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Studies of fluid-structure interactions associated with flexible structures such

as flapping wings require the capture and quantification of large motions of bodies

that may be opaque. Motion capture of a free flying insect is considered by using

three synchronized high-speed cameras. A solid finite element representation is used

as a reference body and successive snapshots in time of the displacement fields are

reconstructed via an optimization procedure. An objective function is formulated,

and various shape difference definitions are considered.

The proposed methodology is first studied for a synthetic case of a flexible

cantilever structure undergoing large deformations, and then applied to a Manduca

Sexta (hawkmoth) in free flight. The three-dimensional motions of this flapping

system are reconstructed from image date collected by using three cameras. The

complete deformation geometry of this system is analyzed. Finally, a computa-

tional investigation is carried out to understand the flow physics and aerodynamic

performance by prescribing the body and wing motions in a fluid-body code.

This thesis work contains one of the first set of such motion visualization



and deformation analyses carried out for a hawkmoth in free flight. The tools and

procedures used in this work are widely applicable to the studies of other flying

animals with flexible wings as well as synthetic systems with flexible body elements.
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Chapter 1: Introduction

1.1 Problem of interest

The mechanisms underlying flapping flight have drawn extensive attention

from various research communities over the last several decades. Larger species of

flapping insects, such as the hawkmoth and dragonfly, as well as small birds, such

as the hummingbird, lie within the range of interest for micro-air-vehicle (MAV)

design. For this reason, studying the mechanism of how these animals fly has become

a research topic of much interest. Currently, the understanding of flapping wing

mechanism is still under development. Researchers are experimentally studying

the state-of-art of flapping mechanisms and associated fluid-structure interactions

between the wing and the fluid, along with modelling and simulations of the motions.

In addition, a high-resolution measurement of the deformation geometry flexible

wing such as a hawkmoth wing is unavailable at this time.

An objective of this work is the development of a framework to estimate the

deformation geometry of a flapping wing, as it is being used in flight. The flapping

motion is first reconstructed, and then this reconstructed observation is analyzed.

Furthermore, by prescribing the flapping motion into a fluid-body model, the aero-

dynamic performance has also been numerically studied.
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1.2 Prior work

In experiments used for capturing the motions of flapping creatures, multiple

cameras are commonly used to observe the kinematics of flight. Generally speaking,

two approaches have been followed, namely, feature tracking and three-dimensional

(3D) reconstruction[3]. 3D direct reconstruction provides a point cloud representing

the intersection of all the images extruded in the third direction. It is limited by

volumetric accuracy, which decreases as the characteristic length of the target object

and the magnitude of deformation increase.

On the other hand, one identifies specified landmarks on the target object and

this tracking data is further used to analyze the kinematics of the motion. Ortega-

Jimenez, Greeter, Mittal, and Hedrick [4] have inferred wing motions by identifying

the locations of wing tips. Dong [5] and Koehler, Liang, Gaston, Wan, and Dong [6]

have suggested the use of artificial marks on wings, to observe wing topology and

deformation. With such a technique, one is able to reconstruct two-dimensional (2D)

wing surfaces. By using the tracked landmarks, the wing can be meshed evenly into

grids in each frame independently[7]. However, the marking process can be time

consuming. In addition, the number of marker points are inevitably limited. If

the target object is opaque, the feature points can be hardly seen from all angles

simultaneously. Further information can be found in reference [3].

For the purpose of deducing flight characteristics, researchers often use the

following parameters and means to characterize the flight motion:

(1) General rigid body motion using Euler angles [8, 9] or quaternions [10].
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By examining the time histories of the angles, the amplitudes and phase relations

between different points on the wing can be explored. (2) Mean stroke angle [8]. (3)

Wing tip trajectories [4, 8]. (4) Forward flight speed. The target subject is placed in

a wind tunnel to observe changes in the previously mentioned characteristics with

respect to the wind speed [8, 11]. (5) Camber angle describing the deformation [6].

Aerodynamic performance of the recorded insect flight can be estimated nu-

merically given the measured motion[12, 13, 14]. Features and aspects such as the

vorticity structures [15], wing-wake interaction, wing-wing interaction, and so on

[16] have been reported; these features and aspects have also been reported in ex-

perimental studies of insect flight and dynamically scaled robotic wings [17, 18].

In order to gain a further understanding of the flight mechanisms and explain

why insects fly in the observed manner, fluid-structure interaction(FSI) simulations

can play an important role for assessing the structural information of wings and

help implement a more comprehensive study, with additional control variables such

as beating frequency, stiffness of wing, and so on. From a simplified simulation

environment, 2D studies can provide insights into the effects of elasticity of the

wing [19, 20], the clap and fling mechanism[21], and the wing-wake interaction [7].

General 3D simulation environments have been developed more recently [22, 23].

Most FSI studies are still limited by the lack of full deformation geometry

in insect flight, which can serve as a reference. Moreover, in most of the studies,

one uses a linear material model to construct the structure of the wing, while the

deformation is underestimated.

Nonlinear phenomena are often considered as well for the reason that the flap-
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ping frequency is much lower than the linear natural frequency of the wing. Vanella

et al. [19] suggest that a nonlinear resonance has been invoked, while Ramana-

narivo, Godoy-Diana, and Thiria [24] argue that the flapping frequency favors the

phase lag from leading edge to trailing edge and improves aerodynamic efficiency,

as a consequence.

1.3 Objectives and approach

As a continuation of the previous work at the University of Maryland, the au-

thor endeavors to develop a tool to estimate the wing deformation configuration from

multiple cameras for the use of integrating experimental data into fluid-structure

simulations. A hyperelastic material finite element model is utilized in order to cap-

ture the large deformation of the flapping wings of Manduca sexta during free-flight

motion. Further investigations into the captured motions have been performed. The

research approach for this thesis is shown in Figure 1.1.

1.4 Outline

The rest of the thesis is organized in the following manner: In Chapter 2, the

experimental setup is depicted in detail. Preliminary steps necessary to be taken for

the use of later chapters are shown, including image processing, camera calibration,

and image segmentation. Since, in this step, one uses a reduced-order model to

describe the motion of the hawkmoth, some characteristics of the flight motion are

discussed. It is mentioned that the gray-banded region in all time histories plots

4



Figure 1.1: Flow chart of the research approach after motion reconstruction for
hawkmoth from high-speed videography.

denotes the approximated instances of the downstrokes. In Chapter 3, the author

proposes a template-based approach to estimate the deformation geometry of the

moth wing. As a case study, the algorithm is first tested with a synthetic flexible

structure undergoing large motions, before this method is applied to the image data

of the free flight motion of Manduca sexta. The fluid-body analysis is presented in

Chapter 4. Finally, the summary and some suggestions for future work are provided

in Chapter 5. Appendices that provide some background knowledge for this thesis

and references are included at the end.
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Chapter 2: Experimental arrangement and motion visualization

In this chapter, the author describes the experimental arrangement used to

capture the free flight motion of Manduca sexta in detail. The intermediate steps

taken to make the raw data applicable to the methods presented in the latter chap-

ters are also demonstrated.

2.1 Preparation of the objects to be filmed

The subject chosen to be filmed is the Manduca sexta, which is also known as

the hawkmoth. The pupae were obtained from Carolina Biology Supply

(http://www.carolina.com/) and contained in the mesh cage. One visible light source

and two heat lamps were used to provide adequate light and heating. The tempera-

ture was held between 27 to 30 degree Celsius by adjusting the height of the lamps.

At least 8 hours of light was found to be needed to be provided per day, otherwise,

the pupae may go into diapause. A humidifier was used to maintain the humidity

level between 35% to 40%, and some tree branches were provided for the moths to

climb up and dry their wings. From the research group’s past experience, the moths

emerge slightly before dawn after 2 to 3.5 weeks after the process was initiated.

After their emergence, it takes approximately one day for the moths to learn
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Figure 2.1: Environment where the moths were raised. The mesh cage is put into
a box to contain more heat, and the cage was surrounded by lamps. A water tank
was used to maintain a specified range of humidity. A thermometer can be located
at the bottom of the image.

how to fly. Putting them into a bigger space greatly expedites the learning process.

The author and co-workers also attached window screens to the walls and floor of

the observation chamber to help them climb up and crawl. However, their wings

were found to be impaired easily due to the limited space. A mature moth can live

between 3 to 5 days. They are found to be most active in the first few days before

laying eggs.

2.2 Videography

The focus of this work has been on motion reconstruction from the outline of

the images without utilizing information from feature tracking. A schematic plot of

the camera positions is shown in Figure 2.2. As shown in Figure 2.2, three Phan-

tom Miro-M310 cameras(Vision Research, Wayne, NJ, USA) are used to provide

orthogonal views at 2000 frames per second with a resolution of 1280 times 800

pixels. The video subjects (hawkmoths) were allowed to fly freely with the beating

frequency of approximately 25 Hz in a 2ft×2ft×2ft plexiglass flight chamber. Each
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video was filmed with an exposure time of 200 µs and aperture value f/4, while the

three cameras form a focal box. The cameras were synchronized through F-sync

and connected to an external event trigger. Two cameras were set as the external

clocks to receive the time information from the other camera, which is set as the

master clock. Two break beam laser sensors, Banner QS30LLPC, are connected to a

circuit board, which were used to send high and low value signals to all the external

trigger ports at the cameras simultaneously. The laser beams intersect at center of

the focal box.

The cameras were set to record continuously. The cameras each have an

circular buffer. This permits post triggering of an event. When a subject breaks

both lasers, several seconds prior to the break would be saved and then transferred

to an external computer hard drive. A picture of the experimental arrangement is

shown in Figure 2.3

In order to film the flight of nocturnal insect like Manduca sexta, infrared LED

lights were used to provide backlit illumination, which provided sharp outlines of

the target. The wavelength of the light source, 650 nm, is below the visible region

of the moth. Note that the spectral response of each camera extends to a range

higher than the visible light wavelength range.

2.3 Image processing

The goal of image processing is to provide clear positions of the outlines of

the shadow. Such procedure provides fast and robust location information of the

8



camera XY

x

y

z

camera YZ

camera XZ

mirror

flight chamber

45°

Figure 2.2: Camera arrangement. Figure 2.3: Experimental arrangement.

boundaries of the target object. Here, the author started with the Matlab code

provided on the website of the Itai Cohen Group [25] and customized it for the spe-

cific scenario in the current research. The author further extracted the boundary

points from the shadow using a simple cubic marching scheme, as shown in Fig-

ure 2.5. By comparing every four neighboring pixels in the image, the boundaries

were identified for which the four pixel intensities dramatically changed. Note that

curve fitting schemes were not applied on the boundaries as done in most literature

reported in image processing. The idea of curve fitting is embedded in the motion

reconstruction algorithm, which will be shown in a later chapter.

2.4 Camera projections

For some different types of the sensors, the projections are not as simple as

orthogonal projections. In our case, high-speed cameras are used to capture the

motion of free-flight of Manduca sexta, and due to the high insect size to filming

distance ratio, the perspective distortion is not negligible.
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Figure 2.4: Wave spectral response of the Phantom Miro-M310.
(http://www.visionresearch.com/Products/High-Speed-Cameras/Miro-M310/)

A camera is commonly modelled as a pin-hole camera [2]. The image sensor

that can be used to capture a point in the R’ frame is located at the intersection of

the line between the point to the focal point and the image sensor plane.

As shown in Figure 2.7, the relation between a point in the world frame

(X, Y, Z) and the corresponding image point (x, y) is

x =f
X

Z

y =f
Y

Z

(2.1)

10



or equivalently,

w


x

y

1

 =


f 0 0

0 f 0

0 0 1



X

Y

Z



=K


X

Y

Z


(2.2)

Here, the origin is the focal point C, and f represents the focal length. w is an

arbitrary factor representing the colinearity characteristic of the equation. The

matrix K is often known as the intrinsic matrix, which consists of the intrinsic

parameters of the camera.

Now, consider a more general case of the intrinsic matrix:

K =


αxf s x0

0 αyf y0

0 0 1

 (2.3)

Here, the α values represent the size differences of the length and width of the pixel

sensor. Ideally, the pixel sensor is square if one uses a monochrome camera. s is the

skew factor, which in most of the cases, can be neglected. (x0, y0) is the principal

point. The principal point is the projection of the focal point on the image plane

along the Z-direction, or the principal direction. Note that for most of the image

processing toolboxes, the origin of the image is at the upper-left corner.

In practice, one may define the transformation between the R’-frame and the

coordinate aligned to the principal direction. This in mind, equation (2.2) is gener-

11



alized to

w


x

y

1

 =K [R | t]


X

Y

Z

1



=P


X

Y

Z

1



(2.4)

R : rotation matrix

t : translation vector

P : camera matrix

Essentially, there are 11 variables: 5 intrinsic parameters and 6 degrees of

freedom associated with rigid-body motion. The details of the steps to find the

parameters are provided in Section A.2

2.5 Image segmentation

2.5.1 Body tracking

Before estimating the wing motion, identification of the body part of the hawk-

moth is necessary. An image consists of wings and body blended together due to

the occlusion in 3D. Here, the author identifies the locations of the pixels that be-

long to the body. Images containing only the body part of the hawkmoth from

one time frame were obtained by manually cropping the raw images. Next, direct
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reconstruction of the body images was implemented by brute force search in 3D.

To be pragmatic, considering the compromise between accuracy and compactness

of the data size, an interval of 0.3 millimeters of search was chosen. A point in 3D

space is inside the body if its projections exist on all images. Note that the idea

is identical to the silhouette cone intersection method discussed in a later section.

The result of the point cloud is shown in Figure 2.8. The reference body cloud

is then used to fit over the time frames by assuming rigid-body motion. For each

time frame, the optimization procedure is executed, with the cost function to be

minimized constructed as the union of area between the captured and the projected

images from the reference body cloud.

The results of optimization problem at selected frames are shown in Figure 2.6.

Note that the proposed method is applicable to any set of data obtained by using

multiple cameras. Due to the limited amount of time, however, the results of the

remaining work are all applied on the same set of data. The trajectory of the moth

body center and time series of the orientation are shown in Figure 2.8, Figure 2.9,

Figure 2.11, and Figure 2.12, respectively. The general motion of the body is diag-

onally upward, while the later half of the motion in the y-direction changes.

2.5.2 Customized reference FE model generation

A reference FE of the moth wing is built by using an open source mesh gen-

eration software Gmsh [26] to fit the image data. Although the dimensions of the

hawkmoth wings are quite similar between each other, having a customized refer-
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ence model for each video subject is still advantageous for motion estimation. Since

manual measurements of the dimensions of each subject can be time consuming, a

rough estimation directly from the video of flight motion was obtained by model-

ing the wing as a flat planform extruded in the thickness direction. One reference

frame, in which the wing is the closed to the undeformed configuration, is manually

chosen. Then, the maximum volume representation of point cloud is obtained by di-

rect reconstruction from images. Since the point cloud that describes the true wing

geometry is close to a planar subset of the maximum volume representation, the

plane whose intersection to the point cloud has the minimum projection difference

is the one that is closet to the true geometry.

By taking some of the contour points and interpolations amongst them by us-

ing B-spline, the geometry of the 2D wing planform is determined and then extruded

to the third dimension. The author used 27-noded quadratic hexahedron element

with the hyperelastic Biot material developed in Fitzgerald’s work [22]. This ma-

terial model is similar to the well-known Kirchhoff model and allows for large rigid

body motion and moderate strains.

The result of the customized reference wing is shown in Figure 2.10. There are

51 elements with 726 nodes, associated with each there are three degrees of freedom.

The Young’s modulus is assumed to be homogeneous across the body.
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2.5.3 Leading edge tracking

From observation, the wing motion is found to be actuated at the root po-

sition. The wing leading edge is relatively rigid and responds to the actuation

instantaneously, with the rest of the wing deforming and following the leading edge

motion with a phase difference. From the customized wing obtained from Subsec-

tion 2.5.2, the geometry of the leading edge can be used to track through frames.

The goal is to fit the reference leading edge points to the corresponding projection

images by rigid-body motion. The image points to be fit are the boundary points

that describe the contour of the hawkmoth. Since the reference leading edge is fitted

to the image points of the boundary points of the hawkmoth, the author defined the

cost function as the sum of the closest distances of the projection of each reference

leading edge point to the image boundary points. Considering the occlusion of the

moth body, if the projection lies in the region where the body is, the cost function

was set up to not penalize such a circumstance. Therefore, the image points that

describe the hawkmoth body are included with the boundary points. In order to

speed up the computations, distance maps were created in advance. The distance

map is the same size as the image that each pixel location was used to record the

closet distance to the boundary points. Bi-linear interpolation is implemented if

the projection lies between pixels. An example of distance map from one image is

shown in Figure 2.18. Some snapshots of the estimated leading edge position on the

images are shown in Figure 2.13.

Selective frames of the results of the estimated leading edge position are shown
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in Figure 2.13. The time histories of the Euler angles in the B-frame are plotted

in Figure 2.14 and Figure 2.15. As defined in Figure A.2, the three Euler angles

(ρ, θ, φ) correspond to the pitch angle, azimuth angle, and the elevation angle relative

to B-frame, respectively.

It is observed from the time histories of the elevation angle that the signal

at the reversal of the downstroke is flat, and the reversal of the upstroke is sharp,

which indicates that the reversal mechanism is much slower at the downstroke than

the upstroke. The plateau may be due to the torsional motion during the rever-

sal process, which manifests in the deformation estimation. From the fast-Fourier

transform(FFT) analysis, the flapping frequency is estimated as 26.28 Hz. A higher

harmonic frequency at 55.19 Hz is also observed.

The phase portraits of one Euler angle against another are plotted in Fig-

ure 2.21. Since the signal is noisy, the time derivatives of the Euler angles cannot

be accurately estimated. Instead, a plot pseudo-state space is constructed by us-

ing delayed coordinate. Assume one is only interested in the two-dimensional state

space, displacement x(t) and its time derivative, where the state x(t) can be ρ(t),

φ(t), θ(t). The delay-coordinate vector y is

y = {x(t) | x(t+ τ)} (2.5)

where τ is time delay that needs to be determined. Here, the author has used

autocorrelation function to determine the time delay. The autocorrelation function
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C(τ) is given by

C(τ) =

∑N
k=1 [x(t0 + kτs + τ)− xav] [x(t0 + kτs)− xav]∑N

k=1 [x(t0 + kτs)− xav]2
(2.6)

where

N : number of sampling points.

t0 : start time.

τs : sampling time.

xav : average of the signal.

The goal is to find the zero-crossing point of C(τ) at τ or a minimum value of

the correlation function. If a zero crossing does not exist, a local minimum is used

to determine the time delay. By choosing τ to be the first zero of C(τ), one makes

x(t) and x(t+ τ) linearly independent[27].

The autocorrelation function for each Euler angle of each wing is shown in

Figure 2.19. The time step that is closest to the first zero-crossing point is at ap-

proximately a quarter of the wing beat cycle. After using this value as the time delay,

one can plot the phase portrait in the reconstructed space, as shown in Figure 2.22.
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141

(a) View from camera XY

141

(b) View from camera XZ

141

(c) View from camera YZ

Figure 2.5: Snapshots of intensity field, binarized image, and edge detection.
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(a) View from camera XY

(b) View from camera XZ

(c) View from camera YZ

Figure 2.6: Representative frames of rigid-body motion tracking of the body.
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Figure 2.7: Figure of pin-hole camera model [2].

Figure 2.8: Three dimensional direct re-
construction from the body images.
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Figure 2.9: Trajectory of the geometric
center of the moth body.

Figure 2.10: The finite element mesh generated by Gmsh.
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(a) Time history of ρ

(b) Time history of φ

(c) Time history of θ

Figure 2.11: Time histories of Euler angles for moth body.
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(a) x versus t

(b) y versus t

(c) z versus t

Figure 2.12: Time histories for position of geometric center of the moth body.
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(a) View from camera XY

(b) View from camera XZ

(c) View from camera YZ

Figure 2.13: Representative frames of leading edge motion tracking. The red points
show the estimation of the projections of the leading edge locations along with the
raw images and boundary points.
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(a) Time history of ρ

(b) Time history of φ

(c) Time history of θ

Figure 2.14: Time histories of Euler angles of leading edge of right wing.
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(a) Time history of ρ

(b) Time history of φ

(c) Time history of θ

Figure 2.15: Time histories of Euler angles of leading edge of left wing.
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Figure 2.16: Fourier spectra of Euler angle histories for right wing leading edge.

26



frequency(Hz)

0 100 200 300 400 500 600 700 800 900 1000

S
in

g
le

-S
id

e
d

 A
m

p
lit

u
d

e
 S

p
e

c
tr

u
m

0

0.2

0.4

0.6

0.8

1

X: 26.28

Y: 0.9704

(a) ρ

frequency(Hz)

0 100 200 300 400 500 600 700 800 900 1000

S
in

g
le

-S
id

e
d

 A
m

p
lit

u
d

e
 S

p
e

c
tr

u
m

0

0.1

0.2

0.3

0.4

X: 26.28

Y: 0.3829

X: 55.19

Y: 0.1142

(b) φ

frequency(Hz)

0 100 200 300 400 500 600 700 800 900 1000

S
in

g
le

-S
id

e
d

 A
m

p
lit

u
d

e
 S

p
e

c
tr

u
m

0

0.1

0.2

0.3

0.4

0.5

X: 26.28

Y: 0.4881

X: 55.19

Y: 0.07429

(c) θ

Figure 2.17: Fourier spectra of Euler angle histories for left wing leading edge.
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Figure 2.18: Distance map of each image point to the moth contour points and the
body part. The domain of the map includes the entire image.
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Figure 2.19: Autocorrelation function k − C(kτs) plot for each Euler angle of each
wing.

(a) Side view of the right wing (b) top view

Figure 2.20: Representative cycle of the trajectory of the wing tip motion in B-frame.
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Figure 2.21: Phase portraits based on Euler angles for leading edge tracking.
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Figure 2.22: Pseudo-phase portraits for Euler angles from leading edge tracking.
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Chapter 3: Motion reconstruction and estimation

Non-invasive motion reconstruction from multi-image data has received con-

siderable attention. For a target object whose point-wise location and displacement

field are defined continuously, each vision sensor is used to measure the intensity

values of the corresponding projection plane in discrete pixels. Without one-to-one

correspondence between pixels across the cameras as the known-feature tracking

approach, the estimation of the displacement field of the considered target object

is an ill-posed problem. Other considerations include the following: i) occlusions

of 3D object projected on planar vision sensor and ii) innate limitation of infor-

mation available from vision. As an example, the following is mentioned. For a

perfect spherical black ball, the tangential velocity of the rigid body motion cannot

be observed regardless of the number of cameras used [28].

Configurations can be estimated by matching the image data with a pre-

defined model. In order to find a unique solution, the problem is usually formulated

as an optimization problem, with the cost function consisting of a similarity term and

a smoothness term as a regulator. In the computer vision community, a commonly

used regulator is of the Tikhonov type[29]. To the best of the author’s understand-

ing, in most efforts, both the first and second spatial derivatives of the displacement
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field have been used. These derivatives serve as the regulator, and the first and

second derivatives provide a measure of the internal energy of a thin material due

to the tensional force and bending moment, respectively [30, 28, 31, 32, 33, 34].

Essentially, a configuration that fits the measurement data is sought, while ensuring

that this configuration contains the least internal energy. Additional factors, such

as geometrical interpretation, prior knowledge, or extra measurement sources, can

also be included in this framework [35, 36, 37, 38, 39, 40]. Finite elements (FE)

can be naturally embedded into such a framework. When compared with the finite

difference method used in some of the abovementioned literature, the FE method

can result in a continuous displacement field estimation. Furthermore, the inter-

nal energy and its spatial derivatives are intrinsically calculated in the FE method.

In Cohen and Cohen’s work[41], a blend of plate and membrane elements is used

to estimate the configuration of surface material. It is also worth mentioning that

FE mesh matching and deformation estimation scheme is widely used in medical

imaging society to either construct a customized FE model or estimation the defor-

mation of brain or other organs[42, 43]. However, it is noted that the deformation

is relatively small compared to the deformation observed in wing flapping motion.

With regard to the problem of estimating large deformations and rotation

associated with entire wing motions during insect flight, different formulations for

different experiment scenarios are proposed by the author. The images are bina-

rized in this work considering the image quality from high-speed cameras. Such a

procedure provides fast and robust location information of the boundaries of the

target object.
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3.1 Problem formulation

Consider an object with the reference configuration

x, x ∈ Ω0, (3.1)

and with current configuration at time t:

r(x, t), x ∈ Ω0 (3.2)

or

r(x, t) = x + u(x, t) (3.3)

where u describes the displacement field of the object.

A snapshot of the object’s motion is captured by a set of cameras. Through

appropriate image processing, discrete points that sketch the outline of the target

object can be obtained. For the sake of simplicity, the intensity field is first trans-

formed into binary image, and the output becomes a point cloud, which is a set of

data points. Let

Y m =
{

ym1 , ym2 , . . . ymi | y ∈ R2
}

(3.4)

Here, ymi is the ith image point captured from the mth camera, describing the sil-

houette of the target object on the projection plane of the camera. The current
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configuration is discretized as

Qmr(x, t) = {ym1 + εm1 , ym2 + εm2 . . . y
m
i + εmi } (3.5)

where Q is the coordination transformation operator from 3D space to the projection

plane of the camera. At this stage, the inverse ill-posed problem that one has is

the following: Given a set of measurements from the cameras of both reference and

current configurations, find the true state of the current configuration. There does

not exist a unique solution because there is no one-to-one correspondence between

the measurement data and the current configuration. In other words, the quantity of

εmi can not be obtained. Therefore, a regularization technique has to be introduced

here in order to seek a unique solution. The most commonly applied regulator in

such inverse problems in image processing is of the Tikhonov type, and this regulator

has drawn analogies with the strain energy of the target object. Hence, instead of

formulating a discrete Tikhonov regulator, strain energy estimated through the finite

element method is directly used as the regulator.

The author considers the following formulation of problem as an illustrative

example.

Minimize the strain energy s.t. ymi ∈ Qmrm(x, t)

In the static case, among all the possible solutions that can possibly be de-

termined, the one configuration that is formed through the least power input to its

reference configuration is chosen, as the strain energy is determined by the work
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done by the external force.

3.1.1 Optimization tools

In this work, the author has proposed a multi-level optimization procedure :

Initial optimization and local optimization. A reduced-order deformation model is

adopted in the initial optimization step to efficiently locate the rough position of the

global minimum. The pattern search function in the optimization toolbox provided

in MATLAB is used to solve the initial optimization problem without evaluating

the gradients of the cost function.

Local optimization is then solved by the gradient-based Broyden-Fletcher-

Goldfarb-Shannon (BFGS) algorithm[44]. Details of each step are illustrated after

in this thesis.

3.1.2 Initial optimization

Initial optimization is executed first for the sake of expediting the convergence

rate. In this study, this step is actually necessary in order to locate the global

minimum with available computational power. Consider a point on the wing

R′r = R(ρ, φ, θ)W r + dW/O (3.6)

The position vector can be described by the rigid-body motion of the W-frame and

the deformation on the W-frame. Here, the author uses the linear mode shapes as

a basis to describe the deformation of the wing. The linear mode shapes can be
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obtained by solving the eigenvalue problem of

{
K− ω2

nM
}
φn = 0 (3.7)

where K and M are the constant stiffness and mass matrix, respectively. ωn and φn

represent the natural frequency and the mode shape, respectively. The deformation

is then assumed to be

W r =
[
φ1(W r) φ2(W r) . . . φn(W r)

]

p1

p2

...

pn


= Φ(W r)p

(3.8)

where p are the modal participation factors.

The rigid body motion is then acting on the locally deformed body. Therefore,

there are n+ 6 degrees of freedom , which serve as optimization variables, that is

min
(p,ρ,φ,θ,dW/O)

D (3.9)

where D is the projection difference as aforementioned. ρ, φ, θ and dW/O are the

Euler angles and the displacement of the W-frame in R’-frame, respectively.

Note that the mode shapes may not necessarily be orthogonal to each other,

although if so, one could take advantage of this property to find a unique solution to
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the optimization problem. The chosen spatial shapes can be collected for different

settings such as stiffness distribution if the real structure is more complicated than

the reference model. Realistic loads could be applied to obtain various shapes as

well. The ultimate purpose is to qualitatively describe the principal deformation

observed in the data.

The author would like to empathize that, for large deformation which is the

considered case of interest, the magnitudes of the linear mode shapes estimated by

matching the measured images are out of the physical range of linear approximation.

Therefore, the refined optimization described in the next section must be executed

after this step. It is observed that the positions of internal nodes would be adjusted,

and the strain energy is relaxed after the refined optimization process.

3.1.3 Refined optimization

The chosen objective function has the form of soft constraint problem

min
q
π = min

q
(αD + U) (3.10)

instead of the formulation of a hard constraint problem for the sake of tackling the

problem practically. Here, D is called the similarity penalty, whose gradient serves

as the image force. α is a weighting factor, and the internal energy U represents the

smoothness penalty.

The dual objectives are to fit the FE body over the point cloud and to minimize

the energy involved to make the deformation realistic. Although a FE model has
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finite degrees of freedom as a finite difference method does, a FE model can be

used to obtain a continuous displacement field estimation. Furthermore, the strain

energy and its gradient and Hessian of the FE body can be internally computed.

3.2 Computations

3.2.1 Similarity penalty

In this section, various ways to formulate the similarity penalty from binary

images are explored. The properties of each formulation are discussed, and the

feasibility for the use of wing motion estimation will be shown in later section.

Although the feature extraction technique has not been introduced yet, it is noted

that it can be used in an auxiliary role to further enhance the the motion estimation

technique depicted in this work.

3.2.1.1 Silhouette cone intersection

Visual hull reconstruction can be applied to multiple two-dimensional images

to reconstruct a three-dimensional voxel cloud by neglecting the perspective distor-

tion [45]. The concept is based on taking the intersection of the extrusion of each

image on its third dimension. To fit the voxel cloud to the reference body, the author

defines the similarity term as the sum of the square distance of each voxel point to

its closest point on the reference body; that is,

D =
N∑
i=1

‖ri(yi)− yi‖2 (3.11)
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Here, yi ∈ R3 represents the voxel cloud and ri(yi) is the registered point on the

reference body of the voxel point. However, the silhouette cone intersection method

produces the maximum volume representation of the images. The result of the

reconstruction can be erroneous while the target object experiences large rotations

and large deformations. An illustrative example is shown in Figure 3.1. Although it

has been shown that the rigid-body kinematics is captured well from the voxel cloud

[25], the volumetric error is no longer negligible for the large motions considered here.

Figure 3.1: A rotated U-shape thin
sheet (blue) and the maximum volume
representation (green) constructed from
the sheet’s shadows in three orthogonal
planes.

r(�) 

r(� + 1) d(k) 

d(k + 1) 
P 

iteration k

iteration k+1

Figure 3.2: Schematic plot of total
derivative of the closest distance between
an image point P to the closest point
on an element with respect to nodal dis-
placement.

3.2.1.2 Area similarity

Consider a set of silhouettes captured by multiple cameras. Evaluating the

consistency between the projection of FE body and the shadow captured from the

cameras provides an intuitive idea of exploiting information from the silhouettes.

The similarity term can be simply computed by counting the pixel points that are
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not overlapping. The author also suggests to normalize the similarity term of each

camera by the number of active pixels, so the cost function penalizes the similarity

term on each camera equally, and after a few arithmetic operations, the similarity

terms can be interpreted as the mean percentage projection differences.

However, the gradient of such a function is hard to obtain analytically. A

brute-force search or numerical gradient evaluation scheme may need to be used;

either way, the solution procedure can be computationally challenging. For using

finite difference calculation, the step sizes are carefully chosen because of the discrete

property of images.

3.2.1.3 Distance penalty

Following the spirit of direct penalty on two-dimensional images, the closest

distance of image point to the corresponding reference body is penalized instead in

order to reduce the computational expense. Such formulation relies on the bundle-

adjustment philosophy.

The cost function takes the form

D =
∑
m

Dm =
∑
m

Nm∑
i=1

‖Qmrmi (ymi )− ymi ‖2 (3.12)

This cost function shares the same minima as the function used for the area penalty.

The shape difference between the image and the FE model is quantified as the

sum of closest Euclidean distance of each image point to the projected FE surface.

Compared with area difference, the weighting of each pixel is scaled intuitively by
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the registration between each image point to the reference model, and the gradient

can be evaluated as discussed below. The camera setup is assumed well-calibrated,

and the images are the shots from three orthogonal principal directions. Perspective

distortion is also neglected for the sake of simplicity.

Consider an image point P and the registered position on the corresponding

element. Given the FE information about surface element e, and the tuple rep-

resenting the position of the pixel p, the minimum distance can be stated as the

solution of

ed2 = min
(ξ, η)

d · d = min
(ξ, η)

(p− r) · (p− r) (3.13a)

ξ ∈ [−1, 1] (3.13b)

η ∈ [−1, 1]. (3.13c)

The bounds on the natural coordinates keep the point on the surface element. Here,

the position r in an element is approximated by using the standard finite element

description of the surface

r = N(ξ, η) · (x + q) . (3.14)

where x and q is the tuple of reference configuration and displacements associated

with the degree of freedoms, respectively. The matrix N consists of the shape

functions. The optimization variables used to fit the FE over the pixel cloud are

the displacements q of nodes of the mesh. Therefore the gradient of the similarity
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function from one camera that needs to be computed is

∂Dm

∂q
=

Nm∑
i=1

d

dq
d2
i (3.15)

which can be computed by pixel, and then assembled into the global tuple. Looking

at this at the component level, one can employ the total derivative

d

dqk
d2
i =

∂d2
i

∂qk
+
∂d2

i

∂ξ

∂ξ

∂qk
+
∂d2

i

∂η

∂η

∂qk
=
∂d2

i

∂qk
+
∂d2

i

∂ξ
· ∂ξ
∂qk

(3.16)

The extra terms are due to the sensitivity of the of the closet point ξ̄ = (ξ̄, η̄) to the

perturbation of ∂qk, as illustrated in Figure 3.2. Each of the terms in equation (3.16)

will be constructed as discussed in Subsection A.4.1.

3.2.2 Strain energy

The strain energy in the body can be defined as

Us =
1

2

∫
Ω

σ : ε dV. (3.17)

This can be transformed back to the reference configuration to make the implemen-

tation simpler. Recall that the true stress and Euler strain are related to the second
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Piola-Kirchhoff stress and Green strain by the well-known identities [46]

dV = detF dV0 (3.18a)

ε = F−TEF−1 (3.18b)

σ = (detF )−1FSF T . (3.18c)

Therefore,

∫
Ω

σ : ε dV =

∫
Ω

tr
(
σTε

)
dV

=

∫
Ω0

(detF )−1tr
(
FSTF TF−TEF−1

)
detF dV0

=

∫
Ω0

tr
(
STE

)
dV0.

Here, in the last step, the invariance of the trace to similarity transform is used.

This implies that the total strain energy can also be computed through the use of

FE as

Us =
1

2

∫
Ω0

S : E dV0 =
1

2

nel∑
e=1

∫
Ωe0

S : E dV0. (3.19)

This permits a direct calculation in the total Lagrangian based FE model, based on

materials such as Biot or Kirchhoff materials.
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3.2.3 Constraints

3.2.3.1 Incompressibility

For the particular future application of simulating the fluid-body interactions

using the estimated motion here, the total volume of the body must be fixed. This is

not the usual “incompressibility” condition since that it is point-wise. Computation

of the initial volume of the mesh is done by summing over the volume of each element

V0 :=

nel∑
e=1

∫
Ωe0

dV0 (3.20)

Once the body has been deformed, the current configuration needs to be used to

compute the volume

V :=

nel∑
e=1

V e =

nel∑
e=1

∫
Ωe

dV (3.21)

Examining the volume of a single deformed element, it can be cast as an integral in

the reference configuration as

Ve =

∫
Ωe

dV =

∫
Ωe0

detF dV0. (3.22)

Here, F is the deformation gradient tensor, for which one employs the well-known

identity of the Jacobian determinant [46, Eq 2.50]. The residual constraint (h = 0)
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can be stated simply as

h(q) = V (q)− V0 (3.23)

3.2.3.2 Non-folding condition

The size of the iterative descent step is limited in order to avoid non-physical

configuration, such as folding and flipping. For the Jacobian of the isoparametric

mapping of the eth element and it’s determinant is such that:

det(Je) = det

(
∂r

∂ξ

)
> 0 (3.24)

Inspections over all the Jacobians of the transformation of the finite element body

is examined while a pseudo step is attempted. The step is uniformly scaled down if

the attempted step causes the folding condition.

It is noted that a similar technique is applied to prevent the FE body from

folding in the area of mesh registration. Unlike the study of Bucki et al. [43], wherein

the use of the deformation gradient tensor is suggested, here, computation of the

Jacobian is more efficient in the finite element framework.

3.3 Case study

The algorithm is evaluated by using the results presented in Fitzgerald’s work

[22] as a test case. In Fitzgerald’s work, fluid-structure interactions associated with
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a non-linear cantilever plate under large flapping motion prescribed at the root

positions has been studied. The same material and element type are used here in

the wing FE model. The deformation of the plate is studied here as an illustrative

case of what can be can done with experimental data for flapping wings. The

flow chart for this case study is shown in Figure 3.3. One snapshot of time of the

deformation information is projected onto three orthogonal planes to mimic image

data. The dimension of the plate is l× 0.3l× 0.05l in nondimensional lengths, with

the maximum deformation approximately equalling 0.28l.

The initial optimization step is omitted in this test because the configuration of

the plate is rather simple. Some snapshots of iteration steps in the refined optimiza-

tion procedure carried out by using the distance penalty are shown in Figure 3.4.

The true configuration, the deformed body, their corresponding projections, and the

negative gradients are plotted.

Note that the formulation of the cost function in which area penalty serves as

the similarity term is also tested in the same manner. A similar convergence rate in

iteration steps is observed, while it took more than 20 times longer computational

time than the distance penalty on the same machine.

3.4 Application to free flight data of hawkmoth

The motion estimation scheme is next applied to the free flight data of hawk-

moth, with the customized reference FE wings and the images where the pixels

belonged to the body are activated already. In other words, the similarity penalty
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Figure 3.3: Flow chart for motion reconstruction of nonlinear cantilever beam un-
dergoing large motion.

is used to penalize the projection difference between the captured image and the

body images, which the deformable reference wing FE projected onto.

Initial optimization is executed first following the procedure described in Sub-

section 3.1.2. The initial condition for the optimization procedure is zero deforma-

tion, with the rigid-body motion that is estimated in Subsection 2.5.3. From the

experiments with hawkmoth wings by Sims [1] and Fitzgerald [22], the first three lin-

ear mode shapes are acquired. As reported by Sims [1], the first three mode shapes

correspond to bending motion in span-wise direction, torsional motion, and bending

motion in chord-wise direction, respectively, and the natural frequencies in air are as

listed in Table 3.1. As a starting point, the FE reference model of the wing is just

one piece of planform with uniform thickness using a custom 27-node hexahedral

cubic element[22]. One can extend this work by constructing a more sophisticated

FE model by defining the veins and the mechanism between the forewing and hind-

wing, for example. The linear mode shapes are acquired by solving the eigenvalue

47



ω(Hz) ωf/ω

mode 1 58.75 0.47

mode 2 75 0.36

mode 3 95 0.29

Table 3.1: Damped natural frequencies reported by Sims[1] and the nondimensional
ratios with the flapping frequency estimated from the leading edge motion.

problem with various stiffness distributions. The clamped-free essential boundary

condition is applied to not only mimic the experiments by Sims[1], but also used as

a realistic choice for fitting the root-actuating flapping motion.

Local optimization step is executed on each time frame independently after-

wards on the High Performance Computing Cluster at the University of Maryland.

The result of mean projection difference for each time step is shown in Figure 3.6a,

with the mean projection difference around 7%. The improvement of similarity from

initial optimization to local optimization step is also shown in Figure 3.6b; selected

frames of estimated motion in 3D and the projections are shown in Figure 3.7 and

Figure 3.8.

A selective frame of the residue of the strain energy after the optimization

procedure is shown in Figure 3.9. Ideally speaking, the strain distribution is ”op-

timal” for the specific deformation. However, high strain is observed on the edge

of the wing due to high image force caused by the imperfectness of the reference

wing geometry. Note that the high strain at the intersection of the hindwing and

the forewing may not be realistic, since they are actually hooked together.

To summarize, the flow chart of the procedure from recording the free flight
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data in Chapter 2 to motion reconstruction is shown in Figure 3.5.

3.4.1 Kinematic analysis

The rigid-body motion of the root node is shown in Figure 3.12; this represents

the flapping input to the passive wing structure. The results of application of the

FFT to the time history of each Euler angle are shown in Figure 3.13. Compared to

the results obtained from the leading edge tracking in Figure 2.16, the fundamental

frequency is found to be higher; this is because the leading edge tracking technique is

meant to capture rigid-body motion, whereas the actual motion actually consists of

the rigid-body motion and significant torsional deformation. Thus, the fundamental

frequency estimated from leading edge tracking should be considered as the effective

operational frequency of the leading edge instead of the input frequency.

The author would also like to point out that the higher harmonic frequency

at the elevation angle of the root motion appears to be more significant than it is in

the case of leading edge motion tracking. The higher harmonic characteristic may

be over-compensated by the deformation, since the higher harmonic frequency is

more than two times the fundamental frequency.

With the estimation of the entire wing motion, here, the author only plots

the trajectories of the tip, the root, and the trailing edge to gain insights into the

flight mechanism. A representative cycle of wing beat in B’-frame is plotted in

Figure 3.10. Amplitudes of the oscillation are calculated by the absolute distance

between the current position to the mean coordinate of the trajectory. The am-
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plitudes of oscillation of the left wing and right wing are shown in Figure 3.11. It

can be clearly seen that there exists a phase lag between the tip motion and the

trailing edge motion. Although the root motion is rather noisy because of the sloppy

reference model currently used, phase lead is also observed in the root motion. This

phase difference is expected, and it is attributed to the damping effects in the flow

and the material.
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(a) A 3D view (b) View from camera XZ

Figure 3.4: Snapshots from selected angles are shown of iteration steps 0,1,8, and 123
involved in the optimization procedure. The purple body is the true configuration
with the black projected outline being made up of the synthetic image points. The
blue body is the reference body, which is taken to the deformed state through
the optimization procedure with brown solid silhouettes. The blue, red, and green
arrows are the negative directions of the strain penalty, the similarity penalty, and
the gradient, respectively.
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Figure 3.5: Flow chart of motion reconstruction of hawkmoth from high-speed
videography.
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Figure 3.6: Evaluation of the projection difference (%) at each time step.
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Figure 3.7: Reconstructed motion at three different time steps (mm).
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(a) View from camera XY

(b) View from camera XZ

(c) View from camera YZ

Figure 3.8: Snapshots of the projections of motion estimation on the raw images.
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Figure 3.9: Residue of strain after optimization.

Figure 3.10: Multiple snapshots of the wing motion and the tip and the trailing edge
trajectories in one cycle. The effective stroke plane is defined as the best planar fit
of the tip and root trajectories over a cycle.
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(b) Right wing plot

Figure 3.11: Amplitudes of oscillations of the left and right wings.
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3.4.2 Proper orthogonal decomposition

Proper Orthogonal Decomposition (POD) is a convenient tool to extract the

dominating operational modes in the least square sense[47]. Some introduction to

POD can be found in Section A.5. The matrix A of measured ensemble of the tuples

of nodal displacement of FE wings in consecutive time steps is assembled as.

A =

[
wq(t1) | wq(t2) · · · wq(tn)

]
(3.25)

The POD modes are obtained by solving singular value decomposition problem of

the matrix A. In order to decouple the mode shapes from rigid-body motion, the

deformation of the wing is defined in W-frame. The result results obtained for the

POD mode shapes are shown in Figure 3.17. Chord-wise bending motion is observed

in the first mode. Torsional motion is also seen in the first mode when one examines

the constant displacement contour line drawn in black. The second mode is bending

motion in span-wise direction, and the third mode is insignificant. The percentage

of the singular value of each mode is shown in Figure 3.18.

It is noted that the sequence of the dominant mode shapes in flapping motion

is different from the sequence observed observed during modal analysis experiments.

From Table 3.1, the ratio of the linear natural frequency of each mode to the observed

flapping frequency obtained from the FFTs of the Euler angles of the root motion

is listed.

Comparing the time history of the intensity of the first POD mode to that of
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the rigid-body motion, the deformation reaches the extremum quickly and oscillates

around the extremum before jumping to the opposite direction.
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(a) Time history of ρ

(b) Time history of φ

(c) Time history of θ

(d) Time history of the proper orthogonal decomposition modes

(e) Effective stroke angle

Figure 3.12: Time histories for rigid-body motion of the root in R’ frame the proper
orthogonal decomposition modes in W-frame, and the effective stroke angle of the
right wing.
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Figure 3.13: Fast Fourier transform results for the right root Euler angles.
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(a) Time history of ρ

(b) Time history of φ

(c) Time history of θ

(d) Time history of proper orthogonal decomposition modes

(e) Effective stroke angle

Figure 3.14: Time histories for rigid-body motions of the root in R’ frame, the
proper orthogonal decomposition modes in W-frame, and the effective stroke angle
of the left wing.
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Figure 3.15: Fast Fourier transform results for the left root Euler angles.
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(a) Span-wise bending (b) Torsion (c) Chord-wise bending

Normalized Absolute Displacement
min max

Figure 3.16: Linear mode shapes of right wing.

(a) First mode (b) Second mode (c) Third mode

Figure 3.17: Proper orthogonal decomposition mode shapes of right wing. Black
line shows the contour of constant displacement.
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Chapter 4: Integration of experimental data into fluid-body simula-

tion

In this chapter, the aerodynamic performance of a hawkmoth in free-flight

motion discussed in the previous chapter is studied. The adopted fluid model is the

unsteady vortex-lattice method (UVLM). UVLM has been known for its appealing

compromise between the computational cost and fidelity[49, 50, 51] , and its capa-

bility has been extended studies of flapping insects. Roccia et al. [14] have compared

the aerodynamic load of a flapping wing to experimental data of a robo-fly under

flapping motion. With the encouraging results in this recent study, the author and

the coworkers here explore fluid-body simulations further by integrating the rotating

and deforming motion of the hawkmoth estimated from the previous chapter with

UVLM.

In the following sections, a short description of the UVLM is presented. Next,

the motion is parameterized in both spatial and time domains to obtain continu-

ous description of position and velocity at an arbitrary time instant. Modification

made from the extension of modeling the leading edge separation in reference [14] is

described. Finally, preliminary results of the wake kinematic is visualized, and the

time history of the aerodynamic load over ten wing beat cycles is estimated cycle
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by cycle.

4.1 Fluid model: unsteady vortex-lattice method

UVLM is used to solve the Navier-Stokes equations, when the flow is modeled

as invicid potential flow. As a consequence, the boundary layer becomes infinitesi-

mally thin, and the Reynold’s number goes to infinity. The particles on the lifting

surface as well as the wake are convected from the sharp edges. The diffusion effect

of the rotational particles is neglected, and therefore, the conservation of circulation,

or namely, Kelvin’s theorem, is satisfied.

The boundary layer, or the bound-vortex sheet is discretized as a lattice of

vortex segments of constant circulation. The vorticity field of the flow is solved

from the no-penetration boundary conditions at the control points of the lifting

surface, where the velocity field is calculated by the superposition of the induced

velocity from each vortex segment by using Biot-Savart Law. The vortex segments

at the sharp edges are convected with local particle velocity in order to satisfy the

unsteady Kutta condition. The wake is thus formed and the circulation of each

vortex segment is conserved in accordance with Kelvin’s theorem.

The aerodynamic load on each element of lifting surface is approximated by

calculating the pressure jump across the vortex sheet. The pressure jump is deter-

mined from the unsteady Bernoulli’s Equation, which is derived from the Navier-

Stokes equations , after assuming that the flow is irrotational and invicid. Note that

this step is independent of the calculation of kinematics of the flow. The reader is
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directed to Preidikman’s work[50] for more details.

4.2 Prescribed motion

The free-flight motion of Manduca sexta estimated from Chapter 3 is imported

here as the prescribed motion of the lifting surfaces. Since, the spatial expression of

the Manduca sexta wings is continuous, the author can discretize the wing surfaces

further down to any desired characteristic length from the original quadratic ele-

ments to linear elements. In order to obtain the displacement and velocity profile of

the motion at any time step, the time sequence of the displacement field estimated

from flight data is decomposed into non-periodic signal and near-periodic signal,

and the signals are curved-fitted by using polynomials and FFT information.

Let the position vector of one point on the wing in R′ frame R′r estimated at

time tk be expressed as

R′r(tk) = R(tk)
wr(tk) + d(tk) (4.1)

where R(tk) and d(tk) is the transformation from the global frame to W-frame.

The displacement in W-frame wr is considered local deformation that is further

decomposed by POD analysis. The displacement of the W-frame d(tk) is decom-
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posed into the combination of body motion and the motion relative to the B-frame.

R′r(tk) =R(tk)
wr(tk) + dB/O(tk) + dW/B(tk)

=R(tk)U(wr)ΛV(tk) + dB/O(tk) + dW/B(tk)

(4.2)

dB/O is curve-fitted with spline interpolation.

The velocity is then

R′ ṙ(tk) = R(tk) (w ṙ(tk)) + Ṙ(tk) (wr(tk)) + ḋ
B/O

(tk) + ḋ
W/B

(tk) (4.3)

From equation (A.1), the time derivative of R is

Ṙ = ṘθRφRρ + RθṘφRρ + RθRφṘρ (4.4)

FFTs are then applied to the Euler angles, and dW/B. A minimum number

of frequency terms are taken to reconstruct the analytic expression in time domain.

The residues are considered as deformation, and SVD is performed. Again, with

the spatial deformation described in U from equation (A.55), the displacement field

at any position can be evaluated. Each column of V contains the information of

unitary time history of intensity of the motion. FFT is applied to this information.

The deformation of the new mesh for UVLM at time t becomes

UUV LMΛV(t) (4.5)
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4.3 Effective angle of attack

Whether the vortex shedding from the leading edge is happening or not de-

pends on the angle between the local fluid velocity and the wing panel. Following

Roccia et al.’s work[14], an on/off mechanism on each panel at the leading edge in

included.

The local fluid velocity at the edge of one element can be calculated by sum-

ming up all the induced velocity over all of the vortex segments. Substracting out

the component parallel to the edge direction, the effective angle of attack can be

calculated from the angle between the element normal and the fluid velocity perpen-

dicular to the edge, as shown in Figure 4.1. The component of local fluid velocity

perpendicular to the edge is

Vattack = Vfluid − (Vfluid ·L2)L2 (4.6)

which leads to

cos (γ) =

∣∣∣∣Vattack · n‖Vattack‖

∣∣∣∣ (4.7)

The vortex ring is convected if the effective angle of attack is greater than a threshold

value αc

α =
π

2
− γ > αc (4.8)

or equivalently, ∣∣∣∣Vattack · n‖Vattack‖

∣∣∣∣ > cos(
π

2
− αc) (4.9)
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Figure 4.1: Effective angle of attack (AoA) of one element.

4.4 Preliminary results

The simulation is carried out with one cycle of the wing beat starting at dif-

ferent time steps. The vortex sheet of the wing is generated from the FE mesh,

discretized further with the characteristic length of 1.5 millimeters. The character-

istic velocity is chosen as the mean velocity over one cycle. The distribution of the

length of each vortex segment and the velocity at each center of element over time is

shown in ??. This simulation is carried out under the pure translational B”-frame;

therefore the free-stream velocity is the negative mean body velocity.

The mesh information is listed in Table 4.1. In Figure 4.2 and ??, the amount

of how the length and velocity of each element varying through time are shown in

order to justify the choice of the nondimensional variables. The y-axis of each plot

represents the element number from the left wing, the right wing, and the body

71



mesh, respectively.

The simulations of the wake visualization of a representative snapshots of the

downsroke and upstroke are shown in Figure 4.4 and Figure 4.5, respectively. In

each graph, the mesh of the hawkmoth and the wake are plotted in blue and red, and

the circulation calculated from UVLM is shown as contour plot as well. Strong tip

vortex and trailing edge vortex are observed. The leading edge vortex is convected

outward to the spanwise direction and integrated into the tip vortex.

In Figure 4.6, the estimated aerodynamic load and power applied on the moth

with initial condition at each downstroke and upstroke are shown. It can be seen that

the estimated aerodynamic load obtained from the simulations does not vary dras-

tically when started from an upstroke versus a downstroke. This indicates that the

impulse start simulation provides satisfactory results without consideration of the

past strokes of the flight motion. The force acting on the hawkmoth in x-direction

changes sign between the back and forth motion of the wings. The area formed by

the force-time plot represents the change of linear momentum of the hawkmoth, and

the area formed during the upstroke is slightly larger than the downstroke. Same

result is revealed when one recalls the estimated body motion shown in Figure 2.12,

wherein the geometric center of the hawkmoth traveled forward.

There is a peak lift force during each upstroke period and downstroke period.

From Figure 3.12, the effective stroke angle, which represents the angle between

the best planar fit of the tip and root motion and the horizon, is approximately

10 degrees. However, due to the flexibility of the wing, the remaining part of the

wing is positioned at a large angle of attack with respect to the flow, as shown in
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Characteristic length : 1.5 mm
Characteristic velocity : 1500 mm/s
Characteristic time : 1 ms
Number of elements : 1136

Table 4.1: Information for the UVLM simulation.

Figure 3.10.

4.5 Discussions

In this chapter, the estimated motion of a free-flying hawkmoth is integrated

into a fluid-body simulation environment in order to gain more information from

the natural flapping flyers. The interactions between vortices are visualized, and

the aerodynamic load is estimated. Since the estimation of the aerodynamic load

does not vary drastically regarding with the initial condition as well as the history

of the past cycle, UVLM can be a powerful computationally efficient tool to carry

on further investigation such as fluid-structure interaction simulation or parametric

studies.
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Figure 4.2: Length distribution over the wings and body.
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Figure 4.3: Velocity distribution over the wings and body.
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(a) t = 0 (b) t = 0 (c) t = 0

(d) t = 1
8T (e) t = 1

8T (f) t = 1
8T

(g) t = 1
4T (h) t = 1

4T (i) t = 1
4T

(j) t = 3
8T (k) t = 3

8T (l) t = 3
8T

(m) t = 1
2T (n) t = 1

2T (o) t = 1
2T

Figure 4.4: Wake pattern(red mesh) and the strength of circulation(G) of down-
stroke.
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(a) t = 0 (b) t = 0 (c) t = 0

(d) t = 1
8T (e) t = 1

8T (f) t = 1
8T

(g) t = 1
4T (h) t = 1

4T (i) t = 1
4T

(j) t = 3
8T (k) t = 3

8T (l) t = 3
8T

(m) t = 1
2T (n) t = 1

2T (o) t = 1
2T

Figure 4.5: Wake pattern(red mesh) and the strength of circulation(G) of upstroke.
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(a) Fx plot

(b) Fy plot

(c) Fz plot

(d) Power plot

Figure 4.6: Time histories of the aerodynamic load and power. Motion following an
impulse start in a downstroke is shown using black lines, and motion following an
impulse start in a upstroke is shown in red lines.
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Chapter 5: Concluding remarks and future work

5.1 Summary

In this thesis, the author has proposed a non-invasive approach to estimate

the motion of a 3D deformable body from multiple angles of 2D snapshots. Steps

are taken toward integration of experimental data into fluid-structure simulations.

In Section 3.3, the author showed that the estimated configuration from 2D

snapshots is close to the true configuration. This approach is then applied to free

flight data of a hawkmoth. The estimated motion may be of interest to biologists and

engineers interested in the mechanisms of the flapping flight motion. Although this

approach is applied to reconstruct the free flight wing motion of a hawkmoth, the

tools and framework is applicable to any large motion visualization and estimation

with multiple spatial sensors.

One nice feature of the experimental approach of this thesis is that entire

process requires less manual work than most contemporary approaches. Once the

experimental setup is calibrated, the flapping motion of other animals or mechanical

systems may be reconstructed as shown in this thesis work.
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5.2 Recommendations for future work

As the focus of this work has been the motion of a single moth flight, a battery

of experiments of different moths and different animal types is further necessary to

create a comprehensive understanding of the mechanism of flapping flight. Addition-

ally, the development of the development of a fluid-body simulation with integrated

experimental data can aid in discovering key components of flapping flight data,

from different experimental tests.

Constructing a simulation environment for FSI analysis combining the hyper-

elastic FE model and UVLM can not only help gain a comprehensive understanding

of flapping flight mechanisms, but also help develop a pragmatic tool to design an

MAV.
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Appendix A: Appendices

A.1 Frame definition

A.1.1 Coordinate systems

400

450

500

550

600

650

700

R'

I
BW

T

B'

H
B''VB

Figure A.1: Frame definition.

R’ : Newtonian frame
W : rotational wing frame attached at the base of a wing
B : rotational body frame fixed at the geometric center of the body
B’ : translational body frame fixed at the geometric center of the body
B” : translational body frame with constant velocity VB
I : image plane
H : mapping from R’ to I plane
T : mapping from natural coordinates to the finite element representation in R’
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A.1.2 Rigid body rotation

O

x

y

z

Figure A.2: Definition of the Euler angles in rigid body rotation.

The rotation matrix can be expressed by Euler angles. Here, this takes the
form

R =RθRφRρ

=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

cos(φ) 0 −sin(φ)
0 1 0

sin(φ) 0 cos(φ)

1 0 0
0 cos(ρ) −sin(ρ)
0 sin(ρ) cos(ρ)

 (A.1)

A.2 Camera calibration

This section tries to convey the general idea of geometric camera calibration.
It covers just enough concepts to implement calibration using the built-in functions
in Matlab, because part of the documentations in Matlab is unclear, and the
notations are different from the references pointed out by the documentation. For
more details, the readers are directed to the studies of Hartley and Zisserman [2]
and Heikkila and Silvén [52].
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A.2.1 Direct linear transform

One can write down the general form of equation (2.4) as

w

xy
1

 =P


X
Y
Z
1



=

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



X
Y
Z
1


(A.2)

Consider one known point in the world frame (Xi, Yi, Zi) and the corresponding
image location (ui, vi). After substituting into equation (A.2) and eliminating the
scalar w lead to

[
Xi Yi Zi 1 0 0 0 0 −uiXi −uiYi −uiZi −ui
0 0 0 0 Xi Yi Zi 1 −viXi −viYi −viZi −vi

]



p11

p12

p13

p14

p21

p22

p23

p24

p31

p32

p33

p34



=

[
0
0

]
(A.3)

Each known point contributes 2 equations. Therefore, at least 6 calibration points
are needed to solve for all unknowns. Generally, one uses more points to have
more accuracy. Thanks to the power of high speed camera, the author could obtain
numerous data points effortlessly. For n points, the system needed to be solved is

AX = 0 (A.4)

where A is a 2n by 12 matrix.
This is an over-determined problem. Thus, one is seeking for the solution that
minimizes the square sum of residue ε, which is

ε = (AX) (A.5)

Since A can be arbitrarily scaled, an additional constraint is added in order to seek
for an unique solution. In some literature, it has been suggested to force the value
of p34 be 1. It can be numerically unstable if p34 is actually close to zero. Here, the
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author uses the constraint that

XTX = 1 (A.6)

and the solution of X becomes a principal direction of A. The solution is given in
Subsection A.5.1.

A.2.2 Radial distortion

Here, the author only considers radial distortion with only two coefficients.
The difference of the reprojection error compared to 3-coefficient radial distortion
plus the tangential distortion model is minor in the present case. The process of
reprojection is as following: Consider a point P (X, Y, Z)world in the R’-frame. The
coordinate of P in camera frame is

(X, Y, Z)cam = [R | t]


X
Y
Z
1


world

(A.7)

Now, define the normalized projection[
xn
yn

]
=

[
Xcam
Zcam
Ycam
Zcam

]
(A.8)

Let the radius r be
r =

√
x2
n + y2

n (A.9)

The distorted point is [
xd
yd

]
=

[
xn
yn

]
(1 + k1r

2 + k2r
4) (A.10)

Finally, the distorted image point isxy
1

 = K

xdyd
1

 (A.11)

Note that the third element is redundant.

A.2.3 Calibration procedure

In the calibration process, the author has executed the Camera Calibrator
APP in Matlab. By using a checkerboard specified in the documentation, the
author first calibrates the intrinsic parameters for every camera separately. The
author then records a series of candidate frames that the checkerboard was clearly
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captured in all cameras, and the best angles that contained the largest amount of
corner points was adopted. The extrinsic matrices were first estimated by the built-
in function extrinsics in Matlab, and the result was used as the initial condition
of the nonlinear optimization problem, which minimizes the reprojection error, as
described as Subsection A.2.2. The mean reprojection level is usually at the sub-
pixel level.

A.3 More on multiple camera views: two-view geometry

A.3.1 Mathematical preliminaries: projective geometry in two di-
mensions

A general equation of a line in two dimension can be written as

ax+ by + c = 0 (A.12)

One can collect the parameters of a line into a vector

l =
[
a b c

]T
(A.13)

Consider a point in 2D plane

x =
[
x y 1

]T
(A.14)

One can see that the point lies on the line if

x · l = 0 (A.15)

Next, a line l can be defined as

l = x′ × x (A.16)

where x and x′ are two points. Since l is perpendicular to both x and x′ in three
dimensional space,

l · x = l · x′ = 0 (A.17)

So, the line l is formed by two points: x and x′.

A.3.2 Epipolar geometry between two views

Consider a two view geometry as shown in Figure A.3. Suppose one is given
the location of one image point x and two calibrated cameras. The point X is the
back-projection point of x in three dimensional space. Assume that one knows two
points on the back-projection ray:

1. Camera centre C, where PC = 0.
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2. point P+x, where P+ is the pseudo-inverse of P.

P+ = PT (PPT )−1 (A.18)

It can be seen that the projection of P+x is such that

P(P+x) = Ix = x (A.19)

Therefore, the ray can be expressed as

X(λ) = P+x+ λC (A.20)

While λ = 0, X(λ) = P+x, and λ → ∞, X(λ) = C. From equation (A.17), the
line l′ joining x′ and the projection of the point C to the other camera is

l′ =(P′C)× P′(P+x+ λC)

=(P′C)× (P′P+x)

=Fx

(A.21)

P′ is the camera matrix for the other view. F is called the fundamental matrix. An
important property of the fundamental matrix is that

x′TFx = x′T l′ = 0 (A.22)

C C /

 π

x x

X

epipolar plane  

/

Figure A.3: Figure for epipolar geometry [2].
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A.4 Calculations of gradients of the cost for dual optimization

A.4.1 Gradient of distance penalty

The distance d2
j at the minimum point can be written as

d2
j = (p− r̄) · (p− r̄) (A.23)

where r̄ = N(ξ̄, η̄) · (x + q). Computing the first term of equation (3.16) leads to

∂d2
j

∂qk
=

∂

∂qk
(p− r) · (p− r)

= −2
∂r

∂qk
· (p− r) . (A.24)

Looking at the last part of this by component provides

∂ri
∂qk

=
∂

∂qk
(Nil(xl + ql)) = Nil

∂ql
∂qk

= Nik.

This can be interpreted as the k-th column of the matrix N, which in Matlab’s
notation would be N(:,k), or

∂r

∂q
= N. (A.25)

Next, consider
∂d2j
∂ξ

and
∂d2j
∂η

of equation (3.16).

∂d2
j

∂ξ
=

∂

∂ξ
(p− r) · (p− r)

= −2
∂r

∂ξ
· (p− r)

= −2 (x + q) ·N,ξ︸ ︷︷ ︸
=r,ξ

· (p− r) (A.26)

From this, one can readily define

r,ξ = N,ξ (x + q) r,η = N,η (x + q) (A.27a)

r,ξξ = N,ξξ (x + q) r,ηη = N,ηη (x + q) (A.27b)

r,ξη = r,ηξ = N,ξη (x + q) . (A.27c)

By induction, one can also compute

∂d2
j

∂η
= −2 (x + q) ·N,η · (p− r) = −2r,η · (p− r) . (A.28)
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The term in equation (3.16) ∂ξ
∂qk

cannot be calculated directly. Here, the author uses
implicit function theorem to evaluate the derivatives, and the methods are tailored
differently for linear and non-linear elements.

A.4.1.1 Linear Element

The image point P can also be expressed as

P = [N(ξ, η)(x + q)]|(ξ,η)=(P̄1,P̄2) (A.29)

where P̄ = (P̄1, P̄2) is the inverse mapping of the image point from world coordinates
to natural coordinates. By using chain rule, the remaining terms in equation (3.16)
can be written as

∂ξ

∂qk
=

∂ξ

∂P̄1

∂P̄1

∂qk
+

∂ξ

∂P̄2

∂P̄2

∂qk
(A.30)

∂η

∂qk
=

∂η

∂P̄1

∂P̄1

∂qk
+

∂η

∂P̄2

∂P̄2

∂qk
(A.31)

or equivalently,

∂ξ

∂qk
= J(ξ, P̄)

∂P̄

∂qk
(A.32)

where

J(ξ, P̄) =

[
∂ξ
∂P̄1

∂ξ
∂P̄2

∂η
∂P̄1

∂η
∂P̄2

]
(A.33)

The Jacobian is merely the sensitivity of the closest point on the surface element with
respect to the image point both in natural coordinates. It can be easily calculated
by using the map shown in Figure A.5.

To calculate the last term in equation (A.32), examine equation (A.29) by
component and differentiate

Pi = Nij(xj + qj) (A.34)

with the knowledge of the fact that P is a fixed image point. The total derivative of
P with respective to a degree of freedom on FE is zero, while the inverse mapping
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has changed.

d

dqk
Pi = 0 (A.35)

= Nij
∂qj
∂qk

+
∂Nij

∂qk
(xj + qj) (A.36)

= Nik +
∂Nij

∂ξ

∂P̄1

∂qk
(xj + qj) +

∂Nij

∂η

∂P̄2

∂qk
(xj + qj) (A.37)

again, Nik is the kth column in N. Therefore,

∂P̄

∂qk
= −

[
r,ξ|r,η

]−1
N(:, k)|(ξ,η)=(P̄1,P̄2) (A.38)

Note that although the inverse mapping exists, the uniqueness can only be guaran-
teed in the parent element domain. In fact, the determinant of Jacobian of mapping
can be less than zero while a point is far away from the element. At such circum-

stances, one can use partial derivatives of the distance penalty
∂d2j
∂qk

to construct the
gradient and Hessian as an approximation.

T−1 
P

	 

Figure A.4: Illustration of inverse mapping.

A.4.1.2 Higher-order Elements

Let the function

g(q, ξ) =
∂d2

j

∂ξ
(A.39)

be such that it corresponds to an implicit definition of the minimum distance when

g(q, ξ̄) = 0 . (A.40)
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Figure A.5: Jacobian map in equation (A.33). Region IV is the unit square in
natural coordinates.

Here, ξ̄◦q is the natural coordinates of the point on the surface element correspond-
ing to the solution of equation (3.13) (for the appropriate element). By using the
implicit function theorem, one can compute the derivatives of ξ with respect q.

∂ξ

∂q
= −

(
∂g

∂ξ

)−1
∂g

∂q
(A.41)

Working on

∂g

∂ξ
=


∂2d2

j

∂ξ2

∂2d2
j

∂ξ∂η

∂2d2
j

∂ξ∂η

∂2d2
j

∂η2

 (A.42)

by piece gives

∂

∂ξ

∂d2
j

∂ξ
= −2

∂

∂ξ
(r,ξ · (p− r))

= −2 (r,ξξ · (p− r)− r,ξ · r,ξ) (A.43a)
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and

∂

∂η

∂d2
j

∂η
= −2 (r,ηη · (p− r)− r,η · r,η) . (A.43b)

The cross terms are calculated by

∂2d2
j

∂ξ∂η
=
∂2d2

j

∂η∂ξ
= −2

∂

∂η
(r,ξ · (p− r))

= −2 (r,ξη · (p− r)− r,η · r,ξ) . (A.43c)

The last piece of equation (A.42) to formulate is ∂g
∂q

. Breaking this down by
part gives

∂

∂q

∂d2
j

∂ξ
= −2

∂

∂q
(r,ξ · (p− r))

= −2 (r,ξq · (p− r)− r,q · r,ξ) .

Using the definitions above, one can conclude that r,ξq = N,ξ, which simplifies the
above expression to

∂

∂q

∂d2
j

∂ξ
= −2 (N,ξ · (p− r)−N · r,ξ) . (A.44a)

Likewise, the other term is computed as

∂

∂q

∂d2
j

∂η
= −2 (N,η · (p− r)−N · r,η) . (A.44b)

The algorithmic steps to compute the gradient is shown in 1.

90



Algorithm 1 Computing the derivative of the distance penalty from a single voxel.

Precondition: Current state q of the FEM, pixel point p, (ξ̄, η̄) solution to (3.13)

1 Compute the derivatives of r . (A.27)

2

(
∂d2

j

∂ξ
,
∂d2

j

∂η

)
. (A.26), (A.28)

3
∂g

∂ξ
. (A.43)

4
∂g

∂q
. (A.44)

5 Solve for
∂ξ

∂q
. (A.41)

6
∂d2

j

∂q
= −2N · (p− r) . (A.24)

7
d

dq
d2
j = −2N · (p− r) +

(
∂d2

j

∂ξ
,
∂d2

j

∂η

)
· ∂ξ
∂q

. (3.16)

A.4.2 Gradient of strain energy

Looking at the gradient by element, the derivative can be computed with
respect to the local degrees of freedom and then assembled into a global tuple. By
using the product rule

∂U e
s

∂qk
=

1

2

∫
Ωeo

∂S

∂qk
: E + S :

∂E

∂qk
dV0 (A.45)

the problem can be broken up. The tensor ∂S
∂qk

is computed as part of the usual
tangent stiffness matrix and a method to compute it for a Biot material is found
in reference [22]. For a Kirchhoff material (S = C : E), and one can restate
equation (A.45) since S : E = E : C : E as

∂U e
s

∂qk
=

1

2

∫
Ωeo

∂S

∂qk
: E + S :

∂E

∂qk
dV0

=
1

2

∫
Ωeo

∂E

∂qk
: C : E +E : C :

∂E

∂qk
dV0. (A.46)

where C is the constant fourth-order tensor known as the 2nd elasticity tensor.
These derivatives can further be broken down by using the definition of E

∂E

∂qk
=

∂

∂qk

(
F TF − I

)
=

1

2

(
∂F T

∂qk
F + F T ∂F

∂qk

)
. (A.47)
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Employing the usual finite-element description, the derivative of F is computed by
component as

∂Fij
∂qk

=
∂

∂qk

(
∂Nil

∂xj
ql + δij

)
=
∂Nil

∂xj

(
∂ql
∂qk

)
=
∂Nil

∂xj
δlk =

∂Nik

∂xj
. (A.48)

By observation ∂E
∂qk

= ∂ET

∂qk
, one can combine the previous statements to simplify

equation (A.46).

∂U e
s

∂qk
=

1

2

∫
Ωeo

2E : C :
∂E

∂qk
dV0 =

∫
Ωeo

S :
∂E

∂qk
dV0 (A.49)

This expression is identical to the calculation of f int. However, this is only true for
the Kirchhoff material. The use of a Biot material requires equation (A.45) to be
used directly.

A.4.3 Gradient of volume

Computing the derivative of this constraint can be done by element. Since
dV0 is not dependent on q (by definition) the sensitivity of each element volume to
local DOF k can be computed from

∂V e

∂qk
=

∂

∂qk

∫
Ω0

detF dV0 =

∫
Ω0

∂detF

∂qk
dV0 (A.50)

Recall Jacobi’s formula which shows how the derivative of a determinant can be
calculated [53]

∂detF

∂qk
= det (F ) tr

(
F−1∂F

∂qk

)
. (A.51)

where ∂F
∂qk

is computed from equation (A.48). Once the element local derivatives are

calculated they are assembled (superimposed) into the global derivative tuple.
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A.5 Proper orthogonal decomposition

A.5.1 Principal component analysis

Consider matrix A that consists of n sets of data in m-dimensional space.
A ∈ Rn×m. Find a unit vector P ∈ Rm×1 that best represents the m-dimensional
data. Equivalently, find the maximal square sum of the projections of each data on
P .

(AP )T (AP )

=P TATAP

=P TVP

(A.52)

Making use of the Lagrange multiplier, construct the Lagrange function

L(P ) = P TVP − λ(P TP − 1) (A.53)

and solve

∂L

∂P
= 2VP − 2λP = 0

⇒VP = λP
(A.54)

which is an eigenvalue problem. So far, it is concluded that, for a matrix A consists
of sets of data point, the principal components in the sense of least square are the
eigenvectors of matrix ATA.

A.5.2 Singular value decomposition

Singular value decomposition allows that any rectangular matrix to be decom-
posed as

A = UΛVT (A.55)

Suppose that n ≥ m, then

ATA =
(
UΛVT

)T (
UΛVT

)
= VΛUTUΛVT

= VΛ2VT

(A.56)

This can be easily related to principal component analysis by post-multiplying equa-
tion (A.56) by V; that is

ATAV = VΛ2VTV

= VΛ2
(A.57)
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The columns of V are the eigenvectors and the diagonal components of Λ are the
square root of eigenvalues. Similarly,

AAT =
(
UΛVT

) (
UΛVT

)T
= UΛVTVΛUT

= UΛ2UT

(A.58)

Similarly, it can be stated that the columns of the U are the principal compo-
nents of AT . Another thing worth noting is the maximum number of non-zero
singular values AT can have is m. First, consider the eigenvalue of ATA, which
satisfies

ATAw = γw (A.59)

Multiplying A on both sides (
AAT

)
Aw = γAw (A.60)

which also represents the eigenvalue problem of AAT , with the same eigenvalues of
ATA. Now, let w′ be an arbitrary n-m eigenvectors that is orthonormal to other m
eigenvectors of AAT .

Uw′ = 0 (A.61)

After substituting back to the eigenvalue problem of AAT(
AAT

)
Aw = γ′Aw

=⇒
(
AAT

)
w′ = γ′w′

(A.62)

A.5.3 Implementation

Construct the measurement matrix, which the columns are the displacement
of each degree of freedom, and the rows are the snapshots at each time step.

Adof×n = UΛVT

=
[
q(t1) q(t2) · · · q(tn)

]
=
[
φ1 φ2 · · ·φdof

]


. . .

λi
. . .

0




VT
1

VT
2
...

VT
n



=
[
φ1 φ2 · · ·φdof

]

λ1VT

1

λ2VT
2

...
λnVT

n



(A.63)
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if dof > n. Here, U ∈ Rdof×dof consists of the column vectors that best represent
the space information. Each vector is in dof × 1 space, and it becomes the domi-
nant mode shape of motion if it is mapped back to a 3 dimensional space. Similarly,
columns of V ∈ Rn×n contain the information of the amplitude change of overall
motion through time, where Λ is the amplitude of each mode.

A.6 Fast Fourier transform and its inverse transform

Consider a time signal f(t) and its Fourier Transform pair F (jω). In practice,
one often only has discrete and finite time measurements. Suppose there are N
impulse sampling with interval T

F (jω) =

∫ ∞
−∞

f(t)e−jωtdt

=

∫ T (N−1)

0

f(t)e−jωtdt

=
N−1∑
k=0

f [k]e−jωKT

(A.64)

The fundamental frequency of this finite time signal is obtained by considering
the total length of the signal as one cycle.

ω0 =
1

NT
Hz =

2π

NT

rad

s
(A.65)

; that is

ω = 0,
2π

NT
,

4π

NT
, · · · 2(N − 1)π

NT
(A.66)

The form of discrete Fourier transform (DFT) can be written as

F [n] =
N−1∑
k=0

f [k]e−jn
2π
NT

KT

=
N−1∑
k=0

f [k]e−j2π
nk
N

(A.67)

n = 0, 1, · · ·N − 1. The inverse DFT is

f [k] =
1

N

N−1∑
k=0

F [n]ej2π
nk
N (A.68)
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Consider the contribution to f [k] from F [n] and F [N − n]

fn[k] =
1

N

{
F [n]ej2π

nk
N + F [N − n]ej2π

(N−n)k
N

}
(A.69)

For real f [k],

F [N − n] =
N−1∑
k=0

f [k]e−j2π
(N−n)k

N

=
N−1∑
k=0

f [k]ej2π
nk
N e−j2πk

=F ∗[n]

(A.70)

Therefore,

fn[k] =
1

N

(
F [n]ej2π

nk
N + F ∗[n]e−j2π

nk
N

)
(A.71)

Let F [n] = Rn + jIn,

fn[k] =
1

N

{
(Rn + jIn)

(
cos

2π

N
nk + j sin

2π

N
nk

)
+ (Rn − jIn)

(
cos

2π

N
nk − j sin

2π

N
nk

)}
=

1

N

{
2Rn cos

2π

N
nk − 2In sin

2π

N
nk

}
=

2

N
‖F [n]‖ cos

(
2π

N
nk + ang(F [n])

)
(A.72)
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Appendix B: Representative codes

B.1 Area similarity

The area similarity term is computed with this Matlab function. x, y, z,
and qi represent the reference configuration and the displacement, respectively. ID
and IEN define the connectivity of the node number to global tuple and local node
number to global node number. Im and Im2 are the measured image and the
projections from the deformed FE body, where the projection is defined by K, Extsic,
distort. This function is used to discretize the FE body and project it to each image.
The percentage area difference is then calculated.

function [Area,Im2] = AreaBased_DPenalty_vec(x,y,z,qi,ID,...

IEN_ws,nel_ws,...

Im2,Im,...

quad_rules,nen_list,eltype,...

SizeIm,K,Extsic,distort,Area0,resol_nel)

% im numbering rule:

% 1: XY, 2: XZ, 3: YZ

%% outsiders count

outside = 0;

DISCRETE_PTS = cell(1,nel_ws);

for e=1:nel_ws

%% Get the mesh of the surroundind nodes

a = 1:9;

A = IEN_ws(a,e);

%xe = [x(A); y(A); z(A)];

xe=x(A);

ye=y(A);

ze=z(A);

qex = qi(ID(1,A));

qey = qi(ID(2,A));

qez = qi(ID(3,A));

lengths=get_element_length(e,x,y,z,qi,eltype,IEN_ws,ID,quad_rules,nen_list);

resol = resol_nel(e);

% arc length = "lengths" pixel points

xi_r = linspace(-1,1,ceil(lengths(1)/resol));

eta_r = linspace(-1,1,ceil(lengths(2)/resol));
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[xi_grid,eta_grid] = meshgrid(xi_r,eta_r);

xi_grid = xi_grid(:);

eta_grid = eta_grid(:);

[NN] = el10_ShapeFunctions(xi_grid,eta_grid); % N X # of nodes

%% Compute the position of the surface point

pts= [NN*(xe+qex), NN*(ye+qey), NN*(ze+qez)]’;%3XN

DISCRETE_PTS{e} = pts;

end

pts = cell2mat(DISCRETE_PTS);

clear DISCRETE_PTS

LEN = length(pts(1,:));

for cam = 1:3

xp=make_Npts_reprojection(pts,K(:,:,cam),Extsic(:,:,cam),distort(:,cam),LEN);

xp=round(xp);

LEN2 = length(xp(1,:));

xp = is_in_Im_pts(xp,SizeIm);

if isempty(xp)

outside = outside + LEN2;

else

LEN3 = length(xp(1,:));

out = LEN2-LEN3;

outside = outside + out;

idx = sub2ind(SizeIm,xp(2,:),xp(1,:),cam*ones(1,LEN3));

Im2(idx)=true;

end

end

%% sum up the area difference

Area = zeros(3,1);

for cam = 1:3

Intersec = Im2(:,:,cam).* Im(:,:,cam);

Union = Im2(:,:,cam) | Im(:,:,cam);

ShapeDiff = Union - Intersec;

Area(cam) = sum(ShapeDiff(:))/Area0(cam);

end

Area = sum(Area)+outside/sum(Area0);

Area = Area*100/3;% mean percentage difference

end
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B.2 Assembly for the gradient of similarity penalty

B.2.1 Finite difference scheme for area similarity

%% nodal gradient:

% prepare the length of each element

len_e = zeros(nel_ws,2);

for i1 = 1:nel_ws

lengths =get_element_length(i1,x,y,z,...

qi,eltype_ws,IEN_ws,ID,quad_rules,nen);

len_e(i1,:) = lengths;

end

% moves nodes on surface element only

NodeIdx_ws = unique(IEN_ws(:));

if mod(optimize.iteration2,10)~=0

NodeIdx_ws = intersect(NodeIdx_ws,activeD_idx);

end

nnp_ws = length(NodeIdx_ws);

parQI = WorkerObjWrapper(qi);

dD = zeros(nnp*3,1);

GradSeg = zeros(3,nnp_ws);

parfor i = 1:nnp_ws

j1 = NodeIdx_ws(i);

GradSeg(:,i) = nodal_Area_gradient_mex(j1,...

parX.Value,parY.Value,parZ.Value,parQI.Value,ID,...

IEN_ws,nel_ws,...

parSpatBIm.Value,parSpatIm.Value,...

quad.nt,quad.w,quad.xi,...

SizeIm,cam.K,cam.Extsic,cam.distort,Area0,resol_nel,resol_dof,len_e);

end

for i1 = 1:nnp_ws

j1 = NodeIdx_ws(i1);

k1 = ID(:,j1);

dD(k1) = dD(k1) + GradSeg(:,i1);

end

function [grad] = nodal_Area_gradient(nodeIdx,...

x,y,z,qi,ID,...

IEN_ws,nel_ws,...

Im2,Im,...

quad_nt,quad_w,quad_xi,...

SizeIm,K,Extsic,distort,Area0,resol_nel,resol_dof,len_e)%#codegen

%% initialize

grad = zeros(3,1);
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outside = 0;

%% find the element(s) that contains the node

[local_node,ele_num] = find(IEN_ws==nodeIdx);

len_element = length(ele_num);

global_ele_idx = setdiff(1:nel_ws,ele_num);

%% create the shared Im for later perturbation

for e1=1: (nel_ws-len_element)

e = global_ele_idx(e1);

%% Get the mesh of the surroundind nodes

[Im2,outside] = element_projection(Im2,e,...

x,y,z,IEN_ws,qi,ID,...

quad_nt, quad_xi, quad_w,resol_nel,...

K,Extsic,distort,SizeIm,outside,len_e(e,:));

end

%% now perturb

for dof = 1 : 3

Im_dx1 = Im2;

Im_dx2 = Im2;

outside_dx1 = outside;

outside_dx2 = outside;

global_dof = ID(dof,nodeIdx);

dx = resol_dof(global_dof);

qi1 = qi;qi2 = qi;

qi1(global_dof) = qi(global_dof)+dx;

qi2(global_dof) = qi(global_dof)-dx;

% make the projection of the elements relavent to that perturb point

for e1 = 1:len_element

e = ele_num(e1);

[Im_dx1,outside_dx1] = element_projection(Im_dx1,e,...

x,y,z,IEN_ws,qi1,ID,...

quad_nt, quad_xi, quad_w,resol_nel,...

K,Extsic,distort,SizeIm,outside_dx1,len_e(e,:));

[Im_dx2,outside_dx2] = element_projection(Im_dx2,e,...

x,y,z,IEN_ws,qi2,ID,...

quad_nt, quad_xi, quad_w,resol_nel,...

K,Extsic,distort,SizeIm,outside_dx2,len_e(e,:));

end

% calculate gradient

% second order f’ = (f_{i+1}-f_{i-1})/(2dx) + O(dx^2)

f1 = get_percentage_area_diff(Im,Im_dx1,Area0,outside_dx1);

f2 = get_percentage_area_diff(Im,Im_dx2,Area0,outside_dx2);

dA = 0.5*(f1-f2)/dx;

grad(dof) = dA;

end

end
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function [Im2,outside] = element_projection(Im2,e,...

x,y,z,IEN_ws,qi,ID,...

quad_nt, quad_xi, quad_w,resol_nel,...

K,Extsic,distort,SizeIm,outside,len_e)

a = 1:9;

A = IEN_ws(a,e);

%xe = [x(A); y(A); z(A)];

xe=x(A);

ye=y(A);

ze=z(A);

qex = qi(ID(1,A));

qey = qi(ID(2,A));

qez = qi(ID(3,A));

% lengths = el10_lengths( xe, ye, ze, qex, qey, qez, ...

% quad_nt, quad_xi, quad_w);

resol = resol_nel(e);

% arc length = "lengths" pixel points

xi_r = linspace(-1,1,ceil(len_e(1)/resol));

eta_r = linspace(-1,1,ceil(len_e(2)/resol));

for i1 = 1:length(xi_r)

xi = xi_r(i1);

for i2 = 1:length(eta_r)

eta = eta_r(i2);

% len_temp=len_temp+1;

[NN] = el10_ShapeFunctions(xi,eta);

%% Compute the position of the surface point

pts= [NN*(xe+qex);

NN*(ye+qey);

NN*(ze+qez)];

for cam = 1:3

xp=make_reprojection(pts,K(:,:,cam),Extsic(:,:,cam),distort(:,cam));

xp=round(xp);

flag = is_in_Im(xp,SizeIm);

if flag

Im2(xp(2),xp(1),cam)=true;

else outside=outside+1;

end

end

end

end

end
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function [Area]=get_percentage_area_diff(Im,Im2,Area0,outside)

Area = zeros(3,1);

for cam = 1:3

Intersec = Im2(:,:,cam).* Im(:,:,cam);

Union = Im2(:,:,cam) | Im(:,:,cam);

ShapeDiff = Union - Intersec;

Area(cam) = sum(ShapeDiff(:))/Area0(cam);

end

Area = sum(Area)+outside/sum(Area0);

Area = Area*100/3;

end

B.2.2 Gradient of the distance penalty of one element

function [dD_temp1,dD_temp2,ddD_temp1,ddD_row,ddD_col]=...

derivatives_of_D2(P,IEN,ID,IM,pos,e,pos_nat, ...

x,y,z,qi) %#codegen

% assemble the gradient of distance penalty element-wise

% P : location of image points that are registered to the e-th element

% pos : the location of the point on the FEM body registering the point P

% pos_nat : the corresponding coordinate in natural coordinate.

% example:

% condider one image point P(:,i)

% the location of the closest point on the surface is pos(:,i)

% pos(:,i) can also be calculated by N_jX_j evaluated at

% (xi,eta) = pos_nat

% IM : 1: XY image, 2: YZ image , 3: XZ image

nen_e=9;

LEN=length(P(1,:));

%% temp

dD_temp1=zeros(27,1); % value

dD_temp2=zeros(27,1); % location

ddD_temp1=zeros(27,27);

ddD_row=zeros(27,27);

ddD_col=zeros(27,27);

% dD_temp1 : save the value of gradient of Distance penalty

% [dx1 dy1 dz1 dx2 dy2 dz2 dx3....] in local node sequence

% dD_temp2 : global equation number = dD_temp2(local equatio number)

% gradient(dD_temp2)=dD_temp1;

%% calculate the value and save the location
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if LEN~=0

A= IEN(:,e);

switch IM

case 1

nodes=[x(A)+qi(ID(1,A)) y(A)+qi(ID(2,A)) ];

case 2

nodes=[ y(A)+qi(ID(2,A)) z(A)+qi(ID(3,A))];

case 3

nodes=[x(A)+qi(ID(1,A)) z(A)+qi(ID(3,A)) ];

otherwise

nodes=zeros(9,2);

end

%% loop over image points

for m=1:LEN

dD_temp=zeros(2,1);

p1=P(:,m); % image point

pos1=pos(:,m); % corresponding closest point

pos_nat1 = pos_nat(:,m);

[N ,Nr ,Ns]= el10_ShapeFunctions(pos_nat1(1),pos_nat1(2));

[Nrr,Nss,Nrs]= el10_ShapeFunctionsD2(pos_nat1(1),pos_nat1(2));

%-----------------------------------------------------------------------

% calculate the A matrix in the implicit function

%-----------------------------------------------------------------------

A = zeros(2);

A(1,1) = Nrr*nodes*(p1-pos1)-( Nr*nodes(:,1) )^2-( Nr*nodes(:,2)

)^2;

A(1,2) = Nrs*nodes*(p1-pos1)-( Nr*nodes(:,1) )*( Ns*nodes(:,1)

)...

-( Nr*nodes(:,2) )*( Ns*nodes(:,2) );

A(2,1) = Nrs*nodes*(p1-pos1)-( Nr*nodes(:,1) )*( Ns*nodes(:,1)

)...

-( Nr*nodes(:,2) )*( Ns*nodes(:,2) );

A(2,2) = Nss*nodes*(p1-pos1)-( Ns*nodes(:,1) )^2-( Ns*nodes(:,2)

)^2;

for i=1:nen_e % loop over the local nodes

% local node registering

switch IM

case 1

idx=[(i-1)*3+1 (i-1)*3+2]’;

case 2

idx=[(i-1)*3+2 (i-1)*3+3]’;

case 3

idx=[(i-1)*3+1 (i-1)*3+3]’;

otherwise % put this to complete the cases
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idx=[0 0]’;

end

%--------------------------------------------------------------------------

% solve the implicit function

%--------------------------------------------------------------------------

Bx = [-Nr(i);-Ns(i)]*(p1(1)-pos1(1)) +

N(i)*[Nr*nodes(:,1);Ns*nodes(:,1)];

By = [-Nr(i);-Ns(i)]*(p1(2)-pos1(2)) +

N(i)*[Nr*nodes(:,2);Ns*nodes(:,2)];

drdxi = A\Bx;

drdyi = A\By;

drdx = drdxi(1);

dsdx = drdxi(2);

drdy = drdyi(1);

dsdy = drdyi(2);

if abs( pos_nat1(1) )==1 % r=+-1

drdx=0;

drdy=0;

end

if abs( pos_nat1(2) )==1 % s=+-1

dsdx=0;

dsdy=0;

end

dNdxi = Nr*drdx+Ns*dsdx;

dNdyi = Nr*drdy+Ns*dsdy;

%--------------------------------------------------------------------------

% calculate [\partial D \partial xj ;\partial D \partial yj ]

%--------------------------------------------------------------------------

dD_temp(1) = 2*(p1(1)-pos1(1))*(-N(i)-dNdxi*nodes(:,1) )...

+2*(p1(2)-pos1(2))*( -dNdxi*nodes(:,2) );

dD_temp(2) = 2*(p1(1)-pos1(1))*( -dNdyi*nodes(:,1) )...

+2*(p1(2)-pos1(2))*(-N(i)-dNdyi*nodes(:,2) );

% dD_temp = 2*(p1-pos1)*(-N(i));% partail derivatives

% dD_temp: [\partial D \partial xj ;\partial D \partial yj

]

dD_temp1(idx)=dD_temp1(idx)+dD_temp;

end

end

% save the location

for i=1:nen_e

j=IEN(i,e); % global node number

idx=ID(:,j);% equation number

dD_temp2((i-1)*3+1:(i-1)*3+3)=idx;
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end

%% hessian matrix : partial derivative

% assemble Hessian

for m=1:LEN

N = el10_ShapeFunctions(pos_nat(1,m),pos_nat(2,m));

for i=1:nen_e

for j=1:nen_e

temp=2*N(i)*N(j);

switch IM

case 1

%----------------------------------------------------------------------

% original assembly process

%

ddD(ID(1,Ai),ID(1,Aj))=ddD(ID(1,Ai),ID(1,Aj))+temp;

%

ddD(ID(2,Ai),ID(2,Aj))=ddD(ID(2,Ai),ID(2,Aj))+temp;

%----------------------------------------------------------------------

row1= (i-1)*3+1;

col1= (j-1)*3+1;

row2= (i-1)*3+2;

col2= (j-1)*3+2;

ddD_temp1(row1,col1)=ddD_temp1(row1,col1)+temp;

ddD_temp1(row2,col2)=ddD_temp1(row2,col2)+temp;

case 2

row1= (i-1)*3+2;

col1= (j-1)*3+2;

row2= (i-1)*3+3;

col2= (j-1)*3+3;

ddD_temp1(row1,col1)=ddD_temp1(row1,col1)+temp;

ddD_temp1(row2,col2)=ddD_temp1(row2,col2)+temp;

case 3

row1= (i-1)*3+1;

col1= (j-1)*3+1;

row2= (i-1)*3+3;

col2= (j-1)*3+3;

ddD_temp1(row1,col1)=ddD_temp1(row1,col1)+temp;

ddD_temp1(row2,col2)=ddD_temp1(row2,col2)+temp;

end

end

end

end

% save the location

% i,j ith element x => jx, jy, jz, (j+1)x, (j+1)y, (j+1)z,(j+2)x,

(j+2)y, (j+2)z

% ith element y => jx, jy, jz, (j+1)x, (j+1)y, (j+1)z,(j+2)x,

(j+2)y, (j+2)z
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% or in other words , partial D /partial--

% x1^2 x1y1 x1z1 x1x2 x1y2 x1z2 ...

% y1x1 y1^2 y1z1 y1x2 y1y2 y1z2 ...

% z1x1 z1y1 z1^2 z1x2 z1y2 z1z2 ...

% ddD_row:

% x1 x1 x1

% y1 y1 y1

% z1 z1 z1

% ddD_col

% x1 y1 z1

% x1 y1 z1

% x1 y1 z1

for i=1:nen_e

Ai=IEN(i,e);

row=ID(:,Ai); % global equation number of the rows

for j=1:nen_e

% partial derivatives of D w.r.t. i and j element

Aj=IEN(j,e);

col=ID(:,Aj)’; % global equation number of the cols

ddD_row((i-1)*3+1:(i-1)*3+3,(j-1)*3+1:(j-1)*3+3)= ...

[row row row];

ddD_col((i-1)*3+1:(i-1)*3+3,(j-1)*3+1:(j-1)*3+3)= ...

[col;col;col];

end

end

end
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