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Anxiety can increase distractibility and undermine the quality of psychomotor 

performance. Models of attention processing postulate that anxiety consumes 

limited executive resources necessary for maintaining goal-oriented, “top-down” 

attention control and suppressing stimulus-driven “bottom-up” distraction. 

Attention Control Theory (ACT) predicts that anxiety adversely affects the 

efficiency, and particularly inhibitory components of executive, frontally mediated 

top-down attention control. We used two approaches for examining this model. 

First, though attention affects synchrony among neural structures, information 

regarding how human oscillatory patterns (measured with 

electroencephalography, EEG) change as state anxiety increases is limited. 

Second, while anxiety affects the balance between top-down and bottom-up 

mechanisms, to our knowledge no one has yet measured anxiety’s effect on 

attention using a neural measure of top-down control in conjunction with more 

traditional bottom-up measures of attention capture (e.g., the P3 event related 



	
  

	
  

potential, or ERP). Purpose: Study 1 examines the oscillatory patterns (spectral 

dynamics) of the cortex in order to investigate whether frontal regions exhibit 

patterns of reduced efficiency and altered networking with posterior regions 

during threat of shock. In order to assess the relationship between top-down and 

bottom-up attention dynamics, Study 2 uses the same threat protocol to measure 

attention-directed top-down modulation of sensory signaling (steady-state visual 

evoked potential, or ssVEP modulation) and of bottom-up attention capture by 

discrete targets and distractors (Event Related Potentials, ERPs). Results: The 

spectral analyses in Study 1 suggest decreased processing efficiency and 

decreased frontal networking (coherence) with more posterior regions as anxiety 

increased. Reduced coherence, however, could indicate either increased or 

decreased top-down focus; Study 2 provides more insight. Neural responses to 

task-relevant targets (ERPs) diminished as threat increased, while responses to 

task-irrelevant distractors remained unchanged. Contrary to what ACT would 

predict, we observed an increase in attention modulation of an ssVEP frequency 

associated with amplifying the task-relevant signal and no change in an ssVEP 

associated with inhibiting task-irrelevant stimuli. These findings suggest top-down 

attention control increased under threat, but was not enough to prevent degraded 

processing of task-relevant targets coincident with reduced efficiency on task 

performance. Implications and suggestions for refining ACT are discussed.  
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Inefficiency and reductions in frontal networking are associated with 

increases in state anxiety: an electroencephalographic (EEG) investigation 
of the interaction between anxiety and top-down attention control during a 

target-detection task. 
 

Bartlett A.H. Russell, MA1, 2 and Bradley D. Hatfield, Ph.D.1, 2  

 
1Department if Kinesiology, University of Maryland, College Park 

2Neuroscience and Cognitive Science (NACS), University of Maryland, College Park 
 

Abstract:  Previous research has revealed that anxiety affects performance 

partly by shifting limited attention resources away from task-relevant goal-

oriented processing in favor of stimulus-driven processing. Views differ as to 

whether anxiety erodes cognitive control, thereby reducing frontal activity, or if it 

causes an increase in frontal activity as adaptive performers compensate for 

eroded executive control. Though attention affects synchrony among neural 

structures, to date there is little evidence of how oscillatory patterns as measured 

by electroencephalographic (EEG) change as a result of increased state anxiety.   

Purpose: The present study examines the cortical dynamics and common 

oscillatory patterns between frontal and more posterior regions of the brain in 

order to investigate whether anxiety reduces processing efficiency, and if frontal 

structures exhibit increased activity as state anxiety increases.  Methods. 

Electroencephalography (EEG) was recorded from 50 participants during an 

attention-demanding target detection task under three levels of threat recorded 

over two days. During the Shock Day (SD) finger electrodes were attached 

during both Safe and Threat conditions, but participants were only at acute risk of 
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shock during the Threat trials. Finger electrodes were not attached during the No 

Shock Day (NSD). If performers recruit additional resources to maintain 

performance under increased threat, the cortex should show increases in activity 

(beta and gamma power) and a decrease in frontal connectivity (coherence) with 

more posterior brain regions. Likewise, if anxiety compromises volitional ‘top-

down’ attention control, frontal networking with sensory processing regions 

should likewise decrease. Results: Processing and performance became less 

efficient under the highest level of threat as high-alpha power desynchronized 

and reaction times slowed. A decrease in frontal coherence suggests a 

decoupling between frontal and more posterior regions and an increase in 

temporal beta and gamma power suggested this decoupling may be due to 

increased localized processing irrespective of top-down control. These findings 

support theories that increased anxiety erodes processing efficiency, but did not 

find that increased effort to compensate for this inefficiency was frontally 

mediated.  
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1.0 Introduction 

	
  
Stress and anxiety shift the balance between top-down goal-oriented attention 

processing and bottom-up stimulus-driven attention mechanisms (see Arnsten, 

2009 and Robinson, Vytal, Cornwell, & Grillon, 2013 for reviews in animals and 

humans, respectively). While it is well accepted that anxiety increases early 

sensory processing (Robinson, Letkiewicz, Overstreet, Ernst, & Grillon, 2011; 

Shackman, Maxwell, McMenamin, Greischar, & Davidson, 2011), how anxiety 

affects top-down control and processing of incoming sensory stimuli is less well 

understood. Central executive function (Baddeley, 1996) and its anatomical 

correlates direct top-down attention control,  which selectively amplifies task-

relevant signals, and inhibits task-irrelevant information from incoming sensory 

processing streams (Corbetta & Shulman, 2002). Primate (Arnsten, 2009) and 

human studies (Demeter, Hernandez-Garcia, Sarter, & Lustig, 2011)  suggest a 

set of regions in the frontal cortex bias sensory signaling earlier in the processing 

hierarchy, and may do so by synchronizing signals for stimuli of interest and 

disrupting synchrony of neurons tuned to irrelevant stimuli (Engel, Fries, & 

Singer, 2001). Current theories have different views on whether anxiety impairs 

prefrontal function, thereby reducing the activity of these structures (Bishop, 

Jenkins, & Lawrence, 2006; Bishop, Duncan, Brett, & Lawrence, 2004) or 

reduces the efficiency of top-down function increasing prefrontal control in an 

effort to compensate (Eysenck & Derakshan, 2011; Eysenck, Derakshan, 

Santos, & Calvo, 2007).     Though a great deal of behavioral, fMRI and event-

related-potential (ERP) studies have examined how anxiogenic contexts and 
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stimuli affect attention systems, and though it is known that attention affects the 

oscillatory patterns within and among these regions, it is not clear how anxiety 

affects human cortical oscillatory patterns and dynamics associated with 

attention.  

 

Attention Control Theory. Attention Control Theory (ACT, (Eysenck et al., 

2007) evolved from Processing Efficiency Theory (PET, Eysenck & Calvo, 1992) 

which postulates anxiety impairs performance efficiency – or a decreased ratio of 

effectiveness to effort – even if it does not always affect performance.  Likewise, 

ACT’s primary hypothesis is that anxiety will impair the efficiency of attention 

control, which is to say additional neural resources are necessary to maintain 

performance. The majority of the evidence for this view has come from 

behavioral evidence including patterns of time/accuracy tradeoffs, increases in 

effort to complete cognitive tasks, and the costs associated with high-conflict 

tasks (Ansari & Derakshan, 2011; Righi, Mecacci, & Viggiano, 2009; 

Savostyanov et al., 2009). Observations that psychomotor neural efficiency is a 

hallmark of superior performance (Deeny, Hillman, Janelle, & Hatfield, 2003); 

that visual search and gaze behavior becomes inefficient when performers are 

anxious (Janelle, 2002) and tradeoffs between speed and accuracy on reaction 

time tasks during threat of shock (Hu, Bauer, Padmala, & Pessoa, 2012) further 

support this element of ACT.   
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Other well-replicated findings in neural imaging studies have shown patterns that 

are difficult to reconcile in terms of ACT. In particular, functional Magnetic 

Resonance Imaging (fMRI) studies show a negative correlation between state 

anxiety and activation among frontal regions specifically implicated in top-down 

attention control (i.e., dlPFC and vlPFC; Bishop, 2007; 2008a; Bishop et al., 

2006). Trait anxious individuals also show a decrease in frontal activation 

compared to lower-anxious individuals (Bishop, 2008b). Interestingly, these 

effects are blocked (Bishop, 2007) and even reversed (Bishop, 2008b) in  high 

load conditions compared to low-load conditions. ACT’s efficiency hypothesis 

would predict the reverse; if anxiety and efficiency are inversely related, it would 

become more difficult to maintain performance as anxiety increased. While there 

are other structures involved in directing top-down attention along the dorsal 

attention network (DAN, Fox et al., 2005), such as the frontal eye fields (FEF) 

and intra-parietal junction (IPJ) not investigated in neuroimaging literature that 

may follow different patterns of activation and lend support to ACT, currently ACT 

does not provide a means to explain anxiety-induced decreases in frontal 

activation. 

 

Animal research of neurochemical systems provides insight into mechanisms 

that might underlie these phenomena. The interaction of anxiety of top-down 

attention selection has been linked to the function of noradrenaline and 

dopamine receptors in the prefrontal cortex. Both dopamine and noradrenaline 

are necessary for enhancing selective attention by amplifying firing to preferred 
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stimuli (task-relevant) and suppressing neural firing to non-preferred (distracting) 

stimuli. Indeed, dopamine is linked to coupling of attention networks (Dang, 

O'Neil, & Jagust, 2012). Stress increases the presence of both chemicals and too 

much of either will over-suppress prefrontal firing, diminishing responses to all 

stimuli in a non-discriminative manner, thus eliminating top-down selectivity.  

While the patterns in catecholamine-related suppression would not support a 

model of increased frontal activity as anxiety increases, increased effort has 

been linked to top-down stimulation of additional acetylcholine release from the 

basal forebrain (Sarter, Gehring, & Kozak, 2006), which would subsequently 

increase cortical activity.  

 

The debate remains active, and the data apparently contradictory. While fMRI’s 

spatial resolution is convincing, the Blood Oxygen Level Dependent (BOLD) 

signal is a measure of metabolism used as a proxy for neural activity. This 

means an inhibitory circuit may be more metabolically active, but could be 

actively inhibiting function (e.g., GABAergic inhibition).  Measures of synchronous 

and asynchronous activity within and between regions are more direct indicators 

of neural function. Primate and cat studies have demonstrated attention 

synchronizes oscillatory signals among neurons that fire in response to stimuli of 

interest, and disrupts synchronous firing among neurons sensitive to to-be-

ignored stimuli. Such synchrony occurs not just within a given region, such as V4 

for instance, but also between regions, such as between occipital, parietal and 

motor cortex during visual-motor task performance (Roelfsema, Engel, König, & 
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Singer, 1997). While it is still up for debate as to whether this sort of 

synchronization among neural populations is what ‘binds’ sensory 

representations up and down the processing hierarchy (Engel & Singer, 2001; 

Singer & Gray, 1995), these studies nonetheless link oscillatory patterns to top-

down attention control. 

 

Thus, a study examining the spectral content and patterns of oscillatory activity 

under various levels of state anxiety during an attention task, though not as 

spatially precise as fMRI, would provide a direct measure of neural activity and 

might offer additional insight into how anxiety affects attention control 

mechanisms. While there has been extensive work examining the relationship 

between state anxiety and attention control mechanisms (under threat of shock 

and in response to threatening stimuli) to our knowledge the regional spectral 

dynamics, and regional networking of attention control in a threat-of-shock 

paradigm has not yet been explored.   

 

Spectral analysis of electroencephalographic (EEG) recordings provides an index 

of relative synchronous cortical activity among neural populations; an increase in 

power within a frequency band of interest (for instance, alpha band consists of 

frequencies between 8-13Hz) reflects more synchronous oscillatory activity 

among neural populations within that range. Different frequency bands have 

been associated with distinct cognitive processes. For instance, and of interest 

for the present study, frontal theta power (4-7 Hz) is directly related to goal-
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oriented sustained attention (Mizuki, Takii, Tanaka, Tanaka, & Inanaga, 1982; 

Sauseng, Hoppe, Klimesch, Gerloff, & Hummel, 2007). Likewise, alpha power is 

inversely related to externally-oriented engagement. A relative decrease in low-

alpha power (8-10Hz) may be indicative of an increase in generalized arousal, 

whereas a decrease in high-alpha power (10-12 Hz) reflects greater task-related 

effort (Klimesch, Schimke, & Pfurtscheller, 1993) and attentional demands (Ray 

& Cole, 1985). Beta  (13-30 Hz) has been linked to cognitive as well as emotional 

processing (Ray & Cole, 1985) and increases in gamma (30-70 Hz) occur during 

attention tasks (Gruber, Müller, Keil, & Elbert, 1999; Müller, Gruber, & Keil, 2000; 

Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998) 

 

If anxiety compromises top-down frontally-directed attention engagement, we 

should observe a decrease in frontal theta power as threat increases. Likewise, if 

ACT’s prediction that frontal activity will increase with anxiety is correct, we would 

expect to see a decrease in high-alpha power in frontal regions reflecting an 

increase in task-oriented activity. More specifically, changes in high-alpha power 

in response to threat should reflect perturbation in attention-directed task-specific 

processing, while low-alpha power (8-10Hz) should decrease in response to a 

generalized increase in arousal in response to threat.  

 

Because attention control is inherently a multi-regional function, understanding 

the relationship between attention and anxiety requires investigation of inter-

regional activity as much as intra-regional activity. Coherence between electrode 
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sites is a statistical representation of the correlation (Pearson’s R) of spectral 

content recorded at those sites; increased coherence between electrodes 

suggests increased communication between the regions underlying those 

electrodes (Nunez, 1995; Fries, 2005). According to Engel, et al., “large-scale 

coherence could be one of the correlates for top-down control” (Engel et al., 

2001).  

Thus, coherence should reflect anxiety-induced shifts away from top-down 

attention control mechanisms. When participants – guided by a therapist – were 

asked to imagine and engage in an anxious state, there was an observable 

decrease in coherence between frontal and central regions (Hinrichs & 

Machleidt, 1992), which may reflect a reduction in frontal executive control.   

Likewise, lower coherence between frontal and posterior sites among trait 

anxious individuals is associated with ‘looser’ frontal emotional control and 

regulation of posterior regions (Reiser et al., 2012).   However, in normal 

circumstances healthy populations typically regulate emotional responses to 

threatening stimuli and in such cases there are increases in coherence between 

frontal and more posterior regions. For instance, coherence between frontal and 

tempo-parietal regions increased in response to threatening images (Miskovic & 

Schmidt, 2010) and film clips (Schellberg, Besthorn, Klos, & Gasser, 1990) 

indicating greater frontal control of posterior regions in response to emotionally 

loaded stimuli. In another sample coherence increased in low anxious 

participants and decreased in high anxious individuals in response to threatening 
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images (Aftanas, Lotova, Koshkarov, & Popov, 1998) suggesting an increase in 

coherence may reflect an adaptive response to threat.  

 

Threatening stimuli present a rather mild 

emotional challenge however, and the 

abovementioned studies did not examine cortical 

dynamics during sustained attention. If increased 

state anxiety shifts attention bias towards 

processing environmental stimuli and away from 

goal-oriented executive-driven processing, we 

should observe a drop in frontal coherence with 

other regions suggesting a decrease in frontal 

communication with stimulus processing areas (central, temporal and parietal, 

see Figure 1). In particular, we will examine low-alpha (8-10 Hz), high-alpha (11-

13Hz) and beta (13-30 Hz) coherence for two reasons:  first, these frequency 

bands are most reflective of global communication whereas higher frequency 

bands (i.e. gamma) reflect intraregional cortico-cortical communication (Nunez, 

1995); and, second the greater the distance between electrodes the more likely 

high frequency bands will exhibit high, but unrelated coherences (i.e., elevated 

risk of Type I error) (Srinivasan, Winter, Ding, & Nunez, 2007) .   

 

To examine the cortical dynamics of sustained attention under various states of 

anxiety, we analyzed the spectral content of electroencephalographic (EEG) data 

Figure 1. Coherence analysis 
between frontal and more 
posterior electrode sites. Lines 
represent pairs of electrodes 
tested.  
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collected from a previous sample of 50 individuals over the course of two testing 

days, and three levels of threat.  If anxiety erodes attentional efficiency and 

requires greater effort to maintain performance we should observe relative 

reduction in high-alpha in frontal sites, and increased coherence between frontal 

and more posterior regions.   

2. Methods    

	
  
We analyzed the spectral content from a previously collected sample (N = 50, f = 

25) healthy, right-handed, college-age participants who performed a simple 

target detection task under three levels of stress over two sessions. The sample 

was screened for medication or symptoms of depression, anxiety disorders, and 

attention deficit disorders.  

 

Anxiety Manipulation. Data were collected over the course of two testing 

sessions, a “Shock Day” (SD) and a “No-Shock Day” (NSD). These days were 

counterbalanced for order and held at the same time of day for each participant, 

at least a day but no longer than two weeks apart. During the SD participants 

wore electrodes on their third (“ring”) and fourth (“pinky”) left fingers that 

delivered a mild 4mA, 100ms electric shock (Colbourn Instruments). The SD 

consisted of “Safe” and “Threat” trials. Participants were at risk of receiving a 

shock at any point during the Threat trials, and were at no risk of receiving a 

shock during the Safe trials. Shock delivery was not linked to task performance 

and occurred at the same time during the course of the SD for all participants. 

During the NSD session participants did not wear the electrodes and all trials 
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presented were Safe trials.  Because the participants were not wearing 

electrodes during the NSD, the Safe trials on the NSD were less threatening than 

the Safe trials on the SD; for the purposes of clarity we refer to these as “NSD” 

trials. The resulting three conditions were, in order of increasing threat: No Shock 

Day (NSD) < Safe < Threat.  Differences between the NSD an SD trials should 

reflect contextual fear and generalized arousal, whereas differences between the 

Safe and Threat trials on the SD reflect more specific cued threat responses.  

 

Target Detection Task. Participants were asked to hit a button as quickly and 

accurately as possible after detecting a digit among one of two alphanumeric 

sequences, which appeared 9 cm laterally from the center of 19” Dell monitor, 

without shifting their gaze away from a center fixation cross.   A screen preceded 

each trial instructing the participant attend to either the left or right sequence, and 

whether the trial was a Safe or Threat condition. On each day there were four 

blocks of 25 trials each, separated by 1-2 minutes of rest. The Shock Day (SD) 

consisted of mixed-trial blocks and the NSD consisted of only Safe trials. Each 

trial lasted 10 seconds with 3 seconds rest between trials.  The experiment was 

written in, and controlled by Presentation® software (Version 0.70, 

www.neurobs.com) on a desktop PC (Dell, Windows 2007 operating system).  

 

EEG. Researchers recorded from thirty two active electrode channels arranged 

according to the 10-20 system (Jasper, 1958) at 1000Hz sampling frequency 

using the BrainVision atciCAP system (Brain Products, Munich, Germany). An 
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online reference to the left ear was later re-referenced offline to an average of 

both ears. Four additional electrodes were placed around the eye to detect 

electro-ocular movements and to quantify eyeblink startle responses.  

 

Startle.  Startle eyeblink magnitude is linked to amygdala activation and was 

used as a physiological index of state anxiety. The startle probes were white 

noise bursts  (100ms, 60 dBA against ~48 dBA ambient noise) presented 

randomly throughout the testing session. Startle data were processed and 

quantified in accordance with the standards outlined in Blumenthal (Blumenthal 

et al., 2005). Data from the active startle electrode (lower-eyelid, below the pupil) 

were re-referenced against the outer startle electrode (lower eyelid, below the 

corner of the eye).  Signals were band-pass filtered (28-40Hz with a 4th order 

Butterworth), rectified, smoothed (FIR Kaiser), visually inspected for non-startle 

artifact and averaged. Standardized area under the curve was calculated for 

each participant’s data from 50ms-120ms after noiseburst onset for each 

condition.  

 

Signal Processing and Data Reduction. All off-line filtering was performed in 

MATLAB. Shock and startle trials were removed from analysis and to maintain 

equal signal-to-noise ratio, a random selection of half of the Safe trials on the 

NSD were discarded so that we analyzed an equal number of NSD, Safe and 

Threat trials. Each 10-second trial was inspected for visual artifact and averaged 

across conditions.  
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Spectral Power. A fourth order Butterworth (0.1-100 Hz) with a 60 Hz notch filter 

was applied to each of the resulting time series. Resulting values were averaged 

across frequency bands.  

 

Coherence. We computed coherence values in MATLAB (The MathWorks, Inc. 

2010) between electrode pairs of interest (F3-C3, F4-C4, F3-P3, F4-P4, F3-T7, 

F4-T8, F3-O1, F4-O2). Resulting values were averaged across the low-alpha (8-

10Hz), high-alpha (11-13 Hz) and beta (13-30 Hz) frequency bands. 

 

Statistical approach. Startle and performance data were entered into a one-

way, repeated measures ANOVA with three levels for condition.  Subsequent 

pairwise comparisons were Bonferroni corrected.  Spectral power data were 

entered into a 3 (condition: NSD, Safe, Threat) x 2 (hemisphere: left, right) x 5 

(region: frontal, central, parietal, temporal, occipital) repeated measures ANOVA. 

Frontal coherence values were entered into a 3 (condition) x 2 (hemisphere) x 4 

(regional pair: F-C, F-P, F-T, F-O) repeated measures ANOVA. The degrees of 

freedom for any results that violated the sphericity assumption of the linear model 

were Greenhouse-Giesser corrected; all p values reported reflect corrections 

when necessary, and post hoc comparisons corrected using Tukey’s HSD 

method. 
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3.0 Results 

3.1 Behavior, and physiological response to threat.  

 

Startle.  Startle was significantly 

potentiated as threat increased 

across condition (F(2, 48) = 48.28, p 

< .001). StartleSafe was significantly 

greater than StartleNSD indicating 

there was a general amygdala 

activation associated with the Safe 

trials (contextual threat) compared 

to the NSD trials (StartleSafe-

StartleNSD = 0.069, p = .029). 

StartleThreat was also significantly 

greater than both StartleNSD 

(StartleThreat - StartleNSD = 0.467, p 

<.001) and  StartleSafe (StartleThreat-

StartleSafe = 0.408, p <.001). The 

magnitude of difference between 

StartleSafe and StartleThreat indicated a 

robust amygdala activation beyond 

that induced during the Safe 

conditions associated with the cued 
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Figure 2. Startle was potentiated during both 
Safe and Threat conditions. Top panel: startle 
response waveforms for each condition. 
Bottom panel: Standardized area under the 
curve between 50 and 150 ms after noiseburst 
onset for each condition. Green: No Shock 
Day; Blue: Safe; Red: Threat. * indicates 
significant difference compared to NSD and ~ 
indicates significant differences compared to 
Safe.  



	
  

	
   17 

threat.  

 

Performance.  While there was no significant difference in accuracy between 

condition  (F(2,98) = .279 p = .7089, η2 = .006 ), there was a significant effect over 

the three levels for reaction times (F(2,98) = 7.72, p = .003,  η2= .138) .  Corrected 

pairwise comparisons revealed the RTThreat condition was significantly slower 

than both the RTSafe (RTThreat – RTSafe = .012 s, p < .001) and RTNSD conditions 

(RTThreat – RTNSD = .012 s, p = .012).  
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Figure 3. Performance for each condition. * indicates significant difference 
compared to NSD.  
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3.2. Spectral Analysis 

Theta(4-7Hz). Statistical analysis 

indicated a condition x region 

interaction (F(8,392)  = 4.043, p = .004, 

η 2 = .76) and as expected, there was 

a decrease in frontal theta power 

between the conditions on the SD 

(Safe and Threat) and the NSD day. 

(Figure 4).  

Low-alpha (8-10Hz). Statistical 

analysis for low-alpha power showed 

no significant main effects or 

interactions.  

	
  
High-alpha(11-13Hz). Statistical analysis indicated a significant condition x 

hemisphere x region interaction in high-alpha power (F(8,392) = 3.057, p = .033, η2 

= .059) such that power decreased as threat increased but to a greater degree in 

the right central region than in other areas. Collapsing across hemispheres, there 

was also a significant condition x region interaction  (F(3,392) = 3.073,  p = .028, 

η2=.059)  indicating high alpha decreased mainly in the central and parietal 

regions, but subsequent pair-wise comparisons did not survive correction. The 

main effect (F(1,49) =, p < .001,  η2  = .253.) showed a significant desynchrony in 

high-alpha during the Threat condition compared to both the NSD and Safe 
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conditions (Figure 5).  This indicates a general increase in task-related activity, 

mainly associated with the Threat condition and in the central and parietal 

regions. 
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Beta(13-30 Hz).   A condition x region interaction (F(8,392) = 5.349, p = .012,  η2 = 

.098) indicated an increase in beta power in the temporal region between both 

conditions on the SD (Threat and Safe) and the NSD.  A main effect for condition 

exhibited a similar pattern across the scalp (F(2,98)= 4.724, p = .002, η2 = .088) but 

pairwise comparisons did not survive post hoc analysis (Figure 6, A).  

Gamma(30-70 Hz). A condition x region interaction (F(8.392) = 5.18, p = .004,  η2 = 

.096) indicated an increase in gamma power between both conditions on the SD 

(Threat and Safe) and the NSD condition. The regional effect was large enough 

to drive a main effect for condition (F(2.98) = 8.425, p = .004,  η2  = .147) (Figure 6, 

B and C). 
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3.3 Coherence 

Low-alpha Coherence. Low-alpha coherence between frontal and more 

posterior regions revealed a significant condition x hemisphere x region 

interaction (F(6, 294)  = 6.718, p <.001,  η2 = .121) indicating greater coherence 

between frontal and central electrodes during the threat condition compared to 

the NSD.  Post hoc analysis revealed the left coherence between frontal and 

central regions during the Threat condition was significantly greater than 

coherence between the same electrodes during the NSD condition. The same 

was not true in the right hemisphere.  

 

Figure 7. Low-alpha (8-10 Hz) coherence between frontal and posterior sites, 
condition x hemisphere x region interaction.  * indicates pairwise corrected 
significance compared to NSD condition within the same subgroup.  
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High-alpha Coherence. Frontal high-alpha coherence with more posterior 

regions was not sensitive to the experimental conditions.  

 

Beta Coherence. Statistical analysis indicated a significant condition x 

hemisphere x region interaction (F(6,294) = 9.65, p < .001, η2 = .164). Collapsing 

across hemispheres, the condition x region interaction (F(6,294)  = 39.88, p <.001, 

η2 = .449) was also significant, indicating frontal beta coherence with temporal 

and central regions dropped consistently regardless of hemisphere. Likewise, 

collapsed across regions, the condition x hemisphere interaction (F(2,98) = 5.93, 

p= .004, η2 =.108)  was significant showing right hemisphere coherence with 

frontal regions dropped to a greater degree than left regions.  Finally, there was a 

main effect for condition (F(2,98) = 34.618, p < .001, η2 = .414). Irrespective of 

hemisphere or region, overall beta coherence with frontal regions was lower 

during NSD conditions compared to both Shock Day conditions (p < .001, for 

both corrected pairwise comparisons). Beta coherence differences during Safe 

and Threat conditions on the Shock Day were not significantly different (p = 

.063).  
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4. Discussion 

To investigate how anxiety affects top-down attention control the present study 

examined oscillatory cortical dynamics under three levels of threat while 

participants performed a sustained attention task. A decrease in frontal midline 

theta power and a broad reduction in beta coherence between frontal and more 

posterior regions suggest there may have been a relative shift away from top-

down goal-directed processing. While there was a decrease in both performance 

and cortical efficiency to maintain accuracy on the task, this inefficiency was 

exhibited mainly in non-frontal regions, contrary to ACT’s predictions. This may 

mean that reductions in efficiency in a healthy population are not the result of 

impaired executive function, but rather the result of a general increase in 

processing demand as a result of the imposed threat.   

 

Startle potentiation confirmed the threat-of-shock protocol was successful in 

activating the amygdala. A small potentiation was associated with the Safe trials 

on the Shock Day compared to the No-Shock Day trials. Startle potentiation 

during Threat trials was more than six times greater than that of the Safe trial, 

indicating the amygdala was activated most when threat of shock was most 

acute.  

 

The spectral analyses of these data provide evidence that increases in 

anxiety shift attention mechanisms away from top-down directed 

processing. Two pieces of evidence are relevant. First, volitional attention and 
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concentration during cognitive motor tasks are associated with increases in 

frontal midline theta power (Mizuki et al., 1982), but we observed a decrease in 

frontal theta power under both levels of anxiety (Safe and Threat conditions) 

compared to the No-shock Day (NSD). This pattern of reduced midline Theta 

power has also been observed in individuals viewing threatening stimuli (Aftanas, 

Pavlov, Reva, & Varlamov, 2003) while increases in frontal theta are associated 

with successful suppression in an anti-saccade task (Cornwell, Mueller, Kaplan, 

Grillon, & Ernst, 2012). Second, there was a drop in beta coherence between 

frontal and posterior regions (central, parietal and temporal) indicating a 

reduction in cortico-cortical communication between these regions. While the 

nature of the coherence correlation measure cannot determine directionality 

(even with phase analysis) the widespread reduction in coherence firing in the 

beta range suggests a general reduction in frontally-directed activity. The 

reduction in beta coherence between frontal and parietal regions is of particular 

note, since parietal beta power is positively related to cognitive tasks (Ray & 

Cole, 1985). A similar reduction in frontal coherence has been reported in high 

anxious individuals when watching aversive compared to neutral film clips 

(Aftanas et al., 1998), though the same was not true for low-anxious individuals. 

This pattern of reduced frontal coherence is opposite of that seen during other 

executive tasks, where working memory (Sarnthein, Petsche, Rappelsberger, 

Shaw, & Stein, 1998) and perceptual discrimination (Rodriguez et al., 1999) 

tasks were associated with generalized increases in coherence across regions. 

One could argue the coincident increase in beta power in temporal regions could 
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alone cause a relative drop in common communication (i.e., coherence) between 

frontal and temporal scalp sites, but this does not account for the relative drop in 

beta coherence between frontal and central, and frontal and parietal electrodes. 

In contrast to the broader decrease in frontal coherence in the beta frequency 

range, there was an isolated increase in low-alpha coherence between left-frontal 

and left-central electrode sites during the Threat compared to NSD trials. Low-

alpha power is linked to thalamo-cortical projections that usually fluctuates with 

generalized arousal, meaning the effect might not be the result of cortico-cortical 

communication between left frontal and central regions, but rather that these 

regions are receiving common thalamic inputs. Overall, the dominant pattern is 

that of a generalized decrease in frontal coherence with other, more posterior 

regions.  

 

There are notable limitations to our interpretation that the drop in beta coherence 

reflects a relative reduction in top-down attention control. First, it is possible that 

increased top-down focus would result in an overall decrease in common 

communication between frontal and more posterior regions. Attention is a 

function of both signal amplification and suppression. Direct local-field recordings 

in primates show attention synchronizes signals for features of interest, and 

actively desynchronizes those outside of focus (Engel et al., 2001). Thus, if 

anxiety narrows attention to focus only on task-relevant information and suppress 

(or desynchronize) all other task-irrelevant information (Easterbrook, 1959) then 

it is possible we would see an overall decrease in coherence despite an increase 



	
  

	
   29 

in top-down selectivity. Second, while our interpretations are based on cortico-

cortical models of top-down and bottom-up attention pathways (i.e., dorsal and 

ventral networks, respectively), a major component of top-down attention control 

involves a cholinergic circuit between prefrontal regions and the basal forebrain, 

especially during sustained attention tasks and in the face of increased 

distraction (Sarter, Givens, & Bruno, 2001). We can speculate that this may be 

the mechanism by which the brain is able to compensate for attention-related 

deficits or inefficiencies (Sarter et al., 2006)), but it may also offer a path for 

increased – albeit indirect – top-down control.  

 

Anxiety-induced decreases in efficiency were not associated with frontal 

regions. The pattern of results provides partial support for ACT’s model of 

anxiety and attention control. Slower reaction times were coincident with a drop 

in high-alpha power (indicative of increased activity) measured from central and 

parietal electrodes, but mainly during the most threatening condition (Threat 

trials).  Accuracy on the target detection task did not change, thus participants 

maintained performance effectiveness but at an increased cost. Desynchrony in 

high-alpha power, an indicator of increased task-engagement, is likely linked to 

the drop in performance efficiency for two reasons. First, the drop in high-alpha 

power followed the same pattern as the alteration in performance; the only 

differences occurred during the greatest amount of anxiety (Threat trials). All 

other neural measures (theta, beta and gamma power, beta coherence), differed 

between both conditions on the Shock Day and the NSD.  Second, high-alpha 
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desynchrony was located at central and parietal recording sites, which are 

closest to regions of sensorimotor integration such as that necessary to perform 

a target detection task. Together, this suggests that under the highest level of 

threat, a decrease in performance efficiency (slower RT) occurred at the same 

time as a decrease in cortical efficiency, which fits nicely with ACT’s model.  

 

The pattern of inefficiency across cortical regions, however, is not that predicted 

by ACT. The increase in beta and gamma power is an additional indicator of 

increased activity, as it is the opposite of that exhibited by efficient, expert 

performers compared to less-practiced individuals (Deeny et al., 2003; Haufler, 

Spalding, Santa Maria, & Hatfield, 2000).  The effect, however, was isolated to 

temporal regions and no such increase in power in either band occurred in frontal 

or even central electrode sites, as ACT would predict (the small increase in 

gamma at frontal sites did not survive correction). The combined increase in beta 

power in temporal regions and a decrease in beta coherence with frontal regions 

suggests increased specialization in regional processing akin to that observed in 

novice marksmen compared to experts (Deeny, Haufler, Saffer, & Hatfield, 

2009). While this further supports the notion of anxiety-induced inefficiency, it is 

not in the predicted frontal regions.   

 

The sharp and localized rise in temporal beta power is notable and worthy of 

more consideration. The pattern is very similar to that seen when subjects were 

exposed to a painful cold pressor test (Chang, Arendt-Nielsen, & Chen, 2002). It 
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is unlikely, however, this common pattern was pain-related since participants in 

the present study only received four total shocks during the shock-day testing 

session, and most participants reported the shocks were aversive but not painful. 

Instead the common factor between the two studies may be threat, and the 

isolated location of the increased beta at temporal electrode sites could mean it 

is related to amygdala activation. Support for this possibility, however, is mixed. 

First, temporal beta power may be related to generalized emotional processing 

as a similar pattern was seen in response to both positive and negative 

emotional processing (Ray & Cole, 1985). Second, in the present study, the 

pattern of beta activity did not follow the pattern in startle potentiation, which is an 

index of amygdala activity.  Startle potentiation showed the most marked 

difference between the Safe and Threat trials. Temporal beta power, on the other 

hand, was the same during Safe and Threat trials. The pattern is distinct and 

consistent with previous EEG studies including aversive contexts, but here again, 

there remain a number of possibilities for its origin. 

 

It is worth noting that we did not observe evidence of a generalized increase in 

arousal. A substantial increase in state anxiety under threat would likely increase 

thalamic release of noradrenaline to the cerebral cortex, increasing cortical 

activation in a general manner. Low-alpha power reflects thalamo-cortical activity 

and is inversely related to increases in generalized arousal, thus the absence of 

a reduction in the low-alpha range suggests the threat manipulation, though 

aversive and enough to activate the amygdala, was not enough to induce 
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changes in arousal. We can speculate that this may reflect effective emotional 

regulation in a healthy population and it would be interesting to see if the pattern 

changed in a high- or clinically- anxious population.   

 

Together these results suggest a decrease in processing efficiency as a result of 

increased anxiety, and a decrease in common communication between frontal 

and more-posterior cortical regions; it is unclear if the decrease in frontal-

posterior communication is the result of an increase in focus at the exclusion of 

non-task-relevant stimuli, or the result of compromised top-down control. 

Because spectral analysis cannot provide concrete information about the 

directionality of the communication between electrode sites, future studies should 

look to incorporate concurrent measures of top-down and bottom-up processes 

to disentangle how anxiety affects each of the top-down and bottom up attention 

systems. 
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Abstract: Distractibility is a primary complaint among those who suffer from 

anxiety, which can affect the quality of psychomotor task performance and may 

be one reason why the majority of costs associated with anxiety-related disorders 

are attributed to lost workplace productivity. Models of attention processing 

postulate that anxiety – whether situational or introduced by threatening stimuli - 

consumes limited executive resources that are necessary for maintaining goal-

oriented, “top-down” attention control and suppressing stimulus-driven “bottom-

up” distraction, particularly when perceptual load is low. Attention Control Theory 

(ACT) predicts that anxiety adversely affects the efficiency, and particularly 

inhibitory components of executive top-down attention control. While many 

studies have examined these phenomena, to the best of our knowledge none 

have measured anxiety’s effect on attention using a neural measure of top-down 

control in conjunction with more traditional bottom-up measures of attention 

capture (e.g., the P3 event related potential, or ERP). Purpose: In order to 

assess the relationship between top-down and bottom-up attention dynamics and 

anxiety, the present study measured attention-directed top-down modulation of 

sensory signaling (steady-state visual evoked potential, or ssVEP modulation) 

and of bottom-up attention capture by discrete targets and distractors (Event 
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Related Potentials, ERPs) under three levels of threat. Results: Behavioral, 

ssVEP and ERP findings show performance efficiency and neural responses to 

task-relevant targets were diminished as threat increased, while neural 

responses to salient task-irrelevant distractors remained unchanged. Though we 

expected anxiety would erode top-down control and would be inversely related to 

ssVEP modulation, we instead observed an increase in attention modulation of 

an ssVEP frequency associated with attention directed signal amplification and 

no change in the ssVEP frequency associated with inhibiting task-irrelevant 

stimuli. These findings suggest top-down attention control increased under 

threat, but was not enough to prevent degraded processing of task-relevant 

targets. Implications for current theories are discussed.  
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1. Introduction  

 

Anxiety has long been known to affect human performance and although it has 

been the subject of countless studies, precisely how anxiety affects neural 

mechanisms underlying performance remains unclear.  In some instances 

increased state anxiety can facilitate, while in other contexts it can degrade 

performance (for reviews see (Andersen, Hillyard, & Müller, 2008; Robinson, 

Vytal, Cornwell, & Grillon, 2013). Mechanisms of attention control underlie these 

differences as anxiety affects the balance between volitional ‘top-down’ goal-

oriented stimulus processing and “bottom-up”, salience-driven processing as 

these two systems compete for limited cognitive resources.  Generally, anxiety 

seems to increase sensitivity to bottom-up processing (Cornwell et al., 2007; 

Robinson, Letkiewicz, Overstreet, Ernst, & Grillon, 2011) and attention bias 

towards threatening stimuli (Koster, Crombez, Verschuere, Van Damme, & 

Wiersema, 2006; Lang, Bradley, & Cuthbert, 1998; Pessoa, 2009), but the exact 

way in which the two systems compete remains murky.  

 

Attention is inherently limited, which is why researchers have traditionally 

characterized it as a “spotlight” (Easterbrook, 1959; Ekstrom, Roelfsema, 

Arsenault, Bonmassar, & Vanduffel, 2008; Gilbert & Li, 2013; Stein, Chiang, & 

König, 2000; Wachtel, 1967) that selectively highlights stimuli within a person’s 

attentional focus. Human behavioral and neuroimaging results (Andersen et al., 

2008; Ekstrom et al., 2008; Engel, Fries, & Singer, 2001; Gilbert & Li, 2013; 
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Harris & Thiele, 2011; Stein et al., 2000; Treue, 2001)  as well as direct neural 

recordings from mammals and non-human primates (for a review see (Gazzaley, 

Cooney, McEvoy, Knight, & D'Esposito, 2005; Harris & Thiele, 2011)) have 

demonstrated that volitional attention selectively amplifies neural firing patterns 

as early in processing as that done in sensory cortex (Bridwell & Srinivasan, 

2012; Treue, 2001) and the superior colliculus (Everling & Johnston, 2013).  

Engle et al. (2001) characterizes this executive-directed modulation of stimulus 

processing as “top-down” attention control in terms of anatomical processing 

hierarchies. Top-down attention also suppresses stimuli outside its focus 

(Arnsten, 2009; Bridwell & Srinivasan, 2012; Corbetta & Shulman, 2002; 

Gazzaley et al., 2005), putatively to prevent stimulus-driven “bottom-up” 

processes from ‘capturing’ limited resources and distracting them from a goal.  

Thus, volitional top-down attention control has two distinct mechanisms: 

amplifying task-relevant stimuli and suppressing stimuli that are task-irrelevant 

and potentially distracting.  

 

Neuroanatomy and networks.  Corbetta and Schulman (2002) identify distinct 

neuroanatomical regions and networks associated with top-down and bottom-up 

attention networks.  Top-down networks include the dorsolateral prefrontal cortex 

(dlPFC) and anterior cingulate cortex (ACC), frontal eye fields (FEF), as well as 

regions associated with various forms of inhibition that include the dorsomedial 

PFC (DMPFC), right inferior PFC (rlPFC), left inferior frontal gyrus (lIFG) and 

ventromedial PFC (VMPFC) (Arnsten, 2009; Corbetta & Shulman, 2002; Gilbert 
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& Li, 2013; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010).  These 

regions are coordinated as part what is called the “Dorsal Attention Network” 

(Buschman & Miller, 2007; Corbetta & Shulman, 2002; Noudoost, Chang, 

Steinmetz, & Moore, 2010; Spreng et al., 2010)  in which the Frontal Eye Fields 

coordinate with dorsal parietal regions to direct attention spatially towards goal-

relevant stimuli.  

 

Top-down control along this network amplifies the signals of preferred, incoming, 

task-relevant information at lower stages in visual processing hierarchies  

(Buschman & Miller, 2007; Gilbert & Li, 2013; Hubel & Wiesel, 1962; Noudoost et 

al., 2010). Direct field recordings in primates support this model as they have 

revealed that frontal regions fire before parietal structures during top-down 

processes (i.e., search tasks) indicating the frontal cortex ‘selects’ stimuli for 

preferential processing (Buschman & Miller, 2007; Corbetta & Shulman, 2002).  

 

Bottom-up processing streams are driven by the intrinsic saliency of stimulus 

properties, such as color, shape, contrast and motion to which neurons in striate 

and extrastriate regions are ‘tuned’ (see Corbetta & Shulman, 2002 and Hubel & 

Wiesel, 1962, for example).  In contrast to top-down processes, parietal 

structures fire prior to frontal regions in bottom-up tasks (aptly named “pop out” 

tasks, Buschman & Miller, 2007; Goodale & Milner, 1992) indicating that 

information from salient stimuli are relayed up processing hierarchies to capture 

attentional focus of frontal regions (Bishop, 2008a; Corbetta & Shulman, 2002; 
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Pessoa, 2008). This pattern of firing is opposite of that observed in the 

aforementioned top-down tasks, but also follows a different pathway. While top 

down signals are directed along dorsal streams to direct spatial attention, bottom 

up signals travel up a ventral processing stream (Bishop, 2007; Corbetta & 

Shulman, 2002) classically associated with identifying stimuli (coined by Goodale 

and Milner as the ventral “what” pathway; Goodale & Milner, 1992).  

 

The balance between these two mechanisms enables adaptive filtering that 

directs attention towards potential environmental threats (stimulus-driven, 

bottom-up) and facilitates reflexive responses, but also allows us to focus 

attention on goal-oriented (executive-driven, top-down) tasks in the face of 

distraction.  For these reasons the effect of anxiety on this balance of attention 

control has wide-reaching implications for everything from anxiety disorders and 

general workplace productivity to elite sport and military performance.  

 

State Anxiety & Attention Control. Disentangling how anxiety affects these two 

separate and dynamic top-down and bottom-up mechanisms has been difficult.  

Most current theories of anxiety and attention control attempt to explain and 

incorporate myriad findings (see Bishop, 2007; 2008a; Eysenck & Derakshan, 

2011; Eysenck, Derakshan, Santos, & Calvo, 2007 ; Pessoa, 2008; Robinson et 

al., 2013;  Bishop, 2008a; Eysenck et al., 2007; Eysenck & Derakshan, 2011; 

Lang et al., 1998; and Robinson et al., 2011; 2013  for reviews and perspectives) 

but all agree generally that anxiety, whether introduced through threatening 
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stimuli (Bishop, 2008a; Robinson et al., 2013; 

Ansari & Derakshan, 2011; Lang et al., 1998) or 

threatening contexts (Pessoa, Padmala, Kenzer, & 

Bauer, 2012; Robinson et al., 2011; Robinson et al., 

2011; 2013), shifts the balance from top-down goal-

oriented processing towards bottom-up stimulus-

driven processes (Figure 1). Under most 

circumstances, top-down control can suppress and 

“tune-out” task irrelevant stimuli allowing for efficient 

allocation of limited resources. In the face of threat, 

however, the bottom-up system can override that 

control, and capture attention to alert one to 

changing contexts or potential dangers.  

 

Neurochemically, the interaction of anxiety of top-

down attention selection has been linked to the function of noradrenaline and 

dopamine receptors in the prefrontal cortex. Both dopamine and noradrenaline 

are necessary for enhancing selective attention by amplifying firing to preferred 

(task-relevant) stimuli and suppressing neural firing to non-preferred (distracting) 

stimuli. Stress activates the amygdala which signals for release of both 

chemicals; while a small addition of catecholamine can improve selectivity and 

filtering, too much will over-suppress prefrontal firing, diminishing responses to all 

stimuli in a non-discriminative manner (review by Arnsten, 2009). This absence 
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Figure 1: The influence of 
anxiety on attentional 
mechanisms. Heightened 
anxiety increases the 
influence of bottom-up 
capture of limited attentional 
resources, increasing the 
influence of task-irrelevant 
stimuli (distractors). 
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of top-down prefrontal selectivity putatively increases reactivity to stimulus-driven 

bottom-up processing. Indeed, in humans anxious states increase sensitivity to 

stimulus-driven sensory changes (Cornwell et al., 2007). The behavioral outcome 

is that increased sensitivity facilitates reflexive, inflexible behavioral responses to 

environmental stimuli, and impairs flexible, executive-driven responses (Ansari & 

Derakshan, 2011; Eysenck et al., 2007; Eysenck & Derakshan, 2011; Friedman 

& Miyake, 2004; Pessoa et al., 2012; Robinson et al., 2011; Schupp et al., 2006). 

A remaining challenge, however, is that the PFC directs many cognitive 

processes, and while we know firing patterns are altered, it is still not clear how 

these chemical processes relate to specific cognitive elements of attention 

control.  

 

Attention Control Theory (ACT) postulates that anxiety impairs the efficiency of 

executive control and, more specifically the inhibitory and task-switching 

components of executive function (Eysenck et al., 2007; Eysenck & Derakshan, 

2011). Eroding inhibitory function – which normally prevent task-irrelevant stimuli 

from compromising performance (Friedman & Miyake, 2004) – allows salient, yet 

irrelevant stimuli to arbitrarily consume limited attention resources. Eysenck and 

Derakshan (2011) point primarily to evidence from anti-saccade tasks as 

evidence for compromised inhibition: there are costs on conflict trials, in which 

participants are instructed to look away from a cue, not seen in congruent trials 

during which participants look towards the cue. Anti-saccade tasks do not, 

however, distinguish between top-down control that inhibits a reflexive response 
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to a stimulus, and the top-down control necessary to inhibit potentially distracting 

stimuli from capturing attention in the first place. It thus remains unclear if anxiety 

impairs top-down suppression of signaling from task-irrelevant stimuli. 

 

Measures of top-down and bottom-up attention.  There is a notable lack of 

research that examines the neural dynamics of bottom-up and top-down attention 

simultaneously in anxiogenic compared to neutral conditions. Part of this lacuna 

is due to the practical difficulty associated with measuring endogenously 

generated top-down control in behaving humans. Bottom-up attentional-capture 

has long been quantified using a variety of Event Related Potential (ERP) 

paradigms (e.g., Dien, Spencer, & Donchin, 2004; Keil et al., 2007; Mittermeier et 

al., 2011; Robinson et al., 2013; Sawaki & Katayama, 2009; Schupp et al., 2006; 

2004; Thierry & Roberts, 2007; Wachtel, 1967)  in which investigators time-lock 

(to the millisecond) electroencephalographic measurements of neural activity to 

experimentally-presented stimuli. Greater amplitude or earlier latency of the 

waveform indicates more neural resources were deployed to, or facilitated 

processing of, the stimuli that elicited the ERP. Investigators cannot similarly 

time-lock EEG to endogenous top-down processes, in part because it is difficult 

to predict changes such as covert shifts and lapses in attention.  

 

Combining bottom-up ERP measures with Steady State Visual Evoked Potentials 

(ssVEPs) (Müller & Hillyard, 2000) offers a possible solution. ssVEPs are 

continuous experimentally-induced neural frequency ‘tags’ that are sensitive to 
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endogenous top-down attentional focus, and easily measured with 

electroencephalography (EEG). A visual flicker presented at a specific frequency 

(say, 12Hz) will evoke that same frequency in visual processing regions of the 

cerebral cortex. Importantly, ssVEP amplitude is greatest when attention is 

devoted towards the driving flicker, and is suppressed when the flicker is 

unattended or actively ignored. While exogenous stimuli drive the ssVEP, when 

visual gaze is fixed the modulation of ssVEP amplitude is entirely endogenous 

and a function of top-down attentional control (Morgan, Hansen, & Hillyard, 

1996). A greater difference between the amplitude of an ssVEP when the driving 

frequency is attended (ssVEPAttend) and when ignored (ssVEPIgnore) indicates 

more selective top-down influence over stimulus processing. This can be 

quantified as a function of root mean square (RMS, or the quadratic mean) 

amplitude of the ongoing waveform and expressed as an Attention Modulation 

Index, or AMI, (Mishra, Zinni, Bavelier, & Hillyard, 2011):  

 

𝑨𝑴𝑰 =   
𝑹𝑴𝑺𝒂𝒕𝒕𝒆𝒏𝒅𝒆𝒅 − 𝑹𝑴𝑺𝒊𝒈𝒏𝒐𝒓𝒆𝒅
𝑹𝑴𝑺𝒂𝒕𝒕𝒆𝒏𝒅𝒆𝒅 + 𝑹𝑴𝑺𝒊𝒈𝒏𝒐𝒓𝒆𝒅

 

 

where  

 

𝑹𝑴𝑺 =   
(𝒙𝟏𝟐 + 𝒙𝟐𝟐…+   𝒙𝒏𝟐)

𝒏  
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For EEG data, n = (sampling frequency x time in seconds) and x is the voltage 

measured at each time point sampled.   

 

A higher AMI corresponds to greater top-down modulation, and incorporates both 

greater amplification of the flicker when attended, and suppression when ignored 

into a single index. More than one ssVEP frequency can be evoked and recorded 

at the same time and that the relative amplitude to each frequency reflects covert 

attention allocation (Morgan et al., 1996).  As attention shifts away from one 

frequency (12 Hz) to another frequency (8 Hz), the AMI to the 12 Hz frequency 

decreases and the AMI to the 8 Hz frequency increases. Different frequencies 

stimulate distinct neural networks (Ding, Sperling, & Srinivasan, 2006; 

Srinivasan, Bibi, & Nunez, 2006) (Bridwell & Srinivasan, 2012) and, importantly 

for the present study, reflect distinct cognitive aspects of  top-down attention 

control. ssVEPs in lower alpha frequencies reflect networks that suppress 

ignored stimuli, while ssVEPs in the high-alpha range reflect networks that 

amplify attended stimuli (Bridwell & Srinivasan, 2012).   ssVEPs are also 

sensitive to anxiogenic manipulation; ssVEP spectral power increases in 

response to emotional images compared to neutral stimuli (Hajcak, MacNamara, 

Foti, Ferri, & Keil, 2011; Keil et al., 2011; Moratti, Keil, & Stolarova, 2004; Wieser, 

McTeague, & Keil, 2011).  

 

While the ssVEP AMI provides a measure of top-down control, at the same time 

we can use the P3 event related potential (ERP) to measure bottom-up 
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attentional capture by task-relevant and by task-irrelevant stimuli. The P3 reflects 

a context updating response, and is generated when stimuli differ in some way 

from preceding stimuli. The P3 consists of two waveforms. The P3a, or ‘novelty 

P3’, is most sensitive to featural differences, and is maximally driven by novelty 

and salience of unexpected stimuli.  The stimulus need not be attended prior to 

onset; unattended, unexpected and salient stimuli will generate a large P3a 

irrespective of task-relevance. The P3a originates in frontal structures (Dien, 

Spencer, & Donchin, 2003) and its maximal deflection is measured at frontal (Fz) 

and central (Cz) sites along the midline.  The P3b, on the other hand, is sensitive 

to matching an expected but rare stimulus to memory, such as is required in a 

target detection task.  It is maximal over the parietal region (Pz) and localization 

studies revealed it is most likely generated from the temporo-parietal junction 

(Dien et al., 2003). It has been used to evaluate workload (Donchin, 1981) and 

decreases as workload increases and attentional resources are consumed. For 

more detailed reviews of these well studied waveforms see Polich (2007), 

Spencer, Dein & Donchin ( 2001), and for an early account (Donchin, 1981). 

 

Thus, for the purposes of studying attention control, changes in the P3a 

amplitude should reflect the relative amount of attention captured by task-

irrelevant, potentially distracting stimuli. The change in amplitude of the P3b 

should likewise reflect the relative amount of attention resources devoted to 

detecting a task relevant target.  
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The present study examines attention-related ERPs (the P3 and P3b) and ssVEP 

modulation (AMI) to examine the effects of anxiety (induced by threat of shock) 

on the persistent direction of attention towards task-relevant and away from task-

irrelevant and potentially distracting stimuli. Threat of shock is a reliable and valid 

(Schmitz & Grillon, 2012) means to induce anticipatory state anxiety for within-

subjects designs. If anxiety shifts attention processing away from top-down task-

relevant processing in favor of bottom-up stimulus driven systems, salient 

distractors should elicit a larger P3a as they compete with task-relevant stimuli 

for processing resources, while P3b amplitude to less inherently salient, but task-

relevant targets should decrease.  If greater ssVEP modulation reflects efficient 

attentional control, and anxiety erodes attentional control, individuals should 

exhibit a smaller difference in ssVEP amplitude (smaller AMI) as state anxiety 

increases. If ACT’s specific prediction that anxiety selectively impairs inhibition to 

a greater extent than other executive control processes is correct, anxiety-

induced differences in AMI should be driven mainly by impaired inhibition of task-

irrelevant stimuli, and observed in the suppression-sensitive 8.6Hz ssVEP.  

 

We predict that an inverse relationship exists between one’s anxious state and 

the ability to sustain top-down attentional control and suppression of task-

irrelevant stimuli.  

• Under anxiogenic conditions, ssVEP Amplitude Modulation 

Index (AMI) will decrease as anxiety increases reflecting 

reduced capacity to selectively filter incoming stimuli. 
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Additionally, if anxiety compromises selective attention-directed processing, 

attention capture by discrete task relevant (target) and task irrelevant (distractor) 

stimuli should reflect that difference as anxiety increases.  

• Attention-related neural responses to unexpected task-

irrelevant stimuli (P3a) will be directly related to induced 

anxiety reflecting weaker executive inhibitory control against 

distraction compared to neutral conditions. 

• Neural responses to expected task-relevant target stimuli (P3b 

amplitude) will be inversely related to induced anxiety levels 

reflecting less attention devoted to task-relevant targets. 

 

Additionally, trait measures of anxiety may predict responses to the threat 

paradigm.  Those with high Trait Anxiety (Spielberger, Gorsuch, & Lushene, 

2005) and high Anxiety Sensitivity (Deacon, Abramowitz, Woods, & Tolin, 2003) 

exhibit notable differences in attention control (Bishop, 2008b; Derryberry & 

Reed, 2002; Koster et al., 2006; Sehlmeyer et al., 2010). Thus, the present study 

will also examine in an exploratory manner whether trait measures of anxiety 

(STAI-Trait and ASI) are related to the neural responses measured.  
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2.  Methods 

In order to assess the effect of anticipatory anxiety on the balance between top-

down and bottom-up attention control mechanisms we recorded 

Electroencephalography (EEG) under three levels of threat while participants 

completed a target-detection task. The experiment involved two 1.5-2 hour 

recording sessions in a dimly lit room. One session was a “Shock Day” (SD) and 

the other “No-Shock Day”(NSD); these were counterbalanced for order across 

the two sessions. All participants gave informed consent before filling out a series 

of questionnaires during the first session. Both sessions occurred at the same 

time of day for each participant (+/- 1 hour), roughly one week apart (1-14 days).  

 

2.1  Target Detection Task (Figure 2). Two alphanumeric sequences 

appeared in white on a black background each 9 cm to the left and right of a 

central fixation cross (19” Dell monitor, 50 cm from the participant’s nose).  

 

 



	
  

	
   54 

 

Figure 2: Illustration of task and stimuli paradigm. At the beginning of each trial, participants were 
instructed to visually fixate on the center cross, but to attend covertly to one side of the screen and 
press a button – as quickly and accurately as possible – when they saw a digit (target) among a 
series of letters. A similar stream of letters was presented in the opposite visual field, but instead of 
digits, neutral faces designed to be distracting, appeared pseudo-randomly. On the No Shock Day, 
participants performed only Safe trials. On the Shock Day, Safe trials were mixed with Threat trials; 
participants were at risk of receiving a shock at any time during the Threat trials.   The sequences 
of letters progressed at a speed of 12 Hz on one side and 8.6Hz on the other side 
(counterbalanced, left and right) and provided the necessary flicker to generate the ssVEP 
frequencies. ERPs were time-locked to the presentation of the digits (targets) and the faces 
(distractors) that appeared within the flickered sequence in place of a letter.  
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Participants focused their gaze on a central fixation 

cross throughout the duration of each 10-second trial, 

and covertly (without shifting their eyes) attended either 

the left or right sequence. The objective was to press a 

button as quickly and accurately after they detected a 

target (digit) among the letters. One sequence 

progressed at a rate of 8.6 Hz (letters/second) and the 

other at 12 Hz; these frequencies were 

counterbalanced so that each frequency appeared an equal number of times on 

each side of the screen. The rate at which the letters and target digits appeared 

was too fast for the digits to be detected if the participant was not actively 

attending the sequence. No digits appeared in the ignored sequence; rather, to 

best challenge attention control with salient but task-irrelevant stimuli, we 

presented neutral faces among the letters as potential distractors (black and 

white neutral faces, NIMSTIM images 1-42, (Tottenham, 2013)(Figure 4).   Since 

bottom-up systems are more sensitive to salience, the distractor needed be more 

salient than the target digit. Colored squiggles have exhibited such properties 

(Courchense, Hillyard, & Galambos, 1975) but faces were chosen as they 

stimulate preferential processing even when unattended (Vuilleumier, Armony, 

Driver, & Dolan, 2001).    We chose neutral faces (as opposed to emotional 

expressions) for two reasons: 1) An emotional distractor might have added a 

confounding emotional load in addition to that imposed by the threat-of-shock, 

Figure 3: Example of a 
neutral face from the 
NIMSTIM picture set that 
appeared periodically in the 
unattended hemifield. 
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especially if the expression was negative (see the distinction between “hot” and 

“cold” stimulus processing in (Robinson et al., 2013)); and 2) anxiety has been 

linked to diminished distractor inhibition even when no threatening stimuli are 

present (Bishop, 2008b).  Both targets (digits) and distractors (faces) appeared 

randomly and with the same probability. The task was created and controlled 

using Presentation® software (Version 0.70, www.neurobs.com) on a desktop 

PC (Dell, Windows 2007 operating system).  

 

Before starting the first session participants practiced until they were able to 

perform the task without moving visual gaze from the central fixation cross. 

Researchers verified compliance and task proficiency before beginning 

experimental trials and during the testing session by monitoring both the 

participants’ eyes on a webcam placed above the monitor,  and the continuous 

display of muscular activity recorded from horizontal electrocculogram (HEOG) 

electrodes.    

2.2  Stress manipulation 

The Shock Day (SD) included “Threat” trials intermixed with “Safe” trials; the No-

Shock Day (NSD) included only “Safe” trials. During the SD participants wore 

electrodes on the fourth (ring) and fifth (pinky) fingers of the left (non-dominant) 

hand (see Figure 3) that delivered a mild shock (4mA, 100ms, finger stimulator, 

Colbourn Instruments), delivered in accordance with standardized safety 

guidelines (Butterfield, 1975). Participants were at risk at receiving a shock at 

any point during the Threat trials, but were at no risk of receiving a shock during 
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Safe trials. The shocks during Threat trials were delivered at random (Grillon, 

Baas, Lissek, Smith, & Milstein, 2004). An instruction screen indicated whether 

the subsequent trial would be a “Safe” or “Threat” condition. During the NSD all 

trials were Safe and participants did not wear the finger electrodes. This resulted 

in three experimental conditions:  

 

Threat: electrodes attached, risk of shock; 

Safe:  electrodes attached, no risk of shock; and, 

No Shock Day (NSD): electrodes not attached. 

 

These conditions were intended to create three increasing levels of anxiety (NSD 

< Safe < Threat).  Measures taken during the Shock Day trials reflect reactions to 

the non-specific threatening context, where the participant is aware he or she will 

be shocked sometime over the course of the 5-minute experimental block. 

Measures taken during the Threat trials have the addition of an acute, cued 

threat of shock sometime within an immediate 10-second period.  

 

It is important to note that most shock studies employ a method that allows the 

participant to choose an amperage level, yet a sense of control is also known to 

decrease anxiety (Geer, Davison, & Gatchel, 1970). Predictability of shock has 

also been shown to attenuate anxiety (Schmitz & Grillon, 2012). In light of these 

observations, and because it is traditionally very difficult to ethically and 

consistently induce stress in a laboratory setting, we chose instead to use a 
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standard amperage for all participants (4mA), did not tell them how many shocks 

would be delivered, and did not deliver sample shocks prior to the first Shock 

Day Threat trial. Instead, the shock was described as a sensation that most find 

“extremely uncomfortable, but not painful.” Though the standard level of shock 

we used was well within OSHA safety standards, previous studies that have also 

set a standard amperage for all participants set the level below that which we 

used (for example, 1.8mA in Grillon, Ameli, Woods, Merikangas, & Davis, 1991). 

Although this suggests our threat-of-shock paradigm is among the most stressful 

currently in publication, most participants reported the sensation and threat was 

modestly aversive.  

 

2.3  Measures 

Trait Measures & population characteristics.  Prior to Session 1, before 

entering the testing room and before they knew if Session 1 was a Shock Day 

(SD) or No-shock Day (NSD), participants completed the Spielberger Trait 

Anxiety Inventory (STAI-T, Spielberger et al., 2005), Anxiety Sensitivity Index 

(ASI, Deacon et al., 2003), Beck Depression Inventory (BDI, Beck, Steer, & 

Brown, 1996), and the Fear Survey Schedule II (FSS II, Greer, 1965). The STAI 

and ASI were used as predictor variables in exploratory hypotheses regarding 

how trait anxiety interacts with the dependent measures. The BDI and FSS II 

were included to characterize the population and, because trait anxiety often 

correlates with depression and fear responses, to assess whether any findings 

including the STAI and ASI could be driven instead by other closely-related 



	
  

	
   59 

factors.  It has also been demonstrated that Trait Anxiety and Trait Fearfulness 

have differential lateralization in the brain suggesting different influences on 

cognitive function (Dien, 1998). 

 

Electroencephalography (EEG), ERPs and ssVEPs.  Researchers fitted 

participants with a 36 active-electrode BrainVision atciCAP system (Brain 

Products, Munich, Germany). Thirty-two electrodes recorded brain data from the 

scalp in a standard 10-20 montage (Jasper, 1958). Two electrodes placed above 

and to the right of the right eye captured horizontal and vertical eye movement, 

and two additional electrodes below the right eyelid captured startle responses. 

Impedance thresholds for all electrodes were kept below 7mΩ and all data were 

recorded at a 1000Hz sampling frequency.  

 

The alphanumeric sequences in the task also generated the 8.6Hz and 12Hz 

ssVEPs. The digital monitor’s 60 Hz refresh rate limited the frequencies at which 

the sequences could progress reliably; hence a new letter appeared every five 

frames for the 12Hz sequence and every seven frames for the 8.6 Hz sequence. 

Likewise, targets (digits) and distractors (faces) presented within the attended 

and unattended frequencies, respectively, elicited the ERPs of interest.  

 

Manipulation Checks. 

Self Report. The State portion of the STAI indicated pre-session stress for both 

days.  During testing sessions participants indicated their current emotional 
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valence, level of arousal, and sense of control (dominance) using three 

subscales on the 9-point Self Assessment Manikin  (SAM, Bradley & Lang, 1994) 

and marked a point along each of four 100mm Visual Analog Scales (VAS) to 

rate how comfortable, calm, relaxed and anxious they felt. Two of the VAS scales 

oriented the positive end towards the left of the sheet while the other two oriented 

the positive end towards the right.  The VAS and SAM ratings were assessed 

before (“pre”), half way through (“during”) and after each testing session (“post”). 

During the Shock Day the “pre” testing assessment occurred just after the 

electrodes had been placed on the participant’s fingers, and the “post” 

assessment occurred after the electrodes had been removed. 

 

Startle.  The startle blink response increases as anxiety increases (Filion, 

Dawson, & Schell, 1998) and provides a physiological index of amygdala 

activation.  White noise bursts (100ms, 60DBA against 48DBA ambient noise) 

triggered startle responses during each type of trial, which indicated whether the 

stress manipulation (threat of shock) was effective in creating anxiety. Two 

electrodes positioned on the lower orbis ocularis (active below the pupil, and 

reference below the outer corner of the eye) recorded the magnitude of startle 

responses.  

 

2.4 Procedures 

The Shock Day (SD) and the No Shock Day (NSD) were counterbalanced for 

order and across gender. On the first testing day and after giving informed 
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consent, participants filled out: the Trait portion of the STAI; the ASI; the FSS II; 

and, the BDI. Researchers then informed the participant whether the first testing 

day would be the SD or NSD after which participants completed the State portion 

of the STAI. All of this was done before participants entered the testing room.  

During the second session participants they only filled out the State portion of the 

STAI before entering the testing room.  

 

In the testing room researchers placed the EEG cap and eye electrodes while 

participants practiced the task. During this time researchers also screened 

participants for a measureable startle response to random white noise bursts 

presented during the practice trials. Those who did not exhibit a measurable 

startle did not continue the study and were given $5. Participants who exhibited 

measureable startle practiced the task until they were able to detect the targets 

without shifting their eyes from the central fixation cross.  

 

The testing session consisted of four experimental blocks of 25 trials each with a 

one to two minutes of rest between blocks. Researchers attached the finger 

shock electrodes before the first block on the SD. On both days participants 

completed the Self Assessment Manikin (SAM) and Visual Analog Scales (VAS) 

before the first block (‘before’), again between blocks 2 and 3 (‘during’), and after 

block 4 (‘after’). On the SD participants filled out the first SAM and VAS ratings 

just after the finger electrodes had been attached, and the final SAM and VAS 
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ratings after the electrodes had been removed. Participants received $40 for 

completing both sessions (Figure 4). 
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Figure 4. Order of testing procedures from left to right, during the Shock Day (top row) and 
the No-Shock Day (bottom row).  Times listed on the arrow indicate the duration of the testing 
stage above.  
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2.5  Signal processing and statistical approach.  

Startle. Startle data were processed in accordance with the standards outlined in 

Blumenthal, 2005 (Blumenthal et al., 2005). Data from the active startle electrode 

(lower-eyelid, below the pupil) were re-referenced against the outer startle 

electrode (lower eyelid, below the corner of the eye).  Signals were band-pass 

filtered (28-40Hz with a 4th order Butterworth), rectified, smoothed (FIR Kaiser), 

visually inspected for non-startle artifact and averaged. Standardized area under 

the curve was calculated for each participant’s data from 50ms-120ms after 

noiseburst onset for each condition.  

 

Event Related Potentials (ERPs) Signals from all scalp electrodes were 

referenced on-line to the left ear and were re-referenced off-line to an average 

recorded from both ears. Data were band pass filtered between 0.1-20 Hz using 

a 3rd order zero-phase shift Butterworth filter. One-second epochs were extracted 

from 200 ms prior to stimulus onset to 800 ms after stimulus onset for both target 

(digit) and distractor (face) stimuli. Each epoch was baseline corrected against 

the 200 ms pre-stimulus average and epochs distorted by blinks or excessive 

noise (due to shocks or startle probes) were rejected via visual inspection.  The 

remaining epochs were averaged together to form an ERP for each condition for 

each person and the grand average for the group.   
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Peaks of interest in the target and distractor ERPs were identified from the grand 

average ERPs for the whole sample. The P3b to the target stimulus was maximal 

at the Pz electrode 466 ms after stimulus onset and averaged over a window 200 

ms before and after peak latency. The P3a to the distractor stimulus was much 

smaller, and its latency was earlier, peaking 360 ms after stimulus onset at Fz; 

the P3a was averaged over a 50 ms window.   

 

Steady State Visual Evoked Potentials (ssVEPs): The alphanumeric 

sequences in the target-detection task were used to generate distinguishable 

steady-state visually evoked potentials at 8.6Hz and 12Hz. Each 10-second trial 

epoch was extracted from filtered data and identified as either “Attend 12Hz, 

Ignore 8.6Hz” or “Attend 8.6Hz, Ignore 12Hz” for each condition. All epochs were 

averaged using a 1-second moving window average synced with each frequency 

to create “Attend” and “Ignore” averages for both 12Hz and 8.6Hz signals (see 

Figure 5).   

Attend 12 Hz 
(Ignore 8.6 Hz) 

Attend 8.6 Hz 
(Ignore 12 Hz) 

10 SECOND EPOCHS	
  
Attend 12 Hz 

Ignore 12 Hz 

Attend 8.6 Hz 

Ignore 8.6 Hz 

1 SECOND EPOCHS 

12 Hz 
moving 
window   

 

8.6 Hz 
moving 
window   

 

Figure 5. Signal processing to isolate ssVEPs for each condition and frequency. 
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The resulting 1-second ssVEP averages for each trial were averaged together for 

Attend and Ignore values for each electrode. Root mean square values were 

calculated for each electrode and averaged over 10 electrode sites (P3, P4, P7, 

P8, TP9, TP10, PO9, PO10, O1, O2) (Mishra et al., 2011).  From these averaged 

RMS values we calculated the Attention Modulation Index (AMI, equation 

presented in the Introduction) for each condition.  

 

Statistical Approach: The STAI-S sores were tested using a two-tailed t-test. 

State measures assessed before, during and after each session (VAS and SAM 

scores) were entered into a 2 (No-Shock Day, Shock Day) X 3 (before, during, 

after) repeated measures ANOVA (RMANOVA). All other measures (startle, 

performance, ssVEP AMI scores, and ERP amplitudes) were standardized when 

appropriate and entered into a one-way, three level ANOVA for condition (NSD, 

Safe, Threat).   In instances where data violated the sphericity assumption, 

Greenhouse-Giesser adjusted degrees of freedom were used to control for Type 

I error, though the adjustments did not change the results in any of the tests 

reported herein. Post-hoc pairwise comparisons were corrected using Tukey’s 

HSD post hoc analysis.  
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3. Results 

3.1 Sample characteristics. Fifty-five college-age participants read and 

signed the consent form; three lacked a measurable startle response and were 

not enrolled.  No participants declined to participate after the shock condition was 

described and no participants requested to discontinue the experiment after 

experiencing shock. The EEG data from two participants were rejected for 

excess eye blink artifact. The remaining behavioral and self-report data consisted 

of N =52 (26 m) participants, and EEG sample included N = 50 (25 m) 

participants.  

 

Table 1. Characteristics of the Sample. Means and standard deviations of the sample and 
normalized data from comparable populations. 

MEASURE Mean(SD) Normed Samples 
Spielberger Trait Anxiety  
(STAI-T) 

Total: 34.81 (6.91) 
Male: 35.22 (7.15) 
Female:34.36(6.75) 

College age adults 
Male: 36.47(10.02) 
Female: 38.76(11.95) 
(Spielberger et al., 2005) 

Anxiety Sensitivity Index 
(ASI) 

Total: 14.11 (8.17) 
Male: 14.69(8.15) 
Female: 13.48(8.31) 

Healthy adults 
Male: 15.4 (8.1)  
Female: 23.6 (10.9) 
(Reiss, Peterson, Gursky, 
& McNally, 1986) 
 

Beck Depression Inventory 
(BDI) 

Total: 3.58 (2.94) 
Male: 3.63(3.27) 
Female: 3.52(2.6) 

0-13 “minimal 
depression” (Beck et al., 
1996) 

Fear Survey Schedule  
(FSS) 

Total: 129.06 (32.8) 
Male 128.04(37.13) 
Female: 130.16(28.1) 

College age adults 
Total:98.64(38.47) 
Male: 81.81(33.64) 
Female: 108.47(36.78) 
(Bernstein & Allen, 1969) 

 

  

 



	
  

	
   67 

 

3.2   Assessment of State Anxiety   

The Spielberger State Anxiety Inventory. STAI-S scores were significantly 

greater at the beginning of the Shock Day session than before the No Shock Day 

(NSD) session. StateSD = 29.54(SEM= 0.99), StateNSD = 33.73(SEM=1.26), t(51) = 

3.44,  p   = .001, 2-tailed). 

 

Self-Assessment Manikin (SAM). Higher scores on the total SAM score and on 

each of the subscales indicate more negative states. All omnibus tests for each 

SAM subscale were significant such that valence became more unpleasant, 

arousal increased and dominance/control decreased to a greater degree during 

the Shock Day (compared to before and after testing) than they did on the NSD 

(Emotion: F(2,100) = 5.00 , p  = .009; Arousal: F(2,100) = 4.59, p = .012; 

Dominance/Control: F(2,100) = 17.84 , p < .001). Participants reported more 

negative emotion, greater arousal and less dominance/control during the Shock 

Day compared to the NSD (Day main effect Emotion: F(1,50) = 6.32, p = .015; 

Arousal: F(1,50) = 34.69, p <.001; Dominance/Control: F(1,50) = 15.98, p < .001) 

and during the testing session compared to before or after the testing sessions 

(Time main effect, Emotion: F(2,100)  = 20.15, p <.001; Arousal: F(2,100)  = 4.91, p 

=.012; Dominance/Control: F(2,100) = 20.85, p < .001) (Figure 6). 
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Visual Analog Scales. Participants reported feeling a significantly greater 

increase in anxiety (“How anxious am I?”) and greater decrease in feeling calm 

(“How calm am I?”)  and relaxed (“How relaxed am I?”) during the testing session 

compared to before and after the session on the Shock Day than they did on the 
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Figure 6: Self Assessment Manikin 
(SAM) subscales. * indicates 
significant differences between the 
testing days at the same time period. 
Bars represent SEM. 
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NSD (anxiety interaction: F(2,102) = 10.27, p<.001; calm interaction: (F(2,102) = 7.02, 

p =  .002); relaxed interaction: F(2,102) = 6.35, p  = .004 ). While the interaction 

was not significant for self-reported discomfort (“How uncomfortable am I?”) 

participants showed significant main effects for Day (NSD vs Shock Day) and for 

Time (Pre, During, Post) for all four VAS question.  Participants reported feeling 

greater overall anxiety and discomfort and feeling less calm and relaxed on the 

Shock Day compared to the NSD (main effect for Day for anxiety: F(1,51) = 38.63, 

p < .001; discomfort: Day F(1,51) = 15.17, p <.001; calm: F(1,51) = 15.17, p <.001); 

and feeling relaxed: F(1,51) = 30.62, p <.001).  They also all showed  greatest 

feelings of anxiety, discomfort and the least amount of calm and of feeling 

relaxed during the testing session compared to before and after the session 

(anxiety: F(2,102) = 23.06, p <.001; discomfort: F(2,102) = 8.92, p <.001; calm: F(2,102) 

= 12.85, p <.001; and feeling relaxed: F(2,102) = 12.84, p <.001).  
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Figure 7. Visual Analog Scales. * indicates significant differences between 
the same time point Pre, During, Post) on each measure.  
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Startle.  As depicted in Figure 8, the 

threat protocol reliably potentiated 

startle across the three conditions (F(2, 

48)  = 48.28, p < .001).  Startle for the 

Threat condition was larger than the 

Safe condition (StartleThreat-StarteSafe 

= 0.408, p <.001), and both were 

larger than the startle on the No 

Shock Day (StartleThreat - StartleNSD = 

0.467, p <.001; StartleSafe-StartleNSD = 

0.069, p = .029).  Average 

standardized area under the curve 

(50-150ms after noiseburst) and 

average peak amplitude values are 

reported in Table 2.  

 

 

 

 

  
Condition 

Mean Standardized 
Area Under the Curve 

(SE) 

Mean Peak 
Amplitude (SE) 

No Shock 
Day (NSD) 

0.285 (.059) 10.31 (1.93) 

Safe (S) 0.351 (.054) 14.02(1.87) 
Threat (T) 0.758 (.090) 26.71(2.73) 

Table 2. Standardized and unstandardized values for startle 
magnitude (standard error) by condition.  
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Figure 8. A. Startle waveforms for each 
condition. B. Mean standardized area under the 
curve values for each condition. Error bars 
represent standardized error, and * indicates 
significant difference compared to the NSD 
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3.3   Dependent Measures 

Performance. Reaction times to targets slowed as anxiety increased (F(2,98) = 

7.72, p = .003,  ε2= .138). Corrected pairwise comparisons revealed that reaction 

time during the Threat condition was significantly slower than both the Safe 

(RTThreat – RTSafe = .012 s, p <.001) and NSD conditions (RTThreat – RTNSD = .012 

s p = .012). Participants showed no significant differences in accuracy between 

the three experimental conditions (F(2,98) = .279 p =.7089, ε2 = .006 ).  

 

 

 

 

 

 

Figure 9.  Performance on the target detection task. * indicates significant difference 
compared to NSD.   
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ERPs. 

P3b. As predicted, the magnitude of the neural response to the target digits was 

reduced as anxiety increased, reflecting fewer resources were devoted to goal-

oriented stimulus processing (Figure 10A; F(2,98)  = 4.48 , p = .014, ε2  =.084 ). 

Specifically, the P3b amplitude at Pz to the target digits was significantly 

attenuated in the Threat condition compared to the Safe and No-Shock Day 

conditions (Figure 10B; P3bNSD – P3bThreat =1.622 µV, p  = .045; P3bSafe-P3bThreat 

= 1.711 µV, p = .037). 

 

P3a. Contrary to prediction, the magnitude of neural response to the irrelevant 

faces (P3a amplitude) did not change across condition (F(2.98) =.819, p  =.416, ε2 

=.016), indicating there was not a significant increase in attention captured by the 

task-irrelevant stimuli as anxiety increased. See Appendix 1 for ERP waveforms 

at each scalp site.  
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To investigate whether the decease in P3b to targets was behaviorally relevant, 

we correlated the difference in reaction times between the NSD and Threat 

condition with the difference in P3b amplitude between the NSD and Threat 

condition. The correlation was significant (2-tailed test, r  = .285, p  = .045, R2 = 

.081) indicating that the more anxiety compromised the neural response to the 

target, the more reaction time slowed in response to the targets.  

Figure 10. A. Grand average P3b waveforms to targets for each condition at Pz. B. P3b 
amplitude (mean area, 346-546 ms after stimulus onset) by condition. C. Grand average P3a 
waveforms to distractors for each condition. D. P3a amplitude (335-415 ms after stimulus onset) 
by condition. For panels A and C, Green line = NSD; Blue line = Safe; Red line = Threat. See 
Appendix 1 for additional figures. * indicates significant difference compared to NSD condition. 
Bars represent SEM. 
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ssVEPs. Contrary to prediction, participants showed a significant increase in the 

12 Hz Attention Modulation Index (AMI) as threat increased (F(2,98) =4.962 , p = 

.009 , ε2 = .092).  Corrected pairwise comparisons revealed as significant 

difference between the Safe and NSD (AMI12NSD –AMI12Safe = -.041, p = .040) 

and the Threat and NSD conditions (AMI12NSD – AMI12Threat = -.041, p= .013). 

There was no change in the 8.6 Hz ssVEP (F(2,98) = .098 , p =.907 , ε2 = .002). 

This suggests top-down attention engaged under anxiogenic conditions (Safe 

and Threat) to modulate the 12 Hz frequency. The modulation of 8.6 H  showed a 

relatively constant level of modulation over the three conditions.  
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Figure 11. AMI of 12Hz and 8.6Hz ssVEPs. The 12Hz ssVEP shows an increased in 
modulation during Safe and Threat trials reflecting greater selective filtering as anxiety 
increases. Modulation of the 8.6Hz ssVEP did not change as a function of anxiety. * 
indicates significantly different from NSD condition.  

	
  *	
   	
  	
  	
  	
  	
  	
  *	
  

ssVEP	
  Attention	
  Modulation	
  Index	
  

AMI AMI 



	
  

	
   76 

	
    

These results were somewhat surprising. Since AMI is a function of both 

amplification of the attended signal and suppression of the ignored signal, we 

examined which of these functions (attend or ignore) was most affected by the 

threat manipulation. In an exploratory way we entered the 12Hz RMSattend and 

RMSignore values into a 3 (condition) X 2 (attend/ignore) ANOVA. The omnibus 

test was significant for an interaction (F(2,92)  = 3.76, p = .032, ε2 = .071) indicating 
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Figure 12. Averaged ssVEP waveforms. Left column: 12Hz , Right column: 8.6 Hz.  
Top  row: ssVEPAttend and ssVEPIgnore for each frequency. Black line: attend, gray line: 
ignore. Middle row: ssVEPAttend for each condition and frequency. Bottom row: 
ssVEPIgnore for each condition and frequency. Green line: NSD, blue line: Safe, red line: 
Threat. 
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the anxiety manipulation affected RMSattend and RMSignore  differently; RMSattend 

amplitude increased while RMSignore amplitude stayed relatively stable but 

exhibited a downward pattern (see Figure 13). While neither corrected pairwise 

comparison (between RMSattend-NSD and RMSattend-Threat; nor between RMSignore-NSD 

and RMSignore-Threat) was significant, the patterns suggest that both amplification 

of the attended signal and slight suppression of the ignored signal contributed to 

the significant difference in AMI between conditions.   During the NSD there 

appears to have been no modulation of the 12Hz frequency: the AMI value is 

close to zero (and standard error includes zero), and error distributions for 12Hz 

RMSNSDattend and 12Hz RMSNSDignore overlap suggesting an absence of any top-

down filtering of the 12Hz frequency during the NSD. A similar analysis of the 

8.6Hz ssVEP showed no interaction, in that neither RMSattend nor RMSignore seem 

to have been affected by the anxiety manipulation. Rather there was a marked 

stability in amplitude for 8.6Hz RMSattend and 8.6Hz RMSignore even during the 

NSD. 
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4.  Discussion 

The present study examined top-down and bottom-up measures of attention in a 

single protocol to investigate how these systems compete for limited resources 

under anxiogenic conditions.  Our findings suggest top-down control, as 

measured by increased ssVEP modulation, responds to moderate increases in 

anxiety (i.e. Safe trials on the Shock Day compared to the No Shock Day) by 

selectively amplifying signals from task-relevant stimuli in visual processing 

areas. Under more intense anxiety however (i.e. Threat trials), neural responses 

to task-relevant targets diminished and reaction times slowed indicating the top-

down control was not sufficient to prevent inefficient allocation of attentional 

resources. In some cases the findings were different than predicted (ssVEP and 

P3a results), however the overall pattern of results offers meaningful insight into 

the dynamics between top-down and bottom-up attentional systems under 

heightened anxiety. Specifically: 1) The results support the general idea that 

anxiety impairs the efficiency of attention control. Closer examination of the data 

also show 2) suboptimal resource allocation was not the result of an erosion in 

top-down control mechanisms, but is more likely the result of cognitive load-

related conflict for limited processing resources, and 3) predictions that anxiety 

selectively compromises executive inhibition of potentially distracting stimuli was 

not supported. The specific bases for these conclusions are discussed in detail 

below.  
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Self-report, startle and performance data indicate that the threat manipulation 

successfully increased anxiety across the three experimental conditions. Startle 

potentiation indicated there was a modest increase in anxiety during the Safe 

trials compared to No-shock Day (NSD) trials, but this increase did not affect 

performance.   Startle potentiation between the Threat trials and NSD trials, 

however, was six times larger than the potentiation associated with Safe trials, 

indicating a far greater increase in amygdala activation associated with the 

immediate cued threat of shock compared to a more general and contextual 

threat of shock. The larger increase in anxiety during the Threat condition was 

enough to affect performance; reaction times to targets were slower under the 

threat condition.  

 

The increase in 12Hz ssVEP AMI was the only dependent measure that changed 

with respect to the slightly anxiogenic Safe condition. During the more anxiogenic 

Threat trials, performance slowed and the neural response to targets (P3b) 

decreased. Yet, there was no further change in ssVEP AMI beyond that 

observed in response to the Safe trials.  This suggests top-down mechanisms 

engaged in response to the contextual threat (Safe trials), but as anxiety 

continued to increase the filtering was not enough to prevent degraded 

processing of targets.    
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Anxiety reduced the efficiency of cognitive resource allocation and 

performance. Together, these findings support ACT’s primary hypothesis that 

anxiety reduces efficiency of attention control (and subsequent performance) but 

not necessarily effectiveness. First, while task accuracy (i.e., effectiveness) did 

not change as anxiety increased, reaction times slowed. Second, executive-

driven top-down filtering mechanisms increased as anxiety increased. There was 

very little (if any) modulation of the 12Hz ssVEP during the NSD trials, meaning 

participants did not need to engage top-down filtering mechanisms to the 12Hz 

flicker to perform the task in the absence of threat, but as anxiety increased so 

did top-down filtering of the 12 Hz signal. An increase in top-down filtering during 

the Safe and Threat conditions implies additional effort was required to maintain 

the same level of performance as in the NSD conditions. Third, spectral analysis 

of these data elsewhere (see Paper 1) show significant desynchrony in high-

alpha power during Threat trials compared to Safe and NSD trials. High-alpha 

desynchrony is associated with task-related cortical activation, therefore anxiety-

induced cortical activity to achieve the same level of task accuracy, thereby 

reducing efficiency. Likewise, because high-alpha power desynchronized during 

the same conditions in which we observed smaller P3b amplitude and slower 

RTs (i.e., only during Threat trials), it is likely the increase in cortical activation 

reflects some aspect related to inefficient maintenance of attention to maintain 

performance.   
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These findings are important as processing inefficiency has a distinct cost in 

terms of performance. First, while inefficient performers may be able to initially 

compensate, they are less likely to be able to sustain that performance over time 

compared to an efficient performer. Secondly, if inefficient performance means 

there is a relative increase in task-irrelevant cortical “noise” processing in the 

central executive, that noise may likewise degrade psychomotor 

efficiency.  Psychomotor efficiency is a hallmark of expert performers (such as 

marksmen) and is associated with less relative cortical activity than that observed 

in a novice when performing a skilled task (Deeny, Haufler, Saffer, & Hatfield, 

2009). Greater relative cortical activity in novices is attributed to non-essential 

processes that can introduce noise into circuits. Such noise can affect motor 

control and manifest in jerky kinematics (Deeny et al., 2009, Causer et al., 2011). 

Cortical efficiency reflects refined processes, which leads to refined motor 

control. If increased anxiety reduces processing efficiency, it may likewise 

introduce noise into psychomotor circuits; such noise may not affect simple motor 

skills like the simple button press in the present study, but could impair the 

quality of more complex motor skills such as in sharp shooting.  

 

Inefficient allocation of processing resources was not the result of reduced 

top-down control. ssVEP modulation followed a pattern opposite to that 

predicted. Though it was expected ssVEP AMI would reduce as anxiety 

increased, and that this reduction would correspond to the suboptimal 

deployment of processing resources, we observed a very different, but 
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illuminating pattern. Rather, ssVEP modulation increased in response to 

moderate anxiety and exhibited no further alteration under more acute and 

intense threat, while cortical activation increased, neural responses to task-

relevant targets decreased, and reaction times lagged.  Thus, contrary to ACT’s 

position that anxiety erodes attention control, which then leads to inefficiencies in 

cognitive processing, we observed a decrease in processing efficiency (as 

described above) under the highest levels of threat, without a corresponding 

lapse in top-down control. Indeed, top-down control was relatively higher during 

the highest level of threat (during Threat trials) than it was during the least 

amount of threat (during NSD trials).   Thus, our findings do not support the direct 

causal links in ACT’s model.  

 

Due to the limitations of the present study, we can only speculate as to what 

might better explain these data. One possibility is that narrowed top-down 

filtering of bottom-up stimuli may be a response to, rather than the source of, the 

mechanism responsible for anxiety-induced distractibility.   Indeed, there is 

considerable evidence that anxiety enhances stimulus-driven attention processes 

(Cornwell, Mueller, Kaplan, Grillon & Ernst, 2012, Cornwell et al., 2011) and 

lowers the threshold for stimulus detection, improves performance on 

discrimination and detection tasks (Cornwell et al., 2007; Robinson et al., 2011). 

Robinson et al. (2013) recently reviewed this literature and summarized their 

collective findings nicely: 
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“Specifically, threat of shock studies point to enhanced sensory-
perceptual processing across multiple stimulus modalities as a 
function of anxiety... These findings point to a fundamental shift 
whereby sensory-perceptual systems are dynamically reconfigured 
during anxiety states to be more sensitive to sensory 
perturbations.”  

-  Robinson et al., 2011   

 

It follows that increased sensitivity to sensory stimuli (bottom-up processing) 

could ‘overload’ sensory systems (Robinson et al., 2011) and increase conflict for 

attention. Thus, the attenuated P3b may have been the result of load-related 

conflict for limited processing resources, rather than the result of reduced top-

down control. This latter interpretation would mean these findings lend support 

instead to the “dual competition“ framework for understanding attention and 

anxiety (Pessoa, 2009). 

 

The general finding that anxiety increases the sensitivity of bottom-up stimuli, 

also predicts salience will drive processing to a greater degree than task-

relevance. From this we would expect to see a relative increase in response to 

salient distractors, yet we did not observe any difference in the P3a to distractors. 

While the reduced amplitude of the P3b, and the lack of change in the P3a could 

mean the salient distractors had processing priority over less salient target stimuli 

when resources were scarce, such an interpretation speculates beyond the limits 
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of the current study.   Mainly, P3a and P3b have different origins and reflect 

slightly different stages in bottom-up attention capture mechanism, so it is difficult 

to compare them directly. Indeed, another speculative interpretation for the same 

result could be that the conflict for resources occurred after the initial attentional 

recognition of a deviant stimulus (P3a). According to Polich’s model (Polich, 

2007), incoming stimuli interact and compete for working memory resources after 

the P3a is generated. If Polich’s model is correct, the P3b, which occurs slightly 

later than the P3a and is related to matching stimuli to working memory, would 

reflect a conflict for limited processing whereas the P3a might not. The present 

findings, however cannot offer any additional clarity on this point because ACT 

also predicts a larger P3a with increased state anxiety.  

 

Speculation of alternate explanations aside, the observation of an attenuated 

P3b in spite of continued and persistent top-down control as indexed by the 

ssVEP does not support ACT’s hypothesis that the cause of increased 

inefficiency is due to an erosion of attentional control. 

 

Top-down inhibition was not compromised as anxiety increased.    One of 

ACT’s specific contributions to competing theories of anxiety and attention is that 

it predicts anxiety impairs the efficiency of executive inhibitory functions 

(Derakshan & Eysenck, 2009). However, when we examined the ssVEP data 

more closely, we found no evidence to support this prediction. First, 

subcomponents of the ssVEP AMI index (RMSAttend and RMSIgnore) provide 
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independent information for top-down amplification of task-relevant stimuli 

(RMSAttend) and for top-down inhibition of task-irrelevant stimuli (RMSIgnore). If 

anxiety impairs executive inhibition, as anxiety increased the amplitude of the 

RMSIgnore  signal should have also increased. We observed this pattern in neither 

of the ssVEP frequencies. Rather RMSIgnore amplitudes to both frequencies 

stayed relatively stable across all conditions. Second, ssVEPs in the high-alpha 

range (12Hz) tag neural populations primarily involved in top-down amplification 

of attended stimuli, whereas ssVEPs in the low alpha range (8.6Hz) tag networks 

mostly involved in top-down suppression of task-irrelevant stimuli (Buschman & 

Miller, 2007). We also observed top-down amplification that was specific to the 

12Hz ssVEP, but we saw no corresponding suppression in the 8.6Hz ssVEP. 

Instead, the 8.6Hz ssVEP and its subcomponents (RMSAttend and RMSIgnore) were 

remarkably stable across all three conditions. Additionally, and as mentioned 

earlier, the P3a to distractors did not indicate that distractors captured attentional 

resources during anxious compared to non-anxious conditions.  Even though 

resources devoted to task-relevant stimuli were eroded indicating compromised 

and inefficient attentional processing, these findings do not suggest that it was 

the result of eroded inhibitory control. 

 

The divergent findings with respect to the selective inhibition of task-irrelevant 

stimuli in the present study, and enhanced costs associated with inhibition in anti-

saccade tasks often cited as supporting evidence for ACT, may be partly due to a 

lack of specificity in terms. Eysenck and Derakshan refer to general executive 
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inhibition as preventing disruption of potentially distracting stimuli, and cite 

studies involving the inhibition of a reflexive response (saccade generation). But 

the responses are to stimuli that have already captured a certain amount of 

attention to generate the response in the first place. The findings of the present 

study on the other hand, are specific to a form of executive perceptual inhibition 

of potentially distracting stimuli in processing stages that precede saccade 

generation, and in this case, that occurred in the absence of gaze shifts. It may 

be the case that the fundamental differences between these types of inhibition 

reflect different stages of the attention control process, and that each could then 

be differentially affected by anxiety. If this is this case ACT may be refined to 

better account for such findings.   

 

It is important to note, that the above conclusions are limited by the possibility 

that ssVEP frequencies not tested in the current study may exhibit the patterns 

predicted by ACT. Both Buschman and Miller (2007)  and Ding et al., (2006) 

found that different frequencies tag distinct networks and that these networks are 

distinctly associated with different cognitive functions. Thus, the interpretation of 

our results remains limited to the frequencies tested.   

 

In summary, the results of the present study support ACT’s hypothesis that 

anxiety decreases efficiency of attention control, but does not support more 

specific predictions. Specifically, and contrary to ACT, our findings suggest that: 

1) suboptimal allocation of cognitive processing resources is not dependent on 
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the erosion of executively-driven attention control mechanisms; and 2) anxiety 

did not affect top-down inhibition. These mixed results suggest a possible need 

to revise ACT in a way that accounts for deficits associated with non-eroded top-

down control, and that better distinguishes between various types of inhibitory 

control. 
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Appendix 1. – Additional Figures 

A.1. Midline ERPs 

A.2. Full scalp ERPs – Targets 

A.3. Full scalp ERPs – Distractors 

A.4. Topographical voltage map – P3b to Targets 

A.5. Topographical voltage map – P3a to Distractors 
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 Figure A1. Midline ERPs for Targets (left) and Distractors (right).  
Green line: NSD  � Blue line: Safe  � Red line: Threat 

   Targets                 Distractors 
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Figure A4. Topographical voltage scalp maps – P3b to Targets, 346-546ms after stimulus 
onset. A. Voltage for each condition. B. Voltage maps reflect average of highlighted time 
period in the waveform at Pz.   C. Voltage difference between NSD and Threat conditions 
(NSD – Threat).  
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Distractors 
P3a  

Figure A5. Topographical voltage scalp map – P3a to Distractors, 335-415ms after 
stimulus onset. A. Voltage for each condition. B. Voltage maps reflect average of 
highlighted time period in the waveform at Fz.  C. Voltage difference between NSD 
and Threat conditions (NSD – Threat).  
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APPENDIX 2: Exploratory analysis of individual differences in ssVEP modulation 
 

The following is a brief report of the results of an exploratory analysis of 

the interaction between trait anxiety and the attention-related dependent 

measures in Study 2.   

Healthy individuals differ in their levels of Trait anxiety (STAI – Trait) and 

sensitivity to anxiety, and previous studies have shown those with higher Trait 

anxiety exhibited greater amygdala response to threatening distractors (Bishop, 

2004). Since startle magnitude reflects amygdala activation we correlated 

difference in startle response (Threat – NoShockDay)  with Trait anxiety scores. 

There was no relationship between the two measures (R2 = 0.012, p = .223) but 

this may reflect a rather homogenous low-anxious population as opposed to a 

lack of relationship between startle and Trait anxiety measures.  

 

Additionally, Trait anxiety scores correlated with N1 amplitude in an inhibitory 

task (Sehlmeyer et al., 2010) suggesting reaction to anxious states affected the 

magnitude of neural response to a rare stimulus. ssVEPs are correlated with the 

N1 and other early ERP components (Müller & Hillyard, 2000)  so it may be that 

they their modulation covaries as a function of anxious predisposition. One study 

examining ssVEP response to angry faces only found an effect in high anxious 

individuals (Wieser et al., 2011). For these reasons we examined whether Trait 

anxiety was related to the ssVEPs measured from our sample.  To do this we 
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split the sample in terms of their Trait anxiety scores, and entered ssVEP AMI 

sores into a group (2) X condition (3) ANOVA.  

 

The omnibus test for the 8.6Hz ssVEP was significant (F(2,96) = 3.317, p = .04) 

suggesting an interaction between Trait anxiety levels and 8.6Hz ssVEP 

modulation across conditions.  There was no such interaction in the 12Hz ssVEP. 

Given the number of exploratory comparisons we performed, the effect would not 

survive the appropriate correction to control for Type I error, thus we recommend 

further investigation into individual differences of ssVEP modulation under 

anxiety that includes a sample with a broader distribution of trait anxiety and 

anxiety sensitivity scores. 

 

 
 

 

  

Figure A4.1.  Condition x group 
(Trait Anxiety, median split) 
interaction for the 8.6Hz ssVEP. 
Difference between groups 
during the Safe condition did not 
survive post hoc corrections.  
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