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ABSTRACT

This paper investigates adaptive blind equalization for multiple-input and multiple-output (MIMO)
channels and its application to blind separation of multiple signals received by antenna arrays in
communication systems. The performance analysis is presented for the CMA equalizer used in
MIMO channels. Our analysis results indicate that double infinite-length MIMO-CMA equalizer
can recover one of input signals, remove the intersymbol interference (ISI), and suppress the rest
signals. In particular, for the MIMO FIR channels satisfying certain conditions, the MIMO-CMA
FIR equalizer is able to remove the ISI and co-channel interference regardless of the initial setting
of the blind equalizer. To recover all input signals simultaneously, a novel MIMO channel blind
equalization algorithm is developed in this paper. The global convergence of the new algorithm for
MIMO channels is proved. Hence, the new blind equalization algorithm for MIMQO channels can be
applied to separate and equalize the signals received by antenna arrays in communication systems.
Finally, Computer simulations are presented to confirm our analysis and illustrate the performance
of the new algorithm.

SP EDICS

SP 3.4 Statistical multichannel filtering,
SP 3.6.2 Parameter estimation: multichannel time series.

* The work was supported in part by the NSF grants MIP9309506 and MIP9457397.



LI AND LIU: ADAPTIVE BLIND MULTI-CHANNEL EQUALIZATION FOR - .. 1

I. INTRODUCTION

The use of array signal processing in wireless communications under the framework of spatial
division multiple access (SDMA) has been of great interest recently. In such situation, the sensors
or antennas may receive a superposition of several signals via many channels from many moving
sources. The system can be modeled as a multiple-input multiple-output (MIMO) system. One of
the most crucial problems is not only to separate these signals, but also simultaneously equalize
the MIMO channel such that high quality communications can be achieved. The signals separation
in other MIMO systems, such as in speech processing, seismic exploration, and the analysis of
biological systems, is also an important issue. To separate the signals and at the same time,
remove the channel distortion, blind channel equalization techniques have been very effective.

For single-input single-output (SISO) systems, lots of blind identification algorithms [5], [7],
[17], [26] and blind equalization algorithms [1], 3], [9], [10], [19], [20], [21], [24], [25], [30] have been
proposed. Most of these algorithms exploit higher-order statistics of channel output. Among various
algorithms, Godard algorithm (GA)[9], also known as the constant modular algorithm (CMA) [24],
[25], is one of the best and simplest adaptive blind equalization algorithms. It has been shown
[6], [21] that, for double infinite-length equalizers, CMA will always converge to a global minimum
regardless of initial values. The local convergence properties of the CMA, when implemented with
FIR equalizers, are observed and analyzed in [4], [14], [23] and the references therein.

Single-input multiple-output (SIMO) systems can be viewed as fractionally-spaced sampled com-
munication systems or antenna arrays received only one input signal. The fractionally-spaced
equalizer has been originally proposed to suppress timing sensitivity [8], [28]. The convergence
performance of decision-feedback fractionally-spaced equalizer is investigated in [16]. The Go-
dard algorithm, or CMA, can also be used in SIMO communication systems. The convergence of
fractionally-spaced CMA adaptive blind equalizer is studied in [12], [15]. Recently, fractionally-
spaced CMA adaptive blind equalizer under symbol timing offsets is considered in [27].

The equalization of MIMO transmission systems is studied in [18], [32] when the MIMO chan-
nel impulse responge ig known. Several iteration algorithms for blind estimation and separation

of MIMO FIR channels have been developed in [29]. However, there is no proof on the global
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convergence of those iteration algorithms. The blind identification and multiple signal separation
algorithms based on the higher-order statistics have been presented in [22], [31], [33]. However,
there is no report on the adaptive blind equalization for MIMO channels. As indicated above,
the CMA is one of the most popular algorithms used in SISO and SIMO systems. An interesting
question is how effective the CMA is when it is used in MIMO systems, such as in mobile communi-
cations, to remove intersymbol interference (ISI), co-channel interference (CCI) or adjacent-channel
interference (ACI). This paper first investigates the possibility of the use of CMA blind equalizer
in MIMO channels. Our analysis demonstrates that the CMA blind equalizer is able to recover
only one of the input signals, suppress the rest of signals. Furthermore, under certain condition,
the CMA FIR equalizer, regardless of equalizer’s initial setting, can perfectly recover one of the
input signals from the outputs of the MIMO FIR channels. Therefore, the CMA can be used in
mobile communication systems to remove ISI, CCI, and ACIL. Then, we develop a new adaptive
blind equalization algorithm for MIMO channels, to simultaneously recover all the input signals
and at the same time to remove the ISI.

The remaining part of this paper is organized as follows. In Section II, we formulate the blind
MIMO equalization problem and introduce a necessary and sufficient condition for an MIMO chan-
nel to have a bounded-input and bounded-output (BIBO) stable equalizer that can achieve dis-
tortionless reception. Then in Section III, we present the convergence analysis of the CMA blind
equalizer used in MIMO channels. Our study indicates that most of the good convergence prop-
erties of CMA for SISO channels or SIMO channels still preserve for MIMO channels. Next, in
Section IV, we develop a novel blind equalization algorithm to recover all input signals simultane-
ously. We prove the global convergence of the proposed algorithm. Finally, we present computer
simulations to confirm our analysis results and illustrate the performance of the new algorithm in

Section V.

II. BLIND EQUALIZATION FOR MIMOQO CHANNELS

Antenna arrays can be used in mobile communication systems to improve the communication
quality and increase communication capacity. The antenna array received the superposition of

several wide-band signals can be modelled as an MIMO system shown in Figure 1. The d complex
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sequences a1[n],---,aq4[n] are sent through different channels with impulse responses h;j[n] for

i=1,---,Mand j=1,---,d (d < M). We will assume in this paper that the input sequences

satisfy
E{ai[n]} = E{a}[n]} =0, (1)
and
2m2 —myg >0, (2)
where
E{|ai[n’} = ma, E{jai[n]|*} = ma. (3)

If we define the output vector x[n], the channel impulse response matriz H[n], and the input vector

a[n] respectively as

z1[n] hii[n] ... hygln] ai[n]
x[n] £ ; , H[n] £ : : , and a[n] = : , (4)

zpm(n] h M.l [n] . . hpgaln] a,d.[n]

then the channel output vector x[n] can be expressed as
x[n] = Hin] x a[n], ()

where * denotes the convolution of the matrix (or vector) sequences. For general matrix sequences

(aij[n]) and (bi;[n]), their convolution is defined as
(aggn]) * (bi;[n]) 2 (Ek: aik[n] * bes(n]). (6)

Equation (5) can also be written in Z-transform as
x(2) = H(2)a(2), (7)

where x(2), a(z) and H(z) are the Z—transform of x[n], a[n] and H|n], respectively. For MIMO
FIR channels, H(z) is a polynomial matrix.
To recover the input signal a[n], a linear channel equalizer is applied to the channel output x[n]

as in Figure 2, whose objective is to achieve distortionless reception. That is, to find G[n] such that

Gln| * Hn] = é[n]ly, (8)
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or simply

G(2)H(z) = I, (9)
where I; is a d x d identity matrix and G[n] is the equalizer matriz defined as

guln] -+ giuln]

G= | S (10)
galn] -+ gamn]

and G(z) is the Z-transform of G[n]. Initially, we may take the filters in Figure 2 as being bounded-

input and bounded-output (BIBO) stable and potentially non-causal (double-infinite) so as to deal

with MIMO channels of non-causal inverse. In blind equalization, the original sequences a;[n] € A;

for i =1,---,d are unknown to the receivers except for their statistical properties over the known
alphabet sets A;. Usually, the signal constellations A; = Ay = -+ = Ay are symmetric such
that the statistics of the input signals a; for i« = 1,-.-,d reflects the same symmetry. Thus,

the recoverable signals from blind equalization will similarly subject to a phase ambiguity and a

permutation ambiguity. Therefore, the best possible result of blind MIMO equalizers would be
G(z)H(z) = PD(z), (11)
where P is a d X d permutation matrix and D(z) is a diagonal matrix defined as
D(z) = diag{e"1z™™,. .. 4,74}, (12)

where 6; € [—m, 7] and n; is an integer for i = 1,-- -, d. The equalizers with G(z) satisfying (11) are
called the distortionless reception equalizer for channel H(z). It is obvious that the distortionless
reception equalizer for a given MIMO channel is not necessarily unique.

Not all channels have a BIBO stable distortionless reception equalizer. A channel is said to satisfy
the distortionless reception condition if there exists a BIBO stable distortionless reception equalizer
for such channel. A single-input signal-output (SISO) channel satisfies distortionless reception
condition if and only if the Z-transform of the channel impulse response has no zero on the unit
circle. For MIMO channels, the following theorem gives a necessary and sufficient condition for the

existence of BIBO stable distortionless reception equalizers.
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Theorem 1: There exists a BIBO stable, linear, and distortionless reception equalizer for an

MIMO channel if and only if

det(H? (e*)H (™)) # 0, for all w € [~ 7). (13)

Proof: 1f det(HH (e?)H (e™)) # 0 for all w € [—m, ], then (HH (e?)H (e/))! exists and
G(e™) = (H(e”)H (™))" HY () (14)

is the Fourier transform of a BIBO stable equalizer satisfying (11).

Conversely, if there is a wy € [—m, 7] such that
det(HH (e?0) H(e?0)) = 0, (15)
then H(e?°) will not be of full-rank. If there is a G(e’) satisfying (11), then
PD(e’?) = G(e?°)H(e?) (16)

would be singular. This is a contradiction since PD(e’?) is nonsingular from its definition. There-
fore, the BIBO stable, linear, and distortionless equalizer D(e’) does not exist in this case.

|

From Theorem 1, a necessary condition for an MIMO channel to have distortionless reception

equalizer is M > d, that is, the number of channel outputs is no less than the number of channel

inputs. In what follows, we will always assume that the discussed MIMO channels satisfy the

distortionless reception condition.

III. CONVERGENCE OF THE CMA USED IN MIMQO CHANNELS

In this section, we will investigate the performance of the CMA equalizer used in MIMO channels.
The MIMO-CMA blind equalizer discussed in this section is illustrated in Figure 3. After each

channel output, a linear BIBO stable filter is used. The filter coefficients are adjusted to minimize

the Godard cost function [9], [24], [25]

Clylnl) = 3Bl - 1, (17)
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where r is the dispersion constant defined as

my
ma )

A. CMA Equalizer for MIMO Channels

From Figure 3, the channel output can be expressed as
d 00
y[n] = Z Z a;[n — k]s;[k], (19)
i=1k=—00
where s;[n] is the impulse response of the equalized system corresponding to the i-th input signal
related to hm;[n] and gm[n] by
M oo
si[n] = Z Z hmilklgm[n — K. (20)
m=1k=—o00
Using (19), the Godard cost function defined in (17) can be expressed as
1
C(yl[n]) = Z[—(2m§ —ma) Y lsin]|* +2m3 (3" Isiln]?)? — 2my Y |sin]® +mi/m3].  (21)
,n i,n i,n
If we denote

§ é ( o ,Sd[—l],sl[O], te )Sd[o]asl[l]a v ')a (22)

then the Godard cost function (21) is a functional of s, that has a similar form to that of SISO
channel [6], [14]. Hence, if the MIMO channel satisfies the distortionless reception condition, and
if the length of the equalizer in Figure 3 is double-infinite, following the Foschini’s arguments [6],

it can be easily shown that the only minimum points of the MIMO-CMA equalizer in Figure 3 are
|si[n]|2 = d[n — ng,i — 1], for some integers ny and i, (23)

where §[n, 1] is defined as

0 otherwise. (24)

5[n,z’]é { 1 fn=0andi=0,

This implies that the MIMO-CMA equalizer will converge to one of the input signal with only a
time-delay and phase ambiguity and suppress the rest of input signals.

Furthermore, the other convergence properties are also preserved. Before stating these properties,

we first give some relevant definitions.
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The attainable set S, for a given (finite or infinite) equalizer is defined as
M
Sa2{s:siln] =D Y hmiln — Klgm[k], Y, lgm[k]| < oo}. (25)
m=1 k k
In the above definition, the range of & relys on the length of the equalizer. It is obvious that S,
depends on the parameters of the channels.
The unique global minimum set cone S;p, is defined as
Sin = {8 : |si[n]| > |s;[k]| for all i # j or n # k and > " |sjlk]| < oo} (26)
3k
With the above definitions we can state the convergence properties of finite-length MIMO-CMA
equalizers as follows.
Theorem 2: Let S, be the attainable set of a given finite-length MIMO-CMA equalizer.
1. If the initial equalizer parameters setting are such that the initial equalized system impulse

response vector s™ € S, Sin and its output satisfies the kurtosis condition

kurt(yy)

Fartla) 00 (27)

then under a very small minimization step-size, the equalizer will cause s to converge to a
mintmum point inside S, () Sn. In the above expression,

K(z)

kurt(z) £ T
0:1:

(28)

where o2 is the variance of  and K(z) = E{|z|*} — 20% is the kurtosis of complez random
variable z satisfying E{z?} = 0.
2. Denoting E;, = {s : si[n] = e, ¢ € [-m, ] and s;[k] =0 if j # i or k # n}
(a) If B, C Sa\Sin, then there is only one minimum set E;, C So()Sin while there is no
minimum point on the boundary S; .
(b) If E;p is near Sq () Sin, then there must exist only one minimum set in Sq () S;n near E; 5,
while all other possible minima are near the boundary of S; .
Theorem 2 is basically the generalization of Theorem 6.2 and 6.2 in [14] for SISO channels, or
Theorem 3.2 in [15] for SIMO channels. Its proof is similar to that of Theorem 6.2 and 6.3 in [14],

therefore, it is omitted here.
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According to Theorem 2.1, if we want to use the MIMO-CMA equalizer to recover the i-th input
signal, and remove intersymbol interference (ISI) and co-channel interference, we need to select the
initial setting of the equalizer such that s Sin for some n and the initial channel output satisfies
the kurtosis condition.

Theorem 2.2 indicates the locations of the minima of the MIMO-CMA equalizers. Based on
this part of the theorem, the initialization strategy discussed in [6], [14] can also be used for the

MIMO-CMA blind equalizers.

B. CMA FIR equalizer for MIMO FIR Channels

In practice, most of the MIMO channels can be approximated as FIR MIMO channels. Without

lose of generality, we can assume
hmi[n] =0forn <0orn > L, (29)

fori=1,---,dand m =1,---, M, where L is the length of the MIMO FIR channel. The length of
the impulse response s;[n] of the equalized system is L + K — 1 if an MIMO-CMA FIR equalizer
with length K is used for the MIMO FIR channel. Let the parameters of the FIR equalizer be

gm[n]=0forn <0orn> K, (30)

for m = 1,---,M. The relationship between the equalizer parameters g,[n] and the impulse

response of the equalized system s;[n] can be expressed as

SL+Kk-1 = EKkHK, (31)

where
Sp+k-1= (51[0],+++,54[0), -+, s1[L+ K = 2],-+-, sq[L + K —2]), (32)
gx = (1[0],-+, gu[0], -+, g1 [K = 1], -+, gnr[K — 1)), (33)

and
H[L-1] H[L-2] ... H[) 0
N HIL-1 . . H[)

Hix = ) } (34)

0 H[L-1] . °-. H[0]
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The singularity of Hx plays a crucial role in the convergence of the MIMO-CMA FIR equalizer.
The relationship between the rank of the generalized Sylvester matrix Hx and the reducibility of
H(z) has been studied in multivariable control literature [2], [11]. Before stating the relationship,
we first give the definition of the irreducibility of a matrix polynomial.

A M x d (M > d) polynomial matrix H(z) is said to be irreducible [2], [11] if there is no d x d
polynomial matrix R(z) with non-constant det(R(2)), such that H(z) = H(z)R(z), where H(z) is
an M X d polynomial matrix.

Using the results in [2], [11], we can prove the following lemma (see Appendix A for details).

Lemma 1: Let H[L — 1] be of full column-rank, then Hy is of full column-rank for all K >
[%dﬁ , if and only if H(z) is irreducible.

With the above lemma, we are able to prove the following convergence theorem for the CMA
FIR equalizers used in MIMO FIR channels.

Theorem 3: For an MIMO FIR channel of length L, if H(z) is irreducible with H[L — 1] being of
full rank, then any MIMO-CMA FIR blind equalizer with length K > [%] can achieve global
convergence regardless of the its initial setting.

Proof: Since Hx is of full column-rank for all K > [%‘iﬁ] from Lemma, 1, therefore, Hg’H K

is invertible, and for any sp4x—1 € cal+K —1), there exists

8k = sp+k-1(HEHK) T "HE, (35)

such that s;1x_1 = gxHk. Hence, E;,’s for i = 1,---,d and n = 0,---, L+ K — 2 are in
attainable set S;. From Theorem 2.2.a, the only minimum set of the MIMO-CMA FIR equalizer
in S;, is E; . Since Sq()S;pn isempty fori=1,---,dandn <0orn > L+ K — 2, the CMA FIR
equalizer has no other (local) minimum. Therefore, regardless of the initial setting of the equalizer,
the equalizer will converge to one of the global minima of the equalizer. [ |

The above theorem illustrates a very nice convergence property of the MIMO-CMA FIR equalizer
used in MIMO channels. It indicates that the MIMO-CMA FIR equalizer can recover one of the
input signals, remove ISI, and suppress CCI and ACI if the channel satisfies the condition stated

in Lemma, 1.
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IV. A NEw BLIND EQUALIZATION ALGORITHM FOR MIMO CHANNELS

We have studied the convergence of the CMA blind equalizer used in MIMO channels in the
previous section and have shown that the output of the MIMO-CMA blind equalizer can recover
one of the input signals and suppress the interference from the rest of the input signals. In this
section, we will propose a new blind equalization algorithm, which can recover all input signals
simultaneously. Without lost of generality, we will assume d = 2 in this section. The algorithm

developed in this section can be easily extended to d > 2 case.

A. Algorithm Development

Consider the blind equalizer shown in Figure 2. If we adjust the equalizer parameters for each
individual channel to minimize the Godard cost function in (17), then according to the analysis of
Section III, the equalizer outputs y;[n| and ys[n| will be one of the input signals but we do not
know which of the input signals. Note that y;[n] and ya[n| are either the same as or different from
each other depending on the initial setting of the equalizer. Hence, to develop an algorithm that
can simultaneously recover all input signals, we may have to modify the Godard cost function.

The new cost function for the adaptive blind equalization of MIMO channels is given as follows:
Cuimo 2 C(yi[n]) + Cly2[nl) — coK (11, v2), (36)

where c, > ma/(2m% — my4), and K (y1,y2) is a functional of y;(k) and y2(k) for all k < n defined

as

-1
Ko 2 1Y Cumubnl,iln) soln + K] y3in + k)

k=—o0

1 3% Cumlynfn - K, 471 — K, vl 3D, a1)
k=0

with Cum(yi, ¥}, y2,v5) being the cumulant of random complex variables y1, y}, y2 and y3 defined

as
Cum ¥ )= F 2 2 F 2 E 21 E 112 38
(yl7y1’y2ay2) {|y1| |y2| } {|y1| } {|?J2| } | {y1y2}| ) ( )

for random variables y; satisfying

E{y;} =E{y}}=0fori=1, 2. (39)
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It is the last term in (36) that makes it possible for the equalizer to converge to distinct input
signals at each output of the equalizer.
Using the stochastic gradient method to search for minimum points of the new cost function, we

can implement the new algorithm as

gk = g k] — (s [0 = r)ysln] — cozjn)ai,ln — K, (40)

for j =1, 2and m = 1,-.-, M, where y is a small step-size, 95712 [k] is the k-th parameter of the

jm-th filter after the n-th iteration, and z;[n]’s are given by

o0

z1fn] =3 _(lyaln — UPyln] = E{lyzln — §*}yiln] — E{yi[nly3ln — U}yeln ~ 1), (41)
=0

z[n] = i(l@h [n = UPyaln] — E{lyrln — [1*}yaln] — E{yalnlyiln — Nyi[n - 1) (42)
=0

If the ensemble average in the above expressions is substituted by empirical average as in [21], the

resulting algorithm can be expressed as

g5mlk] = gl VK] — u((lysn]l2 — rysln] — cozsin)zmln — K, (43)
zln) = i(lyz[n —JPyln]- < lyoln — 12 >n aln)— < mlnlysln — 1) >nseln - 1),  (44)
wonl = 3 (ol — APyl < [ — 0 >n valn]— < almlyifn— 1] Sngfn— 1)), (45)
where =
<lyaln = U* >n= (1= €) < lyaln — 1 =[] >p_y +elyafn — 1]2, (46)
<lprfn = U >p=(1=€) < [yaln — 1= Y2 >p_1 +elysfn — 1], (47)
<yl -1 >n=(1—¢) <plp—1gsln = 1= 1) >n1 +emfnlsln—1),  (48)
and
<yanlyiln — ] >p= (1 =€) <yo[n —1Jyi[n — 1 =] >n_1 +eya[n]yi[n —1]. (49)

with € being the forgetting factor.
Remark: We have developed MIMO adaptive blind equalization algorithm for d = 2. For d > 2
case, the cost function Cusraro can be extended to

d d
Cumimo = Clyiln)) —co Y, K(uiy;)- (50)

i=1 ij=1 i#j



LI AND LIU: ADAPTIVE BLIND MULTI-CHANNEL EQUALIZATION FOR ---

12

The global convergence and local convergence properties discussed below can be similarly general-

ized to this case.

B. Global Convergence

We will prove the global convergence of the new algorithm here. Let

M
sij[n] = Z gim[n] * hmi[n]
m=1

then the channel output can be written as

yilnl = > i aill]sij[n — 1],

=12 l=—-00

for j = 1,2. According to the definition in (37), we have

Cum(y1[n], y1[n], y2[n + k|, y5[n + &])

2 2
= Cum(} D ailllsaln—1,>_ Y af[l)shn—1],
i=1 1 =1 [
2
Z Zai[l]siz[n + k-1, Z Zaf[l]sfg[n + k1)
=1 1 i=1 |

2
Z Z sip1[n — l]si1[n — la]sizan + k — I3]s] a[n + Kk — 1]

11,82,3,84=111,l2,l3,l4

Cum(a; 1], a3, [I2], ai5[I3], af, [14]).-

Since we have assumed a;[n]’s are independent for different ¢ or n, then

Cum(ai, [l1], a3, [l2]; aiy (3], 0, [14])
_ my—2mi foriy=ip=ig=igsandly =l =I5 =y,
a 0 otherwise.

Therefore,

Cum(yr[n), yi[n], y2[n + k), y3[n + &) = (mq —2m3) 3 i |sir[n]|?|sizln + K]

1=1,2n=-—00

From (55), (37) can be expressed as

K(ys,u) = 50ma—2m3) 3 T[ (Clsg k).

i=1,2j=1,2 &

(51)

(52)

(53)

(55)

(56)
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Substituting (56) and (21) into (36), we obtain
1
Cuimo = 7 D [-(2m5—ma) Z |siglnl[* +2m3 (D Isi[n]*)? — 2ma Y [sijln]|’]

1 1
+3¢02md = me) 3 T] (X lsslnl) + 5md/md (57)
i=1,25j=12 n
Using (57), we are able to find the minima of Cpraro according to the following lemma which is

proved in Appendix B.

Lemma 2: Let

1

fti,t12, 801, 822) = Z[_(ng —ma) () + 3y + 13, +13,)
+2m3[(t11 + t21)? + (t12 + t22)?)
2¢0(2m3 — ma)(t11tiz + tartas)

—=2my(t11 + t1o + to1 + t22) + 2m4/m§]. (58)
For any co > mya/(2m3 — my), the only minima of f(t11,t12,ta1,22) on [0, +00)* are

(t11,t12,t21,t22) = (1,0,0,1) and (t11,t12,t21,%22) = (0,1,1,0). (59)

The global convergence of the new blind equalization algorithm is indicated by the following
theorem.

Theorem 4: The MIMO blind equalizer using the cost function defined in (36) will converge to
one of its global minimum regarless of its initial setting, if the equalizer length and the channel
parameters satisfy one of the following two conditions:

1. The MIMO channel satisfies distortionless reception condition and an infinite-length MIMO

equalizer is used, or

2. H(z), the Z-transform of the impulse response of the MIMO channel of length L, is an ir-

reducible polynomial matriz with H[L — 1] being nonsingular, and the length of the equalizer
K > &)
Proof: 1. Assuming that the MIMO channel satisfies distortionless reception condition and a

double infinite-length MIMO equalizer is used.
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Define a 2 x 2 impulse response matrix sequence S[n] of the equalized system as

_ [ suln] saln]
S[n] = ( si;[n] Sz;[n] ) (60)

According to the assumption, for any 2 x 2 matrix sequence {S[n]} € £}(C2*?), there is an MIMO

equalizer sequence {G[n]} € £(C**M), such that
S[n] = G[n] x H[n]. (61)

Hence, the blind equalizer using the new algorithm will converge to some minimum of the functional
Cumimo on £H(C?%?),

If s19[n], s21[n], and saa[n| for all n are fixed, then the necessary condition for Cpsrpo to attain
its minima is

OCMmImMO 0

vy 62
85]_]_[”] b ( )
for i, j =1, 2, where § denotes the complex-conjugate of s. Since
OCmImO _ 2 2 2 2
o1 = suln][—(2m3 — ma)lsu1[n]|* + 2miti + co(2my — ma)tia — my, (63)
lel[n]
the possible stationary points of Cararo are
co(2mi—my)tia—ma . I
jsufnll? = { mIM=Gi-mg E1ED (64
0 otherwise,
where I is some set containing M integers and
t11 = Z |811[k‘]|2, and t12 = Z |812[k‘]|2. (65)
k k

Indeed, following Foschini’s [6] arguments, s11[n] in (64) is not the minimum if M > 2. Hence, the

possible minima of the new cost function Crraro satisfy
|311[n]|2 = t115[n — n11] (66)

where 17 is some non-negative real number, and n1; is an integer. Using the similar arguments as

given in the above, we can obtain that the necessary condition for Cprmo to attain its minima is

|sig[n]|* = ti;6n — ng) (67)
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for i = 1, 2, where t;; for 4, j = 1, 2 are some non-negative real number, and n;; for ¢, j =1, 2

are some integers.
Substituting (67) into (57) and applying Lemma 2, we obtain the only possible minima of the

new cost function Cprrpmo. They are

|s11[n — n1]|? = [sza[n — nae)l® = d[n, |swafn]|* = |sa1[n]* = 0
s = [szaln]|* = 0, |s12[r — ma2]® = [sa1[n — naa]|? = d[n] (68)
for some integers nii, ni2, n21, and ngg.

When s;;[n] satisfies one of the conditions in (68), C(y1[n]) and C(y2[n]) attain their global
minima simultaneously. At the same time, —c, K (y1,y2) = 0, this implies that it attains minimum.
Therefore, s;j[n]’s in (68) are the only global minima of the new cost function Cprmo. Hence, the
MIMO equalizer will converge to one of the global minima regardless of its initial setting.

2. Assuming that H(z), the Z-transform of the impulse response of the MIMO channel with length
L, is an irreducible polynomial matrix with H[L — 1] being nonsingular, and the length of the
equalizer K > [%1.

Define the MIMO equalizer matrix as
Gx = (G0), Gl1],---, G[K —1]) (69)
and the MIMO equalized system matrix as
Spix_12(S[0], S[],---, S[L+ K —2)). (70)
Then

St+k-1=GkHk. (71)

According to Lemma 1, Hg for K > [%1 is of full column rank. Hence, for any Sp+x-1 €
C2¥2(L+K-1) the MIMO equalizer matrix Gx = Sp+x—1(HEH) 1 HE satisfies (71). Using similar
arguments to the proof of the first part, we obaitn that the minima of the cost function Cpyrmo

on C2X2L+K-1) gre

|s11[n — n11]]? = |sa2[n — na2]|? = 8[n], [s12[n}|Z = [sa1[n]]* =0 (72)

[s11[n][2 = |s22[n]|? = 0, |s12[n — n12]|* = |sa1[n — nai]|? = §[n]
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for 0 <n;; < L+ K —1 and they are all global minima. Hence, the MIMO equalizer will converge
to one of the global minima regardless of its initial condition.

|

From Theorem 4, the new algorithm is able to recover all input signals simultaneously. Further-

more, the MIMO FIR channel satisfying certain condition can be perfectly equalized by MIMO

FIR equalizers employing the new algorithm.

C. Local Convergence

Similar to the blind equalizers for SISO channels, the new MIMO blind equalizer algorithm also
suffers from the local convergence if the MIMO equalizers or channels under consideration does not
satisfy the conditions in Theorem 4. As an example to illustrate such a problem, let us consider an

AR MIMO channel with d = M = 2 and the transfer functions

1

hn(z) = hzz(z) = m

L 0< o] < % and hia(2) = hay () = 0. (73)

It is easy to check that H(z) satisfies the distortionless reception condition using Theorem 1. If an

MIMO FIR equalizer with length K = 2 is used to equalize this MIMO channel, then

G(z)=(1“§z_l ° 1) (74)

1—o0z"
can perfectly equalize this AR MIMO channel. However, as discussed in [14], there is a vy # 0 such
that
gu[n] = g2a[n] = ¥é[n — 1, giz[n] = gm[n] =0 (75)
is a local minimum of both C(y;[n]) and C(yz[n]). Since —c,K (y1,y2) = 0 in this case, it is a global

minimum of —c,K (y1,y2). Therefore, the g;;[n] in (75) is a local minimum of Cyrar0-

V. COMPUTER SIMULATIONS

In order to confirm the analysis results and illustrate the effectiveness of the proposed algorithm,
we present two computer simulation examples.

In our simulations, the input signals a;[n] are independent of each other for any different i nad
n, and they are uniformly distributed over {+1, +3}. The channel noise is complex white Gaussian

with zero mean and variance determined by the signal-to-noise ratio (SN R).
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A. Convergence of the MIMO-CMA blind equalizer

In this simulation example, we have d = 2 and M = 3. The channel impulse response is given by

-1.9522 —0.5706 1.0691 —1.8841
H[0]= | —0.5666 0.4246 | and H[1]=| —0.7926 0.0598 (76)
—1.1293  0.7666 0.3569 —0.2744

and SNR = 30dB.

An MIMO-CMA FIR equalizer is used for the MIMO FIR channel. The length of the equalizer
is K = 3 with initial setting gn,[n] = d[m — 1,n — 1] and the step-size x = 0.0005. Figure 4 is the
impulse responses of the equalized system after 10,000 iterations. From this figure, the MIMO-
CMA FIR equalizer is able to recover the second input signal, remove the ISI and suppress the
first signal. Figure 5 illustrates the changing of IT during iterations. The IT here is an index of

measurement for intersymbol interference and co-channel interference defined as

IT:EMMWW—mM@WWW. )
max; , |s;[n]|

The simulation results in these two figures confirm Theorem 3.

B. Convergence of the new MIMO blind equalizer

In this simulation example, we choose d = 2 and M = 4. The channel impulse responses are
shown in Figure 6 and SNR = 30dB.

The length of the equalizer used in our simulation is 20 with initial setting g11[n] = goo[n] =
8[n — 10]. The step-size is 4 = 0.0001 and the forgetting factor is given by € = 0.01.

Figure 7 is the impulse response s;;[n] of the equalized system after 20,000 iterations. In Figure 8,
1,000 channel outbuts and 1,000 equalizer outputs are shown. Figure 9 illustrates the intersymbol

and co-channel interference of the equalizer outputs, which is defined as

Yin |8:i5[n)|? — max; , [s45[n]]?
max; n |8i;[n]|?

IT; = (78)

According to Figure 7, the two input signals are separated. The first equalizer recovers the first
signal and the second recovers the second signal. From the simulation results, our new blind
equalization algorithm can simultaneously reconstruct the input signals and remove intersymbol

and co-channel interference effectively.
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VI. CONCLUSIONS

This paper investigated the blind equalization of MIMO channels for multiple signals separation.
We studied the convergence of the CMA blind equalizer used in MIMO channels. We demon-
strated that the CMA blind equalizer is able to recover one of input signals and suppress the rest
of input signals. Hence, by proper initialization, the CMA blind equalizer can be used in mobile
communication systems to recover the desire signal, remove intersymbol interference, and suppress
co-channel interference and adjacent channel interference. To recover all input signals simultane-
ously, we proposed a new blind equalization algorithm to separate all the input signals and at the
same time equalize the MIMO channel. The global convergence of the new algorithm is illustrated
theoretically and by computer simulation. The proposed algorithm not only can be applied in
multiple signals separation in array processing, but also can be used in diverse fields of engineering
including speech processing, data communication, sonar array processing, and in the analysis of

biological systems.

APPENDIX A: PROOF OF LEMMA 1

Since H[L — 1] is of full-rank, it has a full-rank d X d minor. Without lose of generality, we
assume that C[L — 1] = (hij[L — 1])¢,_; is a full-rank mimor. Then there is a matrix E, of which

all elements are complex-value constants, with det(E) = 1, such that C[L — 1]E is upper triangular

with non-zero diagonal elements. Let C[n] = (h;; [n])gi’j:1 forn=1,---, L -2, and
L-1
C(z) = Cln]z™", (A.1)
n=0
then

det(C(z)) = det(C(z)E)det(E™1)

= det(C(2)E). (A.2)

Let
p11(2) -+ pra(z)
C(2)E = , (A.3)
pai(z) -+ paa(?)
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then
<L-1 ifi>y,
py(:) =L-1 ifi=} (A4)
<L-2 ifi<y,

where 9(p;j(z)) denotes the degree of polynomial p;;(z). Hence, the degree of det(C(z)) is

8(det(C(2))) = (L - 1)d. (A.5)

Then from Corollary 1 of [2], H(z) is irreducible if and only if for K > [%1,

rank(Hg) Kd + 0(det(C(z)))
= (K+L-1)d, (A.6)
which means that Hg for K > [%] is of full-rank.

APPENDIX B: PROOF OF LEMMA 2

Direct calculation yields

N 2m3 c,,(2m% — my) 0
1 2m2 m 0 co(2m3 — my)
2p _ 2 4 0 2 4
Vif= 2| co(2md —my) 0 my 2m3 (B.1)
0 co(2m3 — my) 2m3 my

Since V2 £ (t11, %12, ta1, t22) is not positive-definite, f(t11,t12, 21, t22) has no minimum inside [0, 4+00)2.
Therefore, its possible minima must be on the boundary of [0, +00)%.

Without lose of generality, assume t32 = 0 and let fi(t11,%12,%21) = f(t11,%12,%21,0). The
minimum of fi(t11,%12,%21) is (f11,t12,t21) = (0,1,1) when ¢, > my4/(2m3 — my4). Therefore,
(t11,%12,t21,t22) = (0,1,1,0) may be a minimum of f(t11,t12,21,%22) on [0, +00)%. Indeed it is a
minimum of f(t11, 12,21, t22) since for any €)1, €12, €21, €22 With €17, €12 > 0 and €2 + €25 + €31 + €3,
being small enough,

flei, 1+ €12,1 + €1, €22) > £(0,1,1,0). (B.2)

Because of the symmetricity of f(¢11,%12,t21,%22), (11, t12, t21,t22) = (1,0,0,1) is another minimum

of f(t11,t12,to1,t22).
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Fig. 2. Adaptive blind multiple-channel equalizer.
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Fig. 3. The MIMO-CMA blind equalizer.
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Fig. 4. The impulse response of the equalized system after 10,000 iterations.
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Fig. 5. Convergence of the MIMO-CMA blind equalizer
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Fig. 6. The impulse response of the MIMO FIR channel
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Fig. 7. The impulse response of the equalized system after 20,000 iterations
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Fig. 8. 1000 inputs z1[n], z2[n], z3[n] and z4[n] and outputs y[n], y2(n] of the new MIMO blind equalizer
after 20,000 iterations.
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Fig. 9. Convergence of the new algorithm for the MIMO channel
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