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Many applications of accelerators, such as free electron lasers, pulsed neutron 

sources, and heavy ion fusion, require a good quality beam with high intensity. In 

practice, the achievable intensity is often limited by the dynamics at the low-energy, 

space-charge dominated end of the machine.  Because low-energy beams can have 

complex distribution functions, a good understanding of their detailed evolution is 

needed. To address this issue, we have developed a simple and accurate tomographic 

method to map the beam phase using quadrupole magnets, which includes the effects 

from space charge. We extend this technique to use also solenoidal magnets which 

are commonly used at low energies, especially in photoinjectors, thus making the 

diagnostic applicable to most machines. We simulate our technique using a particle in 

cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we 

report a number of experiments to study and optimize injection, transport and 

acceleration of intense space charge dominated beams. We examine phase mixing, by 



  

studying the phase-space evolution of an intense beam with a transversely 

nonuniform initial density distribution. Experimental measurements, theoretical 

predictions and PIC simulations are in good agreement with each other. Finally, we 

generate a parabolic beam pulse to model those beams from photoinjectors, and 

combine tomography with fast imaging techniques to investigate the time-sliced 

parameters of beam current, size, energy spread and transverse emittance. We found 

significant differences between the slice emittance profiles and slice orientation as the 

beam propagates downstream.  The combined effect of longitudinal nonuniform 

profiles and fast imaging of the transverse phase space provided us with information 

about correlations between longitudinal and transverse dynamics that we report 

within this dissertation.  
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Chapter 1 Introduction 

Intense particle beams have applications in many different research areas 

which impact our lives. Such applications include accelerator-driven neutron sources 

[1], higher-luminosity high-energy colliders, free electron lasers (FEL) [2], heavy-ion 

inertial fusion drivers (HIF) [3], cancer therapy [4], and nuclear waste treatment [5]. 

Neutron sources and FELs have important applications in material research, helping 

us better understand the structure of matter and improving the quality of materials.   

Free electron lasers contribute to the probing and processing of components for 

electronics, microtechnology and nanotechnology.  Finally, heavy-ion inertial fusion 

drivers promise the production of large and unlimited amounts of energy which can 

be harnessed to provide an affordable and environmentally attractive source of 

electrical power. All these applications are premised on the considerable challenge of 

generating, transporting, accelerating, and focusing large amounts of particles 

confined in a narrow region of phase space, without significant particle losses or 

deterioration of beam quality.  A bunch charge of 24 Cµ  confined into a 695 ns pulse 

(line charge density equal to 0.13 /C mµ ) with 138 µm transverse normalized rms 

emittance are typical parameters for such beams [1]. 

The limit of achievable beam quality is largely determined by the dynamics at 

the low-energy end of the machine [6], which is dominated by space charge forces 

[7]. Some challenging scientific issues arise from the space charge and collective 

behavior in such high current beams. Typically, in that regime the beam distribution 

is not in detailed equilibrium with the external focusing forces and the process of 
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relaxation to equilibrium can be dynamically complex and can result in emittance 

growth, halo formation, collective instabilities, and x-y energy transfer and coupling 

downstream. To investigate these effects and to fully characterize the beam 

properties, knowledge of the actual phase space distributions and emittances of the 

beam in certain locations is required.   

In this dissertation we focus our research on developing a technique to 

accurately map the phase space of intense beams. In order to do so, we adapted the 

ideas of tomography, which is a commonly used method in the medical community. 

We followed a two step approach: First, using the particle-in-cell code WARP [8], we 

simulated the tomography process and compared the recovered phase space with the 

one generated directly by WARP. This allowed us to investigate the limitations of the 

technique. Second, we developed an experimental apparatus in order to measure the 

phase spaces of intense beams. Then, we used the tomography diagnostic to shed 

light on the consequences of the space charge forces on the transport of these beams. 

Particularly, we studied emittance growth, phase space mixing and halo evolution and 

compared our results with theory and simulation. 

The outline of this chapter is as follows:  In Sec. 1.1 we define the basic beam 

parameters that characterize an electron beam.  In Sec. 1.2 we provide a motivation 

example and show the importance of the phase space distribution. In Sec. 1.3 we 

define space-charge and discuss its effect on beam transport. In Sec. 1.4 we review 

standard techniques for phase-space mapping that are used in the accelerator 

community. Next, in Sec. 1.5 we provide a short history of the tomography process. 

Finally, in Sec. 1.6 we discuss the dissertation overview.   
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1.1 Electron Beam Properties 

The quality of an electron beam is determined by its brightness and emittance. 

Both quantities require knowledge of the phase space distribution. In Sec. 1.1.1 we 

define the beam phase space, in Sec. 1.1.2 we define the beam emittance and in Sec. 

1.1.3 we define the beam brightness. 

1.1.1 Transverse Phase Space 

Ideally all particles within a beam should move along the same direction, let 

say along z, with the same velocity, v. However, since there is always a spread in the 

magnitude and direction of the beam velocity, the motion of each individual particle 

can be described by three spatial coordinates (x, y, z) and three velocity coordinates 

( , ,
x y z

v v v ). The space formed by those 6-coordinates is called phase space. It 

represents a snapshot of one possible state of the system. Although, it is impossible to 

show all six phase-space dimensions simultaneously we gain insight in the particle 

dynamics by viewing the projection of the particle motion in a single direction ( ,
x

x v ). 

If there is no acceleration, for reasons that will become clearer in the next section it is 

often more convenient to plot ( , ')x x  were x’ is the particle angle with the axis of 

propagation ( ' / / /
x z x

x dx dz v v v v= = � ). The coordinates ( , ')x x describe the trace of 

the particle along the axial direction ( )x z at a given z and hence the space they define 

is known as trace space. Clearly, for drifting beams, phase space and trace space 

provide the same information for given values of v, so from know on when we refer 
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to phase space we mean plots of ( , ')x x . When forces are linear the phase space has 

the form of an ellipse and an example is illustrated in Fig. 1.1.  

   

Figure 1.1: Phase-space along the transverse direction x. When forces are linear it can 

be approximated by a uniform ellipse (red line) 

1.1.2 Beam Emittance 

Emittance is a measure of the compactness of the phase space occupied by the 

particles and provides a quantitative basis to describe the quality of the beam. There 

are a number of different definitions of emittances. One of them is the total emittance 

which is defined as the effective volume (or area) of the trace space distribution. A 

disadvantage of this definition is that it remains always constant (if there is no 

acceleration). A more advantageous definition of the emittance [7] is as the product of 

the beam width and divergence, where the divergence arises from the spread of the 

velocities. Then: 

                                         2 '2 2

, 'x rms x x xxε = < >< > − < > ,                                   (1.1) 

X (m) 

0 0.02 -0.02 

X
’ 
(r

a
d

) 

0.02 

-0.02 
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where the moments 2
x< > , '2

x< > , and '
xx< >  can be found from the phase space 

information. This emittance is referred as rms unnormalized emittance and is 

conserved under linear, time-independent forces, and no acceleration. The advantage 

of using Eq. 1.1 is that it is not conserved in the presence of nonlinear forces and 

therefore is a better description of the quality of the beam. Often we select to multiply 

Eq. 1.1 by four since then, when the forces are linear, it becomes equal to the total 

emittance. 

 The emittance ,x rms
ε is not constant if there is an energy change, for example 

when we accelerate the beam. Hence, in the accelerator community often we define 

the rms normalized emittance given by 

                                   2 '2 2

, , 'x rms n x x xxε βγ= < >< > − < > ,                                  (1.2) 

where /v cβ = and 2 1/ 2(1 )γ β −= − ; v is the beam velocity and c is the speed of light. 

The normalized emittance is conserved under acceleration (assuming linear forces).  

1.1.3 Beam Brightness 

Emittance however is not enough to describe the beam quality completely. 

One can reduce the beam emittance by using collimating slits, however this reduces 

the total current. What counts for beam quality, is the number of particles for a given 

emittance. Hence, we introduce a quantity known as brightness and is defined [7] as 

/B J d= Ω  which is current per unit solid angle. Brightness is a measure of the 

density of particles in phase-space. Often, it is more convenient to use the averaged 

brightness which is directly related to the beam emittance by [7] 
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2

, ,8
x rms y rms

I
B

π ε ε

−

= .                                        (1.3) 

We conclude that both brightness and emittance require information of the phase 

space distribution and hence its knowledge is of fundamental importance to describe 

the beam quality. 

1.2 The Importance of the Phase Space Distribution 

In this section we present one example that illustrates the importance of the 

phase space distribution. Experiments and simulations show that a multibeamlet 

approach to generate high current intense beams offers a number of potential 

advantages over a single beam injector for Heavy Ion applications [3]. A similar 

experiment can be conducted on UMER were by using a five-beamlet mask in the 

electron gun we can aperture the beam to generate five distinct but interacting 

beamlets and observe their interaction. Figure 1.2 shows the beam evolution in 

configuration space (top – left column) and in phase space (bottom – left column) as 

predicted by the simulation [9]. Further downstream (Fig. 1.2-right column) 

simulations predict that the beamlets merge in real space leaving no trace of their 

initial structure giving the impression that the beam behaves “equivalent” to a 

uniform beam. Interestingly, simulation shows a different behavior in phase space 

where the beamlets remain distinct.  Therefore, in order to be able to describe the 

beam behavior successfully knowledge of the phase space distribution, besides the 

configuration space distribution, is required.  
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Figure 1.2: Initially we have five distinct beamlets in configuration space. 

Downstream the beamlets merge in configuration space but are still separated in 

phase space. 

1.3 Beams with Space-Charge 

The generation and transport of electron beams with high brightness and low 

emittance is constrained by the mutual repulsion among electrons, which is known as 

space-charge. Intense beams consist of many charged particles that can create 

magnetic and electric fields (known as self-fields). These fields can result in a net 

repelling force given by 

                               
SPACE CHARGE MAGNETIC ELECTRIC

F F F− = + ,                             (1.4) 

where  

                                              
2

2MAGNETIC ELECTRIC

v
F F

c
= − ,                                          (1.5) 

Start 
End 
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When the beam is relativistic (v comparable to c) space-charge becomes negligible 

since as can easily deduced from Eq. (1.5) the self-fields forces cancel. Then, single-

particle behavior dominates and each particle moves only under the influence of the 

external applied forces. However, near the source, where the energy is low, space-

charge becomes comparable to the externally applied field. Then, particle-to-particle 

interactions occur via Coulomb forces and the single particle behavior gives way to 

collective behavior. In that case the beam can be viewed as a nonneutral plasma 

where the averaged focusing forces replace the fixed neutralizing background [7].  

The fluid nature of the space-charge dominated beam makes it capable of carrying 

waves that can persist for several hundreds of focusing periods [6] and even after 

acceleration. Such waves if not well controlled can cause emittance growth and halo 

formation at the low energy end of the machine. Therefore, a good understanding of 

beams with space-charge is crucial and phase-space reconstruction will be an 

important tool to achieve this goal.   

 In order to study the dynamics of such intense beams in a cost efficient way 

we have designed and recently commissioned the University of Maryland Electron 

Ring (UMER) [10, 11]. Using low energy (10keV) and high current (up to 100 mA), 

electron beams with extreme intensities can be produced [7]. Details about the UMER 

ring will be discussed in Chap. 4 (see Sec. 4.1). 
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1.4 Standard Techniques for Phase Space Mapping and Emittance 

Measurement 

Standard methods [12] that are commonly used in the accelerator community 

to map the beam phase space, are the quadrupole scan (Sec.1.4.1), pepper pot (Sec. 

1.4.2), and slit wire scan (Sec. 1.4.3). Here we will briefly review these techniques 

and report their advantages and disadvantages.  

1.4.1 Quadrupole Scan 

The quadrupole scan technique assumes that the phase space is an ellipse that 

can be described by 

                                     
^ ^ ^

2 ' '22
x

x xx xγ α β ε+ + = ,                                        (1.6) 

where 
^ ^ ^

, ,β γ α  are the Twiss parameters and 
x

ε is the beam emittance assumed to be a 

constant of the motion. As the beam moves from location 1 to location 2 these 

parameters are related by [13] 

                             

^ ^

2 22 1
11 11 12 12

^ ^

2 11 21 11 22 21 12 12 22 1

2 2^ ^
21 21 22 22

2 1

2m m m m

m m m m m m m m

m m m m

β β

α α

γ γ

   
    −
    

= − + −    
    −    
   

 ,                (1.7) 

where 
ij

m are the elements of the transport matrix between those two locations. The 

beam size at position 2 is related to the Twiss parameters at the initial position 

(
^ ^ ^

1 1 1, ,β γ α ) and transport matrix elements by, 

                       
^ ^ ^ ^

2 2

2 11 1 11 12 1 12 12
rms x x x x

x m m m mβ ε β ε α ε ε γ= = − + .                        (1.8) 
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Hence, in the quadrupole scan technique, the Twiss parameters can be obtained by 

placing a magnet between positions 1 and 2 and inserting a screen at location 2. Then 

by measuring the beam size at that point as a function of the magnet focusing 

strengths and curve-fitting the data we can obtain
^ ^ ^

1 1 1, ,β γ α , and the emittance.  An 

example of such curve-fitting [14] is shown in Fig. 1.3. The technique has two 

important limitations: First, in the analysis we make the usual assumption that the 

transverse phase space distribution fills an ellipse; and second, the method becomes 

questionable when the beam has space charge [15].  

 

Figure 1.3: Example of the quadrupole scan. The beam size Xrms
2
 is plotted versus the 

magnet focusing strength and a fit line (shown in red) is plotted through the actual 

data (black dots). From the fit line and Eq. 1.8 we can get the beam emittance. 
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1.4.2 Pepper-pot 

Pepper-pots measure the phase space distribution by using apertures to sample 

specific regions in transverse space. The beam is intercepted a pepper-pot plate, 

which is normal to the beam and contains a regular array of identical holes over its 

entire surface. The position of the beam passing through its hole is known as beamlet. 

A downstream screen measures the location and intensity of each beamlet. The holes 

are small enough so that the beams passing through become emittance dominated (no 

space-charge). In that case the beam drifts along a straight line between the pepper-

pot and screen. Knowing the position of the beamlets at both mask,
sj

x , and screen, 
j

x   

and the distance between them, L,  we can find the angle '
x of each of each beamlet 

by using the formula: ' j sj
x x

x
L

−
= . 

  A schematic layout of the pepper pot concept is demonstrated in Fig. 1.4.  

 

Figure 1.4: Layout of the pepper-pot concept 
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Pepper-pots are commonly used in the accelerator community. However, in 

order to get a good resolution of the reconstructed phase space, a sufficient number of 

beamlets should be produced. Hence, when the beam size is small (of the order of 

mm), very small and closely spaced holes are needed. In this regime, construction of 

such mask would pose serious practical difficulties. Additionally, if the holes are very 

close of each other, the images of the beamlets may overlap increasing so the error in 

the measurement. Finally, being an intercepting diagnostic, the hole reduces the beam 

intensity and hence it make the detection of faint features like beam halos more 

difficult.  

1.4.3 Slit-Scanner 

Finally, in-slit based emittance measurements the beam is collimated by set of 

(vertical and horizontal) slits scanned across the beam, and then the collimated 

beamlets drift a given length and finally are analyzed by a collector upstream. The 

layout of a slit wire is shown in Fig. 1.5. The process is as follows: A detector with an 

analyzing slit moves over the cross section of a beam to sample different values of x. 

A wire beam collector moves within the detector to sample different values of x’.  A 

serious problem is the limited signal to noise ratio of the beam signal after passing the 

slit scanners. Furthermore, due its geometry it’s averaging over y and hence assumes 

that motion in x and y is decoupled.  
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Figure 1.5: Scanned wire diagnostic layout, adapted from ref. 16. 

1.5 History of Phase Space Tomography   

Computerized tomography is well known in the medical community and was 

originally developed to process x-ray images. A Norwegian physicist Abel (1826) 

first published a concept of tomography for an object with axisymmetric geometry. In 

particular, Abel presented the method of obtaining the profile of a circularly 

symmetric 2-D object from its projection [17]. Nearly one hundreds years later, an 

Austrian mathematician Radon (1917) extended the idea for arbitrary-shaped objects 

by developing a theorem which stated that an object in n-dimensional space can be 

recovered from a sufficient number of projections onto (n-1)-dimensional space [18].  

In beam physics it is possible to map the phase space by using information 

taken from the spatial density distribution at the same point. A simple scaling 

equation relates the spatial beam projections to the Radon transform of the transverse 

phase space. This was stated already 30 years ago, when Sander et al. [19] used 
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tomography to reconstruct the phase space distribution from transverse spatial 

profiles of the beam. In their technique they imaged the beam at different positions 

along the beam line and then reconstructed the phase space distribution by using 

tomographic computer programs. The physical availability of profile monitors along 

the beam line limited the number of spatial projections of the beam to three; therefore 

the resolution of the reconstructed phase space was poor. In a similar fashion, Fraser 

[20] reconstructed the phase space by tomography by using either two or three 

projections. Again, because of the small numbers of views the phase space plots 

lacked structure.    

Phase space tomography was implemented successfully and with greater 

accuracy by McKee et al. [21]. In that study, McKee, in order to recover the density 

information in phase space combined the ideas of tomography with quadrupole 

scanning. To account for the beam stretching that occured while the magnet was 

scanned, McKee was scaling the profiles by using a scaling parameter. McKee 

showed that both scaling parameter and angle of projection can be calculated from the 

beam transport matrix. Since then, the same approach was followed by several 

authors [22, 23]. Yakimenko et al. [24] by using nine quadrupoles was able to obtain 

projections on the screen that corresponded to beams with different phase advances 

(projection angles) but all had the same size. So, there was no need to account for the 

stretching problem, however, the large transport line required (because the many 

quadrupoles) can increase the error of the measurement. 

All these tomography diagnostics were implemented for relativistic beams 

were space-charge was negligible. Therefore, the applied tomography algorithm 
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ignored space-charge effects. However, when the beam is non-relativistic, the space 

charge force has to be accounted in the analysis. One method that has been proposed 

[25] treats space charge as a linear correction that is estimated from the beam 

envelopes.  The first experimental results have been reported for a beam with space-

charge using this approach. Still, however, many questions remain and we will 

address them in the next section.  

1.6 Dissertation Overview 

Even though tomography has been used over the last few years as a diagnostic 

to map the beam phase space, some questions remain about the limitations of the 

method. Can the technique be used for beams with intense space charge? Could a 

simple linear space charge approximation accurately reproduce the beam phase 

space? In addition, will tomography map the phase space for beams with different and 

more complex distributions?  

Solenoids are commonly used as focusing elements at low energies, especially 

in photoinjectors [26], and immersed guns for flat-beam production [27]. Many ion 

injectors and low-energy machines use solenoids to match proton beams into a radio-

frequency quadrupole as well as to transport high space charge beams [28]. It is 

therefore advantageous to develop a technique that uses solenoids for phase space 

mapping. Therefore, how can solenoids be used for tomography? 

Additionally, the evolution of the phase space of merging beamlets has been 

shown to be important in simulations [29] and experiments [30] for Heavy ion fusion 

applications where the concept of merging multiple beams is used to generate high-
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current beams. Furthermore, given the similarities of dynamics between the coulomb 

and gravitational forces (both interact though long range inverse square law forces) it 

has been suggested [31] that a good understanding of the phase space mixing of 

nonuniform charged particle beams can be used to examine many  different physical 

processes in astrophysics such as colliding and merging galaxies [32, 33]. Therefore, 

it is important to examine the detailed evolution and degree of phase-mixing of such 

nonlinear particle beams in both configuration and phase space. 

Finally, for beam applications such as X-ray FELS and Spallation Neutron 

Sources, knowledge of the time-sliced parameters of beam current, energy spread and 

transverse emittance is an important requirement to understand their evolution. For 

instance characterization of the transverse phase space of the beam at the injector exit 

is necessary, as it allows the tuning and verification of the photoinjector properties. 

Such as an example is emittance compensation [34], a process which is used to 

correct for the correlation between the phase space angle and the longitudinal position 

of slices. Even though a number of studies conducted so far perform time-resolved 

phase space maps and slice emittance measurements [35-37], time-resolved 

measurements for space-charge dominated beams was never been examined. For 

example, how does the transverse slice emittance evolve within a beam pulse for a 

beam with space-charge?  

This dissertation will address the topics mentioned above. The outline of our 

work is as follows:  In Chap. 2 we review the basic beam theory, discuss the single 

particle motion and define space-charge. Next, we describe the tomography algorithm 
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and relate it to beam physics. Then, we describe our approach to extend it to beams 

with intense space-charge.  

In Chap. 3 we describe the process we use to verify our diagnostic by 

simulating a tomography experiment with the particle-in-cell code WARP. We 

examine the effect of various errors in the data collection process on the reconstructed 

phase space (such as the number of projections, rotation angle, and uncertainties in 

measurements). Furthermore, we simulate the process by using different beam 

distributions and beams with different content of space-charge and report our results. 

In Chap. 4 we use tomography to study the influence of space-charge forces 

on the beam transport.  We address issues such as emittance growth, phase mixing 

and halo evolution for intense space-charge beams. First we study the evolution of an 

initially “uniform” beam with space charge. Then, we examine phase-mixing for a 

beam with an initially non-uniform distribution. For this experiment, we create five 

distinct but interacting beamlets, observe their interaction and compare our results 

with simulation and theory.  

 In Chap. 5 we discuss our approach to extend tomography to use solenoidal 

magnets. First we verify the technique by simulating the process by the same way we 

did in Chap. 3. Then, we apply the diagnostic in the experiment and compare our 

results with simulation. Furthermore, we discuss the relation between emittance 

growth and beam size for a beam passing through a solenoid. Finally, we provide a 

generalized algorithm to use tomography to cases where the beams are not 

axisymmetric. 
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In Chap. 6 we report time resolved measurements of phase space tomography 

for intense particle beams. Specifically, we study the correlation between transverse 

and longitudinal dynamics in phase space by applying different longitudinal 

perturbations. We show that a longitudinal perturbation can affect the transverse 

phase space. 

Finally, in Chap. 7 we summarize the results of this dissertation and provide a 

list of interesting topics for future research.  
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Chapter 2 Tomography Theory  

Measurement of the transverse phase space distribution is an important tool to 

understand transverse particle dynamics in accelerators. Standard methods that are 

commonly used in the accelerator community to map the beam phase space (such as 

the quadrupole scan, pepper pot, and slit wire scan) were briefly reviewed in Chap. 1 

and as it was evident they had some limitations. Therefore, it is advantageous to 

develop new methods to accurately reconstruct the beam phase space.  

This chapter describes how to measure the transverse phase space distribution 

by combining the ideas of quadrupole-scanning with Tomographic image techniques. 

Prior work [21, 24], demonstrated that it is possible to map the beam phase space by 

measuring spatial projections of the beam. However, these previous methods were 

applied to relativistic beams with no space-charge. In this chapter we discuss the 

difficulties arising in cases were space-charge is present and demonstrate an 

algorithm for Tomographic phase space mapping for intense space-charge dominated 

beams.  

The outline of this chapter is as follows:  In Sec. 2.1 we briefly review the 

basic beam theory, discuss the motion of a single beam particle and define space-

charge. In Sec. 2.2 we review the tomography algorithm and its relations to the phase 

space measurement for beams without space-charge. In Sec. 2.3 we show the 

extension algorithm to use tomography to beams with space-charge. In Sec. 2.4 we 

discuss the modifications we do to apply the diagnostic for our experiments. Finally, 

we review the image analysis software for tomography and show a step by step 

example where we describe how to use it to reconstruct the beam phase-space.  
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2.1 Basic Theory 

 A beam consists of a group of particles that have small energy spread 

compared to their average translational energy, and where the particle transverse 

motion is at very small angles with respect to the beam translational orbit. We briefly 

review the motion of a single beam particle and discuss the implications when space-

charge is present. 

2.1.1 Beam Transfer Matrices  

In this section we describe the transverse particle motion at the exit of a beam 

transport location, such as a lens or a simple drift segment, relative to the orbit at the 

entrance. As discussed in Chap.1 the position of the particle can be represented as a 

point in a six dimensional space. Assume that the beam propagates in the z-direction 

with a longitudinal momentum and size much higher than the momentum and size in 

the transverse directions. Then, the transverse particle orbit at some axial position can 

be represented by the four-dimensional vector ' '( , , , )x x y y , where x (or y) is the 

transverse displacement from the horizontal plane x (or y). The quantity '
x (or 'y  ) is 

the angle the particle makes in that plane with respect to the main axis z. In many 

practical cases the forces in the x and y directions are independent and we can 

calculate the particle motion in x and y separately using the two-dimensional vectors 

'( , )x x and '( , )y y , respectively. We shall concentrate our analysis of orbits that are 

separable in x and y.  
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Figure 2.1: Layout showing a particle that enters a lens at 0z  and exits the lens at 1z . 

 

Consider the motion of a particle along the transverse x-direction in a lens of 

length d as shown in Fig. 2.1. If the exit vector is '

1 1( , )x x  and the entrance vector is 

'

0 0( , )x x then the particle equation of motion is:  

                                                          
2

02

d x
x

dz
κ= − ,                                                   (2.1) 

where 0F xκ= is the focusing force of the lens assumed to be linear.  Equation 2.1 

has the following solutions: 

                                       
'

0
1 0 0 0

0

cos( ) sin( )
x

x x d dκ κ
κ

= + ,                                (2.2) 

                                    ' '

1 0 0 0 0 0sin( ) cos( )x x d x dκ κ κ= − + .                              (2.3) 

In matrix notation, the above equations can be written as: 

                
0 0 0 01
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sin( ) cos( )

d d x xx
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= =      
      − 

.                    (2.4) 

The matrix T is known as the transport matrix of the lens and κ0 is often called the 

focusing function and is related to the strength of the lens.  For quadrupole magnets 

the focusing function is [7]  
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                                                            0

qg

m c
κ

γβ
= ,                                                   (2.5) 

where g is the quadrupole field gradient; q, m , and c are the particle charge, mass and 

speed of light, respectively. In practice, it is common to model the quadrupole by 

using a “hard-edge” approximation where the magnetic field is constant inside the 

quadrupole over a certain length, known as effective length
eff

L , and drops to zero 

outside. From Eq. 2.2 we see that particles oscillate harmonically when traveling 

through the lens. Those oscillations are known as betatron oscillations with betatron 

wavelength, 0βλ , which for our case  is 0 02 /βλ π κ= .  

As it easy follows from Eq. 2.4 when the beam is passing through a drift 

section ( 0κ is zero), the transport matrix becomes 

                                                       
1

0 1

d
T

 
=  
 

.                                                      (2.6) 

Next, we are interested to study the influence of space-charge on the particle motion. 

2.1.2 Space-charge Effects on Particle Motion  

 In the previous chapter we assumed that individual particles are moving only 

under the influence of the external focusing forces. However, as the current is 

increased the superimposed electric field generated by the particles themselves 

becomes non-negligible generating phenomena known as space-charge (see Sec. 1.3). 

Space-charge results to a repelling force, SCF , and therefore Eq. 2.1 becomes  

                                                    
2

02 SC

d x
x F

dz
κ= − +  .                                               (2.7) 
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Space-charge force has been shown to be linear for uniform distributions [7]. Then, 

Eq. 2.7 can be written as 

                                             
2

02 2( )

d x Kx
x x

dz R z
κ κ= − + = ,                                           (2.8) 

where R(z) is the radius assumed that the beam is round; K is the generalized beam 

perveance a unitless quantity that depends on the beam current and is given by [7] 

                                                       
3

02

qI
K

mvπε
= ,                                                   (2.9) 

where I is the current; v is the velocity of the beam; and 0ε  is the permittivity. As we 

can see from Eq. (2.8) space charge decreases the focusing efficiency of the lens by a 

factor of 2/ ( )K R z . This leads to an increase of the amplitude of the particle 

oscillations and the particles are said to perform depressed betatron oscillations with 

a wavelength 2 /βλ π κ= .  

It is often more convenient to describe the average beam evolution by using 

rms quantities. Then, the beam transport for an axisymmetric channel is governed by 

the 2-D rms envelope equations [38]   

                         
2 2

0 32

( )
( ) 0

( ) ( )

d R z K
R z

dz R z R z

ε
κ

−
−

− −
+ − − = ,                                (2.10) 

where R
−

 is 2 rms×  beam radius and ε is the 4 rms× emittance. One of the advantages 

of using the beam envelope equations is that even though they are proven for a beam 

with a uniform distribution ( R R
−

= ) they can describe the evolution of nonuniform 
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beams as long as they energy, current, rms size and divergence are equivalent to that 

of a uniform beam [7, 38].  

From Eq. (2.10) we can see that the average behavior of the beam is 

determined by three forces: the focusing force, the space charge force and the thermal 

pressure force from the emittance. When these forces are balanced  

                                                  
2

0 3
( )

( ) ( )

K
R z

R z R z

ε
κ

−

− −
= + ,                                        (2.11) 

and the beam is known as matched. Depending on which of the two terms in the right 

side of Eq. (2.11) dominate, the beam is space-charge dominated (
2

3

K

R R

ε
− −

> ) or 

emittance-dominated (
2

3

K

R R

ε
− −

< ).  

Another way to quantify space-charge is by introducing the dimensionless 

intensity parameter χ  which can be expressed as the ratio of space-charge force to 

external focusing force and is given by [39]  

                                                               
2

0

K

R

χ
κ

−
= .                                                (2.12) 

If, 0 0.5χ< ≤  the beam is emittance dominated, if  0.5 1χ< <  it is space charge 

dominated. The betatron wavelength and depressed wavelength can be expressed in 

terms of the intensity parameter χ  by  

                                                           1/ 2

0

(1 )
β

β

λ
χ

λ
−= − .                                         (2.13) 

Clearly, as χ  approaches unity the betatron wavelength becomes extremely large.  
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2.2 Tomography for Beams without Space-Charge 

 We now review the tomography algorithm (Sec. 2.2.1) and show its extension 

to reconstruct the beam phase space distribution (Sec. 2.2.2).   

2.2.1 Filtered-Backprojection Algorithm  

Several algorithms [40] are available to compute high quality reconstructions 

from projection data, e. g., Algebraic Reconstruction Technique, Maximum Entropy 

Tomography, filtered-backprojection algorithm (FBA), etc. The FBA algorithm is the 

most common method to reconstruct a two-dimensional image and is generally 

believed that it provides a reconstructed image of high quality with normally 

available computer capacity and computational times [40]. This is the algorithm that 

we use and hence we describe in detail along the lines below.  
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Figure 2.2: Illustration of the Radon Transform 

 

Suppose that ),( yxf corresponds to a two dimensional distribution. Then the 

integral 

                       
^

( , ) ( , ) ( cos sin )f t dxdyf x y x y tθ δ θ θ
∞ ∞

−∞ −∞

= + −∫ ∫                            (2.14) 

defines the transverse projection of the distribution ),( yxf along the axis 

cos sint x yθ θ= + , placed at an angle θ relative to the x-axis. Such a projection is 

known as the Radon transform of the function ),( yxf and is shown in Fig. 2.2. If 

( , )F u v  is the two-dimensional Fourier transform of the function ),( yxf , then its 

inverse Fourier transform is given by 

θ f(x,y) 

^

( , )f t θ

t 

t 

s 
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              2 ( )( , ) ( , ) j ux vy
f x y F u v e dudv

π
∞ ∞

+

−∞ −∞

= ∫ ∫ .                                   (2.15) 

By exchanging the rectangular coordinate system in the frequency domain (u,v) for a 

polar coordinate system ),( θw Eq. (2.15)  becomes 

                                 2

0

( , ) ( , ) | | j wt
f x y F w w e dwd

π
πθ θ

∞

−∞

= ∫ ∫ .                                 (2.16) 

Likewise, the Fourier transform of the Radon transform is  

                                        
^

2( , ) ( , ) j wt
S w f t e dt

πθ θ
∞

−

−∞

= ∫ .                                       (2.17) 

Using the Fourier Slice Theorem [40] we can write ( , ) ( , )F w S wθ θ= and therefore 

                             2

0

( , ) ( , ) | | j wt
f x y S w w e dwd

π
πθ θ

∞

−∞

= ∫ ∫ ,                                      (2.18) 

or simpler  

                                                
0

( , ) ( , )f x y Q t d

π

θ θ= ∫ ,                                           (2.19) 

                                                                             

where Q is given by  

                                           2( , ) ( , ) | | j wt
Q t S w w e dw

πθ θ
∞

−∞

= ∫ ,                              (2.20) 

and is called “filtered projection” [40]. Therefore, if a number of projections between 

0 and π  are known, the distribution can be reconstructed by backprojecting the 

filtered version of the projections according to Eq. (2.19).  
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2.2.2 Extension of Tomography to Beam Physics 

Now, we will show that beam images in configuration space are related by a 

simple scaling equation to projections of the phase space distribution. The idea is the 

following: As discussed in Sec 2.1.1 the transverse beam evolution can be described 

by a 4-dimensional phase space distribution ' '( , , , )x x y yµ . Placing a screen along the 

beam path gives a two dimensional projection of this distribution, known as the 

configuration space, and is given by 

                                  ' ' ' '( , ) ( , , , )g x y x x y y dx dyµ= ∫∫ .                                (2.21) 

Integration over y leads to the beam profiles along x 

                              ' ' ' '( ) ( , ) ( , , , )c x g x y dy x x y y dx dy dyµ= =∫ ∫∫∫ .                         (2.22) 

We are interested to reconstruct the 2-dimensional phase space distribution 

'( , )
z

x xµ at a particular z , which is given by 

                                          ' ' ' '( , ) ( , , , )
z

x x x x y y dydyµ µ= ∫∫ .                                  (2.23) 

The corresponding spatial projection of this distribution is 

                             ' ' ' ' ' '( ) ( , ) ( , , , )zh x x x dx x x y y dydy dxµ µ= =∫ ∫∫∫ .                       (2.24) 

From Eq. (2.22) and Eq. (2.24) we can see that   

                                                         ( ) ( )c x h x=                                                     (2.25) 

Therefore, the beam profile obtained from the integration of the distribution along y is 

equivalent to the spatial projection of the phase space distribution.  
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Figure 2.3: Schematic layout of the beam transport line. The starting location is at 

0z and ending location is at 1z . 

 

Suppose that our beam transport line is that shown in Fig. 2.3. Then, if 

11 1( , )
z

g x y is the beam distribution at a location 1z  downstream, according to Eq. 2.25 

we can write 

                    ( )
1 1

' '

1 1 1 1 1 1 1 1( ) ( , ) ( , )
z z

c x g x y dy h x x x dxµ= = =∫ ∫ ,                    (2.26) 

where 
1

'

1 1( , )zx xµ  is the 2-D phase distribution at 1z . Using the Dirac delta function, it 

can be written in the equivalent form 

                                      
1

' '

1 1 1 1 1( ) ( , ) ( )
z

c x x x x x dx dxµ δ= −∫ ∫ ,                                (2.27)               

where x is a point within the beam distribution at 1z . According to Liouville’s 

theorem [7] the particle density remains constant, therefore    

                                                  
0 1

' '

0 0 1 1( , ) ( , )z zx x x xµ µ= ,                                        (2.28) 

where 
0

'

0 0( , )zx xµ is the 2D phase space distribution at the starting location 0z .  If we 

assume that we have a linear system, the particle motion between 0z  and 1z  obeys 

                                          
1 0

1' '
1 0

x x
M

x x

  
=     

   
,                                               (2.29) 
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where 
11 12

1

21 22

M M
M

M M

 
=  
 

 is the transport matrix. Typically the transport line can 

consist of drift sections and several lenses.  By combining Eq. (2.28) with Eq. (2.29) 

we can write: 

                                
0

' ' '

0 0 11 0 12 0 0 0( ) ( , ) ( )
z

c x x x M x M x x dx dxµ δ= + −∫ ∫ .                 (2.30) 

In order to relate Eq. (2.30) to the Radon transform we define the scaling 

factor, s , by [21] 

                                                       2

12

2

11 MMs += ,                                             (2.31) 

and the phase space rotation angle θ , by [21] 

                                                        
11

12tan
M

M
=θ .                                                  (2.32) 

Now, using Eq. (2.31) and Eq. (2.32), Eq. (2. 30) becomes 

                           
0

' ' '

0 0 0 0 0 0

1
( ) ( , ) ( cos sin )

z
c x x x x x dx dx

s
µ δ θ θ ρ= + −∫ ∫ ,               (2.33) 

where sx /=ρ . 

Comparing Eq. (2.14) with Eq. (2.33) we can write 

                                       
0 0

^ ^

( , ) ( / , ) ( / )z zx s sc x sµ ρ θ µ θ= = .                                  (2.34) 

From Eq. (2.34) we can deduce that a simple scaling equation relates the 

spatial beam projections to the Radon transform,
0

^

( / , )zx sµ θ  of the transverse phase 

space. This is a very useful result since the beam spatial distribution can be easily 

obtained in experiments, e.g., using a phosphor screen. Both, scaling factor and 
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angles of the projection can be easily calculated from the beamline overall transport 

matrix and are functions of the magnet focusing.  

           The complete beam tomography procedure can therefore be as follows: 

For a given magnet setting: 

1. Calculate the transport matrix M1 between 0z and 1z  

2. At point 1z z= , get the beam distribution ( , )g x y and calculate the profile by 

using Eq. 2.26. 

3. Calculate the rotation angle and scaling factor by using Eq. 2.31 and Eq. 2.32  

4. Relate the beam profile to the Radon transform by scaling the profile 

vertically by s and horizontally by /x s according to Eq. 2.34 

5. Filter the projections by calculating Q from Eq. 2.20 

6. Change the magnet setting and repeat steps 1-5 

At the end of the scan integrate the filtered projections, Q, over the rotation angle by 

using Eq. 2.19.  

2.2.3 Example: Tomography with Quadrupoles 

In the previous section we studied theoretically how to relate the beam 

profiles to the Radon transform of the phase space. Here we are interested to 

demonstrate an example of this process. Suppose that the transport line of Fig. 2.3 

consist of a quadruple lens of effective length 1L  followed by a drift section of 

length 2L .Such configuration is illustrated in Fig. 2.4.   
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Our goal is to measure the phase space at 0z  by collecting beam profiles at 

1z .We will follow step by step the process described in section 2.2.2. First, we have 

to calculate the transfer matrix 1M . For our beamline 

                                           1 D Q
M M M= ,                                                  (2.35) 

where 
D

M  is the transport matrix of the drift section given by Eq. (2.6) and 
Q

M  is 

the transport matrix of the quadrupole given by Eq. (2.4). My multiplying those 

matrices we get 

        

2 0 0 1 0 1 0 1 2 0 1

01

0 0 1 0 1

1
sin( ) cos( ) sin( ) cos( )

sin( ) cos( )

L L L L L L
M

L L

κ κ κ κ κ
κ

κ κ κ

 
− + + 

=  
 − 

.(2.36) 

Next, we can use this information to get the rotation angle and scaling factors. Hence, 

by using Eq. (2.32) the rotation angle is 

                                      

0 1 2 0 1

01

2 0 0 1 0 1

1
sin( ) cos( )

tan ( )
in( ) cos( )

L L L

L s L L

κ κ
κ

θ
κ κ κ

−

+

=
− +

,                  (2.37) 

and from Eq. (2.31) the scaling factor is  

    

2 2

0 1 2 0 1 2 0 0 1 0 1

0

1
[ sin( ) cos( )] [ sin( ) cos( )]s L L L L L Lκ κ κ κ κ

κ
= + + − + .(2.38) 

In the analysis we assumed focusing quadrupoles (κ >0); however, the same set of 

equations can be used for defocusing quadrupoles by just replacing 0κ  with 0κ− . In 
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typical experiments, quadruple and drift lengths are fixed, therefore the projection 

angle and scaling factor are only functions of the magnet strength 0κ .  

 

Figure 2.4: Schematic layout of the beamline between 0z and 1z . The arrows at the 

bottom represent the transport matrices. 

 

Filtered projections, Q, at 1z  for different focusing strengths can be used to 

derive the phase-space distribution. In Fig. 2.5 we show the procedure to obtain those 

projections for three different magnet settings. First, we have to obtain the beam 

distribution ( , )g x y at 1z  for each case. We can do so by placing an imaging 

diagnostic there. Figure 2.5 (first row) shows beam distributions ( , )g x y  at 1z  for 

three different magnet settings (indicated at the top of the photo). Figure 2.5 (second 

row) illustrates the corresponding transport matrix, 1M , (from Eq. 2.36) were we 

assumed 1 3.72L = cm, 2 12.28L = cm and 43.61 10−× /G Acm  for the quadrupole 

length, drift length and field gradient, respectively. From the beam distributions and 

Eq. 2.26 we calculate the beam profiles ( )c x  (Fig. 2.5, third row). Now we have to 

scale those profiles and relate them to the Radon transform of the phase space (see 
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Eq. 2.34). Our results are demonstrated in the fourth row of Fig. 2.5 as well as the 

value of the corresponding rotation angle and scaling factor (calculated from Eq. 2.37 

and Eq. 2.38). Finally, we have to filter those profiles by using Eq. 2.20. Such profiles 

are illustrated at the last column of Fig. 2.5. The final step is to integrate over the 

whole range of angles (Eq. 2.19). As we will show in the next chapter, usually a large 

number of projections within the whole (0, 180) degree range is necessary to do an 

accurate reconstruction.   In our example we had to collect 87 projections by varying 

the strength of the magnet from 0 371.8κ = m
-2

 to 0 230.1κ = − m
-2 

and our 

reconstructed phase space is shown in Fig. 2.6. 
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Figure 2.5: Example demonstrating the procedure to obtain projections of the phase-

space distribution. 
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Figure 2.6: Reconstructed phase space at 0z by processing 87 projections after 

rotating the phase space by a full 180
0
 angle. The intensity parameter was 0.3 and the 

beam was emittance dominated ( 0.6I = mA, 6ε = µm). 

2.3 Tomography Extension to Beams with Space-Charge 

In the previous section we showed that both scaling factor and projection 

angle can be derived from the beam transport matrix. The analysis was assuming no-

space charge. As it is evident from Eq. 2.7 calculation of the transport matrix is 

complicated in the presence of space charge. The problem is that the space-charge 

force, in general, depends on the particle distribution and therefore can have very 

complex functions making the solution of the differential equation very difficult.  

In order to simplify the analysis some assumptions need to be made about the 

density distribution and the resulting space charge forces. One proposed method [25] 

to calculate the transport matrix is to assume a uniform beam distribution. Then, the 

X 

X’ 
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space charge forces become linear and according to Eq. 2.8 the net focusing strengths 

(generalized to a non-symmetric beam) become [7]: 

                                                    0

2

( )
x x

K

X X Y
κ κ= −

+
,                                         (2.39) 

                                                   0

2

( )
y y

K

Y X Y
κ κ= −

+
,                                          (2.40) 

where 0 0,
x y

κ κ  are quadrupole focusing strengths defined by Eq. 2.5, and ,X Y are the 

2 rms×  beam sizes for x and y directions, respectively. Clearly, when space charge is 

not significant, only the terms 0 0,
x y

κ κ  will be used in generating the transfer matrices 

and the case becomes equivalent to the discussions in Sec 2.2.2; however, for a more 

intense beam the defocusing space charge terms 
2

( )

K

X X Y
−

+
 and 

2

( )

K

Y X Y
−

+
 must 

be included in the matrix analysis.       

  In order to obtain the net focusing strength, knowledge of the beam sizes X 

and Y is needed. In typical experiments it’s difficult to place a diagnostic over the 

desired transport line to get any information of the detailed evolution of X and Y. 

However, assuming no emittance growth we can calculate the beam envelopes by 

using Eq 2.10, generalized to non-symmetric distributions and given by [38] 

                                            
2

0 3

2
0x

x

K
X X

X Y X

ε
κ′′ + − − =

+
,                                    (2.41) 

                                             

2

0 3

2
0

y

y

K
Y Y

X Y Y

ε
κ′′ + − − =

+
.                                     (2.42) 
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In order to solve those differential equations we have to assume some initial 

conditions ' '

0 0 0 0( , , , , , )x yX X Y Y ε ε  at the starting point 0z . This is a significant 

difference with the tomography for beams without space-charge (see Sec. 2.2.2) 

where no such assumption was necessary.  

To check the validity of our assumptions we compare at 1z  the calculated from 

the beam envelope and measured from the screen, beam sizes. In case they do not 

agree well we adjust the initial conditions and repeat our envelope calculations until 

we get a better agreement. Once the evolution of  ,X Y  with respect of z is known we 

calculate the net focusing functions by using Eq. (2.39) and Eq. (2.40). Finally, from 

Eq. (2.31) and Eq. (2.32) we calculate the scaling factor and the rotation angle, 

respectively. 

 The complete beam tomography procedure for beams with space-charge is as 

follows: 

1. Estimate the initial conditions at the starting location 0z . 

2. Identify the correct initial conditions at 0z : For each magnet setting, solve the 

beam envelope equations and compare the calculated beam size to that from 

the measurement. If the two values are not within 10%, estimate new initial 

conditions and repeat the process until good agreement is achieved.  

3. For each magnet setting solve numerically the envelope equation, get X{z}, 

Y{z) along the beam line at 0.4 mm (or less) steps, and calculate the focusing 

strength for each step by using Eq. 2.39 and Eq. 2.40. 
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4. Use those focusing strengths to calculate the transport matrix (for each step) 

and then obtain the total transport matrix by multiplying those matrices. Now 

follow the steps 2-5 described in Sec. 2.2.2. 

5. Change magnet focusing and repeat steps 3-4.    

At the end of the scan integrate the filtered projections, Q, over the rotation angle by 

using Eq. 2.19.  

2.4 Practical Tomography 

2.4.1 Limitations 

Phase space tomography requires the beam distribution to be rotated to a full 

180
0
 angle. Often this cannot be achieved by a single magnet because of several 

restrictions imposed by the experiment. Such restrictions are listed below: 

Beam pipe: The beam size must be kept within a reasonable range when it travels 

trough the accelerator in order to avoid the beam hitting the pipe or possible image-

charge effects. Simulations indicate that image forces can have a significant impact 

on the beam dynamics, since it can cause emittance growth. 

Screen size: Tomography relies on the beam distribution captured on the screen. 

Therefore, the beam size at the measurement point must be controlled to remain 

within the phosphor screen.  

Magnet strength: In practice, the magnet strength is limited by the power supplies or 

hardware used. For instance, such a restriction can be the magnet current which on 

UMER cannot exceed ± 3.5 A. Additionally, operating at high quadrupole currents 

can destroy the quadrupole printed circuit.  
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Therefore, given those limitations, in some cases one quadrupole is not 

enough for a full 180
0
 rotation of the phase-space.  For instance, on UMER we have 

to employ three and sometimes four quadrupoles to ensure high quality phase spaces. 

Such configuration not only ensures a full rotation of the phase space but also 

guarantees that the beam remains far from the beam pipe and therefore the effect of 

image forces is negligible. Details about the UMER configuration will be discussed in 

the next section. 

2.4.2 Tomography Configuration for UMER 

Our tomography configuration on UMER is different than the one used in 

previous tomography works for two main reasons: First, on UMER, because of the 

above restrictions (see Se. 2.4.1), we have to use more quadrupoles than other studies 

which typically employed only one magnet. A schematic layout of the UMER 

configuration is demonstrated in Fig. 2.7(a). It consists of two sets of altering gradient 

(FODO) sections. Point A ( 0z z= ) is located at the middle between two UMER 

quadruples and point B ( 1z z= ) is at the location of our imaging diagnostic. The 

transport matrix consists of five drift matrices and four quadrupole matrices and is 

given by 

                      
5 4 4 3 3 2 2 1 11 D Q D Q D Q D Q D

M M M M M M M M M M= ,                       (2.43) 

and is illustrated schematically in Fig. 2.7(b). The particle motion will obey the 

equation 



 

 41 

 

                                                     
1 0

1' '
1 0

x x
M

x x

  
=     

   
.                                                (2.44) 

 

 

 

Figure 2.7: Schematic layout of the tomography configuration for UMER; (a) 

Orientation of quadrupoles; (b) Transfer matrices (indicated by arrows). The distance 

between A and B is 61.3cm, the distance between A and center of Q1 is 1 8.0L = cm, 

the quadrupole center to center distance is 2 16.0L = cm, and the distance between 

screen and center of Q4 is 3 5.3L = cm.  

 

The second different thing of our tomography analysis is the location of the 

phase space reconstruction. Following the process in Sec. 2.2.2 and using the matrix 

of Eq. 2.43 we get knowledge of the phase space 
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practical. For example it would be more desirable to reconstruct the phase space at 

point B since there we have a screen and so we can compare directly the 

reconstructed phase distribution with the actual beam distribution in configuration 

space. This phase space can be easily found by projecting the already known phase 

space at point A by using 

                                                 
0

10' '

0

d

d

x x
M

x x

  
=     

   
,                                      (2.45) 

where 10M is transport matrix corresponding to the magnet settings we are interested 

to get the phase space. We can combine now Eq. 2.44 and Eq. 2.45 and obtain a net 

transport matrix  

                                                            1

1, 1 10netM M M
−=                                            (2.46) 

Therefore, using Eq. 2.46 as our transport matrix in our tomography analysis we can 

reconstruct the phase spaces at the location of the screen.    

2.4.3 Image Processing Requirements 

In this section we discuss precautions and requirements while doing image 

analysis so that we can successfully reconstruct the phase-space distribution. 

 In our data analysis the beam photos were saved as grayscale images. They 

consist of i and j spatial coordinates and their respective intensity values (known as 

pixels). They can be thought as 2D matrices, G, where the elements ( , )G i j  represent 

the intensity values at a given location ( , )i j . The distance between adjacent pixels 

defines the resolution T (known as mm per pixel for beam photos). The range of the 

intensities allowed for each pixel is determined by the bit depth. For a bit of n, the 
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pixel has a depth of 2n . Hence, for 8 bit image, each pixel can have an intensity depth 

value of 256. The bit rate and resolution are determined by the camera specifications. 

Obviously, the higher the bit the more details about the image can be seen, however, 

this increase the computer memory requirement and slows the processing time. For 

our analysis we vary the bit from 8 to 16. When getting the photos care must be taken 

regarding the following effects:  

 

Image Saturation While collecting the photos the image brightness can exceed the 

available intensity range an effect known as saturation. Therefore, care must be taken 

to avoid saturating the images by either decreasing the image brightness or using a 

camera with higher bit rate.     

Image Intensity: The addition of all pixels of an image is known as total intensity. If 

N is the total number of pixels in i and j directions, then the total intensity is 

                                                       ( , )
N N

j i

I G i j=∑∑                                              (2.47) 

 For beams the total image intensity is a measure of the available particles. While 

varying the magnet strength the numbers of particles have to be conserved. Therefore, 

a good practice is to measure the intensity of each individual photo after the scan. 

This might infer information about particle losses or about lens and screen linearity. 

Image Centering: Misalignments caused either by the screen or the magnets often can 

lead to beam offsets. This means that the beam centroid do not match the actual photo 

center. Therefore, before doing Tomography, a post-centering process is usually 

necessary after collecting the beam photos in the experiment.  
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2.4.4 Image Analysis Software 

In this section we review the codes we developed for reconstruction and the 

order we use them in the process. We wrote four MATLAB codes that will: (1) 

Calculate the transport matrix, scaling factors and rotation angles (Code: 

x_ScalF_RotA_Calc.m - see Appendix A1); (2) Center the beam photos and calculate 

the total intensity (Code: Photo_Cleaning.m [41]); (3) Process the beam photos and 

by using the FBA method reconstruct the phase space (Code: Tomography.m [41]) 

and (4) Use the phase space to calculate the beam emittance (Code: EmitCalc.m – see 

Appendix A2). 

We discuss now the procedure we follow and the order we use the above 

codes to reconstruct the phase space distribution. 

 

Step1: First we generate a table which contains the values of the desired magnet 

strengths. Next, we run x_ScalF_RotA_Calc.m:  

The code reads those values, solves numerically the beam envelope equations (using 

Eq. 2.41 and Eq. 2.42), obtains a set of values for ( )
i

X z  and ( )
i

Y z  at a step t and 

calculates the corresponding focusing strength, ( )
xi

zκ , by using Eq. 2.39. This is 

illustrated in Fig. 2.8. Then, by assuming a constant focusing within each step the 

code gets the transport matrix 
i

M and finally calculates the net transport matrix by 

doing a superposition of those matrices ( 1 2 1 ...
i i i

M M M M+ += ). From the net matrix it 

calculates the scaling factors and rotation angles for a given set of initial conditions. 

The output of the code is a table that contains the quadrupole strengths, the resulting 
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scaling factors and corresponding rotation angles. Same approach applies for the y 

direction also. 

     

Figure 2.8: Plot shows the numerical solution of the beam envelope equation (Eq. 

2.41). Step t should be kept below 0.4 mm and the beam size as well focusing is 

assumed to be constant within this region. 

 

Step2: Run Photo_Cleaning.m: 

The code calculates the beam centroid by using the formula: 

                                                ( , ) /
N N

c

i j

x iG j i I=∑∑ ,                                             (2.48) 

                                                ( , ) / )
N N

c

i j

y jG j i I=∑∑ .                                          (2.49) 

where I is the total beam intensity given by Eq. 2.47. Then, it calculates the distance 

from the photo center (N/2, N/2) and brings the beam photo at that center by doing 

t 

( )iX z

1( )iX z t+ +
2 ( 2 )iX z t+ +

1iM +iM 2iM +
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the following transforms: ( / 2)
c c c

x x x N→ − − and ( / 2)
c c c

y y y N→ − − . After that 

it saves the new image. Finally, it calculates the total intensity, I, of each photo by 

using Eq. 2.47 and saves it in a file.  

Step3: Run Tomography.m:  

The code reads the beam photos created in step 2 and converts it to ASCII-text 

delimited strings, with each delimiter separating relative pixel intensities. Then by 

reading the table generated in step 1 it assigns a projection angle and scaling factor to 

each photo set. Next the program calculates the profiles along x and y and scales them 

appropriately following the procedure described in Sec. 2.2.2. Finally, it uses those 

profiles to reconstruct the phase space distribution. 

Step4: Run the EmitCalc.m:  

The code calculates the 4 rms×  unnormalized emittance by using the 

formula 2 '2 24 'x x x xxε = < >< > − < >  (see Sec. 1.1.2). To do so it converts the 

phase space in Step 3 to ASCII-text delimited strings, with each delimiter separating 

relative pixel intensities. Then, if N are the number of pixels in vertical and horizontal 

directions and ( , )M i j  is the phase space at a point i, j it calculates the second order 

moments by using the equations 

                                              2 2 2 ( , ) /
N N

i j

x T i M j i I
 

=  
 
∑∑ ,                                 (2.50) 

                                            '2 2 2 ( , ) /
N N

i j

x T j M j i I
 

=  
 
∑∑                                   (2.51)                  

                                             ' 2 ( ) ( , ) /
N N

i j

xx T ij M j i I
 

=  
 
∑∑  ,                             (2.52) 
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were I is the total intensity and T is the spacing between adjacent pixels (in 

mm/pixel). Then, the total emittance is 

            

2
2

2 24
( , ) ( , ) ( ) ( , )

N N N N N N

x

i j i j i j

T
i M j i j M j i ij M j i

I
ε

     
= −     

     
∑∑ ∑∑ ∑∑ .     (2.53) 

were we are assuming that the centroid of the phase-space is at the origin. 

2.5 Summary 

We described the basic theory to apply tomography to reconstruct the beam 

phase-space. We showed that the technique makes no a priori assumptions about the 

beam distribution when the beam has negligible space-charge. We also extended the 

technique to beams with space charge. Our approach assumes uniform distributions 

where the space-charge force becomes linear. Next, we reviewed the tomography 

magnet configuration for UMER and demonstrated the necessity to use multiple 

magnets for our reconstruction. Finally, we reviewed the computer codes that we use 

for our analysis.   
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Chapter 3 Tomography Simulation 

Over the last 30 years tomography has been successfully applied to 

reconstruct the phase space distribution for relativistic beams [20, 21, 24, 42]. 

Because of the high beam energy, space-charge effects were ignored on those studies. 

In Chap. 2 we proposed a method to extend further the tomography algorithm to 

beams with space-charge. The model assumed linear space-charge forces. Even 

though the first experimental data were reported [25, 43], still some questions remain 

about the limitations of the method. Can the technique be used for beams with intense 

space charge? Could a simple linear approximation accurately reproduce the beam 

phase space and if yes how many projections are required? In addition, will 

tomography map the phase distribution for beams with complex distributions? For 

instance, what would happen if the beam starts with a hollow velocity distribution 

(repeatedly observed in thermionic gridded guns)? In order to answer such questions, 

we simulate a tomography beam experiment using the electrostatic particle-in-cell 

code WARP [8]. In our simulation we use beams with different initial distributions 

and with different degrees of space-charge intensity. We show that tomography 

produces phase spaces with superior accuracy even for cases when the beam space-

charge is high.  Furthermore, we discuss the effects of various errors in the data 

collection process for the reconstruction and show that the crucial factor is not 

necessary the number of projections but the range of angles over which projections 

are taken.  



 

 49 

 

The outline of this chapter is as follows:  In Sec. 3.1, we provide a short 

general description about the simulation process we use. Then, in Sec. 3.2, we 

examine the effect of various errors in the data collection process on the reconstructed 

phase space (number of projections, rotation angle, and uncertainties in 

measurements). In Sec. 3.3, we examine the accuracy of the diagnostic for beams 

with different space-charge intensity. Next, in Sec. 3.4 we input different initial beam 

distributions in the simulation (for instance hollow-velocity or five beamlet 

distributions) and check the accuracy of our tomography analysis. In Sec. 3.5 we use 

tomography to simulate transverse density waves. Finally, in Sec. 3.6 we report a 

summary of our results and derive our conclusions.   

3.1 WARP Simulation 

As discussed in Chap. 2 application of tomography to beams with space 

charge requires some assumptions to be made, for instance use of linear space charge 

forces. In this section we are interested to validate the reconstruction approach, by 

simulating the tomography process using the self-consistent electrostatic particle-in-

cell code WARP [8]. In the simulation, WARP will include all these effects that 

tomography is ignoring and are summarized in Table 3.1. 
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Table 3.1: Assumptions made to generate the beam phase space by WARP (left) and 

tomography (right) 

WARP Tomography 

Nonlinear space charge Linear space charge 

Emittance growth allowed Constant emittance 

Image charge forces included Image charge forces ignored 

Arbitrary distribution Uniform distribution 

 

The computer code WARP has been successfully benchmarked against 

UMER experimental data in the past [44]. The code simulates space charge effects in 

2D or 3D by advancing particles in a transverse slice under the impact of external 

forces and self-consistent self-fields. The self-fields are calculated on a mesh of 

sufficient resolution to capture the beam potential variations and the particles are 

advanced using the leap-frog algorithm.  In our case we use the x-y 2.5-D slice model 

which has been shown to be accurate [45]
 
since the beam is long in z compared to the 

pipe diameter and varies little during its propagation over a longitudinal distance 

comparable to the beam diameter. In WARP we use a 512x512 grid for the Poisson 

solver, a step size of 2 mm along z, and 640,000 particles. Running a large number of 

test simulations with more particles or higher resolution resulted in no perceptible 

difference in the final result.   

We select the magnet configuration for our simulation to be as close as 

possible to that on UMER; therefore, we use the four quadrupoles layout shown in 
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Fig. 2.7 in Chap. 2.  Simulating the tomography under that geometry will give as 

more confidence about its future applicability in the actual experiment (see chapter 

4). Since the quadrupole nonlinearities are found to play a minor role in the behavior 

of the beam [45] their magnetic fields are modeled using a hard edge approximation 

where the effective length is defined as 1/ ( , 0)
eff peak

l B B z r dz

∞

−∞

= =∫ .  

The simulation is initialized upstream of Q1 (point A – the center of a dipole 

on the equivalent UMER lattice) and the photos and phase space are generated 

downstream of Q4 (point B – the position of the fluorescent screen on UMER). For 

each quadrupole current setting, we run a simulation; collect a snapshot of the beam 

density in configuration space at B and save it in 8-bit tif format. The tomographic 

reconstruction is applied to those simulated images to produce a phase space that will 

then be compared to the actual phase space obtained directly from the simulation. The 

phase space generated directly by WARP does not make the assumptions that 

tomography does (these assumptions are listed in Table 3.1) and therefore will be 

used as a prototype to compare the quality of our tomography process. Repeating this 

process for different initial distributions and with different degrees of space charge 

intensity provide us with confidence in the technique.  

3.2 Error Analysis 

We use the simulation to investigate the effects of various errors in the data 

collection process such as the angular step needed (Sec. 3.2.1), the total angular span 

required (Sec. 3.2.2) and the effect of magnet strength uncertainties in the 
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reconstruction (Sec. 3.2.3). For all cases presented in this section the beam parameters 

are: 0.6 mA, 6.0 mµ , 0.3 ,1.3 mm for the beam current, emittance, intensity parameter 

and size, respectively. In our simulation we assume the beam starts with a semi-

Gaussian (S-G) distribution, which is commonly used for modeling space-charge-

dominated beams. In such a distribution the particle density is uniform across the 

beam, while the velocity profile is Gaussian with uniform temperature. This 

distribution is preferred since it approaches thermal equilibrium in the space-charge 

limit.  

3.2.1 Angular Resolution 

In this section we study how the angle difference between two adjacent 

projections affects the quality of the tomographic reconstructed phase space. We 

show that if this difference is high it can lead to numerous artifacts on the 

reconstructed image. To illustrate this point, in Fig. 3.1 we plot the angular difference 

(angular step) between adjacent projections versus the projection number for three 

different cases. In Fig. 3.2 we show the resulting reconstructed phase space. For all 

cases the total rotation of the phase space distribution was 180
0
. Case 1 corresponds 

to the case with the highest angular step (relevant to Case 2 and 3) were its maximum 

value reached 30
0
. For this case, the appearance of aliasing streaks is evident (15% of 

the peak intensity) along the phase space distribution. The appearance of streaks is 

less visible (5% of the peak intensity) when the maximum angular step is below 24
0
 

(case 2). However, in case 3 were the angular step is kept minimum (less than 14
0
), 

the aliasing streaks clearly disappear. Therefore, we can conclude that the final 
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reconstruction is sensitive to the angular difference between two adjacent projections. 

If the angular step is higher than 14
0 

it can result to aliasing streaks with intensity that 

scales as the angular difference. 

 

Figure 3.1: Angular difference between adjacent projections versus the projection 

number for three different cases. 
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Figure 3.2: Phase-space distributions for the three different cases. Note that for all 

cases the total phase space rotation was 180
0
.  

3.2.2 Angular Span 

In this section we will test the sensitivity of the reconstructed phase space to 

the total rotation angle of the phase space. We show that when the phase space 

rotation is less than 180
0
 it can result to serious artifacts which become worse as the 

total rotation decreases. In order to illustrate this point we select to do a 

reconstruction for three different phase space rotations and our results are 

demonstrated in Fig. 3.3.  The number inside the photo indicates the total phase-space 

rotation achieved. As it is evident when the total rotation is far from 180
0
 aliasing 

lines are visible. For the case of 169.2
0
 rotation, the intensity of the aliasing lines 

reaches 25% of the peak intensity making it difficult to distinguish the reconstructed 

image. The artifacts become less visible as the rotation is increased to 174.6
0
 (10% of 

the peak intensity) and eventually disappear as the phase space rotation approaches 

179.2
0
. Therefore, we conclude that a close to 180

0
 phase space rotation is necessary 

for minimization of any noise artifact.  

X 

X' 

Case1 Case2 Case3 
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Figure 3.3: Phase Space reconstruction for different phase space rotations. 

3.2.3 Magnet Settings 

Finally, since in real experiments there is an uncertainty between the actual 

value and the set value in quadrupole current, we want to address the issue of 

quadrupole current systematic errors in the phase space recovery process. Figure 3.4 

depicts the recovered electron beam phase space using 168 projections, with (a) 1% 

simulated systematic error, (b) 3% simulated systematic error, and (c) 5% simulated 

systematic error. We conclude that the uncertainty in the quadrupole current values 

will affect the recovered phase space. Quantitatively, if we measure the beam 

emittance we get 5.7, 5.4, 5.1 mµ  for the cases where we have 1, 3%, and 5% error, 

respectively. Comparing these values to the emittance that we found for the case 

where no uncertainties in currents where present (6.0 mµ ) we conclude that small 

systematic errors in the quadrupole current have a moderate impact on the resulting 

emittances. 

x 

x’ 

 174.60   179.20   169.20  
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Figure 3.4: X’X phase space distribution of the pencil beam with different simulated 

systematic errors. (a) 1% error, (b) 3% error, (c) 5% error 

 

3.3 Verification of Space-Charge Reconstruction 

In this section we are interested to simulate our tomography diagnostic for 

beams with different space-charge intensity. Our aim is to test how accurate finally 

tomography is when the beam enters the space-charge dominated regime. Following 

the process we described in Sec. 3.1, the accuracy of our tomography diagnostic will 

be examined by comparing its reconstructed phase spaces to the phase-spaces 

generated directly by WARP. In our simulation we use three beams one of which is 

emittance dominated, while the other two are strongly space charge dominated. The 

current, initial beam size and intensity parameter of those three beams is listed in 

Table 3.2.  

 

 

x 

x’ 

1% error 3% error 5% error 
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Table 3.2: Beam parameters of our simulated beams. Note that the beam is assumed 

to be round, initially. 

χ  ( )mAI  
0 ( )mmr

 

Total 

Projections 

Maximum 

Angular Step 

Angular 

Span 

0.30 0.6 1.3 168 14.0
0 

179.2
0 

0.72 7 2.8 152 14.9
0 

178.0
0 

0.90 24 4.8 126 20
0 

175.0
0 

0 :r initial beam size 

For the simulation we use the configuration illustrated in Fig. 2.7 and 

reconstruct the phase space at 1z z= . We assume the beam starts with a semi-Gaussian 

(S-G) distribution. The number of projections, the total angular span and the 

maximum angular step between adjacent projections for each case is shown in Table 

3.2.  The settings of the scanning magnets were such to ensure that the beam was 

remained far from the beam pipe eliminating so particle losses and image forces. Due 

to the very large beam sizes obtained while scanning the magnets for the 24 mA 

beam, the total phase space rotation was restricted to 175
0
. The recovered phase 

spaces at 1z z=  are shown in Fig. 3.5. All plots correspond to the case where the 

focusing strength for Q1 and Q3 was set 1 3 235.2κ κ= = −  2
m

−  (along x) and Q2 and 

Q4 was set at 2 4 235.2κ κ= = 2
m

−  (along x).  
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     Figure 3.5(a) corresponds to an electron beam with current equal to 0.6I =  

mA and intensity parameter 0.30χ = . The tomography recovered phase space is 

shown in Fig. 3.5(a) (right). Due to the low current, space charge forces are relatively 

low and were neglected in our analysis.   Figure 3.5(b) shows the recovered phase 

spaces for the 7I = mA. Since its intensity parameter is 0.72χ =  this is a space-

charge dominated electron beam, therefore space charge effects must be taken into 

account in the tomography reconstruction process. The simple method we employ 

here, (described in detail in section 2.2), is a linear space charge correction estimated 

from the beam envelopes. Finally, Fig. 3.5(c) depicts phase space recovery for a very 

intense beam with 24I = mA and 0.90χ = . Table 3.3 summarizes the calculated 

emittances from WARP and Tomography for those three beam intensities.  

 The difference in emittances is at its highest for the 24 mA beam. This is 

mainly for two reasons: One is the aliasing streaks (clearly seen in Fig. 3.5(c)). Those 

streaks are a source of error in the emittance calculation from tomography. In our 

simulation the total rotation was only 175
0
 and as shown in Sec 3.2.1 streaks can 

appear if the phase space rotation is not complete. The second reason is the 

substantial amount of space-charge which in turn can result to non-linear forces not 

included in our analysis. Still, given the high beam intensity, the agreement is good 

and the error is far less from other methods such as a quadrupole scan [15].  

 Tomography accurately reconstructed the phase space for beams with 

moderate content of space-charge ( 0.72χ ≤ ). The emittance error was below 5%. 

Therefore, our linear approximation model is proven to be effective in the 

reconstruction in the presence of moderate amount of space charge. Simulations for 
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more intense beams ( 0.9χ = ) suggest a higher percentage of error but still the 

agreement between tomography and simulation is relatively good.  
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Figure 3.5: Recovered phase spaces from WARP (left side) and Tomography (right 

side) for beams with different intensity parameters: (a) χ=0.3 (b) χ=0.72 (c) χ=0.9 
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Table 3.3 Emittances obtained by WARP and Tomo-Code 

χ ( )mAI  ( ),m WARP
x

ε µ  ( ),m TOMOxε µ  Error (%) 

0.30 0.6 6.1 5.9 3.2 

0.72 7.0 14.5 15.2 4.8 

0.90 24.0 29.0 31.1 7.2 

 

3.4 Initial Distributions 

In beam physics the initial beam phase space distribution is an important 

factor in determining its evolution. Part of the challenge of any distribution 

measurement technique is that it should make no a priori assumption about those 

initial distributions but instead should be equally accurate for different input profiles. 

In this section we simulate our tomography diagnostic using four different initial 

distributions and will compare our reconstruction with direct WARP simulation. 

Similarly as described in Sec 3.1, we will initiate our simulation at 0z z= and 

reconstruct the phase space at 1z z= . The distributions to be explored are the Semi-

Gaussian (see Sec. 3.4.1), Hollow-Velocity (see Sec. 3.4.2), Hollow-Spatial (see Sec. 

3.4.3) and Five-Beamlet (see Sec. 3.4.4).  The WARP generated and tomography 

reconstructed phase spaces are shown in Figure 3.9 at the second and third column, 

respectively. The calculated 4xrms emittances are listed in Table 3.5. For all cases the 

beams are equivalent in rms sense, meaning that they have the same current, energy, 

rms emittance and size. The detailed beam parameters used for our analysis are listed 
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in Table 3.4. The number of projections, angular steps and spans are identical to those 

used for this beam in Sec 3.3 (second raw of Table 3.2). 

Table 3.4: Beam parameters for the 7 mA beam. 

Beam Energy 10 keV 

β (= v/c) 0.2 

Beam Current 7 mA 

Mean Beam Radius 2.8 mm
 

Mean Beam Divergence 

Emittance, 4xrms 

-13.3 mrad (in x) 

15 µm 

 

3.4.1 Semi-Gaussian Distribution 

We start our simulation by assuming that the beam starts with a semi-

Gaussian at 0z z= . Such a distribution is shown in Fig. 3.8(a). This case is identical to 

the case described in Sec. 3.3. The beam distribution at 1z z=  is shown in Fig. 3.9(a) 

and clearly there is good agreement between tomography and simulation.  

3.4.2 Hollow Velocity Distribution 

A hollow velocity distribution is of interest not only because it has been 

experimentally observed on UMER [46] but also it tends to be a general feature of 

thermionic gridded electron guns. In a gridded electron gun, a grid located in front of 

the cathode is used to control the beam current and beam shape. However, when the 

beam reaches the grid a certain percentage of the current can pass through while 
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others will be intercepted by the mesh and form the grid current. Such a current will 

modify the field lines that the beam particle sees and hence strongly perturbing its 

initial particle distribution. Through this process some particles gain substantial 

amount of transverse energy causing hollowness in velocity space.  

It has been shown [44] that such a hollow distribution can be modeled if we 

use a radially hollowed velocity (with azimuthal symmetry) that is obtained by 

rotating a Gaussian distribution with width 
th

υ  and offset α  from the origin around a 

circle of radius α . The cross section of such a distribution is illustrated in Fig. 3.6. In 

our case, the parameters 
th

υ  and α  are calculated to be 0.0011 and 0.0033, 

respectively. In that way the beam rms size and emittance are equal to the Semi-

Gaussian distribution case in the previous section. The beam distribution at  0z z=  is 

illustrated in Fig. 3.8(b). Downstream, at 1z z= , the initial uniform beam in 

configuration space becomes hollow (Fig. 3.9(b)). This is due the fact that, initially, 

not all particles have the same velocities and hence evolve different along the 

beamline. Hollowness is visible also in phase space and interestingly enough 

tomography captures those details with high level of accuracy. This is also quantified 

by the emittances which agree within 4%.   



 

 64 

 

 

Figure 3.6: The Gaussian velocity distribution that is rotated around a circle of radius 

α   

3.4.3 Hollow Spatial Distribution 

Of particular interest is a beam distribution that is not uniform in 

configuration space. Such a situation can exist in many experiments due to nonlinear 

focusing or nonuniform emission from the cathode. We model a hollow density 

distribution with a sharp edge at radius 0r . Then, if the degree of hollowness is 

quantified by a dimensionless parameter, h, the hollow spatial distribution in our 

simulation is described by  

                                                  
2

2

0

( , ) (1 )
r

f r h h h
r

= + − ,                                          (3.1) 

thυ

α

v 

f(v) 
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where for our case h=0.5. If
u

r is the radius of the equivalent uniform beam (see Table 

3.4) in rms sense, then the ratio 0/
u

r r  is determined by  

                                                           
0

2( 2)

3( 1)

u
r h

r h

+
=

+
,                                             (3.2) 

and therefore 0/ 1.055
u

r r = . The initial hollow velocity distribution used in our 

simulation is illustrated in Fig. 3.8(c). Downstream, hollowness is still visible in 

configuration space (Fig. 3.9(c)) but the phase spaces are fairly uniform. Good 

agreement between tomography and simulation is visible. This is also quantified by 

the emittances which agree within 4%.    

3.4.4 Five-Beamlet Distribution 

Finally, we incorporate a highly asymmetric or non-round initial beam 

distribution. Such a highly nonuniform distribution introduces nonlinear space charge 

forces [7]. Therefore, it will be a good test of the validity of our linear tomography 

model. To generate an asymmetric distribution we use a quincunx pattern in the xy 

(similar to the number 5 of a die) where we intercept a uniform S-G beam with a 5-

beamlet mask. Such an experiment has applications in heavy ion fusion where the 

concept of merging multiple beamlets has been used extensively [29, 30].  

 Figure 3.7 shows a schematic layout of the initial beamlet distribution and Fig. 

3.8(d) shows the actual photo at 0z z= . Assuming uniform beamlets, the initial size, 

current and emittance of each beamlet is [7]: 

                                                    2 21.6let ur r δ= −  ,                                                (3.3)  
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                                                           let
let

u

r

r
ε ε= ,                                                     (3.4) 

                                                              
5

let

I
I = ,                                                       (3.5) 

where 
u

r , I, ε  is the size, current, and emittance of the equivalent uniform beam (see 

Table 3.4), respectively; δ is the beamlet center to center distance; 
let

r , 
let

I ,
let

ε , are 

the radius, current and emittance for each beamlet, respectively. At 1z z=  the beam 

distribution in configuration space and phase-space is shown in Fig. 3.9(d). An 

interesting result is the almost merging of the beamlets in configuration space but at 

the same time the beamlets are separated in phase space. Another surprising fact is 

the superior agreement between WARP and Tomography (third column) despite the 

linear approximation used in our model. Such result suggests that our tomography 

method appears promising to reconstruct phase spaces of complex nonuniform 

distributions.  

 

Figure 3.7: Schematic layout of the five beamlet distribution. Note that 2b is the 

diameter of the beam pipe. Distances are not to scale. 

 

2δ 
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Figure 3.8: Beam distributions in configuration space (left) and beam distribution in 

phase space (right) from direct WARP simulation at 0z z=  

 

y 

x’ 

x 

x x 

y x’ 

(a) 

x 
y 

x 

x 

x’ 

(b) 

(c) 

x 

x x 

x’ y 

(d) 



 

 68 

 

 

 

Figure 3.9: Phase spaces for the 7mA obtained by WARP (second column) and 

Tomography (third column) at 1z z= using different input distributions.  
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Table 3.5: Emittances obtained from the phases-spaces in Fig. 3.9 by WARP and 

tomography 

 

Distribution ( ),m WARP
x

ε µ  ( ),m TOMOxε µ  Error (%) 

Semi-

Gaussian 

14.5 15.2 4.8 

Hollow 

Velocity 

14.3 14.9 4.0 

Hollow 

Space 

 Five-Beamlet 

14.7 

 

        16.7 

        14.2 

 

15.6 

3.5 

 

       6.5 

 

3.4.5 Conclusion 

In this section we simulated the tomography diagnostic for beams with 

different initial distributions. We showed that by treating beams with non uniform 

distributions as equivalent (in rms sense) to uniform beams we can obtain very 

accurate phase space maps. This was true also when we used highly asymmetric 

distributions (such as the five beamlet distribution in Sec 3.4.4). Even though such 

distribution will introduce non linear space-charge forces our linear model proves to 

be effective in the reconstruction process with an error less than 7%.    

3.5 Transverse Density Waves 

 Beams normally reach an equilibrium state only after traversing a long 

distance in a transport system. Thus, beams are typically far from equilibrium near 

their source. Many factors contribute to the beam evolution towards equilibrium, 
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causing emittance growth in the process: envelope mismatch, nonlinearities and 

anisotropies in the focusing system, dispersion and bending, collimation, etc. An 

example of a nonequilibrium beam distribution is the Semi-Gaussian (S-G) 

distribution introduced above. It can be used, for example, to model the wavelike 

beam evolution described by Bernal et al. [47]. A space-charge dominated electron 

beam emerging from an aperture develops a ring of charge near its edge that 

progresses towards the beam's center as the beam propagates in a solenoid or 

quadrupole system. Simulations with WARP starting with a S-G distribution 

accurately reproduce the density modulation in the experiment. In a similar fashion, 

Kishek et al., [48] reports space-charge modes, similar to those observed before, in 

simulations of nonequilibrium charged particles beams with anisotropy.  

 We are interested in using tomography as a diagnostic tool to study 

nonequilibrium dynamics in space-charge-dominated beams. In order to do that, we 

simulate the 7 mA beam starting with a SG distribution and observe the beam 

evolution by mapping its phase space. The phase space is reconstructed by scanning 

quadrupoles Q1, Q2, Q3 and Q4, and is projected downstream of Q4 as described in 

Sec. 2.4.2. Since we are interested in investigating beam propagation over a long 

distance, we add a series of alternating-gradient quadrupole (FODO) cells 

downstream of Q1, with appropriate strength so that the beam remains matched as it 

passes through them. Our results are shown in Fig. 3.10, which demonstrates that 

tomography is powerful enough to capture the details of the distribution including the 

“wings” that correspond to the propagating space charge waves. The number inside 

each photo indicates the number of quadrupoles upstream of Q1 (does not include the 
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4 quadrupoles used for tomography). The sharp edges of the initial spatial distribution 

result in a strong force imbalance at the beam edges. As a consequence, the beam-

edge particles experience forces that are very different from those affecting the bulk 

particles. Edge particles tend to move outside the beam as the latter is transported in 

the FODO lattice (Figs. 3.10(c), 3.10(d)). However, the strong external focusing 

brings the edge particles back near the beam edge (Fig. 3.10(e)), creating a wavelike 

density modulation downstream. Table 3.6 summarizes the emittance measurements 

as calculated by tomography and WARP. We can conclude that the quality of the 

tomography process can be established by its ability to capture the wave-like behavior 

on the recovered phase space, in good agreement with the WARP-generated phase 

spaces. Beside this good agreement, the emittance values agree also very well with 

error close to 5%. 

 

Table 3.6: Beam emittances at different positions along the beam line as calculated 

from the phase spaces generated by tomography and WARP 

 

Z (cm) 61.3 77.3 109.3 141.3 173.3 

εx,Tomo (µm) 15.2 15.2 14.8 14.1 15.7 

εx,WARP (µm) 14.5 14.7 14.5 15.0 14.8 
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Figure 3.10: Phase space from simulations of the 7 mA beam after propagating for 

different distances, clearly indicating the propagation of transverse density waves: 

tomography (top) vs. direct WARP result (bottom) (cf. ref. [47]). Phase space after 

passing through (a) 0; (b) 1; (c) 3; (d) 5; and (e) 7 quadrupoles upstream of Q1. The 

symbol z indicates the total distance the beam has traveled.  
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3.6 Summary 

Using the particle-in-cell code WARP we have simulated a beam experiment 

and applied tomography techniques to map the phase space for beams in both 

emittance- and space charge-dominated regimes.  For beams with space charge we 

are applying our tomography algorithm by assuming linear forces and no emittance 

growth. The validity of our reconstructed phase space was tested by comparing our 

results to the direct phase space generated by WARP (without tomography) which is 

highly accurate since it is not making the assumptions that our tomography algorithm 

does. For low current beams, we found excellent agreement between tomography and 

simulation. For more intense beams where space charge effects are present, still very 

good agreement exists, with the error close to 7%.  Furthermore, we applied 

tomography for beams with different, more complex, particle distributions. We 

showed that by treating beams with non-uniform distributions as equivalent (in rms 

sense) to uniform beams we can obtain very accurate phase space maps.  We are now 

ready to apply the diagnostic in the experiment. 
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Chapter 4 Tomographic Measurement of Phase-Space 

Evolution for Space-Charge Dominated Beams 

 

Many of the downstream propagation beam characteristics, such as beam 

emittance and brightness, can be strongly influenced from the upstream behavior [6], 

therefore a good understanding of the initial beam distribution and its evolution is 

important. Improved beam properties downstream have been reported by partitioning 

a single beam into smaller change bunchlets right at the RF gun exit [49]. 

Additionally, experiments [30] and simulations [29] show that a multi-bunch 

approach to generate high-current intense beams offers a number of potential 

advantages over a single beam injector for Heavy Ion applications. Furthermore, 

experiments with multi-beamlet distributions have been recommended [31, 33] to 

mimic phenomenology inherent to time-dependent collective dynamics in galaxies 

such as colliding and merging galaxies [32]. Those examples illustrate the necessity 

of a good understanding of the evolution of multi-beamlet distributions. 

Taking advantage of the intense beams and flexible design of UMER, in this 

chapter we apply our tomography diagnostic to a series of experiments to examine 

emittance growth, halo formation, phase mixing and charge homogenization. We use 

beams with different intensities and different transverse initial density distributions 

and compare our results with predictions from theory and simulations.     
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 The outline of this chapter is as follows:  In Sec. 4.1, we provide a short 

general description of UMER. In Sec. 4.2 we review the available UMER diagnostics. 

In Sec. 4.3, we describe the imaging hardware and software we used in the 

experiment. We also describe the process we use to automate the tomography 

process. Next, in Sec. 4.4 we cross check the phase spaces recovered by tomography 

in the experiment with phase spaces obtained with a different technique. In Sec. 4.5 

we use tomography to describe the phase space evolution of intense, space charge 

dominated beams with initially uniform and nonuniform distributions and report some 

interesting physical insights. Finally, in Sec 4.6 we present a summary and 

conclusions. 

4.1 University of Maryland Electron Ring (UMER) 

Experiments in this chapter are carried out on UMER [10, 11], a 10 keV 

nonrelativistic electron ring. Figure 4.1(a) shows the schematics of UMER and a list 

of UMER beam parameters is provided in Table 4.1. UMER is an 11.52 m-

circumference ring that consists of 18 sections with four quadrupoles. Each ring 

section has two dipoles which provide two 10
0
 bends. Three induction modules (one 

built and two more are under construction) will provide longitudinal focusing. At the 

injection of / 0.2v cβ = = , the beam is nonrelativistic, implying it is highly sensitive 

to space charge forces. Beams are produced by an electron gun of Pierce geometry 

with a 4 mm radius cathode.  
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Figure 4.1: Layout of UMER: (a) Schematic representation; (b) Actual Photo 

 

An adjustable Anode-Cathode gap enables us to vary the generalized 

perveance, and hence the strength of the space-charge forces. Furthermore, similar 

adjustments can be made by an aperture wheel right at the exit of the anode gun. The 

UMER aperture plate has 6 holes (apertures) in different sizes, including the full 

beam aperture and the five-beamlet mask and is shown in Fig. 4.2. The desired 

aperture can be selected by using the small rotary feedthrough (knob) next to the gun. 
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The size of each aperture and the resulting beam current are illustrated in Table 4.2. 

Table 4.2 includes also other beam parameters such as, the initial slope from the beam 

envelope '

0r , and beam emittanceε .  Details about the calculation of those parameters 

are discussed in Sec. 4.4.  

After passing through the mask and before entering the ring the beam passes a 

1.4 m injection/matching section which employs one solenoid after the source and six 

quadrupoles. With a zero-current phase advance σ0 of 76
0
 and lattice periodicity S of 

0.32 m, UMER beams have a betatron oscillation wavelength λβ0 equal to 1.51 m.  

 

Table 4.1: UMER design parameters 

Beam Energy 10 keV 

/v cβ =  0.2 

Pulse Length  50-100 ns 

Ring Circumference 11.52 m 

Lap Time 197 ns 

Pulse Repetition Rate 10-60 Hz 

FODO Period 0.32 m 

Zero-current Phase Advance, σ0 76
0 

Zero-current Betatron Tune, ν0 7.6 

Tune Depression ≥ 0.2 
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Figure 4.2:  Aperture wheel at the gun exit. Note that there are six different apertures, 

each one resulting to a beam with different intensity.  

 

Table 4.2: UMER Beam Parameters for the 10 keV beam. 

Aperture 

# 
0r  

(mm) 

I  

 (mA) 

ε  

 (µm) 

'

0r  

(mrad) 

r  

(mm) 

1 0.25 0.7 7.6 -1.27 1.5 

2 0.875 7 25.5 -4.3 3.19 

3 1.5 23 39.0 -6.7 4.89 

4 2.85 78 86.6
2 

- 8.70 

5 3.2 104 97.3
2 

- 9.92 

6 3.41
1 

28 103.8
2 

- 6.41 

 ( 0 :r beam radius at the aperture; :r  beam radius of a matched beam with 0

0 76σ = ; 

: 4xrmsε , unormalized emittance; ' '

0 0 0 04 /r r r r= < >  :initial beam slope of the beam 

envelope) 

1
Estimated by using Eq. 3.3 

2
Obtained by scaling with the pencil beam (assuming a uniform beam). 

 

Knob 1 
3 

6 
5 

4 

2 
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By design, UMER provides a low-cost, well diagnosed research platform for 

investigating beam dynamics. In the next section we will briefly review the available 

ring diagnostics. 

4.2 Available Diagnostics in the Experiment 

UMER has a number of available diagnostics that will be used in our 

experiment to carefully monitor the beam transport. Those are: A Bergoz coil for 

current measurement (see Sec. 4.2.1), Beam Position Monitors for current profiling 

and measurement (see. Sec 4.2.2) and Fluorescent Screens for measuring the 

transverse beam distribution (see Sec. 4.2.3). In the next subsections we will briefly 

review those diagnostics. 

4.2.1 Bergoz Coil 

The beam current was diagnosed by using a Bergoz [50] fast current 

transformer located between the second and third quadrupoles in the injector section. 

The rise time of the Bergoz coil was measured to be 2.8 ns [51].   

4.2.2 Beam Position Monitors 

All but four sections of the ring house diagnostic chambers consisting of a fast 

capacitive beam position monitors (BPMs) [51]. The monitors consist of four 

striplines with a 77
0
 arc to decouple X and Y directions. Voltages measured along 

those striplines are been used to locate the beam centroid. In addition, those signals 

are been used for high resolution beam profiling, and current loss monitoring. BPMs 

have a very fast time response, which is about 1.7 ns.  



 

 80 

 

4.2.3 Screens 

Fluorescent screens are attached to the bottom plate of the BPM and provide 

information of the transverse beam distribution. Two additional screens are located 

along the injector line at diagnostic chambers: IC1 (31.1 cm from the aperture) and 

IC2 (81.98 cm from the aperture). The screens are based on P-43 phosphor 

(Gd2O2S:Tb) which has peak emission on green (545 nm). The plane of the screen is 

2.7 cm upstream from the chamber center and its diameter is 31.75 mm. The beam 

image is reflected by a mirror oriented at 45
0
 to the beam line and monitored through 

a window in each chamber. This is illustrated in Fig. 4.3. One drawback of these 

screens is their response time, which is 1.6 µs and hence they allow only to measure 

time-integrated beam profiles. In Chap. 6 we will review some new type phosphor 

screens, currently installed at the Long Solenoid Experiment, that have very fast 

response time (<3ns) and so allow time-resolved measurements.  
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Figure 4.3: Screen assembly on UMER. Note that the mirror is at an angle 045φ = to 

allow the light to come out from the window. 

 

4.3 Image Acquisition and Processing 

In this section we review the characteristics of the imaging system used in the 

experiments and provide details about the camera (Sec. 4.3.1), hardware control (Sec. 

4.3.2) and image-acquisition software (Sec. 4.3.3). Finally, in Sec. 4.3.4 we discuss 

the procedure we use to automate tomography.   
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4.3.1 Camera and Lenses 

An advanced, high resolution progressive scan, fully programmable digital 

charged coupled device (CCD) camera from IMPERX (model IPX-1M48-L) was 

used in our experiments. A CCD is a light-sensitive integrated circuit that stores 

irradiated image data in such a way that each acquired pixel is converted into an 

electrical charge.  The camera uses an objective lens to focus the incoming light and 

if we place the CCD array at the focused point where this optical image is formed we 

can capture the image.  The camera used in our experiments has a high resolution 

(1000x1000 pixels) in order to reveal as many details of the beam distribution as 

possible. Furthermore, it captures 8 to 12 bit images allowing so a high intensity 

range per pixel (see Sec. 2.4.3). The camera is equipped with an electronic shutter 

that is used to control the exposure time on the light sensor. Since the minimum 

exposure time for this camera is 50 sµ  it is used only for time resolved measurements 

on UMER. The start of the exposure can be controlled through an external trigger. 

This allows the camera to be synchronized to an external timing pulse. Using the 

trigger option we synchronized the camera with the beam pulse so that the shutter was 

open when a beam pulse was fired and closed immediately after that (before the 

second pulse arrives). The camera receives the trigger signal coming through a 

connector located on the back of the camera.  The maximum number of frames that 

can be captured are 30 frames/sec (camera read out time was 33 msec). Hence, in our 

experiments the beam frequency was reduced to 20Hz (50 msec time between pulses) 

to allow plenty of time for the camera to perform the read-out. More details about the 
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camera specifications and operating procedures for UMER can be found on Appendix 

B.    

For our experiment we use a macro lens (AF Micro-NIKKOR 60mm f/2.8D). A 

macro lens is a lens with the ability to focus from infinity to extremely close distances 

(up to 0.22 m), allowing it to capture images of tiny objects in frame-filling, larger-

than-life sizes. This is advantageous for our experiment for two main reasons: (1) It 

allows us placing the lens very close to the screen and so space is not a concern (up to 

0.22m); (2) The lens provides high quality images since it cover the beam photo with 

a large number of pixels.  To illustrate the second point we do a comparison of a 

macro lens with two other lenses and show our results in Fig. 4.4. As we can see the 

macro lens gives the best close-ups images.  In our experiments we will exclusively 

use this lens. 

 

 

Figure 4.4: Images of the same beam with the same camera but different lenses. The 

aperture of a lens determines the amount of light that passes through the lens to the 

sensor.  The focal length is noted as F.  The macro lens (far right) allows the most 

close-up images.  

Cosmicar / Pentax Pentax Nikkon Makro 
lens 

Aperture: 1.2 -16 

F = 12 mm 

Aperture: 1.4 -16 

F = 25 mm 

Aperture: 2.8 -32 

F = 60 mm 
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4.3.2 Video Capture and Camera Control 

In order to connect the camera to the PCI Bus the PIXCI CL1 Camera Link 

linux compatible board from EPIX (model EPX-PIXCL1) is employed. The PIXCI 

CL1 operates in a 32 bit, 33MHz PCI bus slot and is able to transfer video data to the 

PCI bus up to 100 megabytes per second.   

4.3.3 Image Acquisition Software 

The camera specifications (such as frame rate, triggering, electronic shutter 

etc) presented in Sec. 4.3.1 can be fully controlled by using XCAP-STD, from EPIX 

(model EPX-XCAPSTD-L). In our analysis we combine XCAP with Labview and 

use it exclusively for image acquisition and processing. Figure 4.5(a) and Fig. 4.5(b) 

illustrate the main features of XCAP. 
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Figure 4.5: Screen shots of the GUI of the XCAP imaging software; (a) Basic 

features; (b) Image processing tools  
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4.3.4 Tomography Automation 

  As discussed in earlier chapters, in order to successfully reconstruct the phase 

space we have to take a large number of beam photos (sometimes as high as 200). 

Therefore, by combining Labview and XCAP we fully automated the tomography 

process enabling a full scan without human intervention in less than 30 minutes. We 

will briefly review the automation in this section and provide a more detailed 

description in Appendix C.  

The schematic layout of our computer control system is illustrated in Fig. 4.6. 

One computer under linux is used to control the magnets by using Labview and a 

second computer, under windows is used to control the camera. The automation 

process works as follows: Labview is activated from the  linux computer (step 1). 

Labview sets the desired magnet values (step 2) and then notifies via text message 

(step 3) the windows computer to activate XCAP (step 4). XCAP  acquires a beam 

image and saves the beam photo (steps 5), then sends an aknowledgement message 

back to the linux computer (step 3). This process continues until the whole 

quadrupole scan process is over. Finally, we post-process these photos, using the 

same MATLAB scripts described in Chap. 2 for simulated photos (see Sec. 2.4.4), 

recovering thus the phase space distribution (step 6).  
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Figure 4.6: Diagram of the UMER Tomography control system structure  

 

 

 

4.4 Beam Characterization near the UMER source – Tomography 

Verification 

In Chap. 3 in order to check the validity of the assumptions made by 

tomography we simulated the reconstruction process. Our results showed good 

agreement between the phase spaces from tomography and direct simulation. Now we 

are interested in comparing the tomography phase spaces reconstructed in the 

experiment to that generated by using a different diagnostic, known as the pinhole 

scan. In Sec. 4.4.1 we review the principles of the pinhole scan diagnostic and show 

our results, and in Sec 4.4.2 we compare them with tomography.  We do our 
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PC 
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measurements on UMER and in all cases the beam energy is set at 10 keV and the 

pulse length is 100 ns with a repletion rate of 20 Hz.  

4.4.1 Pinhole Scan  

Here we will demonstrate an alternative method to obtain phase spaces. One 

potential advantage of this method is that it can provide us with phase space maps 

right at the gun exit and therefore we can get information of the beam initial 

conditions such as the beam emittance, size and slope of the beam envelope. This way 

we can optimize beam injection.  

As discussed in Sec. 4.1 the UMER aperture plate has 6 holes (apertures), 

where the desired aperture can be selected by using the small rotary feedthrough 

(knob) next to the gun (see Fig. 4.2). The smallest available aperture, the pinhole 

(aperture 1 in Fig. 4.2), can be used to make an estimate of the beam emittance and 

transverse beam phase space. Due to the small radius of the pinhole (0.25 mm), the 

beam coming out is emittance dominated. Therefore, the particles move along straight 

lines between the aperture and screen. The principle of the process is schematically 

shown in Fig. 4.7 and works as follows: By turning the knob for a few degrees we can 

move the pinhole vertically (same x, different y) and sample different parts of the full 

beam behind the pinhole. Then, by using the screen (IC1), 28.4 cm downstream, we 

can record the position of the beamlet each time. The concept is very similar to that of 

a pepper-pot, however, the advantage of a pinhole scan is that you have only one hole 

so there is no concern about overlapping beamlets.    
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Figure 4.7: Schematic representation of the principle of the pinhole scan. 

 

Figure 4.8: Actual photo indicating the aperture and the screen. Note that solenoid 

was turned off for the pinhole scan. 

 

Figure 4.9 shows several pictures of individual beamlets at IC1 for different 

positions of the pinhole. The label y shows the position of the pinhole and the number 

Aperture Screen 

Solenoid 

Full 
Beam Central Beamlet Plane 

Aperture Plate Screen (IC1) 

Xc,Yc 

Pinhole  
Moving  
Plane 

Y 

X 

Pinhole (x,y) 

L 
Xcm,Ycm 
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at bottom shows the position of the rotary feedthrough in degrees. The beamlets 

appear to be cut for settings below 188
0
 and higher than 224

0
. Additionally, the beam 

completely disappears when the knob is at 168
0
 and 244

0
 for a total scan of 76

0
. 

Previous calibration tests show that a rotation of 1
0
 on the knob scale corresponds to a 

linear transition of the mask center close to 0.1 mm. Thus, the radius of the full beam 

must be close to 3.8 mm. We assume that the central beamlet falls at the middle of 

this angular span (206
0
). It is interesting to note that beamlets are hollow, indicating a 

hollow velocity space. This is in agreement with previous experiments and 

simulations [44, 46], and as described in Sec. 3.4.2 is caused by the distortion of the 

potential near the cathode by the (cathode) grid. Another interesting observation is 

that the pinhole photos show a shadow of the anode grid pattern.  
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Figure 4.9: Photos of individual beamlets for different positions of the pinhole. The 

top number shows the position of the pinhole relevant to the central beamlet. The 

bottom number shows the position of the knob. The bias voltage in the experiment 

was set at 30 V and typical beam radii of the beamlets on the screen are 6 mm. 

 

Suppose that L is the distance between the planes of the aperture and the 

screen and ,
cm cm

X Y  are the x, y centroids of the central beamlet. Then, an estimate of 

the beam divergence y’ can be made at the aperture by recording the centroids ,
c c

X Y  

of each of the individual beamlets at the screen. If the pinhole aperture is set at a 

206 Central 

y=0 mm 

200 

y= -0.6 mm 

194 

y= -1.2 mm 

188 180 

y= -1.8 mm y= -2.6 mm 

212 

y= 0.6 mm 

218 

y= 1.2 mm 

224 230 

y= 1.8 mm y= 2.4 mm 
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point ( , )x y  relative to the central aperture, then the beam divergence y’ with respect 

the central axis is given by:  

                                                  
( )

' c cm
Y Y y

y
L

− −
= .                                     (4.1) 

Thus, the beamlet centroids are a direct measure of the angular distribution of the 

beam sampled at ( , )x y . Therefore, applying Eq. (4.1) for each beamlet we can 

obtained an “averaged” phase space distribution at the location of the aperture.  

 

Figure 4.10: Averaged phase space distribution at the beam aperture obtaind 

from the pinhole scan. The vertical lines show the range of three UMER beams: 

0.7 mA, 7 mA, and 23 mA.  
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Care must be taken so that data will be collected for as small vertical 

movements of the pinhole as possible. However, to sample different parts on phase 

space this movements cannot be less the pinhole scan radius. In our experiments we 

selected to move the pinhole at 2
0
 (=0.2mm) steps and our results are illustrated in 

Fig. 4.10. It is worth to mention that the points follow a harmonic line. Four major 

modulations are shown which are indicated by the magenta color arrow. The period 

of these modulations is very similar to the gun’s anode grid wire spacing (0.69mm). 

Hence, the anode grid modulates some density photos and so is altering the centroid 

location and this affects the final phase space measurement. 

 From the pinhole scan measurements we can make an estimate of the beam 

4 rms× emittance by applying the formula (see Sec. 1.1.2) 

                                       2 '2 ' 24y y y yyε = < >< > − < > ,                             (4.2) 

which can be further modified to 

                                                    ( )
2

' 2 2

0 0( tan )
p

r r rε φ= −                                      (4.3) 

where 2

0 2r y= < >  is the 2 rms×  size at the aperture (see Table 4.2); 

' '22pr y= < >  is  2 rms×  slope that can be estimated from the size of each beamlet 

on the screen; and          

                                                        
2

'
tan

yy

y
φ

< >
= −

< >
                                              (4.4) 

is the slope of the phase-space [7], a quantity that can be calculated from the slope of 

the line that passes through the points in Fig. 4.10. In Table 4.3.we record all values 
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for '

0 , pr r and tanϕ . Since our pinhole measurements are up to 1.4 mm in the vertical 

direction (the pinholes are cut after this point), we can make an estimate of the phase 

space slope, tanϕ ,  only for the first three UMER beams. The range of those beams 

is illustrated in Fig. 4.10 and the obtained emittances from Eq. 4.3 are listed in Table 

4.1. 

Table 4.3: Beam parameters from the pinhole scan 

I (mA) tanφ  ( /mrad mm ) 
0r ( )mm  ' ( )pr mrad  

0.7 

7 

-5.1 

-4.9 

0.25 

0.875 

-30.6 

-29.4 

23 -4.5 1.5 -26.8 

 

4.4.2 Phase Space at the Aperture by Tomography 

In this section we like to compare the pinhole scan phase space to the one we 

get from tomography. We focus our work on the 23 mA beam current with 

generalized Perveance, K, equal to 3.4×10
-4

. To generate such a beam current we set 

the aperture hole at position 5 in Fig. 4.2. As Fig. 4.8 illustrates the solenoid magnet 

between the aperture and the screen was turned off while collecting the pinhole 

photos. According to the discussion in Chap. 5 scanning the solenoid, can produce 

phase space maps, similarly to quadrupoles.  

For tomography, the solenoid field has incrementally increased from 4.0 A up 

to 12.2 A resulting to 42 independent projections at the screen that was used to 

reconstruct the phase space at the aperture plane according the discussion in Chap. 2 

and Chap. 5. This phase space is shown in Fig. 4.11(a).  
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Figure 4.11: (a) Phase space for the 23mA beam at the aperture plane generated by: 

(a) Solenoidal Tomography; (b) Pinhole Scan (blue dots). Red lines are locations 

were the beam centroid along y is calculated (red dots).  
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 Once, we have reconstructed the phase space at the aperture we are interested 

in comparing it to that obtained from the pinhole scan. To do so, we calculate the 

centroids from the tomography phase space along the same y’s to that of the pinhole 

scan. Therefore, we calculate the centroids along the red lines in Fig. 4.11(a) and the 

resulting values are plotted in Fig. 4.11(b). For comparison, on this plot we include 

also the centroids calculated from the pinhole scan (blue points) in the previous 

section.   

From Fig. 4.11(b) we can see that the agreement between tomography and 

pinhole scan is very good. The only difference is the absence of the four modulations 

that are visible in the pinhole scan case. We believe this is because the tomography 

phase space, 'yy , is the result of the integral: ' ' ' '( , ) ( , , , )y y x x y y dx dxµ µ
∞ ∞

−∞ −∞

= ∫ ∫ (see 

also Eq. 2.23) and therefore we have to integrate over all x. In contrast the plot from 

the pinhole scan correspond to the case where x is limited within the pinhole diameter 

range (-0.25 mm < x < 0.25 mm) (since the pinhole could move only along the y 

direction). Therefore, this infinite integration in tomography is averaging out the 

other transverse direction (x direction) causing the “wash-out” of those modulations 

that were clearly seen in the pinhole scan case.   

4.5 Evolution of intense space-charge beams on UMER 

In this section we are interested in describing the phase space evolution of 

beams with intense space charge along a single turn on UMER. We will address 

issues related to transverse nonlinear particle dynamics such as emittance growth, 
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phase-space mixing and halo formation.  The following discussion emphasizes on 

experiments with two beams which have similar intensities but very different beam 

distributions; one initially uniform in configuration space (see Sec 4.5.2) and one with 

a highly non-uniform (see Sec. 4.5.3) distribution. Before describing the experiments 

we briefly review the magnet configuration (see Sec. 4.5.1). It should be noted that 

experiments conducted within this section were done before replacing the gun’s old 

cathode to the one we used for the pinhole scan in Sec. 4.4. Therefore, the initial 

beam conditions are not the same with the one shown in Table 4.2. 

 4.5.1 Tomography Configuration and Phase Space Reconstruction  

As illustrated in Sec. 4.1 UMER has 18 sections that consist of 4 quadrupoles 

(2 FODO’s), 2 dipoles for horizontal steering and one dipole for vertical steering. The 

tomography configuration employs one of these sections and is illustrated in Fig. 

4.12. The four quadrupoles where labeled as Q1, Q2, Q3, and Q4. The reasoning for 

using four quadropoles is: (1) to rotate the phase space distribution by 180
0
, while (2) 

keep the beam size in a reasonable range when it travels through the pipe in order to 

avoid particle losses or image-charge effects, and (3) to maintain the beam size 

contained within the fluorescent screen. When the quadrupoles are scanned, the 

phosphor screen displays the transverse current density (integrated over many pulses). 

The beam pictures are captured by the CCD camera described in Sec. 4.3.1 and 

stored. Each distribution is then projected into x and y axes in order to 

tomographically reconstruct the 'xx and 'yy  phase spaces according to the discussion 

in Chap. 2, respectively.  The beam phase space is projected at the screen location 
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following the discussion in Sec. 2.4.2, so that distributions in both spatial and phase 

space can be compared at the same plane.    

Q4 Q3 Q2CCD

Beam

Screen

Q1Q4 Q3 Q2CCD

Beam

Screen

Q1

 

Figure 4.12:  Tomography experimental configuration on UMER. 

 

To reveal more details about the phase space distribution, instead of showing 

x’ versus x  plots, we show ' tanx x ϕ−  versus x , where tanφ  is the phase-space 

slope [7] defined by Eq. 4.4.  In other words, for each '
x  we do the 

transformation ' ' tanx x x ϕ→ − . An example of this transformation is illustrated in 

Fig. 4.13. In the rest of the chapter, we use this format to plot our distributions.  
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Figure 4.13: Phase space transformation example: (a) '
x   vs. x  phase space; (b) same 

phase space but after the transformation ' ' tanx x x ϕ→ − , where tanφ  was -5.6
 

mrad/mm. 

 

4.5.2 Phase Space Evolution of a Uniform Beam on UMER 

By setting the aperture plate at the 1.5 mm radius hole (see Fig. 4.2) we 

generate an intense beam and observe its evolution for up to a single turn on UMER. 

The purpose of this experiment is to study the influence of space-charge forces on the 

phase space evolution. In the experiment, initial beam parameters are 10 keV in 

energy, 19mA in current resulting to a generalized perveance K of 2.8×10
-4

. The 

pulse length is 100 ns with a repetition rate of 20Hz. The beam is space-charge 

dominated, and the intensity parameter, χ , is equal to 0.85. Using Eq. 2.13 we find 

that the depressed betatron period is equal to λβ = 4.84 m and the plasma wavelength 

is λp = 1.14 m.  

x’ x’-x tanφ 

x X 

(a) (b) 
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Figure 4.14(a)-top (and Fig. 4.15(a)-top) illustrates a phosphor screen image 

of the beam distribution in configuration space along the UMER injector line at a 

distance equal to z=0.76 m from the aperture (at IC2). Figure 4.14(a)-bottom (Fig. 

4.15(a)-bottom) shows the tomographically reconstructed 'xx  ( 'yy ) phase-space at 

the same location.  The measured 4 rms×  emittance from this phase space is 44.5 

mµ  and 47.7 mµ  for the 'xx and 'yy , respectively [52]. Assuming a uniform 

configuration space distribution at the aperture plate, we estimate the emittance to be 

28.2 9± mµ  by scaling from the full beam (the radius and the emittance are 3.2 mm, 

60 20± mµ  for the full beam). The reasoning for the higher emittance measured by 

tomography could be due the appearance of a halo, clearly visible in Fig. 4.14(a). 

This argument was justified by running gun simulations which traced back the halo to 

the cathode [53].  

Next, we want to compare our experiment with simulation by running the 

WARP code. Simulations are initialized at the aperture and the output from each run 

is processed into an image similar to that a phosphor screen would observe. We use a 

512x512 grid for the Poisson solver, a step size of 2 mm along z, and 640,000 

particles. Running a large number of test simulations with more particles or higher 

resolution resulted in no perceptible difference in the final result. The beam at the 

aperture was modeled by a semi-Gaussian distribution (see Sec. 3.4.1).  Figure 

4.14(b)-top corresponds to the configuration space. Figure 4.14(b)-bottom (Fig. 

4.15(b)-bottom) shows the tomographically reconstructed 'xx  ( 'yy ) phase space at 

the same location.  Interestingly, the simulation is not showing the halo in 
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configuration space. This result is another indication that the halo is generated 

directly from the gun.  

 

Figure 4.14: Beam distribution in configuration space (top) and XX’ phase-space 

(bottom) 76 cm from the beam aperture: (a) Experiment; (b) WARP simulation . The 

subtracted slope (in units of mrad/mm) is 3.03. Clearly, a halo in configuration space 

is visible in the experiment. 
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Figure 4.15: Beam distribution in configuration space (top) and YY’ phase-space 

(bottom) 76 cm from the beam aperture: (a) Experiment; (b) WARP simulation. The 

subtracted slope (in units of mrad/mm) is 4.77. Clearly, a halo in configuration space 

is visible in the experiment. 

 

Figure 4.16 indicates fluorescent screen pictures from the experiment (top) 

and tomographically reconstructed xx’ phase space distributions (bottom) at various 

locations along the UMER ring. Figure 4.17 shows the reconstructed by tomography 

yy’ phase-spaces at the same locations. The label at the top of the photos depicts the 
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distance from the aperture as well as the corresponding diagnostic chamber on 

UMER.  

The measured distributions indicate the presence of halo in configuration 

space at all chambers. The halo however, changes orientation in configuration space. 

For instance in RC3 and RC13 it’s visible mostly in the y plane, but in RC6 it appears 

only in the x plane. In RC7 and RC9 it is visible in both planes. Note that tomography 

has successfully image the presence of halo particles in phase space. As expected the 

halo in xx’ phase space is intense when the halo is in the horizontal in configuration 

space (for instance, RC6) but becomes weak in RC3 (because halo is in the vertical 

plane only).  

The capture of halo is a big success for the diagnostic. Halos are in general 

difficult to detect since their low intensity. Intercepting diagnostics such as a pepper 

pot or slit scan can sample only parts of the beam, reducing so the intensity even 

more and making the detection of halos more harder.     
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Figure 4.16: Beam evolution along UMER in configuration space (top) and XX’ 

phase space (bottom). The 4xrms emittances (in µm) and subtracted slopes 

(mrad/mm) are 32.7, 3.22 (RC3); 70.0. 2.96 (RC6); 71.5, 3.36 (RC7); 50.0, 3.07 

(RC9); and 42.7, 3.22 (RC13), respectively. 
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Figure 4.17: Beam evolution at different locations along UMER in configuration 

space (top) and YY’ phase space (bottom). The 4xrms emittances (in µm) and 

subtracted slopes (in mrad/mm) are: 42.5, -6.70 (RC3); 52.6, -5.71 (RC6); 43.6, -5.71 

(RC7); 54.3, -7.24 (RC9); and 96.8,-7.25 (RC13), respectively. 
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4.5.3 Phase Space Evolution of a Nonuniform Beam on UMER 

 In this section we examine for the first time both experimentally and 

numerically phase space mixing of high-current, low energy beams. Taking 

advantage of the number of available diagnostics and flexible design of UMER we 

study the beam evolution over a long range of distance. Using an asymmetric aperture 

we generate a pattern of five merging beamlets and we show that whereas the 

beamlets appear to be merged in configuration space they remain distinct in velocity 

space ≈ 0.76 m downstream from the source. Numeric simulation confirms this 

behavior at that location. Tomographic emittance measurements on that location 

reveal an emittance growth of 1.1 which is in agreement with the theoretically 

predicted growth due to the conversion of the field energy to thermal kinetic energy 

[54]. Beyond this point particles in phase space appear to loose memory of their 

initial conditions and density modulations are visible in phase space for several 

plasma periods. After about 7 plasma periods a more “uniform-like” beam is seen in 

both configuration and phase space.  

 To generate an initial inhomogeneous current distribution consisting of five 

beamlets we set the aperture wheel in Figure 4.2 at position 6. Figure 4.18 is a 

schematic illustration of that beam mask showing also the relevant distances (not 

drawn to scale). In the experiment, initial beam parameters are 10 keV in energy, 28 

mA in current resulting in a generalized Perveance, K, of 4.2×10
-4

 and an 4 rms×  

unnormalized emittance of εi = 80 mµ . The equivalent in rms sense uniform beam 

radius at the aperture can be found from Eq. (3.3) and is 
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                                                 2 21.6 3.41u letr r δ= + = mm.                                   (4.5) 

The emittances and currents of each beamlet according to Eq. 3.4 and Eq. 3.5 are 

20.4 mµ  and 5.6 mA , respectively. The pulse length is 100 ns with a repetition rate of 

20Hz. The intensity parameter χ  is equal to 0.70, so the beam is space charge 

dominated, resulting to a depressed betatron period of λβ = 2.75 m and plasma 

wavelength equal to λp = 1.3 m.  

 

Figure 4.18: Schematic layout of the UMER five beamlet mask. Note that rlet and b 

are the beamlet and UMER pipe radius, respectively. Distances are not drawn to 

scale. 

 

Figure 4.19(a) (top) illustrates a phosphor screen image of the beam 

distribution in configuration space along the UMER injector line at a distance equal 

to 0.76z ≈  m from the aperture (IC2). Figure 4.19(a) (bottom) shows the 

tomographically reconstructed 'xx  phase space at the same location.  An interesting 

experimental observation is that even though the structure of the original beamlet 

configuration is faintly visible in configuration space, the beamlets are well separated 

in phase space. Such a result indicates that the beam retains some coherence since a 

2δ 

2δ = 5.22 mm 
  2rlet 

2rlet = beamlet radius = 1.75 mm 
mmmm 

2b 

2b = pipe diameter = 50 mm 
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large group of particles maintain information about their origin. This explains the 

reappearance of the initial distribution in configuration space that was observed in 

previous experiments [7, 54, 55] several plasma periods downstream. 

  Measuring the beam emittance from the reconstructed phase space reveals an 

emittance growth of 1.1 in IC2 (relevant to the aperture). According to the free energy 

theory [7], emittance growth can occur by the conversion of the excess field energy of 

a nonuniform beam into transverse thermal energy. According to that model the 

emittance growth can be written as [7]: 

                             
2

1/ 2

2

0

(1 )
2

f

i i

KR U

w

ε

ε ε
= + ,                                          (4.6) 

where K is the generalized Perveance defined in Eq. 2.9; R is the effective matched 

beam radius; εi and εf are the initial and final four-time rms emittances and 
0

U
w

is a 

dimensionless quantity that depends on the shape of initial nonuniform distribution 

and for our case is equal to -0.2659. Using the smooth approximation [7] the effective 

radius can be written as 

                                      1/ 2 2 1/ 2 1/ 2

0( / ) [ (1 ) ]
i

R S u uε σ= + + ,                           (4.7) 

where 0/ 2 iu KS σ ε= . For our experimental parameters the matched beam radius is 

5.98 mm. Therefore, Eq (4.6) predicts an emittance increase by a factor of 1.1, which 

is in excellent agreement with the growth predicted by tomography in IC2.  

Figure 4.19(b) corresponds to the configuration space (top) and phase space 

(bottom) obtained directly by the WARP simulation.  Simulations were initialized at 

the aperture. The simulation shows beamlets that are partial merged in real space and 
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still distinct in phase space a result that is consistent with the experiment. 

Additionally, in agreement with the experiment, WARP also predicts an emittance 

growth of 1.1 relevant to the aperture. 

 

 

Figure 4.19: Merger of the 5 beamlets at IC2. Configuration space (top) and xx’ phase 

space (bottom) from: (a) experiment; (b) WARP simulation. The subtracted slope (in 

units of mrad/mm) is -1.40. 
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Figure 4.20: Five-beamlet evolution at different locations along the UMER ring in 

configuration space (top) and XX’ phase space (bottom). The subtracted slope (in 

units of mrad/mm) are 3.08 (RC3), 3.00 (RC6), 3.53 (RC7), and 3.84 (RC13). 
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Figure 4.20 shows fluorescent screen pictures taken in the experiment (top) 

and tomographically reconstructed 'xx  phase spaces (bottom) at various locations 

along the UMER ring. Figure 4.21 shows the reconstructed 'yy  phase spaces at the 

same locations. The labels on each photo depict the distance from the aperture as well 

as the corresponding diagnostic chamber on UMER. The images indicate that the 

beam core retains an intricate dynamical structure over the first five plasma periods. 

However at a distance of about seven plasma periods the beamlets completely lose 

memory of the initial conditions and the core becomes more uniform-like in both 

configuration space and phase space. Given that the characteristic time scale for 

interparticle collisions in UMER corresponds to 1,000 plasma periods [33] this fast 

relaxation to equilibrium cannot be associated with interparticle collisions but is 

rather generated by the influence of the non-linear space charge forces.  

Of particular interest is the appearance of halo at RC3, approximately 2.4 

plasma periods that persists for the remaining length of the focusing channel. The 

final state of the beam at RC13 consists of a homogenized core and a halo apparent in 

both configuration space and phase space.   
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Figure 4.21: Five-beamlet evolution at different locations along the UMER ring in 

configuration space (top) and YY’ phase space (bottom). The subtracted slope (in 

units of mrad/mm) is -4.51 (RC3), -1.36 (RC6), -6.46 (RC7), and -5.90 (RC13). 

 

As discussed in Sec. 4.5.2 a potential source of halo in our experiments is due 

the imperfection of the gun geometry. Furthermore, previous experiments with five-

beamlet distributions showed that a small mismatch of the beam can create a 
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substantial amount of halo, downstream. We have evidence of such mismatch was 

occurring in our experiment, caused primarily due to the no proper function of some 

UMER quadrupoles. This was later revealed by carefully testing the UMER 

quadrupoles [56]. Therefore, we conclude that the appearance of halo in our 

experiment is partly due to the gun imperfections and partly due mismatches.  

4.6 Summary  

In this chapter, we presented the imaging hardware, acquisition and 

processing system for UMER. Using this configuration we studied the transport of 

beams with initial uniform distributions and examined the influence of space-charge 

force on their phase-space evolution. Beam halo was visible on the fluorescent screen 

images. Tomography revealed the appearance of halo particles in phase space as well 

and provided an understanding of the dynamics of halo evolution in phase-space.  

Next, using an asymmetric aperture we have generated a nonuniform pattern of five 

merging beamlets and examined their evolution in a periodic quadrupole channel. 

Close to the aperture the beamlets were observed to merge in configuration space, 

however where well distinct in phase space. The emittance growth at that location 

agrees well with the theoretical prediction and is associated with the thermalization of 

free energy. Further downstream, the beam was loosing coherence and significant 

phase space mixing occurred.  
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Chapter 5 Solenoidal Tomography 

In the previous chapters we showed that tomographic techniques using 

quadrupole lenses can be useful for reconstructing phase space distributions. We 

achieved this by using multiple configuration space images of the beam at different 

phase space rotation angles through 180
0
. One drawback of using quadrupoles is that 

they defocus the beam in one direction and hence, the desire to achieve the 180
0
 

phase space rotation inevitably leads to large asymmetric beams and nonlinearities 

that can compromise the results. Therefore, because solenoids provide symmetric 

focusing, they have the potential to be superior to quadrupoles for tomography. In this 

chapter, we extend the technique to use solenoids and show that accurate 

reconstruction of phase space can be accomplished with fewer solenoids and fewer 

projections than is the case with tomography based on quadrupole focusing. This 

diagnostic can therefore be very useful for electron photoinjectors [26] which use 

solenoids near the gun but also for low-energy machines [28] that use solenoids to 

transport high space-charge beams. Solenoidal Tomography [57] can measure the 

phase space in the machines referred to above, providing crucial information that can 

be used to optimize the injection, transport and acceleration of higher-quality beams 

downstream.  

  The outline of this chapter is as follows. In Sec 5.1 we review the physics 

regarding the particle motion in solenoidal systems, define the transport matrix and 

relate it to tomography. In Sec. 5.2 we simulate the technique using the particle-in-

cell code, WARP to ascertain the accuracy of the reconstruction. In Sec. 5.3 we 

describe the experimental apparatus. In Sec 5.4 we show our experimental results and 
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compare them with simulations. Finally, in Sec 5.5 we summarize our results and 

derive our conclusions.  

5.1 Principles of Solenoidal Tomography 

In this section we review the equations of motion of particles within solenoids 

and show how solenoids can be used to do tomography. First, we limit our discussion 

by assuming no space charge (Sec. 5.1.1), and then we generalize for cases with 

space-charge (Sec. 5.1.2). 

5.1.1 Particle motion in Solenoidal Systems 

The longitudinal magnetic field produced by a solenoid has long been used for 

ion and electron beam focusing. Compared with a quadrupole doublet of the same 

performance, the power dissipation and peak fields needed in a solenoid is much 

higher so that the use of solenoids is restricted to low momentum beams. It is used 

extensively in image intensifiers, electron microscopes, and electron accelerators. In 

this section we briefly review the equations of motion for a particle undergoing 

solenoidal focusing and show how they can implemented to our tomography 

diagnostic in order to reconstruct the beam phase space.  

Assuming a magnetic solenoid and an axisymmetric system, the field 

components 
r

B  and 
z

B  off axis are obtained from B(z) and its derivatives by [7]  

                                          
2 2

2
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In the paraxial limit, where the particles have small transverse velocity ,r zθυ υ υ�  we 

can consider only the first-order terms in the above expansions of the fields and 

therefore the off-axis field components become:  

                                                          ( , ) ( )zB r z B z≅ ,                                              (5.3)  

                                                      
( )

( , )
2

r

r B z
B r z

z

∂
≅ −

∂
.                                          (5.4) 

Particles enter the lens through a region of radial magnetic fields resulting in 

an azimuthal Lorentz force (
z r

ev B× ). Therefore they gain angular velocity which is 

given by: 

                                                   
.

22

pqB

m mr

θθ
γ γ

= − + .                                              (5.5) 

Equation (5.5) describes the change in azimuthal position of the particles as a 

function of distance z and implies that the particle distribution is rotated as the beam 

passes through the solenoid. For systems with cylindrical symmetry, the canonical 

angular momentum is a constant of particle motion:  

                                              
.

2
p mr qrAθ θγ θ= +                                               (5.6) 

a fact known as Busch’s theorem [7,16]. It implies that particles gain no net azimuthal 

velocity if they pass completely through the lens. This is because they must cross 

negatively directed radial magnetic field lines at the exit that cancel out the azimuthal 

velocity gained at the entrance. Following a number of mathematical steps [7], it is 

possible to show that the axial variation of the envelope of a cylindrical beam is given 

by:  
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.             (5.7) 

This equation describes the radial motion of the particles near z-axis where the 

nonlinear force terms and space-charge terms can be neglected. The second and third 

terms are due acceleration and electric field focusing or defocusing, respectively. 

Assuming that we have a magnetic solenoid and there is no acceleration, Eq. (5.7) can 

be reduced to:  

                                         

2 2

2 2 2 2 3
0
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pqB
r r

mc m c r

θ

βγ γ β

 
′′ + − = 

 
.                         (5.8) 

It is often convenient to study the particle trajectories in a frame that rotates at the 

Larmor frequency Lω and is therefore known as the Larmor frame. The angle 

between this rotating frame and the stationary laboratory system is given by [7]: 

                                              

0

2

z
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r

z

qB
dz dz

mc c

ω
θ

βγ β
= − =∫ ∫∓ .                               (5.9) 

The angle of the particle in the Larmor frame is given by the difference between the 

angle θ  in the laboratory frame and rθ : 
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Of particular interest is the situation when the particles are launched with zero 

angular velocity in a region with no magnetic fields, in which case, according to Eq. 

5.6 the canonical angular momentum is zero.  Then, the nonlinear term in Eq. 5.8 

drops to zero and becomes now 

                                                  0 ( ) 0r z rκ′′ + = ,                                               (5.11) 
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 where 

                                             ( )
2

2 2 2

0 ( )
2L

qB
z c

m c
κ ω β

βγ
= =                              (5.12) 

and is known as the focusing function of the solenoid magnet.  Therefore, when the 

particles are launched with zero angular velocity in a region with no magnetic fields 

we can see from Eq. 5.11 that the transverse particle motion in the Larmor frame 

becomes harmonic in a plane through the axis.  Solutions of Eq. 5.11 may represented 

in the following from  

      
0 0 0 0

0
' ' '

0 0

0 0 0

1
cos[ ( ) ] sin[ ( ) ]
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( ) sin[ ( ) ] cos[ ( ) ]

z z r rr
z T
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κ κ δ κ δ

 
      

= =      
      − 

,      (5.13) 

where δ  is the length of the solenoid and T is the beam solenoidal transport matrix. 

A comparison of Eq. 5.13 to Eqs. 2.4 and 2.5 suggests that the solenoid transport 

matrix in the Larmor frame is like that of a magnetic quadrupole, except for the 

difference in the expression for 0κ . Therefore, when 0pθ = , solenoids like 

quadrupoles can be used to rotate the phase space distribution. Hence, the procedure 

for phase space reconstruction is identical to the case with quadrupoles (see Sec. 

2.2.2). For beams with non-zero initial angular momentum the presence of the 

nonlinear term in the particle motion equation makes the analysis more complicated 

and is beyond the scope of this dissertation. 
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5.1.2 Solenoidal Tomography for Beams with Space-Charge 

Tomography for space charge dominated beams has been extensively studied 

in Chap 2 (see Sec. 2.3). We showed that a linear space charge approximation can 

successfully reconstruct the beam phase space even for beams with very high 

intensity.  Since particles traveling within solenoids (in the Larmor frame) obey the 

same equations of motion like quadrupoles, the analysis for space-charge dominated 

beams in solenoids is identical to the one described in Sec. 2.3. Hence, by assuming 

linear forces in the solenoid case, using Eqs. 2.38 and 2.39 the net focusing functions 

become      

                                  0

2
( ) ( )

( )( ( ) ( ))
x x

K
z z

X z X z Y z
κ κ= −

+
,                       (5.14) 
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+
.                        (5.15) 

Solenoids provide symmetric focusing (
x y

B B= ), therefore 0 0 0( ) ( ) ( )
x y

z z zκ κ κ= =  

(given by Eq. 5.12) and the beam stays round ( ( ) ( ) ( )X z Y z R z= = ). Therefore, the 

net focusing function becomes 

                                    0 2
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K
z z

R z
κ κ= − ,                                 (5.16) 

 and the solenoid transport matrix of Eq. 5.13 becomes now 
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 The beam radius, R(z), will be calculated from the beam envelope Eqs 2.40 and 2.41, 

which by assuming symmetric focusing and
x y

ε ε= , become 

                                    
2

0 3
( ) ( ) ( ) 0

( ) ( )

K
R z z R z

R z R z

ε
κ′′ + − − = .                               (5.18)  

In order to solve Eq. 5.18 some assumptions about the beam initial conditions and 

beam distribution at the starting point 0z is required. Similarly to quadrupoles, we 

check the accuracy of the initial conditions by comparing the actual beam sizes at a 

downstream location, 1z , to the predicted from Eq. 5.18. If they do not agree well we 

adjust the initial conditions until a good agreement is achieved. Once R(z) is known 

we can calculate the transport matrix and do the tomography as in the quadrupole 

case. Analytically the process is as follows: 

1. Estimate the initial conditions at the starting location 0z  

2. Identify the correct initial conditions at 0z : For each magnet setting, solve Eq. 

5.18 and compare the calculated beam size to that from the measurement. If 

the two values are not within 10%, estimate new initial conditions and repeat 

the process until good agreement is achieved.  

3. For each setting solve numerically the envelope equation, and get R(z) along 

the beam line at 0.4 mm minimum steps.  

4. Use Eq. 5.16 to obtain the focusing strengths and then use Eq. 5.17 to 

calculate the transport matrix for each step. Finally, obtain the total transport 

matrix by multiplying those matrices. Now follow the steps 2-5  as described 

in Sec. 2.2.2 
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5. Change the magnet focusing and repeat steps 3-4.    

At the end of the scan integrate the filtered projections, Q, over the rotation angle by 

using Eq. 2.19.  

5.2 Simulation and Validation of Solenoidal Tomography 

In order to validate the reconstruction approach, we have simulated the 

tomography process using the 2 ½ D version of WARP, which advances particles in a 

transverse slice under the impact of external forces and self-consistent self-fields.  

Two solenoids, S1 and S2, have been employed for the reconstruction and the layout 

is demonstrated in Fig. 5.1.
 
The center of S1 relative to 0z  is L1=13.0 cm, center to 

center distance of the solenoids is L2=16.5 cm and the screen is placed at L3=13.5 cm 

relative to the center of solenoid S2. The magnet geometry, solenoidal field profiles 

and beam parameters used in the simulation are those from the Long Solenoid 

Experiment (LSE) [57].  

 

Figure 5.1: Schematic layout of the solenoidal tomography configuration. S1 and S2 

are the two solenoids that we scan to get the projections. Simulation is initialized at 

0z  and the phase space is reconstructed at 1z . The geometry of the configuration is 

similar to the LSE. 
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We run 48 WARP simulations corresponding to the solenoid setting used later 

in the experiment and collect the beam photos at 1z  with similar procedure to that 

described in Chap 3 for the case of quadrupoles. WARP models the solenoids as a 

grid of magnetic field data obtained by fitting an analytical formula to experimental 

measurements of the field on axis and then calculating the off-axis fields using a 5
th

 

order Taylor expansion. Magnet nonlinearities, including those arising from fringe 

fields are fully incorporated. Nonlinear space charge forces as well as image forces 

are included. Simulations are initialized at the aperture.  

The output from each run is processed into an image similar to that a phosphor 

screen would observe. In a similar fashion with that described in Chap. 3 we apply 

the tomography algorithm to these photos and compare the reconstructed phase space 

to the phase space obtained directly from the WARP simulation. This process allows 

us to verify the fidelity of the solenoidal tomographic technique since our tomography 

algorithm does not include nonlinear effects from magnets or space charge. 

Therefore, the WARP simulations can be used to check the effect of these 

nonlinearities in given situations.  

 In Sec. 5.2.1 we will simulate the tomography process for uniform beam 

distributions and in Sec. 5.2.2 we will generalize our simulation for non-

axissymmetric (non-uniform) distributions. 
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5.2.1 Axisymmetric Distributions 

Figure 5.2 compares phase space recovered by tomography (first column) to 

the one generated directly by WARP (second column). Two beams are shown with 

the same energy (5 keV) but different intensity. Detailed parameters of these beams 

are listed in Table 5.1. Only 'xx  phase spaces are depicted since axisymmetry is 

assumed. The third column shows the corresponding beam distribution in 

configuration space. For the low current beam (Beam 1 in Fig. 5.2) due the low 

intensity parameter ( 0.25)χ = , space charge effects are neglected in the analysis and 

as seen in Fig. 5.2 good agreement between Tomography and direct WARP phase 

space is obtained. To quantify the degree of agreement of the phase spaces we have 

calculated the emittances in both cases and found the direct WARP and reconstructed 

phase space to agree within 5%. For the higher current beam (Beam 2 in Fig. 5.2) 

significant space charge forces are expected ( 0.92)χ = . Therefore, the linear space 

charge force term is included in our tomography algorithm as previously described.  

A comparison between the tomographic reconstructed and direct WARP generated 

phase space shows relatively good agreement even though there is small difference in 

size. Still, however, emittance calculated for these distributions fall within 10%.  
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Table 5.1: Beam parameters used in the simulation 

 Beam 1 Beam 2 

Energy, (keV) 5 5 

Current, (mA) 1 10 

Emittance, 4xrms, (µm) 6.0 16.0 

Beam radius at aperture (mm) 0.4 1.44 

Beam radius at screen (mm) 

Generalized Perveance 

Intensity Parameter, χ  

0.54 

4.2 10
-5 

0.25 

2.72 

4.2 10
-4 

0.92 

 

 

 

Figure 5.2: Tomographically reconstructed phase space at the plane of the screen 

(first column) compared with simulated (middle column) for two beams with 

different 4xrms emittance εrms  and current (I): (a) εrms = 6 µm and I=1 mA; (b) εrms = 

16 µm and I=10 mA. Far right column corresponds to the beam distribution in 

configuration space at the same location. 
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5.2.2 Non-symmetric Distributions 

For the two previous cases, the beam distribution is assumed to be uniform 

and axisymmetric. In such cases it is not necessary to account for the variation in the 

beam rotation in configuration space as the solenoid is scanned. To account for the 

rotation when the beam is non-axisymmetric each beam photo has to be rotated by
r

θ  

before applying the tomography algorithm. Another way to understand this is the 

following: The captured beam photos are taken in the laboratory frame. However, the 

matrix analysis for tomography is performed in the Larmor frame, which according to 

Eq. 5.9, is at an angle 
r

θ  relative to the lab frame. Hence, before doing tomography, 

each screen photo has to be transferred into the Larmor frame and so has to be rotated 

by
r

θ .  

The procedure for tomography for non-symmetric distributions is as follows: 

1. Capture a beam photo.  

2. Calculate the angle difference,
r

θ , between Larmor frame and lab 

frame by using Eq. 5.9. 

3. Bring the photo in the Larmor frame ( , )
L L

x y  by doing the 

transformations: cos sin
L r r

x x yθ θ= −  and  sin cos
L r r

y x yθ θ= +  

4. Do tomography with those photos by following the procedure 

described in Sec. 5.1 

 

 To illustrate the importance of this, we generate a space charge dominated 

beam using the parameters of Beam 2 with a highly nonuniform initial distribution as 
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shown in Figure 5.3(a). After the beam passes the two solenoids, the new distribution 

is shown in Figure 5.3(b) and the corresponding direct WARP generated phase space 

at that location is depicted in Fig. 5.4 (second column). No evidence of the initial 

beam nonuniformity is shown in configuration space, however it is visible in xx’ 

phase space. Applying tomography to recover the phase space and including the 

rotation 
r

θ  leads to a distribution (Fig. 5.4, third column) that is in agreement with 

what we get with WARP. Exact agreement, however, is not expected since the initial 

non uniform distribution is a source of nonlinear space charge forces that are not 

included in our tomography reconstruction. Note that, if the beam configuration space 

rotation were not accounted for, tomography would result in increased discrepancy 

(Fig. 5.4, first column). 

 

Figure 5.3: Distribution of the same beam at two different locations: (a) at the start 

(z=0 cm); (b) at the screen (z=43.0 cm). 
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Figure 5.4: Phase space at the screen location generated by WARP directly (middle 

column) in comparison to tomography before rotating the photos by 
r

θ  (first column) 

and after (third column). 

 

5.3 Long Solenoid Experiment (LSE) 

After validating the tomography algorithm with WARP simulations, we are 

interested to apply it experimentally to perform phase space measurements. Our 

experiment was carried out on the Long Solenoid Experiment (LSE) [57, 58] 

illustrated in Fig. 5.5. Our transport line consists of a thermionic gun, two short 

solenoids, S1, and S2 and a phosphor screen downstream. The electron gun is a 

variable-perveance gridded gun developed and constructed at the University of 

Maryland. The gun can produce a wide range of beam parameters and its energy 

varies from 1-5keV. The cathode has a Pierce-geometry and a planar configuration 

consisting of the heater, cathode and grid. The radius of the cathode is 4 mm and the 

heating area is 0.5 cm
2
. The distance between the anode and cathode is adjustable by 

TOMO 
(no rotation) 

x’ 

x 

TOMO WARP 

y 

y’ 
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means of micrometers and can be set from 9.3 mm to 23 mm, and therefore allowing 

changing the beam perveance. Similar adjustments in the beam intensity can be 

performed with an aperture plate which is located downstream of the anode. 

Downstream of the electron gun there are two short solenoids located 13.0 cm and 

29.5 cm from the aperture and have effective lengths equal to 4.34 cm and 4.24 cm, 

respectively. Beam distributions are collected with the aid of a fluorescent screen that 

was placed 43.0 cm from the aperture. Figure 5.5(a) presents a simplified diagram 

showing a schematic layout of the LSE, and Fig. 5.5(b) shows the actual photo of the 

LSE.  

The current in each solenoid can be adjusted individually by different DC 

power supplies. The solenoidal magnetic fields were measured by a Bell gaussmeter 

with a longitudinal Hall probe. The analytical expression of the on-axis magnetic 

field for each of the solenoid, which is a fit to the measured field data, is given by the 

formula [59] 

           
0

2
20 0 0

2

( ) ( ) ( )
(0, ) exp( )[sec ( sinh ( )]

z

z z z z z z
B z B h c

d b b

− − −
= − + ,          (5.19) 

where 0B  is the maximum axial magnetic field; 0z is the solenoid center position; and 

b, c and d are fitting parameters different for each solenoid. Table 5.2 shows the 

fitting parameters of the two solenoids obtained elsewhere [58]. Fig. 5.5(c) represents 

the fitted axial magnetic field profile along the z-axis. 
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Table 5.2: Fitting parameters of the two short solenoids on the LSE 

 S1 S2 

b (cm) 3.443 3.936 

c 0.032 0.084 

d (cm) 4.415 3.887 
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Figure 5.5: Experimental configuration of the LSE. : (a) schematic layout; (b) actual 

configuration; (c) Axial field on the axis of symmetry for solenoid currents 4.15A (S1 

) and 3.2 A (S2).  
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5.4 Experimental Results 

We present now experimental results of phase space tomography on the LSE. 

In Sec. 5.4.1 we focus on beams that are passing through a uniform aperture once 

they exit the gun. In Sec. 5.4.2 we discuss the relation between magnet strength and 

emittance and show that depending on the focusing strength significant emittance 

growth can occur as the beam passes through the solenoids. In Sec. 5.4.3 we 

reconstruct phase spaces for beams passing through a highly non-uniform aperture 

after they exit the gun and report some interesting physical insights.   

5.4.1 “Uniform” Aperture 

In this section we generate phase space maps on the screen by tomography for 

beams that are passing through a uniform aperture. Then, we compare our results with 

simulation.  For our experiment the beam energy is set at 4 keV and the beam pulse is 

100 ns at a frequency of 20 Hz. The anode-cathode gap is adjusted at 22 mm from the 

cathode. The aperture passes roughly 1/8 of the full beam current resulting in a 12 

mA beam with generalized perveance 7.1×10
-4

 and unnormalized 4× rms emittance 

of 30 µm. One Bergoz fast current transformer between them is used to measure the 

beam current. When S1 and S2 are scanned, the phosphor screen displays the 

transverse current density (integrated over many pulses). In our experiments we 

varied the number of scans and found that 48 scans are sufficient to reduce the phase 

space background noise to less than 5% of the peak intensity.  The solenoid strengths 

have been chosen to: (1) reduce effects from the solenoid’s nonlinearities (2) rotate 

the phase space distribution by 180
0
 (3) keep the beam size within the fluorescent 
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screen limits (4) assure zero magnetic field at the beam aperture and screen location. 

The beam intensity pictures are captured by the programmable digital charge coupled 

device (CCD) camera (IMPERX-1M48) described in Chap. 4 (see Sec 4.3.1). Each 

scanned beam distribution is then projected into x and y axes in order to obtain 

projections of the 'xx  and 'yy  phase spaces, respectively (see Sec. 2.2.2). Following 

the procedure in Sec. 2.4.2, the reconstruction was advanced to the screen location so 

that distributions in both spatial and phase space can be compared at the same plane. 

To illustrate the experimental results, we select to reconstruct the phase space 

for three different magnet pairs that correspond to typical operating parameters and 

illustrate interesting physical properties of space charge modes [47, 60]. Figure 5.6 

and Fig. 5.7 show experimental results in the x and y planes, respectively. The 

magnet strength values as well as the measured beam emittances are listed in Table 

5.3 (for x-axis) and Table 5.4 (for y-axis). In Fig. 5.6 (and Fig. 5.7) the first column 

corresponds to beam in configuration space. These distributions show the presence of 

ring shaped modulations at the beam edge [Fig. 5.6(c)], that travel further toward the 

beam core as the external focusing is increased [Fig. 5.6(a)]. The corresponding phase 

space plots (second column) show particles with high inward velocities at the 

locations where these modulations appear. This result is in agreement with previous 

experiments and simulations [47] and is attributed to the initial nonequilibrium at the 

edge of the beam. Particularly, the presence of beam edge particles with nonzero 

velocities at the source results in a force imbalance that leads to these particles 

initially moving outside the main body of the beam and following different orbits 

than the bulk of the beam. This phenomenon is identical to that causing the transverse 
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density modulations (waves) in phase space that we have studied in detail in the 

simulation in Sec 3.5.   
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Figure 5.6: Configuration space (left column), 'xx  phase space (right column) 

comparison between experiment (top) and simulation (bottom) for three different 

magnet pair settings: (a) case a; (b) case b; and (c) case c.  
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Figure 5.7: Configuration space (left column), 'yy  phase space (right column) 

comparison between experiment (top) and simulation (bottom) for three different 

magnet pair settings: (a) case a; (b) case b; and (c) case c.  
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Table 5.3: Solenoid strengths and corresponding emittance measurements along the x 

axis from tomography and simulation.  

 Peak on-axis 

field 1 (G) 

Peak on-axis 

field 2 (G) 

εx, (Tomo) 

(µm) 

εx, (WARP) 

(µm) 

Error 

(%) 

Case a 74.00 60.0 28.4 33.0 13.9 

Case b 71.38 60.0 30.1 33.9 11.2 

Case c 57.28 60.0 35.0 37.6 6.9 

 

 

Table 5.4: Solenoid strengths and corresponding emittance measurements along the y 

axis from tomography and simulation.  

 Peak on-axis 

field 1 (G) 

Peak on-axis 

field 2 (G) 

εy, (Tomo) 

(µm) 

εy, (WARP) 

(µm) 

Error 

(%) 

Case a 74.00 60.0 29.0 33.4 13.1 

Case b 71.38 60.0 30.7 34.2 10.2 

Case c 57.28 60.0 35.1 37.5 6.4 

 

 

Phase space plots show an unusual perturbation within the distribution that is 

sensitive to external focusing. To aid in understanding of the origin of such a 

perturbation, we have conducted simulations using WARP. In the simulation we 
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assumed that the beam emerges through the gun aperture with a distribution that is 

uniform (but with a hole inside) in configuration space, similar to the one shown in 

Fig. 5.3(a), and Gaussian in velocity space. Then, the resulting simulated phase 

spaces at the location of screen are shown in Fig. 5.6 and Fig. 5.7 (bottom).  Clearly, 

those phase spaces show a perturbation within the distribution similar to the one we 

see in the experiment. Next, we repeat the simulation again but this time we assume 

that the beam emerges through the gun aperture with a uniform distribution (no hole 

inside). The simulated phase space at the screen for case b is shown in Fig. 5.8. 

Clearly, the beam shows no sign of the previous observed pertubation in either phase 

space or configuration space. Therefore, we conclude that the observed hollowness in 

phase space is caused primarily by the initial nonuniform distribution.  

 

Figure 5.8: Beam distribution at the screen for case b when a uniform beam (no hole) 

is assumed initially.   

 

The hollowness in phase space is most likely associated with the nonuniform 

emission from the gun cathode. To verify this, the solenoid magnets in the experiment 

were adjusted to image the cathode at the fluorescent screen location. Assuming 

linear optics, and using the thin lens equation, it is estimated that the cathode plane 

would be focused at the screen when the peak on-axis fields are 74.0 G and 98.0 G 

y 

x x 

x’ 
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for the first and second solenoid, respectively. Using the above settings in our 

experiment, we obtain a beam distribution as shown on Fig. 5.9(a). Figure 5.9(b) 

corresponds to the simulation photo while using the above magnet settings in WARP. 

 

 

Figure 5.9: Cathode imaging at the screen location: (a) in experiment; (b) in 

simulation. To simulate the hole effect in WARP we assume that beam emerges 

through the gun aperture with a uniform distribution (but with a hole inside) similar to 

that shown in Fig. 5.3(a). 

 

As is evident from the phase spaces in Fig. 5.6 and Fig. 5.7, the agreement 

between simulation and experiment is good, except for a difference in the phase of 

perturbation, especially in the third case [Fig. 5.6(c)]. The phase of the perturbation is 

sensitive to the initial conditions assumed in the simulation. These are difficult to 

determine, since in this experimental configuration the initial conditions at the gun 

aperture are not directly measurable. Therefore, we believe that a detailed simulation 

(a) (b) 

Experiment Simulation 

y 
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of the electron gun would improve the agreement between experiment and 

simulation; however, this is beyond the scope of the current dissertation.  

5.4.2 Emittance Growth 

The difference in the emittances between the three cases suggests an 

emittance growth that depends on the solenoidal magnet strength. Furthermore, the 

pattern of the emittance increase is the same for both simulation and experiment. For 

instance case c has the highest emittance and case a has the lowest emittance for both 

simulation and experiment. In order to gain an understanding of this growth we 

plotted the beam envelopes for the three cases as predicted by WARP (see Fig. 5.10). 

The dashed line indicates the positions of the two solenoids.  
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Figure 5.10: Evolution of the beam envelope, X, and Y, for the three different magnet 

pairs as obtained from WARP simulation. The dashed lines show the central position 

of the solenoids. 
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Looking at Fig. 5.10 we can do the following observations: The beam size on 

the second solenoid, S2, depends on the magnet strength of the first solenoid, S1. For 

case c, where the solenoid strength of S1 is at its weakest (relevant to the other cases) 

we have the largest beam entering S2. That’s the case were the emittance growth is 

also the highest, suggesting that the large beam samples more nonlinear terms of the 

magnetic field. Therefore, extra care has to be taken in experiments with solenoids so 

that the beam size remains as small as possible. 

5.4.3 “Exotic” Beam Distributions 

Very similarly to UMER, in the LSE at the exit of the gun we have an 

aperture wheel that we can rotate in vacuum and select a number of different 

apertures. Of particular interest is the aperture that generates 5 distinct but interacting 

beamlets. This aperture is very similar to the one we used for the five beamlet 

experiment on UMER (see Chap. 4) with the only difference being here that not all 

beamlets have the same size. Figure 5.11(a) shows a schematic representation of that 

aperture including the sizes (distances not drawn to scale) and Fig. 5.11(b) shows an 

image of that aperture as seen in the experiment at the screen, downstream. Notice 

that the size of central beamlet is about 7% the size of the other four.  

In the experiment we are interested in reconstructing the phase space at the 

location of the screen. From the geometry of the aperture, and Eq. 3.3 we can 

calculate an effective, or twice rms initial radius of the 5 beamlet distribution by 

using the formula 

                                  
2 2

2 84

5 5

s
u

r
r r

δ+
= + = 5.22 mm                         (5.20) 
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where r is the radius of the large beamlet and 
s

r is the radius of the small beamlet . 

The anode-cathode distance is set at 22 mm allowing a beam current equal to 31.2 A 

in the Bergoz. The beam energy was 4 keV and the beam pulse was 100 ns at a 

frequency of 20 Hz. 

 

Figure 5.11: Five beamlet distribution in the LSE; (a) Aperture, (b) Actual photo at 

the screen that shows an image of the aperture. Note that 2b is the diameter of the 

beam pipe in LSE.   

 

Figure 5.12 illustrates phase spaces reconstructed by tomography at the screen 

for four different magnet pairs which are listed in Table 5.5. The measured emittances 

along the x-axis from the phase spaces are also reported on that table. For Case 3 and 

Case 4 we measure the highest emittance which are believed to be caused by the 

weak focusing of the first solenoid, as discussed earlier in Sec. 5.5.2. Both 

distributions (phase space and configuration space) show a highly asymmetric 

structure due to the initial complex distribution. Very similarly to five beamlet 
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experiment in Chap. 4 the beamlets merge in configuration space but are still distinct 

in phase space. However, in contrast to the five beamlet experiment on UMER the 

beam in configuration space shows a 4-fold symmetry caused primarily because of 

the geometry of the aperture. 

 

 

Figure 5.12: Configuration space (left column), 'XX  phase space (right column) 

from the experiment for four different magnet pair settings (Table 5.5): (a) case 1; (b) 

case 2; (c) case 3; and (d) case 4.  
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Table 5.5: Solenoid strengths and corresponding emittance measurements along x-

axis from tomography for the multi-beamlet experiment.  

 Peak on-axis 

field 1 (G) 

Peak on-axis 

field 2 (G) 

Emittance 

(Tomo) (µm) 

Case 1 64.3 60.0 87.0 

Case 2 57.2 60.0 94.0 

Case 3 

Case 4 

50.2 

43.1 

60.0 

60.0 

94.3 

100.0 

 

5.5 Summary 

To summarize, tomographic techniques using solenoid magnets have been 

employed for the first time to reconstruct the beam phase distribution. We have 

demonstrated that the configuration space rotation from the magnetic field cannot be 

neglected when the axisymmetry is broken by an initial density perturbation. 

Additionally, we address the importance of accurate specification of the initial 

distribution, to the downstream evolution, in both phase and configuration space. 

Specifically, we show that depending on the external focusing, an initial non-uniform 

distribution may result to density perturbations either in phase space or configuration 

space. Furthermore, we show that solenoids can induce an emittance growth. The 

growth depends on the beam size while it passes through the solenoid. Finally, 

experiments and simulations confirmed the presence of a ring of particles that initially 
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move outside the beam edge and are subsequently reflected into the beam with excess 

inward velocities.  
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Chapter 6 Time-Resolved Tomography for Intense Particle 

Beams 

 

A high brightness and low emittance beam is a priori requirement for X-ray 

Free Electron Lasers and Spallation Neutron Sources. For such applications 

knowledge of the time-sliced parameters of beam current, energy spread and 

transverse emittance is an important requirement to understand their evolution. For 

instance characterization of the transverse phase space of the beam at the injector exit 

is necessary, as it allows the tuning and verification of the photoinjector properties. 

Such an example is emittance compensation [34], a process which is used to correct 

for the correlation between the phase space angle and the longitudinal position of 

slices. Even though a number of studies have been conducted so far to do time-

resolved phase space maps and slice emittance measurements [35-37] the analysis 

was restricted to beams with little space-charge and therefore its influence was not 

included the analysis. In this chapter for the first time we study the evolution of 

transverse phase space slices within a space-charge dominated beam. By introducing 

longitudinal perturbations we study the correlation between longitudinal and 

transverse dynamics. We report high resolution phase-space maps within a 3 ns 

window over several locations along a 60 ns beam pulse.  We show that longitudinal 

perturbations can have an impact on the transverse phase space and can cause 

emittance growth.    

 The outline of this chapter is as follows: In Sec 6.1 we review the 

experimental details: screens, camera used and the implemented experimental 
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configuration. In Sec. 6.2 we study the impact on the transverse phase space of a 

perturbation over a rectangular beam pulse. In Sec. 6.3 we study the correlation 

between longitudinal and transverse dynamics by measuring transverse phase spaces 

within several beam slices for a parabolic beam pulse. Finally, in Sec. 6.4 we provide 

a summary and conclusion. 

6.1 Experiment Details 

We conducted our experiments at the LSE system (see Sec. 5.3) and involved 

the first two short solenoids and the screen (LC1). Details about this system can be 

found in Chap. 5. The electron gun, produced 5 keV, pulses at a rate of 60 Hz. A 3.2 

mm diameter aperture was set 22 mm from the cathode. The fast phosphor screen was 

placed at LC1 (43 cm from the aperture) and the light emitted from the screen was 

directed onto the ICCD camera. The camera gate was controlled from 100 ns up to 3 

ns to obtain time-integrated and time-resolved images of the beam. 

In this section we review the experimental details such as the screens we use 

(see Sec. 6.1.1), and the imaging control system and configuration we implement (see 

Sec. 6.1.2). In Sec. 6.1.3 we discuss the method we use to produce longitudinal 

perturbations.   

6.1.1 Fast Screens 

Optical Transition Radiation (OTR) is a well known diagnostic tool to 

measure the beam distribution [61] and was initially implemented in our experiments 

for time-resolved measurements. OTR is generated when a charge particle crosses the 

interfaces from vacuum into a conductor and is widely used to diagnose relativistic 
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beams. The low light yield due the low-energy of our beam required long integration 

times and therefore increased the time of the measurement [62]. Hence, in our 

experiments we finally decided to employ fast phosphor screens which reduced the 

measurement time significantly.  

The screens consist of a ZnO:Ga formula on a quartz plate and were produced 

by Lexel Imaging Systems, Inc.. The doping material is Ga that is present in very 

small quantities. The grain sizes are in range of 5-8 µm. The phosphor is inorganic 

and emits in the near UV with peak close to 390 nm (equivalent to 3.2 ev). The 

efficiency is < 1% and for a 10 keV electron beam we get about 30 photons.  The 

decay time is 2.4 ns. The phosphor is very sensitive to the heat and the current load. 

Therefore, to protect the phosphor and expand his lifetime we cover the material with 

a thick layer (about 1000
0

A ) of conductive material that for our case is Aluminum. 

Care must be taken on the applied field strength since the screens are rated to 4 

kV/mm field strength. Above this point the Al on the surface may peel off from the 

phosphor.   

6.1.2 Imaging  

An intensified charged-coupled device (ICCD) camera (PIMAX2 from 

Princeton instruments) has been employed in our experiments. The CCD uses an 

image intensifier that is fiber optically coupled to the CCD chip to increase the 

sensitivity to a single photon level. The image intensifier’s bandwidth is broad 

covering wavelengths from the UV up to NIR, and is therefore suitable for the 

emission width of our fast phosphor screen. Furthermore, it offers nanosecond gating 
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capability and a pulse generator allows setting the delay and gating signal. The 

dynamic range of the PI-MAX2 camera is 16-bit and so provides a very wide 

intensity range for detecting even weak signals and halos. The lens type used was an 

AF Micro-NIKKOR 60mm f/2.8D (see Sec. 4.3). Image acquisition and camera 

control was done by using Winview32 software (Roper Scientific) and the beam 

photo resolution was 512x512.  

6.1.3 Generation of Longitudinal Perturbations  

There are a number of different was to produce longitudinal perturbations to 

the beam current. These can be done by using a laser [63], using an induction module 

[64] or by using an electrical method [62]. For our experiment we employ the 

electrical method where we generate a pure current modulation at the electron gun by 

modifying the gun electronics: The cathode is biased positively relevant to the grid to 

impede current flow from the cathode. A negative pulse is applied to the cathode 

making it negative with respect of the grid, thus allowing electrons to be emitted. The 

pulse is generated by a cathode pulse system and is transported through a 

transmission line [66]. The longitudinal perturbation is created by connecting a cable 

at the middle of the pulse generation transmission line through a “T” connector. 

Depending on the bias voltage the current modulation can be positive (more current) 

or negative (less current). Furthermore, by manipulating the pulse generation circuit 

of the electron gun with a low pass filter [62] we can create beams with parabolic 

beam shapes.  
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6.2 Longitudinal Perturbation Study 

In this section we are interested to study the effect of longitudinal 

perturbations in the transverse phase space. We show that if we introduce a small 

perturbation on a rectangular beam pulse this can result in significant modifications of 

the transverse phase-space. In Sec. 6.2.1 we use the ICCD camera and do time-

resolved phase space maps with the perturbation on and off. In Sec.6.2.2 we do time 

integrated measurements over the same beam pulse.  

For our experiment the bias voltage was set at 55 V leading to a negative 

perturbation. The current profiles, measured at the Bergoz coil, with and without 

perturbation are illustrated in Fig. 6.1. Note that the perturbation was generated at the 

center of the flat top region.  The measured beam current without perturbation was 25 

mA and the width of the perturbation was about 7 ns and it corresponds to about 80% 

of the total beam current. 
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Figure 6.1: Beam signal at the Bergoz. The red profile shows the current profile with 

perturbation on. The black curve shows the profile with the perturbation turned off. 

The main beam current was 25 mA. The perturbation aptitude is roughly 25% of that 

of the main beam.  The camera gate was set at 10 ns (green dashed line).  

6.2.1 Time resolved (slice) tomography  

A 10 ns gate is applied to the ICCD camera to obtain time-resolved images of 

the charge particle be am on the screen. The gate is applied along the negative 

perturbation part of the beam (green line in Fig. 6.1) and then compared to that with 

the beam without perturbation. In a similar fashion to that described in Chap. 5 the 

10 ns 
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solenoids were scanned resulting in 48 beam photos (see Sec. 5.4.1) on the screen 

which then were analyzed to obtain the beam projection and finally the beam phase 

space (see also Chap. 2).  

Figure 6.2 shows the reconstructed phase space at the aperture. To reveal 

more details about the beam distribution the phase space slope was subtracted 

following the procedure described in Sec. 4.5.1. Table 6.1 summarizes the estimated 

beam parameters from the reconstructed phase-space at the beam aperture for the two 

cases.   Clearly a change of the phase space is seen when the perturbation is turned on 

(Fig. 6.2(b)). As is evident, the beam parameters are not the same for those cases. For 

instance, the emittance with perturbation on is measured to be higher.  

An interesting observation is that the slope of the beam envelope we measure 

from tomography when the perturbation is on is higher relevant to the case when the 

perturbation is off (see Table. 6.1). A possible reason for that could be due the fact 

that when the perturbation is on the space-charge intensity of the beam is higher [62]. 

Due to this higher space-charge intensity the beam expands transversely in the gun 

resulting to a larger beam slope. This is also why we get lower beam current after the 

beam is passing the aperture. Furthermore, these space-charge effects may explain the 

higher emittance we measure when the perturbation is on. However, since the 10 ns 

gate is wide enough and the perturbation is varying fast within this range, what we 

measure could be also integrated smear of many phase spaces resulting to a higher 

emittance. Future experiments with lower gate should be performed to investigate this 

argument.    
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Figure 6.2: Beam phase space distribution recovered by Tomography at the gun 

aperture ( 0z =  cm). (a) Without perturbation; (b) with perturbation turned on. The 

subtracted slope was -6.5 mrad/mm (no perturbation) and -9.7 mrad/mm (with 

perturbation). Note that both phase-spaces are at the same scale. 

 

Table 6.1: Beam parameters measured at the aperture from tomography.  

Parameter Perturbation Off Perturbation On 

2
rms

x  1.6 mm 1.6 mm 

'2
rms

x  17 mrad 21.0 mrad 

,4x rms
ε  26 µm 30 µm 

 

X’ X’ 

X X 

(a) (b) 
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Figure 6.3 shows the corresponding beam image on the screen (LC1) as well 

the Tomographic reconstructed phase spaces at that location. Interestingly, the 

distributions look very different. First, in configuration space the beam sizes are not 

equal and the beam with perturbation looks smaller, possibly due to the different 

focusing it experiences relevant to the main beam. Another interesting observation is 

the difference in the emittances. The measured emittance was 28.0 µm and 37.0 µm 

when the perturbation was tuned off and on, respectively.  The possible reason for 

that can be due the fact that the two beams start with different emittances at the 

aperture. However, for both cases there is an emittance growth relative to the aperture 

(23% when the perturbation is on and 7% when the perturbation is off).  

In Sec. 5.4.1 we show evidence that the solenoids can cause emittance growth; 

however, here the growth is larger for the case when the perturbation was on. One 

reason for that could be the higher space-charge of this beam [62] that can cause 

transverse mismatch. A second reason could be due to the rapidly varying 

longitudinal field because of the perturbation. A third reason, as discussed before, 

could be the large window size (10 ns) that can cause integration over many different 

slices.  
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Figure 6.3: Beam configuration space (top) and measured phase space by tomography 

(bottom) at the screen location: (a) Perturbation off; (b) Perturbation on. Notice that 

the beam with perturbation has higher emittance. Images are obtained with a 10 ns 

gate. The subtracted slope was -7.4 mrad/mm (perturbation off) and -6.7 mrad/mm 

(perturbation on). 
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6.2.2 Time integrated tomography 

 In the previous section we reported time resolved measurements of the phase 

space distribution for a rectangular pulse with a perturbation on it and compared our 

results with the case without the perturbation. Now, we do the same experiment but 

this time we integrate over the whole beam pulse. For this experiment, the gate of 

camera is set along the dotted green lines in Fig. 6.4.  

Figure 6.5 illustrates the beam distribution in configuration space and phase 

space without perturbation (Fig. 6.5(a)) and with perturbation (Fig. 6.5(b)) at LC1.  

We cannot detect any significant differences between the two cases; eirther in 

configuration space or in phase space. To quantify this, we calculated the beam 

emittances and found that they are almost equal (see label inside Fig. 6.5).    

In summary, in contrast to time-resolved measurements, time integrated 

measurements didn’t reveal any difference in the transverse beam distribution when a 

beam was propagating with and without longitudinal perturbation. This observation 

indicates the usefulness of using fast diagnostics for studying in detail beam 

properties.  
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Figure 6.4: Beam signal at the Bergoz. The red profile shows the current profile with 

perturbation on. The black curve shows the profile with the perturbation turned off. 

The beam current was 25 mA. The perturbation is roughly 25% of the main current. 

The camera gate was set at 100 ns and was integrating over the whole beam pulse 

(green dashed line). 

 

 

100 ns 
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Figure 6.5: Beam configuration space (top) and measured phase space by tomography 

(bottom). (a) Perturbation off; (b) Perturbation on. Images are time-integrated over 

the whole beam pulse. The subtracted slope was -7.4 mrad/mm for both cases. 
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6.3 Parabolic Beam Pulse 

 The longitudinal dynamics of a parabolic beam bunch has experimental 

importance to beam acceleration and transport, especially to the beam compression in 

an induction module because it produces a linear longitudinal electric field [67]. Even 

more so, laser bunches tend to be Gaussian, so most photo emitted beams are very 

close to parabolic.  Following the discussion in Sec. 6.1.3 we modified the beam 

current profile and produced a parabolic beam profile. Our aim is to perform 

transverse phase space measurements along several slices within this pulse and study 

the correlations between longitudinal and transverse dynamics.  

The longitudinal charge distribution of the electron beam bunch from the 

signal at the Bergoz is demonstrated in Fig. 6.6. The position of the slices used in our 

phase-space measurement is also illustrated in Fig. 6.6. The width of each slice was 3 

ns and Table 6.2 shows the average current of each one. 
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Figure 6.6: Signal collected at the Bergoz coil showing the longitudinal current 

profile.  
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Table 6.2: Beam currents and parameters measured at the aperture from tomography.  

    Time Window 

(ns) 

Current 

(mA) 

Emittance 

(µm) 

Slope of Envelope 

(mrad) 

Slice a 9-12 4.8 29.8 -7.8 

Slice b 15-18 15.0 27.0 -11.75 

Slice c 27-30 23.1 24.0 -11.0 

Slice d 

Slice e 

Slice f 

33-36 

45-48 

   51-54 

23.5 

16.3 

6.6 

24.0 

26.3 

29.6 

-11.15 

-11.93 

-7.9 

 

By setting the ICCD camera gate window at 3 ns, and moving it progressively 

from the beam head toward the tail we can collect a number of beam photos at the 

screen (LC1), each corresponding to 3 ns beam slice. Some of those photos are shown 

in Figure 6.7 and correspond to the case where the solenoids S1 and S2 are set at 97.8 

G (current=5.5 A) and 60 G (current=3.2 A), respectively. Carefully examining those 

photos we can see that they have structure that differs from slice to slice. Such 

structure has been observed in previous experiment also [57, 62] and is believed to be 

caused by the nonuniform emission from the aperture [57]. The structure appearance 

is a function of the beam intensity; therefore since those slices correspond to different 

beam currents their structure will be also different.  
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Figure 6.7: Beam slices on the screen obtained by progressively moving the camera 3 

ns gate window from the head to the tail of the beam pulse. Each photo is the result of 

55 frame integrations.  

 

Now, we are interested to reconstruct the phase space distribution and 

measure the emittance for the slices a, b, c, d, e, and f. Following the procedure 

discussed in Sec. 6.1 (see also Chap. 5) we scan the solenoids collect 48 beam photos 

from the screen and reconstruct the phase space. We reconstruct the phase space at 

the aperture and get so an estimate of the initial beam emittance and slope of the 

beam envelope ( ' 4 ' /x xx x= < > , where x is the beam size). Our results are listed in 

Table 6.2. We show only data along the x transverse plane but similar results apply to 

the other transverse direction also. Those numbers are useful especially because they 

9-12ns 15-18ns 21-24ns 27-30ns 
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provide the initial conditions for our matrix analysis for the downstream phase space 

reconstruction (see Sec. 2.3). As we can see, the emittances appear to be higher along 

the beam edge and smaller at the beam center where the current was at its highest. 

Future gun simulations could prove useful to explain the cause of such emittance 

difference between the initial slices.  
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Figure 6.8: Beam in configuration space and in phase space for slices a, b, c, d, e, and 

f. Phase spaces are generated using the initial conditions shown in Table 6.2. Note 

that the slope of the phase space is not subtracted. 
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 Figure 6.8 shows the beam distribution in configuration space for the six 

different slices. Clearly there is a difference in beam size and to illustrate this point in 

Fig. 6.9(a) we plot the measured beam size versus time.  The right column of Fig. 6.8 

shows the measured phase space by tomography. As in configuration space, the phase 

spaces do not look the same; however, they appear to be symmetric. Figure 6.9(b) 

shows the measured beam emittance. Comparing to Table 6.2 we see that all 

emittances at the screen are higher compared the one measured at the aperture. 

Furthermore, the   emittances are higher at the edges relevant to the center. A similar 

trend was observed by measuring the transverse phase space and emittance at the exit 

of the SPARC photo-injector [36]. Another interesting observation is that not all the 

slices have the same orientation. To illustrate this point by using Eq. 4.4 we 

calculated the slope of the phase space distribution relevant to the spatial axis and 

plotted our results in Fig. 6.9 (c). We can see that the slices close to the edge are at 

higher slope. A possible reasoning for that could be the rapid variation of the beam 

current within this slice. Hence, the assumption of a constant, “average”, current 

within this slice by our tomography analysis may introduce some uncertainties in the 

measurement. Unfortunately, the camera gate cannot be reduced below 3 ns. 

However, future, simulation may prove useful to understand the causing of this effect 

better. 
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Figure 6.9: Beam parameters measured in the experiment: (a) Beam size; (b) 

Emittance; (c) Slope of phase space (from Eq. 4.4).  

6.4 Conclusion 

In this chapter we studied the coupling between longitudinal and transverse 

dynamics and were able for the first time to report slice tomography measurements 

for a beam with intense space-charge. Application of perturbations over the 

longitudinal flat top pulse lead to modifications on the beam transverse phase space 

distribution. Furthermore, using a parabolic pulse we showed that the emittance is 

(a) (b) 

(c) 
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higher along the edges of the parabola. Future simulations may be useful to further 

understand this effect.  
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Chapter 7 Summary and Conclusion 

We reported in this dissertation the use of tomographic imaging algorithms to 

reconstruct the beam phase space for beams with intense space-charge. 

In Chap. 2 we provided the theory of tomography and showed that it can be 

applied to beams by simply combining it with a quadruple scan. Tomography is 

making no a priori assumption about the beam distribution when the beam is 

emittance dominated.  By assuming a uniform beam distribution and using a linear 

space-charge approximation we extended the diagnostic for beams with space-charge. 

Since the magnet focusing for beams with space-charge depends on the beam 

envelope X and Y (see Eq. 2.39 and 2.40), before doing our tomography analysis we 

first solved the beam envelope equations and get the exact dependence of X and Y 

with z. In our analysis we assumed that all particles move within the beam ellipse i.e. 

                                             

2 2

1
x y

X Y

   
+ <   

   
.                                            (7.1) 

 Of course this is not the case when halos are present and the analysis would be more 

accurate by allowing particles to evolve inside and outside this ellipse. One future 

model that can be implemented to account for this effect, is to introduce on the 

particle equations (see Eqs. 2.8, 2.39 and 2.40) 
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 the terms ,x y
F F (which were assumed to be one in this dissertation) and are defined 

elsewhere  [68]. Furthermore, the diagnostic is providing the 2D phase space 

'( , )x x or '( , )y y . Future work to reconstruct the 4D distribution ' '( , , , )x x y y , for 

example with the use of skew quadrupoles, may reveal more details about the beam 

distribution. 

In Chap. 3 we verified the accuracy of our tomography diagnostic by 

simulating the tomography diagnostic by using the particle-in-cell code WARP. We 

tested the diagnostic by using three beams with different intensity ( 0.3,0.72χ = and 

0.9). We showed that in all this cases tomography accurately maps the beam phase-

space, with error less than 5% for the first two cases and error less than 8% for the 

third case.  Furthermore, we tested our diagnostic by using more complex initial 

distributions in the code, for example by using a 5 beamlet initial distribution.  We 

showed that by treating beams with non uniform distributions as equivalent (in rms 

sense) to uniform beams we can obtain very accurate phase space maps. This was true 

also when we used the five beamlet distribution. Even though such distribution will 

introduce non linear space-charge forces our linear model proves to be effective in the 

reconstruction process with an error less than 7%.   Finally, we tested the effect of 

various errors (angular step, total phase space rotation, errors in the magnet current) 

in the reconstruction process. Our results showed that a close to 180
0 

total rotation 

and a minimum angular step of 14
0 

is necessary to accurately reconstruct the phase 

space. This error analysis was restricted to emittance dominated beams; however, 

future similar analysis for a space-charge dominated beam would be important.   
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  In Chap. 4 we applied the diagnostic to experimentally study the phase-space 

evolution of beams with space-charge. Taking advantage of the intense beams and 

flexible design of UMER, in this chapter we applied our tomography diagnostic to a 

series of experiments to examine emittance growth, halo formation, phase mixing and 

charge homogenization. We use beams with different intensities and different 

transverse initial density distributions and compared our results with predictions from 

theory and simulations. Tomography accurately detects halo particles and this is a big 

success for the diagnostic since halos are in general difficult to detect (by aperturing 

diagnostics such as a pepper pot or slit scan) since their low intensity. Using an 

asymmetric aperture we generated a pattern of five merging beamlets and showed that 

whereas the beamlets appear to be merged in configuration space they remained 

distinct in velocity space ≈ 0.76 m downstream from the source. Tomographic 

emittance measurements on that location reveal an emittance growth of 1.1 which is 

in agreement with the theoretically predicted growth due to the conversion of the field 

energy to thermal kinetic energy. For the five beamlet experiment the beam had a lot 

of halo mostly arising from the gun cathode which was replaced, recently. Repeating 

this experiment, in the future, with the new cathode (without halo) and extracting data 

over longer distances (for instance RC 15, RC 16) may reveal more information about 

the beam evolution and relaxation. For example, recent simulation work predicts a 

different emittance growth process in a lattice with quadrupoles than solenoids. 

Hence, an interesting problem is to repeat the experiment and compare the emittance 

growth on UMER to that reported on a periodic focusing solenoidal channel [7].  

Furthermore, study of the relaxation to equilibrium of beams with anisotropy is 
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another interesting problem. Anisotropy can be introduced by asymmetric focusing 

and the relaxation to equilibrium can be investigated by using tomography and 

measuring the beam emittance downstream. Repeating this experiment for beams 

with different intensity may reveal information about the relation between space-

charge and equipartioning. Furthermore, it can be used as a benchmark to relevant 

predictions from simulation [48]. 

 In Chap. 5 we showed that tomography can equally well be applied to the 

case of solenoids. Comparing our reconstructed phase-spaces to that we got from 

simulations we found excellent agreement. Furthermore, we showed that care must be 

taken in the analysis for beams without axissymmetry and provided a step by step 

procedure to account for this effect. Finally, we showed that solenoids can cause 

emittance growth if the beam is large in size. Future, work extending the diagnostic to 

the case where acceleration is present will make the technique more suitable for ion 

injectors. Furthermore, our analysis was assuming that the beam was launched withn 

zero angular velocity in a region with no magnetic fields. Future work generalizing 

the diagnostic to nonzero canonical angular momentum will make solenoidal 

tomography more efficient to the cases where a beam is born in regions with 

magnetic fields.  Furthermore, since the LSE is occupied with a pepper-pot a direct 

comparison between tomography and pepper pot data would be another cross-check 

of the process.  

Finally, in Chap. 6 we implemented fast imaging techniques to perform time 

resolved images (3ns) of the beam phase space distributions. Mainly, we studied two 

effects: (1) by introducing longitudinal density perturbations we investigated the 
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correlation between the transverse and longitudinal dynamics in configuration and 

phase space; (2) Applying a parabolic beam pulse and modeling so the beam profile 

of typical outputs of RF photocathode guns we tomographically mapped the beam 

phase-space along several slices and studied the orientation and emittances of those 

slices. We found significant differences between the slice emittance profiles as the 

beam propagates downstream. In the experiment the magnet scan and camera control 

was performed manually. Future automation of the process will facilitate more 

detailed study since it will allow more data within different slices or experimentation 

with different gate widths.  
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Appendix A: MATLAB Tomography Codes 
 

 This appendix contains the MATLAB codes used in this dissertation to 

perform phase space tomography. Those where shortly described in Sec. 2.4. The 

codes are well-commented and so are listed below without detailed explanation. It 

should pointed out that the analysis is only for the transverse axis x but the case is 

identical for the y axis, too. 

A1: Code for calculation of scaling factors and rotation angles 

 The main code x_ScalF_RotA_Calc.m is calculating the scaling factors and 

rotation angles by using Eq. 2.31 and and Eq. 2.32. To do so it has to solve the beam 

envelope equations (Eq. 2.41 and Eq. 2.42) and for this reason calls the function 

‘EnvelopeSolver’. Furthermore, the code, in order to calculate the beam generalized 

Perveance, Focusing function and the total strength of the four magnets it calls the 

functions: ‘Perveance’, ‘Quad_Focusing’, and ‘MagnetsStrength’, respectively. 

Below are the details: 

 

% Program x_ScalF_RotA_Calc.m 

% SCALING FACTOR AND ROTATION ANGLE CALCULATOR 

% Created by: Diktys Stratakis 

% 

% STEP 1 - Define Initial Beam Characteristics 

% 

clear all; 

Ib=23.0/10^3; % Beam Current (A) 

emit_x=30.0/10^6; % Beam Emittance in X (m) 

emit_y=30.0/10^6; % Beam emittance in Y (m) 

% 

% STEP2 - Simulation Step Size 

% 
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step_quad= 100; %steps inside each quad 

step_drift=400; %steps between quads (drift regions) 

% 

% STEP 3a: Quadrupoles Characteristics & Locations (m) 

% 

Q1pos=0.08;  

Q2pos=0.24; 

Q3pos=0.40; 

Q4pos=0.56; 

leff=0.0372;  % effective quadrupole length (m) 

g=3.61*10^-2; % peak on axis gradient (G/(mA)) 

Zend=0.613; 

L1=0.16-leff;  

L2=0.16-leff; 

L3=0.16-leff; 

L4=Zend-Q4pos-leff/2; 

% 

% STEP 3b: Quadrupoles Currents (for reconstructed phase space) 

% 

Iquad=[-2.21,2.21,-2.21, 2.21]; 

% 

% STEP 4: Initial Conditions on Beam Envelopes 

X0=0.001375;  % size in X (m) 

XP0=-0.007270;% slope of envelope (rad) 

Y0=0.001365;  % size in Y (m) 

YP0=0.007107; % slope of envelope (rad) 

% 

% STEP 5: Solution of Beam Envelope Equations 

% 

parameters=[emit_x,emit_y,Ib,Iquad,leff,g,Q1pos,Q2pos,Q3pos,Q4pos]; 

[t,y]=ode23(@KV_EnvelopeSolver,[0,Zend],[X0,XP0,Y0,YP0],[],parameters); 

all_data=[t,y]; 

all_z=all_data(:,1); 

all_x=all_data(:,2); 

all_xp=all_data(:,3); 

all_y=all_data(:,4); 

all_yp=all_data(:,5); 

% 

%STEP 6: Matrix Analysis  

%Quad 1 

% 

clear ii 

for ii=1:step_quad 

l=leff/step_quad; 

z_q1=Q1pos-leff/2+(ii-1)*l; 
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x_q1=interp1(all_z,all_x,z_q1,'spline'); 

y_q1=interp1(all_z,all_y,z_q1,'spline'); 

kappa_q1=Quad_Focusing(Iquad(1),g)-(2*Perveance(Ib))/(x_q1*(x_q1+y_q1)); 

%Focusing function (Eq. 2.39) 

  if Iquad(1) > 0 

    M_q1{ii}=[cos(sqrt(kappa_q1)*l) (1/sqrt(kappa_q1))*(sin(sqrt(kappa_q1)*l)); -

sqrt(kappa_q1)*(sin(sqrt(kappa_q1)*l)) cos(sqrt(kappa_q1)*l)]; 

  elseif Iquad(1) < 0 

    M_q1{ii}=[cos(sqrt(kappa_q1)*l) (1/sqrt(kappa_q1))*(sin(sqrt(kappa_q1)*l)); -

sqrt(kappa_q1)*(sin(sqrt(kappa_q1)*l)) cos(sqrt(kappa_q1)*l)]; 

  else 

    M_q1{ii}=[1 l;0 1]; 

  end 

end 

clear jj 

M_q1_com=eye(2); 

for jj=step_quad:-1:1 

    M_q1_com=M_q1_com*M_q1{jj}; 

end 

% 

%Drift between Quad1 and Quad2 

for iii=1:step_drift 

ld=L1/step_drift; 

z_dr12=Q1pos+leff/2+(iii-1)*ld; 

x_dr12=interp1(all_z,all_x,z_dr12,'spline'); 

y_dr12=interp1(all_z,all_y,z_dr12,'spline'); 

kappa_dr12=(-2*Perveance(Ib))/(x_dr12*(x_dr12+y_dr12)); 

M_dr12{iii}=[cos(sqrt(kappa_dr12)*ld) 

(1/sqrt(kappa_dr12))*(sin(sqrt(kappa_dr12)*ld)); -

sqrt(kappa_dr12)*(sin(sqrt(kappa_dr12)*ld)) cos(sqrt(kappa_dr12)*ld)]; 

end 

M_dr12_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr12_com=M_dr12_com*M_dr12{jjj}; 

end 

% 

% Quad 2 

% 

clear ii 

for ii=1:step_quad 

l=leff/step_quad; 

z_q2=Q2pos-leff/2+(ii-1)*l; 

x_q2=interp1(all_z,all_x,z_q2,'spline'); 

y_q2=interp1(all_z,all_y,z_q2,'spline'); 

kappa_q2=Quad_Focusing(Iquad(2),g)-(2*Perveance(Ib))/(x_q2*(x_q2+y_q2)); 
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  if Iquad(2) > 0 

    M_q2{ii}=[cos(sqrt(kappa_q2)*l) (1/sqrt(kappa_q2))*(sin(sqrt(kappa_q2)*l)); -

sqrt(kappa_q2)*(sin(sqrt(kappa_q2)*l)) cos(sqrt(kappa_q2)*l)]; 

  elseif Iquad(2) < 0 

    M_q2{ii}=[cos(sqrt(kappa_q2)*l) (1/sqrt(kappa_q2))*(sin(sqrt(kappa_q2)*l)); -

sqrt(kappa_q2)*(sin(sqrt(kappa_q2)*l)) cos(sqrt(kappa_q2)*l)]; 

  else 

    M_q2{ii}=[1 l;0 1]; 

  end 

end 

clear jj 

M_q2_com=eye(2); 

for jj=step_quad:-1:1 

    M_q2_com=M_q2_com*M_q2{jj}; 

end 

% 

% Drift between Quad2 and Quad3 

% 

for iii=1:step_drift 

ld=L1/step_drift; 

z_dr23=Q2pos+leff/2+(iii-1)*ld; 

x_dr23=interp1(all_z,all_x,z_dr23,'spline'); 

y_dr23=interp1(all_z,all_y,z_dr23,'spline'); 

kappa_dr23=-(2*Perveance(Ib))/(x_dr23*(x_dr23+y_dr23)); 

M_dr23{iii}=[cos(sqrt(kappa_dr23)*ld) 

(1/sqrt(kappa_dr23))*(sin(sqrt(kappa_dr23)*ld)); -

sqrt(kappa_dr23)*(sin(sqrt(kappa_dr23)*ld)) cos(sqrt(kappa_dr23)*ld)]; 

end 

M_dr23_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr23_com=M_dr23_com*M_dr23{jjj}; 

end 

% 

% Quad 3 

% 

clear ii 

for ii=1:step_quad 

l=leff/step_quad; 

z_q3=Q3pos-leff/2+(ii-1)*l; 

x_q3=interp1(all_z,all_x,z_q3,'spline'); 

y_q3=interp1(all_z,all_y,z_q3,'spline'); 

kappa_q3=Quad_Focusing(Iquad(3),g)-(2*Perveance(Ib))/(x_q3*(x_q3+y_q3)); 

  if Iquad(3) > 0 

    M_q3{ii}=[cos(sqrt(kappa_q3)*l) (1/sqrt(kappa_q3))*(sin(sqrt(kappa_q3)*l)); -

sqrt(kappa_q3)*(sin(sqrt(kappa_q3)*l)) cos(sqrt(kappa_q3)*l)]; 
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  elseif Iquad(3) < 0 

    M_q3{ii}=[cos(sqrt(kappa_q3)*l) (1/sqrt(kappa_q3))*(sin(sqrt(kappa_q3)*l)); -

sqrt(kappa_q3)*(sin(sqrt(kappa_q3)*l)) cos(sqrt(kappa_q3)*l)]; 

  else 

    M_q3{ii}=[1 l;0 1]; 

  end 

end 

clear jj 

M_q3_com=eye(2); 

for jj=step_quad:-1:1 

    M_q3_com=M_q3_com*M_q3{jj}; 

end 

% 

% Drift between Quad3 and Quad4 

% 

for iii=1:step_drift 

ld=L1/step_drift; 

z_dr34=Q3pos+leff/2+(iii-1)*ld; 

x_dr34=interp1(all_z,all_x,z_dr34,'spline'); 

y_dr34=interp1(all_z,all_y,z_dr34,'spline'); 

kappa_dr34=-(2*Perveance(Ib))/(x_dr34*(x_dr34+y_dr34)); 

M_dr34{iii}=[cos(sqrt(kappa_dr34)*ld) 

(1/sqrt(kappa_dr34))*(sin(sqrt(kappa_dr34)*ld)); -

sqrt(kappa_dr34)*(sin(sqrt(kappa_dr34)*ld)) cos(sqrt(kappa_dr34)*ld)]; 

end 

M_dr34_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr34_com=M_dr34_com*M_dr34{jjj}; 

end 

% 

% Quad 4 

% 

clear ii 

for ii=1:step_quad 

l=leff/step_quad; 

z_q4=Q4pos-leff/2+(ii-1)*l; 

x_q4=interp1(all_z,all_x,z_q4,'spline'); 

y_q4=interp1(all_z,all_y,z_q4,'spline'); 

kappa_q4=Quad_Focusing(Iquad(4),g)-(2*Perveance(Ib))/(x_q4*(x_q4+y_q4)); 

  if Iquad(4) > 0 

    M_q4{ii}=[cos(sqrt(kappa_q4)*l) (1/sqrt(kappa_q4))*(sin(sqrt(kappa_q4)*l)); -

sqrt(kappa_q4)*(sin(sqrt(kappa_q4)*l)) cos(sqrt(kappa_q4)*l)]; 

  elseif Iquad(4) < 0 

    M_q4{ii}=[cos(sqrt(kappa_q4)*l) (1/sqrt(kappa_q4))*(sin(sqrt(kappa_q4)*l)); -

sqrt(kappa_q4)*(sin(sqrt(kappa_q4)*l)) cos(sqrt(kappa_q4)*l)]; 
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  else 

    M_q4{ii}=[1 l;0 1]; 

  end 

end 

clear jj 

M_q4_com=eye(2); 

for jj=step_quad:-1:1 

    M_q4_com=M_q4_com*M_q4{jj}; 

end 

% 

% Drift between Quad4 and Screen 

% 

for iii=1:step_drift 

ld4=L4/step_drift; 

z_dr4=Q4pos+leff/2+(iii-1)*ld4; 

x_dr4=interp1(all_z,all_x,z_dr4,'spline'); 

y_dr4=interp1(all_z,all_y,z_dr4,'spline'); 

kappa_dr4=-(2*Perveance(Ib))/(x_dr4*(x_dr4+y_dr4)); 

M_dr4{iii}=[cos(sqrt(kappa_dr4)*ld4) 

(1/sqrt(kappa_dr4))*(sin(sqrt(kappa_dr4)*ld4)); -

sqrt(kappa_dr4)*(sin(sqrt(kappa_dr4)*ld4)) cos(sqrt(kappa_dr4)*ld4)]; 

end 

M_dr4_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr4_com=M_dr4_com*M_dr4{jjj}; 

end 

% 

%STEP 7 Trasport Matrix for Default Phase Space 

% 

M=M_dr4_com*M_q4_com*M_dr34_com*M_q3_com*M_dr23_com*M_q2_com*

M_dr12_com*M_q1_com; 

% 

%STEP 8 - Gives me the sizes of the "matched" beam on the phosphor screen 

%as predicted by the envelopes 

z_end=Zend; 

x0_end=interp1(all_z,all_x,z_end,'spline') 

y0_end=interp1(all_z,all_y,z_end,'spline') 

xp0_end=interp1(all_z,all_xp,z_end,'spline') 

yp0_end=interp1(all_z,all_yp,z_end,'spline') 

%STEP 8 Read current values from quadrupole scans (should be a txt file) 

% 

Data=dlmread('C:\Documents and 

Settings\dstratak\Desktop\x_ScF_RtA_Pencil_Matched.txt');  

Iquad1=Data(:,1);  

Iquad2=Data(:,2);  
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Iquad3=Data(:,3);  

Iquad4=Data(:,4);  

% 

%STEP 9 Repeat same procedure again... 

% 

npoints=length(Iquad1); % Number of total scans 

for h=1:npoints 

Iquad_new=[Iquad1(h),Iquad2(h),Iquad3(h),Iquad4(h)]; %Read the currents of the 

magnets that we scanned for Tomography 

parameters=[emit_x,emit_y,Ib,Iquad_new,leff,g,Q1pos,Q2pos,Q3pos,Q4pos]; 

[t,y]=ode23(@KV_EnvelopeSolver,[0,Zend],[X0,XP0,Y0,YP0],[],parameters); 

all_data=[t,y]; 

all_z=all_data(:,1); 

all_x=all_data(:,2); 

all_y=all_data(:,4);  

% 

%Quad 1 

% 

for ii=1:step_quad 

l=leff/step_quad; 

z_q1=Q1pos-leff/2+(ii-1)*l; 

x_q1=interp1(all_z,all_x,z_q1,'spline'); 

y_q1=interp1(all_z,all_y,z_q1,'spline'); 

kappa_q1=Quad_Focusing(Iquad_new(1),g)-(2*Perveance(Ib))/(x_q1*(x_q1+y_q1)); 

  if Iquad_new(1) > 0 

    M_q1{ii}=[cos(sqrt(kappa_q1)*l) (1/sqrt(kappa_q1))*(sin(sqrt(kappa_q1)*l)); -

sqrt(kappa_q1)*(sin(sqrt(kappa_q1)*l)) cos(sqrt(kappa_q1)*l)]; 

  elseif Iquad_new(1) < 0 

    M_q1{ii}=[cos(sqrt(kappa_q1)*l) (1/sqrt(kappa_q1))*(sin(sqrt(kappa_q1)*l)); -

sqrt(kappa_q1)*(sin(sqrt(kappa_q1)*l)) cos(sqrt(kappa_q1)*l)]; 

  else 

    M_q1{ii}=[1 l;0 1]; 

  end 

end 

M_q1_com=eye(2); 

for jj=step_quad:-1:1 

    M_q1_com=M_q1_com*M_q1{jj}; 

end 

M_q1_com2{h}=M_q1_com; 

% 

%Drift between Quad1 and Quad2 

for iii=1:step_drift 

ld=L1/step_drift; 

z_dr12=Q1pos+leff/2+(iii-1)*ld; 

x_dr12=interp1(all_z,all_x,z_dr12,'spline'); 
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y_dr12=interp1(all_z,all_y,z_dr12,'spline'); 

kappa_dr12=-(2*Perveance(Ib))/(x_dr12*(x_dr12+y_dr12)); 

M_dr12{iii}=[cos(sqrt(kappa_dr12)*ld) 

(1/sqrt(kappa_dr12))*(sin(sqrt(kappa_dr12)*ld)); -

sqrt(kappa_dr12)*(sin(sqrt(kappa_dr12)*ld)) cos(sqrt(kappa_dr12)*ld)]; 

end 

M_dr12_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr12_com=M_dr12_com*M_dr12{jjj}; 

end 

M_dr12_com2{h}=M_dr12_com; 

% 

% Quad 2 

% 

for ii=1:step_quad 

l=leff/step_quad; 

z_q2=Q2pos-leff/2+(ii-1)*l; 

x_q2=interp1(all_z,all_x,z_q2,'spline'); 

y_q2=interp1(all_z,all_y,z_q2,'spline'); 

kappa_q2=Quad_Focusing(Iquad_new(2),g)-(2*Perveance(Ib))/(x_q2*(x_q2+y_q2)); 

  if Iquad_new(2) > 0 

    M_q2{ii}=[cos(sqrt(kappa_q2)*l) (1/sqrt(kappa_q2))*(sin(sqrt(kappa_q2)*l)); -

sqrt(kappa_q2)*(sin(sqrt(kappa_q2)*l)) cos(sqrt(kappa_q2)*l)]; 

  elseif Iquad_new(2) < 0 

    M_q2{ii}=[cos(sqrt(kappa_q2)*l) (1/sqrt(kappa_q2))*(sin(sqrt(kappa_q2)*l)); -

sqrt(kappa_q2)*(sin(sqrt(kappa_q2)*l)) cos(sqrt(kappa_q2)*l)]; 

  else 

    M_q2{ii}=[1 l;0 1]; 

  end 

end 

M_q2_com=eye(2); 

for jj=step_quad:-1:1 

    M_q2_com=M_q2_com*M_q2{jj}; 

end 

M_q2_com2{h}=M_q2_com; 

% 

% Drift between Quad2 and Quad3 

% 

for iii=1:step_drift 

ld=L1/step_drift; 

z_dr23=Q2pos+leff/2+(iii-1)*ld; 

x_dr23=interp1(all_z,all_x,z_dr23,'spline'); 

y_dr23=interp1(all_z,all_y,z_dr23,'spline'); 

kappa_dr23=-(2*Perveance(Ib))/(x_dr23*(x_dr23+y_dr23)); 
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M_dr23{iii}=[cos(sqrt(kappa_dr23)*ld) 

(1/sqrt(kappa_dr23))*(sin(sqrt(kappa_dr23)*ld)); -

sqrt(kappa_dr23)*(sin(sqrt(kappa_dr23)*ld)) cos(sqrt(kappa_dr23)*ld)]; 

end 

M_dr23_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr23_com=M_dr23_com*M_dr23{jjj}; 

end 

M_dr23_com2{h}=M_dr23_com; 

% 

% Quad 3 

% 

for ii=1:step_quad 

l=leff/step_quad; 

z_q3=Q3pos-leff/2+(ii-1)*l; 

x_q3=interp1(all_z,all_x,z_q3,'spline'); 

y_q3=interp1(all_z,all_y,z_q3,'spline'); 

kappa_q3=Quad_Focusing(Iquad_new(3),g)-(2*Perveance(Ib))/(x_q3*(x_q3+y_q3)); 

  if Iquad_new(3) > 0 

    M_q3{ii}=[cos(sqrt(kappa_q3)*l) (1/sqrt(kappa_q3))*(sin(sqrt(kappa_q3)*l)); -

sqrt(kappa_q3)*(sin(sqrt(kappa_q3)*l)) cos(sqrt(kappa_q3)*l)]; 

  elseif Iquad_new(3) < 0 

    M_q3{ii}=[cos(sqrt(kappa_q3)*l) (1/sqrt(kappa_q3))*(sin(sqrt(kappa_q3)*l)); -

sqrt(kappa_q3)*(sin(sqrt(kappa_q3)*l)) cos(sqrt(kappa_q3)*l)]; 

  else 

    M_q3{ii}=[1 l;0 1]; 

  end 

end 

M_q3_com=eye(2); 

for jj=step_quad:-1:1 

    M_q3_com=M_q3_com*M_q3{jj}; 

end 

M_q3_com2{h}=M_q3_com; 

% 

% Drift between Quad3 and Quad4 

% 

for iii=1:step_drift 

ld=L1/step_drift; 

z_dr34=Q3pos+leff/2+(iii-1)*ld; 

x_dr34=interp1(all_z,all_x,z_dr34,'spline'); 

y_dr34=interp1(all_z,all_y,z_dr34,'spline'); 

kappa_dr34=-(2*Perveance(Ib))/(x_dr34*(x_dr34+y_dr34)); 

M_dr34{iii}=[cos(sqrt(kappa_dr34)*ld) 

(1/sqrt(kappa_dr34))*(sin(sqrt(kappa_dr34)*ld)); -

sqrt(kappa_dr34)*(sin(sqrt(kappa_dr34)*ld)) cos(sqrt(kappa_dr34)*ld)]; 
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end 

M_dr34_com=eye(2); 

for jjj=step_drift:-1:1 

    M_dr34_com=M_dr34_com*M_dr34{jjj}; 

end 

M_dr34_com2{h}=M_dr34_com; 

% 

% Quad 4 

% 

for ii=1:step_quad 

l=leff/step_quad; 

z_q4=Q4pos-leff/2+(ii-1)*l; 

x_q4=interp1(all_z,all_x,z_q4,'spline'); 

y_q4=interp1(all_z,all_y,z_q4,'spline'); 

kappa_q4=Quad_Focusing(Iquad_new(4),g)-(2*Perveance(Ib))/(x_q4*(x_q4+y_q4)); 

  if Iquad_new(4) > 0 

    M_q4{ii}=[cos(sqrt(kappa_q4)*l) (1/sqrt(kappa_q4))*(sin(sqrt(kappa_q4)*l)); -

sqrt(kappa_q4)*(sin(sqrt(kappa_q4)*l)) cos(sqrt(kappa_q4)*l)]; 

  elseif Iquad_new(4) < 0 

    M_q4{ii}=[cos(sqrt(kappa_q4)*l) (1/sqrt(kappa_q4))*(sin(sqrt(kappa_q4)*l)); -

sqrt(kappa_q4)*(sin(sqrt(kappa_q4)*l)) cos(sqrt(kappa_q4)*l)]; 

  else 

    M_q4{ii}=[1 l;0 1]; 

  end 

end 

M_q4_com=eye(2); 

for jj=step_quad:-1:1 

    M_q4_com=M_q4_com*M_q4{jj}; 

end 

M_q4_com2{h}=M_q4_com; 

% 

% Drift between Quad4 and Screen 

% 

for iii=1:step_drift 

ld4=L4/step_drift; 

z_dr4=Q4pos+leff/2+(iii-1)*ld4; 

x_dr4=interp1(all_z,all_x,z_dr4,'spline'); 

y_dr4=interp1(all_z,all_y,z_dr4,'spline'); 

kappa_dr4=-(2*Perveance(Ib))/(x_dr4*(x_dr4+y_dr4)); 

M_dr4{iii}=[cos(sqrt(kappa_dr4)*ld4) 

(1/sqrt(kappa_dr4))*(sin(sqrt(kappa_dr4)*ld4)); -

sqrt(kappa_dr4)*(sin(sqrt(kappa_dr4)*ld4)) cos(sqrt(kappa_dr4)*ld4)]; 

end 

M_dr4_com=eye(2); 

for jjj=step_drift:-1:1 
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    M_dr4_com=M_dr4_com*M_dr4{jjj}; 

end 

M_dr4_com2{h}=M_dr4_com; 

% 

%STEP 10 Calculate scaling factors & rotation angles for each scan 

% 

M1=M_dr4_com2{h}*M_q4_com2{h}*M_dr34_com2{h}*M_q3_com2{h}*M_dr2

3_com2{h}*M_q2_com2{h}*M_dr12_com2{h}*M_q1_com2{h}*inv(M); %Net 

Transport matrix 

%It’s basically Eq. 2.46 

scaling_factor{h}=sqrt(M1(1,1)*M1(1,1)+M1(1,2)*M1(1,2)); %This is Eq. 2.31 

rotation_angle{h}=atan(M1(1,2)/M1(1,1))*(180/pi);        %This is Eq. 2.32 

end 

% 

%STEP 11: Finally Save Data into a .txt file 

% 

clear d 

fid = fopen('x_ScRt_Pencil.txt','w'); 

for i=1:length(scaling_factor) 

fprintf(fid,'%f 

',Iquad1(i),Iquad2(i),Iquad3(i),Iquad4(i),scaling_factor{i},rotation_angle{i}); 

fprintf(fid,'\n'); 

end 

fclose(fid); 

type x_ScRt_Pencil.txt; 

 

************************************************ 

 

 

function dy=EnvelopeSolver(t,y,parameters) 

%This program solves the KV Beam Envelope Equations from Eq. 2.41 and Eq. 2.42  

emit_x=parameters(1); 

emit_y=parameters(2); 

Ib=parameters(3); 

Iquad=parameters(4:7); 

leff=parameters(8); 

g=parameters(9); 

Q1pos=parameters(10); 

Q2pos=parameters(11); 

Q3pos=parameters(12); 

Q4pos=parameters(13); 

kappa=Quad_Focusing(Iquad,g); 

K=Perveance(Ib); 

dy(1)=y(2); 
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dy(2)=-

MagnetsStrength(t,leff,Iquad,kappa,Q1pos,Q2pos,Q3pos,Q4pos)*y(1)+(emit_x^2)/y(

1)^3+2*K/(y(1)+y(3)); 

dy(3)=y(4); 

dy(4)=MagnetsStrength(t,leff,Iquad,kappa)*y(3)+(emit_y^2)/y(3)^3+2*K/(y(3)+y(1))

; 

dy=[dy(1);dy(2);dy(3);dy(4)]; 

 

******************************************************* 

function Strength=MagnetsStrength(t,leff,Iquad,kappa,Q1pos,Q2pos,Q3pos,Q4pos) 

%This function calculates the magnet strength of each magnet along the beam line 

Q1pos=0.08; 

Q2pos=0.24; 

Q3pos=0.40; 

Q4pos=0.56; 

if t >= Q1pos-leff/2 & t<=Q1pos+leff/2 

    Strength =kappa(1,1); 

elseif t>=Q2pos-leff/2 & t<=Q2pos+leff/2 

    Strength =kappa(1,2); 

elseif t>=Q3pos-leff/2 & t<=Q3pos+leff/2 

    Strength =kappa(1,3); 

elseif t>=Q4pos-leff/2 & t<=Q4pos+leff/2 

    Strength =kappa(1,4); 

else 

    Strength=0; 

end 

 

********************************************************* 

function kappa=Quad_Focusing(Iquad,g) 

%This function calculates the focusing function of the quadrupole according 

%to Eq. 2.5 

c=2.9979*10^8; 

m=9.109/10^31; 

q=1.602/10^19; 

e0=8.854/10^12; 

i0=4*pi*e0*m*c^3/q; 

T=10*q*10^3; %Beam Energy in eV 

gamma=T/(m*c^2)+1; 

beta=sqrt(1-1/gamma^2); 

kappa=g*Iquad*q/(m*c*beta*gamma); 

 

*********************************************************** 

function K=Perveance(Ib) 

%This program calculates the beam generalized perveance according to Eq. 2.9 

c=2.9979*10^8; 
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m=9.109/10^31; 

q=1.602/10^19; 

e0=8.854/10^12; 

i0=4*pi*e0*m*c^3/q; 

T=10*q*10^3; %Beam Energy 

gamma=T/(m*c^2)+1; 

beta=sqrt(1-1/gamma^2); 

K=(2*Ib/i0)*1/(beta*gamma)^3; %Beam Perveance 

 

A2: Code to calculate beam size, beam envelope slope and emittance 

 

% Program EmitCalc.m 

% Emittance Calculator 

% Created by: Diktys Stratakis 

% 

%This program calculates the beam emittance, beam size and slope of the envelope 

from 

%the reconstructed phase-space 

% 

clear all;  

 Jold=imread('yyp_11mA_4keV_cs34_a.bmp'); %Read Beam Photo 

 J = Jold(:,:,1); 

 for Bkgr=0:10   % subtract background 

  J(J<Bkgr)=0.0; 

  Screen_Radius=886 % Screen Radius in pixels 

  T=31.75/Screen_Radius; %mm per pixel; 31.75mm is the radius, in mm, of our 

screen 

  Hor_Size = size(J, 2); % # of pix horizontally 

  Ver_Size = size(J, 1); % # of pix vertically 

  % -- Calculate Moments   

  ixc = 0; iyc = 0;                 % Centroids in pixels 

  xrms = 0; yrms = 0; xymom = 0;    % 2nd moments in pixels   

  for ix = 1:Hor_Size 

    for iy = 1:Ver_Size 

          ixc = ixc + ix*double(J(iy,ix));           

          iyc = iyc + iy*double(J(iy,ix)); 

          xrms = xrms + (ix^2)*double(J(iy,ix));     

          yrms = yrms + (iy^2)*double(J(iy,ix)); 

          xymom = xymom + (ix*iy)*double(J(iy,ix));  

    end 

  end 

  INT =sum(sum(J)); % Total Intensity (Eq. 2.47) 

  iix = (ixc/INT); iiy= (iyc/INT);     % Centroid 

  xrms = 1*T*sqrt((xrms/INT)-(iix^2)); % Envelope 
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  yrms = 1*T*sqrt((yrms/INT)-(iiy^2));  

  xymom = (T^2)*((xymom/INT)-(iix*iiy)); % Angle 

   

  X_envelope(Bkgr+1)=2*xrms; %units are mm 

  Xp(Bkgr+1)=4*xymom/X_envelope(Bkgr+1);% Beam Slope of Envelope (in mrad)  

  emittance(Bkgr+1)=4*sqrt((xrms^2)*(yrms^2)-xymom^2) %(in µm); This is 4xrms 

emittance 

  %Twiss Parameters 

  beta(Bkgr+1)=xrms^2/(emittance(Bkgr+1)/4); 

  gama(Bkgr+1)=yrms^2/(emittance(Bkgr+1)/4); 

  alpha(Bkgr+1)=sqrt(beta(Bkgr+1)*gama(Bkgr+1)-1); 

   

  slope(Bkgr+1)=-alpha(Bkgr+1)/beta(Bkgr+1); % This is the beam slope (Eq. 4.4) 

 end  
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Appendix B: Camera Operating Procedures 

Here we will list the precautions that we have to take in order to successfully 

operate the camera, control hardware and imaging software. 

• An external trigger must be applied to synchronize the camera gate to the beam 

pulse by using the pulse generator shown in Fig. B.1(b). The camera gate opens 

when the trigger arrives. The gate closure is determined by the exposure time 

set by XCAP. A good practice is to set it as low as possible to maximize the 

signal to noise ratio. 

• The trigger has to be applied 5 µs ahead the beam pulse and has to be at least 

100 µs long. The trigger and beam pulse reading at the scope is illustrated in 

Fig. B.1(a). 

• The camera has a read out time of 33 msec. Therefore trigger frequency cannot 

exceed 1000/33 Hz. 
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(a) 

 

 

 

 

 

 

 

                                                                      (b) 

B.1: External trigger application: (a) Scope reading; (b) Pulsers that control 

camera and beam on UMER 
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Appendix C: XCAP Automation 

As shown in Sec. 4.3.4 XCAP can be thought as a slave of Labview. In other 

words, it performs an action (captures a beam photo) only if Labview instructs it (by 

sending a text message). In this section we describe the procedure we use to make 

XCAP such a slave. The idea is the following: In XCAP you first create two scripts to 

carry out a loop.  One script (‘loop.scr’) will contain the body of the loop.  Another 

script (‘setup.scr’) will set up XCAP, and will perform the loop N times (where N 

equals the number of photos you are interested to take).  

 ‘Setup.scr’ will do the following: 

A)  By assuming that the beam and the camera are turned on, it will activate the 

sequence capture window in XCAP. 

B)  Activate the RS-232 Control window so that XCAP can communicate with 

Labview in the magnet control computer. 

C)   Run script ‘loop.scr’, the body of the loop. 

               The  ‘loop.scr’ will do the following: 

1)  Capture a beam photo when it receives the text message from Labview via RS-232  

2)  Increment the single buffer that the sequence capture will record to, so that the 

next time the loop is executed, the image will be stored in the next frame buffer. 

3)  Open COM port in RS-232 control and enable communication between XCAP 

and Labview. 

4)  Send a confirmation signal to the magnet control computer via RS-232 signal. 

5)  Close COM port in RS-232 Control. 

6)  Repeat steps 1-5 until all photos where captured 
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In order to create those scripts in XCAP we have to do step by step the following 

procedure. Note that this procedure needs to be done once. First, we create a 

temporary "loop.scr" file: 

 

1.  From the Scripts menu in XCAP, select "Script Record". 

2.  Click Browse, and save to file loop.scr, then click Accept. 

3.  Click Record. 

4.  Click Stop. 

5.  Close "Script Record" window. 

 

When setup.scr runs, it will run in a "Script Play" window.  When it plays ‘loop.scr’, 

it will open a second script play window.  So, you will need to record ‘setup.scr’ in 

the same environment as when ‘setup.scr’ is run: 

6.  From the Scripts menu, select "Script Play". 

Now to record setup.scr: 

7.  Select "Script Record" from the Scripts menu. 

8.  Click Browse, save to file setup.scr, then click Accept. 

9.  Click Record. 

 

Now to set up the sequence capture.  You will be capturing a single image, and you 

want the first image to be saved to buffer 0.  You also need to set up the RS-232 event 

start parameters: 
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10.  From the Capture menu, select "Sequence Capture: Video to Frame Buffers". 

11.  Uncheck "Start/End All Buffers". 

12.  Select "Event Start". 

13.  Select the "Capture Event" tab. 

14.  Select "RS-232" as the event type. 

15.  For "RS-232 Port", select the COM port you will be using. 

16.  Set up the other RS-232 Port options as required. 

 

Now to open and set up the RS-232 Control window: 

17.  From the Utility menu, select "RS-232 Control". 

18.  Select Setup from the Controls menu, and set up the RS-232 port parameters as 

required.  Make sure "RS-232 Port" remains set to "None - Disabled". 

 

Next you will have to open and set up the Black Board, so that cell A0A0  

starts out containing the first buffer you wish to capture to (buffer 0): 

19.  From the Utility menu, select "Black Board". 

20.  Left click on cell A0A0, and set A0A0=0. 

 

The next step will be to execute the body of the loop, 200 times: 

21.  From the Scripts menu, select "Script Play". 

22.  Click Browse, and browse for loop.scr.  Click Accept. 

23.  Set "Repeat Script Count" to 200. 



 

 192 

 

24.  Click Play. 

Now, you are done recording setup.scr: 

25.  In the "Script Record" window, click Stop. 

26.  Close the "Script Record" window. 

Finally, before you record loop.scr, you will have to close the Script  

Play window that was opened in step 6 above: 

27.  Close the "Script Play" window. 

 

Next, you will be recording the body of the loop: 

28.  From the Scripts menu, select "Script Record". 

29.  Click Browse, save to file loop.scr, then click Accept. 

30.  Click Record. 

 

Next, you will want to set the sequence capture window so that a  

sequence of length one is recorded, into the buffer that matches the  

number in black board cell A0A0: 

31.  In the "Video to Frame Buffers" window, right click in the  

"Starting Frame Buffer" box. 

32.  Select "BlackBoard Read". 

33.  In the "Starting Frame Buffer" box, type "BB Read=A0A0", and hit Enter. 

34.  Right click in the "Starting Frame Buffer" box and select "Key Entry". 

35.  Right click in the "Ending Frame Buffer" box. 

36.  Select "BlackBoard Read". 
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37.  In the "Ending Frame Buffer" box, type "BB Read=A0A0", and hit Enter. 

38.  Right click in the "Ending Frame Buffer" box and select "Key Entry". 

 

Now, you will want to record the sequence: 

39.  In the "Video to Frame Buffers" window, click Record. 

40.  Send a RS-232 signal (text message) with LabView  from the linux computer. 

41.  Wait for the sequence capture to finish (only 1 image will be  

captured). 

 

Next, you will want to increment the number in black board cell A0A0, so that the 

next time the loop plays, the sequence will be captured into the next frame buffer.  To 

do this, you will write the current frame buffer to black board cell A0A1, and then set 

black board cell A0A0 to A0A1+1: 

42.  In the "Video to Frame Buffers" window, right click in the "Starting Frame 

Buffer" box. 

43.  Select "BlackBoard Write". 

44.  In the "Starting Frame Buffer" box, type "BB Write=A0A1", and hit Enter. 

45.  Right click in the "Starting Frame Buffer" box and select "Key Entry". 

46.  In the "Black Board" window, left click on cell A0A0, and set A0A0=A0A1+1 

 

Next, you will want to enable the RS-232 port in "RS-232 Control", send the RS-232 

signal, and then disable the RS-232 port: 

47.  In the "RS-232 Control" window, set "RS-232 Port" to whichever COM  
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port you will be using. 

48.  In the "XMT String" box, type the string you want to send. 

49.  Click "ReXMT String". 

50.  Set "RS-232 Port" to "None - Disabled". 

 

You are now done recording loop.scr: 

51.  In the "Script Record" window, click Stop. 

52.  Close the "Script Record" window. 

 

Now, when you just run setup.scr by selecting "Script Play" from the Scripts menu, 

the setup script will set up XCAP and then perform the loop (loop.scr) whenever it 

gets instructed by Labview.     
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