
18

Figure 9: Heat flux results at for the parallel code (grid)

Figure 10: Surface pressure at for the parallel code

0.000 0.025 0.050 0.075 0.100
0

500

1000

1500

2000

2500

3000

q
w
, W

/m
2

Distance along plate, m

Present study

0.000 0.025 0.050 0.075 0.100
0

500

1000

1500

2000

2500

3000

q
w
, W

/m
2

CNRS DSMC
Experiment

z 0= 52 96 26××

0.000 0.025 0.050 0.075 0.100
0

1

2

3

4

5

6

7

8

9

10

Distance along plate, m

Experiment

Present study

p
w
, P

a

z 0=

17

Figure 7: Speedup results: Effect of remapping method (chain partitioner)

Figure 8: Scalability results: Effect of partition method

10 20 30 40 50 60

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

Static

Fixed

SAR

Perfect

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

Number of processors

S
ca

le
u

p

RCB

RIB

Chain

Perfect

16

Figure 5: Speedup results: Effect of partition method

Figure 6: Speedup results: Effect of remapping method (RIB)

10 20 30 40 50 60

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

RCB

RIB

Chain

Perfect

10 20 30 40 50 60

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

Static

Fixed

SAR

Perfect

15

Figure 3: Domain decomposition with RIB

Figure 4: Domain decomposition with the chain partitioner

14

Figures

Figure 1: CNRS flat-plate geometry

Figure 2: Domain decomposition with RCB

Dimensions in millimeters

5.0

100 100

Front Side

Top

13

Table 3. CNRS case performance results.

Partition/Remap
interval

Execution time
(seconds)

Degree of load
imbalance

Computational
efficiency

(µsec/particle/
timestep)

Chain/SAR 1152 1.044 1.65

Chain/Fixed

(75 timesteps)

1094 1.023 1.68

Chain/Fixed

(50 timesteps)

1143 1.025 1.70

Chain/Fixed

(25 timesteps)

1282 1.048 1.87

RIB/SAR 1261 1.089 1.81

Table 4. Runtime profiling data for CNRS case (SAR policy).

Routine % CPU (8 nodes) % CPU (16 nodes) % CPU (32 nodes)

Movement 39.0 38.1 35.8

Indexing 9.5 9.1 7.9

Collision 10.6 10.9 10.8

Sampling 3.2 3.1 2.7

Math operations 11.0 11.6 11.9

Parallel/system
operations

24.0 25.1 28.7

12

Tables

Table 1. CNRS test conditions.

Property Value

20

14 K

Re 8380

10 bars

1100 K

290 K

Table 2. Runtime profiling data for test case (fixed-interval remapping).

Routine % CPU (8 nodes) % CPU (16 nodes) % CPU (32 nodes)

Movement 27.0 24.1 16.6

Indexing 5.9 5.4 3.4

Collision 12.8 11.0 7.9

Sampling 2.0 1.9 1.4

Math operations 16.7 14.1 10.7

Parallel/system
operations

30.9 37.8 51.7

M∞

T∞

p0

T0

Tw

11

[13]Rault, D. F. G., “Efficient Three-Dimensional Direct Simulation Monte Carlo Code for
Complex Geometry Problems,”Rarefied Gas Dynamics: Theory and Simulations, Shizgal, B.
D. and Weaver, D. P., editors;Progress in Astronautics and Aeronautics, Vol. 159, 1994, pp.
137-154.

[14]Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon
Press, Oxford, 1994.

[15]Borgnakke, C., and Larsen, P. S., “Statistical Collision Model for Monte Carlo Simulation of
Polyatomic Gas Mixtures,”Journal of Computational Physics, Vol. 18, No. 3, 1975, pp. 405-
420.

[16]Das, R., and Saltz, J., “Parallelizing Molecular Dynamics Codes Using the Parti Software,”
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing,
SIAM, 1993, pp. 187-192.

[17]Saltz, J., Mirchandaney, R., and Crowley, K., “Run-Time Parallelization and Scheduling of
Loops,” IEEE Transactions on Computers, Vol. 40, No. 5, May 1991, pp. 603-612.

[18]Saltz, J., Berryman, H., and Wu, J., “Multiprocessors and Run-Time Compilation,”
Concurrency: Practice and Experience, Vol. 3, No. 6, December 1991, pp. 573-592.

[19]Hwang, Y. S., Moon, B., Sharma, S., Ponnusamy, R., Das, R., and Saltz, J., “Runtime and
Language Support for Compiling Adaptive Irregular Programs on Distributed Memory
Machines,”Software Practice and Experience, to appear.

[20]Moon, B., Uysal, M., and Saltz, J., “Index Translation Schemes for Adaptive Computations
on Distributed Memory Multicomputers,”Proceedings of the Ninth International Parallel
Processing Symposium, IEEE Computer Society Press, Santa Barbara, CA, April 1995 (to be
published).

[21]Berger, M. J., and Bokhari, S. H., “A Partitioning Strategy for Nonuniform Problems on
Multiprocessors,”IEEE Transactions on Computers, Vol. 36, No. 5, May 1987, pp. 570-580.

[22]Nour-Omid, B., Raefsky, A., and Lyzenga, G., “Solving Finite Element Equations on
Concurrent Computers,”Parallel Computations and their Impact on Mechanics, ASME,
New York, 1987, pp. 209-227.

[23]Moon, B., and Saltz, J., “Adaptive Runtime Support for Direct Simulation Monte Carlo
Methods on Distributed Memory Architectures,”Proceedings of the Scalable High
Performance Computing Conference (SHPCC94), IEEE Computer Society Press, Knoxville,
TN, May 1994, pp. 357-364.

[24]Nicol, D. M. and Saltz, J., “Dynamic Remapping of Parallel Computations with Varying
Resource Demands,”IEEE Transactions on Computers, Vol. 37, No.9, September 1988,
pp.1073-1087.

[25]Barnett, M., Gupta, S., Payne, D., Shuler, L., van de Geijn, R., and Watts, J., “Interprocessor
Collective Communication Library (InterCom),”Proceedings of the Scalable High
Performance Computing Conference (SHPCC94), IEEE Computer Society Press, Knoxville,
TN, May 1994, pp. 357-364.

10

important to know something about the flow under consideration before deciding what set of
parallel-execution parameters to employ.

Acknowledgments

The authors would like to thank the Information Systems Division at NASA Langley Research
Center for Intel Paragon access and technical support.

References

[1] Bird, G.A., “Monte Carlo Simulation in an Engineering Context,”Progress in Astronautics
and Aeronautics: Rarefied Gas Dynamics, Vol. 74, Pt. 1, AIAA, New York, 1981, pp. 239-
255.

[2] Rault, D. F. G., “Aerodynamics of Shuttle Orbiter at High Altitudes,” AIAA Paper 93-2815,
July 1993.

[3] Woronowicz, M. S. and Rault, D. F. G., “On Predicting Contamination Levels of HALOE
Optics aboard UARS Using Direct Simulation Monte Carlo,” AIAA Paper 93-2869, July
1993.

[4] Taylor, J. C., Carlson, A. B., and Hassan, H. A., “Monte Carlo Simulation of Radiating
Reentry Flows,”Journal of Thermophysics and Heat Transfer, Vol. 9, No. 3, 1994, pp. 478-
485.

[5] Wilmoth, R. G., “Adaptive Domain Decomposition for Monte Carlo Simulations on Parallel
Processors,”Proceedings of the 17th International Symposium on Rarefied Gas Dynamics,
VCH Publishers, New York, 1991, pp. 709-716.

[6] McDonald, J. and Dagum, L., “A Comparison of Particle Simulation Implementations on
Two Different Parallel Architectures,”Proceedings of the Sixth Distributed Memory
Computing Conference, IEEE Computer Society Press, Knoxville, TN, 1991, pp. 413-419.

[7] Fallavollita, M. A., McDonald, J., and Baganoff, D., “Parallel Implementation of a Particle
Simulation for Modeling Rarefied Gas Dynamic Flow,”Computing Systems in Engineering,
Vol. 3, No. 1-4, 1992, pp. 283-289.

[8] Bartel, T. J. and Plimpton, S. J., “DSMC Simulation of Rarefied Gas Dynamics on a Large
Hypercube Supercomputer,” AIAA Paper 92-2860, June 1992.

[9] Boyd, I. and Dietrich, S., “A Scalar Optimized Parallel Implementation of the DSMC
Method,” AIAA Paper 94-0355, January 1994.

[10]Long, L. N., Wong, B. C., and Myczkowskifl, J., “Deterministic and Nondeterministic
Algorithms for Rarefied Gas Dynamics,”Rarefied Gas Dynamics: Theory and Simulations,
Shizgal, B. D. and Weaver, D. P., editors;Progress in Astronautics and Aeronautics, Vol. 159,
1994, pp. 361-370.

[11] Allegre, J., Raffin, M., Chpoun, A., and Gottesdiener, L., “Rarefied Hypersonic Flow over a
Flat Plate with Truncated Leading Edge,”Rarefied Gas Dynamics: Space Science and
Engineering, Shizgal, B. D. and Weaver, D. P., editors;Progress in Astronautics and
Aeronautics, Vol. 160, 1994, pp. 285-295.

[12]Hash, D. B., Moss, J. N., and Hassan, H. A., “Direct Simulation of Diatomic Gases Using the
Generalized Hard Sphere Model,”Journal of Thermophysics and Heat Transfer, Vol. 6, No.
4, 1994, pp. 758-761.

9

consist of a diaphragm separating two cavities—one connected to the pressure orifice, the other
connected to a known reference vacuum—and an electrical current is passed through the
diaphragm. The pressure differential causes a displacement of the diaphragm, and a
corresponding change in the voltage across the diaphragm. This voltage change may be converted
into a pressure measurement. However, one possible source of error lies in the fact that there is a
finite length of piping connecting the orifice to the diaphragm; this piping could induce frictional
losses in the flow between orifice and diaphragm, resulting in a lower measured pressure. From
this standpoint, one might expect the calculated surface pressures to be greater than the measured
surface pressures, which is the trend seen in Figure 10. A second possibility is that the flow had
not reached steady state at the time the measurements were taken. If this was the case, the
accuracy of the pressure measurements would certainly have been affected adversely.

It should be reiterated that the problem considered here required very simple flow physics;
moreover, the geometry itself was quite simple. One may ask whether the present method could
be readily expanded to more comprehensive flow physics and more complex surface geometries.
As far as the latter is concerned, inclusion of other physical phenomena should be relatively
straightforward. In DSMC, any physical process such as dissociation or ionization requires a
collision between simulated particles, and the collision coding used herein is virtually unchanged
from the scalar algorithm. The main difference would be that new arrays would be necessary to
keep track of the additional particle information (such as vibrational energy state), and these
arrays would have to be distributed in the same fashion as other data arrays. In order to
incorporate more general geometries into the code capability, a nonuniform grid would most
likely be necessary. Such a grid would necessarily complicate the movement and indexing phases
of the method, and these added difficulties would translate into further difficulties with respect to
parallelization. However, these problems can most likely be overcome, and will be part of the
focus of further work.

An additional note regarding use of the parallel code on more complex configurations is in
order. As mentioned before, the best choice of partitioning strategy is problem-dependent, and
methods which worked well for the simple geometries considered herein may produce poor
performance for other geometries. For instance, the chain partitioner discussed herein was quite
useful for both the test case and the CNRS case. However, it may not be as useful in flows where
a large percentage of the particles move in a direction other than the freestream flow direction,
such as blunt-body wake flows. In any case, one should evaluate the available domain-
decomposition options for a new problem prior to attempting a full-blown simulation of the
problem.

6 Conclusions

The parallel implementation of the DSMC method presented here was successful in producing
results which compared well with scalar DSMC results for the simple test case. Through use of
the parallel code, it was possible to increase grid resolution and still obtain solutions for the
CNRS comparison case in a reasonable amount of time. However, the increase in grid resolution
did not improve the agreement between the experimental and computed results for the surface
properties.

Performance results for the test case and the CNRS case indicate that the best partitioning
and remapping policies are problem dependent; some of the load-balancing strategies which
produced acceptable performance for the test case worked poorly for the CNRS case. Thus, it is

8

viewed as a qualitative measure of the scalability of the algorithm. In this respect, the present
method does demonstrate very good scalability.

Having examined the overall performance characteristics of the code, let us now look at how
the computational work is divided among the component subroutines. Table 2 lists such
breakdowns for the test case, obtained using a remapping interval of 20 timesteps and the

 grid. (Note that routines consuming less than 0.5% of the total CPU time are not
included in this table; therefore, the column sums do not equal 100%.) As the number of nodes is
increased, it is apparent that the relative amount of simulation-related work (movement, collision,
etc.) decreases, and the time spent in parallel-related operations (such as message-passing and
wasted time due to synchronization) goes up. This behavior is not desirable, since we would
expect the algorithm to be dominated by parallel operations for larger numbers of nodes; these
trends could be a result of the relatively small problem size, or could be a sign that the fixed-
interval remapping policy used here is not an optimal one.

5.2 CNRS Comparison Results

Prior to conducting a grid resolution study using the parallel code, it was desired to determine
which code setup would be best for the CNRS problem. Therefore, an abbreviated set of perfor-
mance-evaluation runs was conducted using a moderately dense () grid and about
697,000 molecules on average. The results of these tests are shown in Table 3; in each case, the
code was run 1000 steady-state timesteps on 32 nodes. We can see that the combination of the
chain partitioner and SAR remapping produces an overall compute time and load imbalance com-
parable to the best fixed-interval results obtained, but less computational effort per particle. (The
load imbalance is defined as the ratio of the compute time required for the bottleneck processor to
the average compute time for all the nodes.) This seemingly contradictory behavior may be attrib-
uted to the fact that a larger average number of particles was present in the first case than in the
fixed-interval cases.

Let us further examine the application of the SAR policy to a full-scale case through the
profile data shown in Table 4. In contrast to the results shown in Table 2 for the test case, we see
that the amount of time spent in each type of operation remains fairly constant. This trend
indicates that the scalability for this choice of problem size and remap policy is significantly
improved over that for the test case. In light of the results shown in Tables 3 and 4, chain
partitioning and SAR were used for the grid-refinement study.

In order to find a grid-independent solution, the parallel code was next used to obtain results
for successively finer grids; the results for the final grid are shown in Figure 9. This case utilized a

 grid and approximately 1.4 million simulated molecules. It may be seen that the
parallel DSMC results for the heat flux are nearly identical to the previous DSMC results. As
stated earlier, it was thought that increases in grid resolution might lead to a reconciliation of the
DSMC results and experimental data. However, as Figure 8 demonstrates, the difference between
the computed and experimental results is still quite large, and the reason for this disparity remains
a mystery.

We may also compare the surface pressure results, as shown in Figure 10. In this case, the
computed results do not even follow the same trend as the experimental results. While the reason
for the discrepancy is unclear, one possible explanation follows.

As described in Reference 11, the experimental wall-pressure measurements were made
using 1-mm-diameter orifices connected to external pressure transducers. These transducers

48 16 2××

52 48 26××

52 96 26××

7

particles migrate between nodes. This migration is more frequent for a given problem when it is
run on a larger number of processors, since the size of each subdomain is decreased. Therefore,
we would expect that, as the number of processors is increased, the communication overhead
would similarly increase, thereby reducing the relative benefit of increasing the number of
processors, and speedup alone should not be used to judge the worth of a parallel algorithm.
However, speedup results are still useful for detecting differences in performance, as Figure 5
demonstrates.

Another statement which may be made about the poor speedup data is that the speedup may
be increased by reducing the communication overhead. Such a reduction may be realized by
faster global operations (such as global sums and comparisons). Some performance studies have
shown that the performance of the standard global operations supported by the current Paragon
operating system suffers significantly for large arrays, and that the use of other communications
libraries, such as the InterCom library [25], could yield a considerable increase in performance.
This issue shall be addressed further in future work.

In Figure 6, we examine the performance of various remapping policies on a simulation
partitioned using recursive inertial bisection. These results show that SAR performs better than
the fixed-interval remapping, but also that, for this particular problem, the static partition (no
remapping) actually offers the best performance for large numbers of nodes. This same
phenomenon may be observed in Figure 7 also, and may be explained as follows. For these
speedup tests, the problem considered is relatively small; for large numbers of nodes, the amount
of time required to remap the domain is of the order of the time spent in computation between
remaps. Thus, the cost ofany remapping actually exceeds the cost incurred by load imbalance for
large numbers of processors. Figures 6 and 7 also show that the fixed-interval remapping and
SAR offer comparable speedup performance for the test case.

We may also examine the scalability of a parallel algorithm. To do so, we increase the
problem size as the number of processors is increased, and compute scaleup in a manner similar
to that for speedup:

(3)

where is the amount of time for the scalar code to run on one processor, and is the amount
of time to run onp processors, where the problem size is greater than the original problem size by
the factorp. Note that a scaleup value of unity indicates perfect problem scalability.

Figure 8 shows scaleup performance for the different partitioning methods and a fixed
remapping interval. To obtain these results, the scalar code was first run using the geometry and
conditions described above and a grid. Each time the number of processors was
doubled, the resolution in they direction was doubled as well. Since the number of particles per
cell was held constant each time the resolution was doubled, the number of simulated particles
was also approximately increased by a factor of two. The scaleup results show that each of the
three partitioning methods offers good scalability. In each case, the scaleup decreases slightly as
the number of processors is increased (for large numbers of processors), but the curve is relatively
flat. Note also that some of the scaleup values exceed unity. This unusual characteristic may be
explained by the fact that simply doubling the resolution in a particular direction will not
precisely double the problem size. Since DSMC is not a deterministic method, it is very difficult
to regulate the problem size with great precision. Therefore, the results in Figure 8 should be

Scaleup
t1
τp
-----=

t1 τp

48 8 2××

6

In the above,n is the number of time steps since the last remapping (which occurred in the
step just before step “1”), is the maximum amount of time required by any one processor
during thejth time step (and thus the amount of time required to complete thejth time step),

 is the average time required by a processor to complete thejth time step, andC is the
amount of time required to complete the remapping operation. This quantity is monitored during
the computation, and represents the average processor idle time per step achieved by remapping
immediately. Repartitioning is performed after the first value ofn such that —
that is, when the first local minimum is detected. The function initially tends to decrease as
n increases, because the remapping costC is amortized over an increasing number of time steps.
However, asn increases, the summation term in Equation (1) will eventually increase as well,
indicating a loss of workload balance and a need to remap. This remapping method is
advantageous in that no prior knowledge of the problem is necessary for the determination of the
remapping interval, and the remapping interval can be expected to adapt to the dynamics of the
problem.

An additional note about remapping is in order here. The DSMC algorithm under discussion
was developed for steady flows; therefore, we expect to observe a transient phase leading to a
steady state, after which the flowfield is sampled for a large number of time steps in order to
remove scatter from the results. If we are indeed at a steady state, it would make sense to retain
the steady-state mapping for the remainder of the calculation. However, for the cases considered
herein, remapping was performed for the entire duration of the simulation.

These procedures were incorporated into the modified DSMC3 code of Bird and ported to the
72-node Intel Paragon recently brought on line at NASA Langley Research Center. The results
presented herein were obtained using up to 64 nodes on this machine.

5 Results and Discussion

5.1 Parallel Performance Results

It was desired to evaluate the effect of different partitioning methods and remapping policies on
the performance of the parallel algorithm. There are two frequently used criteria for making such
an evaluation—speedup and scaleup—and both are examined here. Figures 5 through 7 show
speedup results for the method applied to the flow over a zero-thickness flat plate at the CNRS test
conditions, using a grid. The speedup is defined for a particular problem as:

(2)

where is the time for the problem to be completed using the scalar code and is the time for
thesame problem to run onp processors. These results are useful in delineating performance dif-
ferences between the possible setups.

Figure 5 shows the speedup results for a fixed remapping interval and different partitioning
methods. This plot shows that the chain partitioner yields slightly better speedup than the other
partitioners. Note further that all three methods exhibit considerably less-than-ideal speedup.
While this observation appears to indicate poor performance, it should be noted that perfect
speedup should only be expected in perfectly parallel problems. While the degree of data
independence in DSMC is quite high, interprocessor communications are still required when

tmax j()

tavg j()

W n() W n 1–()>
W n()

48 16 2××

Speedup
t1
tp
----=

t1 tp

5

As discussed earlier, DSMC is a highly dynamic method; that is, the molecules simulated by
the code are not uniformly distributed, and the distribution varies considerably as the simulation
progresses. To help maintain an acceptable load balance, CHAOS also supports several methods
for repartitioning the domain. The basic premise of any load-balancing algorithm is to partition
the domain so that each processor must perform approximately the same amount of work.
However, a criterion must be selected as the basis for measuring the amount of work owned by
each processor; in this study, the amount of compute time expended per cell was used as a
workload measure. Several options are available for decomposing the domain; three possibilities
investigated here are recursive coordinate bisection (RCB) [21], recursive inertial bisection (RIB)
[22], and one-dimensional chain partitioning [23].

In the first two algorithms, the domain is recursively halved (with each new portion of the
domain possessing an equal amount of “work”) until there are as many subdomains as processors.
The difference between RIB and RCB is that RIB chooses the partitioning direction as the
direction with the minimum “inertia.” In other words, if the data in the domain tend to be
clustered around an axis different from one of the coordinate axes, RIB will find that axis and
partition normal to it. On the other hand, RCB simply chooses bisecting directions from planes
normal to thex, y, or z directions. The third choice—chain partitioning—is a very inexpensive
method that works well for certain problems. Here, the domain is partitioned into many
contiguous strips, or chains, with each of these chains containing about the same amount of work.
The chain-partitioning method implemented here seeks to reduce the remapping cost even further
by considering only the cost of computation in determining the amount of work owned by each
processor; communication costs are not considered. An additional advantage of the chain
partitioner over the two bisection methods is that it can be used with any number of processors,
whereas the bisection methods require 2N processors. Figures 2, 3, and 4 show problem domains
decomposed using RCB, RIB, and chain partitioning, respectively. When any of these
repartitioning methods are used, both cell-based and molecule-based data must be remapped as
well. The same lightweight communication schedules and data-transfer procedures discussed
earlier can be used to perform this remapping.

For dynamic problems such as DSMC, the workload distribution can change drastically
during execution, leading to a high degree of load imbalance among the processors in use. Thus,
the partitioning methods described above are reapplied at fixed or varying intervals. It has been
shown that, for many problems solved using a load-balancing algorithm, remapping the domain at
fixed intervals can lead to poor performance. Therefore, it is desirable to either determine the
optimum interval for remapping, or employ a monitoring policy which actively decides when
remapping is necessary. The former choice is not practicable for most problems, since it requires
pre-runtime analysis to determine the optimal interval for remapping. Thus, in this study, a
variable-interval remapping policy is investigated as well; the method employed is the Stop at
Rise (SAR) policy suggested by Nicol and Saltz [24]. This remapping policy chooses to
repartition the domain based on the value of a system degradation functionW, which is defined as
follows:

(1)W n()

tmax j() tavg j()–() C+
j 1=

n

∑
n

---=

4

 10 continue

Theicg array in the above is an example of an indirection array.
DSMC represents a dynamic (or adaptive) irregular problem: data access patterns are known

only at runtime, and can change as execution progresses. The data access patterns change because
molecules move from cell to cell during the simulation, and molecule information is frequently
referenced with respect to the cell in which a molecule resides. CHAOS was developed with such
problems in mind, and utilizes a series of preprocessing steps in order to facilitate efficient
computation [19].

First of all, CHAOS determines how data arrays are to be partitioned. This step involves the
generation of atranslation table which maps elements of the data arrays to their owner
processors. This table is globally accessible. In this particular application, the table is replicated
on each processor because the problem size is relatively small. However, memory considerations
make it clear that it is not always feasible to replicate the table, so the translation table must be
distributed across processors in some applications. Moonet al. [20] have recently developed new
index translation schemes which use software caching techniques so that extra memory can be
exploited adaptively for changeable data access patterns and communication latency can be
avoided. However, as mentioned above, simple table replication was utilized for this study.

The second step is the actual remapping of the data; this remapping is carried out through (1)
generation of an optimized interprocessor communication schedule and (2) use of scatter-append
type procedures to move the data to the appropriate locations. These entities are discussed below.

Since molecules may move from cells owned by one processor to cells owned by another, it
is necessary to communicate molecule-based data between processors even if the problem
partition does not change. Since such communication is required every time step, communication
optimization is crucial for efficient parallel computation in DSMC. Communication optimization
is achieved by CHAOS in two aspects. First, the overhead of communication-schedule
construction is further reduced by exploiting the data independence characteristic of DSMC.
Standard CHAOS communication schedules specify information such as data placement order of
off-processor elements, a list of local elements required by the other processors, and so on. Since
the communication pattern is irregular and determined at runtime, it is necessary to build a
communication schedule at every time step; the standard communication schedule therefore tends
to be impractical for DSMC computations. Considering that the order of molecules in a cell is not
important, the amount of information stored can be reduced by omitting the placement order of
the molecules. We call this type of communication schedule alightweight communication
schedule. Second, the actual communication using the lightweight schedules is optimized by
communication vectorization. Suppose the columns in a multidimensional array are distributed in
the same manner and the access pattern is the same for each column. Then, with communication
vectorization, the CHAOS library allows data to be moved from all the columns by a single
invocation of a data-transfer function using a single communication schedule.This operation does
not reduce the communication volume, but reduces the latency by the number of columns.

Scatter-append operations are very useful in DSMC because, once the movement phase is
completed, DSMC cells can be operated on in any order (unlike CFD, where knowledge of the
cell order and an orderly sweep through the domain are very important). Thus, data need only be
appended to existing data lists for each cell, and costly reordering of the data is unnecessary.
Instead, a cross-reference array is used to associate molecules with the corresponding cells.

3

eled first with the modified F3 code of Rault [13] and then with a modified version of the DSMC3
code of Bird [14].

The results from these computations suggested that, while no relief effect appeared to be
present, increases in grid resolution tended to increase the agreement between the computed and
experimental data. Both of these simulations were conducted on scalar machines; it was reasoned
that solution on a parallel architecture would allow a simulation with greater resolution to be
pursued with considerably less turnaround time.

3 Flow Conditions and Flow Physics

Table 1 lists the flow conditions for the CNRS experiment. Note that the stagnation temperature of
1100 K is quite low; therefore, vibrational excitation and dissociation are not expected to take
place, and the only species considered was N2. The Variable Hard Sphere (VHS) model of Bird
[1] was utilized with a viscosity-temperature exponent of 0.75. Energy exchange between transla-
tional and rotational modes was determined through use of the Larsen-Borgnakke method [15]
and a rotational relaxation number . The surface of the plate was assumed to be diffusely
reflective with full thermal accommodation. It should also be noted that the test conditions corre-
spond to a freestream Knudsen number based on plate length of about . Since rarefied-
flow conditions are typically assumed to prevail above Knudsen numbers of around 0.01, these
conditions correspond to a near-continuum flow.

Note in Figure 1 that the plate is partitioned into four equal sections. In the DSMC results to
be discussed later, only one of these portions is considered. This simplification may be made
because of the fact that the plate possesses two planes of symmetry, and that the experiment was
carried out at zero angle of attack. Thus, consideration of the entire plate is unnecessary.

One of the objectives of this work was to develop a scalable parallel method while leaving
the physics modeled in the original scalar code intact. To this end, no modifications have been
made to the physical models employed by the original code for the sake of parallelization.
Additionally, the possibilities explored in the earlier work on this problem (effect of collision
model, upstream flow nonuniformity,etc.) have not been considered here, since the earlier studies
showed that these variations made little difference in the results.

4 Parallel Algorithm

The method of parallelization used here utilizes runtime library support to carry out communica-
tion and data structure manipulations associated with molecule lists, as well as provide routines
for remapping. This library—the CHAOS library—was developed at the University of Maryland,
and is based upon the Parallel Automated Runtime Toolkit at ICASE (PARTI) library developed
at the Institute for Computer Applications in Science and Engineering (ICASE) at NASA Langley
Research Center [16-18]. The PARTI library was originally built for use with static irregular prob-
lems. These are problems where the data access patterns are known only at runtime, but the data
access pattern is invariant once it has been defined. The data access patterns in irregular problems
are determined throughindirection arrays, which are arrays whose elements point to elements in
another array, as shown in the FORTRAN code fragment below.

 do 10 i=1,n
 sum=sum+x(icg(i))

Zr 5=

5.5 10
3–×

2

Surface heat flux, W/m2

Time required to compute 1 time step

Stagnation temperature, K

Surface temperature, K

System degradation function

Rotational relaxation number

1 Introduction

The direct simulation Monte Carlo (DSMC) method of Bird [1] has become the standard method
for the analysis of hypersonic rarefied flows. Since its inception, the method has been applied to
more and more complex configurations, including the Space Shuttle orbiter geometry [2] and the
Upper Atmosphere Research Satellite [3]. Furthermore, many DSMC analyses carried out today
include physical phenomena such as thermal and chemical nonequilibrium [4]. The combination
of complicated geometries and complicated flow physics leads to large processor-time and storage
requirements, even for low-density calculations. For near-continuum DSMC applications, the
resource requirements can render a meaningful simulation infeasible on current scalar architec-
tures.

A new computational resource which may be brought to bear on DSMC problems is found in
the advent of parallel computing. While parallel programming is still in its formative stages,
parallel architectures show promise in being able to complete tasks in a fraction of the time
required by contemporary sequential machines. This new architecture thus represents an
opportunity to simulate flows at higher densities, or to perform many simulations in the time
previously required for one simulation.

A considerable amount of effort has already been put into the parallelization of DSMC
algorithms [5-10]. One of the aims of the present work is to utilize one such parallel
implementation to analyze a problem of practical interest. The problem considered is described
below.

2 CNRS Experiment

Figure 1 shows the pertinent dimensions of a finite-thickness flat plate with truncated leading
edge tested at zero angle of attack in the SR3 low-density nitrogen tunnel at the Centre National
de la Recherche Scientific (CNRS), Meudon, France [11]. The experimental results for the surface
heat-transfer rate were compared to Navier-Stokes and DSMC results by the CNRS researchers;
the computational-fluid-dynamics (CFD) results were shown to match the test data quite well,
while the DSMC results overpredicted the heat flux across the length of the plate. Further efforts
to correct the discrepancy in the DSMC results made little difference, as shown in the paper by
Hashet al. [12] This further study included the consideration of effects such as collision model,
grid refinement, and nonuniformities in the upstream test section. However, one possible physical
phenomenon not considered in any of these solutions was the possibility of a three-dimensional
relief effect, which could lower the heat flux to the plate. Therefore, one motivation for pursuing
the problem is to obtain a solution for the complete flowfield. To this end, the flat plate was mod-

qw

t

T0

Tw

W n()
Zr

1

 Parallel Monte Carlo Simulation of Three-Dimensional Flow over a Flat
Plate*

Robert P. Nance H. A. Hassan
Department of Mechanical and Aerospace Engineering

North Carolina State University

Raleigh, NC 27695-7910

[rpnance, hassan]@jupiter1.mae.ncsu.edu

Richard G. Wilmoth
Aerothermodynamics Branch, Gas Dynamics Division

NASA Langley Research Center

Hampton, VA 23681-0001

wilmoth@monte.larc.nasa.gov

Bongki Moon Joel Saltz
Institute for Advanced Computer Studies and Department of Computer Science

University of Maryland

College Park, MD 20742

[bkmoon, saltz]@cs.umd.edu

 Abstract

This paper describes a parallel implementation of the direct simulation Monte Carlo method.
Runtime library support is used for scheduling and execution of communication between nodes,
and domain decomposition is performed dynamically to maintain a favorable load balance.
Performance tests are conducted using the code to evaluate various remapping and remapping-
interval policies, and it is shown that a one-dimensional chain-partitioning method works best for
the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow
over a finite-thickness flat plate. It will be shown that the parallel algorithm produces results
which are very similar to previous DSMC results, despite the increased resolution available.
However, it yields significantly faster execution times than the scalar code, as well as very good
load-balance and scalability characteristics.

Nomenclature

Freestream Mach number

Re Freestream Reynolds number

Stagnation pressure, bars

Surface pressure, Pa

* This work was supported by NASA Cooperative Agreement NCCI-112, the Mars Mission
Research Center funded in part by NASA Grant NAGW-1331, a National Defense Science and
Engineering Graduate Fellowship, NASA Grant NAG-1-1560, ARPA/NASA Grant NAG-1-
1485, and NSF/NASA Grant ASC 9213821.

M∞

p0

pw

