
A Reference Manualto the Linearization EngineoxyGenversion 1.6Nizar HabashUniversity of MarylandInstitute for Advanced Computer StudiesSeptember 13, 2001

Contents1 oxyGen 21.1 Introduction . 21.2 Linearization . 31.3 oxyGen: A Hybrid System . 42 oxyL 62.1 Abstract Meaning Representation 62.1.1 OxyL Basic Tokens . 82.2 oxyL File . 92.3 oxyL Rules . 103 Sample oxyL Grammar for English 133.1 The oxyL File . 133.2 Input and Output . 154 oxyGen Reference 174.1 oxyGen Package . 174.1.1 oxyGen Installation . 174.1.2 oxyCompile . 184.1.3 oxyRun . 184.1.4 oxyLin . 194.1.5 oxyDebug . 194.2 Declarations . 204.3 Built-in Functions . 224.4 Built-in Recasts . 234.5 Reserved Tokens . 254.5.1 Reserved Variables . 254.5.2 Reserved Roles . 254.5.3 Reserved Functions . 254.5.4 Reserved Strings . 261

Chapter 1oxyGen1.1 IntroductionThis is a manual for the language independent linearization engine, oxyGen.This system has been developed as part of the Machine Translation (MT) ef-fort at the University of Maryland College Park [1, 8]. oxyGen has been usedas an integral part of the Natural Language Generation (NLG) component ofan interlingual Chinese-English MT project and a Spanish-English MT project.It has also been used to generate simple Spanish and Chinese sentences on alarge scale of coverage [3]. Natural Language Generation is interested in takingnon-linguistic representations as input and converting them into natural lan-guage output. NLG can be divided into two major distinct operations: LexicalSelection and Linearization. The former is concerned with selecting the correctnatural language lexical item such as eat versus devour or car versus vehicle.The later is concerned with the relative positioning of lexical items on the sur-face such man hit dog versus dog hit man or man dog hit. oxyGen is an enginefor developing programs to do the later operation: Linearization. The inputto such programs is a labeled Feature Graph (FG) representation of a naturallanguage sentence. The particular form of FGs used here is a modi�ed version ofNitrogen's Abstract Meaning Representation (AMR) [5, 6]. AMRs are labeleddirected feature graphs written using the syntax of the Penman Sentence PlanLanguage [4]. The output of the linearization programs developed using oxyGenis a word lattice, a compressed representation of the various possible generatedsequences. See Figure 1.1.
oxyGen

LinearizerAMR Word
LatticeFigure 1.1: oxyGen Linearizer2

1.2 LinearizationTo exemplify the use of oxyGen and linearization in general, take the followinginput AMR:(1) (1 / |like|:POS Verb:Subject (2 / |man| :POS Noun):Object (3 / |car| :POS Noun))This AMR can be read as there is a verb, like, and it has a subject, man,which is a noun and an object, car, which is also a noun. In English, a properword order would be man like car (or more uently the man likes the car, butlet's not worry about uency for now). To specify that an SVO (subject verbobject) order is desired in English (versus VSO or SOV), we need a linearizationrule such as the following:(2) (?? (&eq @pos Verb) -> (@subject @/ @object)-> (@/))This rule is written using oxyL (oxyGen Language), a exible and powerfullanguage that has the power of a programming language but focuses on naturallanguage realization. This rule can be read as if the part of speech (POS) ofthe current AMR is Verb, then linearize the subject AMR followed by the wordinstance followed by the object AMR; otherwise linearize the word instance byitself. This is a very simple grammar that needs more extensions to handle realinput with di�erent phrase structures and parts of speech. But a real AMRis also complex on a di�erent dimension: Ambiguity. Let's assume the inputAMR is a result of a lexical selection process for the same sentence in (1) froma language that doesn't specify number (singular versus plural) and its word forlike is ambiguous in that it covers the concepts of desire and love. This AMRcould look as follows:(3) (0 :OR (1 / (*or* |like| |likes|):POS Verb:Subject (2 / (*or* |man| |men|) :POS Noun):Object (3 / (*or* |car| |cars|) :POS Noun)):OR (4 / (*or* |desire| |desires|):POS Verb:Subject (5 / (*or* |man| |men|) :POS Noun):Object (6 / (*or* |car| |cars|) :POS Noun)):OR (7 / (*or* |love| |loves|):POS Verb:Subject (8 / (*or* |man| |men|) :POS Noun):Object (9 / (*or* |car| |cars|) :POS Noun)))3

Since such ambiguity can occur anywhere in an AMR, it presents a challengeto writing simple linearization rules whose application is conditional upon spe-ci�c AMR role combinations at di�erent depths. However, the beauty of oxyGenis that it allows hiding the ambiguity of the input from the grammar descriptionso that both AMRs (1 and 3) can be linearized using the same grammar rule in(2). Of course, the ambiguity of (3) will lead to a large set of sequences:(4) man like carman like carsman likes carman likes carsmen like carmen like carsmen likes carmen likes cars man desire carman desire carsman desires carman desires carsmen desire carmen desire carsmen desires carmen desires cars man love carman love carsman loves carman loves carsmen love carmen love carsmen loves carmen loves carsA statistical extraction module can be used to rank the di�erent sequencesusing uni and bigram statistics or other language models. The statistical ex-traction component of Nitrogen [5, 6] is one such module.In addition to hiding ambiguity from the grammars, oxyGen provides, throughoxyL, a great power to the grammar writers by providing complex tools designedwith natural language linearization in mind. oxyGen can also be extended andmodi�ed easily via second and third-party code.1.3 oxyGen: A Hybrid SystemoxyGen compiles target language grammars written in oxyL into compilableLisp programs that take AMRs as inputs and generate word lattices that canbe passed along to be ranked by some language model. This approach to lin-earization implementation is a hybrid between the declarative and proceduralparadigms. oxyGen uses a linearization grammar description language (oxyL)to write declarative grammar rules which are then compiled into a program-ming language (Lisp) for e�cient performance. This hybrid approach allowsoxyGen to maximize the advantages and minimize the disadvantages of a pureprocedural implementation (in Lisp or C) or a pure declarative implementation(in Nitrogen grammar). oxyGen contains three main elements: a linearizationgrammar description language (oxyL), an oxyL to Lisp compiler (oxyCompile)and a run-time support library (oxyRun). Target language linearization gram-mars written in oxyL are compiled o�-line into oxyGen linearizers using oxy-Compile (Figure 1.2).oxyGen linearizers are Lisp programs that require the oxyRun library ofbasic functions in order to execute (Figure 1.3). They take AMRs as input andcreate word lattices as output.In addition to the oxyCompile and oxyRun components, there are currentlytwo additional components oxyLin, a simple converter from word lattices to4

Grammar
Linearization oxyGen

Linearizer
oxyL Lisp Lisp

oxyCompileFigure 1.2: oxyGen Compilation Step
oxyGen

Linearizer

oxyRun

AMR Word
LatticeFigure 1.3: oxyGen Runtime Stepsurface sequences, and oxyDebug, a support code for debugging the compiledlinearization grammars. The speci�cations of all these components are in Chap-ter 4.A more detailed discussion of the motivation and advantages of oxyGen ispresented in [2]. There is also an evaluation of oxyGen based on speed of per-formance, size of grammar, expressiveness of the grammar description language,reusability and readability/writability. The evaluation context is provided bycomparing an Oxygen linearization grammar for English to two other imple-mentations, one procedural (using Lisp) and one declarative (using Nitrogenlinearization module). The three comparable linearization grammars were usedto calculate speed and size. Overall, Oxygen had the highest number of advan-tages and its only disadvantage, speed, ranked second to the Lisp implementa-tion (see Table 1.1). The version of oxyGen described in this manual is a moree�cient implementation of Oxygen than the one evaluated in [2]. A secondevaluation for a larger English grammar in oxyGen and Lisp showed Lisp is stillfaster than oxyGen. However the gap in speed between the Lisp and Oxygenimplementations shrunk from Oxygen being 24 times slower than Lisp in [2] toonly 1.5 times. Procedural Hybrid Declarative(Lisp) (Oxygen) (Nitrogen)Speed + 0 -Size 0 + -Expressiveness + + -Reusability - + +Readability/ - + -Writability Table 1.1: Oxygen Evaluation5

Chapter 2oxyLoxyL (oxyGen Language) is the language used by oxyGen to write linearizationgrammars. It is a exible and powerful language that has the power of a pro-gramming language but focuses on natural language realization. As a preludeto describing the syntax of oxyL, we will describe the form of the structuresoxyL commands are applied to, Abstract Meaning Representations. Then, wewill discuss oxyL's basic tokens followed by the syntax of an oxyL �le and oxyLrules and functions.2.1 Abstract Meaning RepresentationAbstract Meaning Representations (AMR) are labeled directed feature graphswritten using the syntax of the Penman Sentence Plan Language [4]:(5) <AMR> ::= <terminal> || (<label> f<role> <value>g+)<value> ::= <AMR> || <terminal><terminal> ::= <word> || <wordlist>Every node in an AMR has a label and one or more role-value pairs. Roles,i.e. features, are marked by a colon pre�x except for the default role, :inst(instance), which can be represented as a forward slash /. Values may bemeaning bearing terminal tokens or AMR nodes. These terminal tokens can besemantic concepts such as |china| or |love|, syntactic categories such as N orV, plain surface text strings such as "China", or a list of any of them headedby the special token *or* such as (*or* man men). Except for a small numberof reserved tokens used by oxyGen, most of the AMR tokens are user andapplication-de�ned. The only requirement is consistency between the AMRsand the oxyL grammars to linearize them. The roles and concepts of an AMRcan be a mix of syntactic and semantic signi�cance: thematic roles such as:Agent and :Theme and syntactic categories such as :Subject and ADV. Thefollowing is an example of a basic AMR for the sentence The United States6

unilaterally reduced the China textile export quota :(6) (1 / |reduce|:CAT V:Subject (2 / |united states| :CAT N):Object (3 / |quota|:CAT N:MOD (4 / |china| :CAT N):MOD (5 / |textile| :CAT Adj):MOD (6 / |export| :CAT Adj)):Manner (8 / |unilaterally| :CAT ADV))In this example, (a2 / |united states| :CAT N) is the subject of the con-cept |reduce|. And similarly,N is the category of the concept |united states|.The basic role :inst or / is always present in a basic AMR.However there are two other types of AMRs, that are instance-less: OR-AMR and AND-AMR. The �rst is a disjunction of basic AMRs, whereas thesecond is a conjunction of basic AMRs. Both are constructed using multiplecopies of the same special role (:OR or :AND). An OR-AMR express lexicalambiguity, i.e., which structure to chose among many. For example, a variant ofthe above AMR in which the root concept is three way ambiguous would lookas follows at the top node:(7) (# :OR (# / |reduce| . . .):OR (# / |cut| . . .):OR (# / |decrease| . . .))An AND-AMR, on the other hand, expresses linearization ambiguity, i.e.,how to order the AMRs on the surface. The AMR in (6) expresses that ambi-guity in the AMR for quota, which contains three identical roles (:MOD). Thatsame AMR can be written using :ANDs as follows:(8) (1 / |reduce|:CAT V:Subject (2 / |united states| :CAT N):Object (3 / |quota|:CAT N:MOD (0 :AND (4 / |china| :CAT N):AND (5 / |textile| :CAT Adj):AND (6 / |export| :CAT Adj)):Manner (8 / |unilaterally| :CAT ADV))Handling :ANDs and :ORs is done automatically and is hidden from the user-de�ned grammar. The ambiguity of an OR-AMR is passed on to the wordlattice, while AMRs under :ANDs are permuted to produce all possible lineariza-tions. 7

There is one more special role, :X-role. It is used to express role ambiguity,i.e., a role can be of two or more role names. For example, The two AMR in(9) express the ambiguous sentence John gave Paul a gift and John gave a giftto Paul.(9) (# / |give|:subj |john|:obj |gift|:X-role (# / X:iObj |paul|:PP (# / |to|:obj |paul|)))(0 :OR (# / |give|:subj |john|:obj |gift|:iObj |paul|):OR (# / |give|:subj |john|:obj |gift|:PP (# / |to|:obj |paul|)))These AMRs are di�erent in that the �rst AMR expresses the ambiguity lo-cally as an ambiguous role (indirect object versus prepositional phrase), whereasthe second AMR expresses the ambiguity at the top level as two di�erent AMRsaltogether. Handling :X-roles is done automatically and is hidden from theusers. They are expanded to full edged OR-AMRs.2.1.1 OxyL Basic TokensThe function of di�erent tokens in oxyL is marked through their form using apre�x symbol: variables are pre�xed with a dollar sign (e.g. $form, $tense),role-names are pre�xed with a colon (e.g. :agent, :cat) and functions arepre�xed with an ampersand (e.g. &eq, &ProperNameHash).In addition to general functions (built-in or user-de�ned), oxyL has a spe-cial class of functions called referential functions. These functions, which arepre�xed with an @ sign (e.g. @goal, @this), are used to access values corre-sponding to speci�c roles of the current AMR. For example, @goal returns thevalue corresponding to the role :goal. If the current AMR is (6) in section2, @subject returns (a2 / |united states| :cat n). The value of the in-stance role, /, is returned using the special referential functions @/ or @inst. Areferential function can specify the path from the current AMR's root to anyvalue under it by concatenating the references along such path. For instance, if8

the current AMR is (6), @subject.cat returns N. If the current AMR containsmultiple instances of the same role as in :MOD in 6, the values are returned in anAND-AMR. For example, if the current AMR is (6), @object.mod.inst returns(# :AND |china| :AND |textile| :AND |export|). Access to the full cur-rent AMR is provided through the self-referential function @this. For example,@this.subject is equal to @subject.The last oxyL basic token type is Macros, which are pre�xed with a circum-ex (e.g. ^NP-NOM). Macros are treated like variables except that while variablesappear as is in the compiled grammar, macros are substituted in the compiler.The use of macros makes the grammar description more concise. For example, ifa set of role-value pairs is very commonly used such as (:Form NP :Case NOM),they can be referred to using a single macro, ^NP-NOM.2.2 oxyL FileAn oxyL �le contains a set of declarations (see Table 2.2). Some provide meta-level information such as :Langauge and :Comment, while others allow importingLisp code such as :Include and :Code. The declarations :Class, :Gloabl and:Macro de�ne variables for use by oxyCompile or oxyRun. The declaration:Morph allows the user to link the internal morphology handler to a speci�cuser-de�ne morphology function. And the declaration:Debug allows the user toturn on and o� the debugging utility provided by oxyDebug. The declaration:Recast allows the user to de�ne functions for modifying AMRs using a specialclass of oxyL functions called recasts. the declaration :Rule allows the userto de�ne speci�c modules to handle di�erent phenomena such as the di�erenttypes of phrases. The most important and the only obligatory declaration isMainRulewhich de�nes the core of the grammar1. The next section will describethe structure of an oxyL rule. The details of the use of all other declarations isleft to Chapter 4.1In [2], a single declaration was available for the whole grammar :RULES. This has beensince replaced with the declarations :Recast, :Rule and :MainRule which provide a higher levelof modularity and e�ciency.
9

Declaration Function Example:Comment Adds a Comment :Comment "Hello World!":Language Name of generated grammar :Language "English":Include Lisp �le to load at runtime :Include "EnglMorph.lisp":Code User-de�ned Lisp functions :Code (<lisp-code>):Class De�nes a class of roles :Class :THETA (:AG :TH :GOAL):Global Declares a global variable :Global $MODE HTML:Macro Declares a macro :Macro 3̂pS (:per 3 :num sing):Debug Controls debugging mode :Debug nil:Morph De�nes the morphologicalgeneration function :Morph (&morph @word@morphemes):Recast De�nes a recast :Recast &PL (@this ++ (:numPL)):Rule De�nes a rule :Rule %S (-> (@S @V @O)):MainRule De�nes the Main Function :MainRule ((-> (do %XP)))Table 2.1: oxyL Declarations2.3 oxyL Rules(10) <RULE> ::= ([== <ASSIGN>]?? <COND>-> <RESULT>*[-> <RESULT>])<ASSIGN> ::= ((<variable> <value>)+)<COND> ::= <Boolean Expression><RESULT> ::= <RULE> || <SEQUENCE> ||(DO <RULE-NAME> [<AMR>])<SEQUENCE>::= (f<AMR>||<RECAST>g+)||(OR <SEQUENCE> <SEQUENCE>+) ||(LISP <lisp-code>) || (CODE <lisp-code>)<RECAST> ::= (<AMR> <RECAST-OP> <RECAST-OP-ARGS>+)The above BNF describes the syntax of an oxyL rule. A rule has an optionalassignment section, introduced with ==, in which local variables are de�ned.The second part of a rule is an optional condition and result pair that can berepeated multiple times. Conditions are introduced with ?? and results are in-troduced with ->. And �nally an optional result is allowed as the default whenall conditions fail. A result can be a rule in itself with all of the portions de-scribed above or it can be a sequence of AMRs or AMR-returning tokens suchas variables or functions. It also can be a call to a user-de�ned rule using thespecial operator DO, which takes as an argument an optional AMR that defaults10

to @this. The ability to embed rules within rules and declare local variablewith deep scope allows users to limit the size of the grammar and increase thespeed of its application logarithmically. The linear order of AMRs in the resultspeci�es the linear order of the surface forms corresponding to these AMRs. Thegrammar is run recursively over each one of the di�erent AMRs. This processcontinues until terminal values, i.e. surface forms, are reached. Consider thefollowing oversimpli�ed rule:(11) (== (($form @form))?? (&eq $form S)-> (?? (&eq @voice Passive)-> (@object (&passivize @inst) "by" @subject)-> (@subject @inst @object)))Initially, this rule takes the value of the role :form in the current AMR andassigns it to the variable $form. In the case the value of $form equals S, asecond check on the voice of the current AMR is done. If the voice is passive,the passive word order is realized. Otherwise, the active voice word order isrealized. The grammar is then called recursively over the AMRs of @subject,@object and @inst. The function &passivize takes the AMR of @inst asinput and can return either a passive verb AMR that gets processed by thegrammar or a terminal word sequence. In addition to AMRs, a linearizationsequence can contain AMR recast operations. A recast operation is made outof an AMR followed by one or more pairs of recast operator and recast operatorarguments. Recast operations modify AMRs before they are recursively runthrough the grammar. The recast mechanism is very useful in restructuring thecurrent AMR or any of its components. For example, the ++ recast operatoradds role-value pairs to an AMR. This is useful in cases such as adding casemarking roles on the subject and object AMRs. The rule described above, (11)could be modi�ed to specify case as follows:(12) (== (($form @form))?? (&eq $form S)-> (?? (&eq @voice Passive)-> ((@object ++ (:case nom)) (&passivize @inst)"by" (@subject ++ (:case gen)))-> ((@subject ++ (:case nom)) @inst(@object ++ (:case acc)))))Table 2.3 provides a list of some oxyL recast operators with their usageformalism and functionality. Note that the use of / in recast operations isdi�erent from its role as a shorthand for :inst.Multiple recast operators can be listed one after another in the same recast.A recast can also be embedded in another recast. For example, the recast(@this && (:a (@a ++ (:b @b))) -- (:b)) moves the role :b and its valueunder :b's sister :a using three di�erent recast operations. Recasts can also11

Name Op UsageAdd ++ (<AMR> ++ (<role> <value>+))Add all <role>i-<value>i pairs to AMRDelete -- (<AMR> -- (<role>+))Remove all <role>i-<value>i pairsReplace && (AMR && (<role> <value>+))Replace all values of <role>iSimpleRecast << (AMR << (<new-role> / (<role>+)))Rename all existing <role>i as <new-role>HierarchyRecast <! (<AMR> <! ((<new-role>+) / (<role>+)))Hierarchically rename available <role>i as <new-role>iTable 2.2: oxyL Recast Operatorsbe accessed outside of results using the general recast function (& <recast>).This allows recasting an AMR any where before passing it to another function orRule. For example, (do %V (& @this ++ (:punct "."))) adds a punctuationmark before passing the current AMR to the rule %V.A result can also introduce alternative sequences using the special operatorOR or make direct calls to Lisp functions using the special operator LISP (orCODE). The following example contains both OR and LISP operators:(13) (== (($name @name))-> (OR (LISP (FORMAT nil "~a loves me" $name))(LISP (FORMAT nil "~a hates me" $name))))Note that calls to Lisp functions should return AMRs (including strings) forproper operation.The special main rule declared with :MainRule consists of a list of regularrules. For example, the following main rule does one of two things every timeit is accessed: terminate generation by realizing nothing if the instance of thecurrent AMR is nil or *empty*, or pass the current AMR to the X-bar rule%XP. (14) :MainRule (;; Nothing to generate(?? (&in @inst (|nil| |*empty*|))-> ());;Basic rule, go to XP(-> (do %XP))) 12

Chapter 3Sample oxyL Grammar forEnglishThis chapter presents a simple oxyL grammar that is used to linearize Englishsyntactic dependency trees. The tokens used here are derived from the cate-gories and relation in Dekang Lin's Minipar parser [7]. Sample input AMRsand outputs using oxyLin and Nitrogen's statistical extraction module are alsopresented.3.1 The oxyL File(:Language "Simple Inflected English Dependency":Comment "This is an oxyGen grammar for English Generation":Comment "version 1.0 / September 2001":Include "nitrolin.lisp":Debug nil:Global $V (V VBE V_I V_N V_P V_N_A V_N_C V_N_I V_N_N V_C_N V_N_N_AV_N_N_C V_N_N_P V_N_P_C V_N_N_P_A V_N_N_P_C V_N_N_P_NV_N_N_N XSAID SAID SAIDX):Global $N (N NN NUM N_A N_C N_P):Macro ^no-punct (:punct (a / |nil|)):Class :sub (:S :SUBJ):Class :as (:AS-ARG :AS-HEAD :AS1):Class :REST (:ABBREV :AGE :C :CN :DEST :FC :HEAD :I :INSIDE :LEX-DEP:LOCATION :POSS :SC :SPELLOUT :TITLE)13

:Recast &whX (@this << (:wh / (:wha :whn :whp))):Recast &invX(@this << (:inv / (:INV-AUX :INV-BE :INV-HAVE))):Recast &AuxH(@this <! ((:aux1 :aux2 :aux3 :aux4) / (:aux :have :be :being))):Rule %DET (-> (@pre @rest @inst @post)):Rule %N(-> (@conj-word @det @num @mod @lex-mod @gen @NN@inst@pnmod @person @appo-mod @appo @mod-post @comp1 @comp2@P @subcat (@vrel && ^no-punct) (@rel && ^no-punct)(@conj ++ (:conj-word "and")))):Rule %A(-> (@conj-word @rest @num @mod @lex-mod @amod @NN@inst@mod-post @P @subcat (@conj ++ (:conj-word "and")))):Rule %P(-> (@inst @rest @P-SPEC @Pcomp-N @PCOMP-C @subcat @punct)):Rule %V(== (($to (0 / |to| :cond (&eq @tense inf))))?? (&ex :inv)-> (@conj-word @wh @inv @neg @sub @aux1 @aux2 @aux3 $to@inst@lex-mod @obj @obj2 @desc @pred @AS @AS2 @P @BY-SUBJ@guest @rest (@MOD && ^no-punct) @subcat @punct(@conj ++ (:conj-word "and")))-> (@conj-word @wh @sub @aux1 @neg @aux2 @aux3 @aux4 $to@inst@lex-mod @obj @obj2 @desc @pred @AS @AS2 @P @BY-SUBJ@guest @rest (@MOD && ^no-punct) @subcat @punct(@conj ++ (:conj-word "and")))):Rule %V-punct(?? (&ex :punct)-> (do %V)?? (&ex :WH)-> (do %V (& @this ++ (:punct "?")))?? (&eq @aspect IMPERATIVE)-> (do %V (& @this ++ (:punct "!")))-> (do %V (& @this ++ (:punct "."))))14

:Rule %XP(== (($pos @pos))?? (&in $pos $V) -> (do %V-punct (&auxH (&invX (&whx @this))))?? (&in $pos $N) -> (do %N)?? (&eq $pos DET) -> (do %DET)?? (&eq $pos prep) -> (do %P)?? (&eq $pos A) -> (do %A)-> (@inst)):MainRule (;; Nothing to generate(?? (&in @inst (|nil| |*trace*|))-> ());; Conditional generation technique(?? (&and (&ex :cond) (&null @cond))-> ());;Basic rule, go to XP(-> (do %XP))))3.2 Input and OutputThe follwing are four AMRs that were input to the linearization grammar de-scribed above. Each AMR is followed by oxyLin's output. the sentences inparentheses are Nitrogen's top choice.(5 / |organized|:POS V:S (3 / |contest|:POS N:DET (1 / |the| :POS DET):NN (2 / |writing| :POS N)):BE (4 / |was|):BY-SUBJ (6 / |by|:POS PREP:PCOMP-N (8 / |office|:POS N:DET (7 / |the| :POS DET):MOD-POST (9 / |of|:POS PREP:PCOMP-N (12 / |commissioner|:POS N:DET (10 / |the| :POS DET):MOD (11 / |official| :POS N))))))(the writing contest was organized by the o�ce of the o�cial commissioner .)15

(2 / |is|:POS VBE:WHA (1 / |how| :POS A):PRED (6 / |system|:POS N:DET (3 / |the| :POS DET):MOD (4 / |canadian| :POS A):MOD (5 / |legal| :POS A):VREL (7 / |constituted| :POS V_N_N)))how is the legal canadian system constituted ?(how is the canadian legal system constituted ?)(5 / |courses|:POS N:DET (1 / |the| :POS DET):MOD (2 / |following| :POS A):MOD (3 / |general| :POS A):NN (4 / |education| :POS N))the general following education courses(the following general education courses)(3 / |mind|:POS N:LEX-MOD (1 / |peace| :POS *):LEX-MOD (2 / |of| :POS *):MOD-POST (4 / |of|:POS PREP:PCOMP-N (7 / |operation|:POS N:MOD (5 / |continuous| :POS A):NN (6 / |system| :POS N))))of peace mind of continuous system operation(peace of mind of continuous system operation)
16

Chapter 4oxyGen Reference4.1 oxyGen Package4.1.1 oxyGen InstallationThe oxyGen package contains the following �les:oxycompile.lispoxyrun.lispoxylin.lispoxydebug.lispoxyload.lispThe code �les for the di�erent oxyGen �les. oxyload.lisp loads the �lesup.make-oxygen-core.shA shell command for creating a dump of the oxygen system. The createddump �le is called oxygen.coreoxycompileA shell command for compiling oxyL �les from the prompt. oxycompileneeds oxygen.core to run properly.Usage: oxycompile <oxyl-filename> <out>The result of running oxyCompile is the creation of a <out>.core �le anda shell command with the name <out>. The usage of the created shellcommand is:<out> <AMR-filename> <out-filename> <mode>where the optional argument <mode> is a keyword for the word lattice tosurface module: oxylin or nitrolin. The default is oxylin.17

oxypamrA shell command for printing pretty AMRs. oxypamr needs oxygen.coreto run properly.Usage: oxypamr <amr-filename> <pretty-amr-filename>nitrolin.lispProvides an interface between oxyGen and Nitrogen. This �le needs tobe included in an oxyL grammar if it is to be used. Activating nitroLincan be done by setting the <mode> argument to \verbnitrolin| in theappropriate functions.4.1.2 oxyCompileoxyCompile provides the functions necessary for compiling an oxyL grammarinto a Lisp �le. oxyCompile can be accessed directly from the shell using theshell command oxycompile described earlier.(oxycompile <oxyl-grammar> <output-file>Compiles <oxyl-grammar> into a Lisp program and outputs it to <output-file>.The optional <output-file> defaults to "oxyout.lisp".(oxycompile-file <oxyl-file> <output-file>Compiles the oxyL grammar in <oxyl-file> into a Lisp program andoutputs it to <output-file>. The optional <output-file> defaults to"oxyout.lisp".4.1.3 oxyRunoxyRun provides functions necessary for proper operation of a compiled oxyLgrammar.(oxygen <AMR>)Runs the oxyGen linearization grammar on an <AMR> and returns a wordlattice.(oxygen-file <AMR-file> <out-file> <mode>)Runs the <AMR>s in <AMR-file> through the loaded oxyGen linearizer fol-lowed by the word lattice to surface module speci�ed by the optional ar-gument <mode> (oxylin or nitrolin). The output sentences are printed to<out-file>.(&amrType <AMR>)Returns the type of an AMR: word, wordlist, basicAmr, orAmr, andAmr,unknown 18

4.1.4 oxyLinoxyLin provides functions for realizing a word lattice into strings. It is an al-ternative to using Nitrogen's Statistical Extraction module which realizes wordlattices and assigns them uni/bigram scores.(oxylin <word-lattice> <stream>)Realizes <word-lattice> into strings and prints them to a �le <stream>.<stream> is optional and is standard output by default.(check-size <word-lattice>)Returns the number of independent sequences in <word-lattice> withoutrealizing it.4.1.5 oxyDebugoxyDebug provides functions for debugging a compiled oxyL grammar. It pro-vides an output best comparable to Lisp's trace. Besides helping to �gure outspeci�c problems, the output of oxyDebug can be used to compare di�erentgrammars in terms of e�ciency by comparing the number of calls they maketo di�erent functions. To use oxyDebug, an oxyL grammar should have thedeclaration :Debug &true. This forces oxyCompile to add calls to oxyDebug inthe compiled grammar. Deactivating the debugging can be done by assigningthe global variable *oxydebug* to nil.(oxydb-open <file>)Opens the �le <file> and links it to the reserved output stream *oxydb-stream*.<file> is an optional argument that defaults to "oxydb.out".(oxydb-close)Closes the reserved output stream *oxydb-stream*.(&oxydb <format> <var>)Allows users to send messages to *oxydb-stream* from inside an oxyLgrammar. <format> is a string that can include Lisp's format instruc-tions. <var> is an optional variable.(oxy-pamr <AMR> <stream>)Pretty prints <AMR> to the optional output stream <stream>. <stream>defaults to standard output.(oxy-pamr-file <in-file> <out-file>)Reads AMRs from <in-file> and pretty prints them to <out-file>.19

4.2 Declarations:COMMENT <string>Includes the comment <string> in the compiled �le. This declaration pro-duces no action. A Lisp comment ";" can also be used in oxyL �les.Example:COMMENT "This is a comment":LANGUAGE <string>Speci�es the name of the generated grammar. This declaration currentlyacts like :COMMENT.Example:LANGUAGE "English":GLOBAL <variable> <value>Declares a global variable <variable> and sets its value to <value>.Example:Global $mode HTML:Global $articles ("a" "an" "the" ""):CLASS :<class> (<role>+)Declares a class role :<class> to represent all the roles in (<role>+).A variable $<class> is created automatically for :<class>. The refer-ential function @<class> returns a basicAMR if only one of the roles in(<role>+) exists; otherwise an andAMR of all existing roles is returned.In both cases, the matching role is remembered in the returned value as avalue to the reserved role :role.Example:CLASS :THETA (:AGENT :THEME :SRC :GOAL :INSTRUMENT)$THETA returns (:AGENT :THEME :SRC :GOAL :INSTRUMENT) and it can beused in recasts such as (@this -- $THETA) or (@this << (:new / $THETA))@THETA of (0 / x :AGENT ag :x x :y y)returns (0 / ag :ROLE :AGENT)@THETA of (0 / x :AGENT ag :THEME th :x x :y y)returns (0 :AND (0 / ag :ROLE :AGENT) :AND (0 / th :ROLE :THEME)):MACRO ^<macro-name> <macro-body>Declares a macro ^<macro-name> with the value <macro-body>. A macroacts like a global variable except that it is substituted by its value at com-pile time not run time. The use of macros makes the grammar descriptionmore concise.Example:MACRO ^NP-acc (:form NP :case acc)(@this ++ ^NP-acc) is compiled as (@this ++ (:form NP :case acc))20

:CODE (<lisp-code>+)Adds Lisp code to the oxyL �le. :CODE can be used to declare functionsand variables. All user-de�ned functions must have the pre�x & to runcorrectly. Similarly, all non-local variables must have the pre�x $.Example:CODE ((setf $myvariable '(me me me))(defun &even (x) (evenp x))(defun &odd (x) (oddp x))(defun &concat (string1 string2)(format nil "~a~a"string1 string2)):INCLUDE <file-name>Loads the Lisp �le named <file-name>. All user-de�ned functions andvariables must have the appropriate pre�xes run correctly. Example:INCLUDE "wordnet-data.lisp":INCLUDE "brown-corpus-stats.fasl":MORPH (<function> @word @morphemes)De�nes the morphologyhandling function for the system to access. <function>is linked by oxyCompile to the internal morphology handler |(oxymorph@word @morphemes)|. oxymorph is �red by the morphology recast +-.:MORPH links the arguments @word and @morphemes to the input argumentsof function.Example:MORPH (&english-morph @word @morphemes):RECAST <recast-name> <recast-body>Allows the user to de�ne a function <recast-name> for modifying AMRsusing oxyL's built-in recasts. Recasts are well explained in Chapter 2.Example:Recast &move (@this && (:a (@a ++ (:b @b))) -- (:b))moves the role :b and its value under :b's sister :a:(&move (0 / x :a (1 / a) :b (2 / b)))returns (0 / x :a (1 / a :b (2 / b))):RULE <rule-name> <rule-body>De�nes a rule <rule-name> as <rule-body>. The de�nition of oxyL rulesis well explained in Chapter 2. Rules can be named anything, but it ispreferred that they have the pre�x %. A rule can be activated with thespecial operator DO which takes an optional AMR as input. The defaultinput is otherwise @this.Example:Rule %order (-> (@c @b @a @b @c))(DO %order (0 / x :a a :b b :c c))yields c b a b c 21

:MAINRULE (<rule>+)De�nes the main function in an oxyL grammar. This is the only obligatorydeclaration. The use of :MAINRULE is well described in Chapter 2.:DEBUG <boolean>Controls the inclusion of necessary code for debugging an oxyL grammar.4.3 Built-in Functions@<role-sequence>Referential Function. Returns the value associated with the role at theend of the <role-sequence> of @this. <role-sequence> is constructedby listing the roles separated by periods and without the colon pre�x.Example@this.subject.number returns the value of the role :number in the valueof the role :subject under the current AMR.(& <recast>)General Recast Function. Returns the result of executing <recast>. Thisspecial function allows accessing oxyL built-in recasts as regular functions.This is useful for recasting an AMR before passing it as an argument to arule or a function. This function cannot be used in a rule result.Example(do %NP (& (@Subject ++ (:case nom))))(&ex <token> <AMR>)Returns true if <token> exists in <AMR>. <token> can be a role or a word.<AMR> is optional and it defaults to @this.(&nex <token> <AMR>)Returns true if <token> doesn't exist in <AMR>. <token> can be a role ora word. <AMR> is optional and it defaults to @this.(&eq {<value1> <value2>}+)Returns true if all <value1>-<value2> pairs are equal.(&neq {<value1> <value2>}+)Returns true if all <varlue1>-<value2> pairs are not equal.(&in <AMR> (<token>+))If <AMR> is a word, &in returns true if <AMR> exists in (<token>+). If <AMR>is a wordlist, &in returns true if any word in <AMR> exists in (<token>+). If<AMR> is a basicAMR, &in returns true if <AMR>.inst exists in (<token>+).If <AMR> is an orAMR or andAMR, &in returns true if any <AMR>.inst ex-22

ists in (<token>+).&truealways returns T.The following functions are implemented using their Lisp counterparts: &and&eval &if ¬ &null &or "e4.4 Built-in Recasts(<AMR> ++ ({<role> <value>}+))Add Recast. Returns a copy of <AMR> with added <role>-<value> pairs.Adding the reserved role :inst overwrites <AMR>.inst. If <AMR> is a wordor a wordlist, a basicAMR of the form (0 / <AMR> {<role> <value>}+)is returned.Examples((0 / x :a a) ++ (:b b :c c)) returns (0 / x :a a :b b :c c)("X" ++ (:d d)) returns (0 / "x" :d d)((0 / x :a a) ++ (/ y :d d)) returns (0 / y :a a :d d)(<AMR> -- (<role>+))Delete Recast. Returns a copy of <AMR> with all <role>-<value> pairsremoved. Deleting the reserved role :inst causes the replacement of the<value> of :inst with nil.Examples((0 / x :a a :b b1 :b b2) -- (:b :z)) returns (0 / x :a a)((0 / x :a a :b b :c c) -- (/ :c)) returns (0 / nil :a a :b b)(<AMR> && ({<role> <value>}+))Replace Recast. Returns a copy of <AMR> with all values of <role> replacedwith <value>. If <role> doesn't exist in <AMR>, it is added. If <AMR> is aword or a wordlist, a basicAMR of the form (0 / <AMR> {<role> <value>}+)is returned.Examples((0 / x :a a :b b1 :b b2) && (:b b3 :z z))returns(0 / x :a a :b b3 :b b3)(<AMR> << (<new-role> / (<role>+)))Simple Recast. Returns a copy of <AMR> with all <role>s renamed as<new-role>.Examples((0 / x :a a :b b) << (:c / (:a :b))) returns (0 / x :c a :c b)23

(<AMR> <? (<new-role> / (<role>+)) <cond>)Conditional Recast. Returns a copy of <AMR> with all <role>s renamed as<new-role>, if <cond> is true. The special referential role @that shouldbe used in <cond> to access the value of each recastable <role> one at atime. This is important in the case that several <role>s share the samename.Examples((0 / x :a a :b b1 :b b2) <? (:c / (:a :b)) (&eq @that.inst b1))returns (0 / x :a a :c b1 :b b2)Conditionally recast :a and :b into :c if the inst value of "that" recastablerole (:a or :b) equals b1.(<AMR> <! ((<new-role>+) / (<role>+)))Hierarchical Recast. Returns a copy of <AMR> with <role>s hierarchicallyrenamed as <new-role>s. Hierarchical renaming means that the �rst ex-isting <role> is renamed to the �rst <new-role>; and the second existing<role> is renamed to the second <new-role>; and so on.Examples((0 / x :d d :g g :a a) <! ((:m :n) / (:a :b :c :d :e :f :g :h)))returns (0 / x :n d :g g :m a)(<AMR> <o <role>)Order Recast. Returns a copy of <AMR> with its <role>s renamed as<role>-iwhere i enumerates the order in which <role> appears in <AMR>.Example((3 / x :a (1 / a) :b (2 / b1) :b (4 / b2)) <o :b)returns (3 / x :a (1 / a) :b-1 (2 / b1) :b-2 (4 / b2))(<AMR> <on <role>)Label Order Recast. Returns a copy of <AMR> with its <role>s renamed as<role>-i where i is the node label of the value of <role>.Example((3 / x :a (1 / a) :b (2 / b1) :b (4 / b2)) <o :b)returns (3 / x :a (1 / a) :b-2 (2 / b1) :b-4 (4 / b2))(<AMR> <oi <role>)Relative Order Recast. Returns a copy of <AMR> with its <role>s renamedas <role>-i or <role>+i where i is the absolute di�erence between thenode label number of the value of <role> and the node label numberof <AMR>. + is used for positive di�erence and - for negative di�erence.Obviously, this recast expects that the node labels are positive integers.Example((3 / x :a (1 / a) :b (2 / b1) :b (4 / b2)) <oi :b)returns (3 / x :a (1 / a) :b-1 (2 / b1) :b+1 (4 / b2))24

(<AMR> +- <morpheme>)Morphology Recast. Returns a string that is the result of combining <AMR>with <morpheme>. This recast �res the internal morphologyhandler oxymorphwhich is linked to a user-de�ned morphology function through the oxyLdeclaration :MORPH. The form of the <AMR> (i.e. word, wordlist, basicAMR,etc.) and the form of <morphem> (i.e. word, list of words, even an AMR)is absolutely up to the user-de�ned morphology function.Example:MORPH (&english-morph @word @morphemes)("walk" +- past)returns "walked"4.5 Reserved TokensSince the oxyL �les are compiled into Lisp by a program written in Lisp us-ing supporting Lisp functions, it is important that the oxyGen user shouldn'trede�ne any of the variables and functions that are necessary for the properoperation of the system. The following is a list of all the reserved tokens in theoxyGen system.4.5.1 Reserved Variables*oxycompile-class* *oxycompile-local* *oxycompile-debug**oxydb-stream* *oxydebug* $this $that4.5.2 Reserved Roles:INST :OR :AND :X-ROLE :ROLE (:THIS :THAT)4.5.3 Reserved FunctionsoxyL Functions@this @that oxymain oxymorph @inst @/(@or @and @x-role @role)oxyCompileoxycompile-file load-oxyl-file init-oxycompile oxycompileprint-compiled-grammar remove-oxydebug compile-grammarcompile-grammar-1 compile-grammar-def-recastcompile-grammar-def-rule compile-grammar-main-rulecompile-grammar-rule compile-grammar-set compile-grammar-condscompile-grammar-conds-eq compile-grammar-conds-neqcompile-grammar-results compile-recast separate-roles amrp25

compile-term variable-term local-term reserved-func-termcompiled-reserved-func-term role-term roleseq roleseq-1roleseq-2 tokensoxyRunadd-roles normalize-inst del-roles del-roles-1 replace-rolessub-roles sub-roles-1 sub-roles-cond sub-roles-cond-1sub-roles-hierarchy sub-roles-h-1 sub-order-rolesub-order-role-node sub-order-role-inode exval exval-1inval inval-1 valof valof-1 prepare &amrType subamr-rolespermute permute-1 multiply-X-roles get-x-roles del-x-rolesmultiply-subamr oxygen oxygen-fileoxyLinoxylin gls-to-surface gls-to-surface-1 add-on check-sizeformat-surface format-surface-sentenceoxyDebugoxydb-open oxydb-close oxydebug &oxydb oxy-pamr oxy-pamr1oxy-pamr2 oxy-pamr-file4.5.4 Reserved Strings"*start-sentence*" "*end-sentence*" "*empty*"AcknowledgementsThis work has been supported by NSA Contract MDA904-96-C-1250 andNSF PFF/PECASE Award IRI-9629108. I would like to thank membersof the CLIP lab for helpful conversations and advice and especially BonnieDorr, Philip Resnik, David Traum and Amy Weinberg.
26

Bibliography[1] Bonnie J. Dorr, Nizar Habash, and David Traum. A Thematic Hierarchyfor E�cient Generation from Lexical-Conceptal Structure. In Proceedingsof the Third Conference of the Association for Machine Translation in theAmericas, AMTA-98, in Lecture Notes in Arti�cial Intelligence, 1529, pages333{343, Langhorne, PA, October 28{31 1998.[2] Nizar Habash. oxyGen: A Language Independent Linearization Engine.In Fourth Conference of the Association for Machine Translation in theAmericas, AMTA-2000, Cuernavaca, Mexico, 2000.[3] Nizar Habash and Bonnie Dorr. Large-Scale Language Independent Gen-eration Using Thematic Hierarchies. In Proceedings of MT Summit VIII,Santiago de Compostella, Spain, 2001.[4] ISI, University of Southern California. The Penman Reference Manual, De-cember 1989.[5] Irene Langkilde and Kevin Knight. Generating Word Lattices from AbstractMeaning Representation. Technical report, Information Science Institute,University of Southern California, 1998.[6] Irene Langkilde and Kevin Knight. Generation that Exploits Corpus-BasedStatistical Knowledge. In ACL/COLING 98, Proceedings of the 36th AnnualMeeting of the Association for Computational Linguistics (joint with the17th International Conference on Computational Linguistics), pages 704{710, Montreal, Canada, 1998.[7] Dekang Lin. Dependency-Based Evaluation of MINIPAR. In Proceedingsof the Workshop on the Evaluation of Parsing Systems, First InternationalConference on Language Resources and Evaluation, Granada, Spain, May1998.[8] David Traum and Nizar Habash. Generation from Lexical Conceptual Struc-tures. In Proceedings of the Workshop on Applied Interlinguas, North Amer-ican Association of Computational Linguistics/Applied Natural LanguageProcessing Conference, NAACL/ANLP-2000, pages 34{41, Seattle, WA,2000. 27

