADEC System 59

4.2.1 Part Obsolescence impact on life cycle cost (Software and Hardware) of the

 AS900 system .. 61

 iv

4.2.2 Part Obsolescence impact on life cycle cost of AS900 system software

alone .. 62

4.2.3 Impact of “Design refresh look-ahead time” .. 64

4.3 Validation Of the “Software Design Refresh” Analysis Methodology 67

4.3.1 Implementation of the methodology ... 67

4.3.2 Validation ... 71

4.4 Remarks... 73

Chapter 5 - Conclusions and Future Work ... 74

 5.1 Summary .. 74

 5.2 Contributions.. 74

5.3 Future Work ... 75

5.3.1 Spare Replenishment.. 75

5.3.2 Software Design Refresh by Fault Tree Based Analysis of Functional

Blocks ... 77

5.3.3 Improving Efficiency ... 77

Appendix A: Function/Feature Point Counting .. 78

A.1 Overview ... 78

A.1.1 Introduction to Function/Feature Point Counting and the factors used in

these techniques .. 78

A.1.2 Definitions ... 82

A.1.3 Counting Function Points and Sizing System Software.................................. 85

 v

Appendix B: MOCA / PRICE S Inputs Pertinent to Software Redesign Analysis 91

REFERENCES ... 100

 vi

LIST OF TABLES

Table 2.1: Enumeration of steps common to the two approaches for software design

refresh explained in Sections 2.1 and 2.2 ... 25

Table 2.2: Tabular representation of dependency of functional blocks on one another 26

Table 3.1: Enumeration of possible design refresh schedules for the case depicted in

Figure 3.2... 37

Table 3.2: Effort Adjustment Factors ... 57

Table 4.1: SLOC and APPL values for the functional blocks in the test case........................ 70

Table 4.2: Actual cost incurred by the Navy (Data provided by PRICE systems) 72

 vii

LIST OF FIGURES

 Figure 1.1 Industry wise usage of electronic components in 1999 [Condra, 1999] 2

Figure 1.2 Shrinking trend in component technology life cycles [Condra, 1999].................... 3

Figure 1.3: Technology element lifetimes compared to product lifetimes for airplanes and

computers [Condra, 1997] .. 5

Figure 1.4: The link between functional description and hardware and software

components of the system.. 10

Figure 2.1: Software design refresh by quantifying change in the number of source lines

of code (SLOC) due to hardware part obsolescence event. 14

Figure 2.2: Fault tree for a hypothetical system ... 23

Figure 2.3: Software design refresh by Fault tree based analysis of functional blocks. 24

Figure 3.1: MOCA system timeline.. 35

Figure 3.2: Associating design refreshes with reorders [Singh, 2001] 36

Figure 3.3: The MOCA tool.. 41

Figure 3.4: An example of a comma-delimited file for loading a board specific parts list

into MOCA .. 43

Figure 3.5: MOCA interface for loading a board-specific part list .. 43

Figure 3.6: Interface for collecting Functional Blocks inputs .. 44

Figure 3.7: Inputs required for function point counting ... 44

Figure 3.8: PRICE S EBS ... 45

Figure 3.9: PRICE S Interface for collecting the main inputs .. 46

Figure 3.10: MOCA Interface for collecting COCOMO inputs ... 46

Figure 4.1 Boards Dialog box... 59

 viii

Figure 4.2: Functional Blocks Dialog box.. 60

Figure 4.3: Production schedule for the AS900 system.. 60

Figure 4.4: Life cycle cost accrued due to impact of part obsolescence on system

hardware alone ... 62

Figure 4.5: Life cycle cost accrued due to impact of part obsolescence on both system

software and system hardware ... 62

Figure 4.6: Life cycle cost accrued due to impact of part obsolescence on system

software alone.. 63

Figure 4.7: Life cycle cost accrued due to “impact of part obsolescence on system

software” and “software maintenance”.. 64

Figure 4.8: Look-ahead time of 3 years .. 66

Figure 4.9: Look-ahead time of 5 years .. 66

Figure 4.10: Look-ahead time of 10 years .. 66

Figure 4.11: PRICE S Work Breakdown Structure for the test case 71

Figure 4.12: Software redesign cost incurred due to hardware upgrade of test case.............. 72

Figure 5.1: Model for spare replenishment... 75

 ix

Chapter 1 - Introduction

1.1 The Use of Commercial Off the Shelf (COTS) Technology in Avionic Systems

Electronic components are ubiquitous in airplane systems: they are found in

almost every system, including those that are primarily mechanical, hydraulic, and

pneumatic. The solid-state electronics industry has grown in parallel with the airplane

industry. Until the mid nineteen eighties, commercial aerospace manufacturers depended

on a well-developed military electronic components and specifications infrastructure to

assure long-term availability of components that met their needs. This was possible

because the military market sector alone comprised about 25% of the total market for

electronic components [Condra, 1999]; it was responsible for a good deal of the device

innovation, and therefore owned many device designs. As a result, military and

commercial aerospace electronic design, manufacturing, procurement, operation,

maintenance, and support decisions had traditionally been based on two assumptions:

1. The supply of electronic components specified to operate in aerospace

environments is unlimited; and

2. Component designs will remain stable for long periods of time.

However, these assumptions are no longer true, especially sine 1992, when many major

manufacturers of electronic components, including Motorola, Intel, and Philips, exited

the military market [Wright et. al., 1997]. As shown in Figure 1.1, the entire aerospace

industry now consumes less than one per cent of the electronic components produced.

The major component markets are computers, consumer electronics, and others, which do

 1

not have the demanding environmental or long production life cycle requirements of

aerospace products.

0

10

20

30

40

50

60

Auto
moti

ve

Com
pu

ter
s

Ind
us

tria
l

Con
su

mer

Te
lec

om

Aero
sp

ac
e

Industry

M
ar

ke
t S

ha
re

 (%
)

 Figure 1.1: Industry wise usage of electronic components in 1999 [Condra, 1999]

As a result of these trends, the availability of components actually specified for

aerospace applications is decreasing. The response of the aerospace industry has been to

 2

incorporate, on a large scale, commercial off the shelf (COTS) technology in its systems.

COTS refers to commercially available products that can be purchased and integrated

into existing systems with little or no customization and thereby lead to cost savings as

compared to designing new parts every time.

Especially in the case of military applications, the focus on commercial support of

aviation systems is driven by the modernization needs faced by all the branches of the

military at a time when resources for acquisition of new defense systems are increasingly

constrained. The procurement lull in new system acquisition, and the increasing reliance

on aging platforms far past their original planned life cycle, is expanding the need for a

concerted effort to upgrade and maintain existing systems. Innovative approaches for the

support of existing systems can be used to produce life cycle savings, reduce cycle times

and improve performance [JACG, 1999].

Figure 1.2: Shrinking trend in component technology life cycles [Condra, 1999]
3

However, there are many challenges associated with doing so. Figure 1.2 shows

that the life cycles of all integrated circuit technologies are shrinking, almost to the point

where the term component technology life cycle is meaningless [Baca, 1997]. Even stable

component designs are modified constantly to reduce cost, improve yields, and enhance

performance. The modifications are evaluated and characterized for high volume

applications, such as computers, but the applications of low volume users such as

aerospace are rarely considered. The lifetime of a typical jet airplane will encompass

many generations of electronic component design, as illustrated in Figure 1.3. For

example, the F/A-22, which entered dedicated initial operational test and evaluation

(DIOT&E) in 2003, was already suffering due to this life cycle mismatch, with

technology refreshment required before the aircraft has even reached operational service

[MAT, 2003].

Thus we are confronted with a situation in which the aerospace industry depends on

electronic components, but can no longer count on sources of stable supply that are

specified for its specific applications. The aerospace industry must learn how to use

components conceived and produced for other industries (these components having a

much shorter life cycle than the system they go into) while keeping total life cycle costs

at an acceptable level. This mismatch becomes especially critical because over their

extended lifetime these systems are faced with the following situations [Singh, 2001]:

a) Field failures - Defects in the system may cause it to fail before its field life is

completed necessitating the manufacturing of additional spare units.

b) Design changes - Additional requirements may be added after the design stage is

completed.

 4

c) Production spread out over the lifetime of the product - Production may be

distributed over time either in a planned fashion or as the result of additional

orders for the product.

1.2 T

activiti

apprecia

0

Design
Production
Service

10 20 30 40

Design

Service
Production

System architecture

Mfg. processes
Software

Piece parts

Airplanes:

Computers:

Technology element:

Production

Piece parts

0

Design
Production
Service

10 20 30 40

Design

Service
Production

System architecture

Mfg. processes
Software

Piece parts

Airplanes:

Computers:

Technology element:

Production

Piece parts

T

e

occurren

obsolesc

impact o

into them

Figure 1.3: Technology element lifetimes compared to product lifetimes for airplanes
and computers [Condra, 1997]
he Problem of Component Obsolescence

hanging scenario by implementing

nent

o

y

te these activities.

he aerospace industry has responded to the c

s that can be broadly grouped into three categories: (1) How to anticipate

ces of component obsolescence; (2) How to react to occurrences of compo

ence; and (3) How to quantitatively estimate, during the design process, the

f the life cycle mismatch between avionic systems and the components that g

. It is important to understand the problem of part obsolescence in order to full

5

A part is obsolete when the technology that defines the part is no longer

implemented. Diode Transistor Logic (DTL) and Resistor Transistor Logic (RTL) parts

are exa

rers.

 better opportunities in the market for other products

ler volume specialized products (if the

• s

e using.

There m

the market e technology push (i.e., development

gy trends (for example, Moore’s law), taking into account technology

roadma ing

mples of obsolete part technologies. There are many reasons why parts go

obsolete, including [Singh, 2001]

• Manufacturing of the part is not cost effective for the current manufactu

• The manufacturers have

and therefore their interests migrate.

• The market is governed by products with large-scale production and therefore

manufacturers refuse to produce smal

requirement for the obsolete part(s) is relatively small).

The raw material or equipment needed for the manufacturing of obsolete part

is hard to maintain or procure.

• Changes in legislation make the materials or processes associated with a part

impractical or illegal to continu

ay be more specific reasons why parts go obsolete depending upon the part and

conditions, however in most cases it is th

and introduction of a new technology) and the manufacturer’s interests, which lead to

part obsolescence.

An appreciation of these driving factors along with an understanding of

component technolo

ps and building flexibility into the original design (for example, partition

designs to place high-risk components on throwaway modules) will enable system

designers to be better prepared to tackle the problem of component obsolescence.

 6

1.3 Motivation For Tackling Part Obsolescence in a Proactive Manner

Component obsolescence entails issues that have a direct and significant impact

next section). Consider, for example [Singh, 2001], that a manufacturer, which

manufactures a long field life system, has a need to manufacture additional systems.

Assume in this case that some of the parts required to manufacture the system are

obsolete. The manufacturer would try to procure those obsolete parts from external

vendors, who purchased and stored obsolete parts for later sale. These vendors inflate the

price of the obsolete parts they have been storing and therefore these obsolete parts are

then procurable at some cost penalty to the manufacturer. The manufacturer has little

choice but to incur the cost increase. Now the manufacturer has two options for handling

the increased cost. One option (not possible in many cases because of contractual

obligations) is to carry over the extra cost of the obsolete parts to the buyer (customer).

The second option (most likely the real world scenario) is that the manufacturer bears the

extra expenses of the obsolete part itself. This extra cost increases the life cycle cost to

the manufacturer. It can be clearly understood that for aircraft with 30-plus year

production lives, unforeseen part obsolescence costs can mount significantly if one

depends on reactive solutions. On the one hand is the option of facing up to the

obsolescence problem in a purely “reactive manner”. This entails performing

obsolescence management only when intimation about an obsolescence event is received

- no planning is done at an earlier stage to mitigate the obsolescence of parts. When a

notice indicating that a part is going to become obsolete in the near future is received

from the part manufacturer, various obsolescence management strategies are evaluated

on the total life cycle cost. It influences both hardware and software (as discussed in the

 7

and the most economically feasible option is chosen. However, the costs incurred on

account of such unplanned activities can be quite large. It is much more prudent to be

pro-active and take cognizance of the problem beforehand and consider all possible

combinations of different obsolescence mitigation strategies which can minimize

sustainment costs. As can be seen from the above example, the manufacturer will be

motivated to explore different obsolescence mitigation approaches in order to min

the total costs incurred by him. These mitigation approaches, e.g., short-term approac

(for example, last-time buy) or long-term approaches (for example storing the obsolete

part for the lifetime of the system or eliminating the need for that part completely by

redesigning it) then need to be ranked against each other so that the most cost effective

mitigation or combination of various mitigation strategies can be adopted. Two broad

categories of these strategies are discussed below.

1.3.1 Short-Term Obsolescence Mitigation

Short-term obsolescence mitigation involve

imize

hes

s taking necessary steps to delay the

o ment costs until more rigorous measures

can be l

 of

 as measures taken to either

ermanently or to sustain the supply of the

obsolet art

effect f part obsolescence on product sustain

taken to remove the part obsolescence problem, e.g., buy enough parts to last unti

the part is either replaced by a similar part or the product is redesigned to eliminate use

the part. This strategy is termed as “last-time buy”.

1.3.2 Long-Term Obsolescence Mitigation

Long-term obsolescence mitigation is defined

eliminate the obsolete part from the product p

e part throughout its lifetime by storing it. The elimination of the obsolete p

may involve complete removal of the obsolete parts from the product by redesigning the

 8

product, replacement of obsolete parts with a suitable equivalent substitute part,

replacement the obsolete parts with an emulated version of the part, or thermal uprating

of a non-obsolete commercial version of the part [Wright, 1997].

Several combinations of different obsolescence mitigation strategies can be

adopted at different “time-points” during the lifetime of a system. A tool called MOCA

(discus

1.4 The Impact Of Part Obsolescence On System Software

Total life cycle cost, generated using life cycle cost analysis (LCCA), is used as a

on it. Life cycle cost

is defin

el,

le

em

sed in Chapter 3) has been developed at the University of Maryland, which

through a detailed cost analysis determines the best possible combination vis-à-vis total

life cycle cost.

metric to quantify the impact of various factors that have a bearing

ed as the sum of present values of investment costs, capital costs, installation

costs, energy costs, operating costs, maintenance costs, and disposal costs over the

lifetime of the project, product, or measure [McArthur, 1989]. LCCA is particularly

suited to the evaluation of design alternatives that satisfy a required performance lev

but that may have differing investment, operating, maintenance, or repair costs; and

possibly different life spans. LCCA can be applied to any capital investment decision,

and is particularly relevant when high initial costs are traded for reduced future cost

obligations. The MOCA tool allows its users to choose a combination of several possib

obsolescence mitigation approaches and then based on the production plan, other syst

characteristics and system qualification costs carries out a cost analysis - the final output

of which is a design refresh plan that defines the best “time-points” in the life of a system

at which to carry out design refreshes. A design refresh in the context of MOCA and also

 9

this thesis is defined, [Singh, 2001], as an activity that involves bringing about changes in

the design of a system to incorporate one or more of the following:

a) New or improved functionality

b) Removal of part obsolescence and other related issues

c) Aesthetic improvement of product

em

able and repairable

rawings

ng due the impact of a design

refresh ardware and software components

togethe

t in the introduction of new hardware components or redesign of existing ones. A

need to tem

d) Ease of use or more user-friendly

e) Reliability improvement of the syst

f) To make the system more maintain

g) Change in documentation/engineering d

h) Incorporate new technology/innovations

Hitherto, MOCA did not take into account costs arisi

 activity on the system software. A system’s h

r enable an implementation of its functionality. One or more of the interlinked

hardware components execute the functional subtasks - the logic of this execution being

determined by the software components. Therefore, there is a link between these

components and the functional description of the system. This link is depicted in Figure

1.4.

A design refresh event, as defined above, during the lifetime of a system may

resul

 modify the system software arises as a result of that. This modification of sys

software can entail high costs. These costs are due not only to modification of existing

code but also development of new code and software re-qualification. Therefore, there is

a need to associate these changes in hardware with the changes in software precipitated

 10

by them in order to quantify the impact of the latter on life cycle cost. The MOCA tool

represents an effort to address the problem of hardware obsolescence. The work

embodied in this thesis aims at extending this effort to quantifying the impact of softwar

change precipitated by a change in hardware incorporate the resulting analysis int

MOCA.

e

o

1.5 The

The

sh

accord

refre pla

ing t

this life cyc

might need

addressed h

obsolescen

Figure 1.4: The link between functional description and hardware and software
components of the system [Szabó, 2000]
 Objective of this Thesis

 starting point for the work done in this thesis is the set of different design

CA ranks these different design refresh plans

e,

that

ns generated by MOCA. MO

o the total life cycle cost that each one entails. However, as mentioned abov

le cost did not include the cost accrued on account of the system software

 to be changed during a design refresh activity. This problem has been

ere. The objective of this thesis was to determine the impact of part

ce on system software for long field life electronic systems based on the

11

agoswami
a move from a proprietary system such as Altos or Honeywell Ultimate to an Open System Architecture such as WinNT

agoswami
for instance, Assembler code to C

production plan, maintenance requirements and part obsolescence predictions. T

impact was to be quantified in terms of acquisition, modification and support costs.

These costs were then added to the costs associated with design refresh and re-

qualification to obtain a net cost. This net cost was to be used by MOCA in its existin

cost analysis algorithms to schedule design refreshes during the life of the prod

field. The design refresh plan was to provide the number of design refresh activities and

their respective calendar dates to minimize the life cycle sustainment cost of the product.

The approach to associating system software changes to the hardware

obsolescence events, which precipitate them, is discussed in detail in Chapter 2. Chapter

his

g

uct in the

2 also d mented in

ared

ocuments the degree to which the steps in the solution have been imple

this work. The MOCA tool is discussed in Chapter 3. The various interfaces are

explained. The cost model used is discussed in detail therein. Chapter 4 contains a case

study. The output from the analysis performed on the case study example is comp

with some real world data. The refined insights into the problem at hand yielded by this

comparison are discussed. Chapter 5 contains a discussion of the contributions made by

this thesis, the existing shortcomings in the present model and the future work that needs

to be done.

 12

Chapter 2– Solution Architectures

2.1 Hardware Obsolescence Precipitated Change in System Software

As discussed in Chapter 1, cost analysis and careful planning in the initial stages

of system design can help mitigate component obsolescence related costs in long field

life systems. The studies carried out in the University of Maryland have hitherto

concentrated on hardware costs alone that arise from component obsolescence. However,

for many sophisticated systems, functionality is software driven. Therefore, there is a link

between the system software, which “thinks” and the system hardware which “acts”. At a

hardware component obsolescence event, the linkage between hardware and software

may result in a need to change portions of the system software. Software changes can be

categorized into three types [Wong, 1996]:

a) Adaptive changes,

b) Perfective changes, and

c) Corrective changes.

Adaptive changes accommodate technological improvements/changes. Perfective

changes seek to make future evolution somehow better, more manageable and less costly.

Corrective changes focus on detecting, tracking, and diagnosing defects and their root

causes. The effective management and execution of these changes is critical and defines a

significant portion of the system’s life cycle cost. The software changes being dealt with

in this thesis are primarily of the “adaptive” type. At a hardware obsolescence event the

impact of this change has to be quantified and factored into the existing cost analysis.

Two approaches for doing so will be discussed in this chapter (Sections 2.2 and 2.3).

 13

2.2 Software Design Refresh by Quantifying Change in the Number of Source

Lines of Code (SLOC) Due to a Hardware Part Obsolescence Event

1) Determine functional
blocks in system

2) Determine hardware

functional block
parts associated with each

3) Obtain inputs for Function Point Counting
(FPC) for each functional block

3) Determine Source Lines of Code (SLOC)
associated with each functional block

4) Determine hardware
parts in candidate design

refresh

5) Determine which

T

that influ

of a desi

modified

all the ch

blocks),

modified

functional blocks the
affected parts are in

6) Quantify impact of each
affected part on each

functional block based on
part category

6) Determine net change to

with each functional block
software code associated

8) Cost software

requalification

COCOMO

PRICE S
development/testing/

R
un

-
e

an
al

ys
is

 fo
r

h
ca

nd
i

at
e

de
si

gn
 r

ef
r

Pr
e-

pr
oc

e
si

ng

ig
n

C
ap

tu
re

”
T

im
 e

ac
d

es
h

s
“D

es

7) Determine Design
Assurance (DA) Level

associated with each block

(N

Figure 2.1: Software design refresh by Fault tree based analysis of functional blocks.
ote: The numbers in the boxes correspond to the sequence in which the respective steps

 have been explained below)
elow)

here are certain characteristics of a software functional block (explained b

ence software development costs. These characteristics are modified at the time

gn refresh activity depending on how the hardware parts participating in it are

. The software redesign approach illustrated in this section works by capturing

aracteristics of the system (of the Hardware parts as well as the functional

gauging how these are modified during design refresh and then using the

 values, in conjunction with commercial software cost estimating tools such as

14

PRICE S or COCOMO, to calculate software development costs. The block diagram for

this approach is shown in Figure 2.1 and is described below.

Pre-processing “Design Capture”:

1) Determine functional blocks in the system and their attributes - Determining

functional blocks involves understanding what the major functions performed by the

system software are. The system is partitioned into functional blocks such that each of

these blocks can be thought of as performing one particular function. These blocks are

not necessarily physical partitions. A functional block might, and in most cases will,

include hardware parts that are physically remote from each other. Partitioning the

system into functional blocks seems logical in light of the fact that system software is

modular in nature, i.e., it contains modules - each of which performs a different function.

Each functional block can be thought of as a mapping onto a software module that has

some fi

Two of these attributes are implementation language (C++, ADA, etc.) and

ource Lines of Code (SLOC)1. They are used in the quantitative analysis as discussed in

Chapter 3. Another set of fixed attributes (Inputs, Outputs, Logical Files, Interface files

and Inquires) is used for function point counting. These will be explained in Appendix A.

“SLOC modifier” is an attribute that varies during run-time and gives a measure of how

much SLOC associated with a functional block needs to be changed at an obsolescence

event. It does this by quantifying the impact of the parts that participate in the block,

which have gone obsolete.

xed attributes.

S

 Code refers to the symbolic arrangement of data or instructions in a computer program. It is a series of

statements written in some human readable computer programming language. SLOC is a metric that is use
1

d
to measure the number of such statements in a software program.

 15

As mentioned above, the final software cost estimation is performed using tools

such as PRICE S or COCOMO. This requires that certain other inputs pertaining to the

functional blocks, needed by the cost estimating models employed by these tools, be

 will be explained in Chapter 3, are entered at this

uestion.

Consid ay

is

it be recorded, during pre-processing, the fact that the

acquired as well. These inputs, which

stage.

2) Determine hardware parts associated with each functional block – In this step,

information about participation of a hardware part in a functional block is extracted from

the parts list (described in Chapter 3). Information extracted includes, among other

things:

a) Which block(s) the hardware part participates in, and

b) The level of participation (characterized by “High”, “Medium”, “Low” or

“None”) and the number of instances of this hardware part in the functional

block(s) in q

er, as an example, a computer. It uses a monitor as an output device for displ

purposes. The Operating System (OS) contains a software module dedicated to manage

the “display” functionality. We treat the “display” function as one functional block and

the monitor as one of the hardware parts involved in realizing this functionality. If a

significant amount of code in the software module is dedicated to “driving” the monitor;

then, in the event that this particular monitor becomes obsolete, a large amount of

software code may have to be re-written. This necessitates that, in order to capture th

large degree of dependence,

hardware part (monitor) participates in the functional block (display) and also that the

 16

level of

rmine Function/Feature Point Count inputs for the functional blocks and

hence the SLOC associated with each block - In order to understand the methodology of

f

ristics specific to the functionality of a software module (in the context of this

thesis – n Point Count is

generat

number of

course, on the language used for coding (e.g., C++, JAVA).

 it

 and

o each

 are

 participation of the former in the latter is “High”. This step can be thought of as

one that determines the mapping between the hardware parts of the system and the

functional blocks.

3) Dete

“software design refresh by quantifying the change in the Number of Source Lines o

Code (SLOC)”, it is important to grasp the concept of Function/Feature Point Counting.

Function/Feature Point Counting is a technique by which, based on certain

characte

 the functionality of a functional block), the metric Functio

ed – which in turn lends itself to an estimation of the size of the module, i.e.,

lines of code needed to implement the desired functionality, depending, of

A Function Point Count is a metric used to measure the functionality, and, from

the size of a software system. It can be used in the early stages of development. Function

Point Counting begins by identifying the components of the system as seen by the end-

user. These components are the inputs, outputs, inquiries, interfaces to other systems,

logical internal files. There may be several instances of each component. The components

are then classified as simple, average, or complex. Numerical values are assigned t

component type depending on the number of instances of it in the system and the

classification (simple, average or complex) of each of these instances. These values

then added and the resulting total is called “Unadjusted Function Point total (UFP)”.

 17

Complexity factors described by 14 general systems characteristics, such as reusability,

performance, and complexity of processing are scored on a scale of 0 - not present,

minor influence, to

1 -

 5 - strong influence. The sum of scores of all the complexity factors is

ultiplied by the UFP to get the net function point count. This count can then be related

r

a result will

ed for

m

by empirical factors to system size.

One might question, “Why go through this software sizing procedure when the

number of lines of code for each functional block is available upfront? ” The reason fo

this is that when a hardware part is redesigned, and some new code is to be developed as

 of that, it is not always possible to directly estimate how many lines of code

be needed. It is better to estimate the impact that the redesigned part will have on the

functionality of the functional block(s), which it participates in. This changed

functionality can, in turn, be used to calculate the change in function point count and

from this the number of new lines of code can be estimated. This estimate is more

realistic.

The details of Function Point Analysis can be found in Appendix A. The

discussion therein contains an introduction to the history of Function/Feature Point

counting, pertinent definitions, the factors used in this technique and a detailed

explanation of the technique itself, i.e., the procedure to obtain the “counts” and size

software code using them.

At this point, it is important to keep in mind that as per the solution architecture

developed in this thesis, the system designer supplies the quantitative inputs requir

function point analysis for all the functional blocks; using which the SLOC (and also the

 18

change in SLOC at any point during the system’s lifetime) associated with each one of

them can be calculated.

Steps 1, 2 and 3, i.e., determining the functional blocks in the system, acquisition

of data on how the hardware parts to relate to these blocks, and the function point

analysis inputs for the functional blocks together constitute “Design Capture” of the

system

 in

plan

r the

 software redesign analysis.

is

. It

nal

processor in a computer will participate in several functions

h

obtain, for each functional block, a list of affected hardware parts that participate in it.

.

Run-time Analysis for each candidate design refresh

4) Determine hardware parts affected in candidate design refresh plan - As mentioned

in Chapter 1, the starting point for the implementation of the methodology2 developed

this thesis is the design refresh plan generated by MOCA. This design refresh

contains, among other things, a list of parts that have to be changed/modified at a

particular date during the system’s lifetime. This list of affected parts is imported fo

purpose of

5) Determine which functional blocks the affected parts are in – This information

obtained from the mapping developed in Step 2 during the pre-processing phase

should be noted that a particular hardware part might belong to more than one functio

block. For example, a micro

to be performed by the system. In a case like that an analysis of the impact on eac

functional block has to be carried out separately.

At this stage, all the information obtained in the abovementioned steps is sorted to

2 Hereafter referred to as the software redesign analysis

 19

6) Quantify impact of each affected part on each functional block based on part

category and hence SLOC change for the latter- Each of these affected parts belongs to

a certai

” part type is used to represent an aggregate of parts and their instances. All the

parts, which do not have any obsolescence or maintenance issues (e.g., most passives and

art to reduce computation time.

f the

elongs to and the number of instances of that part

in the functional block being considered, a value is obtained for “SLOC modifier” (for

 a

are

ch functional block can be

recalcu

n part category [Singh, 2001]. This input indicates the type of part being used.

Several part categories are available in MOCA. These are: Microcircuit, Diode,

Transistor, Integrated circuit, Semiconductor, Assorted and Custom Defined. The

“Assorted

mechanical devices), are lumped together into a single p

A “Custom Defined” part is a part type for which no single standard part type could be

used. When a new part is synthesized as a result of a design refresh, the obsolescence

date is reset based on a default and a lifetime is obtained based on the part category o

modified part.

Software redesign analysis is carried out for every functional block. Based on the

category that each of the affected parts b

that particular hardware part), which is a measure of how much SLOC associated with

functional block needs to be changed during design refresh on account of the hardw

part in question. The rationale for this step is that a complex part (such as a

microprocessor) going obsolete will result in a larger code change than a simple part

(such as a resistor) going obsolete.

The appropriate function point inputs for ea

lated using the “SLOC modifier” values for all the affected parts that participate

in it. Using these modified function point inputs the amount of new SLOC to be

 20

generated, i.e., the net change in SLOC (KSLOC∆), can be calculated for each func

block.

7) Determine Design Assurance (DA) level associated with each block - These

are a measure of the criticality and complexity of the function performed by each o

blocks. They have a strong bearing on the re-qualification costs of the system. DA levels

‘A’ through ‘E’ correspond to failure condition classifications catastrophic, hazardous,

major, minor, and no effect, respectively. During the analysis a Design Assurance (DA)

level associated with the affected functional blocks is calculated. For each functional

block the DA level is identified based on system Functional Hazard Assessment [Belan

2000]. Prior to the start of the analysis, an assessment of complexity is made for each

functional block

tional

levels

f these

d,

. Typically, software code dealing with Math functions or String

manipu

(acquired

tools3. Cost values for new software development for

lation is assigned a lower DA level (i.e., E), while functional blocks that deal with

functions such as Real time command and control operations are assigned higher DA

levels.

8) Cost software development and testing – The final costing is done using either the

PRICE S model or COCOMO. For this purpose, all the requisite parameters

during “design capture”), including the ones with modified values (on account of the

above steps) are sent to one of these

3 In the case of PRICE S, the communication between it and MOCA takes place via a dynamic lin
(DLL) included in MOCA. DLLs are a collection of small programs, which can be called upon w

k library
hen

needed by the executable program (exe) that is running. The DLL lets the executable communicate with
some other program and contains source code to do particular functions.

 21

all the affected functional blocks are sum nd the total is added to the life cycle

cost.

med up a

These steps are repeated for all the candidate design refreshes. Prior to the

introduction of software redesign analysis, MOCA would rank different design refresh

plans (each plan containing one or more design refreshes – the total for each plan being

the sum of costs entailed on account of all the design refreshes contained in it) based on

total cost. The same thing is done now – with the difference that the totals contain a

“software redesign cost” as well – which may change the rankings.

ign

he

 for the system software.

A Software Fault Tree is a graphical technique for identifying and documenting

d

Function 1, Function 2, Function 3 and Function 4 are bottom events; Function 5 and

Function 6 are intermediate events and Function 7 is the top event. An OR gate signifies

ctions below it are realized.

2.3 Software Design Refresh by Fault Tree Based Analysis of Functional Blocks

This approach is similar in many regards to the one outlined in Section 2.2.

Functional blocks and Function Point analysis are used in this approach too. “Des

Capture” as explained in the previous section is a portion of this approach as well. The

difference lies in the fact that this methodology attempts to make use of, if available, t

fault tree

the combinations of lower level software events that allow a top-level event to occur

[Leveson, 1995]. Software Fault Tree Analysis (SFTA) is a deductive, top-down metho

used to analyze system functionality. An example of a fault tree based functional

description of a software system is shown in Figure 2.2. In this three-tier fault tree,

that a function is implemented if any of the functions below it are realized while an AND

gate signifies that a function is implemented only if all the fun

 22

The example of Figure 2.2 is a very simple one. An actual system is likely to have

more tiers with several other intermediate events of different types with more complex

relationships denoted by the various logic gates.

Function 4

Function 7

For the purpose

allow automation of the

(analogous to DA level

be assigned to functiona

with higher values assig

Function 5 Function 6

OR

AND

Function 1 Function 2

AND

Function 3

Figure 2.2: Fault Tree for a hypothetical system
blocks

s can

–

of the methodology discussed in this section, a fault tree can

 procedure to determine criticality levels of the functional

in the previous approach). This is because “criticality” value

l blocks based on where they exist in the hierarchy of the tree

ned to blocks at the top of the tree.

23

Another advantage is that a fault tree gives a better idea about the

interde

n

d then all the functional blocks

connected to and above it on the tree may have to be qualified as well.

The block diagram for using fault-tree based analysis for software redesign

approach is shown in Figure 2.3.

shaded

pendencies between the different functional blocks – something that was not taken

into account by the previous method. This can have a significant bearing on qualificatio

costs because if one functional block is redesigne

Table

the sam

1) Determine functional
blocks in system

2) Determine hardware
parts associated with each

functional block

3) Obtain inputs for Function Point Counting
(FPC) for each functional block

3) Determine Source Lines of Code (SLOC)
associated with each functional block

5) Determine hardware
parts in candidate design

refresh

6) Determine which
functional blocks the
affected parts are in

7) Quantify impact of each
affected part on each

functional block based on
part category

7) Determine net change to
software code associated

with each functional block

8) Assign criticality values to
functional blocks based on their
level in the fault tree hierarchy

10) Cost software
development/testing/

requalification

COCOMO

PRICE S

R
un

-T
im

e
an

al
ys

is
 fo

r
ea

ch

ca
nd

id
at

e
de

si
gn

 r
ef

re
sh

Pr
e-

pr
oc

es
si

ng

“D
es

ig
n

C
ap

tu
re

”

9) On the fault tree determine
all the functional blocks
connected to and above

each of the affected
functional blocks

4) Obtain Fault tree
relationship between the

functional blocks

(N

Figure 2.3: Software design refresh by Fault tree based analysis of functional blocks.

 have been explained below)
ote: The numbers in the boxes correspond to the sequence in which the respective steps
 boxes in the block diagram, will be explained below.

It should be noted that some of the steps are the same as in the previous approach.

2.1 lists all the steps that are common to the two approaches. Their explanation is

e as in the previous section. The new steps in this approach, indicated by the

24

Step Number in

Section 2.2

Step Number in

Section 2.3
Remarks

 As mentioned above, for Steps 1-3 refer to Section 2.2

4) Obtain Fault tree relationship between the functional blocks – This requires an

understanding of how the functional blocks are connected to each other. The system

designer should have an appropriate blueprint for the software architecture of the system.

This blueprint can be specified in the form of a tabular arrangement. For the fault tree

1 1 Determine functional blocks in syst

Table 2.1: Enumeration of steps common to the two approaches for software design
refresh explained in Sections 2.1 and 2.2

em

2
Determine hardware parts associated with each

2 functional block

3 3

• Obtain inputs for Function Point Counting (FPC)
for each functional block

• Determine Source Lines of Code (SLOC) associated
with each functional block

4 5 Determine hardware parts in candidate design refresh

5 6
Determine which functional blocks the affected parts
are in

6 7

• Quantify impact of each affected part on each
functional block based on part category

• Determine net change to software code associated
with each functional block

8 10 Cost software development/testing/requalification

 25

shown in Figure 2.2, disregarding the logic gates for the moment, this tabular

arrangement is shown in Table 2.2

This tabular arrangement can be stored in the form a Text file that can then be

read and converted into a Fault tree. This can be done by using the following two-part

orithm starting w the above table in

Find_ Top _Node (file)
tep 1 Scan “Remarks” column for Top _Node
Step 2 For each row with Top _Node found do

in “Parent” column
ction and call it Top_Node

 Step 2.3 Set function_tier = entry in “Tier” column

Parent Child Remarks Tier

alg ith the form of a text file:

Function 7 Function 5 Top_Node Tier 3

Function 7 Function 6 Top_Node Tier 3

Function 7 Function 4 Top_Node Tier 3

Function 6 Function 3 Tier 2

Function 5 Function 2 Tier 2

Function 5 Function 1 Tier 2

Function 4 Tier 1

Function 3 Tier 1

Function 2 Tier 1

Function 1 Tier 1

S

 Step 2.1 function = function listed
 Step 2.2 Create node in tree for fun

 Step 2.4 Fault_Tree_Create (function, file)

 26

Fault_Tree_Create (function, file)
 Step 1 Scan “Parent” column for function

Step 2 For each row with function found do
 Step 2.1 child = Function listed in “Child” column

 Step 2.3 Set child_t
 Step 2.4 child = Fa

 Step 2.2 Connect child to function
ier = entry in “Tier” column
ult_Tree_Create (child, file)

After the fault tree has been created, a relationship analysis along the lines of

Software Failure Mod ts and lity A M can be carried out

[Dehlinger, 2004] to he in o s between the

different functional

teps 1, 2, 3 et f c system,

acquisition of data on how the hardware parts to relate to these blocks and the function

point analysis inputs for the functional blocks, and “reading” the software fault tree

togethe constitute “ ur tem.

teps 5, 6 an nd to th Steps 4, 5 an 6 in Se .2 respectively.

8) Assign criticality values to functional blocks based on their level in the hierarchy of

the fault tree- These values are a measure of the criticality and com the

function performed by each of these blocks. They have a strong bearing on the re-

qualification costs of the system. These values can be assigned on the basis of the

followi

a) The tier at which the functional block exists. A higher tier function should be

assigned a greater weight than a lower tier one.

b) immediately above. A

es, Effec Critica nalysis (SF ECA)

 determine t appropriate clusion of L gic Gate

blocks.

S and 4, i.e., d ermining the unctional blo ks in the

r Design Capt e” of the sys

S d 7 correspo e d ction 2

plexity of

ng information extracted from the fault tree:

Type of “Logical” connection to the function at the tier

greater weight should be assigned if the connection is of the “AND” (because of

 27

the indispensability of the lower tier function implied by an AND gate) type than

 significance and criticality of the

individual functions in the overall scheme of things.

9) Dete

 this step is that in addition to an affected block, which has

to go th pment

ting

the tree. This method has the

inherent flexibility to take into account only those connected blocks that are a specified

r may

ations.

 in

2.4 Remarks

The solution scheme of Section 2.2 alone has been implemented in this thesis.

The other approach (Section 2.3) entails the problem of reading a fault tree with its

logical connections into MOCA. It should be noted that this could not be performed

if it is of the “OR” type.

The purpose of this weighting is to establish the

rmine all the functional blocks connected to and above each of the affected

functional blocks – In this step we determine, for each affected functional block, i.e., one

for which new code is being developed, which are the other blocks that need to be

requalified. The rationale for

rough the entire software development cycle that includes design, develo

and testing; all functional blocks dependent on it have to be requalified as well.

Information pertaining to the dependency can be extracted from the fault tree by loca

all the functional blocks connected to and above it in

number of tiers above the affected functional block. Also, if the affected block is

connected to a block in the tier above by an “OR” gate, requalification for the latte

not be so critical. Thus the analysis can be tweaked in tune with the user’s specific

Step 10, i.e., to cost software development and testing is the same as Step 8

Section 2.2.

 28

success

describ

However, It must be mentioned that this approach continues to be a potential

candidate method for mapping software to hardware, which, of course, lies at the heart of

the software design refresh methodology.

fully and was an impediment in the implementation of the methodology being

ed in this section.

 29

Chapter 3 - Software Redesign Analysis Applied to Design Refresh

tion (Mitigation of Obsolescence Cost

Analysis - MOCA) has been developed at the University of Maryland [Singh and

Sandborn, 2002] for determining the part obsolescence impact on life cycle sustainment

costs for the long field life electronic systems based on future production projections,

maintenance requirements and part obsolescence forecasts. Based on a detailed cost

analysis model, the methodology determines the optimum design refresh plan during the

life cycle (design, production, and operation and support) of the product. The design

refresh plan consists of the number of design refresh activities, their respective calendar

dates and content to minimize the life cycle sustainment cost of the product. The

methodology supports user determined short- and long-term obsolescence mitigation

approaches on a per part basis and allows for inputs to be specified as probability

distributions that can vary with time. Outputs from this analysis are used as inputs to the

PRICE System’s PRICE H/L commercial software tools for predicting life cycle costs of

systems. As mentioned in Chapter 2, this tool hitherto took into account the impact of

hardware obsolescence on only the system hardware. This thesis introduces into MOCA

the ability to account for the impact of hardware obsolescence on system software as

well. In this chapter, the implementation of the software redesign analysis within MOCA

is described.

Some of the commonly used terms in this chapter are:

Planning

3.1 Introduction

A methodology and its implementa

 30

1) System - The entity for which the sustainment cost is being evaluated. A system

may be composed of multiple boards. The System represents the top node in the

System-Board-Part hierarchy.

s that contain multiple parts. All parts that belong to the system

5

uts

4

2) Board - Subsystem

must belong to at least one board. The system part list is obtained by

accumulating the part list from each board.

3) Part - A part represents a unique part number, name or identification number in

the system. It is an entity that resides on the boards. Each board may have

multiple identical instances of a single part. A single part may also appear within

multiple boards.

4) Component - A specific instance of a hardware part. Usually distinguished from

other instances by the board it is in and its physical location on a board.

5) Functional Block – A portion, or module, of system software dedicated to

performing one specific function. Each functional block can be mapped onto a

software module. These blocks do not necessarily correspond to physical

partitions.

6) Event - An occurrence that affects the system life cycle – could be part

obsolescence, design refresh (defined in Chapter 1) or a reorder .

In Section 3.2, the overall MOCA methodology and the incorporation of the software

redesign approach of Section 2.2 into it will be explained. Interfaces for collecting inp

4 MOCA accommodates an arbitrary hierarchy of boards within boards. The system is the “container” for

5

the entire board hierarchy.

 An event that brings an additional number of instances of the system into existence. It can be due to
planned onal orders during the system’s
field sup

production of units spread over the lifetime of the system or additi
port life.

 31

per

approp

the PRICE S and COCOMO tools is the subject of Section 3.4

3.2 Overall MOCA Methodology And The Incorporation Of Software Redesign

Analysis

The MOCA tool is a JAVA application created at the University of Maryland

[Singh and Sandborn, 2002]. MOCA, which is an acronym for Mitigation of

Obsolescence based Cost Analysis, can be used during the design stage of the life cycle,

to predict the cost of sustaining the system. Its primary use is to compare, in terms of

sustainment cost, several life cycle management strategies for a design. From an overall

system point of view, the model helps to focus designers on the specific parts/boards, the

obsolescence of which may cause problems and escalate life cycle cost.

3.2.1 The Problem Addressed by MOCA

Suppliers of low-volume electronics products need to support their products over

extended time periods. In many cases, the parts that are used in these products are

obsolete prior to the end of the product’s life. The system manufacturer (sustainer) is then

faced with a series of alternatives. Often the decision boils down to whether to make a

"last-time buy" of parts necessary to last until the next design refresh, a “lifetime buy” of

parts necessary to last through the remaining predicted life cycle of the product, count on

being able to purchase required parts from third parties (whether they are the original

sh

ensive, requiring extensive engineering, qualification testing, and

tinent to software redesign analysis will be described in Section 3.3. Wherever

riate, these inputs will be discussed. Discussion of the cost models employed by

part, emulated, or a replacement part), or to initiate an immediate design refresh in order

to design the part out of the product (i.e., by replacement or elimination). Design refre

is often very exp

 32

certification. Making the problem worse, revisions to software necessitated by the n

parts can also involve significant engineering effort (and re-qualification), sometimes

exceeding that required for hardware design and qualification.

ew

On the one hand, system sustainers do not wish to pay increased prices for

obsolete parts and do not wish to risk losing the ability to sustain a system, but on the

other hand, too many design refreshes to avoid obsolescence issues may be extremely

expensive. Somewhere between these extremes lies an optimum balance between non-

design refresh obsolescence mitigation solutions and design refreshes. MOCA performs a

tradeoff analysis to find this optimum point.

3.2.2 MOCA Analysis Algorithm

The algorithm employed by MOCA can be broken down into the following steps:

Step 1: Determine system details – relevant information pertaining to the system,

constituent subsystems (boards), and individual parts is collected. This

information includes forecasting part obsolescence.

Step 2: Determine the order of known events – the events (reorders, part

obsolescence and redesigns) affecting the system are determined and

arranged in an ordered list called an ‘Event List’

Step 3: Schedule design refresh activities at various stages in the life of the

product based on the planned production schedule.

 For each design refresh activity:

Step 4: Calculate costs accrued by affected system hardware

Step 5: Calculate costs accrued by affected system software

 33

Step 6: Sum the costs due to events during the product’s life for each design

refresh plan generated in Step 4 and Step 5

Step 7: Rank the various design refresh plans

The

ing parts) inputs: Board assembly,

lification and total acquisition costs, and the list of

c)

 In addition to these, solution control inputs are used to control various parameters

use

Appendix B

Step 2: De

events, reorder events and design refresh events. All these events contribute to the

sustainmen

rele

se steps have been elaborated on below.

Step 1: Determine system details

 Three categories of inputs are necessary to populate the model.

a) Part inputs: Part costs, reliability data, part characterization data,

functional block participation data and obsolescence data.

b) Board (any subsystem contain

disassembly, test, qua

parts assigned to each board. The overall part list for the system is

obtained by combining the part lists of each board.

 System inputs: Dates for the beginning and end of the system’s life

d in computing the sustainment cost and planning the design refreshes.

 explains all the inputs mentioned above in detail.

termine the order of known events

The events that a system undergoes in its lifetime include part obsolescence

t cost. Figure 3.1 shows the simplified MOCA view of events that are

vant to design refresh optimization.

 34

Planned productionPlanned production

Start of Life

a) Part obsolescence Events: A part is obsolete when the technology that defines the

part is no longer implemented. Part obsolescence has been explained in Section 1.2.

The obsolescence date of a part in MOCA is the date after which the part is no longer

available from the original manufacturer (from which the part was procured for the

current design).

Obsolescence can be handled in a variety of ways in MOCA:

• Purchase and store the obsolete part(s) (lifetime buy, in-store) and use

whenever required

• Replace the obsolete part(s) with the same part(s) but with different

procurement cost(s) (aftermarket source)

• Replace the obsolete part(s) with different part(s) with different or

e functionality (part substitution, emulation,

reverse engineering)

Design refresh of the system to eliminate the need of the obsolete part(s)

similar cost(s) but with sam

•

Part becomes
obsolete

Part is not obsolete Part is obsolete
short term mitigation strategy used

sign refreshDe

“Short term”
mitigation strategy
• Last time buy
• 3rd party buy

• Lifetime buy

“L
mitig

ong term”
ation strategy

• Substitute part
• Emulation
• Uprate similar part

Redesign non-
recurring costs

Re-qualification?
• Number of parts changed
• Individual part properties

Start of Life

Part becomes
obsolete

Part is not obsolete Part is obsolete
short term mitigation strategy used

sign refreshDe

“Short term”
mitigation strategy
• Last time buy
• 3rd party buy

• Lifetime buy

“L
mitig

ong term”
ation strategy

• Substitute part
• Emulation
• Uprate similar part

Redesign non-
recurring costs

Re-qualification?
• Number of parts changed
• Individual part properties

Figure 3.1: MOCA system timeline

 35

b) Reorders (Planned Production): The reorder date represents the start of

processing of an order request or start of a planned production. With every reorder, a

new quantity of systems comes into existence. Each order will correspond to a

different start date on the system timeline. A reorder can occur due to production

spread over the lifetime of the product. The production can be for units, which were

planned initially at the design stage, or additional orders during the product’s field

support life.

c) Design Refresh: The design refresh date refers to the completion of all the design

refresh activities carried on the product. In MOCA, a “Design Refresh” is equivalent

to redefining the part set used in the system. “Design Refresh” has been defined in

Section 1.4. Every time a design refresh event is specified, a new part set needs to be

specified, and the new part set is used for all calculations beyond that point. Any

future reorders made are manufactured on the basis of the new design.

Step 3: Scheduling “design refresh” activities

Possible
design refresh

placements

Reorder

System
timeline

Timeline start/end

Possible
design refresh

placements

Reorder

System
timeline

Timeline start/end

Figure 3.2: Associating design refreshes with reorders [Singh, 2001]

 36

MOCA schedules design refreshes immediately before the reorder events.

because scheduling it at any other time point before the reorder involves the risk of

parts becoming obsolete between the design refresh and the reorder event. This

minimizes the time span between a design refresh and the next reorder, thereby

eliminating the need to perform another design refresh because of any probable part

obsolescence during that time period. Thus design refreshes can be thought of as

being associa

 This is

step

ted with reorders. This is depicted in Figure 3.2. For the case shown in

Remarks

Figure 3.2, a total of 15 design refresh plans are possible. These plans are enumerated

in Table 3.1:

Point(s) on system timeline at which

“design refresh” event is inserted

A Design refresh plan with ONE design refresh activity

B Design refresh plan with ONE design refresh act

Table 3.1: Enumeration of possible design refresh schedules for the case depicted in Figure 3.2

ivity

C Design refresh plan with ONE design refresh activity

D Design refresh plan with ONE design refresh activity

A+B Design refresh plan with TWO design refresh activities

A+C Design refresh plan with TWO design refresh activities

A+D Design refresh plan with TWO design refresh activities

B+C Design refresh plan with TWO design refresh activities

B+D Design refresh plan with TWO design refresh activities

C+D Design refresh plan with TWO design refresh activities

A+B+C Design refresh plan with THREE design refresh activities

A+B+D Design refresh plan with THREE design refresh activities

A+C+D Design refresh plan with THREE design refresh activities

B+C+D Design refresh plan with THREE design refresh activities

A+B+C+D Design refresh plan with FOUR design refresh activities

 37

Step 4:

idual

ype

incurred to procure that board. The system cost is also modified to

e reorder cost is calculat on the quantity of

 reflects the

contribution of all the events prior to the reorder event in question, which

hav esulted in an inc

• A ign refresh ev it are

identified. MOCA also lets the user specify an input called “look-ahead

tim his input sign ,

M looks-ahead f

actively removes thos

refresh opportunity. There is a tradeoff involved over here. By having a

l ign refresh lo

obsolete there is a risk of incurring extra cost for no improvement, i.e.,

 Calculate costs accrued by affected system hardware

• All the events are inserted into the system timeline in the order of their

dates of occurrence.

• At a part obsolescence event, the part is treated according to its indiv

user-specified obsolescence mitigation strategy. The part’s original cost is

multiplied with an obsolescence mitigation factor that depends on the t

of mitigation strategy adopted and the new cost is rolled up to the board

level. This “rolling-up” reflects the fact that eventually a higher cost will

be

reflect the parts/board cost changes due to obsolescence events.

• At a reorder event th

systems/boards reordered. At this stage the cost of the system

ed based

e r rease in the system cost.

t a des ent all parts that have become obsolete prior to

e”. T ifies that whenever a design refresh takes place

OCA or forecasted part obsolescence issues and pro-

e part obsolescence problems at the current design

arge des ok-ahead time the number of design refreshes can

be reduced. On the other hand by design refreshing parts that are not yet

 38

there is a possibility that the obsolete part that was proactively design

 Thus parts that have become obsolete prior to the design refresh event and

refr

 Bas

be e

sup

 If th xity

level of the parts and their associated design refresh effort are used to make

the

obs

obs a user input called

new

wit

Step 5: Calcul

 The

affected pa

For each of l

blocks that

(which reflects the total effort to develop new code - for all the functional blocks - on

refreshed is never required in the future.

those that fall inside the “look-ahead” range from the date of the design

esh event are combined into a list of affected parts.

ed on the obsolescence mitigation strategies of the affected parts they can

ither redesigned at the design refresh or left as they are for the system’s

port lifetime.

ey are to be redesigned, user-specified inputs pertaining to the comple

required changes to the system at a design refresh event and also to determine

cost of the design refresh event itself. New parts without any immediate

olescence problems are used to replace the obsolete parts. The

olescence date for the new part is determined by

TACTech lifecode and the average mean lifetime of the part category that the

 part belongs to. All the data for the old part in the database is modified

h the corresponding values of the new part.

ate costs accrued by affected system software

solution architecture developed in Section 2.2 is applied here. The list of

rts generated in Step 4 is an input to this step.

 the affected parts an assessment is made of its impact on all the functiona

 it participates in. The cost value returned by PRICE S or COCOMO

 39

account of

should be n sent on more than one board.

Thu , f

PRICE

followi

one particular type of affected part) is rolled up to the board level. It

oted that a single type of part might be pre

s or each board in the system, for rolling up the values to the board level, the

 S/COCOMO generated cost value is multiplied by a factor given by the

ng equation:

⎟⎟
⎠

⎞
⎜
⎝

⎛
=

system in thepart affected theof instances ofNumber
board on thepart affected theof instances ofNumber ⎜factor

 The new cost of the boards, and hence of the system

system software accounting for software redesign.

Step 6: Total costs accrued by the system

for each design refresh plan.

Step 7: The various design refresh plans are ranked on the basis on m

cost.

3.3 MO

An

 The a Graphical User Interface to

cessing. Some of these

inp ll

of the inputs is included in Appendix B. The user interfaces for collecting the inputs

per

app

inte

, reflects the cost increase of

 in Step 4 and Step 5 are added up. This is done

inimum life cycle

CA Interfaces For Collecting Inputs Pertinent To Software Redesign

alysis [MOCA user’s guide, 2003]

 MOCA tool is a JAVA application. It provides

allow the user to enter various inputs required for solution pro

uts have been mentioned briefly in the discussion above. A detailed explanation for a

tinent to Software Redesign Analysis will be depicted in this section. Clicking the

ropriate buttons on the menu bar (shown in Figure 3.3) of the tool opens up these

rfaces.

 40

Figure 3.3: The MOCA tool (The Menu Bar is enclosed in the boxed region)

3.3.1 Board-Specific Parts List

For every board in the system, MOCA stores a list of parts that belong to that

6

Part Category: This input indicates the type of part being used. Several part

categories are available in MOCA. These are: Microcircuit, Diode, Transistor,

d”

te of parts and their instances. All the

uce

 a

is

board. Included within the parts list information is :

•

Integrated circuit, Semiconductor, Assorted and Custom Defined. The “Assorte

part type is used to represent an aggrega

parts, which do not have any obsolescence or maintenance issues (e.g., most

passives and mechanical devices), are lumped together into a single part to red

computation time. A “Custom Defined” part is a part type for which no single

standard part type could be used. When a new part is synthesized as a result of

design refresh, the obsolescence date is reset based on a default and a lifetime

obtained based on the part category of the modified part.

 Only those part properties that are important for the software-costing problem have been discussed here.

A complete description of all the properties/units can be found in Appendix B.
6

 41

• Block Participation: This indicates which functional block(s) the part participates

in. In other words, it indicates which functional blocks require the hardware part

in question to implement their functionality.

• Block Role: As noted above, “block participation” indicates which functional

block a hardware part participates in. The input “block role” contains information

on the significance of the hardware part in that functional block, relative to the

other hardware parts in it. MOCA allows four possible choices for “block role”.

These are High, Average, Low and None signifying, as the names would suggest,

the relative contribution of a hardware part in implementing the functionality of

estion. Assigning a value to the input “block role”

nce

al block that it participates in.

 The inputs m

which of the functional blocks are affected and to what degree. All this data is contained

in the parts list. These lists are board specific, i.e., there is a part list for each board

(containing inform

the sys

These are created using Excel spreadsheets. An exam

B6, B8, etc. in colum

part participates in m

the “blo loaded into MOCA

using the interface shown in Figure 3.5.

the functional block in qu

would draw on the system designer’s experience to judge the relative significa

of each hardware part vis-à-vis every function

entioned above are used to determine, when a hardware part is affected,

ation on all the parts contained by that board). The overall part list for

tem is obtained by combining the part lists of each board.

The part lists for the boards are entered into MOCA using comma-delimited files.

ple is shown in Figure 3.4

n M, are the names of functional blocks. In cases where a hardware

ore than one block, the names of both of these blocks is entered into

ck” column separated by a “.” Symbol. These files can be

 42

 43

F

 Figure

Figure 3.4: An example of a comma-delimited file for loading a board specific parts list into MOCA

Figure 3.5: MOCA interface for loading a board-specific part list

3.3.2 unctional Blocks Data

 Inputs for the functional blocks are collected using the interface shown in

3.6. The user-inputs required for the purpose of describing these functional blocks are the

ones shown in the boxed region. These are, Source Lines of Code (SLOC),

Implementation Language (described in Appendix B), and the function point analysis

parameters (Inputs, Outputs, Inquiries, Logic Files, Interfaces and Algorithms fields, all

of which are explained in Appendix A).

ing on the

The functional point analysis parameters are assigned values by click

Functional Block Name. This opens up the dialog box shown in Figure 3.7.

Figure 3.6: Interface for collecting Functional Blocks inputs

Figure 3.7: Inputs required for Function point Counting

 44

3.3.3 PRICE S/COCOMO Data

Depending on which life cycle software cost analysis model (PRICE S or

COCOMO) is used (both will be described in detail in the next section) there are some

additional inputs that have to be provided.

RICE S inputs are no

created with all the required i

PRICE

ructure of the software proje

The PRICE S interfac

Figure 3.9. These inputs will

S

P

 S is to be used for mo

Estimating Breakdown Struct

st

B4 are the names of the funct

Figure 3.8: PRICE S EB
t collected directly by MOCA. Instead a PRICE S file is

nputs. This file is invoked during the MOCA analysis if

ines the

ct. In this file “AS900” is the system and B1, B2, B3 and

l bl ks.

es for collecting some of the main inputs are shown in

be discussed in the next section.

deling software costs. A sample PRICE S file, i.e., the

ure (EBS), is shown in Figure 3.8. The EBS def

iona oc

45

directly usin

If th

the next sec

Figure 3.9: PR in inputsICE S interface for collecting the ma
g the interface shown in Figure 3.10. These inputs will also be discussed in

e COCOMO model is used, then the inputs can be entered into MOCA

tion.
Figure 3.10: MOCA interface for collecting COCOMO inputs
46

3.4 Cost Analysis Models

At present there are two cost analysis models for software development costs and

maintenance are employed by MOCA, i.e., PRICE S and COCOMO. This section

contains a brief summary of the salient points of these two models and also a discussion

of the inputs they require.

3.4.1 PRICE S

The PRICE S model was originally developed by RCA (initially RCA Price, then GE

Price, then Martin Marietta Price Systems, then Lockheed Martin Price, and now an

independent company) as one of a family of models for hardware and software cost

stimation. Developed in 1977 by Freim

comme ially available detailed parametric software cost model to be extensively

market

The primary input for the PRICE-S model is Source Lines of Code (SLOC). It is a

count of "non-blank, non-comment lines" in the text of the program’s source code. SLOC

as a software metric is used to measure the “amount of code” in a software program. It is

typically used to estimate the amount of effort that will be required to develop a program;

as well as to estimate productivity once the software is produced. A caveat is that the

coding language must be specified as well. This is because a different amount of SLOC

may be required to code up the same functionality in different languages. SLOC may be

input by the user or computed using function point sizing models. Both the options are

available in the PRICE S model. Other key inputs include:

e an and Park, [Park, 1988] Price S was the first

rc

ed and used. In 1987, the model was modified and re-validated for modern

software development practices.

PRICE S Inputs

 47

1. Application (APPL): a measure of the type (or types) of software, described by

 the productivity, efficiency/inefficiencies, software

development practices and management practices of the development

organization.

 hardware memory or processing speed utilized

one of seven categories (mathematical, string manipulation, data storage and

retrieval, on-line, real-time, interactive, or operating system).

2. Productivity Factor (PROFAC): A calibrated parameter, which relates the

software program to

3. Complexities (CPLXM, CPLX1, CPLX2): Three complexity parameters that

relate the project to the expected completion time, based on organizational

experience, personnel, development tools, hardware characteristics, and other

complicating factors.

4. Platform (PLTFM): the operating environment, in terms of specification, structure

and reliability requirements.

5. Utilization (UTIL): Percentage of

by the software.

6. New Design/New Code (NEWD/NEWC): Percentage of new design and new

code.

7. Integration (Internal) (INTEGI): Effort to integrate various software components

together to form an integrated and tested software module.

8. Integration (External) (INTEGE): Effort to integrate various software modules

together to form an integrated and tested software system.

9. Schedule (DSTART/DEND): Software project start and/or end dates.

10. Optional Input Parameters: Financial factors, escalation, risk simulation.

 48

Pro

)

Parame ons of PRICE S"

whi i t" of

software based on the product of instructions and application inputs. The productivity

factor a and

schedule calculations. Platform is an exponential input; hence, it can be very sensitive

too d

design ons.

Interna for

integrating and testing the software modules. The external integration input parameter is

use

Outpu

can be converted to cost in dollars or other currency units using financial factors

par 7

phases etric Estimating Initiative (PEI) Parametric Estimating Handbook]: System

Con

and rep ming, Data, Systems

Eng

The PR g over thirty graphs,

Gan eports. In

cessing

The PRICE-S algorithms are published [Parametric Estimating Initiative (PEI

tric Estimating Handbook] in the paper entitled "Central Equati

ch s available from PRICE Systems. It states that PRICE-S computes a "weigh

nd complexity inputs are very sensitive parameters, which affect effort

. The model based on the type or category of instructions calculates a new weighte

and code value. Both new design and code affect schedule and cost calculati

l integration input parameters affect the software module cost and the schedule

d to calculate software-to-software integration cost and schedule.

ts

PRICE-S computes an estimate in person effort (person hours or months). Effort

ameters. Software development schedules are calculated for nine DOD-STD-2167A

[Param

cept through Operational Test and Evaluation. Six elements of costs are calculated

orted for each schedule phase: Design Engineering, Program

ineering Project Management, Quality Assurance, and Configuration Management.

ICE-S model also contains several optional outputs includin

tt charts, sensitivity matrices, resource expenditure profiles and schedule r

7 A US Department of Defense standard that specifies the overall process for the development and
documentation of mission-critical software systems.

 49

addition, Microsoft Project files, spreadsheet files, and risk analysis reports can be

generat

e

3.4.2 COCOMO

In 1981, Boehm developed the essential algorithms of the constructive cost model

 (COCOMO) [Boehm, 1981]. Since COCOMO algorithms were first provided to the

general public, many commercial software-estimating tools have been derived from the

COCOMO estimation method. COCOMO remains the only software-estimating model

whose algorithms are not treated as proprietary. Boehm also developed COCOMO II, a

revision to his original model, which is also available to the public [Boehm, 1995].

ed. The risk analysis report is a Cumulative Probability Distribution and is

generated using either Monte Carlo or Latin Hypercube simulation.

Calibration

The PRICE-S model can be run in ECIRP (PRICE backwards) mode to calibrat

selected parameters. The most common calibration is that of the productivity factor,

which, according to the PRICE-S manual, tends to remain constant for a given

organization. It is also possible to calibrate platform, application, and selected internal

factors.

COCOMO: Software Size Estimation and Reuse

COCOMO uses a variation of the following model to estimate the equivalent

number of lines of code:

()
100

3.03.04.0 IMCMDMSUAAKASLOCKNSLOCKSLOC ++++
+= (3.1)

KNSLOC is the size of the new software component expressed in thousands of lines of

TS) code. KASLOC is the size of the adapted or existing commercial off-the-shelf (CO

 50

software component expressed in thousands of adapted source lines of code. Five

adjusting factors affect the final value of KSLOC. SU is the software understanding

increment that is expressed as a percentage (ranging from 10 to 60%

). AA expresses the

ssment and assimilation needed to determine whether a fully reused

softwa

sed

 in both

’s design that is modified in order to adapt it to the new objectives and

environment. Similarly, CM is the percentage of the adapted software’s code that is

modified in order to adapt it to the new objectives and environment. Finally, IM is the

percentage of effort required to integrate the adapted software into an overall product and

to test the resulting product as compared to the normal amount of integration and test

effort for software of comparable size.

ms of

man months (3.2). A is the constant used to capture the multiplicative effects on effort

with projects of increasing size, having a default value of 4.44 [DeBardelaben, 1998].

Researchers at Georgia Tech increased this value from Boehm’s original default of 3.6

[Boehm, 1981]. B is a scale factor which accounts for the relative economies or

diseconomies of scale encountered for software projects of different size ing

e

degree of asse

re module is appropriate to the application and to integrate its description into the

overall product description (ranging from 0 to 8%). These first two factors are only u

in the nonlinear reuse model. The three following modification factors are used

the linear and nonlinear reuse estimation models. DM is the percentage of the adapted

software

COCOMO: Software Development Effort Estimation

The software development effort, SE, expresses the development effort in ter

s, hav a

default of 1.2, suggesting a diseconomy. The Fi’s, or effort adjustment factors, are thos

 51

cost drivers which model the effect of personnel, computer, product, and project

attributes on software cost. These multipliers are summarized in Table 3.1.

()()devEdev ratehrspermmSCost = (3.2)

To calculate development cost, the effort in man months, SE, is multiplied by hours

man month, set at 152, and then multiplied by the development rate per hour.

 per

S

E

S
S

The development staffing effort can be found by dividing the development effort in man-

months by the development schedule in months, giving a number of developmen

required estimate.

devStaff = (3.3)

t staff

E
dev S

KSLOCodPr = (3.4

() ∑= i
B

E FKSLOCAS (3

The productivity of the software staff can also be estim

)

19

1i

.5)

ated, measured in thousands of

ource lines of code from (3.1)

y the s

programming practices, have different productivity multipliers due to differences in their

=

source lines of code per man-month by dividing the total s

b oftware development effort.

COCOMO: Software Maintenance Effort Estimation

Software maintenance effort is found in a similar manner to development effort.

A new factor, ACT, is introduced, and several effort adjustment factors change. ACT is

the annual change traffic, which corresponds to the fraction of the software product’s

source code that undergoes change during a typical year, either through addition or

modification. Two of the cost drivers, required reliability and use of modern

 52

relative impact on development and maintenance. In addition, required developm

schedule is irrelevant to maintenance, so it is set at 1.0. Cost of maintenance

ent

is measured

in the same way as cost of devel

⎝ =1i
(3.6)

 (3.7)

opment, and the staffing is measured simply by dividing

the effort in man-months by months in a year.

() ⎟
⎞

⎜
⎛

= ∑
17

i
B

E FKSLOCAACTM
⎠

()()intmaEintma ratehrspermmMCost =

12
EM

COCOMO: Softw

intmaStaff = (3.8)

are Schedule Estimation

The development time equation is:

()
100

SCEDSCS D
ES nom

= (3.9)

C is the constant used to capture the multiplicative effects on time with projects of

increasing effort having a default of 6.2 [DeBardelaben, 1998]. Researchers at Georgia

Tech increased this value from Boehm’s original value of 2.5 [Boehm, 1981]. D is a

scaling factor which accounts for the relative economies or diseconomies of scale

ng a default of 0.32. Finally,

SCED

.10)

encountered for projects of different required efforts, havi

is the percent compression or expansion to the nominal deployment schedule.

SEnom is found similarly to the software development effort equation for SE, but in this

case no effort adjustment factors are taken into account, as shown in (3.10).

()B
E KSLOCAS

nom
= (3

 53

The level of accuracy of the estimate provided by this software cost model is

directly proportional to the user’s confidence in the software size estimate and the

description of the development environment. Through calibration in multiple areas, the

potential risks associated with estimating software development can be effectively

reduced.

Summary of the Major Inputs to the COCOMO Model

1. Required Reliability (RELY) - This is the measure of the extent to which the

softw

of a software failure is only slight inconvenience then RELY is low. If a

failure would risk human life then RELY is very high.

pts to capture the affect large data

requiremen

ider is

are must perform its intended function over a period of time. If the effect

2. Database Size - This measure attem

ts have on product development. The rating is determined by

calculating D/P. The reason the size of the database is important to cons

because of the effort required to generate the test data that will be used to

exercise the program.

)(Pr
)(

SLOCogramSize
byteszeDataBaseSi

P
D

= (3.11)

It is rated as low if D/P is less than 10 and it is very high if it is greater than 1000.

3. Required Reusability - This cost driver accounts for the additional effort

needed to construct components intended for reuse on the current or future

projects. This effort is consumed with creating more generic design of

software, m

components are ready for use in other applications.

ore elaborate documentation, and more extensive testing to ensure

 54

4. Execution-time constraint - This is a measure of the execution time constra

imposed upon a software system. The rating is expressed in terms of the

percentage of available execution time expected to be used by the system or

subsystem consuming the execution time resource. The rating ranges fro

int

m

nominal, less than 50% of the execution time resource used, to extra high,

95% of the execution time resource is consumed.

5. Main-storage constraint - This rating represents the degree of main storage

constraint imposed on a software system or subsystem. Many applications

consume whatever resources are available, making these cost drivers still

relevant. The rating ranges from nominal, less that 50%, to extra high, 95%.

6. Analyst Capability - Analysts are personnel that work on requirements, high-

level design and detailed design. The major attributes that should be

considered in this rating are Analysis and Design ability, efficiency and

thoroughness, and the ability to communicate and cooperate. Analysts that fall

in the 15th percentile are rated very low and those that fall in the 95th

percentile are rated as very high.

7. Applications Experience -

f 6

This rating is dependent on the level of applications

experience of the project team developing the software system or subsystem.

The ratings are defined in terms of the project team’s equivalent level of

experience with this type of application. A very low rating is for application

experience of less than 2 months. A very high rating is for experience o

years or more.

 55

8. Language and Tool Experience - This is a measure of the level of

programming language and software tool experience of the project team

developing the software system or subsystem. Software development include

the use of tools that perform requirements and design representation and

analysis, configuration management, document extraction, library

management, program style and formatting, consis

s

tency checking, etc. In

e of

ratings

tion

ases of

 are left to be determined due to lack of time

n

These inpu

addition to experience in programming with a specific language the

supporting tool set also effects development time. A low rating is given for

experience of less than 2 months. A very high rating is given for experienc

6 or more years.

9. Software Development Schedule - This rating measures the schedule

constraint imposed on the project team developing the software. The

are defined in terms of the percentage of schedule stretch-out or accelera

with respect to a nominal schedule for a project requiring a given amount of

effort. Accelerated schedules tend to produce more effort in the later ph

development because more issues

to resolve them earlier. A schedule compress of 74% is rated very low. A

stretch-out of a schedule produces more effort in the earlier phases of

development where there is more time for thorough planning, specificatio

and validation. A stretch-out of 160% is rated very high.

ts along with their valid ranges have been tabulated in Table 3.1

 56

 57

Table 3.2: Effort Adjustment Factors

Cost Driver Factors
Product Attributes
Required reliability 0.75 to 1.40
Database size 0.94 to 1.16
Product complexity 0.70 to 1.65
Required reusability 1.00 to 1.50
Computer Attributes
Execution-time constraint 1.00 to 1.66
Main-storage constraint 1.00 to 1.56
Personnel Attributes
Analyst capability 0.71 to 1.46
Applications experience 0.82 to 1.29
Language experience 0.95 to 1.14
Project Attributes
Required development schedule 1.00 to 1.23

For that reason, the COCOMO m

This is in contrast with PRICE S, which being proprietary necessitates an external link up

between MOCA and itself.

3.5 Remarks

MOCA me

respectively) provides a fram

the life cycle cost of system

MOCA tool on two case studies. The case studies are described in Chapter 4.

It should be noted that COCOMO is an “open model”, i.e., it is not proprietary.

odel’s equations have been programmed into MOCA.

The solution architecture explained in Section 2.2, in combination with the

thodology and Cost analysis models (described in Sections 3.2 and 3.4

ework to assess the impact of hardware part obsolescence on

 software. This framework was implemented using the

Chapter 4– Results

4.1 Introducti

The applic tion architecture discuss 2 will be

described in this chapter. The first attempt to apply the me s carried out on a

Honeywell engine is example will be explained in Section 4.2.

Although no software-specific data was available for the Honeywell example, the

example served as elped in detecting a ting the salient

features of the dev he methodology was then applied to a Navy test

case provided by P rated the Navy test

ple was validated against the actual costs borne by the Navy. The Navy test

case exam

nal, Inc. manufactures the AS900 engine. The solution

d in the previous chapters was implemented on the AS900 engine’s

Full Authority

b) I/0

c) CPU

on

ation of the solu ed in Chapter

thodology wa

 controller. The details of th

 a heuristic, which h nd demonstra

eloped methodology. T

rice Systems. The cost value gene by MOCA in

case exam

ple and its validation are the subject of Section 4.3.

4.2 Application of the Methodology to the AS900’s FADEC System

Honeywell Internatio

methodology discusse

 Digital Electronic Controller (FADEC)8. The steps in this implementation

were:

1) Identification of elements at the “board-level” in the system hierarchy – The following

is a list of the boards in the system:

a) EMI

8 Referred to as AS900 in the remainder of this chapter

 58

2)

system

There were a total of 1

These three boards wer

the boards, the AS900 also con

necessary to assemble the boa

been loaded into MOCA using

board characteristics within M

shown in Figure 4.1.

Partitioning the system into

 software, some fictiona

hypothesized. Each of these fu

characteristics within MOCA

Figure 4.1: Boards Dialog box
tion to

re

 were

e used in the analysis. It should be noted that in addi

tains two sensors and various mechanical elements that a

rds into an enclosure. Once the board specific part lists had

 comma-delimited files as described in Section 3.3.1,

OCA could be accessed using the “Boards Dialog box”

 functional blocks – In the absence of any data on the

l functions to be performed by the AS900 system

nctions was designated as one functional block.
Figure 4.2: Functional Blocks Dialog box
1 such blocks called B1, B2…B11. “Functional blocks”

 using the “Functional Blocks Dialog could be accessed

59

box” shown in Figure 4.2. The Function point counting parameters and the PRICE S

attributes (APPL, SLOC, PROFAC, CPLXM, PLTFM, UTIL, NEWC, INTEGI,

INTEGE, DSTART) - discussed in Chapter 3 - for each of these functional blocks - were

determined and entered into MOCA and the PRICE S database respectively.

3) Entering Obsolescence data, cost data and schedule of planned productions – As

explain

 MOCA using comma-delimited files as described in Chapter 3.

A production schedule was also entered into MOCA as shown in Figure 4.3

ed in Section 3.3.1, the parts that do not have obsolescence issues within the life

span of the system were combined into “lumped parts” with a total cost and no

obsolescence data, in order to simplify solution processing. Obsolescence dates for the

parts were calculated using the CALCE obsolescence model. For each board, board-

specific part data (quantity, obsolescence data, cost data, block participation and block

role) was entered into

 Figure 4 em .3: Production Schedule for the AS900 syst

 60

Taking the base/start year as 2000, the reorder dates were set as 2002 (504), 20

(664), 2017 (752) and 2019 (752). The number in the parenthesis denotes the qua

be reordered at that date.

The MOCA tool was run after the above-mentioned pre-processing ste

08

ntity to

ps were

carried out. The results obtained have been discussed below. It should be noted that for

e total

all the graphs shown below, the horizontal axis variable – “mean of redesign dates” –

implies the mean of all the redesign dates in the design refresh plan in question, i.e., for a

design refresh plan that has three redesigns planned in the years Y1, Y2 and Y3, th

life cycle cost (which is the vertical axis variable) will be plotted for the year “Y” such

that, ⎟
⎠
⎞

⎜
⎝
⎛ ++

=
3

321 YYY
Y . By clicking on a point on the graph MOCA allows the user to

determine what the individual dates within the design refresh plan are.

4.2.1 Part Obsolescence impact on life cycle cost (Software and Hardware) of the

AS900 system

Figure 4.4 shows the result from an analysis that disregarded the impact of part

obsolescence on system software. The solution that gives the minimum life cycle cost is a

design refresh plan with 3 redesigns scheduled for the calendar dates 2002, 2008 and

2017. Figure 4.5 shows the result from an analysis that took into account the impact of

part obsolescence on both system hardware and system software. In this case the solution

for minimum life cycle cost is a design refresh plan with 2 redesigns scheduled for the

calendar dates 2008 and 2017. Thus, the “best case” solution (optimum refresh plan)

changes when we adopt the solution methodology developed in this thesis.

 61

e impact of

art obsolescence on system software alone (i.e., it neglected the costs due to the impact

0.00E+00

1.00E+07

1.50E+07

2.00E+07

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

H
W

) (
$) 3.00E+07

3.50E+07

No Redesign

5.00E+06

2.50E+07
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

Figure 4.4: Life cycle cost accrued due to impact of part obsolescence on system hardware alone

Minima involves 3 redesigns

4.2.2 Part Obsolescence impact on life cycle cost of AS900 system software alone

Figure 4.6 shows the result from an analysis that took into account th

6.00E+07

)

p

0.00E+00

1.00E+07

2.00E+07

Mean of redesign dates (Year)

Li
fe

 C
y

le
 C

os 3.00E+07t (
H

W
+S

W
) (

$

4.00E+07

5.00E+07

2000 2005 2010 2015 2020 2025

c

No Redesign
1 Redesign

2 Redesigns
3 Redesigns

4 Redesigns

Figure 4.5: Life cycle cost accrued due to impact of part obsolescence on both system software

Minima involves 2 redesigns

and system hardware

 62

on system hardware). It shows that the life cycle cost increases as the “number of

This trend is because software redesign analysis, for the present case study, did

ot include recurring expenditures. Not doing so can make the analysis inaccurate

ecause software maintenance, which is a recurring expenditure, does exist. However, it

as not taken into account because the costs associated with it are insignificant compared

 the hardware costs of the case study example. If we were to introduce a recurring cost

to the system software redesign process, of the same order as hardware costs, then we

ould expect the above trend to change.

T

For every five years that the system goes without software redesign there will be an

obtaine

Figure 4.6: Life cycle cost accrued due to impact of part obsolescence on system software alone

redesigns in a design refresh plan” increases.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

2000 2005 2010 2015 2020 2025

Li
fe

 C
yc

le
 C

os
t (

SW
) (

$)

Mean of redesign dates (Year)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

n

b

w

to

in

w

o that end, a hypothetical constraint was introduced. This constraint was:

“

expenditure of 20 million dollars for maintenance of system software.” The results

d by adding this constraint are depicted in Figure 4.7. As expected, they do show a

departure from the trend of Figure 4.6.

 63

4.2.3 pact of “Design refresh look-ahead time”

ence

related

esign

d

umber of design refresh activities scheduled –

ted

 is

Figure 4.7: Life cycle cost accrued due to “impact of part obsolescence on system software” and
“software maintenance”

pact of “Design refresh look-ahead time”

ence

related

esign

d

umber of design refresh activities scheduled –

ted

 is

Figure 4.7: Life cycle cost accrued due to “impact of part obsolescence on system software” and
“software maintenance”

0.00E+00
1.00E+07
2.00E+07
3.00E+07
4.00E+07
5.00E+07
6.00E+07
7.00E+07
8.00E+07
9.00E+07

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

SW
) (

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

Im

At each design refresh activity MOCA looks ahead and addresses obsolescAt each design refresh activity MOCA looks ahead and addresses obsolesc

issues for all the parts expected to go obsolete within a user-specified range of

time from the date of the design refresh activity in question. This range is called “D

refresh look-ahead time”. Figures 4.8 through 4.10 show the plots of life cycle cost of

software obtained by varying the design refresh look-ahead time. Two salient points are:

• “Design refresh plans” with a fewer number of design refresh activities

entail higher life cycle costs due to increased look-ahead time as compare

to plans that have a larger n

issues for all the parts expected to go obsolete within a user-specified range of

time from the date of the design refresh activity in question. This range is called “D

refresh look-ahead time”. Figures 4.8 through 4.10 show the plots of life cycle cost of

software obtained by varying the design refresh look-ahead time. Two salient points are:

• “Design refresh plans” with a fewer number of design refresh activities

entail higher life cycle costs due to increased look-ahead time as compare

to plans that have a larger n

the latter remaining largely unaffected. the latter remaining largely unaffected.

• “Design refresh plans” with a lower “mean of redesign dates” are affec

more and they incur increased life cycle costs as the look-ahead time

increased.

• “Design refresh plans” with a lower “mean of redesign dates” are affec

more and they incur increased life cycle costs as the look-ahead time

increased.

 64

It can be seen that as the design refresh look-ahead time is increased, the costs for

esign refresh plans having the same number of design refresh activities, tend to plateau

ut i.e., regardless of the mean of the redesign dates, all design refresh plans having “n”

umber of design refresh activities (for Figures 4.8-4.10; n = 1,2,3 or 4) entail the same

fe cycle cost as the look ahead time is increased. This combined with the fact that life

ycle cost of software increases as the “number of redesigns in a design refresh plan”

creases (as seen in Figure 4.6) implies that as the look-ahead time is increased, the

ardware) has to either remain

d

o

n

li

c

in

number of redesigns for minimum cumulative life cycle cost (i.e., both software and

 the same or decrease.h

 65

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.50E+07

3.00E+07

2000 2005 2010 2015 2020 2025
Mean of redesign dates (Year)

fe
 C

y
e

C
o

SW
) (

2.00E+07

Li
cl

st
 (

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.50E+07

3.00E+07

2000 2005 2010 2015 2020 2025
Mean of redesign dates (Year)

fe
 C

y
e

C
o

SW
) (

2.00E+07

Li
cl

st
 (

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

SW
) (

3.00E+07

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

SW
) (

3.00E+07

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

SW
) (

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

SW
) (

$)

No Redesign
1 Redesign
2 Redesigns
3 Redesigns
4 Redesigns

Figure 4.8: Look ahead time of 3 years

Figure 4.9: Look ahead time of 5 years

Figure 4.10: Look ahead time of 10 years

 66

4.3 Validation Of the “Software Design Refresh” Analysis Methodology

The approach to quantifying the impact of hardware obsolescence on software

redesign, as developed in this thesis, was implemented for a Navy test case (VH-60N

Digital Cockpit Upgrade Program). This test case entailed costing software change

arising because of a computer upgrade in a mission critical system. The objective of this

case study was to compare the software change cost generated by MOCA with the actual

cost borne by the Navy. Price Systems provided the data used for this validation.

The computer hardware upgrade is not performed only to manage obsolescence.

However the reason for the upgrade does not matter for the purpose of validating the

developed methodology because this methodology, in essence, calculates the cost of

changing software precipitated by a hardware change. This hardware change could be

due to part obsolescence, a general upgrade, or a combination of the two – as in this case.

The application of the methodology and validation will be discussed in the

following sections.

4.3.1 Implementation of the methodology

• Identification of elements at the “board-level” in the system hierarchy – The

following is a list of the boards that contained parts which were

upgraded/redesigned in the system:

a) 15641-VLF Transmit Terminal (Block I) - B Kit

b) 15811-ARC-171C

c) 15812-HPA w/ Mount

d) 15813-Modem

e) 15G11-Agilent Tech RF Test Set

 67

f) 15H10-KG-33 REPL

g) 15I11-Raytheon Small Switch

h) 15I12-Transmux

i) 15I13-Comm Control Unit

j) 15I14-FD Crew Station

k) 15I15-Comm Crew Station

l) 15I16-Battlestaff Station/Phone

m) 17510-Legacy Interface Converter

n) 17611-Printer

o) 17614-RAID Storage

p) 17615-Network Encryptors

q) 17616-Ethernet Switches (2924XL)

r) 17618-IP Security Router (2621)

s) 17619-Network Protocol Processor

s not available. Hence, fictitious bills of

t

oard participates

 how critical is the former for the functioning

of the latter, the parts on these boards were assigned to the different blocks. The

board specific part-lists for these boards were loaded into MOCA using comma-

deli ection 3.3.1.

It should be noted that the parts-list wa

materials (parts lists) were created for these boards. Using the limited data tha

was available on the hardware to software mapping, i.e., which b

in which functional block(s) and also

mited files as described in S

 68

• Partitioning the system into functional blocks – The main functions being

exe case study system were identified and that

wa ng the system into the following functional blocks.

a))

b) n

c)

d)

e)

f) (B6)

g)

h)

i)

j) B10)

k)

also, fo

countin

provide

SLOC,

discuss

into PRICE S database. The PRICE S EBS used for this purpose is shown in Figure 4.11.

For all the functional blocks the values for PROFAC, CPLXM, PLTFM, UTIL, NEWC,

cuted by the system software in the

s the basis for partitioni

Start Up & System Services (B1

Co trol (B2)

Message Processing (B3)

User Interface (B4)

Communication Control (B5)

Input Output Process

Top Secret Services (B7)

Test And Simulation (B8)

Voice Functions (B9)

Internal Flight Deck Communication (

VLF Transmit Terminal (B11)

The name in the parenthesis is the one used as the identifier inside MOCA and

r convenience, at several places in the text of this thesis. The function point

g parameters were not available for this case. Therefore, the SLOC values

d for the functional blocks were used directly. The PRICE S attributes (APPL,

 PROFAC, CPLXM, PLTFM, UTIL, NEWC, INTEGI, INTEGE and DSTART) -

ed in Chapter 3 – were determined for each of these functional blocks and entered

 69

INT 10049

respect

The SL

 of functional block APPL SLOC

EGI, INTEGE, and DSTART* were set to be 5.2, 1.0, 1.8, 0.5, 1.0, 0.5, 0.5 and

ively. Also, all the functional blocks used C++ as the implementation language.

OC and APPL values are tabulated in Table 4.1

Name

B1 9.99 74,688

B2 6.57 5,673

B3 2.44 10.056

B4 3.50 33,200

B5 6.47 2,492

B6 7.17 88,304

B7 6.16 816

B8 6.00 27,054

B9 5.95 13,03,68

B10 6.16 46,050

B11 8.23 46,675

* PRICE S requires this input to be in the MMYY format.

he functional blocks in the test case. Table 4.1: SLOC and APPL values for t

 70

• Determinin

was placed

objective w

dates and m

redesigned

4.3.2 Validatio

The MOC

The resulting plot

Figure 4.11: P S Work Breakdown Struct est caseRICE ure for the t
g events to be placed on the system timeline - A single reorder event

 on the system timeline at the calendar date of 2004. Since our

as to cost software change due to hardware change, the obsolescence

itigation strategy for the parts were assigned such that they would be

 during the design refresh activity in 2004.

n

A tool was run after the steps outlined in Section 4.3.1 were completed.

 is shown in Figure 4.12.

71

It was determined from the plot that the cost entailed in developing new software

due to redesigning the parts was $82.3 million. This agrees well with the actual cost of

$90,742,245, which is tabulated in Table 4.2

Table 4.2: Actual cost incurred by the Navy (Data provided by PRICE systems)

1 Redesign

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

2000 2005 2010 2015 2020 2025

Mean of redesign dates (Year)

Li
fe

 C
yc

le
 C

os
t (

SW
) (

$)

1 Redesign

Cost of redesign in 2004 = $8.23E7

Figure 4.12: Life cycle cost accrued due to “impact of part obsolescence on system software” and
“software maintenance”

Functional Block Cost
Start Up & System Services $11,226,435
Control $343,695
Message Processing $248,655
User Interface $11,707,410
Communications Control $1,408,770
Input & Output $29,034,885
Top Secret Services $42,570
Test and Simulation $2,035,440
 Voice Functions $10,593,825
Internal Flight Deck Comm. $3,667,620
VLF Transmit Terminal $2,903,010
Sum by Component $73,212,315
System Costs $17,529,9309

Total Costs $90,742,245

 72

4.4 Remarks
Successful validation of the methodology developed in this thesis demonstrates

that it has been structured correctly. A salient feature brought out by the case study of

Section 4.2 is that as software life cycle costs tend to dominate hardware life cycle costs,

it is more beneficial to have fewer design refreshes during the system’s lifetime.

The fact that the impact of hardware part obsolescence on system software

changes the optimum design refresh plan, as demonstrated in Section 4.2.1, clearly

emphasizes the need to take software redesign analysis into account during life cycle

management planning.

 73

Chapter 5– Conclusions and Future Work

5.1 Summary

This thesis presents a methodology to determine the best points in time in the

lifetime of a sustainment-dominated long field life system to schedule design refreshes

when both software and hardware are considered. Life cycle cost of the system is the

metric that has been used to determine the best solution. The methodology was applied to

a test case provided by the Navy (VH-60N Digital Cockpit Upgrade Program).

5.2 Contributions

• This is one of the first attempts at studying the impact of part obsolescence on life

cycle costs accrued by system software. There exists some literature on case-

specific software change precipitated by hardware-change and the costs thereof.

However, there are no general methodologies to be applied in such cases. This

thesis presents the first attempt in that direction.

• This thesis demonstrates that revisions to software necessitated by the new parts

introduced during the system’s field life can involve significant costs, sometimes

exceeding that required for hardware design and qualification.

• This thesis provides a general framework to tackle the problem of software

obsolescence, which arises when a software vendor suddenly discontinues support

or there is migration to different software platforms. Tackling the problem of

software obsolescence often involves switching to a different implementation

language. A different language implies a different number of lines of code even if

 74

new functionality is not being developed, which may result in incurring costs over

the software life cycle. MOCA can calculate the costs arising out of switching

nguage to another.

5.3

odel

that

Gen e redesign analysis

har

Thi

eith

installed and perhaps also tested on all the units. Thus, a portion of the total cost

from one la

 Future Work
Future work in three directions is described below:

5.3.1 Spare Replenishment

Figure 5.1: Model for spare replenishment

MOCA already has a spare replenishment model built within it. This m

calculates the number of spare units that need to be produced to replace existing units

 have failed. Each reorder event is treated as a candidate for spare replenishment.

eration of spares is important from the point of view of softwar

even though the cost to develop new software is independent of the number of

dware units that it is going to run on.

s is because every time a new batch of hardware units is to be fielded (due to

er spare replenishment or a reorder event), newly developed software has to be

 75

inv

fiel

imp

Consider a system with a triangular distribution of time to failure. Let the origin

of the t e field. Let the points 1,2,3

and 4 on the timeline denote reorder events. In this model –each reorder event is viewed

as a candidate for replenishment

 At each reorder event – the originally planned number of units plus the number

of spare units to replace the ones that have failed prior to the reorder event have to be

fielded. Each triangle in the figure represents the distribution of time to failure for the lot

of units (spares plus originally planned) supplied at that reorder.

Thus, each lot of units (spares generated plus the originally planned units) at a

stribution identical to that of other lots but these

distributions are offset from each other on the time axis. By keeping track of all of these

lots, the spares to be generated can be calculated. The method for doing so is illustrated

below:

For

•

23 egion between 2 and 3) of this lot fails

between Reorder 2 and Reorder 3…and so on.

• 2 12 1

olved in software redesign is dependent on the number of hardware units being

ded. A new model for doing so has been outlined below. It needs to be

lemented.

ime axis in Figure 5.1 be the time when it is put in th

reorder event follows a failure di

 figure 5.1, let,

Q1 units supplied at Reorder 1

o A fraction “η112” (green region between 1 and 2) of this lot fails before

Reorder 2

o A fraction “η1 ” (red + blue r

At Reorder 2, originally planned Q units + (η1) Q units supplied

 76

o A fraction “η223” (red region between 2 and 3) of this lot fails between

Reorder 2 and Reorder 3

o A fraction “η2

is lot fails

een Reorder 2 and Reorder 3…and so on.

These f

g fault tree based analysis of functional blocks for

software design refresh analysis was described in Section 2.3. This approach has not been

sian Belief Networks

(BBN) ,

 part on the functional block(s) that it participates in. Also, the communication

A and PRICE S needs to be made more efficient by reducing the

ount of data that is required to go back and forth at this point in time.

.

34” (yellow + green region between 3 and 4) of th

betw

ractions “η” can be found out in MOCA by calculating the area under the curve

between two reorders for the given probability distribution.

5.3.2 Software Design Refresh by Fault Tree Based Analysis of Functional Blocks

 A methodology employin

implemented in MOCA yet. Doing so in the future will enable MOCA to take into

account software reliability issues as well because fault trees are commonly used for

studying software reliability. There is literature on combining Baye

with fault trees to improve software reliability analysis in complex systems [Pai

2001]. Therefore, this might be a worthwile option to explore in the future.

5.3.3 Improving Efficiency

There is scope to come up with better techniques that quantify the impact of an

affected

link between MOC

am

 77

Appendix A - Function/Feature Point Counting

A.1 Overv

In t

discussed. This will be followed by definitions that are relevant to these counting

ll

e

ust remain constant. It is for this reason that

using source lines of code as a unit-of- functionality m

ultiple

languages.

iew

his section, the factors used in Function/Feature Point Counting will be

techniques. Lastly, the procedure to obtain the “counts” and size software using them wi

be explained.

A.1.1 Introduction to Function/Feature Point Counting and the factors used in thes

techniques

In the early stages of a software development process, the designer is concerned

about the functionality to be delivered by the software, the development time, and the

development cost. The ability to monitor these elements is influenced by a myriad of

factors including the complexity of the language, the availability of skilled resources, and

the techniques and methods used. An accurate “cost-per-unit-of-functionality” measure

will produce results that are affected by all of these factors - but the unit of functionality

itself cannot be altered by these factors; it m

easure is problematic because the

deliverable size varies based on language complexity (different languages produce

different line-of-code counts for the same amount of functionality). Thus, a line of code

measure will not provide a consistent unit-of- functionality measure across m

 78

A unit-of-functionality measure must be able to accurately quantify the

functionality (value) being delivered. It was this rationale that led to the development of

g.

med

e

erated accurately in terms of the following five items [Dreger, 1989]:

1. Outputs – Items of information processed by the functional block for the end user

2. Inputs – Items of data sent by the user to the functional block for processing and

to add, change, or delete something.

3. r

lves

Cs

adjustment factor, which is then applied to the unadjusted function point

count for a final function point calculation. All this will be explained in greater detail in

the following sub-sections.

Function point countin

In the late 1970’s and early 1980’s the software measurement technique, ter

“Function Points” was introduced, [Albrecht, 1981]. Albrecht hypothesized that th

observable functionality of software (in the context of this thesis - a functional block)

could be enum

Inquiries – Considered a simple output, they are direct inquiries into a database o

master file that look for specific data, use simple keys, required immediate

response, and perform no update functions

4. Logic Files – Data stored for a functional block, as viewed by the user

5. Interfaces – Data stored elsewhere by another functional block but used by the

one under evaluation

These five functional elements are assessed based on their complexity and used to

evaluate an unadjusted function point count. The next step in the methodology invo

evaluating a series of general systems characteristics (GSCs), which include such things

as performance, configuration, complexity, and reusability. The evaluation of the GS

produces an

 79

The

• Function points stay constant regardless of programming languages used.

• Function points are supported by many software cost estimating tools.

• Function points can be mathematically converted into number of logical

code statements for many languages.

The weaknesses of function point metrics are [Jones, 2000]:

• Accurate counting requires certified function point specialists.

ation is of unknown accuracy.

nversion rules to International

cult to convert from SLOC to a function point count.

Function point analysis is considered by many to be the most accurate and

effe t

mpared to other forms of software sizing makes function

 main strengths of function point metrics are [Jones, 2000]:

• Function point counting can be time-consuming and expensive.

• Function point counting autom

• Function point counts are erratic for applications or systems below 15

function points in size.

• Function point variations have no co

Function Point User’s Group (IFPUG) function points.

• Many function point variations have no “backfiring” conversion rules,

making it diffi

ctive software metric ever developed. Counting accuracy by certified function poin

counters was found to have an accuracy of plus or minus 10% of actual software size in a

study commissioned by IFPUG [Jones, 2000].

Function points are a good choice for the analysis of many different types of

software projects and can provide information for different types of analyses, such as

software-reuse analysis, object-oriented economic analysis, and even full-life cycle

analysis. This versatility co

 80

poi easurement, which

is desired in the context of this thesis.

• In 1986, Software Productivity Research (SPR) developed an experimental

method for applying Function Point logic to system software such as operating

systems, telephone switching systems, and the like [Jones, 1986]. The resulting

metric was called the SPR Feature Point and is a superset of the IBM Function

Point metric [Albrecht, 1981]. It introduces a new parameter- number of

algorithms- in addition to the five standard Function Point parameters discussed

earlier in this section. The m

estimate software size for system ic

com le

The typical ratio of feature points to bedded real-time

application 1

Thus, the a e original

functional t

definition of “a re

engine

 specific computer program” [Jones,

1996].

nt counting a good choice for non-application-specific software m

otivation behind Feature Points was to be able to

 software characterized by high algorithm

p xity.

function points for an em

 is .35 to 1 [Jones, 1998].

ddition of the algorithm factor augmented the usage of th

me rics. Since Feature Points are driven by algorithmic complexity, a

lgorithm” is appropriate. An algorithm is defined in standard softwa

ering texts as the set of rules that must be completely expressed to solve a

significant computational problem [Hetzel, 1993]. For Feature Point counting purposes,

an algorithm can be defined in the following terms: “An algorithm is a bounded

computational problem that is included within a

 When determining what algorithms are countable and significant, one must

follow these supplemental rules [Jones, 1998]:

• The algorithm must deal with a solvable problem.

 81

• The algorithm must deal with a bounded problem.

• The algorithm must deal with a definite problem.

•

•

•

• f

•

•

 concepts of sequence, if-then-else, do-while, CASE, etc.

sheet,

a

ight

bases, et

n

ts market implementation.

ld of data. It can also be an

element of control information, such as the “Enter” key when it is needed to

• The algorithm must be finite and have an end.

The algorithm must be precise and have no ambiguity.

The algorithm must have an input or starting value.

The algorithm must have output or produce a result.

The algorithm must be implementable in that each step must be capable o

execution on a computer.

The algorithm can include or call upon subordinate algorithms.

The algorithm must be capable of representation via the standard structured

programming

A.1.2 Definitions [IFPUG, 1999]

1. Application - This is a software package, such as a word processing, spread

or checkbook package etc.

2. Application User (simply referred to as "user") - A user is someone who needs

software application to perform his or her duties. For example, a user set m

include data entry clerks, managers who need certain reports, customers who

receive bills, system administrators who need to query the software's data

al. A user set does not normally refer to those whose role is software productio

such as programmers, database designers, or release managers; their role is to

develop the software, not to use it after i

3. Data Element Type (DET) - Usually a DET is a fie

 82

initiate the process of data input into an internal data file. In general, the more

), the higher its function point

ve field. The number of DETs is

nd the function type's

ging, and/or deleting data

d

software package. An EI has three, four, or six

erage, or high

ol

ternal

input itself is an elementary process. The processed data maintains one or more

cessed control information may or may not maintain

5. process that allows the user to simply read or retrieve

6. lication, but

,

DETs in a function type (such as an external input

size. "A unique, user-recognizable, non-recursi

used to determine the complexity of each function type a

contribution to the unadjusted function point count."

4. External Input (EI) - EI is the process of adding, chan

from an internal database. An example would be entering check numbers an

amounts into a checkbook

unadjusted function points depending on whether it is of low, av

size/complexity. The textbook definition includes "... processes data or contr

information that comes from outside the application's boundary. The ex

internal logical files. The pro

an ILF."

External Inquiry (EQ) - The

existing data from a database using certain criteria, much like an automated card

catalog system in a public library. An EQ has three, four, or six unadjusted

function points depending on whether it is of low, average, or high size and

complexity. The textbook definition includes "... an elementary process made up

of an input-output combination that results in data retrieval. The output side

contains no derived data. No ILF is maintained during processing."

External Interface File (EIF) - A database maintained in another app

accessed by the application being counted on a read-only basis. An EIF has five

 83

seven, or 10 unadjusted function points depending on whether it is of low,

average, or high size/complexity. The textbook definition includes "... a use-

identifiable group of logically related data or control referenced by the

application, but maintained within the boundary of another application. This

means an EIF counted for an application must be an ILF in another application.”

r

edit

8. Function - One standard unit of delivered or finished software size,

7. External Output (EO) - The process that yields a completed report, output file, o

any other type of message set, which is sent to users. The report often contains

data in fields that require calculations to derive. Examples could include cr

card bills, completed spreadsheet reports, or state tax refunds. An EO has four,

five, or seven unadjusted function points depending on whether it is of low,

average, or high size and complexity. The textbook definition includes "... is an

elementary process that generates data or control information sent outside the

application's boundary."

Point

analogous to a gallon of milk, a case of beer, or a cord of wood. The size of a

software package, from the viewpoint of a user, is its number of function points.

A function point is unadjusted until it is weighted according to the overall

application value adjustment factor. When using the term function point, it is

usually understood that it refers to the adjusted or final function point. IFPUG

describes it as "A metric that describes a unit of work product suitable for

quantifying application software."

 84

9. sed to

ail in

10. n.

11.

12.

tirely within the application boundary. An FTR must

A.1.3

Algorit

comple

referen ity.

Table A ty

levels and hence the weights (in brackets) for each of these factors [IFPUG, 1999].

Multiplying the number of instances of each type (low, average, high) of each parameter

General Systems Characteristics (GSCs) - GSCs are 14 additional factors u

determine size/complexity of software. These will be discussed in greater det

Section 2.1.3

 Internal Logical File (ILF) - The ILF is a database that is inside the applicatio

An ILF has seven, 10, or 15 unadjusted function points depending on whether it

is of low, average, or high size/complexity. It is also defined as " a user

identifiable group of logically related data or control information maintained

within the boundary of the application."

 Record Element Type (RET) - An RET is user recognizable sub group of data

elements within a Logic File or an Interface file, also defined as "User

recognizable subgroups of data elements within an ILF or EIF"

 File Type Referenced (FTR) - Each major logical group of user data or control

information maintained en

also be a Logic File or an Interface file.

Counting Function Points and Sizing System Software

Each of these factors (Outputs, Inputs, Inquires, Logic Files, Interfaces and

hms) discussed above can be classified as “Low” complexity, “Average”

xity, “High” complexity depending on the number of Files and Data Elements

ced by each of them and then assigned “weights” corresponding to the complex

.1 through Table A.5 constitute the guideline for establishing the complexi

 85

by c

give an

the orresponding weight and then adding up the results for all the parameters will

 Unadjusted Function Point total.

Files Referenced Data Elements Referenced

 1-4 5-15 Greater than 15

Less than 2 Low (3) Low (3) Average (4)

2 Low (3) Average (4) High (6)

Greater than 2 Average (4) High (6) High (6)

Files Referenced Data Elements Referenced

 1-5 6-19 Greater than 19

Less than 2 Low (4) Low (4) Average (5)

2 or 3 Low (4) Average (5) High (7)

Greater than 3 Average (5) High (7) High (7)

Files Referenced Data Elements Referenced

 1-5 6-19 Greater than 19

Less than 2 Low (3) Low (3) Average (4)

2 or 3 Low (3) Average (4) High (6)

Greater than 3 Average (4) High (6) High (6)

Table A.1: Complexity values for Inputs

Table A.2: Complexity values for Outputs

Table A.3: Complexity values for Inquiries

 86

Record Element Types (RET) Data Elements Referenced

 1 to 19 re 20 - 50 51 or Mo

1 RET Low (7) Low (7) Av erage (10)

2 to 5 RET Low (7) Average (10) High (15)

6 or More RET A High High (verage

(10)

 (15) 15)

Record Element Types (RET)

Table A.4: Complexity values for logic files

Table A.5: Complexity values for logic files

Data Elements Referenced

 1 to 19 20 - 50 51 or More

1 RET Low (5) Low (5) Average (7)

2 to 5 RET Low (5) Average (7) High (10)

6 or More RET Average

(7)

High (10) High (10)

 87

The Unadjusted Function Point (UFP) total is then multiplied by a “value

adjustment factor” in order to obtain an Adjusted Function Point Count. This “value

adjustm ined using the “total degrees of influence (TDI)”

wh h in turn is calculated on the bas g t al System tics

(GSC) as described below.

haracteristics are prod ir tha the system

as a whole and not just a particular function. The 14 GSCs are listed in Table 2.6

Table A.6: General Characteristics [IFPUG, 1999]

ent factor (VAF)” is determ

ic is of ratin he Gener Characteris

These c uction env onment factors t influence

System

General System Characteristic Brief Description
1. Data communications How many communication facilities are there to

ange of information
?

aid in the transfer or exch
with the application or system

2. H ocessing functions
handled?

Distributed data processing ow are distributed data and pr

3. Performance D er r sponse ti hput? id the us equire re me or throug
4. Heavily used configuration How heavily used is the current hardware

pl er ication ed? atform wh e the appl will be execut
5. Transaction rate How frequently are transactions executed - daily,

w nteekly, mo hly, etc.?
6. On-Line data entry What percentage of the information is entered

On-Line?
7. End-user efficiency Was the application designed for end-user

efficiency?
8. On-Line update How many Logic Files are updated by On-Line

transaction?
9. Complex processing Does the application have extensive logical or

mathematical processing?
10. Reusability Was the application developed to meet one or

many user’s needs?
11. Installation ease How difficult is conversion and installation?
12. Operational ease How effective and/or automated are start-up, back

up, and recovery procedures?
13. Multiple sites Was the application specifically designed,

developed, and supported to be installed at
multiple sites for multiple organizations?

14. Facilitate change Was the application specifically designed,
developed, and supported to facilitate change?

 88

ions

UG,

0 Not

 Moderate influence

A

4 Significant influence

5 Strong influence throughout

e

gr DI).

e tor is calc

us

f point (FP) calcul

u being deliv

This function point can then be correlated to SLOC using Table 2.7

The degrees of influence range on a scale of zero to five, from no influence to

strong influence. Each characteristic is assigned the rating based upon detail descript

provided by the International Function Point Users Group (IFPUG) 4.1 Manual, [IFP

1999]. The ratings are:

 present, or no influence

1 Incidental influence

2

3 verage influence

The sum of the scores of th fourteen characteristics in Table 2.6 gives the Total

De ee of Influence (T

 Th value adjustment fac ulated using the formula

()TDI01.065.0 += VAF

Th , we have

))((UFPVAF FP =

The inal function ation yields a single number that represents the total

amo nt of functionality ered.

 89

 90

Level Source Statements Per Function Poin

Language
Nominal

t
Low Mean High

Macro ass
C

Basic assembly 1 200 320 450
embly 1.5 130 213 300

2.5 60 128 170
3 75 107 160
3 65 107 150

PASCAL 3.5 50 91 125
4 65 80 95

ADA 83 4.5 60 71 80
6 30 53 125

6.5 28 49 110
c 10 20 32 37

15 15 21 40
SQL 27 7 12 15

FORTRAN
COBOL

PL/I

C++
ADA 95
Visual Basi
SMALLTALK

Table 2.7: Ratios of Logical Source Code Statements to Function Points for Selected Programming Languages
Using Version 4.1 of the IFPUG Rules [Jones, 2001].

 90

Appendix B - MOCA / PRICE S Inputs Pertinent to Software Redesign

Analysis [Singh, 2001]

MOCA inputs are divided into 5 categories, which are:

• The part inputs characterize parts in the global parts database of MOCA. All the parts

used in the system defined in MOCA are linked to this database and therefore any

changes in this database of inputs would reflect everywhere the part(s) are present in

the system.

• The board inputs characterize the sub-system level assembly of the system. A board is

a sub-system that contains multiple parts. All parts that belong to the system must

belong to at least one board. The system parts list is obtained by accumulating the

part list from each board.

 The system inputs characterize the overall system on which MOCA runs its analysis.

All the entities in this data affect the whole system, e.g., reorder would be at a system

level requiring availability of all the piece parts etc.

 The solution control inputs characterize the options that may be set to study additions

and variations in the analysis, e.g., “look ahead time” may be set here etc.

art Inputs

1. Part Number – A unique entry in the global database to identify between any two

distinct parts. This number could be the manufacturer part number or a company

specific part number as long as they are unique. The link that binds parts used in

•

•

P

 91

the system/board to the global database is the part number and therefore any

ambiguity in its declaration is problematic.

2. Part Cost – Cost of a single instance of the part in dollars.

bsolescence. In this thesis the

s

ence Management Strategy –This input determines what is done on a

y.

o

 is independent of the part cost, and is a measure of

rt category. This input indicates

 Assorted

and Custom Defined. The “Assorted” part type is used to represent an aggregate

ts and their instances. All the parts, which do not have any obsolescence or

part is synthesized as a result of a design refresh, the obsolescence date is reset

3. Obsolescence Date – The predicted date of part o

data for obsolescence is obtained from either TACTech [TACTech, 2000]

analysis or from the CALCE Obsolescence Model [Solomon, 1999] (which use

trends in part sales data

4. Obsolesc

part-specific basis at an obsolescence event. Even though re-design is handled

separately by MOCA, it is also considered an obsolescence management strateg

5. Replacement cost – The cost of replacing a part in a system whenever it needs t

be replaced. This input

difficulty, complexity and time requirement to remove the part from the system

and replace it with a new one.

6. Part Category – Every part belongs to a certain pa

the type of part being used. Several part categories are available in MOCA. These

are: Microcircuit, Diode, Transistor, Integrated circuit, Semiconductor,

of par

maintenance issues (e.g., most passives and mechanical devices), are lumped

together into a single part to reduce computation time. A “Custom Defined” part

is a part type for which no single standard part type could be used. When a new

 92

based on a default and a lifetime is obtained based on the part category of the

modified part.

 determine the cost of

ed by

8. s indicates which functional block(s) the part participates

n

9.

nal

are High, Average, Low and None signifying, as

Board

1.

e

7. Cost Multiplier for Redesign – The cost multiplier is used to

a part after a replacement of the part, i.e., if part “A” is replaced by a part “B”

then the new part “B” will have a cost equal to the cost of part “A” multipli

this redesign cost factor.

Block Participation - Thi

in. In other words, it indicates which functional blocks need the hardware part i

question to implement their functionality.

Block Role - As mentioned in item 8 above, “block participation”, indicates

which functional block a hardware part participates in. The input “block role”

contains information on the significance of the hardware part in that functio

block, relative to the other hardware parts in it. MOCA allows four possible

choices for “block role”. These

the names would suggest, the relative contribution of a hardware part in

implementing the functionality of the functional block in question. Assigning a

value to the input “block role” would draw on the system designer’s experience to

judge the relative significance of each hardware part vis-à-vis every functional

block that it participates in.

Inputs

Total Cost – Cumulative cost of the board including part costs, assembly cost, and

any other integration cost. This field stores the user input for the initial cost of th

board. The initial cost is the base cost of the board at the system field start. The

 93

cost of the board may change at each obsolescence event due to change in the

constituent part costs.

3. urred to reassemble the board after it is repaired or

4. st the board. Functional testing is

5.

6. The

System

1.

2.

Product Support Date – Expected date when the system will be no longer

4.

2. Disassembly Cost – Cost incurred to disassemble the board from the system for

repair or replacement. This is obviously dependent upon placement of the board

in the system and ease of access to it.

Assembly Cost – Cost inc

when it is being replaced back into the system. This cost if dependent upon

placement of the board in the system.

Test Cost – Cost incurred to functionally te

performed on every board when it is manufactured and when it is repaired.

Number of Lumped Parts (also called “Assorted”) – Number of unique parts

lumped to make a “Lumped part” for this particular board.

Number of Lumped Components – This is an extension of the above number.

difference being that it counts the total number of instances of parts lumped rather

than only the number of unique parts.

 Inputs

Original Quantity – The quantity of units manufactured for the initial order.

Field Start Date – Expected date when the first system will be deployed in the

field.

3. End of

be supportable by the manufacturer.

System events:

 94

a. Reorder – A reorder date and expected quantity of systems reordered w

uncertainties is

ith

required for this event.

ines).

Sol

1. sis

esh optimization and life cycle cost

2. f

en the tool saves the log in name_rdo.log.

ile Name – This field is provided to change the output file name. Same

ber of moving re-designs (as opposed to “fixed” redesigns) to be used for

e-designs for design refresh optimization

o option is chosen then all the numbers of re-designs possible

b. Redesign – A date of expected redesign with uncertainty is required for

this event. This is a “fixed” redesign (as opposed to a variable redesign

that the MOCA software determ

ution Control Inputs

Log File (On/Off) – This option is provided to keep track of important analy

steps taking place while the design refr

analysis takes place.

Combine Reorders (On/Off) – This option is provided to enable combining o

reorders within a specified time span from the start date specified in the system

setup window.

3. Log File Name – This field is provided to change the log file name. If the analysis

is a simple life cycle cost estimation, then the tool saves the log in name_rlc.log

and if design optimization is running th

4. Output F

rules as the log file (above) are followed to name the output file.

5. System with (up-to/exactly, number of moving redesigns) – This field specifies

the num

design refresh optimization analysis. If exactly option is chosen then MOCA uses

only the specified number of moving r

algorithm. If up-t

 95

up- h

options

System Setup

1. Qualifi s provided to facilitate re-

her of the two levels: i) board, or ii) system. Depending on the

 other particulars should be board specific.

lected in the complete system/global database.

4.

chosen. Currently the base year is a constant set to year 2000.

to t e number specified are used. Plotting of previous results follows from the

 chosen here.

Inputs

cation at (System/Board) – This option i

qualification at eit

option chosen, the interface adjusts and provides fields for necessary inputs in

appropriate places, i.e., for board level re-qualification the inputs for re-

qualification cost and

2. Set Part Category Lifetime – The button is provided to set the average mean

lifetime for the part type categories. Any change made in this field it is

automatically ref

3. Set Price Compatibility Options – This button is provided to open a window

where the various Price Systems Inc. compatibility options can be specified.

Some of the options are:

a. Use Price Systems calculations for design refresh calculations or use

MOCA three-tiered model for design refresh calculations.

b. Use start date of design refresh and end dates for production of first

prototype.

c. Use the end of last prototype and start of production.

Economic Inflation Rate – This field is provided to specify the yearly inflation

rate (average) to calculate the real value of the money in terms of the base year

 96

5.

e related issues for all the parts expected to go obsolete

within a user-specified range of time from the date of the design refresh activity in

range is called “Design refresh look-ahead time”

assumed

7. ecify the

8. ter stage

 manufactured

9. te

e.g., transistor, diode, etc.) area ratio. This is necessary

to c u

10. Time B ided to specify

the tim rice

H mod is only used if the Price compatibility option for re-design

cal

ility option for re-

Look-ahead time – At each design refresh activity MOCA looks ahead and

addresses obsolescenc

question. This

6. Synthesis Obsolescence Index – This field is provided to specify the new

TACTech obsolescence index for the synthesized part when it is being replaced or

redesigned at the design refresh activity. This index can vary between 1 and 5

(inclusive). A default of 2.0 is used.

Synthesis Obsolescence Confidence – This field is provided to sp

confidence in the value of TACTech risk indices.

Inventory – This field is not used in MOCA at this time, however at a la

MOCA may consider the inventory carried over by the spares or

systems.

Chip to Discrete Area Ratio – This field is provided to specify the approxima

chip (IC) to discrete part (

alc late the area units of the board required by the Price Systems tool.

etween Design Start and First Prototype – This field is prov

e between the start date field and the first prototype date field in the P

el. This field

culations in enabled.

11. Time Between First Prototype and Last Prototype - This field is used to specify

the time between the first prototype date field and the last prototype date field in

Price System H model. This field is only used if Price compatib

 97

design calculations in enabled. This field and the field explained above are u

collectively to force the increase in re-design cost for sensitivity analysis.

 Combine Reorders (yrs) – This field is provided to set the number of years (time

span) to be used to combine reorders in the combine reorder algor

sed

12.

ithm. Combine

PR

11. s) of software, described by

12. Productivity Factor (PROFAC): A calibrated parameter, which relates the

re

Reorders Start Date – This field is provided to set the date from which the

combine reorders algorithm starts combining reorders. Usually this coincides with

the field start date field.

ICE S Inputs

 Application (APPL): a measure of the type (or type

one of seven categories (mathematical, string manipulation, data storage and

retrieval, on-line, real-time, interactive, or operating system).

software program to the productivity, efficiency/inefficiencies, software

development practices and management practices of the development

organization.

13. Complexities (CPLXM, CPLX1, CPLX2): Three complexity parameters which

relate the project to the expected completion time, based on organizational

experience, personnel, development tools, hardware characteristics, and other

complicating factors.

14. Platform (PLTFM): the operating environment, in terms of specification, structu

and reliability requirements.

 98

15.

17. nents

18. Integration (External) (INTEGE): Effort to integrate various software modules

together to form an integrated and tested software system.

DSTART/DEND): Software project start and/or end dates.

 Utilization (UTIL): Percentage of hardware memory or processing speed utilized

by the software.

16. New Design/New Code (NEWD/NEWC): Percentage of new design and new

code.

 Integration (Internal) (INTEGI): Effort to integrate various software compo

together to form an integrated and tested software module.

19. Schedule (

20. Optional Input Parameters: Financial factors, escalation, risk simulation.

 99

BIBLIOGRAPHY

Albrecht, A., “Measuring Application Development Productivity,” Programming
Productivity: Issues for the Eighties, IEEE Computer Society Press, Washington
DC, 1981.

Baca, M., “TACTech Electronic Component Obsolescence Management”, Presentation to
Boeing Electronic Component Management Users’ Forum, March 4, 1997.

Beland, S.C., and BonJour, B., “Functional Failure Path Analysis of Airborne Electronic

Hardware”, DASC, Philadelphia, PA, Oct. 2000.

Boehm, B., Clark, B.K., Horowitz, E., Madachy, R., Selby, R.W., and Westland, C.,

“Cost Models for Future Software Processes: COCOMO 2.0,” Annals of Software
Engineering, 1995.

Boehm, B., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981.

Condra L. W., “Combating Electronic Component Obsolescence by Using Common
Processes for Defense and Commercial Aerospace Electronics”, IECQ-CMC
Avionics Working Group1, NDIA Paper document, September 1999.

Condra L. W., Presentation to Boeing Commercial Airplane Group Electronic

Component Management Program Users' Forum II, March 1997.

DeBardelaben, J., “An Optimization-Based Approach for Cost-Effective Embedded DSP

System Design”, Ph.D. dissertation, Georgia Institute of Technology, May
1998.

Dehlinger, J., and Lutz, R., "Software Fault Tree Analysis for Product Lines," 8th IEEE

International Symposium on High Assurance Systems Engineering, Tampa, FL,
2004

Dreger, J. B., Function Point Analysis, Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, 1989.

Hart, K., and Mitchell, T., “Aging Aircraft" Military Aerospace Technology, Apr 18,

2003.

Hetzel, B., Making Software Measurement Work, QED Publishing Group, Boston, 1993.

IFPUG, International Function Point Users Group: “Function Point Counting Practices

Manual,” Release 4.1, 1999

 100

JACG, Joint Aeronautical Commanders’ Group: Flexible Sustainment Guide, Change 2,
July 1999.

Jones, T.C., Applied Software Measurement, McGraw-Hill, Inc., New York, 1996.

Jones, T.C., Estimating Software Costs, McGraw-Hill, Inc., New York, 1998.

Jones, T.C., Programming Productivity, McGraw-Hill, Inc., New York, 1986.

Jones, T.C., Table of Programming Languages and Levels – Version 8.2; Software

Productivity Research, Burlington, MA, 2001.

Leveson, N. G., “Safeware: System Safety and Computers.” Addison-Wesley, Reading,

MA, USA, 1995.

McArthur, C. J., and Snyder, H. M., “Life Cycle Cost – The Logistics Support Analysis

Connection”, Proceedings of the IEEE National Aerospace and Electronics
Conference NAECON, Vol. 3, pp. 1206-1209, May 1989

MOCA user’s guide (http://www.calce.umd.edu/contracts/MOCA/MOCA_Page.htm),

June 2003

Pai, G.J., and Dugan, J.B., "Enhancing Software Reliability Estimation using Bayesian

Networks and Fault Trees," Proceedings of the IEEE International
Symposium on Software Reliability Engineering, Nov. 2001

Parametric Estimating Initiative (PEI) Parametric Estimating Handbook

(http://www.ispa-cost.org/PEIWeb/newbook.htm), March 2004

Park, R. E., “The Central Equation of the PRICE Software Cost Model”, 4th COCOMO

User's Group meeting, Nov 1988

Sandborn, P.A., and Singh, P., "Electronic Part Obsolescence Driven Design Refresh

Optimization," Proc. FAA/DoD/NASA Aging Aircraft Conference, San
Francisco, CA, September 2002.

Singh, P., “Design refresh planning optimization driven by electronic part obsolescence”,

M.S. Thesis, Department of Mechanical Engineering, University of Maryland
College Park, December 2001

Solomon R. “Life Cycle Mismatch Assessment and Obsolescence Management of

Electronic Components,” Ph.D. Dissertation, University of Maryland, College
Park, MD, 1999

TACTech, data collected from TACTech in collaboration with Honeywell Inc., 2000

 101

Wong, K., "On Inserting Program Understanding Technology into the Software Change
Process", 4th International Workshop on Program Comprehension, March
1996

Wright M. B., Humphrey D., and McCluskey F. P., “Uprating Electronic Components for

Use Outside their Temperature Specification Limits,” IEEE Transactions on
Components, Packaging, and Manufacturing Technology, Part A, Vol. 20, No.
2, pp. 252-256, June 1997.

 102

	TABLE OF CONTENTS.pdf
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	Thesis_Final_fun.pdf
	Chapter 1 - Introduction
	1.1 The Use of Commercial Off the Shelf (COTS) Technology in
	1.2 The Problem of Component Obsolescence
	1.3 Motivation For Tackling Part Obsolescence in a Proactive
	1.4 The Impact Of Part Obsolescence On System Software
	The Objective of this Thesis

	Chapter 2– Solution Architectures
	Hardware Obsolescence Precipitated Change in System Software
	2.2 Software Design Refresh by Quantifying Change in the Num
	These steps are repeated for all the candidate design refres
	Software Design Refresh by Fault Tree Based Analysis of Func
	2.4 Remarks

	Chapter 3 - Software Redesign Analysis Applied to Design Ref
	3.1 Introduction
	Overall MOCA Methodology And The Incorporation Of Software R
	Step 2: Determine the order of known events
	Remarks

	3.3 MOCA Interfaces For Collecting Inputs Pertinent To Softw
	3.4 Cost Analysis Models
	3.4.1 PRICE S
	Processing

	3.4.2 COCOMO
	COCOMO: Software Size Estimation and Reuse
	COCOMO: Software Development Effort Estimation
	COCOMO: Software Maintenance Effort Estimation
	COCOMO: Software Schedule Estimation
	Summary of the Major Inputs to the COCOMO Model
	Product Attributes
	Computer Attributes
	Personnel Attributes
	Project Attributes

	4.1 Introduction
	4.2 Application of the Methodology to the AS900’s FADEC Syst
	4.2.1 Part Obsolescence impact on life cycle cost (Softw

	4.2.2 Part Obsolescence impact on life cycle cost of AS900
	Figure 4.6 shows the result from an analysis that took into
	B1
	Total Costs

	4.4 Remarks

	Chapter 5– Conclusions and Future Work
	5.1 Summary
	This is one of the first attempts at studying the impact of
	This thesis demonstrates that revisions to software necessit
	5.3 Future Work

	Appendix A - Function/Feature Point Counting
	A.1 Overview
	A.1.1 Introduction to Function/Feature Point Counting and th
	A.1.2 Definitions [IFPUG, 1999]
	A.1.3 Counting Function Points and Sizing System Software
	Files Referenced
	The Unadjusted Function Point (UFP) total is then multiplied

	Appendix B - MOCA / PRICE S Inputs Pertinent to Software Red

