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Modern software application testing, such as the testing of software driven by graph-

ical user interfaces (GUIs) or leveraging event-driven architectures in general, requires

paying careful attention to context. Model-based testing (MBT) approaches first acquire

a model of an application, then use the model to construct test cases covering relevant

contexts. A major shortcoming of state-of-the-art automated model-based testing is that

many test cases proposed by the model are not actually executable. These infeasible test

cases threaten the integrity of the entire model-based suite, and any coverage of contexts

the suite aims to provide.

In this research, I develop and evaluate a novel approach for classifying the feasibility

of test cases. I identify a set of pertinent features for the classifier, and develop novel

methods for extracting these features from the outputs of MBT tools. I use a supervised

logistic regression approach to obtain a model of test case feasibility from a randomly

selected training suite of test cases. I evaluate this approach with a set of experiments.

The outcomes of this investigation are as follows: I confirm that infeasibility is

prevalent in MBT, even for test suites designed to cover a relatively small number of

unique contexts. I confirm that the frequency of infeasibility varies widely across appli-



cations. I develop and train a binary classifier for feasibility with average overall error,

false positive, and false negative rates under 5%. I find that unique event IDs are key

features of the feasibility classifier, while model-specific event types are not. I construct

three types of features from the event IDs associated with test cases, and evaluate the

relative effectiveness of each within the classifier.

To support this study, I also develop a number of tools and infrastructure compo-

nents for scalable execution of automated jobs, which use state-of-the-art container and

continuous integration technologies to enable parallel test execution and the persistence

of all experimental artifacts.
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Chapter 1: Introduction

1.1 Finding Bugs in Software

Software “bugs” are notoriously difficult to find. Even companies spending billions

on their software still find themselves humbled by problems after release. Some now argue

that writing bug-free software is practically impossible (or at best, not cost effective).

The high-stakes economy around technology also presents its own tradeoffs, as the cost of

being late to market is often much higher than the cost of fixing bugs.

But what do we even mean by the colloquial term bug? At a high level, the real

problem is that the software did not behave as expected. In practice, there are many

people who have expectations about the behavior of any given software application: the

end-users, the owners, the maintainers, and so on. Before we go on, we need a much more

general (yet more precise) definition.

1.1.1 Software Defects

IEEE Standard 1044 [1] provides a definition for a “defect” as “an imperfection or

deficiency in a work product where that work product does not meet its requirements

or specifications.” Importantly, defects can occur throughout the Software Development

Lifecycle (SDLC). The artifacts of so-called early-lifecycle phases of the SDLC, such as

requirements gathering and design, can have defects. Defects in these artifacts can carry
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through to downstream artifacts such as source code and binaries. Defects which occur in

the running, executable components of a software application are often classified as failures

(departures from the expected behavior of the application) or faults (any manifestation of

a human error in a piece of software).

For the purposes of this research, I will not typically distinguish between the different

types of defects in software applications. I do, however, assert that the quality of artifacts

is a function of the defects present. Furthermore, I assert that every defect detected and

removed from a piece of software improves the quality of that software. While there are

many tradeoffs to consider, finding and fixing defects as quickly as possible remains an

important goal in modern-day software development.

Because the focus of this research is software testing, which is only possible on the

executable artifacts of the SDLC, I will also refer to these artifacts as simply “software”

or “software applications.” I will be specific when referring to any other artifacts of the

SDLC.

1.1.2 Software Quality Assurance Activities

The discipline known as Software Quality Assurance (or simply “QA” within the

software development industry) focuses on the development and application of techniques

for measuring and assuring the quality of software. Regardless of the development and

management methodologies being used on a software project, QA activities will always

be required. At a high level, common QA activities carried out on software applications

include:

• Planning: How should each artifact be checked for defects?

2



• Finding Potential Defects: Given the requirements or expectations of an artifact,

are there any potential “imperfections or deficiencies” present?

• Triaging Potential Defects: Does each potential defect really qualify as a defect?

If so, what is the likelihood and impact of the defect?

These activities can occur on any artifact in the SDLC. While planning and triag-

ing are more intellectual in nature (e.g., weighing available information, options, and

priorities), techniques for finding defects vary widely by artifact, and require technically

complex tooling for late-lifecycle artifacts such as code and executable software. Defect-

finding techniques also greatly impact the planning which is necessary for finding defects.

Given the focus of this study, here are some common techniques for finding defects

in executable artifacts:

• Compilation or Interpretation: Source code translates into executable formats,

and this process requires parsing and semantic analysis that may reveal defects

related to conformance to the programming language.

• Static Analysis: Tools can inspect source code or compiled code for common

mistakes.

• Reviews: Team members can read one another’s source code and offer feedback on

possible defects.

• Testing: Executable artifacts can be evaluated by running and inspecting their

output under certain conditions.

While the other techniques listed above are certainly valuable [2,3], software testing

continues to be the most ubiquitous defect-finding technique in software development.

Entire development methodologies in the industry (such as the very popular Test Driven

Development technique [4]) have been developed around the idea of testing early and

3



often. I focus on software testing in this research.

1.1.3 Software Testing Activities

For projects which rely on testing as a primary way to find defects, QA activities

are still required throughout the SDLC. A great deal of work related to testing a piece of

software actually occurs prior to test case execution.

In test suite design, testers develop requirements for a test suite. We often refer

to these test suite design requirements as coverage criteria. Testers commonly develop

separate test suites which cover, for example, all requirements, all user interface (UI)

components, all new features for a release, all web server endpoints, and so forth. Test

suites designed in this way often overlap, but the separate suites can be executed in

isolation to measure a particular aspect of quality.

Once a tester designs a test suite, he or she will construct test cases to be added to

suites. The test cases for a specific suite should collectively achieve the coverage criteria of

the test suite. Because of this requirement, each test case usually contributes to a specific

coverage goal of the test suite. For example, if I design test suite A to accomplish a goal

of verifying the functionality of all UI elements, each test case in A may be constructed

to cover a single UI element.

Test cases take the form < I,E >, where I describes some input to the application,

and E any expected output to be verified against actual output during test case execution.

These sets can both include multiple elements, corresponding to the number of inputs to

be provided and expected outputs to be verified, respectively.

Apart from their construction, testers must also maintain test cases and test suites

over time as an application changes. For example, a test suite with a goal of covering all

4



UI components of an application requires maintenance any time the UI components of the

application change. Some maintenance requires the addition of new test cases, and some

involves repair of existing test cases which may no longer be valid.

At a higher level, testers can develop an overall testing strategy which drives the

design of test suites, creation of test cases, and maintenance of these artifacts. This

higher-level view is critical for optimization and proper management of testing activities.

For example, many test cases will be appropriate for more than one test suite, and should

not be maintained separately in isolation. Even within a single test suite, individual test

cases designed with targeted goals tend to overlap, wasting resources and maintenance

effort. An effective strategy balances the important variables of testing effort and defect

risk.

1.1.4 Testing Event-Driven Software

Despite the complexity of software testing activities outlined above, I have only

considered the simplified, general case. Today’s most popular software applications, in-

cluding those on Web, mobile, and Desktop platforms, leverage a common underlying

model of event-driven interaction. Users (or in many cases, other software or hardware

components) perform events. These events can produce output and change the runtime

state of the application. This event-driven paradigm presents several challenges for many

software testing activities.

Consider a standard event-driven application as depicted in Figure 1.1. An appli-

cation defines an interface, and an actor performs events on this interface. The system

receives the event, but this action may or may not affect the actual state of the application,

and the system may or may not send a response to the user due to this action. Typically,

5



Interface System

Event 1

Response 1
(optional)

 
 

Actor

Event 2

Response 2
(optional)

Figure 1.1: A basic event-driven software application

the actor may immediately perform additional events which follow the same pattern.

The ability of actors to perform events in sequence blurs the boundary between

traditional notions of input and output in software testing, as the outputs of one event

become the input of the next. The inputs specified for each test case take the form

of sequences of events, with expected output specification allowed at any point during

the event sequence. Figure 1.2 illustrates the contrast between this model and its pre-

event predecessors. Similarly, output verification may occur at any point - even before or

between the execution of input events.

In general, I assert that effective testing of event-driven software requires considera-

tion of the software and any integrated systems’ context throughout all testing activities.

More formally, by context I mean the state of a running software component or integrated

system. I assume that the behavior of any piece of software is a function of its compiled

code and runtime state. To be sure, testers must consider this runtime state for effec-

tive testing of any software (even those which are not event-driven); but in the case of
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Input Application Expected
Output

Verification

(a) Classic test case

Event
e1

Event
e2

Event
e3

Verification VerificationVerification

(b) Event-based test case

Figure 1.2: Comparison of Event-based and Classic Test Cases

event-driven software, there is typically much more context to consider.

Table 1.1 details some of the potential considerations of event context desirable

for several testing activities throughout the SDLC. The need to consider context while

carrying out each of these activities and others when testing event-driven applications

directly compounds software testing’s fundamental problem of exponential growth.

Testing Activity Considerations of Context

Test Suite Design Sequence-based coverage criteria on various event do-
mains
Sampling according to event sequence characteristics

Test Case Construction Control and evaluate contribution to sequence-based
coverage criteria

Test Case Execution Collect runtime event execution feedback on various
event domains

Test Suite Maintenance Minimize duplicate sequence coverage
Compare sequence coverage between test suites

Test Case Maintenance Evaluate contribution to coverage criteria

Table 1.1: Considerations of Context in Testing of Event-Driven Applications
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Every necessary input event or verification added to a test case stands to increase the

number of possible test cases required for effective testing exponentially. Considerations

of context have analogous exponential effects throughout the SDLC.

In the example event-based test case from Figure 1.2(b), the verification performed

after e2 must take into account not only the effects of e2, but also any residual effects of

e1 and the interaction between e1 and e2. Beyond that, the verification may even need to

compensate for the existing state of an application prior to the execution of the current

test case - for example, if the application is in any way sensitive to previously entered

data. Often, testers can control for inter-test dependencies by applying techniques such as

“testing the delta,” (i.e., designing the test and its verifications to ignore unrelated data).

Clearly, testers must consider the context of event execution when constructing test cases

for event-driven systems.

Working our way back up the hierarchy of testing activities, testers must also con-

sider context during test suite design. Verifying the correct functionality of e2 after the

execution of the sequence e1 does not directly imply correct functionality of e2 after the

execution of any other sequence. Therefore, a test suite designed to verify the correct

functionality of e2 may have to consider the execution of e2 from multiple relevant con-

texts.

For example, consider the popular Copy → Paste operations available in many

applications. If Copy has not been performed, then Paste should have no effect; but if

Copy has been performed correctly, then we know that a Paste event should insert the

copied text. Going back further, we know that Copy only has an effect after text selection,

and most applications only support text selection after text has been inserted or loaded,

and so on.
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1.2 Automated GUI Testing with Models

Testers must become domain experts to appropriately incorporate context while

performing testing activities. If left as a purely manual exercise, important effects of

context can easily be overlooked. If the same knowledge could be obtained and modeled

in an automated way, some of these problems could potentially be avoided.

Researchers have made a great deal of progress over the last decade in the area

of automated model-based testing of applications which are driven by a graphical user

interface (GUI). GUI-driven applications comprise a large subset of the broader group

of event-driven applications considered so far. As with the larger class of applications,,

system-level testing of GUI-driven applications involves the execution of input events on

the graphical interface - an activity commonly referred to as GUI testing.

Figure 1.3: A simple test case on the JabRef application
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1.2.1 GUI Testing

Figure 1.3 outlines an example input sequence on the JabRef Reference Manager,

an open-source Java Desktop application (http://jabref.sourceforge.net/) used as a

subject application in this study. This test case involves enabling the search panel (step

1), entering a search term (step 2), selecting a display option (step 3), and clicking to

trigger the search (step 4). Each step acts as a single event in the input sequence. Notice

several things about this input sequence which highlight specifics of GUI testing:

• Events are associated with and performed on GUI controls (also known as widgets).

• Widgets typically support only a very small set of actions. For example, only the

text box in step 2 supports text entry.

• Events may or may not require accompanying input data (e.g., step 2).

Testers can incorporate any conceivable type of verification into a GUI test case. The

use of a GUI by an application does not limit the available sources of output verification,

though GUI-driven applications do introduce the GUI’s state as an interesting subset

of verifiable application state. Tests can perform perhaps the simplest possible output

verification by checking only for crashes by the GUI or in the application’s log output.

If an application uses a back-end database, a test can verify database state at any point

during execution, and similarly compare current values to expectations for any observable

part of an application’s state.

A verification’s type (e.g., log, GUI, database, etc.) determines the information

needed to completely specify a test case. At a minimum, specification of each input step

requires information necessary to identify widgets and perform events (including input

data, if applicable). A number of popular industry tools can automatically replay well-
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specified test cases for GUI-driven applications in various domains (see Selenium Web-

Driver, Android Robotium, Quick Test Professional, and others). Each of these tools,

however, depends on error-prone manual creation of test cases, and prior to that, man-

ual test suite design and maintenance decisions. As an alternative, I previously described

GUITAR [5], a multi-platform framework for automated model-based testing of GUI appli-

cations on various platforms. At its core, GUITAR reverse engineers event-based models

of GUI applications, and traverses these models to generate suites of replayable test cases

which meet tuneable event-based criteria.

I elaborate on additional considerations for GUI testing in Section 2.2. For this

study, I use GUITAR’s tools for automated model-based testing.

1.2.2 Existing Model-based Approaches which Incorporate Context

The standard GUITAR workflow builds an Event-flow model of the application

and generates a test suite which covers all event sequences of length 2 from the model.

The Event-flow model incorporates knowledge of may-follow relationships between events,

where A may-follow indicates that an event B may be executed after an event A. Test

suite generation algorithms use information about may-follow relationships to construct

test cases and satisfy coverage criteria.

Additional methods derived from the event-flow model have also incorporated ad-

ditional context information. The Event-interaction Graph (EIG) model enhances the

event-flow model with information collected at runtime about the effects of event execu-

tion on underlying, non-GUI application state [6–8].

The Probabilistic Event Flow Graph (PEFG) of Brooks and Memon augments the

event-flow graph with probabilities according to event sequence collected from real users
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[9]. On a different domain, McMaster and Memon consider sequences of method call

stacks to inform a reduction technique [10]. The current research effort builds on these

two approaches most directly in an attempt to consider event context collected from

arbitrary domains.

Model-based approaches defined on the GUI domain appear to be much more scal-

able than approaches defined directly on lower levels of application state. State-based test

generation attempts to capture the entire application state [11–13], which has not proven

scalable for event-driven applications. Similarly, data-flow approaches require analysis of

statements of code [14, 15]. Neither method directly informs the general consideration of

context in arbitrary domains.

I elaborate on additional model-based approaches 2.1, and on the specific modeling

approaches used in this study in Chapter 3.

1.3 Test Case Feasibility

Model-based testing approaches consider context by modeling the behavior of ap-

plications, and generating test cases which cover the contexts represented by the model

systematically. However, model-based testing is not without its problems. One of the most

significant problems with popular model-based techniques is test case feasibility, which I

define here and aim to directly address in this research.

Infeasibility is not a new problem, and has been addressed by a number of exist-

ing empirical studies of model-based GUI testing in particular [16–19]. In this research,

however, I am proposing to deal with this problem in a new way: through the use of a

binary classifier using a linear model. I elaborate on the current study’s relationship with

existing work in Section 2.3.
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1.3.1 Defining Feasibility

The shortcomings of automated, model-based GUI testing techniques largely stem

from imprecise model construction. In the case of GUITAR, a tool attempts to construct

the model in an automated way. Because tests are derived from the model, an impre-

cise model will lead to tests which do not behave as expected when replayed. Due to

model imprecision or other possible application-specific issues, model-based techniques

often generate test cases which are infeasible.

I refer to an infeasible test case as one which cannot be completely executed as

planned. Such test cases may provide some of their intended coverage and verifications,

but not all.

1.3.2 Problems Caused by Infeasibility

Infeasible test cases introduce a number of problems for a model-based testing ap-

proach:

1. An infeasible test case provides less coverage than designed, causing the parent test

suite to also provide less than its designed coverage.

2. Determining the root cause of infeasibility requires manual intervention and inves-

tigation into an otherwise fully automated process.

3. Infeasible test cases cause false positives in test results, which can be expensive to

manually investigate.

4. Any cost associated with dealing with infeasible test cases will grow as the application

changes.

Coverage guarantees are a primary motivation for the use of model-based testing
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approaches in the first place. Through coverage, the same techniques offer appropriate

consideration of context for event-driven software. The presence of infeasible test cases

threatens the integrity of these techniques altogether. For example, a test case ec → ep

designed to cover Paste after Copy only truly covers Paste after Copy if both events

execute successfully. If for any reason either event cannot be executed as planned, the

test case is infeasible. The larger suite, if designed to cover each event within one or more

prior events’ context, no longer successfully provides this guarantee.

Because model-based testing approaches often deal with very large numbers of test

cases (in the 100s of thousands), manual intervention in even a small percentage of exe-

cuted test cases can take many hours. For example, consider a typical GUI-driven appli-

cation, with 500 unique events in its GUI. Covering this application for all pairs of events

requires up to 250,000 test cases in a test suite. Each infeasible test case could easily take

several minutes, at best, to triage as infeasible or legitimately failed. If even 5% of the

original test cases in the suite fail due to being infeasible, this would result in 12,500 false

positives and several weeks to triage (86 24-hour days, if each false positive required 10

minutes of investigation). This time due to wasted effort, infeasible test cases threaten

the viability and usefulness of any model-based testing approach.

As mentioned earlier in this section, there are additional QA activities outside of

simply executing test cases, and each of these is likewise impacted due to the presence of

any infeasible test cases. Any manual effort for dealing with feasibility concerns would

be amplified within these activities as well. For example, with each new version of the

application, new infeasible test cases could be introduced that must be triaged. For each

test case rejected due to infeasibility, a new test case must be generated and executed in

order to obtain desired coverage criteria.
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1.3.3 The Need to Model Feasibility

While the feasibility of test cases can be directly observed through execution, full

execution of proposed model-based test suites in order to observe and verify test case

feasibility is not ideal due to the effort and computational resources required. Also, as

mentioned above, determining infeasibility even after execution can also require some

degree of manual intervention.

A high-accuracy, pre-execution feasibility indicator would be much more efficient for

the detection of potentially infeasible test cases. In machine learning terms, this problem is

a binary classification problem. Given a test case, I require a model which can classify the

test case as feasible or infeasible with high accuracy. Such a model would greatly improve

the overall effectiveness of model-based testing approaches as a whole, by avoiding the

problems caused by infeasible test cases. Prior to test case execution, only the inputs and

expected outputs of a GUI test case are available, and any such model would only be able

to leverage the features of these artifacts.

1.4 Thesis Statement

In this research study, I consider the research questions presented in Table 1.2. For

research question RQ1, I consider the prevalence of infeasibility. I hypothesize that the

generation of infeasible test cases is indeed prevalent, at rates of up to 20%, in model-based

testing workflows. To test this hypothesis, I generate and execute 44,000 total model-based

test cases for four Java applications (11,000 per application). From test execution results,

I develop a method to infer the feasibility of each test case from log output.

For research question RQ2, I consider the ability to develop an application-specific
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ID Question Hypothesis

RQ1 How prevalent are infeasible test
cases in MBT workflows?

Infeasible test cases will occur in all
MBT test suites, at a rate of up to
20%.

RQ2 Can an application-specific model of
test case feasibility be used to pre-
dict the feasibility of unseen model-
based test cases?

A binary classifier can be con-
structed which will outperform at
least a random (50%) baseline in
predicting the feasibility of unseen
test cases.

RQ3 Which of the considered feature
types of model-based test cases con-
tribute the most to feasibility pre-
diction?

Hypothesis A: Test case “before-
pairs” and n-grams of length=2
will contribute most often and most
significantly to feasibility models.

Hypothesis B: Test case “before-
pairs” will contribute more signif-
icantly to feasibility models than
n-grams.

Table 1.2: Research Questions and Hypotheses

binary classifier for feasibility. I hypothesize that an effective binary classifier for test case

feasibility (that is, one that at least outperforms a random baseline) can be constructed

from a reasonable amount of test executions observed as training data. To test this

hypothesis, I divide the 11,000 generated test cases per application into Training and Test

suites of test cases. I develop a set of features for the binary classifier, and a tool to

extract these features from each test case. As with RQ1, I infer the feasibility of each test

case from the execution log. I train the classifiers from the features of test cases in the

Training suite and the observed feasibility of each test case. I then use the classifier to

predict the feasibility as observed from the output of each test case in the Test suite.

Finally, in research question RQ3 I consider which of the features chosen by the

training process of the binary classifier contribute the most to its effectiveness. I hypoth-

esize that features which incorporate context (in particular, n-grams and “before-pairs”

of event IDs) will contribute the most to feasibility models. Further, I hypothesize that

16



the loosely ordered event ID before-pairs will contribute more often and more signifi-

cantly than strictly ordered n-grams. I define each of these categories precisely in Sec-

tion sec:feature:select. To test these hypotheses, I inspect the features selected by each

binary classifier, and compare the relative counts and magnitudes of coefficients in the

trained model.

The experiments outlined below require the development of a number of novel tech-

niques, infrastructure components, and tool support. Prior to the carrying out experi-

ments, I develop extensions for the model based testing workflow to include the training

of the feasibility classifier in Chapter 3. I discuss the implementation of custom infrastruc-

ture components, tools, and scripts which support modeling and other activities required

for experiments in Chapter 4. I elaborate on the steps of these experiments in full detail

in Chapter 5.

1.5 Results

I carry out a number of planned analyses (described in Section 5.3) for each research

question to arrive at the following outcomes, which are the primary contributions of this

paper:

• O1: I confirm that infeasibility in model-based test suites is a significant problem,

with infeasible test cases generated at rates of 7.8% or higher for every test suite I

considered, and as high as 53.5%.

• O2: I confirm that the tendency to generate infeasible test cases varies widely across

applications.

• O3: I develop and train a novel binary classifier of feasibility with overall error, false

positive, and false negative rates under 5%, constructed by observing the executions
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of randomly sampled model-based test cases.

• O4: I find that the event types of the the GUITAR Ripper’s GUIStructure output

artifact do not correlate with infeasibility, confirming that initial model imprecision

(rather than the inferences of the Converter and Test Case Generation algorithms)

is the dominant source of infeasibility in model-based testing workflows.

• O5: I find that event IDs formed by creating hashes of GUI properties during model

construction served as effective features for the binary classifiers constructed in this

study.

• O6: I identify three types of features formed from event IDs that serve as effective

inputs for the feasibility classifier: loosely ordered before-pairs of event IDs, and

n-grams of event IDs of length=1 and length=2.

• O7: I find that all three of the feature types identified in O6 contributed to feasibility

classifiers, no single type of the three appeared unilaterally more effective across the

four AUTs considered in my experiments.

Section 5.4 explains the analysis which led to each of these findings, within the

context of the research questions RQ1, RQ2, and RQ3 presented above.

1.5.1 Intellectual Merit

In this research, I demonstrate the application of machine learning to an important

problem from the field of software testing. I assert that model-based testing needs new

types of models to deal with its most fundamental challenges, and I develop and evaluate

one such model in this work. Development of the model requires identification of features

pertinent to feasibility, and the development of novel techniques and tooling for feature

extraction.
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1.5.2 Broader Impacts

As I practicing software engineer, I have seen very little practical application of

model-based testing. In my observation, model-based testing is not inapplicable. Teams

of dedicated QA Engineers spends months developing effective test automation. In my

opinion, model-based testing in its current forms are often viewed as impractical because:

• MBT cannot really provide the very guarantees that it claims (such as coverage

criteria and full automation).

• Model construction and verification are tedious.

• Model construction activities are seen as “reimplementing the application” rather

than verifying its logic.

I believe that this research directly addresses the first bullet above, introducing a

new class of techniques for dealing with model-based testing’s shortcomings. I show in

this study the construction of feasibility models, but believe that similar models may be

able to predict other important variables such as code coverage, HTTP call and database

coverage, and other important variables in the future.

As a secondary goal, I also emphasize the scalability of model-based testing through-

out this research. I believe that cloud computing in particular stands to revolutionize

testing strategy and techniques through scalability. Just as test automation continues to

replace manual testing, I believe that newfound scalability demands more thorough cov-

erage criteria, such as those provided by model-based testing techniques. This research

demonstrates the efficient use of hardware resources for model-based testing of GUI ap-

plications, through the use of state-of-the-art open-source tools for containerization and

continuous integration.
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I also emphasize the repeatability of all experiments and analysis performed as a

part of this research. I persist every model-based testing and analysis artifact, as well

as configurations for every tool used. I believe that my approach for achieving highly

repeatable experiments is relevant for empirical studies of software engineering, software

testing, and potentially studies from other fields as well.
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Chapter 2: Background and Related Work

In this chapter, I elaborate on background information and existing research relevant

to this study. First, I review existing research in the two related fields of model-based

testing and GUI testing. I then compare this research to a number of related research

studies which consider test case feasibility.

2.1 Model-Based Testing

Modeling has become essential for modern software development. Developers now

have models for many things: models of the Software Development Lifecycle (SDLC),

such as Waterfall or Spiral; models which formalize a system’s requirements; models of a

system’s objects or runtime components; and models for every phase of the SDLC. The

goal of modeling systems is usually abstraction. For example, during software requirements

gathering activities, stakeholders do not care about the implementation details of the

system. They can abstract these details away by modeling only the user and the system

as a whole. As development of any one feature moves through the SDLC, different models

abstract away less relevant details from the task at hand. Often, multiple models - each

emphasizing different software characteristics - are needed in order to effectively make

decisions.

As I assert in Chapter 1, effective software testing depends on the ability to incor-

porate relevant context. Uniformly, all consideration of context requires the presence of
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some type of “model” of the application. Even in cases where a formal abstraction is not

defined, a domain expert’s own mental model is driving testing activities. In this study, I

focus on the more formal class of models. Researchers have predominantly proposed three

classes of models capable of considering context and drive testing activities, all of which

can be applied to event-based applications: state-based, data flow, and event flow.

2.1.1 State-Based and Data-Flow Models

In state-based models of testing, testers construct state machine models which at-

tempt to model an application in terms of its runtime states. Test case generation, then,

attempts to satisfy various coverage criteria defined on the state machine. Though re-

ferred to by various names in the literature, coverage of transitions or edges in the model

is a commonly used criteria [11–13]. Note that coverage of transitions requires the con-

sideration of a single-length history of prior state. The event-driven domain of protocol

testing was in many respects a catalyst for state-based testing approaches in the early

1990s [20,21], though protocols considered at that time were much simpler domains than

the event-driven protocols of today’s applications.

In practice, automated construction of state machine models of non-trivial appli-

cations is often infeasible, despite a number of enhancements which attempt to limit

the number of states and transitions that must be captured by the model. Cheng and

Krishnakumar describe the Extended Finite State Machine (EFSM), which limits states

by adding additional counters and runtime components [22]. Similarly, Shehady and

Siewiorek describe an extension of FSMs to use variables, which limits the number of

states to be explored [23], and the work of White, et al. suggests subdividing models into

usage-specific categories [24,25].
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In practice, these techniques provide some utility in well-defined or highly critical

domains, but would likely be ineffective in the more complex domains of larger event-

driven systems. In addition to the high cost of model construction at the often hidden

and complex level of application states, the task of mapping back to a concrete, executable

input domain remains an error-prone manual exercise.

In contrast to control-flow models, data-flow models of software track context by

following traces of variables in a program. A model known as a control flow graph de-

tails the flow of a program through its executable statements. The primary indicators of

context are the uses of variables. Variable reads and writes and their use in interesting

combinations are analyzed. Rapps and Weyuker first introduced a set of adequacy criteria

for data-flow testing [14], focusing primarily on coverage of their Def/Use program graph.

Frankl and Weyuker later expanded on these original criteria, claiming that many pro-

grams could not satisfy the central criteria of the original work [15], for reasons as common

as a simple for loop. In practice, once again, reliable construction of program graphs and

generation of tests which satisfy these criteria does not scale to the complexities of modern

applications.

2.1.2 Event-flow Models

Given the issues with state-based and data-flow approaches to capturing context,

Memon proposed the event-flow model for GUI testing [26, 27]. In this work, the nodes

in a graphical model of the GUI capture behavioral may-follow relationships. Given the

event-flow model, coverage criteria can be defined which consider the coverage of the may-

follow relationships present in a GUI [28]. Important coverage criteria include pairwise

coverage (covering all edges in the event-flow model’s graph) and a more generic sequence
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length coverage concept, which requires covering all sequences of events in the graph of a

given length. (Note that pairwise coverage is a length-2 version of this criteria.)

Because test case construction considerations follow the construction of the event-

flow model, the accuracy of the model determines the accuracy of any inferred and gen-

erated test cases. Given an accurate model, automatically generated test cases will be

executable. Given an inaccurate model, infeasible test cases will be produced.
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Figure 2.1: GUI and corresponding EFG for a simple application.

Figure 2.1 shows a GUI and the corresponding event-flow model for a simple Java

application. Nodes in the graph represent events in the application’s GUI, and the presence

of edges in the model indicate that an event can successfully follow another. While most

buttons are always available from any other, the Yes button is only available after clicking

“Exit,” because this button confirms the Exit operation. This relationship is evident in

the event-flow model as well, as the corresponding edge between these nodes is missing.

Memon et al. later developed a reverse engineering tool known as the Ripper for con-

structing event-flow models in an automated way [29], giving this model some advantages
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over the previously discussed models. Automated model construction makes construction

of models of modern GUI applications possible, for the first time. More recent work with

the event flow model has enhanced the model to focus on events more likely to find faults.

To identify these events, automated testing workflows collect runtime information during

test execution. Data collected during one execution can be re-used to improve the model

used in the next, and this process repeated iteratively [6–8]. The work of Yuan et al.

explicitly aimed to consider events in context [30] based on the application of covering

arrays to an adaptation of the event-flow model called the event-interaction graph (EIG).

2.2 GUI Testing

Since the start of the 21st century, GUI testing as a subdiscipline of software test-

ing research has continued to grow significantly alongside the rise in the popularity of

GUI-driven applications. Researchers often focus on model-based testing of GUI-driven

applications, though industrial trends have yet to follow. This disconnect was also noted in

a recent systematic mapping of published literature on the topic of GUI testing by Baner-

jee et al. [31]. In many cases, however, large-scale research efforts enabled by automated,

model-based testing have been able to inform testing practice.

One practical line of research which followed from the event-flow model was the Daily

Automated Regression Testing (DART) framework [32], which was shown to be effective

for identifying bugs which caused crashes in daily or nightly builds. The DART tools would

later become the GUI Test Automation Framework (GUITAR), an open-source framework

1 for end-to-end automated testing on various GUI application platforms. Figure 2.2 shows

the types of automated, model-based testing workflows enabled by GUITAR.

1http://guitar.sf.net
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Figure 2.2: Model-based GUI testing techniques enabled by GUITAR

In 2013, Nguyen et al. published an updated description of GUITAR from an

architectural perspective [5], carrying out a number of case studies which highlighted

some of the pitfalls of the automated model-based approach. Most objections arose from

the reverse engineering Ripper tool, due to difficulties with widget identification and the

simplicity of its algorithm (which executes in a single application instance). The authors

observed that the one-time execution of the Ripper led to invalid model construction due

to the effects of event and application context. Incomplete or otherwise incorrect models

lead to the generation of infeasible test cases. This infeasibility problem is exactly what I

address in this study.

2.2.1 Tool Support

Table 2.1 offers a concise, high-level comparison of the features of GUITAR with the

features of other frameworks popular in the industry (re-printed from [5]). The alternative

tools include:

1. Monkey, a tool for random walking of Android application GUIs.
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Framework
Name

Model
Generation

Test Case
Generation

Supported
Platforms

GUITAR Rev. Eng (A) Model based (A) Multiple†

Monkey None None Android

NModel Scripted (M) Model based (A)
& Scripted (M)

C#

Quick Test Pro None Scripted (M) &
Captured (M)

Multiple‡

Selenium None Scripted (M) &
Captured (M)

Web

A = automated, M = manual
†JFC, SWT, Web, Android, other platforms in alpha

‡Java, Web, .NET

Table 2.1: Comparison of Testing Frameworks

2. NModel, a model-based testing framework for C# programs.

3. Quick Test Pro, a popular proprietary, multi-platform tool for test automation.

4. Selenium WebDriver, a popular API for browser automation.

While I am not particularly concerned with multiple-platform support for this study,

a comparison of the approaches of each tool is informative. Tools from the industry (in

particular, the very popular Selenium WebDriver and HP Quick Test Professional tools)

tend to focus on giving a tester direct control over test case creation. Academic researchers

have argued for many years that completely manual approaches do not scale well enough

to meet advanced coverage criteria, and this intuition seems correct.

One difficulty common to GUI testing which all testing tools must address is the

identification of widgets in a GUI. In the case of Selenium, an API in Java, Python,

or other available languages allows a tester to programmatically specify an identifying
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string for each widget in supported ways (e.g., XPath or CSS selector notation) . Quick

Test Professional accomplishes identification with tool support, allowing testers to select

a desired widget graphically while constructing a test. Like the GUITAR Ripper, both of

these approaches can lead to high maintenance costs if widget identification does not hold

across future versions of the software.

The Monkey tool is also an interesting use case. Testers in the mobile domain,

where the set of available widgets and the scale of program state are limited, have found

that randomly walking through applications and checking for crashes and specific, tool-

supported constraint violations is often effective for finding faults.

2.2.2 Test Oracles

Another important characteristic of testing tools is test oracle support. By “test

oracle,” I mean the method of verification for a test. One long-standing problem with

GUI testing is the cost of maintaining a set of expected values to be verified during test

execution. As far back as 1992, Richardson et al. studied the challenges of oracles for

event-based systems (referring to these systems as reactive systems) [33,34].

More recently, Memon et al. began to look at oracles for GUIs [35]. Xie and Memon

carried out a large-scale empirical study with GUITAR that showed the utility of more

advanced oracles over crash testing [36]. Examples of other, more effective oracles in that

study include those defined on the GUI structure to be checked during test execution.

2.3 Related Work on Test Case Infeasibility

As discussed in Chapter 1, model-based considerations of context applied to the

testing of event-driven systems often generate infeasible test cases. Existing research has
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explored the ability to detect and fix model-based test cases which were either directly

generated as infeasible or became infeasible across application versions.

In 2008, Memon proposed an EFG comparison technique for detecting test cases

which become infeasible due to GUI changes across application versions [16]. Once de-

tected, one of four repairing transformations described can be used to update the test case

to work successfully with the new application version while maintaining relevant portions

of its original event coverage.

In this research, I am concerned with generated test cases which are immediately

infeasible rather than those which become infeasible across application versions. Also,

Memon’s technique here relies on the EFG model for detection and resolution of GUI

changes. However, producing accurate EFGs by hand requires an intractable amount of

manual effort. The EFGs produced by the fully automted Ripper algorithm are typically

inaccurate due to limitations of the algorithm [5,18,19].

In general, approaches other than Memon’s original work in 2008 have focused on

the use of feedback loops (a concept first formalized for model-based testing by Yuan and

Cohen in 2008 [37]) to inform models and test case generation strategies in particular

about possible sources of infeasibility. My technique in this research is also based on

feedback, as I use test execution results to construct the binary classifier.

Given the shortcomings of fully automated model construction, Huang, Cohen and

Memon, in their 2010 research, consider the more general case of test case infeasibility [18].

Using a feedback loop, they developed a genetic algorithm for selecting feasible test cases.

The algorithm starts with candidate test cases from a seed test suite, and mutates the

original suite while preferring feasible test cases. The algorithm did show the ability to

converge and produce test suites of feasible test cases; however, it required execution of

29



test cases in order to classify them as feasible or not. As a genetic algorithm, very large

numbers of possibly feasible, alternative test cases were considered, and execution of these

during the iterations of the algorithm took days or weeks.

In this work, I do use a seed test suite to construct a model. In my case, the model

is a binary classifier rather than a covering array as in Huang, Cohen, and Memon’s

work. I focus on the ability to extract features from test cases which indicate infeasibility

rather than directly executing and observing test cases and only extracting feasibility as

a binary value. My algorithms for training and prediction do depend on the ability to

converge, and are subject to “garbage in, garbage out” just as a genetic algorithm would

be. However, the larger feature space available to my technique should make my approach

less susceptible to negative outcomes.

More recently, Nguyen and Memon proposed a similarly feedback-based approach for

modeling and test case generation called the OME* paradigm [17]. Under this paradigm,

a starting EFG model is augmented with additional information after test case execution,

leading to what the authors call the EFG+ model. The EFG+, armed with this additional

information, can generate test cases which are guaranteed to be feasible.

In this work, I do not focus on feedback or model updating as in the OME* ap-

proach. My technique can therefore be applied to a much broader class of applications and

event-based testing domains (e.g., HTTP calls, database queries, and other event-based

domains). My technique also does not depend on any particular model or source of test

cases at all, which can be advantageous when incorporating domain knowledge that any

one particular model (such as the EFG or EFG+) is not designed to capture. The OME*

approach also depends on observing an event within a specific context before performing

model updating. By contrast, my technique can extrapolate possible causes of infeasibility
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from a much broader class of test case charateristics than an EFG alone allows.

Finally, work by Gao et al. in 2015 addressed feasibility by abandoning a fully

automated process for manual corrections. They developed a tool SITAR which suggests

model and test case corrections to a manual user (presumably, a domain expert for the

application). They also introduced a new annotation to the EFG model, dominates. The

dominates relationship, when identified by a Ripper or manual feedback, indicates that

an event must proceed another (in contrast to the may proceed implied by the existing

annotation). In their case, they found the tool to be very effective at suggesting possible

corrections for infeasible test cases.

I consider my current work to be in-line with the approach of Gao et al. in that I

agree that additional information, whether readily presented in an EFG-like model or not,

is necessary for dealing with infeasibility. The more generic model used in my research

here would allow for a broader class of domain knowledge in general to be captured than

an EFG alone allows. My technique requires that such domain knowledge be encoded as

features to a binary classifier.

Also of note is the empirical study of Bae, et al. in 2014 [38]. Within a much

broader comparison of GUITAR’s sequence-length coverage criterion and a dynamic event

extraction testing approach, they confirmed that GUITAR’s model-based test cases began

to have problems with infeasibility (what they refer to as “partially executable test cases”).

They assert, as I have already in motivating the need for a feasibility classifier, that

partially executable test cases lead to redundant coverage that still falls short of the

desired coverage criteria. They note that redundancy, especially within the context of a

more exhaustive model-based testing approach, leads to large amounts of wasted execution

effort.
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2.3.1 Summary of Related Work

In summary, I believe that my approach in this research largely expands on existing

work which considers test case feasibility. While my technique may still be applicable

across application versions, the direct problem I am addressing is the generation of infea-

sible test cases from a model-based technique, presumably due to model imprecision. My

technique allows feasibility considerations to remain automated, and it is generalizable to

any conceivable type of domain knowledge which can be extracted from or annotated onto

test cases by any automated or manual process.

The idea of using an EFG or annotated EFG is synonymous in the machine learn-

ing world with using probabilistic N-gram models for feasibility prediction. Probabilistic

models certainly could have additional use cases beyond binary classification; but if binary

classification of some characteristic is the goal, use of a more general linear model is much

more flexible. I take advantage of that flexibility to consider additional types of features

in this work, and I assert that this flexibility leads to a much more effective approach for

feasibility prediction in general.
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Chapter 3: Modeling Feasibility

In this chapter, I outline the models I use to predict the feasibility of unseen model-

based test cases of event-driven software. I start with an overview of GUITAR’s model-

based workflow, and append additional steps to that workflow for the prediction of feasi-

bility.

3.1 The GUITAR Standard Workflow

As discussed, this research primarily seeks to improve on the techniques of the

GUITAR framework for model-based GUI testing [5]. Numerous existing studies have

leveraged GUITAR’s sequence-length test case generation workflow (which we referred to

as the “standard workflow” in the 2013 paper), shown in Figure 3.1.

At a high level, a Ripper tool produces a GUI Tree output called a GUIStructure.

The Converter then converts the GUIStructure into an Event-flow Graph (EFG). The

Generator traverses the EFG to output many executable test cases. Finally, the Replayer

executes each test case (one at a time). For this study, I use default algorithms and

configurations for each tool, and a Random Sequence Length strategy for the Generator.

As Figure 3.1 indicates, each tool in this workflow outputs one or more XML-

formatted documents, which in turn drive the next tool and step in the workflow. In the

subsections below, I describe each tool. I use a running example of a toy application,

shown in Figure 3.2 (also reprinted from our 2013 paper [5]).
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Figure 3.1: GUITAR Standard Workflow for model-based testing, with Artifacts
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3.1.1 Choice of GUI Platform

For my experiments, I use the GUITAR Java tools, which are based on the Java

Foundation Classes (JFC)1 and the Swing UI components. Of the four tools depicted in

Figure 3.1, only the Ripper and Replayer have platform-specific components. While the

core ripping and replaying logic is shared across platforms, these tools do need to know how

to interact with the GUIs of a specific platform. To be sure, GUI-based Java applications

are not as popular as more contemporary UI platforms (e.g., Web and Mobile), but the

Java GUITAR implementations are the longest-standing platform and have the longest

history of use in empirical studies of model-based GUI testing techniques.

Additionally, I do not expect the choice of this or any particular platform to threaten

the interpretation of results for my experiments. The binary classification of feasibility

which is the focus of this study is platform agnostic, and would require no modification to

plug in to additional application platforms. I discuss this platform choice in more detail

when elaborating on threats to this research’s validity in Chapter 6.

3.1.2 The GUI Ripper

The workflow starts by leveraging GUITAR’s implementation of the GUI Ripping

technique [39]. GUI ripping automatically constructs a model of the GUI of the application

under test. The GUITAR tool for GUI Ripping is called the Ripper. The Ripper takes

as input a number of parameters related to launching the application and guiding the

ripping process. The output of the Ripper is a single GUIStructure file, which captures

the windows and widgets the Ripper encountered.

Importantly, GUITAR’s default Ripper uses only a single pass through an appli-

1https://docs.oracle.com/javase/tutorial/uiswing/start/about.html
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cation, attempting to “rip” as many windows and widgets as possible recursively before

exiting and producing a consolidated GUIStructure. Figure 3.3 contains pseudocode for

the ripping algorithm, reprinted here from Banerjee, et al. [39]. A hypothetical ideal Rip-

per would require potentially infinite passes through the application (e.g., to capture every

event in every possible context).

3.1.2.1 Ripper Algorithm

GUI = φ

PROCEDURE RIP (SUT A)

τ = get-top-level-windows(A) 1

G = τ 2

FORALL t ∈ τ DO 3

RIP-RECURSIVE(t) 4

PROCEDURE RIP-RECURSIVE (Window t)

Ψ = extract-widgets-and-properties(t) 5

ε = identity-executable-widgets(Ψ) 6

FORALL e ∈ ε DO 7

execute(e) 8

C = get-invoked-windows(e) 9

GUI = GUI ∪ C 10

FORALL c ∈ C DO 11

RIP-RECURSIVE(c) 12

Figure 3.3: Pseudocode for the Ripper

Walking through the algorithm as applied to the running example from Figure 3.2,
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get-top-level-windows would return a single window (the Radio Button Demo win-

dow) for the example application. The Ripper would then call RIP-RECURSIVE to ex-

tract the widgets and properties from this window, and identify and interact with each

widget. Upon interacting with the Exit button, a new window would be discovered by

get-invoked-windows (the Exit Confirmation window), and that window subsequently

inspected as well. The result is a GUIStructure with two windows, each with several

widgets and properties. The GUIStructure also captures the fact that clicking the “Exit”

button will lead to the spawning of the Exit Confirmation window.

One complexity not immediately obvious from the pseudocode is the identification

and utilization of terminal widgets. Upon launch, the Ripper takes a list of terminal

widgets properties as a configuration option. The algorithm excludes any widgets with

these properties from the return values of identify-executable-widgets. For the sake

of simplicity, the pseudocode also omit’s the algorithm’s execution of terminal widgets

as needed to exit windows (i.e., once all other executable events have been executed).

get-invoked-windows also detects closed windows, in the case that a window was closed

by the execution of an event unexpectedly.

3.1.2.2 Configuration Options and Customizations

As we note in the 2013 paper [5], the Ripper is very sensitive to configuration and

customization, such as the configuration of terminal and ignored widgets. In this study,

building larger GUI models was not a focus, and as such, I have chosen to avoid any

additional complexities of further customization of the Ripper. I use very basic configura-

tions for terminal and ignored widgets (e.g., treating “Ok”, “Cancel”, and other common

exit buttons as terminal widgets for all AUTs). For all AUTs, I add enough configura-
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tion to terminal and ignored widgets to ensure that the extracted GUIStructure models

have a reasonable, non-trivial size; but I do not perform any detailed inspections of the

GUIStructure to search for ways to extract a more complete GUIStructure. Importantly,

such customizations do not impact the feasibility of test cases. They only affect the size

of the extracted GUIStructure model.

For example, assume that a terminal widget is missing from the Ripper’s configu-

ration. This omission would cause the Ripper algorithm to treat the terminal widget as

it would any other widget in the application, causing one or more windows to exit prior

to having extracted all possible information. This would lead to a less accurate, smaller

GUIStructure in terms of widgets and properties; but it would not cause the generation

of infeasible test cases later in the workflow.

As another example of the impact of Ripper customizations, in our 2013 paper we

describe customization of the Ripper and Replayer to deal with custom widget types [5].

These customizations lead to a much better discovery of the application’s GUI , as more

windows, widgets, and properties are discovered. In turn, the GUIStructure produced by

the Ripper’s algorithm from Figure 3.3 is a much more accurate model of the application in

that it covers much more of the GUI’s components. Lacking such customizations (as I do in

my experiments), the Ripping algorithm extracts fewer windows, widgets, and properties,

and effectively skips over the missed components altogether, as the algorithm makes clear.

The components (and any children) are completely absent from the GUIStructure, so they

will not cause any issues with feasibility for any test cases derived later in the workflow.

For consistency, the Ripper and Replayer used in my experiments were configured

with support for the same basic GUI components. Any component extracted and placed

into the GUIStructure by the Ripper was likewise able to be replayed by the Replayer.
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3.1.2.3 Event Properties

To set up model conversion and test case generation steps, the most important pieces

of information extracted by the Ripper are related to events. Structurally, each Window

in the GUI has one or more Components, where Components can be Widgets (which

are interactive) or groups of Components (which are collections of other components or

Widgets). For example, a Menu is a Component in this paradigm. A Menu Button

(which is clickable) is a Widget. Widgets subsequently have events, and each event has

properties. Most properties are structural, but two key computed properties are also

essential to downstream processing:

• Event ID : a unique ID for the event, created as a hash of the properties from the

widget and its parent window.

• Event Type : an inferred category for the event, based on observed effects on the

GUI after execution.

Both the EFG and executable test cases use the event ID as a unique identifier.

The ID is computed rather than random to assist the Ripper’s own algorithm in avoiding

infinite loops of property extraction (e.g., in the get-invoked-windows method referred

to from the pseudocode), and to keep IDs consistent across otherwise identical executions

of the Ripper. Because the IDs are based on a hash, any difference in structural properties

(e.g., the width, height, or screen location) of the widget will cause it to be considered a

new widget for inclusion in the GUIStructure.

The event type in this context refers to the effects this event has on the GUI. (To be

clear, it does not refer to clicking, typing, or any other type of events which can be carried

out on a widget). There are five event types, each of which have a specific interpretation
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in the event-flow model produced by the Converter in the next workflow step [27]:

• menu-open: an event which caused a menu to open.

• termination: an event which caused a window to close.

• restricted-focus: an event which caused a window to open, if the opened window

blocked access to all existing windows.

• unrestricted-focus: an event which caused a window to open, if the opened window

did not block access to existing windows.

• system-interaction: an event which did not cause any apparent change to the

GUI.

After computing these values, the GUIStructure contains all necessary information

for downstream processing.

3.1.3 Conversion

The next two steps in the standard GUITAR workflow work from model representa-

tions rather than directly with applications. As the next step, the Converter converts the

GUIStructure model into a Directed Graph called the Event Flow Graph (EFG) [27]. The

EFG has GUI events as nodes. Edges in the EFG represent presumed relationships be-

tween GUI events. In particular, the EFG captures may-follow relations between events

in the GUI. If an event e2 has a connection from event e1 in the EFG, e2 should be

immediately executable after the execution of e1.

As the transition from subfigure (b) to subfigure (c) in Figure 3.2 shows, the EFG

abstracts away all information except for events and their relationships. The conversion

from GUI information to event relationships is purely structural, based solely on the

information available in the GUIStructure. The XML representation of the EFG includes
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event IDs, initial flags for each event, and a matrix representation of the graph itself.

PROCEDURE GET-FOLLOWS (VERTEX V )

W = window(v); B = top-level-events(W) 1

IF EventType(v) == menu-open 2

IF v ∈ B 3

return(MenuChoices(v) ∪ { v } ∪ B 4

ELSE 5

return(MenuChoices(v) ∪ { v } ∪ follows(parent(v)) 6

IF EventType(v) == system-interaction 7

return(B) 8

IF EventType(v) == termination 9

return(top-level-events(invoker(W))) 10

IF EventType(v) == unrestricted-focus 11

return(B ∪ top-level-events(invoked(v))) 12

IF EventType(v) == restricted-focus 13

return(top-level-events(invoked(v))) 14

Figure 3.4: Pseudocode for computing may-follow relationships from an event

Figure 3.4 shows pseudocode for the primary algorithm used in computing the EFG,

which computes may-follow relations for a given event (adapted from [27]). Specifically,

this algorithm computes the set of events which may-follow a given event v. As mentioned

above, this algorithm depends on the computed Event Type present in the GUIStructure

for each event.

For each event type, the algorithm uses the relationships captured in the GUIStructure
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to compute the events available from the current event. The logic for each case depends

on the event type’s effects on the GUI, with limitations introduced as windows and menus

are opened and closed. system-interaction events were observed to have no effect on

the GUI during ripping, and likewise can be followed by any events which were available

before their execution.

The events available after executing a menu-open event depend on whether the event

is available at the top level of its window. For example, if a user must click a File menu

in order to click Save, the user can click File within its own window at any time; but

Save can only be clicked once File is expanded. The File case is line 3 above, and the

Save case is line 5.

For events which invoke new windows (unrestricted-focus and restricted-focus),

the events which may follow depend on the nature of the window invoked. If the window

invoked was modal, meaning that it blocked interaction with all other windows, then only

events in the new window may follow. If the window was not modal, then the events in

the new window as well as any events already available may still follow.

Events in the EFG are also marked with a true/false initial value, which indicates

whether each event can be executed immediately after application start. All events avail-

able from the root windows of the application have this flag set to true, and all others

have a value of false.

3.1.4 Test Case Generation

Next, the Test Case Generator traverses the EFG to generate test cases. The Gen-

erator takes as input the EFG produced by the Converter and generation parameters.

GUITAR’s basic libraries support multiple test case generation strategies. In this re-
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search, I chose to use the “random sequence length” test case generator, which randomly

selects a given number of test cases from a much larger pool of test cases defined on a

criteria of sequence length coverage.

The Generator outputs one file per each requested test case, which I refer to as the

“test case input file.” Each file specifies the sequence of events which define the test case.

Even for short, constant sequence lengths, tests can include a varying number of steps.

Because I am using only click events (as the only type provided by the default GUITAR

Ripper and Replayer), my test case files include only event and widget identifiers (IDs) -

one per step.

PROCEDURE SEQUENCE-LENGTH-TESTS (EFG G, LENGTH L)

for v ∈ vertices(G) 1

S = S ∪ GENERATE-SEQUENCES(L, v) 2

PROCEDURE GENERATE-SEQUENCES (LENGTH L, SEQUENCE POSTFIX)

IF L == 1 3

P = pathToRoot(first(POSTFIX)) 4

writeTest(P, POSTFIX) 5

ELSE 6

for v ∈ successors(last(POSTFIX)) 7

NP = concat(POSTFIX, v) 8

GENERATE-SEQUENCES(L - 1, NP) 9

Figure 3.5: Pseudocode for sequence-length test case generation

Figure 3.5 includes pseudocode for the sequence-length test case generation algo-

rithm. Given a sequence length L, this algorithm generates one test case for each sequence
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of length L in the EFG. Sequences up to length L are identified by walking forward from

each node up to length L, then a “path to root” is prefixed onto each sequence. The

pathToRoot method walks backward from a given vertex (i.e., the first vertex in the

sequence being covered) until reaching an event which has an initial flag set to true.

As mentioned, I use a random variation of this algorithm in my experiments. The

randomness is introduced after the sequence length generation algorithm completes by

choosing a random set of indices from the entire pool of available tests. Therefore, my

experiments provide two inputs to the test case generation step: a sequence length for

generation of the pool, and a number of test cases to sample. Random selection of test

cases is more appropriate for the training and evaluation of the binary classifier, and it

also avoids the exponential blowup in runtime required for executing full sequence-length

coverage suites.

3.1.5 Test Case Replay

After generation of test cases, the workflow includes execution of the generated

test cases with the GUITAR Replayer tool. As a piece of software, the Replayer tool

is very similar to the Ripper: a platform-specific tool with event and widget awareness.

The Replayer, though, simply takes a Test Case, EFG, and GUIStructure as input and

executes the steps from the Test Case in sequence.

The Replayer only directly outputs a text log of execution results. Most researchers

of model-based testing approaches collect additional output artifacts from the application

during test case execution, in order to apply a more interesting test oracle [36]. To deter-

mine feasibility, however, I am concerned with test case execution only. The Replayer’s

log provides enough information for this analysis on its own.
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In my experiments, I treat all Replayer failures as a possible indication of an infea-

sible input test case. I updated the GUITAR Replayer used in my experiments to report

four types of errors of its own:

• COMPONENT NOT FOUND - A required widget (one required by the input

test case) cannot be found.

• COMPONENT DISABLED - A required widget can be found in the GUI, but

cannot be executed. The widget may be directly disabled, or may be blocked by

some other GUI component.

• STEP TIMEOUT - The Replayer has failed to carry out a test case event within

a reasonable amount of time.

• JAVA EXCEPTION - The Replayer has failed due to a Java error (e.g., a bug in

the Replayer such as a Java NullPointerException).

In all of the cases above, the GUITAR workflow steps prior to the use of the Replayer

have produced a test case which was ultimately not executable. For this reason, I consider

any such failure a possible indication of test case infeasibility.

3.2 Adding a Binary Classifier for Feasibility

To this point, I have described the use of models to extract and process GUI infor-

mation, and to generate test cases. To predict feasibility, I propose the training and use of

a binary classifier as an additional step in a model-based testing workflow. To this end, I

use supervised learning to train a binary classifier for test case feasibility. In this section,

I elaborate on the machine learning techniques used by this process.
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3.2.1 Supervised Learning and Binary Classification

Machine learning involves the use of computers to learn patterns from data. In

practical applications, the learned patterns are often used to predict something about the

nature of unseen data. Within the context of this research, for example, I want to predict

the feasibility of a test case prior to its execution. I provide a test case as input to the

machine learning algorithm, and expect to receive a prediction (feasible or infeasible) as

output. This type of problem is known as a binary classification: classification because

I want to categorize the input , and binary because there are only two categories of the

predicted value.

A machine learning technique such as binary classification requires at least two

complementary algorithms which work in separate phases. During a training phase, one

algorithm fits a statistical model based on a set of inputs. After training, a separate

algorithm can use the trained statistical model to predict outcomes given previously unseen

inputs. Mathematically, these algorithms operate on numerically coded features of input

data, where each feature maps to an input variable Xi in the underlying statistical model.

Algorithms which also know the correct output category of an input during training are

known as supervised (as opposed to unsupervised techniques, which do not know the

output category of inputs during training). I use supervised learning to construct the

binary classifier for feasibility in this study.

3.2.2 Generalized Linear Model

Above, I explain that binary classification requires fitting a statistical model during

training, then using that model to make predictions. Assuming a set of p features Xj used

to predict an outcome Ŷ , a linear model is one that estimates Y as:
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Ŷ = β̂0 +
p∑
j=1

Xj β̂j (3.1)

Under this model, training involves solving an optimization problem which chooses

the coefficients β̂ that lead to the best approximations for ŷ. After training, predictions

can be made by simply summing the Xiβ̂ terms from the features of a previously unseen

data point. The β̂0 added to every prediction is known as the intercept of the model. The

intercept may also be added to the model by modeling an extra feature term X0 which

always has a value of 1. From the remainder of this section, I assume that formulation for

simplicity.

The Generalized Linear Model or GLM [40] provides a general formulation of such

models. The GLM formulation makes three fairly general assumptions:

1. Outcomes are assumed to come from a probability distribution function, from a

broad class of certain acceptable forms with parameters θ and φ.

2. Predictions are made with a linear predictor η (i.e., the linear combination of Xj

and β̂j given above).

3. A link function g provides an estimate for the parameter θ of the probability distri-

bution function, given labeled training data.

Under this formulation, estimating the parameters β̂j means solving an optimization

problem which minimizes the difference between the observed and predicted values for Y .

The original authors of the GLM showed an expectation maximization formulation of this

model fitting which works for all GLMs [40]. The training problem can also be expressed

in terms of a loss function defined on Y and Ŷ :
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min
β̂
`(Y, Ŷ ) (3.2)

The acceptable forms of the probability distribution function include the very broad

exponential family of probability distribution functions, including the normal, gamma, and

binomial distribution functions, among many others. The simplest and most common form

of GLM is linear regression, which assumes a normal distribution and only requires the

identity function as its linking function. For binary classification such as my case in this

study, logistic regression provides a more robust alternative.

Formulated as a GLM, logistic regression uses a binomial distribution and logistic

function as a loss function. Logistic regression makes sense for binary classification prob-

lems, because its predicted values are defined on a range from 0 to 1. Further, the shape

of the logistic function more easily fits data which prefer values at exactly 0 and 1.

3.2.3 Adding Regularization with Lasso

As described thus far, I could use logistic regression over all available features to fit

a model for feasibility given training data. In practice, this model would quickly encounter

issues with convergence, and would tend to overfit the training data, especially when the

number of training examples is much less than the number of features in the training data.

(The specific features I consider for the model are covered in the next section.)

To counter these problems, I could add more tests to the training data; but test

execution is expensive, and adding tests would tend to add more features until a very

large number (e.g., 100s of thousands or more) tests were in the training set. Regularized

models provide a more stable alternative. Revisiting the loss function formulation from

above, regularized models add a new term to the optimization problem:
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min
β̂
`(Y, Ŷ ) + λR(β̂) (3.3)

A metaparameter λ accompanies the new term, meaning that there will now be

many models to choose from, given the same training data. For this study, I use cross

validation on the training error to choose the best model after training at several values

of λ.

There are multiple options for the regularization function R above, which should

cause the optimization to prefer the simplest possible model (i.e., with the lowest amount

of “mass” spread across estimated coefficients). If possible, coefficients should also be

allowed to reduce to 0 in the model, so that they may be ignored altogether.

Tibshirani formalized the use of an `1 norm as a regularization term, which he called

the “least absolute shrinkage and selection operator” or “lasso” [41]. The `1 norm is given

by taking the sum of the absolute values of the coefficients:

R = ||β̂||1 =
p∑
j=1

|β̂j | (3.4)

As the name suggests, use of this term for regularization does allow for both shrink-

age of coefficients and selection of parameters, by allowing unimportant coefficients to

have estimates of 0. More recently, Friedman, et al. provide a very fast solver for the

lasso optimization problem known as glmnet [42]. I use their publicly available R pack-

age’s implementation of this algorithm for the training and predictions using lasso in this

research. The glmnet package provides support for logistic regression, as required by our

model.
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3.2.4 Feature Selection

The feasibility model used in this study has a predicted variable isInfeas and features

available from test case replay input artifacts. I use glmnet to fit a binomial model on

training data, using logistic regression with regularization by the lasso. To label the

predicted variable for the training phase, I extract the observed value of isInfeas from test

execution logs.

As discussed in Section 1.3.3, and reinforced by existing work discussed in Sec-

tion 2.3, infeasibility in model-based test cases occurs because of model imprecision. An

event sequence which appears executable according to the model is not executable against

the real application.

In the case of the GUITAR Ripper and test case generation based on the EFG,

Nguyen and Memon show that missing context is the cause of infeasibility [17]. The

Ripper, during its single pass through the application to discover the GUIStructure, is

observing available events subject to the context of any events which have already been

executed. The EFG, and any test cases generated from it, do not have the Ripper’s full

context available. Nguyen and Memon go on to show that generated test cases may have

events added or removed to make them feasible.

Assuming that the order, presence, and absence of events in a test case contribute

directly to its feasibility, the model requires features related to the events in a test case as

well as their order. Table 3.1 shows the set of candidate features for the feasibility model

used in the binary classifier for this study.

For each test case, I extract four classes of features. I extract both n-grams and

before-pairs from the sequence of event IDs associated with the test case, and also n-grams
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Feature Group Description Example

Event ID n-grams Ordered subsequences of
length 1-2 of Event IDs in
test case

ngram e1, ngram e2,
ngram START e1,
ngram e1 e2,
etc.

Event ID Before Pairs Pairs of event IDs
“ex before ey” where
ex occurs anywhere before
ey in test case

e1 before e2, e2 before e3, etc.

Event Type n-grams Ordered subsequences of
length 1-2 of Event Types
in test case

ngram SYSTEM,
ngram TERMINAL,
ngram START SYSTEM,
ngram SYSTEM TERMINAL,
etc.

Event Type Before Pairs Pairs of event types
“tx before ty” where tx
occurs anywhere before ty
in test case

EXPAND before SYSTEM,
SYSTEM before TERMINAL,
etc.

Table 3.1: Candidate Features for Feasibility Model

and before-pairs from the sequence of event types. All of this information is directly

available from the test case input files which define test cases.

n-grams [43] are commonly used as basic features in language models. In language

models, researchers extract n-grams from sentences, which are treated as sequences of

words. In the feasibility model, my sequences are test cases, and I propose that event IDs

and types are analogous to words for the purposes of the n-grams used in this experiment.

Importantly, I am not using a probabilistic n-gram model for any predictions in this study.

I am simply using n-grams as features of test cases for a more generic classifier.

For the extraction of n-grams with length=2, I insert a START event, which is

likewise a common practice in language modeling. I expect the presence of a START

token to allow the model to capture any infeasibility due to events which were assumed

to be reachable from the initial application state. I do not use an END token, as the end
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of a test case should not be a source of infeasibility. For both kinds of n-grams, I extract

subsequences of length 1 and 2.

While n-grams (for sequences longer than length 1) represent a strictly ordered

dependency between events, I also add a second class of features for each of event IDs

and types. I call this second class before-pairs. Features capturing these pairs are still

ordered, but allow the preceding event to occur anywhere in the sequence rather than only

immediately before. I only consider single events occurring before other single events.

For example, consider a test case with sequence of event IDs e1 → e2 → e3. This test

case would have n-grams of length 1 of e1, e2, e3, and of length 2 of START → e1, e1 → e2,

and e2 → e3. It would have before-pairs of e1 before e2, e1 before e3, and e2 before e3.

As mentioned above with regard to regularization, the candidate set of features

described here will be very large for any non-trivial application. The added regularization

in the model should allow all but the most helpful coefficients to zero out during training.

Another source of features is the “level” of each feature considered for inclusion in

the model. Because all of the candidate features for the feasibility model are binary, the

presence or absence of any feature could potentially correlate with the predicted variable

of feasibility. For this reason, I include two levels for each original feature in the model

used by the classifier (notated as 0 and 1 for the absence and presence of each original

feature, respectively). Given our use of a regularization parameter in the regression, these

features should not confound the model or its interpretation.
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Chapter 4: Implementation Details

Carrying out a large-scale empirical study of testing techniques requires a robust ex-

ecution infrastructure. To support my research, I first establish the following requirements

for such an infrastructure:

• Portable : The infrastructure should be adaptable to any group of Linux machines.

• Persistent : The infrastructure should support persistence and easy backup and

restore operations for input and output artifacts.

• Configurable : The infrastructure should support fully automated backup and

restore of all machine configurations.

• Compatible : The infrastructure should support execution of arbitrary Java tools

and R scripts.

• Parallel : The infrastructure should support the execution of many GUI test cases

simultaneously.

Figure 4.1 shows the core runtime components of the infrastructure I have developed

which achieves these goals, and dependencies between those components. I use Docker1

to develop virtual machine images to automate the configuration of every infrastructure

component. Each of the five infrastructure components in Figure 4.1 has a correspond-

ing Docker component (called an “image” at build time, and a “container” at runtime)

precisely describing its creation and configuration.

1https://www.docker.com/
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Figure 4.1: Infrastructure Components and Dependencies

Each task to be performed as a part of this research is automated via a Jenkins CI2

job. The Jenkins Master controls the execution of automated jobs, and actual execution

of commands occurs in completely separate slave containers. Before each job finishes,

artifacts are persisted to one of a MongoDB3 database or the Apache Maven 4 Java library

repository (MongoDB for test execution and experiment artifacts, and Maven Repo for

compiled code artifacts).

The Jenkins Master, MongoDB, and Maven Repo components use existing open-

source tools directly off the shelf (Jenkins CI, MongoDB, and Sonatype Nexus5 , respec-

tively). The Job Execution Slave components use open source tools such as the GUITAR

Java toolchain, Gradle, and R to carry out the specifics of the automated model-based

testing and analysis tasks required for this research. I elaborate on the use of Docker to

configure each of these infrastructure components (including two separate types of Job

2https://www.jenkins-ci.org/

3https://www.mongodb.org/

4https://maven.apache.org/

5http://www.sonatype.org/nexus/
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Execution Slaves) in Section 4.1.

Persistence of experiment artifacts requires the development of a new tool, which

I call TestData. I use this tool from within Job Execution Slave components during job

execution to persist artifacts as appropriate. I describe the implementation of this tool in

Section 4.2.

Jenkins CI natively supports execution of automated jobs, including concurrent

execution of jobs in separate Job Execution Slaves. However, coordinating batches of

parallel jobs requires custom code using the HTTP API provided by the Jenkins Master.

I elaborate on my use of Jenkins CI jobs and my approach for parallel job execution in

Section 4.3.

I make extensive use of R6, an open-source platform for statistics and graphics, for

the construction and analysis of the binary classifier in my experiments. I elaborate on

my custom R scripts (which make heavy use of third-party libraries) in Section 4.4.

4.1 Portable Configurations with Docker

Docker is an open-source tool for defining and running software within containers,

which “sandbox processes from each other [44].” Docker containers represent a lighter-

weight virtualization alternative as compared to traditional Virtual Machines (VMs). The

containers also make use of shared, read-only copies of filesystems to optimize disk usage.

Ultimately, however, the processes running within containers consume at least the same

amount of resources (CPU, Memory, File I/O, and otherwise) as the same processes would

consume if run on the host operating system directly.

In terms of platform support, Docker runs on the majority of Linux platforms and

6https://www.r-project.org/
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inside of Linux VMs on other host operating systems. Moving my infrastructure compo-

nents and their configuration to Docker images allows for replication of those components

on any available hardware running a native Linux operating system or VM, as required.

To use Docker, I follow this lifecycle:

1. (Optional) Build a Docker image based on a customized script called a Dockerfile7.

2. Given an image ID and runtime properties such as mapped data volumes, ports, and

environment variables, start a Docker container.

3. When done using the container, manually stop.

The broader Docker ecosystem also readily supports quick and reliable use of exist-

ing, publicly provided container images. The Docker Hub8 indexes a full set of publicly

available container images, and allows them to easily be “pulled” onto a machine via the

Docker command-line interface (CLI). The images on the Docker Hub are open-source,

so that their configuration can be completely inspected prior to use or enhancement.

Container images support inheritance as well, so that images based on publicly available

configurations can be further customized for particular use cases.

To support this research effort, I have leveraged five unique Docker images, as

shown in Table 4.1. Docker images can be enhanced at build time to install and configure

additional tools, and can also be configured to use mounted filesystem locations called

volumes. The “Base Image ID” column in the table refers to the base image used for each

Docker container I leveraged, where the base image is given as coordinates into Docker Hub

(as of Summer 2015). The Enhancements and Volumes columns describe at a high level

the Dockerfile enhancements and volume usage leveraged by each container, respectively. I

7The full Dockerfile spec is available online at https://docs.docker.com/v1.8/reference/builder/

8https://hub.docker.com/
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Name Base Image ID Enhancements Volumes

Jenkins Master jenkins None Job artifacts,
configuration
files

MongoDB dockerfile/mongodb None Data directory

Maven Repo conceptnotfound/sonatype-nexus None Jar files, index

GUITAR Slave ubuntu:14.04 Install Jenkins
agent, GUITAR
tools, Subject
applications

None

R Slave ubuntu:14.04 Install Jenkins
agent, R, R
packages

None

Table 4.1: Docker images

elaborate on my general approach for leveraging arbitrary Docker volumes in Section 4.1.1

and on the details of each container in Section 4.1.2 below.

4.1.1 Data Volumes

Data volumes also play a critical role in my usage of Docker. Docker images in-

clude a snapshot of the entire filesystem at creation time. For “always-on”, data-backed

components which we would like to efficiently backup and restore from, full persistence at

the image level would require a great deal of disk space, versioning, and other additional

engineering overhead.

Alternatively, Docker provides options for mounting data into containers at runtime

rather than baking data into images at image creation time. When Docker containers are

started, local filesystem locations from the server which is running Docker can be mapped

to a container’s filesystem. Also, containers can be configured at runtime to inherit all

volume mappings from any already running container.
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I leverage these features to create and populate a “data container” with all of my

required data volumes defined. I can then run backup and restore operations from minimal

containers which mount the volumes from this data container and read or write into them.

I can also mount these volumes into any container requiring an easily backed-up data

volume (such as Jenkins CI or MongoDB).

The Volumes column in Table 4.1 describes the volumes I use with each Docker

image. I elaborate on the details of volume preparation and usage for each relevant image

alongside the details of each image below.

4.1.2 Docker Image Details

As described above, each Docker image starts from a base image, and executes one or

more Linux commands within the base image to create a new reusable image. The image

can then be launched with one or more supporting data volumes and several additional

configuration options. In the case of this infrastructure, I use command-line options for

mapping data volumes, TCP ports, and environment variables in particular.

4.1.2.1 Job Execution with Jenkins CI

The Jenkins Continuous Integration Server9 (also known as Jenkins CI) is used

across the software development industry for the configuration of automated building and

testing of software. Jenkins jobs are also very generic, and many now use Jenkins CI

for the automation of more generic tasks. Jenkins jobs perform sequential steps such as

version control checkouts, environment configuration, shell script execution, and many

others. The Jenkins ecosystem also depends on hundreds of open-source plugins which

provide their own customized, drop-in functionality for jobs.

9https://www.jenkins-ci.org/
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Jenkins also supports a Master-Slave mode of operation, whereby a Master server

(which I am describing here) can be configured to use zero or more slaves to carry out

jobs. I describe the GUITAR Slave and R Slave containers, which are used as slave nodes

in this Jenkins setup.

The Jenkins Master also hosts a very elaborate HTTP API for starting, stopping,

and querying the status of jobs. I utilize this API from Groovy scripts to coordinate the

parallel execution of batches of jobs, when required.

For this research infrastructure, I did not directly extend the provided, official Jenk-

ins CI Docker container. Instead, I used a data volume to persist all Jenkins configurations.

With this volume in place, I manually configured my Jenkins Master server and then took

a backup of the volume. Over time, I made many configuration changes to the Jenkins

master to support my experiments and their execution on this infrastructure, including

the use of many plugins. Significant Jenkins configurations included:

• The Xvfb plugin allows individual Jenkins jobs to be wrapped in a “virtual frame

buffer,” so that jobs which require an X11 graphical environment use a headless

(virtual) graphical environment rather than requiring a full-fledged display. This

headless operation was essential to running GUI tests in parallel.

• Individual Jenkins jobs can “opt in” to concurrent execution of the same job,

whereby each execution has an isolated working directory on a slave container.

• Jenkins jobs can be configured to delete their local workspace (e.g., any checked-out

or derived files) when starting, and to archive important files upon completion.

• Jenkins jobs can use an “Execute Shell” step to run any Linux commands, including

the use of any tools (e.g., GUITAR tools, R, etc.) which are installed within slave
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containers.

With these basic features properly configured on the Jenkins Master, I am able to

configure robust, automated Jenkins jobs for the execution of GUITAR tools and R scripts

required by the experiments in this work.

4.1.2.2 Test and Experiment Artifact Persistence with MongoDB

MongoDB is a full-featured document store, sometimes referred to as a “NoSQL

database” because it does not use SQL as a query interface or use relational database

schemae. In particular, the MongoDB server provides database instances. Each database

contains zero or more collections. Each collection contains zero or more objects. Default

collections contain text objects, but MongoDB also supports collections of binary objects

through its GridFS extension 10. Objects are represented in a schema-less, Javascript

Object Notation (JSON)-like format, such that each Object has a unique ID and zero or

more properties which can be primitives (e.g., Strings, Integers, Floating-point numbers),

Objects, or Lists of Objects.

For my purposes, I use a MongoDB server to persist model-based testing and ex-

periment artifacts. I interact with the MongoDB service itself through the TestData tool,

described in Section 4.2. In terms of the base Docker image, I use a predefined, hardened

MongoDB image from Docker Hub as-is, and mount a data volume to a running container

of this image. The data volume for this container provides a “data” directory which is the

root of MongoDB’s storage within the container’s filesystem.

In the case of this container, I only provide a data volume for the data directory loca-

tion when starting the MongoDB container. The server nor the volume require additional

10https://docs.mongodb.org/manual/core/gridfs/
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manual configuration steps.

4.1.2.3 Code Library Artifact Persistence with Maven and Sonatype Nexus

Apache Maven is one of the most popular build tools within the Java development

ecosystem. One of the most attractive features of Maven as a build tool is its integration

with standardized artifact repositories which are referred to simply as “Maven repositories”

or “Maven repos.” Even as the build tool is beginning to be replaced with tools such

as Gradle 11, these next-generation tools still leverage Maven’s repository layout and

community-hosted repositories.

At a high level, Maven repositories allow Java programs to publish and retrieve Java

Archives (Jars, or “jar files”) by making HTTP calls to a repository URL. This capability

greatly reduces the footprint of Java programs by allowing them to retrieve dependent

libraries on-demand.

Sonatype Nexus is an open-source tool for configuring and serving Maven reposito-

ries. As with the Jenkins Master and MongoDB Docker containers, I leverage an existing,

publicly available Docker image for Nexus. I mount a volume to allow persistence of Nexus

artifacts and configuration files. I also manually configure Nexus to allow deployments by

a given authenticated user and password combination. With this configuration in place,

automated jobs can now push their artifacts to the Nexus Maven repository, and use any

stored artifacts as required.

4.1.2.4 GUITAR Slave

The Jenkins Slave containers are unique among the Docker containers included in

this infrastructure, in that they are customized at the Docker image level rather than

11http://gradle.org/
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through data volumes. Image-level customization for slave containers is possible because

of the archiving capabilities of the Jenkins Master server. Because important artifacts are

archived to either MongoDB, the Maven Repo, or back to the master server, there is no

need to persist any artifacts across executions of slave containers.

The GUITAR slaves in particular need to be able to run all of the tools from the

GUITAR Java Toolchain. As Java tools, they can be launched with the Linux java

command on any machine with the Java Runtime Environment (JRE) installed. They

also require standard Linux utilities such as wget, curl, and unzip for unpacking and

building software.

I have chosen to use Gradle rather than direct Linux commands to call Java tools,

to simplify the management of Java tool dependencies. Gradle scripts are designed to

easily fetch Java libraries from a Maven Repository at runtime, and can easily incorporate

inline and external Groovy12 scripts to drive Java tool execution.

You can view the full source of my GUITAR Slave Dockerfile in Appendix A.

4.1.2.5 R Slave

While the majority of the work involved in my experiments was execution of GUI-

TAR tools , I also require additional automated jobs for construction of the binary classifier

and analysis of its predictions. In particular, I use the statistical software R13 for model

construction and data analysis. The Docker image for the R Jenkins Slave has R and all

of my required R packages installed, so that they are available to relevant Jenkins jobs.

You can view the full source of my R Slave Dockerfile in Appendix A.

12http://groovy-lang.org/

13https://www.r-project.org/
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4.2 Persistence with TestData and MongoDB

The GUITAR framework has long been used to carry out empirical evaluations of

model-based testing techniques. Initiatives such as COMET [45] have sought to address

the repeatability of empirical evaluations of event-based testing techniques more generally.

In my observation, persistence of data and configurations continues to be a major difficulty

in the repeatability of studies, especially when tools (such as the tools of the GUITAR

framework or others) are so sensitive to configuration.

As a part of this research, I have chosen to implement a persistence framework for

testing artifacts, which should be suitable for application across testing frameworks and

empirical evaluations in the future. To this end, I implement a new tool called TestData,

backed by the MongoDB Java API14 and a running MongoDB server. Figure 4.2 shows

the data model used by TestData.

Figure 4.2: TestData Persistence Model

14http://mongodb.github.io/mongo-java-driver/2.13/getting-started/quick-tour
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At a basic level, TestData persists metadata about test cases and test case executions

(or simply, test executions). Groups of test cases are called suites, and groups of test

executions called bundles. All objects in the data model (suites, bundles, test cases, and

test executions), can have one or more associated artifacts. Artifacts can be arbitrarily

defined, but for my experiment, are artifacts such as the GUIStructure, EFG, test case

inputs, and others produced by GUITAR tools during my experiments.

4.2.1 ArtifactProcessors

In order to be persisted with TestData, each artifact must have a corresponding

ArtifactProcessor implementation. I implement ArtifactProcessors for each GUI-

TAR workflow artifact, as well as additional experiment artifacts. Table 4.2 details the

ArtifactProcessors implemented as a part of this research.

Processor Artifact Owner

GUIProcessor GUIStructure XML Test Suite

EFGProcessor EFG XML Test Suite

TestcaseProcessor Test Case Input XML Test Case

FeaturesProcessor Test Case Features Test Case

LogProcessor GUITAR Replayer Log Text Test Execution

Table 4.2: TestData ArtifactProcessor Implementations

The current implementation of TestData focuses on persistence of the GUI Struc-

ture, EFG, and Test Case Input artifacts produced by GUITAR tools. Additionally, the

Replayer logs are serialized by the LogProcessor into a simple JSON representation.

The FeaturesProcessor extracts and serializes a JSON representation of arbitrarily

labeled test case features, given an existing test case input file. The specifics of this im-

plementation ultimately depend on the features included for selection during experiments.
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The JSON representation simply lists strings of text, allowing the implementation to easily

be adapted for any desired features.

Method Description

jsonFromOptions Given a set of input options (e.g., a file
path), provide a JSON representation of
an artifact

objectFromOptions Given a set of input options (e.g., a file
path), provide an object representation of
an artifact

jsonFromObject Given an object, provide a JSON repre-
sentation of an artifact

objectFromJson Given a JSON representation of an arti-
fact, provide an object representation

Table 4.3: ArtifactProcessor Interface Methods

At an implementation level, each ArtifactProcessor implements an interface of four

methods. The methods and their purposes are summarized in Table 4.3. A processor

specifies how to serialize and deserialize a single artifact. Serialization takes a list of

artifact-specific options (such as file paths or test case IDs) as input, and produces Java

Object and JSON representations. Deserialization takes the JSON as input and produces

a Java Object.

4.2.2 Additional Processing

In addition to the GUITAR artifact processing described so far, TestData also in-

cludes methods for the persistence of suite-level results and suite-wide feature sets. These

two objects can be thought of as “ experiment artifacts” rather than test artifacts, and cur-

rently have custom implementations in TestData which do no follow the ArtifactProcessor

interface. They are included as a convenience to support smoother downstream processing

(i.e., as an alternative to performing the same complex processing of MongoDB objects in
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R).

As discussed in Section 3.1.5, the Replayer logs produced as the output of test case

execution indicate whether a test case should be considered infeasible. To process results,

a method postResults takes as input a list of test bundle IDs and inspects Replayer logs

for each test execution in each bundle. Test cases are counted as feasible if Replayer logs

contain no failures for any input bundle. Test cases are counted as infeasible if Replayer

logs contain failures for all input bundles. Test cases which have inconsistent results

over the input bundles are marked as inconsistent, so that they may be excluded from

downstream analysis.

A second method, postFeatures, takes as input a test suite ID and adds Test Case

Features artifacts to each test case, which contain the features associated with the test

case. Then, the method stores the combined set of unique features from across all test

cases in a separate object. Note that postFeatures runs on test case input artifacts only,

and does not process any execution logs.

4.3 Execution of Automated Jobs in Parallel with Jenkins CI

As introduced in Section 4.1.2.1, Jenkins CI is a general-purpose job automation

tool with many plugins designed to carry out automation of “continuous integration” tasks

in software development. Table 4.4 details the specifics of each of the Jenkins jobs I have

automated as part of this research. With the exception of the replay-suite job, all jobs

automate the sequential execution of a sequence of Linux commands on a single Jenkins

Job Slave node. Each job calls a sequence of Docker commands, GUITAR tools, or R

scripts. The Jenkins slave Docker images (as described in Sections 4.1.2.4 and 4.1.2.5)

have GUITAR and R tools built in, respectively; so the Linux command steps in each
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Job Name Description Tools Used

build-libs Build GUITAR TestData tools from source Maven

prepare-aut Build and package subject applactions from
source

Maven, Tar

build-jslave Build GUITAR and R Jenkins slave images Docker

start-slaves Start GUITAR and R Jenkins slave contain-
ers

Docker

generate-random Run the GUITAR Ripper, Converter, and
Generator to generate test suites

GUITAR,
TestData

replay-test Execute a single test with the GUITAR Re-
player, on a single slave

GUITAR,
TestData

replay-suite Execute a generated test suite in parallel TestData,
Jenkins API

post-results Process test execution logs from an executed
suite for feasibility

TestData

post-features Process a test suite to collect combined set of
feautres

TestData

prepare-data Construct training and test data structures
from posted results and feature sets

R

predict Train a binary classifier and evaluate its abil-
ity to predict feasibility

R

Table 4.4: Automated Jobs

Jenkins job can simply call these tools as required.

Working from the top of Table 4.4, the first four jobs (build-libs, prepare-aut, build-jslave,

and start-slaves) automate the process of creating the GUITAR and R Jenkins Slave

container images, and starting containers based on these images. The generate-random

job automates the execution of the GUITAR workflow, including calls to the Ripper, Con-

verter, and Generator. At the end of generate-random, a new MongoDB database has

been initialized with a new suite of test cases. The replay-suite launches replay-test

jobs for each test case in any given suite, allowing the jobs to run in parallel over the

available set of GUITAR Jenkins Slaves.
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The next three jobs listed in Table 4.4 (post-results, post-features, and prepare-data)

run in order to process the results of test case execution, to add test case features to test

cases in a given suite, and to build an R object containing all relevant data from several

test suite executions. Finally, the predict job uses the object produced by prepare-data

as input, and trains then evaluates a feasibility classifier.

4.3.1 Replaying Test Cases in Parallel

In addition to the sequential jobs outlined above, I also leverage parallel execution

with Jenkins CI to achieve my infrastructure requirements. In particular, I leverage the

Jenkins Master’s REST API to launch and monitor the progress of a batch of child jobs

and exit upon the batch’s completion. This distributed execution pattern can be applied

to any batch of work that can be subdivided into independent jobs. In my experiments, I

use this approach to run GUITAR Replayer execution jobs in parallel.

Listing 4.1 contains the Groovy code for the batch execution script used by the

replay-suite Jenkins job. The input parameters to the script specify the test suite

details. The script uses a TestData instance called “manager” to fetch the test IDs of the

given test suite. For each test ID, the script makes a call to the Jenkins REST API which

starts the single-node replay-test Jenkins job.

The final four lines in the script add delay as required to avoid overloading the

Jenkins master with HTTP calls when there are no available slave nodes for execution.

In particular, the script always waits at least 10 seconds between jobs. The script waits

for additional time before submitting the next job if necessary, until the number of “wait-

ing builds” (builds already submitted but which do not have an available slave node for

execution) is less than 6 (BUILD COUNT THRESHOLD + 1). The script exits once all

69



jobs for the test suite’s execution have been queued on the Jenkins master.

Listing 4.1: Parallel GUITAR Replay - replay-suite

static int BUILD_COUNT_THRESHOLD = 5

for(String id : manager.getTestIdsInSuite(args[2])){

count++

// build Map of params

def jobParams = new HashMap<String, String>();

jobParams.put("AUT_NAME", args[0])

jobParams.put("DB_ID", args[1])

jobParams.put("SUITE_ID", args[2])

jobParams.put("TEST_ID", id)

jobParams.put("BUNDLE_ID", args[3])

// Use Jenkins client to launch job

jenkinsClient.submitJob("replay-test", jobParams)

// Wait at least 10 seconds

sleep(10000)

// Wait longer if there are waiting jobs

while(jenkinsClient.getAwaitingBuildCount() > BUILD_COUNT_THRESHOLD) {

sleep(1000)

}

}

4.4 Custom R Scripts

Once tests have been executed with the GUITAR Replayer, I import the data into R

for use with a feasibility classifier. I develop two separate R scripts for loading data from

MongoDB (prepareData) and training and evaluating the binary classifier (predict), re-

spectively. Each of these scripts also has a corresponding sequentially executed, automated

job as shown in Table 4.4.

4.4.1 Prepare Data

Recall that the TestData tool places multiple artifacts into a MongoDB instance

during the model-based testing workflow. The preprocessing of the postFeatures and
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postResults methods of TestData, as described in Section 4.2.2, add a number of test case

and test suite-level artifacts which simplify the logic needed for data preparation. The

relevant data are stored in three types of objects:

• Results objects associated with each test suite indicate which tests from the suite

are classified as feasible, infeasible, and inconsistent.

• Feature Group objects associated with each test suite contain a combined list of all

features of test cases in the test suite.

• Test Case Feature objects associated with each test case contain a list of all features

of the test case.

The prepareData R script fetches relevant artifacts and converts their contents

into R objects, which can be more readily used by existing R libraries for the remaining

analysis. The script takes MongoDB connection details and TestData artifact details

as input. As output, the script writes a binary representation of a custom R object to

Amazon’s Simple Storage Service (S3)15 which includes the test data, training data, and

their labeled execution results in a pre-processed format. I use the third-party libraries

rmongodb16 and RS317 for interaction with MongoDB and S3, respectively.

The script first creates a matrix with size N rows by M + 2 columns, where N is

the number of test cases and M is the combined number of test case features. The two

additional columns are for variables isInfeas and isTraining. As discussed in Section 3.2.4,

isInfeas is the dependent variable for the classifier - an indication of whether the test case

is considered infeasible (1) or not (0). Similarly, isTraining encodes whether a given test

case is part of training data (1) or not (0). The remaining columns encode whether a

15https://aws.amazon.com/s3/

16https://cran.r-project.org/web/packages/rmongodb/index.html

17https://github.com/Gastrograph/RS3
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specific feature is present or not, where each column represents a single feature.

The matrix is then converted into a data.frame object. As a part of the conversion,

all of the rows are treated as records in a dataset, and columns treated as variables. R

detects that each of the variables in my particular datasets are categorical (which R refers

to as factors) with two levels each. The levels are ultimately encoded as “1” and “2” by

R, but this label is inconsequential for interpreting the data.

Finally, the data.frame is split into separate test and training objects, and prepro-

cessed for use with the glmnet package for training of the classifier. A helper function

loadData is particularly important. This code prepares the training and test matrices

into the model.matrix required by glmnet. The snippet in Listing 4.2 from loadData

shows the construction of a matrix from an R data.frame object of Training data. The

code uses the model.matrix function, with some additional options to enable the use of

one feature per factor of each feature. An analogous transformation is carried out on the

Test data.

Listing 4.2: Converting data.frame to model.matrix

# Prepare training matrix

cat(’Creating training matrix’, ’\n’)

xm=model.matrix(isInfeas~. - 1, data=train.data, contrasts.arg = lapply(train.

data[sapply(train.data, is.factor)], contrasts, contrasts=FALSE))

x=apply(xm, 2, as.numeric)

y=as.numeric(train.data$isInfeas)

A parent object with all components required by glmnet is written out in binary

form, then saved to an S3 location. The full text of the prepareData script, and a script

common.r containing common functions such as loadData which support it, are provided

in Appendix B.
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4.4.2 Train and Predict

Given the preprocessing done by the prepareData script, the predict script simply

loads the parent object output by the prepareData script and runs glmnet steps for

training and prediction using logistic regression and lasso. Listing 4.3 contains a pertinent

snippet for these steps from the predict script.

The script uses a standard R utility function to load the binary parent object written

out by the prepareData script. It uses the cv.glmnet function from the glmnet package

for training. This function trains several logistic regression classifiers with lasso, and selects

the best classifier using 10-fold cross validation. Other than specification of training data,

the options to this method include specifying the use of a binomial model (i.e., logistic

regression) and specifying the use of classification error as the measure for selecting the

best model during cross validation.

Listing 4.3: Training and Prediction with Logistic Regression and Lasso

# Load model from exported file

data <- readRDS(data.key)

# Run the lasso

cvfit = cv.glmnet(data$trainMatrix, data$trainY, family = "binomial", type.

measure = "class")

# Run predictions, printing confusion matrix of t1 and t2 errors

confusion(predict(cvfit, newx = data$testMatrix, type = "class", s = c(cvfit$
lambda.min)), data$testY)

# Run additional analysis (omitted)

The script then uses a predict function of glmnet to predict the isInfeas value

given the features of the test data. Here, the predict call is wrapped in a method which

produces a confusion matrix that includes the success and error rates of the classifier on

both feasible and infeasible examples from the test data.
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During the experiment, additional steps are included in this predict script to ex-

tract more information about the selected model. These steps are covered within the

context of planned analysis and results in Chapter 5. The full text of the predict script

is also included in Appendix B.
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Chapter 5: Experiments

In this Chapter, I describe the experiment carried out to address the research ques-

tions of this study. Recall the research questions and subsequent hypotheses as summa-

rized in Table 1.2. I use the fully automated model-based testing workflow described in

Chapter 3 and the infrastructure components from Chapter 4, applying these to generate

and execute Training and Test test suites with GUITAR tools on four Java application

subjects (Applications Under Test, or AUTs). I train a binary classifier for feasibility

by applying logistic regression with lasso on the Training suite’s results, and apply the

classifier to the Test suite to predict its results.

Throughout these steps, I gather metrics which directly address the research ques-

tions of the study. I analyze these metrics to evaluate each of my hypotheses. I provide

details of the AUTs, specific steps of the methodology, planned analysis, and results in

the sections below. I conclude with an overview of available experiment artifacts.

5.1 AUTs

The test subjects for this experiment are event-driven applications from a platform

supported by the GUITAR framework. In particular, I chose to use the Java Foundation

Classes (JFC) toolchain of GUITAR, which are the most common and most frequently

used platform supported by the framework (and also, the platform most frequently used

by existing empirical studies of model-based testing (MBT))).
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Application Version Description

JabRef 2.10 Publication reference manager
http://www.jabref.org/

ArgoUML revision 19844 UML diagram creation
http://argouml.tigris.org/

Buddi 3.4.1.11 Personal finance management
http://buddi.digitalcave.ca/

FreeMind 0.9.0 Mind-mapping diagram creation
http://freemind.sourceforge.net/

Table 5.1: Experiment AUTs

For each of the AUTs, I require the following:

• Java Environment: The application should support execution on an OpenJDK

JRE in a Linux OS (Ubuntu).

• GUI Components: The application should use Java Foundation Classes (JFC) for

GUI components.

• Graphics Environment: The application should be displayable on the headless

X11 display Xvfb.

• GUIStructure Complexity: A simple GUITAR Ripper configuration should be

able to obtain a reasonably complex GUIStructure from the application, of at least

100 GUI events.

Table 5.1 summarizes the selected AUTs for the experiment. Each meets the listed

requirements above, including the GUIStructure complexity requirement, which will be

detailed in the “sanity check” results later in this Chapter. JabRef is a reference manager

tool for researchers, which indexes and produces Bibtex and similar file formats. ArgoUML

and FreeMind are both diagramming tools - ArgoUML for UML diagrams, and FreeMind

for “mind maps.” Buddi is a personal finance tool for creating budgets and graphs.
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Number Step Description

1 Generate Training Suite Execute the GUITAR Ripper, Converter,
and Generator tools, to construct Training
suite (10,000 test cases from length=3 suite)

2 Generate Test Suite Repeat Step 1, to construct Test suite (1,000
test cases, length=2 suite)

3 Execute Suites Using the GUITAR Replayer, execute all test
cases in the Training and Test suites 2 times
each

4 Process Execution Results Classify each test case as feasible, infeasible,
or inconsistent based on results

5 Extract Features Extract features from each test cases, and
construct a combined set of features from the
test cases in the Training suite

6 Prepare Data Construct combined set of labeled training
and test examples, including features and is-
Feas values

7 Train Classifier and Predict Train the feasibility classifier and classify test
cases from Test suite

Table 5.2: Experiment Steps

5.2 Methodology

5.2.1 Overview

Given the goal of producing and evaluating a binary classifier for feasibility for each

of the AUTs in the study, I develop the experimental procedure summarized in Table 5.2.

Note that the steps here each leverage one or more fully automated jobs from the summary

in Table 4.4.

5.2.2 Training and Test Suite Construction

In Steps 1 and 2, I generate two suites for training and testing of the classifier. Both

suites are constructed using the Generator tool with the randomized adaptation of the
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Sequence Length algorithm for test case generation described in Section 3.1.4. Following

from the model-based testing workflow of GUITAR tools, the Ripper and Converter must

be executed before the Generator in order to produce an EFG.

For the training suite, I sample 10,000 test cases from the sequence length coverage

suite with length=3. Recall that the test cases in this suite will have a minimum length

of 3, as a path to an initial event must be prepended to the length-3 sequence in each

test case. Similarly, I sample 1,000 test cases for the Test suite from the sequence length

coverage suite with length=2. During test case generation, in addition to the generation

of test steps, test case features are also extracted. The extracted features are described in

detail in Section 3.2.4 and summarized in Table 3.1.

In Step 3, I execute the test cases in each suite two times. I use the bundle ab-

straction provided by the TestData tool to group test case executions, and each execution

stores its Replayer log as an artifact. This step leads to two bundles of test executions per

suite. The multiple executions are a safeguard to protect against inconsistent execution

of a test case for any reason.

In Step 4, I process the execution results of each suite, in order to classify each test

case as feasible, infeasible, or inconsistent. I process the Replayer logs of each test case,

and categorize each one as feasible or infeasible. If all test executions indicate feasibility,

I classify the test case as feasible. If all executions indicate infeasibility, I classify the

test case as infeasible. If test executions are inconsistent, the test case is classified as

inconsistent (and removed from any further analysis). This step uses the postResults

method of TestData described in Section 4.2.2.

In Step 5, I extract features from each test case to be used by the classifier. I also

construct a combined set of features from all test cases in the Training suite, which will
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be the only features known by the classifier. (Any features only appearing in test cases

from the Test suite are ignored.) This step uses the postFeatures method of TestData

described in Section 4.2.2 to extract the features detailed in Section 3.2.4.

5.2.3 Training and Prediction

In Step 6, I convert the artifacts stored during Steps 1-4 into an R object directly

supporting remaining analysis using the prepareData script described in Section 4.4.1.

Recall that this script outputs a binary file with data segregated as required into training

and test partitions for use with glmnet in Step 7, given the features generated for each

test case in the Training suite during Step 1, the results of execution of the training suite

in Step 3, and the global set of features constructed in Step 5.

In Step 7, I use the predict script described in Section 4.4.2 to train the binary

classifier for feasibility and predict the feasibility of test cases. Recall that the script

uses functions from the glmnet package [42] to carry out logistic regression with the lasso

regularization. I then use the trained classifier to predict the feasibility of test cases from

the Test suite, which uses the cv.glmnet function from glmnet package to select the

best classifier from multiple values of lambda. The classifier selection uses 10-fold cross

validation on the classification error of the training data.

At this point, the core data collection of the experiment is complete. From here,

I analyze details of the classifier’s performance and the characteristics of the underlying

model to address the hypotheses posed for each of the research questions presented in

Section 1.4 (Table 1.2).
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ID Metric Description

SANA Event Count Number of nodes (events) in the EFG

SANB Initial Event Count Number of initially available events in the
EFG

SANC Follow Count Number of edges (may-follow relationships)
in the EFG

SAND Full SL2 Size Number of test cases in the full sequence
length coverage suite (length=2)

SANE Full SL3 Size Number of test cases in the full sequence
length coverage suite (length=3)

SANF Feature Count Number of features in training data

SANG Inconsistent Count - Training Number of Training test cases removed due
to inconsistent results

SANH Inconsistent Count - Test Number of Test test cases removed due to
inconsistent results

SANI Feature Frequencies Historgram Distribution of feature counts in training
data

Table 5.3: Sanity Checking Metrics Summary

5.3 Planned Analysis

5.3.1 Overview

To address the three research questions of this study, I develop a set of metrics

for evaluating each research question. I also include a set of “sanity check” metrics to

ensure sufficient complexity of the models and other artifacts obtained from each AUT’s

model-based workflow steps. Table 5.3 contains a summary of the sanity check metrics,

and Table 5.4 a summary of metrics directly related to research questions. I discuss each

metric in detail in the sections below, including expectations for each, as relevant. I collect

each metric from each AUT in the experiment, and analyze trends across AUTs to answer

each research question.
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ID Metric Description

RQ1A Feasible Count - Training Number of Training test cases con-
sidered feasible

RQ1B Infeasible Count - Training Number of Training test cases con-
sidered infeasible

RQ1C Feasible Count - Test Number of Test test cases consid-
ered feasible

RQ1D Infeasible Count - Test Number of Test test cases consid-
ered infeasible

RQ2A Lambda Curve Plot of lambda values vs. classifica-
tion error on Training data

RQ2B Selected Variable Count Number of features selected by the
model

RQ2C Overall Error Rate Percentage of test cases from Test
suite classified incorrectly

RQ2D False Positive Rate Percentage of feasible test cases
from Test suite classified as infea-
sible

RQ2E False Negative Rate Percentage of infeasible test cases
from Test suite classified as feasible

RQ3A Selected Variable Counts by Category Number of variables selected by the
model from each category of fea-
tures

RQ3B Selected Variable Magnitudes by Category Magnitude of coefficients selected by
the model from each category of fea-
tures

Table 5.4: Research Question Metrics Summary
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5.3.2 Sanity Checks

Before proceeding with any analysis more directly related with the research questions

of the study, I start by collecting a set of sanity check metrics. These metrics indicate

whether the model-based testing workflow for each AUT obtained a reasonably complex

model. Because each AUT used in this study has been provided with a basic configuration

for the Ripper, I do not expect any issues with construction of a trivial model. However,

the complexity of the applications and their model-based testing suites is also relevant for

the generalizability of results. I provide seven such metrics.

From the EFG, I first obtain an event count (SANA) by counting the number of

nodes in the graph. Relatedly, I capture the number of initial events in the EFG (SANB),

and the number of edges in the EFG (SANC). I expect these metrics to indicate that the

EFG of each AUT is sufficiently complex, with 100s of nodes and edges, and and at least

a dozen initial events.

I then check the size of the sequence-length coverage suites of length=2 (SAND)

and length=3 (SANE) respectively, from which test and training suites are sampled, to

ensure that there is sufficient diversity in the randomly selected test cases drawn from

these suites. I expect that the sequence length suites for length=2 (SL2) sizes will be in

the tens of thousands (> 10K) and the length=3 (SL3) sizes in the hundreds of thousands

(>100K).

From the training data, I obtain two metrics to characterize the extracted features.

The overall feature count (SANF) indicates the total number of features extracted across

all test cases in the Training suite. I also generate a histogram of feature counts (SANI)

in the training data, to characterize the distribution of feature counts. I expect these
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numbers to vary, as they depend on the structure of the randomly selected test cases. I

expect to see numbers at least in the thousands (> 1K) for feature counts, and for the

histogram to indicate that at least some reasonable percentage of features (e.g., 20%)

occur more than once in the training data.

Finally, I check the number of test cases from both the Training (SANG) and Test

(SANH) suites whose execution was inconsistent. I expect this number to be less than

10% of the total size of the sampled suites (< 1K test cases for the Training suite, <

100 test cases for the Test Suite). Recall that test case inconsistency is not the same as

test case infeasibility. Inconsistent test case execution indicates intermittent or systematic

issues with infrastructure, or possibly an issue with Replayer timing configuration (e.g.,

Replayer steps counting as “timed out” or being missed for some reason).

5.3.3 RQ1: Prevalence

Recall research question RQ1, and my hypothesis:

• RQ1: How prevalent are infeasible test cases in MBT workflows?

• Hypothesis: Infeasible test cases will occur in all MBT test suites, at a rate of up to

20%.

To evaluate this hypothesis, I collect metrics for the occurrence of feasible and

infeasible test cases in both the Training (RQ1A and RQ1B, for feasible and infeasible

counts, respectively) and Test (RQ1C, RQ1D) suites. The feasible counts are included for

reference, as they will also be relevant for the computation and interpretation of additional

metrics for other research questions. I expect the infeasible counts for each test suite to

be > 1, and as high as 20% of the Training and Test suite sizes, which have theoretical

limits of 10,000 and 1,000 respectively (minus any inconsistent test executions which have
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been removed).

5.3.4 RQ2: Binary Classifier

Recall research question RQ2, and my hypothesis:

• RQ2: Can an application-specific model of test case feasibility be used to predict

the feasibility of unseen model-based test cases?

• Hypothesis: A binary classifier can be constructed which will outperform at least a

random (50%) baseline in predicting the feasibility of unseen test cases.

To evaluate this hypothesis, I collect two metrics characterizing model fit, and three

indicating classifier accuracy. First, I obtain a plot of λ values (RQ2A) characterizing the

chosen “best” model from among other model choices. Recall that training with lasso

provides multiple possible models (one for each value of the metaparameter λ considered),

and I use cross validation to choose the best model. A plot of lambda values vs. classi-

fication error on the training data characterizes the relative fit of the best model as an

alternative from all others. I expect to see the chosen value of λ to have a global minimum

value for training classification error. I also expect to see that model performance “ramps

up” (potentially rapidly) for larger values of λ, and holds steady for smaller values.

Next, I get a count of the number of variables selected by each model (RQ2B).

Recall that the regularization parameter for lasso takes an `-1 norm, which allows unused

variables from the model to have their coefficients fit to 0. I expect this value to be much

less than the total number of features in the training set (SAND), which would indicate

that the lasso actually achieved its desired effect of selecting variables.

To evaluate the accuracy of the classifier, I use the popular metrics of overall error

rate (RQ2C), false positive rate (RQ2D) and false negative rate (RQ2E). Because the
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classifier is trained to predict the value isInfeas, a false positive indicates a test case which

was predicted as infeasible, but was actually feasible. A false negative, then is the other

error case: a test case which was predicted as feasible, but was actually infeasible. Because

this research is the first known investigation of feasibility classification, I enforce only a

random baseline for performance. To consider the classifier successful, I expect all three

error rates to be less than 50%.

The ratio of false positive rate to false negative rate is also interesting to consider,

as false negatives (i.e., accidentally letting an infeasible test case go undetected) could be

considered more damaging than false positives. However, as I discuss when motivating

the need for feasibility modeling in Section 1.3.3, test execution also has a potentially

prohibitive cost. I argue that interpretation of “preferred” errors for this classifier depends

heavily on the broader use cases. Since no specific broader use cases are in-scope for this

initial evaluation, I have no a priori requirements for the ratio of false positives to false

negatives in order for the classifier to be considered effective.

5.3.5 RQ3: Important Features

Recall research question RQ3, and my hypotheses:

• RQ3: Which of the considered feature types of model-based test cases contribute

the most to feasibility prediction?

• Hypothesis A: Test case before-pairs and n-grams of length=2 will contribute most

often and most significantly to feasibility models.

• Hypothesis B: Test case before-pairs will contribute more significantly to feasibility

models than n-grams.

As discussed in Section 3.2.4 (and summarized in Table 3.1), I use four high-level
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categories of features for the training of the binary classifier: n-grams and before-pairs of

both event IDs and event types. For the purposes of addressing RQ3, I divide the n-gram

categories into “length=1” and “length=2” subdivisions, as shown in Table 5.5.

Feature Category Category ID Regular Expression

Before Pairs of Event IDs before_id ^[A-z0-9]+_before_

Before Pairs of Event Types before_type ^‘[A-z0-9 ]+_before_

n-grams of Event IDs, length=1 ngram_1_id ^ngram_[A-Za-z0-9]+$

n-grams of Event IDs, length=2 ngram_2_id ^ngram_[A-Za-z0-9]+_

n-grams of Event Types, length=1 ngram_1_type ^‘ngram_[A-Z ]+‘[01]$

n-grams of Event Types, length=2 ngram_2_type ^‘ngram_[A-Z ]+‘[01]$

Table 5.5: RQ3 Feature Categories and Regular Expressions for Analysis

I expect before-pairs of either type of feature (event IDs or event types) to be the

most effective category of features types among the types considered. To evaluate this

hypothesis, I compare the number and magnitude of coefficients from each category in the

model of each AUT’s feasibility classifier. To compare magnitude, I look at cumulative

magnitude in particular, and sum the absolute value of all coefficients in each category.

The inclusion of separate classes in this analysis to distinguish between length=1

and length=2 n-grams provides another interesting comparison point. In motivating the

need for a feasibility classifier throughout Chapters 1 and 2, I assert that “event context”

is closely related to feasibility, and that infeasible test cases are often made infeasible by

missing context. n-grams of length 1 have very little context available: they only consider

that an event or event type occurred anywhere in a test case, without any knowledge of

events occurring before or after. n-grams of length=2, however, assume a strict context.

before-pairs capture even more context by allowing a less-strict ordering of events or types.

I also expect before-pairs of either type of feature to contribute more to the classifier
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than n-grams, because they are “loosely” instead of strictly ordered. Importantly, there

is overlap between before-pairs and n-grams, in that each n-gram has a corresponding

before-pair. I expect the before-pair to be preferred by the classifier.

The final column in Table 5.5 shows the regular expression used to extract feature

occurrences from the list of features selected by each model. These expressions match the

coding of features during feature extraction by the FeaturesProcessor and postResults

methods described in Chapter 4. The allowance for a 0 or 1 on the end of each feature

name follows from the allowance of two levels of each feature in the classifier, and is

consistent with the R model.matrix function’s output feature names.

5.4 Results and Analysis

Given the planned analysis for each research question through the metrics and ex-

pectations described above, below are the results of each metric after applying the steps

in the Methodology presented in Section 5.2. Findings related to each research question

are summarized in each section below. Chapter 6 summarizes all findings from the study.

5.4.1 Sanity Checks

Table 5.6 contains the sanity check metrics for each AUT in the study, with the

exception of SANI. Figure 5.1 displays SANI, the feature count distributions of each AUT,

as historgrams.

5.4.1.1 EFG Complexity

The EFG metrics of event count (SANA), initial event count (SANB), and edge

count (SANC) all indicate a reasonable level of complexity for the EFG models obtained
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AUT SANA SANB SANC SAND SANE SANF SANG SANH

JabRef 662 165 646 102102 23669577 45952 709 0

ArgoUML 480 219 515 15867 650425 23739 0 46

Buddi 239 42 407 3702 94757 8815 54 0

FreeMind 648 419 586 47127 4868853 37058 2907 0

Table 5.6: Sanity Check Metrics (all but SANI)

for each AUT. Events and edges number in the 100s for each application. While the Buddi

application only identified 42 initial events in its EFG, these still represent a reasonable

percentage of the 239 events in the overall EFG (17.5%).

The sequence length suite size metrics also speak to the complexity of the EFG

of each AUT. For the length=2 suites (SAND), only Buddi has a full suite size of less

than 15,000 test cases. The sizes of the full length=3 suites (SANE) further indicate

the complexity of the AUTs. These suite sizes are in the millions for the more complex

JabRef and FreeMind applications, and at nearly 100K (94,757 test cases) even for the

much simpler Buddi application.

The metrics for sequence-length coverage suite size in general echo my original mo-

tivation for fully automated, predictive consideration of feasibility. The complexity of the

length=3 suite also suggests that sampling a reasonable number of test cases from this

space (such as the 10,000 test cases I sample for construction of the Training suite of each

AUT in this study) provides a correspondingly broad feature space for use as training

data.

I conclude that the AUTs chosen for this study, and the Ripper configurations used

for their model construction, have led to sufficiently complex input spaces for the purposes

of this experiment. The particular metrics of each AUT’s model complexity will also be

relevant in additional considerations throughout the experiment.
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5.4.1.2 Training Data Complexity

(a) JabRef (b) ArgoUML

(c) Buddi (d) FreeMind

Figure 5.1: AUT Feature Frequencies

Metrics SANF and SANG in Table 5.6 further detail the Training data ultimately

used by each AUT in the experiment. Each AUT starts with several thousand features

available for the training phase. Note that this metric is distinct from the number of

features selected by each model during training, which is given by metric RQ2B and
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discussed during consideration of RQ2 below.

For purposes of sanity checking, a basis of several thousand possible features seems

appropriate. The histograms shown in Figure 5.1 give a more complete picture of the

available features. These plots show, for each AUT, the percentage of features which have

a given number of occurrences in training data. I have kept the X and Y axes of these

plots consistent, for comparison purposes.

Each bar of the histogram indicates the percentage of features who have counts

“falling between” the counts on the X axis. Since the X axis is counting by 1s, each bar

represents the number to its right (i.e., the first bar indicates features having a count of

1, the second bar the percentage of features having a count of 2, and so on).

The plots show that the two more complex AUTs (JabRef and FreeMind) have much

larger percentages of features which occur only once in the training data. Additionally,

both have very few features which occur more than 4 times. However, recall that these

AUTs also have considerably higher overall number of features compared to ArgoUML

and Buddi (Buddi only has roughly 8800 features, compared to JabRef’s >45,000).

Interestingly, the Buddi application, though much less complex in its EFG model

and feature space, has a much more diverse distribution of feature occurrences. The

distribution for ArgoUML falls between that of Buddi and those of JabRef and FreeMind

in terms of this diversity.

Overall, I conclude that the feature spaces used in the Training suite of each AUT

are once again sufficiently complex and diverse for this analysis. Even the less-diverse

distributions have 100s of features with counts of 2 or higher.

However, the prevalence of features with lower counts (especially to the extent ob-

served on JabRef and FreeMind) does lead to noise and potential overfitting during model
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training. For example, no feature with a count of 1 should ultimately be selected by any

classifier; but I do nothing in the current experiment to control for this possibility. For

example, I do not explicitly throw out any features due to having low counts. I count on

the regularized model to avoid selection of these features.

5.4.1.3 Inconsistent Test Cases

Returning to the metrics from Table 5.6, the last two sanity check metrics indi-

cate the prevalence of inconsistent test case execution in the Training (SANG) and Test

(SANH) suites. The JabRef and FreeMind applications indicated potential issues with

inconsistent execution of test cases from their Training suites, with JabRef having 709

out of 10,000 test cases behave inconsistently, and FreeMind having 2907 out of 10,000.

While the JabRef percentage is within the “up to 10%” I assumed was reasonable, the

nearly 30% of FreeMind Training test cases having inconsistent execution does indicate

the possibility of an issue with Replayer or infrastructure configurations for FreeMind, or

that an intermittent infrastructure issues (e.g., I/O or resource allocation issues) caused

an error during one of the two bundle executions for FreeMind training test cases.

No AUTs exhibited prevalent issues with Test suite executions, with only ArgoUML

having a small number of tests executing inconsistently (46).

For the purposes of the current experiment, the large number of inconsistent ex-

ecutions for the FreeMind Training suite mean that the Training suite will only have

the remaining 7,093 test cases available for training. This smaller training suite could

potentially have negative effects on the overall performance of a classifier for FreeMind.

Ultimately, the performance of the FreeMind classifier was exceptional, as discussed be-

low. Because Replayer and infrastructure configuration considerations are secondary to
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AUT RQ1A RQ1B RQ1C RQ1D

JabRef 6307 2984 (32.1%) 705 295 (29.5%)

ArgoUML 4653 5347 (53.5%) 610 344 (36.1%)

Buddi 8977 969 (9.7%) 813 187 (18.7%)

FreeMind 5763 1330 (18.8%) 922 78 (7.8%)

Table 5.7: RQ1 Metrics

the classifier experiments in this study, I have not investigated the nature of the FreeMind

or JabRef failures encountered any further as a part of this study. However, I do archive all

artifacts (including Replayer and infrastructure configurations, and all Replayer artifacts)

for consideration of these types of failures in future work.

5.4.2 RQ1: Prevalence

For RQ1, I look to gather evidence of the prevalence of infeasibility in model-based

test suites (and the sequence-length coverage suites used in this experiment and many

prior studies, in particular). Table 5.7 shows the metrics gathered to address this research

question, including the number of infeasible test cases as a percentage of the total number

of test cases in the Training (RQ1B) and Test (RQ1D) suites.

The sampled test suites exhibited between the wide range of 7.8% and 53.5% infea-

sible test cases. As expected, the actual number of infeasible test cases depends on the

nature of the AUT and its acquired model. I conclude that these results confirm my hy-

pothesis that infeasibility is prevalent enough in model-based test suites such as sequence

length coverage suites to warrant approaches such as the feasibility prediction I design

and evaluate in this study.
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AUT RQ2B RQ2C RQ2D RQ2E

JabRef 392 0.029 0.040 0.003

ArgoUML 614 0.046 0.003 0.122

Buddi 566 0.012 0.004 0.048

FreeMind 174 0.037 0.040 0.000

Table 5.8: RQ2 Metrics (all but RQ2A)

5.4.3 RQ2: Binary Classifier

For RQ2, I look to consider the general ability to train an accurate application-

specific classifier for test case feasibility for model-based test suites, given the modeling

approach detailed in Chapter 3. As planned, I evaluate the models in terms of fit and accu-

racy. While accuracy is certainly the most important measure of the model’s performance,

its ability to fit as intended is also an important consideration for generalizability.

Table 5.8 shows the metrics gathered for investigating RQ2, with the exception of

RQ2A, which is shown as a grid of AUT-specific plots in Figure 5.2.

5.4.3.1 Model Fit

I first consider metric RQ2B, which shows the number of variables ultimately se-

lected by the logistic regression procedure with the lasso term. Of the 1,000s and 10,000s

of features available, the models are selecting between 174 and 614 features. Recall from

the implementation discussed in Chapter 4 that the model actually has two levels of each

feature available, corresponding to the presence or absence of each feature independently

(i.e., the actual maximum number of features is twice the number of features explicitly

provided in the training data). At a high level, this shrinkage of the number of variables

considered by the model suggests that the lasso term is accomplishing its goals of shrinkage
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Figure 5.2: RQ2A: Training Misclassification as Function of Lambda and Number of

Variables

and selection.

While the number of variables selected indicates that at least some shrinkage is

happening, it does not say whether an appropriate amount of shrinkage is happening.

The RQ2A plots in Figure 5.2, provided by glmnet, show the classification error on the

training data for each value of λ considered when fitting the model. (Because I use cross
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validation to fit the model, this classification error is an average over the 10 cross-validated

subsets.)

Note that the X axis along the bottom of each plot indicates the log of λ, which

increases as we move from left to right. Due to the construction of the minimization

problem discussed in detail in Section 3.2, larger values of λ lead to a smaller number of

coefficients. A second X axis along the top of each plot shows the number of non-zero

coefficients in the model corresponding to each value of λ.

There are also two vertical dashed lines on each plot. The leftmost of these lines

indicates the value of λ which achieves the minimum classification error on the training

data. The rightmost line indicates a value within one standard error of the minimum

training error. As I note in Section 3.2, I use the minimum value of λ for the classifiers in

this study.

For the purposes of evaluating RQ2, I interpret the plots of Figure 5.2 as indicating

that the selected values of λ are indeed global minima from the range of values considered.

The plots also indicate, for each AUT, that moving to larger values of λ stands to increase

the classification error; and that performance significantly degrades at much larger values

of λ.

For the fit of models as a whole, I conclude from RQ2A and RQ2B that the logistic

regression with lasso successfully converged a regularized model for the feasibility classifier.

This evaluation of model convergence behavior also implies that my implementation of

the supervised learning scenario and the use of glmnet for model fitting as a whole are

reasonable.
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5.4.3.2 Classifier Performance

As evaluated so far, the trained model may still be significantly overfitting, though

the use of cross-validation should counter this tendency as much as the training data

allow. Metrics RQ2C, RQ2D, and RQ2E evaluate the feasibility classifier’s performance

on completely unseen data, summarized in Table 5.8.

As an aside, this research (as discussed since the original problem formulation in

Chapter 1) is not concerned with construction of cross-application models of feasibility.

By overfitting, I mean that the model could potentially miss correlations present in the

Test suite (or in general, any collection of test cases from the same application). I do not

mean, at least within the context of this study, to protect against overfitting the features

of a single AUT.

For RQ2, I originally hypothesized that a binary classifier for feasibility should at

least be able to outperform a random “50/50” model. As each of the metrics for RQ2

indicate, the classifiers for the AUTs in this study actually do much better. Overall error

rates, as well as false positive rates for each AUT, are at 5% or less on the Test suite

considered for this study. False negative rates for all AUTs other than ArgoUML are also

under 5%.

In the case of ArgoUML, the classifier predicts several false negatives, which are

potentially troubling. False negatives could occur due to:

• Test case features which are causing infeasibility in the Test suite which are not

present in the Training suite.

• Test case features which are causing infeasibility in the Test suite which are present

in the Training suite, but are not correlated with infeasibility in the Training suite.
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• Test case features which are causing infeasibility in the Test suite are correlated with

infeasibility in the Training suite, but are not selected by the model.

Given the overall very good performance of the classifier, I consider the first two

explanations above to be the most likely. Especially for event ID-related features, only

events which are seen (and seen multiple times) in the training data will have the chance

to be considered for inclusion in the model. This finding suggests that the use of more

generic features (i.e., features likely to occur more often yet still related to event context

and test case feasibility) would improve the general effectiveness of the classifier. Also,

this evaluation could be strengthened by considering multiple randomly selected Test and

Training suites rather than just one. I elaborate on this and other threats to validity from

the experimental constructs in Chapter 6.

Even with the occurrence of a higher number of false negatives on one AUT, the

overall performance of the classifier is very promising. I conclude that my proposed fea-

sibility classifier effectively identified infeasible test cases, and it did so with overall error

rates of less than 5% for each AUT considered.

5.4.4 RQ3: Important Features

To address RQ3, I consider both the types (RQ3A) and magnitudes (RQ3B) of

features selected by the classifier during training. Recall from the discussion of planned

analysis for RQ3 above that by “magnitude,” I am measuring the cumulative magnitude

of all model coefficients in each category of features.

Figure 5.3 shows the counts of each category of features, by AUT. Figure 5.4 shows

the corresponding cumulative magnitude of model coefficients of each category of features,

by AUT.
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Figure 5.3: RQ3A: Coefficient Counts by AUT and Variable Category

5.4.4.1 Event Types vs. Event IDs

Immediately from Figure 5.3, notice that the event type features are very rarely se-

lected by the regularized model. The distinction of before-pairs vs. n-grams of these types

also does not seem to make a difference. Event type features are selected only 39 times

total, out of the several thousand possible features of each AUT’s model. Correspond-

ing data in Figure 5.4 confirm that the cumulative magnitudes of event type coefficients

likewise account for less than 1% of the total for each AUT.

Clearly, these findings suggest that the EFG’s event types - in isolation or in shorter-

length contexts as considered in this study - are not closely correlated with infeasible test

cases. I interpret this finding to also confirm that the Converter tool’s algorithm for

inferring may-follow relations from the GUIStructure output of the Ripper is not a cause

of infeasibility. Stated another way, test case infeasibility as observed in this study does
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Figure 5.4: RQ3B: Cumulative Magnitudes by AUT and Variable Category

not appear to stem from any improper conversion of GUIStructure input to EFG by the

Converter.

Features related to event IDs, then, take up the remaining vast majority of selected

features and coefficient magnitudes in each AUT’s model.

5.4.4.2 Most Frequently Selected and Highest Cumulative Magnitude Feature Type

As the bars in Figure 5.3 indicate, before-pairs of event IDs are the most frequently

selected category of features in feasibility models. The only exception to this finding

among the four AUTs is FreeMind, which had more n-grams of event IDs with length=2

selected than any other category of features. When considered as a single category, the

N-gram category of features as a whole (regardless of length) is selected more often than

before-pairs. The only exception to this among the four AUTs is Buddi, which still had

more before-pairs selected.
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In terms of coefficient magnitude, the results are a bit more mixed. For JabRef

and Buddi, before-pairs of event IDs contribute the largest cumulative magnitude to the

model (at 36% and 25%, respectively). For FreeMind and ArgoUML, n-grams of length 1

account for the largest cumulative magnitude (at 26% and 23%, respectively).

From these results, I cannot conclusively accept either of the two hypotheses sug-

gested for RQ3. The evidence of a higher number of features from a category being selected

does not support an interpretation of those features as “effective” on its own. These find-

ings suggest that for some applications, test case infeasibility is highly correlated with

the occurrence of a single event. Perhaps this single event blocks many (or all) potential

subsequent events from executing, and this blocking is not detected by the Ripper during

the creation of the GUIStructure.

One possible explanation for these results could be that counts and magnitudes for

n-grams outnumber and outweigh those of before-pairs due to n-grams occurring more

often. However, before-pairs actually occur more frequently in a typical test case than

either class of n-grams. Consider a test case of four events: e1 → e2 → e3 → e4. There

would be 4 n-grams of length 1 for this test case, with one for each event. There would

also be 4 n-grams of length=2: START→ e1, e1 → e2, e2 → e3, and e3 → e4. But there

would be 6 before-pairs: (e1, e2), (e1, e3), (e1, e4), (e2, e3), (e2, e4), and (e3, e4).

These results suggest a possible masking effect between before-pairs and n-grams

of length=2. Notice from the example above that some before-pair features will always

occur with a corresponding n-gram (e.g., the (e1, e2) before pair and the e1 → e2 n-

gram). Lacking any additional information, the feasibility model could potentially select

the n-gram to explain any corresponding infeasibility, when the before pair may be an

equivalent (and more general) choice. In general, this finding proposes an interesting
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follow-up question for future work: Can models trained solely on before-pairs of event IDs

equal the performance of those trained with just n-grams, or those trained with a mix of

before-pairs and n-grams as in this study?

5.5 Published Artifacts

In the interest of transparency and the repeatability of my experiments, I publish

a number of experimental artifacts. As explained in detail in Chapter 4, I go to great

lengths throughout this research to focus on scalable infrastructure and tooling. I hope

that by making these tools and artifacts available, I can help to advance the model-based

testing community of researchers and practitioners, and perhaps broader communities

(where applicable).

Available artifacts include:

• docker-jenkins-swarm: This repo, available on Github at http://github.com/

bryantrobbins/docker-jenkins-swarm, contains the Docker configurations used

in my experimental infrastructure. This code is designed to be reusable for empirical

studies of testing or other fields where a distributed execution of tasks is required.

These tools require a Linux host or VM running Docker.

• guitar2: This repo, available at http://github.com/bryantrobbins/guitar2,

contains my Maven-ized fork of GUITAR’s Java tools, as well as the TestData tool

for artifact persistence. The GUITAR toolchain should be compatible with any JFC

application. The TestDataTool can be extended for the persistence of arbitrary bi-

nary or JSON-serialized artifacts associated with test cases, test suites, and their

executions.

• umd-dozen: This repo, available at http://github.com/bryantrobbins/umd-dozen,
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contains GUITAR tool configurations for each AUT used in my experiments, as well

as an extensive set of Gradle and Bash wrapper scripts for more direct integration

with automated jobs.

• Master Archive: This final artifact is a tarball of data volumes which, when used

in combination with the docker-jenkins-swarm generic scripts, will restore a set of

Master Docker containers (e.g., Jenkins Master, MongoDB, and Maven Repo) with

the exact data collected and used in my experiments. Publication of this archive is

pending. Please contact the author for access.
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Chapter 6: Conclusions and Future Work

In this chapter, I summarize the findings of Chapter 5 within the broader context of

the research questions. I also summarize a number of understood threats to the validity

of this research. I conclude with thoughts on future directions for this work.

6.1 Outcomes

In this research, I have developed a novel technique for the detection of infeasible

test cases. I first investigate the prevalence of infeasible test cases in four Java desktop

applications (RQ1). I then construct and evaluate a binary classifier for feasibility’s ability

to detect infeasible test cases from a randomly sampled suite of model-based test cases

designed to meet a sequence-length coverage criterion (RQ2). Finally, I inspect the models

learned by the classifier for insights into the most effective predictors of infeasibility.

6.1.1 RQ1: Prevalence

Regarding the overall prevalence of infeasible test cases in model-based test suites,

I conclude that:

• O1: Infeasibility in model-based test suites is a significant problem, with infeasible

test cases generated at rates of 7.8% or higher for every test suite I considered, and

as high as 53.5%.

• O2: The tendency to generate infeasible test cases varies widely across application.
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These findings confirm those observed from previous studies such as Nguyen and

Memon [17] and Bae, et al. [38].

6.1.2 RQ2: Classification

Regarding the ability of feasibility prediction to be learned by a binary classifier, I

conclude that:

• O3: Binary classifiers of feasibility with overall error, false positive, and false negative

rates under 5% can be constructed by observing the executions of randomly sampled

model-based test cases.

To my knowledge, this study represents the first of its kind in its approach to

detecting feasibility. My approach contrasts with the fully observed paradigms of Nguyen

and Memon [17], and Huang, et al. [18]. However, I focus on only the detection of feasibility

while their existing techniques also consider the generation of feasible test cases from

infeasible.

6.1.3 RQ3: Classifier Features

Regarding the relative importance of categories of the considered classifier features,

I conclude that:

• O4: The event types of the the GUITAR Ripper’s GUIStructure output artifact

do not correlate with infeasibility, confirming that initial model imprecision (rather

than the inferences of the Converter and Test Case Generation algorithms) is the

dominant source of infeasibility in model-based testing workflows.

• O5: Event IDs formed by creating hashes of GUI properties during model construc-

tion served as effective features for the binary classifiers constructed in this study.
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• O6: I identified three types of features formed from event IDs that serve as effective

inputs for the feasibility classifier: loosely ordered before-pairs of event IDs, and

n-grams of event IDs of length=1 and length=2.

• O7: While all three of the feature types identified in O6 contributed to feasibility

classifiers, no single type of the three appeared unilaterally more effective across the

four AUTs considered in my experiments.

This study applies the earlier assumptions of work on test case feasibility from

Memon [46], Huang et al. [18], and Nguyen and Memon [17] to the construction of a

binary classifier. I have shown, for the first time, that the same features captured in

Memon’s EFG model of GUIs for model-based testing can, at least in this use case, be

effectively represented within the much more general class of linear models trained by

logistic regression.

6.1.4 Additional Outcomes

In addition to the experimental outcomes above, this research effort as a whole also

contributes the following:

• A general framework for the serialization and persistence of arbitrary experimental

artifacts, through the TestData tool.

• A general approach for the extraction and persistence of arbitrary test case features

for classifier construction.

• A scalable approach for isolated test execution using state-of-the-art container and

continuous integration technologies.

As mentioned from Chapter 1 and detailed in Chapter 4, I placed a very large em-

phasis on tool and infrastructure support throughout this research. As a result, every
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outcome I have gleaned from experiments is repeatable on a wide range of hardware con-

figurations (i.e., Linux hosts running Docker). Of the tools and infrastructure components

I developed, very few are platform or AUT specific, and all are easily extended for a wide

range of research and practical applications.

6.2 Threats to Validity

As with any experimental outcomes, the outcomes of my experiments in this study

are subject to both internal and external threats to validity. In this section, I discuss what

I consider to be the biggest threats to internal and external validity.

6.2.1 Threats to Internal Validity

In my studies, I am assuming that GUI tests are repeatable, given the same in-

put and AUT configurations. As the inconsistent test case executions indicate, there

are scenarios when general “flakiness” in application and testing tool configurations can

cause inconsistent results. I chose to throw out altogether any test cases which exhibited

inconsistencies across two separate executions as one way of addressing this threat.

In forming Training and Test suites for my experiments, I assume that the selection

of test cases from a much larger available pool is truly random, and that the randomly

sampled suites are representative of the broader population of model-based test suites from

which they are drawn. During “sanity checking,” I confirmed that the pools from which

each suite is sampled are of very different sizes (e.g., with the training pool 1-2 orders of

magnitude larger than the test pool for most AUTs). I also manually confirmed that the

random sampling logic in the Java code constructing the randomly sampled suites is using

an appropriate approach.
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The selection of AUTs is also a possible source of bias in my experiments. I chose to

use the Java JFC platform, which does not have a very large pool of robust applications

available, in comparison to the more contemporary Web and mobile platforms. However,

the Java platform of GUITAR has been used as the basis for many studies with GUITAR

and model-based testing in general, and the Java tools are the most robust of those in the

framework. Also, I assert that the choice of platform has little effect on the outcomes of

this study: a model such as the feasibility classifiers I construct is platform-independent,

though the specifics of features (e.g., the algorithm for computing a unique event ID) may

vary across platforms. Additionally, I consider the risk of using newer, less established

tools to be much greater than that of using older, less familiar AUTs.

Finally, as discussed in Chapter 3 regarding model construction, I chose not to spend

a great deal of time on the customization of GUITAR tool configurations for this study.

It is possible that more thorough configuration of tools, and the more accurate models

obtained from those configurations, would lead to different outcomes due to more variety

being present in the EFG and considered event IDs.

6.2.2 Threats to External Validity

The majority of the outcomes of my experiment must be considered within a fairly

specific context. Throughout this research, I am considering the construction of application-

specific classifiers of feasibility which are applicable to model-based test cases. While these

assumptions understandably limit the generalizability of my results, I made these choices

with the novelty of the technique in mind. I chose to limit possible sources of complexity

as a tradeoff for some generalizability.

The use of four AUTs from the same technology stack also limits the generalizability
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of my results. The four selected AUTs may have unknown properties which cause them

to perform favorably with model-based testing in general or my feasibility prediction

approach.

Research Question RQ3 also presents some challenges with generalizability. In an-

alyzing the fit of models for important features, I do not control for the overlap and

correlation between features. For example, the presence of an n-gram e1 → e2 implies the

presence of a before pair (e1, e2) and the presence of n-grams e1 and e2 of length 1. I

assume that the model will choose the n-gram e1 → e2 only when that particular feature

is significant, but there may not be enough data on each possible feature for the model to

make a proper distinction in these cases.

As with any machine learning experiments, more data and more subjects (AUTs in

this study) would only stand to improve the generalizability of the results.

6.3 Future Work

As mentioned, this study was intended as the first in a much longer line of research

applying more general models from machine learning to software engineering challenges.

In this study, I have focused on feasibility as a predicted variable; but there are a number

of other interesting variables in the model-based software testing space alone:

• Coverage of events from various domains (e.g., GUI, HTTP, DB, and other layers in

modern event-driven systems)

• Coverage of code and faults in code

• Security threats

• Sources of performance and other non-functional issues in an application

For the feasibility classifier in particular, there are a number of possible extensions.
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First, genetic algorithms such as that proposed by Huang, et al. [18] could benefit from

the availability of a reliable feasibility classifier trained by a seed suite. More generally,

the classifier can be leveraged by any number of test case generation approaches which use

seed suites in general, including test suite reduction methods which may need to control

for feasibility.

Another angle of research on the feasibility classifier would be exploring the utility

of cross-application models. Such models would require the identification of application-

agnostic features, perhaps from the widget and window properties in the GUIStructure.

Finally, there are a number of follow-up questions from the current outcomes of this

study which could benefit from further exploration:

• What is the effect of training data size on classifier performance?

• Would the use of random sequences of events gained by walking the AUT (rather

than randomly selected test cases from sequence-length coverage suites) impact clas-

sifier performance?

• Of the three commonly selected categories of features identified in this study (see

Outcome O6 above), could any one of these classes replace the need for one or both

of the others?

And finally, I believe that the infrastructure and tools developed as a part of this

work may have some utility as a more generalized framework for empirical studies of

software. One angle of future research would be to apply this framework to additional

GUITAR platforms and other toolsets, such as that provided by Bae, et al. [38], and eval-

uate its utility as a generic approach for persistence and infrastructure configuration in

empirical studies of software. Use of a standard framework, and especially the establish-

ment of requirements for reproducible configurations and other concerns (such as the work
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done by COMET [45], could stand to greatly improve the quality of empirical studies of

software engineering in general.

6.4 Conclusions

In this study, I have proposed and evaluated a novel technique for the detection of

feasibility in model-based test cases of event-driven software. This technique uses logistic

regression with a lasso penalty to fit a linear model to training data. I identify and extract

many features from each test case, and found that event IDs serve as an important features

in the classifiers. Event types from the EFG, on the other hand, did not seem to correlate

with prediction. Interestingly, n-grams of length=1 and length=2 performed just as well

or better than the more loosely ordered before-pairs considered.

In the future, I hope to extend this work to consider additional predicted variables

from across software engineering and the SDLC, and better features for cross-application

models of feasibility in particular. I would also like to separately investigate the utility

of the persistence tools and other infrastructure components developed as a part of this

research.
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Appendix A: Docker Infrastructure Scripts

Listing A.1: Jenkins GUITAR Slave

FROM ubuntu:14.04

MAINTAINER Bryan Robbins <bryantrobbins@gmail.com>

# Get latest packages

RUN apt-get clean

RUN apt-get update

# Needed for Jenkins

RUN apt-get install --no-install-recommends openjdk-7-jdk -y

# Needed for Jenkins jobs

RUN apt-get install ant wget unzip bzip2 xvfb curl git -y

# Install Gradle

ADD https://services.gradle.org/distributions/gradle-2.6-bin.zip /

RUN unzip gradle-2.6-bin.zip

RUN mv /gradle-2.6 /gradle

ENV PATH $PATH:/gradle/bin

# Create slave user

RUN groupadd -r jslave && useradd -r -g jslave jslave

# Stage sources

ADD sources.tar /

RUN mkdir -p /home/jslave/.gradle

RUN mv /sources/artifacts/* /home/jslave/.gradle

# Install swarm agent and start script wrapper

ADD http://maven.jenkins-ci.org/content/repositories/releases/org/jenkins-ci/

plugins/swarm-client/2.0/swarm-client-2.0-jar-with-dependencies.jar /home/

jslave/swarm.jar

ADD start.sh /home/jslave/start.sh

RUN chmod 700 /home/jslave/start.sh

EXPOSE 22

EXPOSE 5005

# Prepare for jslave user

RUN chown -R jslave:jslave /home/jslave

USER jslave

WORKDIR /home/jslave
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# Prepare command for launching swarm client

CMD ["./start.sh"]

Listing A.2: Jenkins R Slave

FROM ubuntu:14.04

MAINTAINER Bryan Robbins <bryantrobbins@gmail.com>

# Get latest packages

RUN echo "deb http://cran.rstudio.com/bin/linux/ubuntu trusty/" >> /etc/apt/

sources.list

RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E084DAB9

RUN apt-get update && apt-get clean

# Needed for Jenkins

RUN apt-get install --no-install-recommends openjdk-7-jdk -y

# Needed for Jenkins jobs

RUN apt-get install ant wget unzip bzip2 xvfb git -y

# Needed for R

RUN apt-get install r-base r-base-dev libxml2-dev libcurl3-dev -y

ADD install.r /install.r

RUN Rscript install.r

# Install Gradle

ADD https://services.gradle.org/distributions/gradle-2.6-bin.zip /

RUN unzip gradle-2.6-bin.zip

RUN mv /gradle-2.6 /gradle

ENV PATH $PATH:/gradle/bin

# Create slave user

RUN groupadd -r jslave && useradd -r -g jslave jslave

# Install swarm agent and start script wrapper

ADD http://maven.jenkins-ci.org/content/repositories/releases/org/jenkins-ci/

plugins/swarm-client/2.0/swarm-client-2.0-jar-with-dependencies.jar /home/

jslave/swarm.jar

ADD start.sh /home/jslave/start.sh

RUN chmod 700 /home/jslave/start.sh

EXPOSE 22

EXPOSE 5005

# Prepare for jslave user

RUN chown -R jslave:jslave /home/jslave

USER jslave

WORKDIR /home/jslave

# Prepare command for launching swarm client

CMD ["./start.sh"]
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Appendix B: Custom R Scripts

Listing B.1: R Script: Common Utilities

library(data.table)

loadData <- function(file) {

# Load massive data file from csv

data=fread(file, stringsAsFactors=TRUE)

cat(’Before filtering:’, length(names(data)), ’features in dataset’, ’\n’)

# Uncomment this line (and edit the first arg to grep) to drop features that

match some pattern

#drop = grep("e[1-9]+", names(data), value=TRUE)

#data=.data[,(drop):=NULL]

# Drop any factors which do not have more than 1 level

# ie, these are factors which appeared in test data

filter = c(’V1’)

for (ix in names(data)) {

str <- sprintf("data$\"%s\"", ix)

if(nlevels(eval(parse(text=str))) < 2) {

filter <- c(filter, ix)

}

}

data=data[,(filter):=NULL]

cat(’After filtering:’, length(names(data)), ’features in dataset’, ’\n’)

# Split into sep. training and test sets

train.data=data[isTraining=="1"]

test.data=data[isTraining=="0"]

# Drop filter var

train.data=train.data[,isTraining:=NULL]

test.data=test.data[,isTraining:=NULL]

# Prepare training matrix

cat(’Creating training matrix’, ’\n’)

xm=model.matrix(isInfeas~. - 1, data=train.data, contrasts.arg = lapply(train.

data[sapply(train.data, is.factor)], contrasts, contrasts=FALSE))

x=apply(xm, 2, as.numeric)

y=as.numeric(train.data$isInfeas)

# Prepare test data

cat(’Creating test matrix’, ’\n’)
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xtm=model.matrix(isInfeas~. - 1, data=test.data, contrasts.arg = lapply(test.

data[sapply(test.data, is.factor)], contrasts, contrasts=FALSE))

xt=apply(xtm, 2, as.numeric)

actual=as.numeric(test.data$isInfeas)

cat(’Data loading complete.’, ’\n’)

ret = list( trainData=train.data,

testData=test.data,

trainMatrix=x,

testMatrix=xt,

trainY=y,

testY=actual

)

return (ret)

}

loadAndWriteData <- function(fileIn, fileOut) {

dd <- loadData(fileIn)

saveRDS(dd, file = fileOut)

return(dd)

}

getFromS3 <- function(accessKey, secretKey, objectKey) {

bucket <- ’com.btr3.research’

S3_connect(accessKey, secretKey)

S3_get_object(bucket, objectKey, objectKey)

}

Listing B.2: R Script: Prepare Data

# I want commands printed in output

options(echo=TRUE, warning.length=8170)

# Load libs

library("rmongodb")

library("RS3")

# Load common code

source(’common.r’)

# Connect to mongo

m <- mongo.create(host = "guitar05.cs.umd.edu:37017")

# Verify connectivity

mongo.is.connected(m)

# LOAD THESE VALUES FROM COMMAND LINE

args <- commandArgs(trailingOnly = TRUE)

groupDb <- args[1]

groupId <- args[2]

trainingDb <- args[3]
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trainingId <- args[4]

testDb <- args[5]

testId <- args[6]

accessKey <- args[7]

secretKey <- args[8]

cat("Group Object", "\n")

cat(groupDb, "\n")

cat(groupId, "\n")

cat("Training Object", "\n")

cat(trainingDb, "\n")

cat(trainingId, "\n")

cat("Test Object", "\n")

cat(testDb, "\n")

cat(testId, "\n")

####################################################

# IF YOU EDIT SOMETHING BELOW THIS LINE YOU BETTER #

# HAVE A REALLY GOOD REASON #

####################################################

# Collections

trainingCollection <- sprintf(’%s.results’, trainingDb)

testCollection <- sprintf(’%s.results’, testDb)

groupsCollection <- sprintf(’%s.groups’, groupDb)

# Get global features

cat(’Loading group object\n’)

group.query <- sprintf(’{"groupId": "%s"}’, groupId)

bson <- mongo.bson.from.JSON(group.query)

value <- mongo.findOne(m, groupsCollection, bson)

list <- mongo.bson.to.list(value)

featureKey <- sprintf(’testCaseFeatures_n_%s’, list[[’maxN’]])

input.suite <- list[[’suiteId’]]

global.features <- list[[’featuresList’]]

input.suite

length(global.features)

# Get training data

train.query <- sprintf(’{"resultId": "%s"}’, trainingId)

cat(’Loading training data’, ’\n’)

bson <- mongo.bson.from.JSON(train.query)

value <- mongo.findOne(m, trainingCollection, bson)

rlist <- mongo.bson.to.list(value)

train.passing <- rlist[[’results’]][[’passingResults’]]

train.failing <- rlist[[’results’]][[’failingResults’]]

train.all <- c(train.passing, train.failing)

# Get test data

test.query <- sprintf(’{"resultId": "%s"}’, testId)

cat(’Loading test data’, ’\n’)

bson <- mongo.bson.from.JSON(test.query)
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value <- mongo.findOne(m, testCollection, bson)

rlist <- mongo.bson.to.list(value)

test.passing <- rlist[[’results’]][[’passingResults’]]

test.failing <- rlist[[’results’]][[’failingResults’]]

test.all <- c(test.passing, test.failing)

global.all <- c(train.all, test.all)

length(global.all)

# Build data frame for all examples

cat(’Initializing global data frame\n’)

cna <- c(list(’isInfeas’, ’isTraining’),global.features)

mm = matrix("0", length(global.all), length(cna), dimnames=list(global.all, cna))

for (tid in global.all){

if(tid %in% train.failing){

mm[tid, ’isInfeas’] = "1"

}

if(tid %in% test.failing){

mm[tid, ’isInfeas’] = "1"

}

# Set ’isTraining’ value for splitting later

# init artifactsCollection for loading of features

if(tid %in% train.all){

mm[tid, ’isTraining’] = "1"

artifactsCollection <- sprintf(’%s.artifacts’, trainingDb)

} else {

artifactsCollection <- sprintf(’%s.artifacts’, testDb)

}

# Load features

features.query <- sprintf(’{"artifactType": "%s", "ownerId": "%s"}’, featureKey

, tid)

cat(’Loading features for’, tid, ’\n’)

queryBson <- mongo.bson.from.JSON(features.query)

resultBson<- mongo.findOne(m, artifactsCollection, queryBson)

resultList <- mongo.bson.to.list(resultBson)

for (feat in resultList[[’artifactData’]][[’features’]]){

if(feat %in% global.features){

mm[tid, feat] = "1"

}

}

}

# Convert to df

cat(’Converting to data frame’)

mm = unname(mm)

global.df = data.frame(mm)

rownames(global.df) <- global.all

colnames(global.df) <- cna

okey <- sprintf(’data/%s_%s_data’, input.suite, featureKey)

output.file <- sprintf(’%s.csv’, okey)
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model.file <- sprintf(’%s.dat’, okey)

# Write out df

cat(’Writing out data frame\n’)

write.csv(global.df, file = output.file)

# Convert to model

cat(’Loading model structures’, ’\n’)

data <- loadAndWriteData(output.file, model.file)

# Upload files to S3 location

bucket <- ’com.btr3.research’

S3_connect(accessKey, secretKey)

S3_put_object(bucket, output.file, output.file, "text/csv")

S3_put_object(bucket, model.file, model.file, "application/octet-stream")

# Re-print any warnings

warnings()

Listing B.3: R Script: Predict

# I want commands printed in output

options(echo=TRUE, warning.length=8170)

# Library loading

library(’data.table’)

library(’glmnet’)

library(’methods’)

library(’mda’)

library("RS3")

# Grab arguments

args <- commandArgs(trailingOnly = TRUE)

model <- args[1]

accessKey <- args[2]

secretKey <- args[3]

# Get data from S3

data.key <- sprintf(’data/%s.dat’, model)

bucket <- ’com.btr3.research’

S3_connect(accessKey, secretKey)

S3_get_object(bucket, data.key, data.key)

# Load model from exported file

data <- readRDS(data.key)

# Run the lasso

cvfit = cv.glmnet(data$trainMatrix, data$trainY, family = "binomial", type.

measure = "class")

# Plot the fit

plot(cvfit)

# Run predictions, printing confusion matrix of t1 and t2 errors
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confusion(predict(cvfit, newx = data$testMatrix, type = "class", s = c(cvfit$
lambda.min)), data$testY)

# Inspect fit

# Inspect fit

lix <- which(cvfit$lambda == cvfit$lambda.min)
cfs <- coef(cvfit, s = "lambda.min")

sorted <- sort(cfs[which(cfs != 0)], decreasing=TRUE, index.return=TRUE)

cat(’Lambda is’, cvfit$lambda.min, ’\n’)

cat(’Lambda index is’, lix, ’\n’)

cat(’Model has’, cvfit$nzero[lix], ’coefficients\n’)

cat(’Coefficients are:\n’)

for (c in rownames(cfs)[sorted$ix]) {

cat(c, ’\n’)

}

# Re-print any warnings

warnings()
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