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Descriptive complexity theory is a branch of complexity theory that views

the hardness of a problem in terms of the complexity of expressing it in some logi-

cal formalism; among the resources considered are the number of object variables,

quantifier depth, type, and alternation, sentences length (finite/infinite), etc.

In this field we have studied two problems: (i) expressibility in ∃SO and (ii)

the descriptive complexity of finite abelian groups. Inspired by Fagin’s result that

NP = ∃SO, we have developed a partial framework to investigate expressibility

inside ∃SO so as to have a finer look into NP . The framework uses combinatorics

derived from second-order Ehrenfeucht-Fräıssé games and the notion of game types.

Among the results obtained is that for any k, divisibility by k is not expressible by

an ∃SO sentence where (1) each second-order variable has arity at most 2, (2) the

first-order part has at most 2 first-order variables, and (3) the first-order part has

quantifier depth at most 3.



In the second project we have investigated the descriptive complexity of finite

abelian groups. Using Ehrenfeucht-Fräıssé games we find upper and lower bounds

on quantifier depth, quantifier alternations, and number of variables of a first-order

sentence that distinguishes two finite abelian groups. Our main results are the

following. Let G1 and G2 be a pair of non-isomorphic finite abelian groups, and let

m be a number that divides one of the two groups’ orders. Then the following hold:

(1) there exists a first-order sentence ϕ that distinguishes G1 and G2 such that ϕ

is existential, has quantifier depth O(logm), and has at most 5 variables and (2)

if ϕ is a sentence that distinguishes G1 and G2 then ϕ must have quantifier depth

Ω(logm).

In infinitary model theory we have studied abstract elementary classes. We

have defined Galois types over arbitrary subsets of the monster (large enough ho-

mogeneous model), have defined a simple notion of splitting, and have proved some

properties of this notion such as invariance under isomorphism, monotonicity, re-

flexivity, existence of non-splitting extensions.
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Chapter 1

Introduction

1.1 Preliminary

A logical language consists of a set of symbols called the vocabulary along

with formation rules for arranging these symbols into a well-formed formulas. For

example, take first-order logic, its vocabulary consists of two parts: (i) a set of

logical symbols that have fixed meanings and consists of a set of object variables

{xi : i ∈ N}, the propositional connectives ∧,∨,¬, and the quantifiers ∃, ∀ and (ii)

non-logical symbols whose existence and meanings depend on the domain of study,

for example in the graph domain there is a binary relation symbol that captures the

edge relation; in general these symbols fall into three categories: function symbols for

functions, relation symbols for relations, and constant symbols for the distinguished

elements in the domain such as the identity element in groups. Well-formed formulas

are defined inductively: start with atomic formulas then close under conjunction,

disjunction, negation, existential, and universal quantification.

So far we have just described the syntactic structure of a logical langauge

which seems to be merely nice arrangements of meaningless symbols. Here comes the

driving force of semantics which imposes meanings and live over the dead symbols.

Most often the semantic component eventually leads to giving truth valuations to

sentences in the language.
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Consider first-order logic with one non-logical symbol, a binary relation sym-

bol. Consider the following sentence

σ
def
= ∀x∀y∃z(x < y → x < z < y) (1.1)

Assume < is interpreted as a total ordering. Then this sentence says that between

any two distinct members of the domain, there exists a new element between them.

In other words this asserts the density of the total ordering. When σ is interpreted

over the rationals (the variables x, y, z take their values from Q), σ is evaluated to

true. However, when σ is interpreted over the integers it becomes false since the

integers are scattered. As another example consider the following sentence

σ
def

= ∃x∀y(y ≤ x) (1.2)

This says that the total ordering has a last element. σ is false over the naturals,

however, when evaluated over any finite ordered set or even over ω∗, the reverse

ordering of the naturals, σ becomes true. When < is interpreted as an edge relation

in a graph, then this last sentence asserts that there is a vertex that is connected to

every vertex in the graph.

This interplay between the syntactic structure represented by a set of sentences

called the axioms and the semantic structure represented by the class of structures

over which these sentences are interpreted and evaluated to true is the scope of

study of model theory.

The research done in this thesis centers around model theory. My research

spans both the applied and the pure aspects of model theory. On the application side

we have done research in the areas of finite model theory and descriptive complexity
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theory. Whereas on the pure theoretical side we have been working in classification

theory for abstract elementary classes.

Traditionally model theory studies classes of infinite structures. The interest

in finite model theory started with Trakhtenbrot’s result in 1950 stating that logical

validity over finite models is not recursively enumerable, that is, completeness fails

over finite structures (for a proof see [21]). There are currently two different threads

of research in finite model theory: (i) the study of the expressive power of different

logics over classes of finite structures, this research has strong connections with

theoretical computer science in particular database theory and complexity theory

and (ii) developing a classification/stability theory for classes of finite structures,

this research is purely mathematical, still in its infancy, and as far as we know

there have been no attempts to apply it to complexity theory, however, we strongly

believe that the rich and wide variety of tools from classification/stability theory

can provide deep insights into open problems in complexity theory.

The connection between finite model theory and complexity theory started in

1974 when R. Fagin proved his celebrated theorem that the class NP can be exactly

captured by existential second-order logic [7]. This opened up a new area of research

called descriptive complexity. As we know the purpose of traditional complexity

theory is twofold: (i) to study the amount of computational resources needed to solve

important computational problems and (ii) to classify the computational problems

according to their hardness. The computational resources considered are (i) time and

space as in the Turing machine-based model or (ii) the amount of hardware circuitry

as in the circuit-based model. However, descriptive complexity theory investigates
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how hard it is to express a problem in some logical formalism and to classify the

problems based on that. The resources considered are basically logical such as the

number of object variables, quantifier depth, type, and alternation, sentences length

(finite vs. infinite), recursive vs. non-recursive capabilities, etc.

Consider for example 3-colorability which is an NP -complete problem. It can

be expressed by the following second-order sentence.

ψ
def

= ∃R∃B∃G (ϕ ∧ θ) (1.3)

ϕ
def
= ∀x ((R(x) ∧ ¬B(x) ∧ ¬G(x)) ∨ . . .) (1.4)

θ
def

= ∀x∀y ((R(x) ∧R(y)→ ¬E(x, y)) ∧ . . .) (1.5)

ψ says that the set of vertices can be partitioned into three subsets: one colored

R, one colored B, and one colored G (for red, blue, and green respectively). This

partitioning must satisfy two properties: ϕ which asserts that this is a valid coloring

(each vertex has exactly one color) and θ which asserts that it is a valid three

coloring. So given a graph G, ψ is true on G if and only if G is 3-colorable. ψ as

defined above belongs to monadic existential second-order logic; it is second-order

since there are quantifications over relations and it is monadic since it quantifies just

over sets (no quantification over relations of higher arities). It should be noted that

computational resources do not match exactly with logical resources, for example,

graph connectivity, a P problem, can not be expressed in monadic existential second-

order logic, it needs more logical resources.

Several important complexity classes have nice logical characterizations [22].

For example, Fagin’s result has been generalized in [26] to show that the whole
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of the polynomial hierarchy is exactly captured by second-order logic. Immerman

showed in [17] that P is exactly captured with least fixpoint logic over the class of

ordered structures (< must be in the vocabulary). Hence the P vs. NP problem

is equivalent to separating the two logics: existential second-order logic and least

fixpoint logic with<. PSpace was shown to be captured by partial fixpoint logic over

the class of finite structures. NL was shown to be closed under complementation

using transitive closure logic.

One of the most significant tools that finite model theory provides is the

Ehrenfeucht-Fräıssé (EF ) games. They were invented by Ehrenfeucht [6] based

on work by Fräıssé [11]. An EF game for a particular logic L is a game-theoretic

characterization for expressibility in L. The game is played over two structures of

the same kind (for example two graphs) between two players one of them is called

the spoiler (or the ∃ player) and the other is called the duplicator (or the ∀ player).

The game is played for r rounds for some positive integer r. At each round both

players alternate choosing elements or sets of elements from the two structures. The

goal of the duplicator is to show that the two structures can not be distinguished

from each other within r rounds which roughly corresponds to saying that the two

structures can not be distinguished by some proper sublogic of L that is defined

based on the game parameters which is just r in our explanation here. Whereas the

goal of the spoiler is to show that this can be done. If for every r, the duplicator has

a winning strategy, then this shows that a certain class of structures is not definable

in L.

Consider the game played over the integers Z and the rationals Q. We show
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that the spoiler can win in 3 moves (this is actually optimal). The spoiler starts by

choosing an element a1 ∈ Z, let b1 be the duplicator’s response from Q. At round 2,

the spoiler chooses a2 ∈ Z such that a2 = a1 +1, let b2 be the duplicator’s response.

At round 3, the spoiler chooses an element b3 ∈ Q that lies between b1 and b2, the

duplicator would then fail to respond with a corresponding element from Z.

Consider the sentence in (1.1), obviously σ is true on the rationals and false on

the integers, hence σ is a first-order sentence that distinguishes the rationals from

the integers. Here we can see the close relationship between logical expressibility and

game-theoretic characterization. The quantifier depth of σ is 3 which corresponds

to 3 moves necessary for the spoiler to win the game. The two outermost quantifiers

are universal corresponding to the first two moves of the spoiler, the last quantifier is

existential corresponding to the spoiler changing the structure from which her last

response is chosen, and finally the quantifier-free part corresponds to the spoiler

using the density of the rationals to win the game.

1.2 Summary of Results

In Chapter 2, inspired by Fagin’s result we develop a partial framework to

investigate expressibility inside existential second-order logic so as to have a finer

look into NP . This framework uses interesting combinatorics derived from second-

order EF games and the notion of game types. A second-order EF game is played

over two classes of structures of the same vocabulary where the duplicator has the

additional advantage of first choosing the two structures over which the traditional
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first-order game is played. These games are used to characterize expressibility in

second-order logic or sublogics of it. The notion of game types is based on the locality

of first-order logic and extensions of it (for example extending with unary generalized

quantifiers) to provide necessary and sufficient conditions for the duplicator to have

a winning strategy. This in many cases avoids giving complicated combinatorial

argument for an actual winning strategy for the duplicator.

Using this framework expressibility results are proved such as:

1. for any integer k ≥ 2, divisibility by k is not expressible by an existential

second-order sentence where the second-order variables have arity at most 2

and the first-order part has 2 first-order variables and quantifier depth 3, and

2. having one more first-order variable makes the same problem expressible and

the parameter k induces a proper hierarchy with varying the number of binary

second-order variables.

In Chapter 3, we investigate the descriptive complexity of finite abelian groups.

Using EF games we find upper and lower bounds on quantifier depth, quantifier

alternations, and number of variables of a first-order sentence that distinguishes two

finite abelian groups. The main results are the following. Let G1 and G2 be a pair

of non-isomorphic finite abelian groups, and let m be a number that divides one of

the two groups’ orders. Then the following hold:

1. there exists a first-order sentence ϕ that distinguishes G1 and G2 such that ϕ

is existential, has quantifier depth O(logm), and has at most 5 variables, and
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2. if ϕ is a sentence that distinguishes G1 and G2 then ϕ must have quantifier

depth Ω(logm).

These results are applied to

1. get bounds on the first-order distinguishability of dihedral groups,

2. to prove that on the class of finite groups both cyclicity and the closure of a

single element are not first-order definable, and

3. give a different more accessible proof for the first-order undefinability of sim-

plicity, nilpotency, and the normal closure of a single element on the class of

finite groups (their undefinability were shown by A. Koponen and K. Luosto

in an unpublished paper [19]).

1.3 Abstract Elementary Classes

Chapter 4 focuses on the rather different topic of abstract elementary classes

(AEC’s) which deals exclusively with classes of infinite structures. The context of

AEC’s was introduced by Shelah in the eighties [25], it encompasses much of current

research in model theory. He embarked on the ambitious program of developing a

classification/stability theory for this context. A class of structures K = (K,�
K

)

is an AEC if it satisfies the following axioms:

1. Closure under isomorphism

2. �
K

refines the substructure relation ⊆
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3. The coherence axiom

4. Closure of Tarski-Vaught chains

5. Downward Löwenheim-Skolem axiom (the existence of a Löwenheim-Skolem

number)

However, as far as we know most of the current research assume three more

properties: amalgamation, joint embedding, and the existence of arbitrarily large

models. In most cases these properties are assumed in its full generality, however,

restricted forms (up-to a particular cardinal) are assumed in some articles such as

[27] and [16]. These additional properties guarantee the existence of a large enough

strongly homogeneous model called the monster. The axiomatization of AEC ′s

as seen above is purely semantical, however, the presentation theorem proved by

Shelah allows us to replace this entirely semantic description by a syntactic one. It

shows that every AEC can be represented as a pseudoelementary class omitting a

set of types. This theorem has the important consequence of allowing us to use the

technology of Ehrenfeucht-Mostowski models which plays a crucial role in proving

results about AEC ′s especially under the assumption of categoricity. A proof of the

theorem can be found in [3, 2].

Let λ be a cardinal (finite or infinite) and let Kλ = {M ∈ K : |M | = λ}.

Then classification theory aims at answering questions about Kλ/ ∼= of the following

nature [12].

1. Is Kλ 6= ∅?
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2. Does Kλ 6= ∅ imply that Kλ+ 6= ∅?

3. If K is λ+-categorical (|Kλ+ | = 1 up-to isomorphism), does that imply it is

λ-categorical? (downward transfer of categoricity)

4. If K is λ-categorical, does that imply it is λ+-categorical? (upward transfer

of categoricity)

5. What are the possible functions λ 7−→ |Kλ|?

6. Under what conditions on K it is possible to find a nice independence relation

on subsets of every M ∈ K ? (this is a generalization of linear independence

in vector spaces or algebraic independence in fields)

Stability theory is the main technology used to develop a classification theory.

For example, the study of the structure of models of a first-order theory was de-

veloped to provide classifications of those models. First-order stable classes behave

very nicely and have a well-defined dimension theory based on an independence

relation called forking.

The guiding conjecture for the development of classification theory for AEC’s

is due to Shelah and states that if an AEC is categorical in some cardinal above the

Hanf number (a characteristic cardinal for the class) then it is categorical in every

cardinal above the Hanf number. This conjecture is still far from being proved and

there is no known stability theory or even a categoricity theorem for AEC’s without

some additional strong assumptions [13]. As far as we know most of the work that

have been done so far assume that notions such as Galois types, stability, tameness,
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saturation, etc are defined over models in K or with respect to models in K . The

exception to this is the work done by T. Hyttinen and M. Kesälä in [16] and the

followup work in [15]. The main concept in the latter work that distinguishes it

from others is finite character. This states that if A,B ∈ K with A ⊆ B, then if

for every ā ∈ A, the Galois type of ā inside A coincides with its type inside B, then

A �
K
B.

So far in our work we have defined Galois types over arbitrary subsets of the

monster, have defined a simple notion of splitting, and have proved some proper-

ties of this notion such as invariance under isomorphism, monotonicity, reflexivity,

existence of non-splitting extensions, its relation to the stability of the class, etc.
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Chapter 2

Expressibility in Σ1

1

Inspired by Fagin’s result that NP = Σ1
1, we have developed a partial frame-

work to investigate expressibility inside Σ1
1 so as to have a finer look into NP . The

framework uses interesting combinatorics derived from second-order Ehrenfeucht-

Fräıssé games and the notion of game types. Some of the results that have been

proven within this framework are: (1) for any k, divisibility by k is not expressible

by a Σ1
1 sentence where (1.i) each second-order variable has arity at most 2, (1.ii)

the first-order part has at most 2 first-order variables, and (1.iii) the first-order part

has quantifier depth at most 3, (2) adding one more first-order variable makes the

same problem expressible, and (3) inside this last logic the parameter k creates a

proper hierarchy with varying the number of second-order variables.

2.1 Introduction

The birth of finite model theory is often identified with Trakhtenbrot’s result

from 1950 stating that logical validity over finite models is not recursively enumer-

able, that is, completeness fails over finite structures [21]. In 1974, R. Fagin proved

his celebrated theorem that NP can be exactly captured by existential second-order

logic [7]. This opened up a new area of research called descriptive complexity. It is

a branch of complexity theory that views the hardness of problems in terms of the

12



complexity of their logical expressiveness such as the number of object variables,

quantifier depth, type, and alternation, sentences length (finite/infinite), etc.

Fagin’s result has been generalized in [26] to show that the whole of the poly-

nomial hierarchy is exactly captured by second-order logic.

Inspired by the above results we have developed a partial framework to inves-

tigate expressibility inside Σ1
1. Currently this framework encompasses sublogics of

Σ1
1 defined as follows.

Definition 2.1.

1. Existential second-order logic, or Σ1
1, is defined to be the class of sentences of

the form

∃X1 . . . ∃Xlϕ (2.1)

where the Xi’s are second-order relational variables of arbitrary finite arities

and ϕ is a first-order sentence.

2. Let monΣ1
1 be the sublogic of Σ1

1 obtained by restricting the arities of the Xi’s

to be at most 1 (hence the prefix mon).

3. Let binΣ1
1 be the sublogic of Σ1

1 obtained by restricting the arities of the Xi’s

to be at most 2 (hence the prefix bin). Note that any sentence in binΣ1
1 is

equivalent to a sentence of the form

∃R1 . . .∃Rn∃S1 . . .∃Smϕ (2.2)

where the Ri’s and the Si’s are binary and unary second-order variables respec-

tively. For simplicity of discussion we will assume that binΣ1
1 consists exactly

13



of sentences of the form (2.2).

4. Let binΣ1
1(p, r) be the sublogic of binΣ1

1 obtained by restricting ϕ to have at

most p first-order variables and quantifier depth ar most r. Define monΣ1
1(p, r)

similarly.

Within this framework we plan to study expressibility of some number-theoretic

properties. In this chapter we started by studying divisibility.

Definition 2.2. For every integer k ≥ 2, let DIVk denote the problem of deciding

whether a positive integer is divisible by k. Let DIVk denote the complement problem,

that is non-divisibility by k.

Example 2.1. Consider DIV2 which is the famous EV EN problem. It was shown

that EV EN can not be expressible in first-order logic ( e.g., see [21]). However,

EV EN can be expressed by the following binΣ1
1 sentence.

σ
def
= ∃R (ϕ1(R) ∧ ϕ2(R) ∧ ϕ3(R)) (2.3)

where

ϕ1(R)
def
= ∀x¬R(x, x)

ϕ2(R)
def
= ∀x∀y (R(x, y)←→ R(y, x))

ϕ3(R)
def
= ∀x∃y (R(x, y) ∧ ∀z (R(x, z) −→ z = y))

Notice that σ defines the class of simple finite graphs with isolated edges (1-regular

graphs). The number of vertices in these graphs must be even.

Notation 2.1. Throughout the remaining part of this chapter if the variable k is
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mentioned free (unquantified) in a result, this indicates that the result holds for every

value of k.

Assuming the empty vocabulary we have proved the following results:

1. DIVk, DIVk are neither in monΣ1
1 nor in monΠ1

1

2. DIVk 6∈ binΣ1
1(1, r) for any r

3. DIVk /∈ binΣ1
1(2, 2) and DIVk /∈ binΣ1

1(2, 3)

4. DIVk ∈ binΣ1
1(3, 3). More specifically, given Γ ⊆ binΣ1

1(3, 3) where every

σ ∈ Γ has at most l binary variables then DIVk ∈ Γ for every k ≤ (4l − 1).

Furthermore, DIVk ∈ Γ for only finitely-many k, hence DIVk creates a proper

hierarchy inside the logic binΣ1
1(3, 3).

5. An immediate consequence of the above is that monΣ1
1 ⊂ binΣ1

1.

6. DIVk 6∈ binΣ1
1 when the sizes of the interpretations of the binary variables are

bounded from above by some linear function of the size of the universe.

Section 2.2 gives axiomatization of a type of colored graphs which will be

the main structures throughout the rest of this chapter. Section 2.3 introduces the

Ehrenfeucht-Fräıssé (EF ) game. we define a specific version called binΣ1
1(p, r)-game

which will be applied to study the expressibility of DIVk in binΣ1
1(p, r). In Section

2.4 we prove that DIVk and its complement are neither in monΣ1
1 nor in monΠ1

1.

In Section 2.5, the notion of game types is defined which is a combinatorial concept

based on the locality of first-order logic, it is used to provide necessary and sufficient
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conditions for winning EF -games without actually playing them. In Sections 2.6

through 2.9 we prove the other expressibility results mentioned above. Section 2.10

concludes the chapter with some insights for future work.

2.2 Colored Graphs

We study expressibility by sentences of the following form

∃R1 . . . ∃Rn′∃S1 . . .∃Sm′ϕ (2.4)

where the Ri’s and Si’s are binary and unary second-order variables respectively

and ϕ is a first-order sentence whose vocabulary is exactly the Ri’s and the Si’s.

Such sentences will be modeled by first-order structures of the following form

G′ = (V, U1, . . . , Um′ , E1, . . . , En′)

V is a finite set of elements. The Ui’s are unary relations over V , these represent

the interpretations of the Si’s in (2.4). The Ei’s are binary relations over V which

represent the interpretations of the Ri’s. Consider an element in V . There are

m = 2m′

different combinations of which unary relations hold for it and do not

hold for it. Similarly, for a pair there are n = 4n′

different combinations of which

binary relations hold. Hence we can easily obtain a graph G where the vertices are

m-colored (not necessarily properly) and the edges are n-colored (not necessarily

properly). We denote this graph

G = (V, C1, . . . , Cm, D1, . . . , Dn) (2.5)
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where G is a complete undirected graph, each vertex has a self-edge, each Ci is a

unary relation (for a vertex color), and each Di is a binary relation (for an edge

color). G must satisfy the following axioms:

∀u
∨

1≤i≤m

Ci(u)

∀u
(

Ci(u) −→
∧

1≤j≤m,j 6=i

¬Cj(u)

)

, for every 1 ≤ i ≤ m

∀u
∨

1≤i≤n

Di(u, u)

∀u
(

Di(u, u) −→
∧

1≤j≤n,j 6=i

¬Dj(u, u)

)

, for every 1 ≤ i ≤ n

∀u∀v
∧

1≤i≤n

(Di(u, v)←→ Di(v, u))

∀u∀v
(

u 6= v −→
∨

1≤i≤n

Di(u, v)

)

∀u∀v
(

u 6= v ∧Di(u, v) −→
∧

1≤j≤n,j 6=i

¬Dj(u, v)

)

for every 1 ≤ i ≤ n

The first two axioms indicate that every vertex u must have a unique color

from the color list C1, . . . , Cm. The third and fourth axioms indicate that the self-

edge of every vertex u must have a unique color from the color list D1, . . . , Dn. The

last three axioms indicate that the graph is undirected and every edge (u, v) must

have a unique color from the color list D1, . . . , Dn. It can easily be observed that

the axioms for self-edges can be combined into the last two axioms, however, they

are separated since for the rest of this chapter they are treated differently from the

other edges.

Notation 2.2.
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1. Let Gm,n be the class of graphs with exactly m vertex colors and n edge colors.

Let G =
⋃

m,n Gm,n.

2. Let C be the set of m vertex colors and let D be the set of n edge colors.

2.3 Ehrenfeucht-Fräıssé Games

Ehrenfeucht-Fräıssé (EF ) games are used to characterize expressibility in some

logical formalism. In our context we apply it to study expressibility in binΣ1
1(p, r)

for positive integers p and r.

2.3.1 Pebble first-order EF -games

In this section we briefly review pebble first-order EF -games. A pebble first-

order EF -game [21, 18] is played over two structures of the same kind, for example

two linear orderings. There are two players: the spoiler denoted by S and the

duplicator denoted by D. The game has two parameters: the number of rounds r

and the number of pebbles p ≤ r. Intuitively, the goal of S is to show that the two

structures can be distinguished in at most r steps using only p pebbles, whereas D

wants to show that this can not be done.

Definition 2.3 (Partial isomorphism). Let A and B be two first-order structures

with vocabulary τ . Assume ā = 〈a1, . . . , an〉 ∈ An and b̄ = 〈b1, . . . , bn〉 ∈ Bn. We say

that there is a partial isomorphism from ā onto b̄ if for every m, for every first-order

quantifier-free formula ϕ(x1, . . . , xm) over τ , and for every {i1, . . . , im} ⊆ {1, . . . , n}
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the following holds

A |= ϕ(ai1 , . . . , aim) ⇐⇒ B |= ϕ(bi1 , . . . , bim)

Given A and B, the pebble EF -game goes as follows. The players start the

game each having a fixed number of p pebbles. At each round S does the following:

(i) she chooses an element x from one of the two structures and (ii) then she either

removes a pebble that has been placed on a previously chosen element and places

it on x or placing a new pebble, if she still has any, on x. D then responds to

the challenge by choosing an element from the other structure and does the same

pebbling so as to preserve the partial isomorphism among the pebbled elements

chosen so far from A and B. At the beginning the pebbles are not placed on any

elements (we can assume having extra pebbles always placed on the distinguished

elements of the structure such as the group identity, even before the game starts).

Assume that at the end of the game p pebbles are placed on ā = 〈a1, . . . , ap〉 from

the structure A and correspondingly p pebbles are placed on b̄ = 〈b1, . . . , bp〉 from

the structure B. Notice that these are in general subsets of the elements chosen

during the course of the game. D wins the game if ā and b̄ are partially isomorphic,

otherwise S wins.

Pebble first-order EF -games characterize expressibility in bounded variable

logic. Let Lp denote first-order logic with at most p variables. For a formula ϕ ∈ Lp,

let qr(ϕ) denote the quantifier rank (depth) of ϕ.

Definition 2.4 (Elementary equivalence). Assume A and B are two structures

over a vocabulary τ . We say that A and B are (p, r)-elementarily equivalent, denoted
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by A ≡p
r B if and only if for every sentence ϕ ∈ Lp such that qr(ϕ) ≤ r we have

A |= ϕ ⇐⇒ B |= ϕ (2.6)

The following theorem gives the relationship between pebble games and ex-

pressibility in Lp.

Theorem 2.1. The following are equivalent:

i. A ≡p
r B

ii. D has a winning strategy in the pebble first-order EF -game over A and B with

r-rounds and p-pebbles

This theorem basically says that no sentence in Lp of quantifier rank at most

r can distinguish A and B if and only if the duplicator has a winning strategy in

the EF -game over A and B with r rounds and p pebbles.

2.3.2 Second-order EF -games

As seen above the first-order game is played over two structures that are fixed

apriori. In contrast the second-order game is played over a class of structures and

consists of two phases: (i) the second-order phase played over a class of structures

K where the duplicator gets to choose two structures A ∈ K and B ∈ K (the

complement of K ) and (ii) the first-order phase which is the regular pebble first-

order game played over A′ and B′ where A′ and B′ are expansions of A and B as

described below. These games are used to study expressibility in second-order logic.
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The second-order game was introduced by Fagin in [8] and then modified in

[1] to what is called the Ajtai-Fagin game (also called monadic Σ1
1 game). In our

context we slightly modify the Ajtai-Fagin game to a new game we call binΣ1
1(p, r).

The new game has four parameters m, n, p, and r and has the following rules.

1. D selects a member A ∈ K .

2. Using the domain of A as a set of vertices, S forms a complete undirected

graph with each vertex has a self-edge.

3. S colors the vertices using colors from C such that each vertex has exactly

one color. She then colors the edges using colors from D such that each edge

has exactly one color. Let A′ be the new expanded colored structure.

4. D selects a member B ∈ K .

5. Using the domain of B as a set of vertices, D forms a complete undirected

graph with each vertex has a self-edge.

6. D colors the vertices from C such that each vertex has exactly one color. She

then colors the edges from D such that each edge has exactly one color. Let

B′ be the new expanded colored structure.

7. S and D play a pebble first-order game over A′ and B′ with parameters r

rounds and p pebbles.

This new game is used to study expressibility in binΣ1
1(p, r). The relation is

indicated in the following theorem whose proof is very similar to that of Theorem

4.5 in [1].
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Theorem 2.2. Let K be a class of structures of the same vocabulary. Then K is

binΣ1
1(p, r) if and only if there are positive integers m,n, p and r such that S has a

winning strategy in the binΣ1
1(p, r)-game with parameters m,n, p and r.

Remark 2.1. 1. If the coloring is restricted to the vertices (no edge coloring),

then we would call the resulting game monΣ1
1(p, r), this is actually a pebbled

version of the Ajtai-Fagin game.

2. In the definition of the binΣ1
1(p, r)-game, the ordering of the coloring of the

vertices and/or edges (by either of the players) does not matter since the or-

dering of the corresponding second-order existential quantifiers is irrelevant as

long as it does not alternate with universal quantifiers.

3. Notice that in the rules of the binΣ1
1(p, r)-game, the spoiler has to color the

vertices and the edges of A before she knows what the other structure B is or

how it will be colored by the duplicator. However, this does not make the game

harder for her since if K ∈ binΣ1
1(p, r), then the coloring is predetermined

completely by the sentence that defines K .

4. In the following discussion we will always assume, unless otherwise stated,

classes of structures over the empty vocabulary (the base language does not

contain any non-logical symbols) so the structure is just a domain of ele-

ments; however, relations are defined over the domains during the course of

the second-order EF -game. More specifically, the pebble first-order games are

played over structures in G.
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2.4 DIVk,DIVk 6∈monΣ1

1
(p, r)

Theorem 2.3. DIVk 6∈ monΣ1
1(p, r) for any positive integers p and r.

Proof. We will show that for large enough graphs D has a winning strategy in the

monΣ1
1(r, r)-game. Fix k ≥ 2. Assume m vertex colors. D starts by choosing a

graph G such that |G| (mod k) = 0 and |G| ≥ mr. S then colors the vertices of

G using the given m colors. By the pigeonhole principle there must be at least r

vertices having the same color c ∈ C , let Γ be the set of all such vertices. D then

chooses a graph G′ = (G ∪ {w}) with a new vertex w and does the following: (i)

color G ⊆ G′ exactly as S did and (ii) color w with c. Let Γ′ = (Γ ∪ {w}). Now

the first-order phase of the EF -game with r rounds. Assume the (i+ 1)st round of

the game (i + 1 ≤ r) and assume 〈u1, . . . , ui〉 ⊆ G and 〈v1, . . . , vi〉 ⊆ G′ have been

chosen such that for every 1 ≤ j ≤ i, uj and vj have exactly the same color. Assume

S chooses ui+1 ∈ G. If ui+1 6∈ Γ, then D responds with the corresponding vertex in

G′ ( 6∈ Γ′). If ui+1 ∈ Γ then

- if ui+1 = uj for some j ≤ i, then D responds with vj ,

- otherwise D responds with an arbitrary vi+1 ∈ Γ′ that has not been chosen

before, this is possible since |Γ′| ≥ r.

The case when S chooses vi+1 ∈ G′ is symmetric.

Theorem 2.4. DIVk 6∈ monΣ1
1(p, r) for any positive integers p and r.

Proof. The proof is very similar to that of Theorem 2.3. D starts the game by

choosing a graph G such that |G| (mod k) 6= 0 and |G| ≥ mr. S does her coloring
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and then D responds by choosing a graph G′ = (G ∪W ), where W is a new set of

vertices such that |G′| (mod k) = 0. D colors all the vertices of W with c and let

Γ′ = (Γ ∪W ). The game then proceeds exactly as in Theorem 2.3.

Corollary 2.1.

1. DIVk 6∈ monΠ1
1

2. DIVk 6∈ monΠ1
1

Proof. Follows directly from Theorems 2.3 and 2.4.

2.5 Game Types

The definition of game types given in this section is inspired by a similar one

given in [20].

Definition 2.5 (Isomorphism types). Let u, v, w ∈ G ∈ G.

1. Define the isomorphism type of u in G as

I(u;G) = 〈c, d〉 , c ∈ C and d ∈ D (2.7)

where c is the color of u and d is the color of its self-edge.

2. Define the isomorphism type of the pair u, v in G as

I(u, v;G) = 〈I(u;G), I(v;G), d, eq(u, v)〉 , d ∈ D (2.8)

where d is the color of the edge (u, v) and eq(u, v) is true if they are the same

vertex otherwise false.
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3. Define the isomorphism type of the triple u, v, w in G as

I(u, v, w;G) = 〈I(u;G), I(v;G), I(w;G),

I(u, v;G), I(u, w;G), I(v, w;G), eq(u, v), eq(u, w), eq(v, w)〉

(2.9)

Remark 2.2. The isomorphism type of any set of vertices corresponds to the first-

order quantifier-free type of these vertices in G over the empty set of parameters.

Definition 2.6 (Game types). Let u ∈ G ∈ G.

1. Define the (1, r)-game type of u inside G as

ζ1,r(u;G) = I(u;G) (2.10)

2. Define the (2, r)-game type of u inside G inductively as

ζ2,1(u;G) = I(u;G)

ζ2,r(u;G) = 〈I(u;G), {〈I(u, v;G), ζ2,r−1(v,G)〉 : v ∈ G}〉 (2.11)

3. Define the (3, r)-game type of u inside G inductively as

ζ3,1(u;G) = I(u;G)

ζ ′3,1(u, v;G) = I(u, v;G)

ζ ′3,r(u, v;G) = 〈I(u, v;G), {〈I(u, v, w;G), ζ3,r−1(w;G)〉 : w ∈ G}〉

ζ3,r(u;G) =
〈

I(u;G),
{〈

I(u, v;G), ζ ′3,r−1(u, v;G), ζ3,r−1(v;G)
〉

: v ∈ G
}〉

(2.12)

where ζ ′ is a helper function and can be thought of as the game type of edges.
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4. For every 1 ≤ p ≤ 3 define the (p, r)-game type of G as

ζp,r(G) = {ζp,r(u;G) : u ∈ G} (2.13)

Remark 2.3. The (p, r)-game type of a vertex u corresponds to the first-order type

of u in G over the empty set of parameters where every formula in that type has at

most p variables and has quantifier rank at most r.

The intuition behind these definitions of isomorphism and game types is the

following: given G,G′ ∈ Gm,n and given u ∈ G, v ∈ G′ such that ζp,r(u;G) =

ζp,r(v;G
′), then D has a winning strategy in the r-round first-order game with p

pebbles which starts by placing pebbles on u and v. One can see this by induction,

as D can maintain the invariant that the corresponding pebbled vertices have always

the same game type [20]. If furthermore we have the stronger assumption that

ζp,r(G) = ζp,r(G
′), then D can always win no matter how the game starts.

The following proposition from [20] states the relationship between game types

and first-order expressibility.

Proposition 2.1. Assume G,G′ ∈ Gm,n. Then ζp,r(G) = ζp,r(G
′) if and only if for

every first-order sentence σ ∈ Lp such that qr(σ) ≤ r it is the case that G |= σ ⇐⇒

G′ |= σ.

Notation 2.3.

1. We will omit the argument G from isomorphism types and game types when

understood from the context.
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2. Fix m and n for vertex and edge colors respectively. Let Λ(p, r;G) denote

the maximum number of possible (p, r)-game types of graphs in Gm,n and let

Λ(p, r; u) denote the maximum number of possible (p, r)-game types of vertices

in such graphs.

2.6 DIVk 6∈ binΣ1

1
(1, r) and DIVk 6∈ binΣ1

1
(2, 2)

We show that DIVk 6∈ binΣ1
1(1, r) and DIVk 6∈ binΣ1

1(2, 2) by looking at the

(1, r)- and (2, 2)-game types of graphs in G.

Lemma 2.1. Assume m vertex colors and n edge colors. Then Λ(1, r; u) ≤ mn and

Λ(1, r;G) ≤ 2mn.

Proof. Assume some vertex u. From Definition 2.6 we need only to count the

number of isomorphism types of u which is at most mn. Since the game type of any

G ∈ Gm,n is determined by the game types of its single vertices, then Λ(1, r;G) ≤ 2mn

(counting all possible subsets of game types of single vertices).

Lemma 2.2. Let G ∈ Gm,n. Then there exists G′ ∈ Gm,n such that |G′| = |G| + 1

and ζ1,r(G
′) = ζ1,r(G).

Proof. Choose an arbitrary u ∈ G. Add to G a new vertex v, color it and its

self-edge exactly as u’s, and color its edges to the vertices of G arbitrarily. Let G′

be the new graph. Clearly, ζ1,r(G
′) = ζ1,r(G).

As a direct consequence of this lemma and Proposition 2.1 we have the follow-

ing inexpressibility result.
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Theorem 2.5. DIVk 6∈ binΣ1
1(1, r)

Next we consider (2, 2)-game types.

Lemma 2.3. Assume m vertex colors and n edge colors. Then Λ(2, 2; u) ≤ (mn)2(mn2)

and Λ(2, 2;G) ≤ 2Λ(2,2;u).

Proof. Given a vertex u, the (2, 2)-game type of u is determined by: (i) its isomor-

phism type, (ii) the isomorphism type of any other vertex v, and (iii) the isomor-

phism type of the edge (u, v). There are (mn) possible vertex and self-edge colors

for u, (mn) vertex and self-edge colors for v, and n possible colors for the edge

(u, v). Hence there are at most a total of (mn2) possible combinations of colors for

v and (u, v) of which there are at most 2mn2
possible subsets that can be associated

with u. Therefore, Λ(2, 2; u) ≤ (mn)2mn2
. As mentioned above the game type of

any G ∈ Gm,n is determined by the set of game types of its single vertices, hence

Λ(2, 2;G) ≤ 2Λ(2,2;u).

Lemma 2.4. Let G ∈ Gm,n. Assume |G| > Λ(2, 2; u). Then there exists G′ ∈ Gm,n

such that |G′| = |G|+ 1 and ζ2,2(G
′) = ζ2,2(G).

Proof. From Lemma 2.3, there must be u1, u2 ∈ G that have the same (2, 2)-game

type. Add to G a new vertex v, color it and its self-edge exactly as u1. Connect v

to every vertex in G. For every w ∈ G such that w 6= u1, use the color of the edge

(u1, w) to color the edge (v, w). Use the color of the edge (u1, u2) to color (v, u1).

Let G′ be the new graph. It is easy to check that ζ2,2(v;G
′) = ζ2,2(u1;G) and for

every w ∈ G, ζ2,2(w;G) = ζ2,2(w;G′). Hence, ζ2,2(G
′) = ζ2,2(G).
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As a direct consequence of this lemma we have the following inexpressibility

result.

Theorem 2.6. DIVk 6∈ binΣ1
1(2, 2)

2.7 DIVk 6∈ binΣ1

1
(2, 3)

We show that DIVk 6∈ binΣ1
1(2, 3) by looking at the (2, 3)-game types of graphs

in G.

Remark 2.4. Assume G ∈ G and let u ∈ G. Then ζ2,3(u;G) can be characterized

by the set of all paths in G of length 2 starting from u. This includes paths of the

form uvu (going from u to v then back to u). Actually as we will see below these

latter kind of paths is the main reason for the inexpressibility in binΣ1
1(2, 3). Given

one such path uvw (two or all vertices may be identical) we will represent it by the

tuple

t = (c1c2c3, d1d2d3, e1e2)

where the first triple represents the colors of the vertices u, v, and w respectively,

the second triple represents the colors of their self-edges, and the last pair represents

the colors of the edges uv and vw respectively. In the following discussion the (2, 3)-

game type of a single vertex u will be taken to be the collection of all possible such

tuples. So we can say things like t ∈ ζ2,3(u). Sometimes we will need to ignore the

vertex and self-edge colors when they do not play any role in the discussion. In such

cases we consider t = (e1e2) ∈ ζ2,3(u).
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Lemma 2.5. Assume m vertex colors and n edge colors. Then Λ(2, 3; u) ≤ (mn)2nΛ(2,2;u)

and Λ(2, 3;G) ≤ 2Λ(2,3;u).

Proof. Given the recursive nature of the definition of game types, the (2, 3)-game

type of a single vertex u is determined by (i) its isomorphism type which is rep-

resented by the first multiplicand (mn) and (ii) all possible combinations of the

pairs: 〈the isomorphism type of (u, v), the (2, 2)-game type of v 〉 for every vertex

v ∈ G. There are nΛ(2, 2; u) such pairs (excluding the isomorphism type of u for

it is already counted in (i) and the isomorphism type of v for it is already counted

in Λ(2, 2; u)), hence all possible subsets of such pairs is given by the multiplicand

2nΛ(2,2;u). The upper bound on Λ(2, 3;G) is clear.

Lemma 2.6. Let G ∈ Gm,n. Assume |G| > Λ(2, 3; u). Then there exists G′ ∈ Gm,n

such that |G′| = |G|+ 1 and ζ2,3(G
′) = ζ2,3(G).

Proof. By Lemma 2.5 there must be two vertices u1, u2 ∈ G such that ζ2,3(u1) =

ζ2,3(u2) = γ. Add a new vertex v to G. Color v and its self-edge exactly as u1’s.

Connect v to every other vertex in G. For every w ∈ G such that w 6= u1, use the

color of the edge (u1, w) to color the edge (v, w). Finally, use the color of (u1, u2)

to color (v, u1). Let G′ be the newly constructed graph. As already mentioned in

Remark 2.4, for every edge emanating from u1 of color e it must be the case that

(ee) ∈ ζ2,3(u1;G). This corresponds to putting the first pebble p1 on u1, the second

p2 on v, where (u1, v) has color e, and then removing p1 and reinserting it onto u1.

Another way through which (ee) can be in ζ2,3(u1;G) is that there is a path in G

of distinct vertices u1ww
′ of color ee. Actually the addition of v as done above will

30



create these latter monochromatic paths starting from v for every color e of an edge

emanating from v. Such monochromatic paths of distinct vertices that start from u1

may not exist, however, u1 can not be distinguished from v using them since there

are only two pebbles, hence ζ2,3(u1;G) = ζ2,3(u1;G
′) = ζ2,3(v;G

′). It is also obvious

that for any other w ∈ G, it is maintained that ζ2,3(w;G) = ζ2,3(w;G′). Hence,

ζ2,3(G
′) = ζ2,3(G).

As a direct consequence of this lemma we have the following inexpressibility

result.

Theorem 2.7. DIVk 6∈ binΣ1
1(2, 3)

2.8 DIVk ∈ binΣ1

1
(3, 3)

In this section we show that DIVk ∈ binΣ1
1(3, 3) by looking at the (3, 3)-game

types of graphs in G. From the proofs one could extract out the actual defining

sentence. We will do this in the case of k = 2.

Remark 2.5. Assume G ∈ G and let u ∈ G. Then ζ3,3(u;G) can be characterized

by the set of all paths in G of length 2 starting from u. Given one such path uvw

we will represent it by the tuple

t = (c1c2c3, d1d2d3, e1e2,¬eq(u, w))

where the first triple represents the colors of the vertices u, v, w respectively, the

second triple represents the colors of their self-edges, e1e2 represents the colors of

the edges uv, and vw respectively, and finally ¬eq(u, w) represents the truth value of
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whether u and w are not identical, it is assigned either t for true or f for false. Notice

that the existence of three pebbles enables the spoiler to overcome the problem raised

in the proof of Lemma 2.6 and caused her to lose the EF game, namely the inability

to distinguish between monochromatic paths of the form uvu and monochromatic

paths of the form uvw where u 6= w. Actually, as we will see below, this distinction

is the main reason for successful expressibility of DIVk in binΣ1
1(3, 3).

Definition 2.7 (Symmetric game types). Let γ be a (3, 3)-game type of a

vertex u ∈ G ∈ Gm,n. Let C be the set of m vertex colors and let D be the set of n

edge colors. Assume k ≤ n.

1. γ is called k-symmetric if the following hold:

(a) there exist c ∈ C and d ∈ D such that if (c1c2c3, d1d2d3, e1e2, ∗) ∈ γ, (∗

means ‘do not care’) then c1 = c2 = c3 = c and d1 = d2 = d3 = d (so γ is

monochromatic with respect to the vertex and self-edge colors)

(b) there exists D ⊆ D such that |D| = k and for all distinct e, e′ ∈ D,

(ccc, ddd, ee′, t), (ccc, ddd, e′e, t) ∈ γ

(c) if (ccc, ddd, ee′, t), (ccc, ddd, e′e, t) ∈ γ and e 6= e′ then it must be the case

that e, e′ ∈ D

2. γ is called fully symmetric if γ is n-symmetric.

3. A graph G ∈ Gm,n is called k-symmetric if all vertices in G have the same

(3, 3)-game type γ where γ is k-symmetric.
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Notation 2.4. Most often in the following discussion we will only consider game

types ζ3,3(u) that are monochromatic with respect to the vertex and self-edge colors

and/or be concerned only with paths of length 2 of distinct vertices starting from u.

For simplicity in such cases, ζ3,3(u) will be viewed as the collection of pairs (dd′)

that represent the colors along the path of length 2 starting from u.

Let G be a graph. Let ∆(G) denote the maximum degree of G and let χ′(G)

denote its edge chromatic number. The following theorem gives bounds for χ′.

Theorem 2.8 (Vizing 1964, p.119 in [5]).

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

Vizing’s theorem divides the finite graphs into two classes based on their edge

chromatic number. Those with χ′ = ∆ are called class I, and those with χ′ = ∆+1

are called class II [5]. The following lemma applies this classification to complete

graphs.

Lemma 2.7 (Theorem 4.1 in [10]). Consider the complete graph Kn. If n is even,

then it is class I, otherwise it is class II.

Lemma 2.8. Let G ∈ Gm,n be fully symmetric of minimum size k. Then n + 1 ≤

k ≤ n+ 2.

Proof. Since there are n distinct colors, then k ≥ n + 1. If n is odd, then let

k = n+ 1. Since k is even, then by Lemma 2.7 we have χ′(Kn+1) = n. If n is even,

let k = n+2. Again by Lemma 2.7, χ′(Kn+2) = n+1. Add a new color c′ to the list

of given n colors and use the new list to get a proper edge coloring of Kn+2. Choose

33



a color c arbitrarily from the original list, and for every edge of color c′ change its

color to c.

Remark 2.6. Let G ∈ Gm,n be fully symmetric. Let γ = ζ3,3(u) for any u ∈ G. Let

d ∈ D and assume that (dd) 6∈ γ. Then it must be the case that |G| (mod 2) = 0.

Otherwise either there exists some u ∈ G with two edges incident on it of color d,

hence (dd) ∈ γ which contradicts the assumption or u has no edge incident on it of

color d which contradicts the definition of G being fully symmetric.

Lemma 2.9. Let k be an even positive integer. Then there exist a pair of positive

integers (m,n) and a (3, 3)-game type Γ for graphs such that for any G ∈ Gm,n the

following holds: ζ3,3(G) = Γ implies that |G| = bk for some integer b ≥ 1.

Proof. We will build Γ to be monochromatic with respect to the vertex color and the

self-edge color, hencem = 1. Let d be the self-edge color. Assume k = 2j. Construct

symmetric vertex game types γ0, . . . , γj−1 such that γi = {(dγi
, d), (d, dγi

), (d, d)}

where dγi
6= d and is unique for every i < j (each pair in γi represents the colors of

some path of length 2 starting from the vertex). Let D = {di,i+1 (mod j) : i < j} be

a collection of colors such that: (i) if j = 1, then d0,0 = d and D will just represent

the color of self-edges, (ii) if j = 2, then d0,1 = d1,0, and (iii) if j ≥ 2, then d 6∈ D

and dγi
6∈ D for every i.

For every i < j, let Hi be a 2-symmetric graph such that (i) for every u ∈ Hi,

ζ3,3(u) = γi, hence |Hi|must be even since (dγi
, dγi

) 6∈ γi (see Remark 2.6) and (ii) for

every i, i′, |Hi| = |Hi′|. Connect all the graphs Hi’s and let H denote the resulting

graph. For every i and for every u ∈ Hi choose a unique vu ∈ H(i+1) (mod j) and use
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di,(i+1) (mod j) to color the edge (u, vu) (in case j = 1, then H = H0 and vu = u and

this is just coloring the self-edge of u). For all the remaining uncolored edges use d to

color them. Hence for any i < j, we have (di,(i+1) (mod j), di,(i+1) (mod j)) 6∈ ζ3,3(u;H)

for any u ∈ H .

We can easily notice that: (i) for every i, all vertices of the subgraph Hi have

the same (3, 3)-game type inside H , let δi denote this type, (ii) δi is an extension of

γi, (iii) for all distinct i, i′, we have δi 6= δi′ (δi∆δi′ ⊇ {(dγi
, d), (dγi′

, d)}), and (iv)

each δi is 2-symmetric with respect to the two colors dγi
and d. Let n = |{dγi

: i <

j}| + |{di,(i+1) (mod j) : i < j}| + 1 = 2j + 1 (the last 1 is for the color d). Let

Γ = {δi : i < j}.

Let G ∈ Gm,n such that ζ3,3(G) = Γ. Each γi ⊆ δi, which represents the

2-symmetric part of δi, must be realized inside G by a subgraph Hi such that |Hi|

(mod 2) = 0. Notice that for every i, i′ < j, (di,(i+1) (mod j), di,(i+1) (mod j)) 6∈ δi′ ,

hence all H ′
is must have the same size (the edges di,(i+1) (mod j) may be thought of as

creating one-to-one maps between the Hi’s so they are forced to have the same size).

Therefore, |G| = 2bj = bk for some positive integer b. So (1, 2j+1) = (1, k+1) and

Γ satisfy the conclusion of the lemma.

From this lemma we can immediately derive the following expressibility result.

Theorem 2.9. Let k be an even positive integer. Then DIVk ∈ binΣ1
1(3, 3). More

specifically, DIVk can be expressed by a sentence of the following form

∃R1 . . .∃Rlϕ

where ϕ is a first-order sentence with 3 first-order variables and quantifier depth 3.
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Each Ri is a binary second-order variable and l ≤ ⌈log4 (k + 1)⌉.

Proof. Let Γ be the game type obtained in Lemma 2.9. We will show that S has a

winning strategy in the binΣ1
1(3, 3) game over the class of structures of cardinalities

divisible by k. Assume D starts the game by choosing a structure A such that

|A| (mod k) = 0. Let S colors A to get a graph G ∈ G such that ζ3,3(G) = Γ.

D has then two possible responses: (i) choosing a structure B and coloring it to

obtain G′ ∈ G such that ζ3,3(G
′) = Γ, but then by Lemma 2.9 it must be the case

that |G′| (mod k) = 0 and hence D loses the game at its second-order phase or (ii)

choosing a structure B such that |B| (mod k) 6= 0 and color it to obtain G′ ∈ G

with ζ3,3(G
′) = Γ′ but again by Lemma 2.9 it must be the case that Γ 6= Γ′ hence

by Proposition 2.1, D loses the game at its first-order phase. So in any case S wins

the game, hence DIVk ∈ binΣ1
1(3, 3). The upper bound for l is obtained from the

value of n derived in the proof of Lemma 2.9 and by realizing that each binary

second-order variable contributes exactly 4 new colors.

In the introduction we gave a sentence that defines DIV2. In the following

example we will use the proof of Lemma 2.9 to show how this sentence can be

derived systematically.

Example 2.2. Consider divisibility by 2, call this problem EV EN . We need two

edge colors d1 and d2 and one vertex color c. In the second-order phase of the EF

game, D will first choose G1 which is just a set of unconnected vertices with |G1|

(mod 2) = 0. S will then convert G into a complete graph with all self-edges, let G′
1

denote the new graph. S colors G′
1 as follows: (i) use c to color all the vertices, (ii)
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use d1 to color all the self-edges, (iii) for every distinct pair of vertices ui, vi ∈ G′
1,

use d2 to color the edge (ui, vi), and (iv) use d1 to color all the remaining edges.

This coloring implies that every u ∈ G′
1 has exactly one edge of color d2 incident

on it, hence d2 corresponds to dγi
in the proof of Lemma 2.9. G′

1 can be viewed as

a 1-regular graph (a graph with isolated edges) by looking exclusively at the edges of

color d2. It can be easily checked that all the vertices in G′
1 have the same game

type γ ⊇ {(d1d2, t), (d2d1, t), (d1d1, t)} (ignoring the vertex and self-edge colors and

considering only paths of length 2 with distinct vertices). Next D chooses a set of

unconnected vertices G2 with |G2| (mod 2) = 1. D converts G2 into G′
2, a complete

graph with all self-edges, and then tries to color it so as to have the same (3, 3)-game

type as G′
1. Since (d2d2) 6∈ γ, then by Remark 2.6, this is impossible, in other words

G′
2 can not be converted into a 1-regular graph. There must exist some vertex u ∈ G′

2

such that either (d2d2) ∈ ζ3,3(u;G
′
2) or (d2d1) 6∈ ζ3,3(u;G

′
2). Hence, S can win the

first-order phase of the game by playing the differentiating path using her 3 pebbles.

In the following we construct a sentence σ ∈ binΣ1
1(3, 3) that defines EVEN

ϕ1(R)
def
= ∀x¬R(x, x) coloring the self-edges of G′

1 with c

ϕ2(R)
def
= ∀x∀y (R(x, y)←→ R(y, x)) G′

1 is undirected

ϕ3(R)
def
= ∀x∃y (R(x, y) ∧ ∀z (R(x, z) −→ z = y)) the d2 coloring of edges in G′

1

σ
def
= ∃R (ϕ1(R) ∧ ϕ2(R) ∧ ϕ3(R)) (2.14)

Remark 2.7. From Example 2.2, it is clear that 1-regular graphs can be used to

characterize divisibility by 2. This observation can only be locally generalized for

divisibility by even numbers greater than 2 to characterize the evenness of the sub-
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graphs Hi’s constructed in the proof of Lemma 2.9. However, across different Hi’s

this becomes no longer valid in our construction since each Hi has its own unique

color dγi
.

Next we turn to expressibility of divisibility by odd numbers.

Lemma 2.10. Let k 6= 1 be an odd positive integer. Then there exist a pair of

positive integers (m,n) and a (3, 3)-game type Γ for graphs such that for any G ∈

Gm,n the following holds: ζ3,3(G) = Γ implies that |G| = bk for some integer b ≥ 1.

Proof. We will build Γ to be monochromatic with respect to the vertex color and

the self-edge color, hence m = 1. Assume k = 2j + 1 for j ≥ 1. Let Γ′ be the

game type Γ constructed in the proof of Lemma 2.9. Let H ∈ Gm,n be the graph

constructed in the proof of Lemma 2.9 such that H is constructed exactly from the

subgraphs H0, . . . , Hj−1 with |Hi| = 2b for some positive integer b.

Let u0, . . . , ub−1 be new vertices, connect them together and to every vertex

in H . Use d to color all the edges between the ui’s. For each i < j choose an

arbitrary set of vertices Vi such that (i) Vi ⊆ Hi, (ii) |Vi| = b, and (iii) for every

w,w′ ∈ Vi, the edge (w,w′) is colored d. For every i < j and for every i′ < b, choose

a unique wui′
∈ Vi, and use dγ(i+1) (mod j)

to color the edge (ui′, wui′
). Use d to color

the remaining uncolored edges from the ui’s to H . Call the new graph H ′ and notice

that H ′ ∈ Gm,n where n = 2j + 1 is the number of colors used to color the edges of

H ′.

Notice the following: (i) for each color dγi
, ui has an edge of that color incident

on it, (ii) all the ui’s have the same (3, 3)-game type inside H ′, let ρ denote that
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game type, (iii) (dγi
, dγi

) 6∈ ρ for every i < j, however, (dγi
, dγ(i+1) (mod j)

) ∈ ρ, and

(iv) (d, d) ∈ ρ. Now look at the new emerging game types inside H ′. For every

i < j, δi no longer exists, but is broken into two new game types: (i) δ0
i which is the

game type of every vertex in Vi and (ii) δ1
i which is the game type of every vertex in

Hi\Vi. Each vertex ui has the new game type ρ. An important observation is that

for every u ∈ H ′, (dγi
, dγi

) 6∈ ζ3,3(u) for every i < j. Let

Γ = {δ0
i : i < j} ∪ {δ1

i : i < j} ∪ {ρ}

Let G ∈ Gm,n be such that ζ3,3(G) = Γ. Notice that for every vertex v ∈ G

with ζ3,3(v) = δ0
i , there must exist exactly one vertex wv such that ζ3,3(wv) = δ1

i

and the edge (v, wv) is colored dγi
. The converse also holds for vertices of game

type δ1
i . Hence there is a one-to-one correspondence between {u ∈ G : ζ3,3(u) = δ0

i }

and {u ∈ G : ζ3,3(u) = δ1
i }, therefore |{u ∈ G : ζ3,3(u) = δ0

i or ζ3,3(u) = δ1
i }| = 2b′ for

some positive integer b′ ≥ 1. Let Wi denote this last set of vertices. Similarly, we can

show that (see also the proof of Lemma 2.9) there is a one-to-one correspondence

between Wi and Wi′ for all i, i′ < j. Hence, |⋃{Wi : i < j}| = 2b′j. Then any

u ∈ G\⋃{Wi : i < j} must be of game type ρ.

Let Ti = {u ∈ G : ζ3,3(u) = δ0
i }. Note that all the Ti’s must have the same size.

Let P = {u ∈ G : ζ3,3(u) = ρ}. From the construction of H ′ it must be the case that

every u ∈ Ti uniquely determines a distinct vu ∈ P such that (u, vu) is colored

dγ(i+1) (mod j)
(since (dγ(i+1) (mod j)

, dγ(i+1) (mod j)
) 6∈ δ0

i ). Hence |Ti| ≤ |P |. Similarly,

every v ∈ P uniquely determines a vertex wv ∈ Ti such that (v, wv) is colored

dγ(i+1) (mod j)
(since (dγ(i+1) (mod j)

, dγ(i+1) (mod j)
) 6∈ ρ). Hence |P | ≤ |Ti|. Therefore,
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|P | = |Ti| = b′. Now we count the number of vertices in G. |G| = |⋃{Wi : i <

j}| + |P | = 2b′j + b′ = b′(2j + 1) = b′k. Hence, (1, 2j + 1) = (1, k) and Γ are as

desired.

From Lemmas 2.9 and 2.10 we can derive the following general result.

Lemma 2.11. Fix a positive integer k 6= 1. Let m = 1 and n = k + 1. Then

there exits a (3, 3)-game type Γ for graphs in Gm,n such that for any G ∈ Gm,n the

following holds: ζ3,3(G) = Γ implies that |G| = bk for some integer b ≥ 1.

This directly implies the following expressibility result.

Theorem 2.10. Let k 6= 1 be a positive integer. Then DIVk ∈ binΣ1
1(3, 3). More

specifically, DIVk can be expressed by a sentence of the following form

∃R1 . . .∃Rlϕ

where ϕ is a first-order sentence with 3 first-order variables and quantifier depth 3.

Each Ri is a binary second-order variable and l ≤ ⌈log4 (k + 1)⌉.

Proof. Similar to the proof of Theorem 2.9.

Corollary 2.2. monΣ1
1 ⊂ binΣ1

1

Proof. This follows directly from the inexpressibility result in Theorem 2.3 and the

expressibility result in Theorem 2.10.

Lemma 2.12. Let l1, l2 be two non-negative integers. Define Θ ⊆ binΣ1
1(3, 3) that

consists exactly of sentences that have at most l1, l2 unary and binary second-order

variables respectively. Then DIVk ∈ Θ for only finitely many k.
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Proof. Let m,n be the corresponding vertex and edge colors respectively. There

are at most finitely many (3, 3)-game types for graphs in Gm,n. Assume the conclu-

sion does not hold, then there are two distinct positive integers k1, k2 that can be

distinguished by the same (3, 3)-game type. But this implies that D can win the

binΣ1
1(3, 3) game by choosing a structure of cardinality k such that exactly one of

k1 and k2 is a factor of k. This is a contradiction.

Theorem 2.10 and Lemma 2.12 imply that DIVk creates a proper hierarchy

into binΣ1
1(3, 3).

2.9 Bounding the Binary Relation Variables

The following theorem gives an inexpressibility result for DIVk in binΣ1
1 when

the sizes of the interpretations of the binary relation variables are bounded.

Theorem 2.11. Let σ ∈ binΣ1
1 be of the following form

∃R≤f(l)
1 . . . ∃R≤f(l)

t ∃S1 . . . ∃Ssϕ

where f(l) < l
2t
− r2s

2t
, where l is the size of any structure that models this sentence

and r is the quantifier depth of ϕ. Then DIVk can not be expressed by σ.

Proof. We show D has a winning strategy in the second-order EF game with r

rounds in the first-order phase (assume the number of pebbles p = r). D starts by

choosing a complete uncolored graph G with all self-edges such that

|G| (mod k) = 0 (2.15)

|G| > r2s + 2tf(|G|) (2.16)
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There are a total of m = 2s vertex colors. For the edges it is easier to directly handle

each Ri separately than to consider the colors resulting from their combinations. S

does the following with G: (i) color the vertices using the given m colors and (ii)

construct the edge sets E1, . . . , Et among the vertices of G such that |Ei| ≤ f(|G|)

for each i. From 2.16, there must be at least r2s vertices with degree 0, that is

there is no edge from any of the Ei’s that is incident on any of these vertices.

Then by the pigeonhole principle there must be at least r of those vertices that are

monochromatic, let their color be c. Let Γ be the collection of vertices in G that

are colored c and with degree 0, then |Γ| ≥ r. In order for the inequality in 2.16

to make sense it must be the case that f(|G|) < |G|
2t
− r2s

2t
as given in the theorem

hypothesis. D then chooses a graph G′ = (G ∪ {w}) with a new vertex w and does

the following: (i) color the vertices of G ⊆ G′ exactly as S did, (ii) color w with c,

(iii) construct the edge sets E1, . . . , Et among the vertices of G ⊆ G′ exactly as S

did, and (iv) leave the vertex w unconnected to any other vertex. In the first-order

phase of the game D can win by following a similar strategy to that described in

the proof of Theorem 2.3.

2.10 Conclusion and Future Work

In this chapter we have provided a partial framework for the study of express-

ibility in Σ1
1 which exactly captures the complexity class NP . This framework uses

interesting combinatorics based on second-order EF -games and the notion of game

types. We have studied the expressibility of DIVk in different sublogics of Σ1
1 getting
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inexpressibility results until expressibility is obtained inside binΣ1
1(3, 3). Based on

k, DIVk creates a proper hierarchy inside this sublogic. In the future we plan to

pursue research in the following points:

1. Finding tight lower/upper bounds for the DIVk hierarchy in binΣ1
1(3, 3). This

is mainly a combinatorial problem and helps understanding game types spe-

cially for future plans when using second-order variables with higher arities.

2. Study the expressibility of DIVk in binΣ1
1(3, 3).

3. Study natural extensions of binΣ1
1(3, 3) inside Σ1

1 within the framework devel-

oped above. The parameters (logical resources) used in the abovementioned

research, and hence in future extensions, are the following: (i) the arity of the

second-order variables, (ii) the second-order quantifier depth, (iii) the num-

ber of first-order variables, and (iv) the first-order quantifier depth. Other

parameters may also be studied such as the number of alternations of first-

order quantifiers and also parameters that arise from the interleaving of first-

and second-order quantifiers such as depth and alternation, however, this may

require a dramatic change in the rules of the EF games. we plan to use

number-theoretic properties for the study of expressibility such as primeness,

number and sizes of equivalence classes of a definable equivalence relation,

whether two definable subsets of a structure form an amicable number, etc.

The main goals of this study are: (i) create proper hierarchies into sublogics of

Σ1
1 and into Σ1

1 itself, hence giving more insight into NP and (ii) the study of

expressibility of some interesting number-theoretic properties for its own sake.
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4. Extending the above to Π1
1 and the whole of second-order logic, hence essen-

tially looking into the whole polynomial hierarchy.
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Chapter 3

Descriptive Complexity of Finite Abelian Groups

We investigate the descriptive complexity of finite abelian groups. Using

Ehrenfeucht-Fräıssé games we find upper and lower bounds on quantifier depth,

quantifier alternations, and number of variables of a first-order sentence that distin-

guishes two finite abelian groups. Our main results are the following. Let G1 and

G2 be a pair of non-isomorphic finite abelian groups, and let m be a number that

divides one of the two groups’ orders. Then the following hold: (1) there exists a

first-order sentence ϕ that distinguishes G1 and G2 such that ϕ is existential, has

quantifier depth O(logm), and has at most 5 variables and (2) if ϕ is a sentence

that distinguishes G1 and G2 then ϕ must have quantifier depth Ω(logm). These

results are applied to (1) get bounds on the first-order distinguishability of dihedral

groups, (2) to prove that on the class of finite groups both cyclicity and the closure

of a single element are not first-order definable, and (3) give a different proof for

the first-order undefinability of simplicity, nilpotency, and the normal closure of a

single element on the class of finite groups (their undefinability were shown by A.

Koponen and K. Luosto in an unpublished paper).
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3.1 Introduction

In this chapter we investigate the descriptive complexity of finite abelian

groups. Descriptive complexity is that branch of complexity theory that views the

hardness of problems in terms of the complexity of their logical expressiveness such

as the number of object variables, quantifier depth, type, and alternation, and sen-

tences length (finite/infinite).

To the author’s best knowledge there has been no work exploring the quantita-

tive bounds on the logical resources needed for distinguishing finite groups. However,

definability of some group theoretic notions have been studied before: simplicity

([14, 19, 9, 28]), nilpotency [19, 4], solvability [4, 19, 29], and the normal closure of

a single element [19].

All of the results mentioned above use the following vocabulary for groups, as

will we.

Definition 3.1. Let LG be a first-order language whose vocabulary contains the

ternary relation symbol R (for the group operation) and the constant symbol e (for

the group identity). Equality is considered as a logical symbol.

We study the distinguishability of non-isomorphic finite abelian groups. Our

main results are the following. Let G1 and G2 be a pair of non-isomorphic finite

abelian groups, then there exists a number m that divides the order of one of the

two groups (in the particular case of cyclic groups m would be the smallest divisor

of exactly one of the two groups orders) such that

1. There exists a first-order sentence ϕ that distinguishes G1 and G2 (that is,
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true on one and false on the other) such that ϕ is existential, has quantifier

depth O(logm), and has at most 5 variables.

2. If ϕ is a sentence that distinguishes G1 and G2, then ϕ must have quantifier

depth Ω(logm).

We will apply these results to:

1. get bounds on the first-order distinguishability of dihedral groups exploiting

the close relationship between elementary equivalence of groups of residues

and elementary equivalence of dihedral groups,

2. show the first-order undefinability of the closure of a single element over the

class of finite groups, and

3. show the first-order undefinability of cyclicity.

First-order undefinability on the class of finite groups of simplicity, nilpotency,

and the normal closure of an element have been proved in [19]. However, the proofs

use model-theoretic techniques that may not be accessible to many people. We will

give simpler proofs for the same results using the distinguishability bounds obtained

for finite abelian groups.

The basic tool used in our analysis is Ehrenfeucht-Fräıssé (EF ) games. It is a

game-theoretic characterization of expressibility in first-order logic. In our context

the game is played over two groups for a finite number of rounds between two players,

one of them is called the spoiler whose aim is to break the similarity between the two

groups and the duplicator whose aim is to emphasize the similarity between them.
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If the spoiler has a winning strategy, then a first-order sentence that distinguishes

the two groups can be derived from this strategy as will be seen below.

Section 2 introduces EF games, defines them formally and shows their relation

to first-order definability. Basic group- and game-theoretic definitions and examples

are given in Section 3. In Section 4, EF games are applied to the groups Zp and

Zq for prime numbers p and q to find bounds on the quantifier depth of a distin-

guishing first-order sentence. In Section 5, an extended version of EF games (using

pebbles) is applied to the same groups to find bounds on the number of variables

in a distinguishing first-order sentence. In Section 6, the game is applied to groups

modulo any number. In Section 7 bounds are obtained for any finite abelian groups.

In Section 8 we use the above bounds to get definability results on the following

group-theoretic notions: cyclicity, simplicity, nilpotency, the closure of a single ele-

ment, and dihedral groups. In Section 9 we state some of the open problems to look

at.

3.2 Ehrenfeucht-Fräıssé Games

As described above EF games are used as a tool to get upper and/or lower

bounds on logical expressibility. An EF -game [21, 18] is played over two structures

of the same kind, for example two linear orderings. There are two players: the

spoiler denoted by S and the duplicator denoted by D. The game has k rounds,

for some non-negative integer k. Intuitively, the goal of S is to show that the two

structures can be distinguished in at most k steps, whereas D wants to show that
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this can not be done.

Definition 3.2 (Partial isomorphism). Let A and B be two first-order structures

with vocabulary τ . Assume ā = 〈a1, . . . , an〉 ∈ An and b̄ = 〈b1, . . . , bn〉 ∈ Bn. We say

that there is a partial isomorphism from ā onto b̄ if for every m, for every quantifier-

free formula ϕ(x1, . . . , xm) over τ , and for every multiset {i1, . . . , im} ⊆ {1, . . . , n}

the following holds

A |= ϕ(ai1 , . . . , aim) ⇐⇒ B |= ϕ(bi1 , . . . , bim)

If A and B are groups, then partial isomorphism basically means that for every

multiset {i1, i2, i3} ⊆ {1, . . . , n}

A |= R(ai1 , ai2 , ai3) ⇐⇒ B |= R(bi1 , bi2 , bi3)

We now describe the game over A and B. At each round of the game S

starts by choosing an element from one of the two structures then D responds to

the challenge by choosing an element from the other structure so as to preserve the

partial isomorphism among the elements chosen so far from A and B. Assume after

k rounds the elements chosen from A are ā = 〈a1, . . . , ak〉 and those chosen from

B are b̄ = 〈b1, . . . , bk〉, if ā and b̄ are partially isomorphic then D wins, otherwise S

wins.

Notation 3.1. Let EFm(A,B) ∈ S denote that the spoiler has a winning strategy

in the m-round EF-game over the structures A and B, similarly for EFm(A,B) ∈ D.

Definition 3.3. [23] Let ϕ be a first-order formula. Define the alternation number

of ϕ, alt(ϕ), as the maximum number of quantifier alternations over all possible
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sequences of nested quantifiers inside ϕ under the assumption that ϕ is reduced to

its negation normal form, i.e., all negations are assumed to occur only in front of

atomic subformulas.

For example, alt(∃x∀y (x ≤ y)) = 1. For simplicity in the following discussion,

we will always assume formulas in prenex normal form (it is known that every first-

order formula is equivalent to one in prenex form). Let qr(ϕ) denote the quantifier

rank of ϕ. In the following we give a restricted notion of elementary equivalence

between two structures.

Definition 3.4. Let A and B be two structures over a vocabulary τ . We say that

A and B are n-elementarily equivalent, denoted by A ≡n B, if and only if for every

sentence ϕ over τ such that qr(ϕ) ≤ n, we have

A |= ϕ ⇐⇒ B |= ϕ (3.1)

The following theorem gives the relationship between EF -games and first-

order expressibility.

Theorem 3.1 (Ehrenfeucht-Fräıssé). The following are equivalent:

1. A ≡n B

2. EFn(A,B) ∈ D

This theorem basically says that no sentence of quantifier rank at most n can

distinguish A and B if and only if the duplicator has a winning strategy in the

n-round EF -game over A and B.

50



If A and B are distinguishable, then from the actual spoiler’s strategy we can

know more about the sentence that distinguishes them. The following result relates

the alternation number of the distinguishing sentence to the number of times S

alternates her moves between the two structures in her winning strategy (this is

based on Lemma 2.3 in [23]).

Lemma 3.1. Assume S has a winning strategy in the n-round EF -game over struc-

tures A and B. Assume in her winning strategy S makes m move alternations be-

tween the two structures (m < n). Then there exists a first-order sentence ϕ of

quantifier rank at most n that distinguishes the two structures such that alt(ϕ) ≤ m.

3.3 The Group Zn

In this Section we present basic definitions and results that apply to Zn for

every n. In Section 3.4 we study the case when n is prime then we generalize to all

n in Section 3.6. Zn is defined as an LG-structure as follows.

Definition 3.5. Let n ∈ N\{0}. Then Zn = ({0, . . . , n − 1}, S, 0), where S is a

ternary relation that interprets R, defined as follows

S(x, y, z) ⇐⇒ x+ y ≡ z (mod n)

and 0 interprets e is the group additive identity.

Remark 3.1. Since we consider the group addition as a relation rather than a

function, we can not express equations like 3x + y ≡ z (mod n) using an atomic

formula (that is, using one instance of R). So the following are the only possible
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forms of congruence equations that can be captured by the addition relation inside

Zn.

x+ y ≡ z (mod n)

2x ≡ z (mod n)

x+ y ≡ 0 (mod n)

2x ≡ 0 (mod n)

where x, y, z are distinct nonzero elements. The cases left out are:

• x ≡ 0 (mod n): 0 is a distinguished element, so it is automatically chosen

before the EF -game starts.

• x ≡ y (mod n): as mentioned above equality is a logical symbol, so S re-

choosing the same element will dictate D to respond similarly. As far as the

addition relation is concerned, re-choosing the same element will not help the

spoiler to win the game.

The following will define a weak notion of independence inside the group Zn

that will be used later to analyze winning strategies in EF -games.

Definition 3.6. Let X = {x1, . . . , xm} ⊆ Zn\{0}.

(i) We say that X is independent with respect to Zn, or simply n-independent,

if for every x, y ∈ X and for every z ∈ (X ∪ {0}) \{x, y}, the following holds

x+ y 6≡ z (mod n)
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(ii) A basis of Zn is any smallest maximal subset of non-zero elements of Zn that

are n-independent. We denote a basis of Zn by In. Given some basis In, by

definition every element c ∈ Zn is dependent on some elements of In, that

is either c ≡ a + b (mod n), c + a ≡ b (mod n), or 2c ≡ a (mod n) for

some a, b ∈ (In ∪ {0}). So a basis can be thought of as a minimal subset of

elements that can generate the whole group in the same sense that the element

c mentioned above is generated.

(iii) If X is not independent with respect to Zn, then we say that it is dependent

with respect to Zn or simply n-dependent. Note this means that there exist

x, y ∈ X and z ∈ (X ∪ {0})\{x, y} such that x+ y ≡ z (mod n).

(iv) If X is dependent and there are exactly k ≤ m different triples (x, y, z) of which

this last condition holds, then X is said to be n-dependent with k degrees of

dependency, or shortly (n,m, k)-dependent. If there are k ≥ m such triples,

then we just say X is (n,m,m)-dependent or totally dependent.

In the following we define an operator G , that takes as input a subset of Zn

and produces as output a subset of Zn that contains exactly all the possible elements

that can be generated from the input in the sense of ‘generating’ given in Definition

3.6.ii.

Definition 3.7. Let P(.) denote the power set. Define the following generating

operator

G : P(Zn)→ P(Zn)
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given X define Y = G (X) as the minimal set such that the following hold (let

X ′ = (X ∪ {0})):

i. for every y ∈ Zn, if 2y ≡ x for some x ∈ X ′, then we have y ∈ Y

ii. for every x1, x2 ∈ X ′ we have (x1 + x2) ∈ Y

iii. for every x1, x2 ∈ X ′, we have (x1 − x2) ∈ Y

iv. These are exactly the only ways of populating Y with elements

Now we give an example that illustrates the concepts given in the previous

definitions.

Example 3.1.

1. Let X = {1, 3, 5} ⊆ Z14. Using Definition 3.7 we calculate G (X) as fol-

lows. We have (X ∪ {0}) ⊆ G (X) by part (ii) of the definition, {2, 6, 10} ⊆

G (X) by part (ii), {7} ⊆ G (X) by part (i), {4, 8} ⊆ G (X) by part (ii),

and {9, 11, 12, 13} ⊆ G (X) by part (iii). The union of all these sets gives

G (X) = Z14. By applying G to every subset of X of cardinality 2 we can eas-

ily notice that: 5 6∈ G ({1, 3}), 3 6∈ G ({1, 5}), and 1 6∈ G ({3, 5}). Hence X is

an independent set that generates the whole group. It can be easily checked for

any independent X ′ ⊆ Z14 with |X ′| = 2 that X ′ is not maximally independent,

hence X is a basis for Z14 and the size of any basis of Z14 is 3.

2. Let C = {1, 5, 6, 10} ⊆ Z14. From above we know that {1, 5} is independent.

Note that 1 + 5 ≡ 6 and 5 + 5 ≡ 10, these are the only possible equations that
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hold among the elements of C, hence C is dependent with degree 2, in other

words, it is (14, 4, 2)-dependent.

3. Let D = {1, 2, 4, 8} ⊆ Z14. Note that 1 + 1 ≡ 2, 2 + 2 ≡ 4, 4 + 4 ≡ 8, and

8 + 8 ≡ 2, hence D is (14, 4, 4)-dependent

The following important theorem gives a lower bound on the size of a group

basis. This result will be used later in proofs for finding lower bounds on the number

of moves required by the spoiler to win an EF -game.

Theorem 3.2. |In| = Ω(
√
n)

Proof. Let X = {x1, . . . , xm} ⊆ Zn\{0}. We want to find an upper bound on

|G (X)|. From Definition 3.7 assuming the sets generated by (i), (ii), and (iii) are

mutually exclusive, we have.

|G (X)| ≤ (m+ 1) +

(

m+ 1

2

)

+

(

m+ 1

2

)

|G (X)| ≤ m2 + 2m+ 1

Assume X is a basis, then

n ≤ m2 + 2m+ 1

Hence m = Ω(
√
n).

Example 3.2.

1. From Example 3.1, we have I14 = {1, 3, 5} and |I14| = 3 = ⌊
√

14⌋.

2. If p is prime, then Ip = {1, 3, . . . , p−1
2
} and |Ip| = ⌈p−1

4
⌉. We will not use this

result hence we omit the proof.
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Next we define the notion of a binder which is the main tool used later to

analyze winning strategies in EF -games and in particular obtaining bounds on the

number of moves in a winning strategy. Given two elements a, b ∈ Zn, a binder of

length l between them can be thought of as a path from a to b where traversing the

path here is done through the addition relation rather than traveling along the edges

as is the case in graphs. The path consists of l points (including a, b) such that the

set of all points on that path is either (n, l, l − 1)-dependent or (n, l, l)-dependent;

in the latter case we may think of it as a cycle. So basically a binder shows how

to reach b from a inside Zn using only the equations given in Remark 3.1 as the

only way of generating new points on the way from a to b. Actually, the same set

of points can be considered as a path between any two of them; the order is just

imposed to comply with the order of choosing elements in an EF -game. Here is the

formal definition.

Definition 3.8. Let x, y ∈ Zn\{0}. We say that there exists a binder t from x to

y of length l in Zn if one the following holds:

1. l = 1: either x ≡ y or 2x ≡ y ≡ 0 (in which case there is a path from x to 0)

2. l = 2: x 6≡ y and at least one of the following holds (possible ways to get from

56



x to y using only the equations in Remark 3.1):

2x ≡ y

2y ≡ x

x+ y ≡ 0

3. l = k+ 2, k > 0: x 6≡ y and there must exist z̄ = 〈z1, . . . , zk〉 ∈ Zk
n of distinct

elements (the order is not important except later when we apply EF -games)

such that the following hold:

(a) x, y 6∈ z̄,

(b) U = {x, z1, . . . , zk, y} is either (n, k+2, k+1)-dependent or (n, k+2, k+2)-

dependent (note that if U is (n, k+2, k+1)-dependent, then by Definition

3.6, it is not (n, k + 2, k + 2)-dependent),

(c) if U is (n, k+2, k+1)-dependent, then the binder is called an open binder;

in this case there must not exist any proper open sub-binder of t from x

to y, that is there is no proper subset of U that forms an open binder

from x to y, and

(d) if U is (n, k+2, k+2)-dependent, then the binder is called a closed binder;

in this case there must not exist any proper closed sub-binder of t from x

to y.

The following notation will be adopted throughout the remaining part of this

chapter.

57



Notation 3.2.

1. A “binder”, without any qualifier, will be used to refer to either an open binder

or an unspecified one, the context will provide the right choice.

2. A binder t between x and y will be represented by the tuple 〈x, z1, . . . , zk, y〉.

3. The length of a binder t will be denoted by |t|

Definition 3.9. Let x, y ∈ Zn. Let t = 〈x, z1, . . . , zk, y〉 be a binder from x to y of

length k + 2, k ≥ 0. Define the signature of t as the set

St = {(a, b, c) : a, b ∈ t and c ∈ (t ∪ {0}) and S(a, b, c)}

Remark 3.2. In the following discussion we will ignore commutativity in defining

St, that is if a + b ≡ c, then either (a, b, c) ∈ St or (b, a, c) ∈ St but not both.

Example 3.3. Consider the following inside Z13.

1. Let t1 = 〈1, 2, 4, 8〉. Then t is an open binder of length 4 between 1 and 8 with

signature St1 = {(1, 1, 2), (2, 2, 4), (4, 4, 8)}. It can be easily checked that these

are the only relations that hold among the elements of t1.

2. Let t2 = 〈1, 2, 3, 4, 8〉. Then t2 is a closed binder of length 5 between 1 and 8

with signature St2 = St1 ∪ {(8, 8, 3), (1, 2, 3)}.

3. Consider t3 = 〈2, 11〉, an open binder of length 2 between 2 and 11, with

signature St3 = {(2, 11, 0)}
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Lemma 3.2. Let x > 1 be a positive integer such that x ≥ 2n. Let t be an open

binder between 1 and x inside the group (N,+) (or inside Zu for large enough u,

however, all the elements of t lie between 1 and x inclusively). Then |t| ≥ (n+ 1).

Proof. Without loss of generality assume that x = 2n. The only possible equations

that can be applied to reach x from 1 are: x + y = z and 2y = z. Given x < y,

the latter equation is at least as fast as the former, hence the fastest possible way

to reach x is to double the step, therefore need logx
2 = n steps which implies that

|t| ≥ (n + 1).

Next we define the notion of isomorphism between two binders. The isomor-

phism is basically determined by the binder’s length and the signature.

Definition 3.10. Let t1 = 〈x, z̄1, y〉 be a binder from x to y of length l1 inside Zp.

Let t2 = 〈x′, z̄2, y′〉 be a binder from x′ to y′ of length l2 inside Zq. We say that t1

and t2 are isomorphic, denoted by t1 ∼= t2, if and only if l1 = l2 and there exists a

bijection f : (t1 ∪ {0}) −→ (t2 ∪ {0}) satisfying

• f(x) = x′ and f(y) = y′

• f(z̄1) = z̄2 (order-preserving)

• f(0) = 0

• for every a, b ∈ t1 and c ∈ (t1 ∪ {0}), the following holds: Sp(a, b, c) ⇐⇒

Sq(f(a), f(b), f(c)) (where Sp is the addition relation modulo p)

Example 3.4. Let t1 = 〈2, 5, 3, 10〉 be a closed binder of length 4 inside Z13. Its sig-

nature St1 = {(2, 3, 5), (5, 5, 10), (3, 10, 0), (5, 10, 2)}. Let t2 = 〈3, 7, 4, 14〉 be a closed
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binder of length 4 inside Z18. Its signature is St2 = {(3, 4, 7), (7, 7, 14), (4, 14, 0), (7, 14, 3)}.

It can be easily checked that t1 ∼= t2.

3.4 Zp : p is Prime

In this section we apply EF -games to the groups Zp for prime numbers p ≥ 3.

Note that 2x ≡ 0 (mod p) has no non-zero solution, hence the equations in Remark

3.1 can be shortened as indicated in the following.

Remark 3.3. Given p is prime and the fact that addition is treated as a ternary

relation, the following are the only possible forms of relevant congruence equations

that can be captured by the addition relation inside Zp.

x+ y ≡ z (mod p)

2x ≡ z (mod p)

x+ y ≡ 0 (mod p)

where x, y, z are nonzero distinct elements.

Remark 3.4. Note that for any prime p, the group Zp contains the closed binder

t = 〈1, p− 2, p− 1〉 that has the signature St = {(1, p− 2, p− 1), (1, p− 1, 0), (p−

1, p− 1, p− 2)}. So closed binders in general do not uniquely identify their groups.

For the remaining part of this section we will always assume that p and q are

two different primes with p < q.

In the following we apply EF -games over the groups Zp and Zq to get bounds

on the number of steps required by the spoiler to win the game and hence bounds on
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the quantifier complexity of a first order sentence that distinguishes the two groups.

It turned out that Θ(log p) is a tight bound. The winning strategy for S is basically

to choose all of her elements from Zp to form a system of congruence equations that

are only solvable modulo p, in other words the elements chosen by S form a closed

binder inside Zp whilst it is impossible for D to get an isomorphic copy inside Zq.

3.4.1 Lower bound for EF (Zp,Zq) ∈ S

The following lemma gives a lower bound on the length of a closed binder that

uniquely characterizes its own group.

Lemma 3.3. Let 2n < p < 2n+1 for some positive integer n. Let t be a closed binder

of length m inside Zp that does not have an isomorphic copy inside Zq for any prime

q 6= p. Then it must be the case that m ≥ (n+ 1).

Proof. Since Zp is a field, we can assume that 1 ∈ t (if not, multiply t by x−1 for

some x ∈ t to get an isomorphic copy that contains 1). Let s = max{z : z ∈ t} (the

maximum is computed modulo N). View t as a closed binder from 1 to s, hence

t can be broken into two different open binders from 1 to s; in other words s is

reachable from 1 through two different open paths using only the elements of t. Let

t1 and t2 be these two open binders. Since t uniquely characterizes Zp among all

groups of prime order, t1 and t2 can be represented by two congruence equations

that have solutions modulo prime r if and only if r = p.

y ≡ ax (mod p) (3.2)

x ≡ by (mod p) (3.3)
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where a, b ∈ (Zp\{0}) are constants and b ≡ a−1 (mod p) and (x, y) = (1, s) is a

solution to this system.

Equation 3.2 gives the relationship between 1 and s as it is modulo N, hence a

can actually be taken to have the value s. Whereas Equation 3.3 gives the relation-

ship between 1 and s that is unique to Zp among all groups of prime order. So t1 is

the straightforward way to go from 1 to s as would be done modulo N, whereas t2

is a shortcut path between the two points exploiting the cyclicity of Zp. Partition

(Zp\{0}) into two halves: A = {1, . . . , p−1
2
} and B = {p+1

2
, . . . , p − 1}. From the

hypothesis we have p > 2n, hence p−1
2
≥ 2n−1, hence 2n−1 ∈ A.

Claim I: There exists an element z such that z ∈ (t ∩B).

Proof of Claim I: Assume not. Given t1 and t2 as described above the following

must hold for some z1, z2, z3 ∈ (A ∩ t)

z1 + z2 6= z3

z1 + z2 ≡ z3 (mod p)

where the first inequality holds modulo N. Hence, z1 + z2 ≥ p, which is impossible

since the largest element in A is p−1
2

. Claim I

Since 2n−1 ∈ A, by Lemma 3.2 we have |A ∩ t1| ≥ n. By Claim I we have

|B ∩ t| ≥ 1, hence |t| ≥ (n+ 1).

The following theorem gives a lower bound on the number of moves needed by

S to win an EF -game.

Theorem 3.3. Let 2n < p < 2n+1 for some positive integer n. Assume p < q. If

EFm(Zp,Zq) ∈ S, then it must be the case that m ≥ (n + 1).
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Proof. Assume EFm(Zp,Zq) ∈ S. We can assume that m is minimal, that is

EFm−1(Zp,Zq) ∈ D. Let G denote an m-round EF -game played over Zp and Zq

in which S has played a fixed winning strategy. Assume that D has played her

best strategy in G. Let s1 = 〈a1, . . . , am〉 ⊆ Zp and s2 = 〈b1, . . . , bm〉 ⊆ Zq be the

elements chosen by the players during the course of G. It can easily be verified that

the following three cases cover all the possible ways by which S can win G.

Case i: S chooses am such that she creates a binder ta1am
of length m inside Zp that

satisfies ta1am
6∼= tb1bm

. Then it must be the case that exactly one of the two binders

is closed (note that since ta1am
is a binder, D is forced to play exactly one particular

point bm). Hence by Lemma 3.3, m ≥ (n+ 1).

Case ii: S chooses bm to be independent from 〈b1, . . . , bm−1〉, that is bm 6∈ G ({b1, . . . , bm−1}),

however, D is forced to choose a point am ∈ G ({a1, . . . , am−1}), that is every point

in Zp belongs to G ({a1, . . . , am−1}), hence {a1, . . . , am−1} contains a basis for Zp.

By Theorem 3.2, m = Ω(
√
p) = Ω(2n/2).

Case iii: S chooses bm ∈ G ({b1, . . . , bm−1}) andD has to choose am ∈ G ({a1, . . . , am−1})

(or vice versa) such that the following hold: (i) there is no binder from b1 to bm

(hence also no binder from a1 to am, otherwise either one of the above two cases

applies and we are done) and (ii) there exists a minimal set U ⊆ (s2\{bm}) such that

bm ∈ G (U) and bm 6∈ G (s2\(U ∪ {bm})), however, given U ′ = {ai ∈ s1 : bi ∈ U},

it holds that am ∈ G (U ′) and am ∈ G (s1\(U ′′ ∪ {am})) for non-empty U ′′ ⊆ U ′

(that is am depends on more previously chosen elements than bm does). Let k

be maximal such that bk 6∈ G ({b1, . . . , bk−1}) but bl ∈ G ({b1, . . . , bl−1}) for every

k < l ≤ m. Note that it must be the case that k > 1, otherwise s2 forms an open
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binder from b1 to bm which contradicts our assumption. Let A = {a1, . . . , ak−1} and

B = {ak, . . . , am}. Let C = Zp\G (A).

Let E denote the system of equations inside Zp that capture the dependency of

each element chosen at the lth round on previously chosen elements for k < l ≤ m.

Let the variable xi in E represent the element chosen at the ith round. Let

Em = {E ∈ E : E is an equation that contains the variable xm} (3.4)

By the way S won the game, Em must contain 2 or more of the following equations:

xm ≡ xi1 + xi2 (mod p) (3.5)

xm ≡ xi3 − xi4 (mod p) (3.6)

2xm ≡ xi5 (mod p) (3.7)

xm + xi6 ≡ 0 (mod p) (3.8)

Replace each variable xi in E such that i < k (variables representing elements

from A) by its actual value, then reduce E accordingly (solve for the maximum

possible number of variables). Let E′ denote the new reduced system. If E′ is

completely determined (all of its variables have definite values), then round k, where

the elements played are independent of A, is redundant, hence S could have won G

in (m − 1) rounds which is a contradiction. By the same reasoning (that round k

is not redundant), there must exist some relation between xk and xm that can be

derived from E′

a1xm + a2xk ≡ a3 (mod p) (3.9)
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where a1, a2 ∈ (Zp\{0}) and a3 ∈ Zp. By the way S won the game, derive another

different equation

b1xm + b2xk ≡ b3 (mod p) (3.10)

where b1 ∈ (Zp\{0}) and b2, b3 ∈ Zp. There are two subcases:

Subcase iii.i: S played ak ∈ Zp: Since D lost the game, Equations 3.9 and 3.10

have no non-zero solutions in Zq. Hence, S could have won G by playing all of her

elements from Zp. This has two implications: (i) if there exists j < k such that

xj does not appear in E, then the jth round is redundant and S could have won in

(m − 1) rounds which is a contradiction, so all elements of A must be represented

by variables in E and (ii) if S played all of her elements from Zp, then the order

of her choices is irrelevant. Choose an arbitrary j < k, and assume a new game G ′

in which S has played the following strategy: (i) for rounds 1 through (j − 1), S

plays 〈a1, . . . , aj−1〉, (ii) for rounds j through (m − 1), S plays 〈aj+1, . . . , am〉, and

finally (iii) at the mth round, S plays aj. Clearly, S wins G′ at the mth round but

not before that. Let

E
−j

m = {E ∈ Em : E does not contain the variable xj}

It must be the case that: (i) E
−j

m ⊂ Em, otherwise S won in (m − 1) steps and

(ii) |Ej

m| ≥ 2 where E
j

m = Em\E−j

m , otherwise S does not win in m steps. Given

Equations 3.5 through 3.8, E
j

m contains exactly 2 equations (more than 2 is either

redundant, will give zero solutions, or equality between elements). Based on which

pair of equations E
j

m consists of, we have the following cases.
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1. Assume E
j

m contains the following equations.

xm ≡ xj + xi1 (mod p)

2xm ≡ xj (mod p)

From these two equations derive

xm + xi1 ≡ 0 (mod p) (3.11)

Since i1 < m, this last equation holds also modulo q. Now imagine G ′ at

the mth round and it is the duplicator turn. D can choose xj that satisfies

xj ≡ xm− xi1 (mod q). Given that Equation 3.11 holds in Zq, then 2xm ≡ xj

(mod q) holds. Hence, E
j

m has non-zero solutions in Zq which is a contradic-

tion.

2. Assume E
j

m contains the following equations.

xm ≡ xj + xi1 (mod p) (3.12)

xm ≡ xi2 − xj (mod p) (3.13)

From these derive

2xm ≡ xi1 + xi2 (mod p) (3.14)

If this last equation holds in Zq, then the previous case applies and we are

done. So assume that it does not hold in Zq. Assume Equation 3.12 fails in Zq

(the case where Equation 3.13 fails is similar). We show that S can win the

game in (m−1) rounds which contradicts our initial assumption. Assume the
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following strategy for the spoiler: (i) for rounds 1 through (m − 3), S plays

s1\{aj , ai1, ai2} such that am is played at the (m− 3)rd round, then (ii) based

on D’s response at the (m− 3)rd round we have the following:

(a) if D plays bm (her last choice in the original game G), then S wins by

playing aj and ai1 and the game is up,

(b) if D plays an element d such that 2d ≡ bi1 + bi2 (mod q), then S wins by

playing ai1 and ai2 and the game is up (otherwise, D could have won the

m-round game G by playing d at the (m− 1)st round)

(c) if D plays an element d′ that is different from the two previous cases,

then

- if am ∈ G ({a1, . . . , am−1}\{aj}), then S wins by playing ai1 and ai2

and the game is up,

- otherwise, S wins by playing aj and either of ai1 or ai2 but not both

and the game is up

3. Any other valid pair of equations (does not yield zero elements or equality of

different elements) constituting E
j

m falls into either one of the previous two

cases.

Subcase iii.ii: S played bk ∈ Zp: Assumem = O(n). Then from the proof of Theorem

3.2 it must be the case that |G (A)| = O(n2), hence |C| = Ω(2n − n2). Since all the

elements played after the kth round are dependent on previous elements, it follows

that: (i) starting from the kth round S can exclusively choose all of her elements
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from Zq and (ii) no matter how D reacts at the kth round S wins by following exactly

the same strategy starting from the (k+1)st round, that is by playing 〈bk+1, . . . , bm〉.

Hence for every y ∈ C, the congruence system E holds in Zp if xk is replaced by y.

Now look at Equations 3.9 and 3.10. If a3 ≡ b3 ≡ 0, then B must contain a closed

binder, hence m ≥ (n+ 1). Otherwise, these two equations will give definite unique

solutions for xk and xm which is a contradiction for |C| > 1.

This allows us to give a lower bound on the quantifier complexity of a first-

order sentence that distinguishes Zp and Zq.

Corollary 3.1. Assume 2n < p < 2n+1 for some positive integer n. Assume p < q.

Then for any LG-sentence ϕ that distinguishes Zp and Zq it must be the case that

qr(ϕ) ≥ (n+ 1)

Proof. Follows directly from Theorem 3.1 and Theorem 3.3.

Remark 3.5. The lower bound obtained in Corollary 3.1 is optimal for it is achiev-

able for at least a class of primes that includes the Mersenne primes (see Section

3.4.3 for details).

3.4.2 Upper bound for EF (Zp,Zq) ∈ S

In this section we show that 2n is an upper bound for the number of moves

needed by the spoiler to win the game. First, we show that every group Zp contains

a closed binder that uniquely characterizes it. The length of this closed binder is

logarithmic in the group order.

68



Lemma 3.4. Assume 2n < p < 2n+1 for some positive integer n. Then Zp can be

uniquely identified among all groups of prime order by a closed binder Cp inside it.

Furthermore, |Cp| ≤ 2n.

Proof. Write p in binary radix

p = 2ik + . . .+ 2i1 + 1 (3.15)

where 1 ≤ i1 < . . . < ik = n. Let E1 denote the following set of congruence equations

x2 ≡ 2x1 (mod p)

x3 ≡ 2x2 (mod p)

...

xik+1 ≡ 2xik (mod p)

Since ik = n, then |{x1, . . . , xik+1}| = n + 1. From the above system we can derive

xh ≡ 2h−1x1 (mod p) (3.16)

for 2 ≤ h ≤ ik + 1. Let E2 denote the following congruence equation

(xi1+1 + . . .+ xik+1) + x2 ≡ x1 (mod p)

From 3.16 into this last equation we get

(

2i1x1 + . . .+ 2ikx1

)

+ 2x1 ≡ x1 (mod p)

(

2i1 + . . .+ 2ik + 1
)

x1 ≡ 0 (mod p)

px1 ≡ 0 (mod p) (3.17)
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Any element in (Zp\{0}) can be a solution to this last equation. On the other hand

it is clear that the equation

px1 ≡ 0 (mod q)

does not have a non-zero solution for any prime q 6= p. Hence, the congruence

system (E1 ∪ E2) uniquely characterizes the group Zp among all groups of prime

order.

The only remaining thing to do in order to obtain a valid closed binder is to

break E2 into an equivalent set of congruence equations that conform to the equation

forms given in Remark (3.3). This can be easily done by introducing a new set of

variables as follows.

xi1+1 + xi2+1 ≡ y1 (mod p)

y1 + xi3+1 ≡ y2 (mod p)

...

yk−2 + xik+1 ≡ yk−1 (mod p)

yk−1 + x2 ≡ x1 (mod p)

(k−1) new variables were introduced. From Equation 3.15 and given the hypothesis

p < 2n+1 we have k ≤ n, hence |{y1, . . . , yk−1}| ≤ n− 1.

So we have constructed a closed binder Cp whose points are {x1, . . . , xik+1, y1 . . . , yk−1}

(note that from its very construction any proper subset of these points does not form

a closed binder). |Cp| ≤ n+1+n−1 = 2n. The set of congruence equations (E1∪E2)

determines the signature of Cp.
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Notice that the previous proof gives an actual winning strategy for the spoiler

as follows. The spoiler would first realize E1 by choosing a1 = 1, a2 = 2, . . . , an+1 =

2ik . Then she would realize E2 by choosing b1 = 2i1 + 2i2 , b2 = b1 + 2i3, . . . , bk−1 =

bk−2 + 2ik . As a direct consequence of this lemma we have an upper bound on the

number of moves required by S to win an EF -game. This is given in the following

theorem.

Theorem 3.4. Assume 2n < p < 2n+1 for some positive integer n. Assume p < q.

Then there exists m ≤ 2n such that EFm(Zp,Zq) ∈ S.

Proof. From Lemma 3.4, S can win by playing the closed binder Cp.

From the lower and upper bounds given above we can conclude the following

corollary.

Corollary 3.2. Assume 2n < p < 2n+1 for some positive integer n. Assume p < q.

Then the following hold.

1. If EFm(Zp,Zq) ∈ S, then it must be the case that m ≥ (n + 1).

2. There exists m ≤ 2n such that EFm(Zp,Zq) ∈ S. Furthermore, S can win by

choosing all of her points from Zp that construct the closed binder Cp.

From this follows directly the corresponding expressibility result.

Corollary 3.3. Assume 2n < p < 2n+1 for some positive integer n. Assume p < q.

Then the following hold.

1. If ϕ is an LG-sentence distinguishing Zp and Zq, then it must be the case that

qr(ϕ) ≥ (n+ 1).
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2. There exists an existential LG-sentence ϕ distinguishing Zp and Zq such that

qr(ϕ) ≤ 2n.

Proof. The quantifier rank bounds follow directly from Corollary 3.2. From the

same corollary, S can win within these bounds by choosing all of her points from

Zp during the course of the game (no alternation between the two groups), hence

alt(ϕ) = 0, therefore ϕ is existential.

It is an open question whether this lower/upper bounds gap can get closer.

As will be seen below in Section 3.4.3, the lower bound of (n + 1) is optimal. We

believe that the upper bound of 2n is optimal too.

From the proof of Lemma 3.4, we can actually construct the sentence that

distinguishes Zp and Zq. Assume that 2n < p < 2n+1. Assume p < q. Remember

that from the proof of this lemma, |E1| = n+1 and |E2| = n−1. The distinguishing

sentence is as follows.

∃x1 · · · ∃xik+1∃y1 · · · ∃yk−1(R(x1, x1, x2) ∧ · · · ∧ R(xik , xik , xik+1)

∧R(xi1+1, xi2+1, y1) ∧ R(y1, xi3+1, y2) ∧ · · · ∧R(yk−2, xik+1, yk−1) (3.18)

∧R(yk−1, x2, x1))

3.4.3 Some general examples

In the following we show that for some classes of primes the lower bound

obtained above is achievable and hence an optimal one.

Theorem 3.5. Let p = 2n − 1 be a Mersenne prime. Then EFn(Zp,Zq) ∈ S.
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Proof. Consider the following system of congruence equations

x2 ≡ 2x1 (mod p)

x3 ≡ 2x2 (mod p)

...

xn ≡ 2xn−1 (mod p)

x1 ≡ 2xn (mod p)

By substitution derive

x1 ≡ 2nx1 (mod p)

(2n − 1)x1 ≡ 0 (mod p)

x1 ≡ 1 is a solution to this equation, however, since q is prime, the system has no

non-zero solution in Zq. So S can win in just n (note that 2n−1 < p < 2n) steps by

playing x1 ≡ 1, x2 ≡ 2, . . . , xn ≡ 2n−1 from Zp.

Corollary 3.4. Let p = 2n − 1 be a Mersenne prime. Assume p < q. Then there

exists an LG-existential sentence distinguishing Zp and Zq with qr(ϕ) = n.

The following theorem gives the same result for a more general class of prime

numbers.

Theorem 3.6. Assume p = 2i−1 + 2j−1− 2k−1 for some positive integers i, j, k. Let

n = max{i, j, k}. Then EFn(Zp,Zq) ∈ S.
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Proof. Consider the following system of congruence equations

x2 ≡ 2x1 (mod p)

x3 ≡ 2x2 (mod p)

...

xn ≡ 2xn−1 (mod p)

xi + xj ≡ xk (mod p)

From this system derive

xi ≡ 2i−1x1 (mod p)

xj ≡ 2j−1x1 (mod p)

xk ≡ 2k−1x1 (mod p)

Substituting in the last equation get

(2i−1 + 2j−1 − 2k−1)x1 ≡ 0 (mod p)

x1 ≡ 1 is a solution to this equation, however, since q is prime, the system has no

non-zero solution in Zq. So S can win in just n steps by choosing x1 ≡ 1, x2 ≡

2, . . . , xn ≡ 2n−1 from Zp.

Corollary 3.5. Assume p = 2i−1 + 2j−1 − 2k−1 for some positive integers i, j, k.

Let n = max{i, j, k}. Then there exists an LG-existential sentence distinguishing

Zp and Zq with qr(ϕ) = n.
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3.5 Pebble EF -Games

In this section we describe an extended version of EF -games called pebble

EF -games. Assume a positive integer k. The players start the game each having

a fixed number of k pebbles (k ≤ n for number of rounds n). At each round S

does either one of the following (i) removing a pebble that has been placed on a

previously chosen element and placing it on a new element or (ii) placing a new

pebble, if she still has any, on a new element. D must act correspondingly on the

other structure. At the beginning the pebbles are not placed on any elements (we

can assume having extra pebbles always placed on the distinguished elements of the

structures such as the group identity even before the game starts). Assume at the

end of the game that k pebbles are placed on ā = 〈a1, . . . , ak〉 from the structure

A and correspondingly k pebbles are placed on b̄ = 〈b1, . . . , bk〉 from the structure

B. Since k ≤ n, these tuples are in general subsets of the elements chosen during

the course of the game. Then D wins the game if ā and b̄ are partially isomorphic,

otherwise S wins.

Notation 3.3.

1. An n-round pebble EF -game with k pebbles over the structures A and B will

be denoted pEF k
n (A,B).

2. Let Lk
G be the restriction of LG to formulas with at most k variables.

Definition 3.11. Assume A and B are two structures over a vocabulary τ . We say

that A and B are (n, k)-elementarily equivalent, denoted by A ≡k
n B if and only if
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for every first-order τ -sentence ϕ such that ϕ has at most k variables and qr(ϕ) ≤ n

the following holds:

A |= ϕ ⇐⇒ B |= ϕ (3.19)

Pebble games characterize expressibility in finite variable first-order logic as

indicated in the following theorem.

Theorem 3.7. The following are equivalent:

1. A ≡k
n B

2. pEF k
n (A,B) ∈ D

The following theorem gives an upper bound for the number of pebbles required

for S to win an EF -game over Zp and Zq.

Theorem 3.8. Let 2n < p < 2n+1 for some positive integer n. Assume p < q. Then

there exists a positive integer m ≤ 2n such that pEF 5
m(Zp,Zq) ∈ S.

Proof. From Theorem 3.4, there exists m ≤ 2n such that EFm(Zp,Zq) ∈ S, and

the spoiler can win by playing the closed binder Cp, hence all of her choices are from

Zp. Now we describe how S can play Cp using only 5 pebbles in order to win the

game. From Lemma 3.4, the elements of Cp are the set {x1, . . . , xik+1, y1, . . . , yk−1}.

The equations in this lemma are used to guide S’s strategy.

In the first 2 rounds S puts two of her pebbles on x1, x2; these pebbles will

not be removed till the end of the game. Assume D’s corresponding pebbles are

on y1, y2. Note that only y1 can be arbitrary for it must be the case that y2 ≡ 2y1
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(mod q) and it will remain the only arbitrarily chosen element till the end of the

game. In the 3rd and 4th rounds S places two new pebbles on x3, x4. In the 5th round

S removes the pebble on x3 and places it on x5 and on the 6th round S removes

the pebble on x4 and places it on x6. This sequencing forces D to choose particular

fixed elements after the first round, more specifically yi ≡ 2yi−1 (mod q). S pursues

this alternation of pebbles until putting a pebble on xi1+1.

This last pebble is fixed temporarily and S then uses the pebble on xi1 and the

5th pebble (the one not yet used) to continue its alternation (successively doubling

the elements) until a pebble is placed on xi2+1. S then removes the pebble on xi2 and

places it on y1 (remember xi1+1 + xi2+1 ≡ y1 (mod p)). S uses the two pebbles on

xi1+1, xi2+1 to continue her choices until placing a pebble on xi3+1. S then removes

the pebble on xi3 and puts it on y2 (y1 + xi3+1 ≡ y2 (mod p)). S then uses the two

pebbles on xi3+1, y1 to continue her choices (doubling the elements starting from

xi3+1) until putting a pebble on xi4+1. S pursues this pebble placing strategy until

having 3 pebbles on yk−2, xik+1, yk−1 (see Lemma 3.4). The game then terminates

and S wins since yk−1 + x2 ≡ x1 (mod p) (these elements have pebbles on them)

whereas the corresponding pebbles in Zq fail to satisfy the same equation modulo

q.

A direct expressibility consequence of the above theorem is the following corol-

lary.

Corollary 3.6. Assume 2n < p < 2n+1 for some positive integer n. Assume p < q.

Then the following hold.
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1. If ϕ is an LG-sentence distinguishing Zp and Zq, then it must be the case that

qr(ϕ) ≥ n.

2. There exists an L5
G-existential sentence distinguishing Zp and Zq with qr(ϕ) ≤

2n.

Proof. Follows directly from Theorem 3.7 and Theorem 3.8.

3.6 Zu : u is Integer

In this section we will extend the previous results to groups of residue classes

modulo any number.

Notation 3.4.

1. u, v are positive integers with u < v.

2. Let Hf ≤ Zu denote that Hf is a subgroup of Zu of order f . If Hf is a proper

subgroup, then we use the notation Hf < Zu.

3. Let divisor(u) = {f : f | u}.

The following famous theorem will help us analyzing EF (Zu,Zv).

Theorem 3.9 (Fact 1.3.9 in [24]). Let Hf ≤ Zu. Then the following hold.

1. Hf is cyclic and f |u

2. for each e ∈ divisor(u), Zu has exactly one subgroup of order e, namely,
〈

u
e

〉

It is an easy fact that any finite cyclic group of order f is isomorphic to Zf ,

hence we can talk about Hf and Zf interchangeably.
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Remark 3.6. In the following we will use a slightly modified definition of closed

binders. In the original definition a closed binder was not supposed to contain any

proper sub-binder that is also closed. However, in the following this condition will be

applied only to closed binders that uniquely identify their own groups among smaller

subgroups. More precisely, if t is a closed binder inside Zu such that t uniquely

identifies this group among its proper subgroups (that is, there does not exist any

t′ ∼= t inside any Hf < Zu), then t does not contain any proper closed sub-binder

that uniquely identifies Zu among its proper subgroups. For example, consider the

group Z8 and consider the closed binder t = 〈1, 2, 4〉. It is easy to see that t uniquely

distinguishes Z8 from Z2 and Z4. Clearly, t contains the closed sub-binders 〈4〉 and

〈2, 4〉, however, they do have isomorphic copies inside Z2 and Z4 respectively.

Lemma 3.5. Let t be a closed binder inside Zu. Then t has an isomorphic copy

inside Zv for every v such that u ∈ divisor(v).

Proof. Fix v and let d = v/u. Assume x + y ≡ z (mod u) represents some triple

in the signature of t. Multiply by d to get a valid equation dx+ dy ≡ dz (mod v).

Let t′ be the result of multiplying modulo v every element of t by d, then t′ ∼= t and

is a closed binder inside Zv. An important thing to note is that all the elements of

t′ belong to Hu ≤ Zv, where Hu
∼= Zu.

The following lemma gives a lower bound on the length of a closed binder that

uniquely characterizes Zu among its subgroups.

Lemma 3.6. Assume 2n ≤ u < 2n+1 for some positive integer n. Let t be a closed

binder inside Zu such that t has no isomorphic copy inside any Hf < Zu. Then it
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must be the case that |t| ≥ n.

Proof. Since t is not a closed binder inside any Hf < Zu, there must exist some

x ∈ t such that x 6∈ ⋃Hf <Zu
Hf . So there is no y ∈ (Zu\{0}) such that xy ≡ 0

(mod u), hence x is a unit inside the ring Zu (that is x has a multiplicative inverse).

Multiply modulo u every element in t by x−1 to get an isomorphic copy t′ that

contains 1. Now we can proceed by applying the same argument as in Lemma 3.3

except that we need a slight change in the partition of the group into the two sets A

and B when u is even (this actually is the source of the n vs. (n+1) bounds given in

the two lemmas). If u is even, then define A = {1, . . . , p
2
−1} and B = {p

2
, . . . , p−1}.

Given this partition it might be the case that (for example, when u = 2n) 2n−1 6∈ A.

Hence only (n − 1) elements of t are guaranteed to come from A, in addition to

at least one element from B making a total of at least n elements comprising the

binder t.

Remark 3.7. The bound obtained in Lemma 3.6 is optimal for consider u = 2n

and consider the closed binder t = 〈1, 2, 4, . . . , 2n−1〉. It is easy to check that t is a

closed binder inside Zu and that it does not have an isomorphic copy inside Z2l for

any l ≤ (n− 1).

Lemma 3.7. Let t be a closed binder inside Zu such that t has no isomorphic copy

inside any Hf < Zu. Then t has no isomorphic copy inside Zv for any v such that

u 6∈ divisor(v).

Proof. If v ∈ divisor(u), then the conclusion holds trivially by the hypothesis of

the lemma. So assume v 6∈ divisor(u). Let d = gcd(u, v). Since u 6∈ divisor(v), it
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must be the case that d < u. Assume u = dl1 and v = dl2. By way of contradiction

assume there exists t′ inside Zv such that t ∼= t′. Then t′ must result from t by

multiplying modulo v every element of t by l2. Hence, all the elements of t′ belong

to the subgroup of Zv generated by l2 = v
d
. This subgroup has order d. Hence t

has an isomorphic copy inside Zd which is a contradiction to the hypothesis of the

lemma that t uniquely characterizes Zu among all its proper subgroups.

The following lemma gives a lower bound for the length of a distinguishing

closed binder.

Lemma 3.8. Let f = min{f ′ : f ′ ∈ (divisor(u)△ divisor(v))}. Assume 2n ≤ f <

2n+1 for some positive integer n. Let t be a closed binder that distinguishes Zu from

Zv (that is, t has an isomorphic copy in exactly one of the two groups). Then it

must be the case that |t| ≥ n.

Proof. Without loss of generality assume that t is a closed binder inside Zu. Let

e be minimal such that t has an isomorphic copy inside Ze. By Lemma 3.7 it must

be the case that e ∈ divisor(u). Since t has no isomorphic copy in Zv, by Lemma

3.5 e 6∈ divisor(v). Hence e ∈ (divisor(u)∆divisor(v)). Given the minimality of f ,

then by Lemma 3.6 it must be the case that |t| ≥ n.

Now we are ready to give a lower bound on the number of moves needed by S

to win the EF (Zu,Zv).

Theorem 3.10. Let f = min{f ′ : f ′ ∈ (divisor(u)△ divisor(v))}. Assume 2n ≤

f < 2n+1 for some positive integer n. If EFm(Zu,Zv) ∈ S, then it must be the case

that m ≥ n.
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Proof. Using the same argument as of Theorem 3.3, it can be shown that playing a

distinguishing closed binder is the shortest possible strategy for S to win the game.

Let t be such a binder. Then by Lemma 3.8, |t| ≥ n.

Remark 3.8. The lower bound obtained in Theorem 3.10 is optimal. Let v = 2n for

some positive integer n. Assume u = 2n−1. Then v = min{f : f ∈ (divisor(u)∆divisor(v))}.

Consider the closed binder t = 〈1, 2, 4, . . . , 2n−1〉. Then by Remark 3.7, t is a win-

ning tuple for S.

The next task is to find an upper bound on the number of steps needed by S

to win the game. First, we construct a distinguishing closed binder in the following

lemma whose proof is similar to that of Lemma 3.4.

Lemma 3.9. Assume 2n ≤ u < 2n+1. Then there exists a closed binder Cu inside Zu

such that Cu has no isomorphic copy inside any Hf < Zu. Furthermore, |Cu| ≤ 2n.

Proof. Write u in binary radix

u = 2ik + · · ·+ 2i1 (3.20)

where 0 ≤ i1 < · · · < ik = n. Let E1 denote the following set of congruence

equations

x2 ≡ 2x1 (mod u)

x3 ≡ 2x2 (mod u)

...

xik+1 ≡ 2xik (mod u)
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Since ik = n, |{x1, . . . , xik+1}| = n + 1. Let E2 denote the following congruence

equation

(xi1+1 + · · ·+ xik+1) ≡ 0 (mod u) (3.21)

From E1 in the last equation we have

(

2i1x1 + · · ·+ 2ikx1

)

≡ 0 (mod u)

(

2i1 + · · ·+ 2ik
)

x1 ≡ 0 (mod u)

ux1 ≡ 0 (mod u) (3.22)

x1 = 1 is a solution to this last equation. However, 1 6∈ Hf for any Hf < Zu.

Hence, (E1 ∪ E2) represent the desired closed binder. The only remaining thing to

do is to break E2 into an equivalent set of congruence equations that conform to

the equation forms given in Remark (3.1). This can be easily done by introducing

a new set of variables as follows.

xi1+1 + xi2+1 ≡ y1 (mod u)

y1 + xi3+1 ≡ y2 (mod u)

...

yk−2 + xik+1 ≡ 0 (mod u)

(k − 2) new variables were introduced. From Equation 3.20, we have k ≤ (n + 1)

(the upper bound is reached when u =
∑

0≤i≤n 2i), hence |{y1, . . . , yk−2}| ≤ (n− 1).

So we have constructed a closed binder Cu whose points are {x1, . . . , xik+1, y1 . . . , yk−2}.
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This binder uniquely identifies Zu among its proper subgroups. |Cu| ≤ n+1+n−1 =

2n. The set of congruence equations (E1 ∪ E2) determines the signature of Cu.

The following theorem gives an upper bound on the number of rounds needed

by S to win EF (Zu,Zv).

Theorem 3.11. Let f = min{f ′ : f ′ ∈ (divisor(u)△ divisor(v))}. Assume 2n ≤

f < 2n+1 for some positive integer n. Then there exists m ≤ 2n such that pEF 5
m(Zu,Zv) ∈

S.

Proof. Without loss of generality assume f ∈ divisor(u). S plays the closed binder

Cf , constructed in the proof of Lemma 3.9, inside Zu. By Lemma 3.7, Cf has no

isomorphic copy inside Zv, hence Cf is a winning strategy for S. From Lemma 3.9,

|Cf | ≤ 2n. By an argument similar to that of Theorem 3.8 we can show that S

needs at most 5 pebbles to realize Cf .

Now we combine Theorem 3.10 and Theorem 3.11 into one theorem.

Theorem 3.12. Let f = min{f ′ : f ′ ∈ (divisor(u)△ divisor(v))}. Assume 2n ≤

f < 2n+1. Then the following hold.

1. If EFm(Zu,Zv) ∈ S, then it must be the case that m ≥ n. This lower bound

is optimal.

2. There exists m ≤ 2n such that pEF 5
m(Zu,Zv) ∈ S. Furthermore, in her

winning strategy S can choose all of her points from exactly one of the two

groups.
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The direct expressibility consequence of the above game-theoretic bounds is

given in the following corollary.

Corollary 3.7. Assume two finite cyclic groups G and G′. Let f = min{f ′ : f ′ ∈

(divisor(|G|)△ divisor(|G′|))}. Assume 2n ≤ f < 2n+1. Then the following hold.

1. If ϕ is an LG-sentence distinguishing G and G′, then it must be the case that

qr(ϕ) ≥ n. This lower bound is optimal.

2. There exists an existential L5
G-sentence ϕ distinguishing G and G′ such that

qr(ϕ) ≤ 2n.

3.7 Abelian Finite Groups

In this section we generalize the previous results to the class of abelian finite

groups. The following is the basic theorem about the construction of these groups.

Theorem 3.13 (Frobenius-Stickelberger[24]). An abelian group G is finite if and

only if it is a direct product of finitely many cyclic groups with prime-power orders.

This leads to the following expressibility result.

Corollary 3.8. Assume two non-isomorphic finite abelian groups G and G′. Then

there exists a positive integer f that satisfies the following.

1. f divides the order of one of the two groups (it may divide the orders of both

groups).

2. Assume 2n ≤ f < 2n+1. If ϕ is an LG-sentence distinguishing G and G′, then

it must be the case that qr(ϕ) ≥ n. This lower bound is optimal.
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3. There exists an existential L5
G-sentence ϕ distinguishing G and G′ such that

qr(ϕ) ≤ 2n.

Proof. Since G and G′ are finite abelian groups, then by Theorem 3.13

G ∼= Zm1 ⊕ · · · ⊕ Zmr

G′ ∼= Zn1 ⊕ · · · ⊕ Zns

The notion of binder is still well-defined in this more general context of finite abelian

groups. Hence, using a similar argument to that of Theorem 3.3, it can be shown

that playing a distinguishing closed binder is the shortest possible strategy for S to

win the EF game. Note that the individual components of any tuple resulting from a

direct product are independent from each other, that is there is no particular relation

that ties them together, hence we can reduce the EF (G,G′) to EF (Zmi
,Zni

).

Let M = {m1, . . . , mr} and let N = {n1, . . . , ns}. Note that Zl1 ⊕Zl2
∼= Zl2 ⊕

Zl1 by the mapping that takes (a (mod l1), b (mod l2)) to (b (mod l2), a (mod l1)).

Hence given G 6∼= G′ it must be the case that M 6= N . Choose minimal f such that:

(i) f ∈ (M∆N) and (ii) there is no u ∈ (M ∪N) such that f ∈ divisor(u). Assume

f = mj . The EF (G,G′)-game is now reduced to a game over Zf and Zf ′ where

f 6∈ divisor(f ′) by projecting over the jth component, that is S always chooses her

elements from G that are isomorphic to (0, . . . , 0, a, 0, . . . , 0) where a ∈ Zf and lies

in the jth position.
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3.8 Other Expressibility Results

In this section we apply the results obtained above to study expressibility of

some group-theoretic notions. First, we remind the reader of some of the definitions.

Definition 3.12. 1. The dihedral group Dn is the symmetry group of an n-sided

regular polygon. |Dn| = 2n where it contains n rotations and n reflections.

Dihedral groups are an example of a non-abelian group.

2. A group is simple, if it is non-trivial and has no non-trivial proper normal

subgroups.

3. A group is nilpotent if its lower central series converges to the trivial subgroup

after a finite number of steps of application of the commutator operator.

4. The normal closure of an element g ∈ G is the smallest normal subgroup of G

containing g.

Assume g ∈ G. Let o(g) denote | 〈g〉 |. The following lemma shows an interest-

ing relationship between elementary equivalence of dihedral groups and elementary

equivalence of groups of residue classe.

Lemma 3.10. Dm ≡l Dn ⇐⇒ Zm ≡l Zn

Proof. |Dm| = 2m and the group is generated by two elements g1, h1 where o(g1) =

2 and o(h1) = m. Similarly, Dn is generated by g2, h2 where o(g2) = 2 and o(h2) = n.

The right-to-left direction is Lemma 4.3 in [19]. Now assume Dm ≡l Dn, need to

show Zm ≡l Zn. From Theorem 3.1, need to show EFl(Zm,Zn) ∈ D. While playing
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the game over Zm and Zn, another l-round fictitious game is played over Dm and

Dn in which the duplicator uses her winning strategy as described in the proof of

Lemma 4.3 in [19]. Suppose S chooses j ∈ Zm. This corresponds to her choosing

hj
1 ∈ Dm in the fictitious game. Then D would respond with hk

2 ∈ Dn for some

k ∈ {0, . . . , n − 1}. Then in the real game D responds by playing k ∈ Zn. If S

chooses j ∈ Zn, one plays in a similar way.

Suppose in the real game the players have chosen the elements 〈a1, . . . , al〉 ∈

Zm and 〈b1, . . . , bl〉 ∈ Zn. Let the corresponding elements chosen in the fictitious

game be 〈a′1, . . . , a′l〉 ∈ Dm and 〈b′1, . . . , b′l〉 ∈ Dn. D wins the fictitious game,

hence a′i1a
′
i2 = a′i3 ⇐⇒ b′i1b

′
i2 = b′i3 . We need to show that ai1 + ai2 ≡ ai3

(mod m) ⇐⇒ bi1 + bi2 ≡ bi3 (mod n).

ai1 + ai2 ≡ ai3 (mod m) ⇐⇒ h
ai1
1 h

ai2
1 = h

ai3
1 ⇐⇒ a′i1a

′
i2 = a′i3 ⇐⇒

b′i1b
′
i2 = b′i3 ⇐⇒ h

bi1
2 h

bi2
2 = h

bi3
2 ⇐⇒ bi1 + bi2 ≡ bi3 (mod n)

From the previous lemma and the bounds obtained above for distinguishing

of Zm and Zn we can obtain similar bounds for Dm and Dn as indicated in the

following theorem.

Theorem 3.14. Let f = min{f ′ : f ′ ∈ (divisor(m)△ divisor(n))}. Assume 2l ≤

f < 2l+1. Then the following hold.

1. If ϕ is an LG-sentence distinguishing Dm and Dn, then it must be the case

that qr(ϕ) ≥ l. This lower bound is optimal
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2. There exists an existential L5
G-sentence ϕ distinguishing Dm and Dn such that

qr(ϕ) ≤ 2l.

Proof. Follows directly from Lemma 3.10 and Corollary 3.7.

In the following we present a sequence of undefinability results that follow from

the expressibility bounds obtained above (some of them have already been proved

in [19] using model-theoretic techniques).

Theorem 3.15. The closure of a single element is not first-order definable on the

class of finite groups.

Proof. By way of contradiction assume there exists an LG-formula ϕ(x, y) that

defines the closure of y. Assume qr(ϕ) = k. Let p ≥ 2k+3 be a prime. Let n = pq

for q > p is also a prime. Consider the two groups Zp and Zn. From Corollary

3.7, we have Zp ≡k+2 Zn. Then there exists an element g ∈ Zp\{0} such that

(Zp, g) ≡k+1 (Zn, q). The closure of g in Zp is the whole group whereas the closure

of q in Zn is a subgroup H ∼= Zp. Hence

Zp |= ∀xϕ(x, g) and Zn 6|= ∀xϕ(x, q)

qr(∀xϕ(x, y)) = k + 1 hence we get a contradiction since (Zp, g) ≡k+1 (Zn, q).

Theorem 3.16. Simplicity is not first-order definable on the class of finite groups.

Proof. By way of contradiction assume that simplicity is definable by a first-order

LG-sentence σ. Assume qr(σ) = k. Let p be a prime number such that p ≥ 2k+1.

Consider the groups Zp and Zp2. From Corollary 3.7 we have Zp ≡k Zp2. It can
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be easily checked that Zp is simple whereas Zp2 is not hence Zp |= σ and Zp2 6|= σ

which is a contradiction.

Theorem 3.17. Cyclicity is not first-order definable on the class of finite groups.

Proof. By way of contradiction assume that cyclicity is definable by a first-order

LG-sentence σ. Assume qr(σ) = k. Let p be a prime number such that p ≥ 2k+1.

Consider the groups G = Zp and H = Zp×Zp. From Corollary 3.8, we have G ≡k H .

It is easy to check that G is cyclic and H is not (since p and p are not coprimes),

hence G |= σ and H 6|= σ which is a contradiction.

Theorem 3.18. Nilpotency is not first-order definable on the class of finite groups.

Proof. By way of contradiction assume that nilpotency is definable by a first-order

LG-sentence σ. Assume qr(σ) < k. Consider the dihedral groups D2k and Dp·2k

where p > 2k is prime. From Theorem 3.14, we have D2k ≡k−1 Dp·2k. D2k is

nilpotent whereas Dp·2k is not (Dn is nilpotent if and only if n is a power of 2).

Hence D2k |= σ and Dp·2k 6|= σ which is a contradiction.

Theorem 3.19. The normal closure of a single element is not first-order definable

on the class of finite groups

Proof. By way of contradiction assume there is an LG-formula ϕ(x, y) that defines

the normal closure of y. Assume qr(ϕ) = k. Let p be a prime such that p ≥ 2k+3.

Consider the two groups Zp and Zp2. From Corollary 3.7 we have Zp ≡k+2 Zp2 ,

hence there exists g ∈ Zp\{0} such that (Zp, g) ≡k+1 (Zp2 , p). The normal closure

of g in Zp is the whole group and that of p in Zp2 is G ∼= Zp. Hence

Zp |= ∀xϕ(x, g) and Zp2 6|= ∀xϕ(x, p)
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qr(∀xϕ(x, y)) = k + 1, hence we get a contradiction.

3.9 Open Problems

The following are still open for further research.

1. Can the lower/upper bounds of n/2n on the quantifier rank of a distinguishing

sentence (for groups of residue classes and dihedral groups) be improved? We

have already shown that n is an optimal lower bound and we believe that the

upper bound is also optimal.

2. Can the upper bound of 5 on the number of object variables in a distinguishing

sentence be improved?

3. Investigate the complexity-theoretic consequences of these expressibility re-

sults.

4. Generalize the results to all finite groups (we have already started here with

dihedral groups).

5. Study the first-order expressibility of infinite groups.

6. Use other formalisms such as fixed-point logic, infinitary logics, second-order

logic, allowing for generalized quantifiers, etc.
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Chapter 4

Abstract Elementary Classes

4.1 Basic Definitions

Definition 4.1 (Abstract elementary classes). Assume a vocabulary τ . Let

K = (K,�
K

) be a partial ordering with domain K of τ -structures. Then K is an

abstract elementary class if it satisfies the following axioms.

1. Closure under isomorphism:

(a) LetM∈ K . Assume a τ -structure N such thatM∼= N , then N ∈ K .

(b) Let M1,M2,N1,N2 ∈ K . Assume fl : Ml
∼= Nl for l = 1, 2 such that

f1 ⊆ f2. If M1 �K
M2, then N1 �K

N2.

2. Refining the substructure relation: Let M,N ∈ K . If M �
K
N , then

M⊆ N .

3. Closure under Tarski-Vaught Chains: Let 〈Mi : i < δ〉 be an increasing con-

tinuous �
K

-chain of models from K , then

(a)
⋃

i<δMi ∈ K

(b) for every j < δ, Mj �K

⋃

i<δMi

(c) if for every j < δ, Mj �K
N for some N ∈ K , then

⋃

i<δMi �K
N
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4. Coherence: Let M0,M1,M2 ∈ K such that M0 �K
M2, M1 �K

M2, and

M0 ⊆M1, then M0 �K
M1.

5. Downward Löwenheim-Skolem axiom: There is a Löwenheim-Skolem number

for K denoted LSK(K ) which is the minimal cardinal κ such that for every

N ∈ K and A ⊆ N , there exists M ∈ K such that A ⊆ M �
K
N and

|M | = |A|+ κ.

The relation �
K

yields a natural notion of K -embedding f : M−→ N which

satisfies f(M) �
K
N .

Remark 4.1. 1. LetM,N ∈ K . Assume a K -embedding f : M−→ N . Then

by Definition (4.1).2, f is an isomorphism fromM onto f(M), in other words

K -embedding refines the isomorphism function.

2. Assume M,N ∈ K such that M �
K
N . Let f be an automorphism of N .

LetM′ = f(M). Then by Definition (4.1).1 it must be the case thatM′ ∈ K

and M′ �
K
N .

Definition 4.2 (Amalgamation). 1. Let M ∈ K . We say that M is an

amalgamation base if for every M1,M2 ∈ K and for every �
K

-embeddings

fi : M −→ Mi for i = 1, 2, there is a model M∗ ∈ K called the amalgam

and �
K

-embeddings gi : Mi −→ M∗ for i = 1, 2 such that (g1 ◦ f1) ↾ M =

(g2 ◦ f2) ↾M.

2. We say that K has the amalgamation property (AP) if every M ∈ K is an

amalgamation base.
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In most applications of the AP we take M �
K
Mi, that is fi = id and we

take M∗ to be a �
K

-extension of either M1 or M2, that is either g1 or g2 is the

identity. In first-order model theory the AP follows directly from compactness and

it allows (along with the joint embedding property defined below) the identification

(in a suitable monster model) of a syntactic type (the description of a point by the

formulas it satisfies) with an orbit under the automorphism group of this monster

model [2].

Definition 4.3 (Joint embedding). We say that K has the joint embedding

property (JEP ) if for everyM1,M2 ∈ K there existsM∗ ∈ K and �
K

-embeddings

gi :Mi −→M∗ for i = 1, 2.

Assumption 4.1. Unless otherwise stated, we will always assume the following.

1. K has the amalgamation property.

2. K has the joint embedding property.

3. K has arbitrarily large models.

These properties imply that K has no maximal models.

Definition 4.4 (Model homogeneous). 1. Assume a cardinal λ > LSK(K ).

Let N ∈ K . We say that N is λ-model homogeneous if the following holds:

assume M,M′ ∈ K such that M �
K
M′ and |M |, |M ′| < λ, if there is a

K -embedding f :M−→ N , then there exists a K -embedding f ′ : M′ −→ N

such that f ⊆ f ′. We also allow M to be empty, hence any M′ ∈ K of

cardinality less than λ K -embeds into N .
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2. We say that N is strongly λ-model homogeneous if (i) N is λ-model ho-

mogeneous and (ii) for every M,M′ ∈ K such that M,M′ �
K
N , and

|M |, |M ′| < λ, if f : M ∼= M′, then f can be extended to an automorphism

of N .

Remark 4.2. Assume N ∈ K is strongly λ-model homogeneous for λ > LSK(K ).

Let M ∈ K be such that M⊆ N and |M | < λ. Then M�
K
N .

By repeated application of AP and JEP we can construct homogeneous mod-

els. In addition if K has arbitrarily large models, that is Assumption 4.1 holds,

we can construct a large strongly λ∗-homogeneous model called the monster. The

monster model has two properties: (i) it has power λ∗ where λ∗ is strongly inacces-

sible cardinal and (ii) it must be strongly λ∗-model homogeneous. The existence of

the monster allows us to assume that all models of power less than λ lie inside it.

We will denote the monster as C and will always assume working inside it.

Lemma 4.1 (Uniqueness of homogeneous models). Let N ,N ′ ∈ K such that

|N | = |N ′| = µ. Assume N ,N ′ are µ-model homogeneous, then N ∼= N ′.

Proof. Write N as the limit of a continuous �
K

-increasing sequence of mod-

els 〈Ni : i < µ〉, where |Ni| < µ. Similarly, write N ′ as the limit of 〈N ′
i : i < µ〉.

By a back-and-forth argument we define an increasing sequence of K -embeddings

〈fi : i < µ〉 whose limit is an isomorphism from N onto N ′.

Base case: ConsiderN0. By µ-model homogeneity ofN ′, there exists a K -embedding

f0 : N0 −→ N ′.

Odd successor stage: Let α = β + (2k + 1) where β is a limit ordinal or 0 and k
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is a non-negative integer. Let γ = β + 2k. Assume fγ has been constructed with

M = dom(fγ) andM′ = ran(fγ) such thatM�
K
N ,M′ �

K
N ′, andNβ+k ⊆M.

Notice that f−1
γ is a K -embedding from M′ into N . We want to construct a K -

embedding fα from a small strong substructure of N into N ′ such that fγ ⊆ fα and

N ′
β+k ⊆ ran(fα). If N ′

β+k ⊆ M′, then we are done by letting fα = fγ. Otherwise,

by the downward Löwenheim-Skolem axiom find M′′ �
K
N ′ such that |M ′′| < µ

and
(

M′ ∪ N ′
β+k

)

⊆M′′. We have M′ �
K
N ′, M′′ �

K
N ′, andM′ ⊆M′′ (since

both are included in N ′), hence by the coherence axiom we have M′ �
K
M′′. By

µ-model homogeneity of N , f−1
γ can be extended to a K -embedding h : M′′ −→ N .

Let fα = h−1.

Even successor stage: Let α = β+2k where β is a limit ordinal or 0 and k is a positive

integer. Let γ = β + (2k− 1). Assume fγ has been constructed withM = dom(fγ)

andM′ = ran(fγ) such thatM�
K
N ,M′ �

K
N ′, and N ′

β+(k−1) ⊆M′. We want

to construct a K -embedding fα from a small strong substructure of N into N ′ such

that fγ ⊆ fα and Nβ+k ⊆ dom(fα). The argument then is very similar to the odd

successor case.

Limit case: Let δ < µ be a limit ordinal. Then let fδ =
⋃

α<δ fα. Then by construc-

tion we have Nδ ⊆ dom(fδ) and N ′
δ ⊆ ran(fδ). Induction

Let fµ =
⋃

α<µ fα, then fµ : N ∼= N ′.

4.2 Examples of AEC’s

The following example is based on that given in Chapter 6 of [2].

96



Example 4.1. Let Q be the quantifier ‘there exist uncountably many’. Let ψ be a

sentence in Lω1ω(Q) in a countable vocabulary and let L∗ be the smallest countable

fragment of Lω1ω(Q) containing ψ (L∗ contains all the quantifier-free formulas and

is first-order closed). Define K = (K,�
K

) such that K is exactly the class of models

of ψ and for every M,N ∈ K , M�
K
N if the following hold:

1. M�
L∗ N (elementary substructure with respect to the language L∗)

2. for every L∗-formula ϕ(x, ȳ) and for every b̄ ∈ M , if M |= ¬Qxϕ(x, b̄), then

ϕ(M, b̄) = ϕ(N , b̄)

We will show that K is an AEC with Löwenheim-Skolem number ℵ1.

1. Assume M,N1,N2,N3 ∈ K . It is clear that M�
K
M, hence �

K
is reflex-

ive. Assume N1 �K
N2 �K

N3. This implies N1 �L∗ N2 �L∗ N3. Hence,

N1 �L∗ N3 by transitivity of �
L∗ . Let b̄ ∈ N1 and let ϕ(x, ȳ) ∈ L∗. As-

sume N1 |= ¬Qxϕ(x, b̄). Since N1 �K
N2, we have ϕ(N1, b̄) = ϕ(N2, b̄),

hence N2 |= ¬Qxϕ(x, b̄). Since N2 �K
N3, we have ϕ(N2, b̄) = ϕ(N3, b̄). So

ϕ(N1, b̄) = ϕ(N3, b̄). This indicates that N1 �K
N3, and therefore �

K
is

transitive. It is clear that �
K

is antisymmetric (since �
L∗ is). Hence, �

K
is

a partial ordering.

2. Let M,N ∈ K such that M�
K
N . Then M�

L∗ N , hence M⊆ N .

3. Assume M = 〈Mi : i < δ〉 is a continuous �
K

-increasing chain of models

from K . Let Mδ =
⋃{Mi : i < δ}.
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- By the definition of K , Mi |= ψ for every i < δ. Hence Mδ |= ψ,

therefore Mδ ∈ K .

- Fix some i < δ and let α be the least limit ordinal such that i < α ≤ δ.

It is clear thatMi �L∗ Mδ (using the Tarski-Vaught test). Let ϕ(x, ȳ) ∈

L∗ and assume b̄ ∈ Mi such that Mi |= ¬Qxϕ(x, b̄). BWOC assume

ϕ(Mi, b̄) 6= ϕ(Mα, b̄). Then ϕ(Mi, b̄) 6= ϕ(Mj, b̄) for i < j < α and j is

a successor ordinal. Given the choice of α, there are only finite number

of points between i and j. Hence, by transitivity of �
K

it must be the

case that Mi �K
Mj which is a contradiction. Therefore, ϕ(Mi, b̄) =

ϕ(Mα, b̄). Repeating this argument inductively overM, we can show that

Mi �K
Mδ.

- Assume some N ∈ K such that Mi �K
N for every i < δ. Then

Mi �L∗ N , hence by the Tarski-Vaught test and the continuity of the

chain we have Mδ �L∗ N . Assume Mδ |= ¬Qxϕ(x, b̄). Since M is

continuous, there exists α < δ such that ϕ(Mα, b̄) = ϕ(Mδ, b̄). Given

Mα �K
N , then ϕ(Mα, b̄) = ϕ(N , b̄). Hence, ϕ(Mδ, b̄) = ϕ(N , b̄) which

implies Mδ �K
N .

4. Let M1,M2,N ∈ K such that M1 �K
N , M2 �K

N , and M1 ⊆ M2.

It is easy to conclude the coherence of �
L∗ , hence M1 �L∗ M2. Let b̄ ∈ M1

and assume M1 |= ¬Qxϕ(x, b̄). Since M1 �K
N then ϕ(M1, b̄) = ϕ(N , b̄).

We have M1 �L∗ M2, hence M2 |= ¬Qxϕ(x, b̄) and given M2 �K
N we

have ϕ(M2, b̄) = ϕ(N , b̄). Therefore, ϕ(M1, b̄) = ϕ(M2, b̄) and M1 �K
M2.
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Hence K has the coherence property.

5. LSK(K ) = ℵ1 follows from: (i) L∗ is countable, (ii) downward Löwenhiem-

Skolem theorem for L∗, and (iii) the existence of the quantifier Q in the lan-

guage which asserts the existence of uncountably many realizations.

The following example is due to David Kueker.

Example 4.2. Let the vocabulary τ = {P} where P is a unary relation symbol.

Define K = (K,�
K

) as follows:

K = {M : |PM| = ℵ0 and |(¬P )M| ≥ ℵ0}

Let M,N ∈ K, then M�
K
N if

1. M⊆ N

2. PM = PN

It can be easily checked that K is an AEC. However, if �
K

is redefined to be

the regular elementary substructure relation �, then K will fail to be an AEC

because of the violation of the Tarski-Vaught chains axiom. Let 〈Mi : i < ℵ1〉 be

a �-elementary increasing chain of models from K , where at each step i, a new

element is added to PMi. Let M =
⋃

i<ℵ1
Mi, then |PM| = ℵ1, hence M 6∈ K .

4.3 Presentation Theorem

The presentation theorem allows us to replace the entirely semantic description

of AEC’s by a syntactic one [3]. It shows that every AEC can be represented as
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a pseudoelementary class omitting a set of types. This theorem has an important

consequence of allowing us to use the technology of Ehrenfeucht-Mostowski models

which plays a crucial role in proving results about AEC ′s especially under the

assumption of categoricity. The proof is basically a generalization of the Fräıssé

construction of countable structures.

Theorem 4.1 (Presentation theorem). Let K be an abstract elementary class

in vocabulary τ . Let κ be an infinite cardinal. Assume LSK(K ) = κ with |τ | ≤ κ.

Then there exists a vocabulary τ ′ extending τ with cardinality κ, a first-order τ ′-

theory T ′, and a set Γ of first-order pure τ ′-types (without parameters) with cardi-

nality at most 2κ such that

i.

K = {M′ ↾ τ :M′ |= T ′ andM′ omits Γ}

ii. let M′,N ′ be τ ′-structures such that

- M′ ⊆ N ′

- M′,N ′ |= T ′

- M′,N ′ omit Γ

then

M′ ↾ τ �
K
N ′ ↾ τ

Proof. Let

τ ′ = τ ∪ {F n
i : i < κ, n < ω and F n

i is an n− ary function symbol}
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Then τ ′ extends τ and |τ ′| = κ. Let T ′ = {∃xx = x}, that is the theory T ′ just

asserts that its models are non-empty. For any τ ′-structure M′ |= T ′ we always

assume the following partial interpretation of the new function symbols

∀n < ω : ∀ā ∈M ′, ā = 〈a0, . . . , an−1〉 : ∀ i < n : (F n
i )M

′

(ā) = ai

LetM ∈ K with |M| ≥ κ, letM′ be an arbitrary expansion ofM to a τ ′-structure.

Let n ∈ ω, let ā ∈ M ′ with |ā| = n. Let

M ′
ā = {(F n

i )M
′

(ā) : i < κ}

Notice that ā ∈ M ′
ā by the partial interpretation of the function symbols given

above. It is also important to notice that M′
ā may neither be a τ ′-structure nor

a τ -structure (τ may contain other functions). Let qf − tp(ā) denote the pure

τ ′-quantifier free type of ā. Let

Γ = {qf − tp(ā) : eitherM′
ā ↾ τ 6∈ K or for some b̄ ⊆ ā,

M′
b̄ ↾ τ 6�

K
M′

ā ↾ τ}

Since |τ ′| = κ, then |Γ| ≤ 2κ.

claim I: T ′ and Γ satisfy part (i)

proof of claim I: ⇐=: Let N ∈ {M′ ↾ τ : M′ |= T ′ and M′ omits Γ}, need to

show that N ∈ K . Let N ′ denote its τ ′ expansion. Since N ′ omits Γ, then for

every ā ∈ N ′ it is the case that N ′
ā ↾ τ ∈ K . Write N as the direct limit of all

these finitely generated subsets N ′
ā. Then by the union of chains axiom we have

N ′ ↾ τ ∈ K .
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=⇒ : LetN ∈ K . We need to show thatN ∈ {M′ ↾ τ :M′ |= T ′ andM′ omits Γ}.

We will construct N ′, a τ ′ expansion of N , such that N ′ |= T ′ and N ′ omits Γ. So

basically all we have to do is to get a proper interpretations of the functions F n
i .

Consider a finite A ⊆ N , we define by induction on |A|, �
K

- substructures of N .

Base case: let N∅ �K
N be arbitrary with |N∅| = κ. Let N ′

∅ be the τ ′ expansion

of N∅ by interpreting the function symbols in τ ′\τ as follows: let {(F 0
i )N

′
∅ : i < κ}

enumerate all the elements in N∅ and for every 0 < n < ω and i < κ interpret F n
i

arbitrarily. Since N ′
∅ ↾ τ = N∅ ∈ K , then N ′

∅ omits Γ.

Inductive step: Let B ⊆ N with |B| = n + 1. Let NB �K
N with |NB| = κ and

NB ⊇ NA for all A ( B (can find such NB by the Löwenheim-Skolem axiom).

Let N ′
B be the τ ′ expansion of NB by interpreting the function symbols in τ ′\τ as

follows: (i) let {(F n+1
i )N

′
B(B) : i < κ} enumerate all the elements of NB such that

the value of the function applied to any ordering of B has the same value, (ii) for

every n + 1 < m < ω and i < κ interpret Fm
i arbitrarily, and (iii) for m < n + 1

interpret Fm
i as given by the inductive hypothesis. Since N ′

B ↾ τ = NB ∈ K , then

N ′
B omits Γ. induction

Let N ′ be the direct limit of N ′
B for all finite B ⊆ N . Note that all the

symbols in τ ′\τ are interpreted in N ′. It is easy to see that N ′ is a τ ′ expansion of

N and N ′ omits Γ. ClaimI

Claim II: T ′ and Γ satisfy part (ii)

Proof of claim II: LetM′,N ′ be τ ′ structures such thatM′ ⊆ N ′ andM′,N ′ |= T ′

and M′,N ′ omit Γ. From part (i), we have M =M′ ↾ τ ∈ K and N = N ′ ↾ τ ∈

K . So we need to show M �
K
N . Write M′ as the direct limit of M′

ā for finite
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tuples ā ∈ M ′ (using (F n
i )M

′

). Since M′ omits Γ, Mā = M′
ā ↾ τ ∈ K and from

the proof of Claim I, Mā �K
M (by the union of chains axiom). Write N ′ as the

direct limit of N ′
b̄

for finite tuples b̄ ∈ N ′ such that for b̄ ∈ M ′ we have N ′
b̄

= M′
b̄

(this is true since M′ ⊆ N ′ hence for every i < κ, n < ω and for every c̄ ∈ M ′

such that |c̄| = n, (F n
i )M

′

(c̄) = (F n
i )N

′

(c̄)). Since N ′ omits Γ, Nb̄ = N ′
b̄

↾ τ ∈ K

and from the proof of Claim I, Nb̄ �K
N . So for every ā ∈ M , we have Mā ∈ K

and Mā �K
N hence by the union of chains axiom the direct limit of all Mā’s is

�
K

-substructure of N hence M�
K
N . ClaimII

4.4 Galois Types over Arbitrary Sets

Notation 4.1. 1. If X ⊆ C then X will denote C\X.

2. Let X ⊆ C. Then f ∈ AutX(C) means that f is an automorphism of the

monster that fixes X pointwise. If X = ∅, we just write f ∈ Aut(C).

3. Let f be a unary function. Let ā = (a0, . . . , an−1) ∈ C and let b̄ = (b0, . . . , bn−1) ∈

C. Then f(ā) = b̄ means that for every i < n, f(ai) = bi.

4. Let Z denote the ordered integers, Q the ordered rationals, and R the ordered

reals.

The following defines Galois types over arbitrary small subsets of the monster.

Definition 4.5. 1. Let ā ∈ C be a finite tuple. Define the Galois type of ā over
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A inside C as

tpg(ā/A) = {b̄ ∈ C, |b̄| = |ā| : there exists f ∈ AutA(C) such that f(ā) = b̄}

(4.1)

that is tpg(ā/A) is the orbit of ā under the pointwise stabilizer of A assuming

the action of the automorphism group of C.

2. Assume M ∈ K . Let ā ∈ M and A ⊆ M . Define the Galois type of ā over

A inside M as

tpg(ā/A,M) = {b̄ ∈M, |b̄| = |ā| : there exists f ∈ AutA(M) such that f(ā) = b̄}

(4.2)

that is tpg(ā/A,M) is the orbit of ā under the pointwise stabilizer of A as-

suming the action of the automorphism group of M.

Notation 4.2. 1. Assume A ⊆ C. Let Sn(A) denote the class of Galois-types of

arity n over A inside the monster. Let S(A) =
⋃

n∈ω Sn(A).

2. LetM∈ K . Assume A ⊆M . Let Sn(A,M) denote the class of Galois-types

of arity n over A inside M. Let S(A,M) =
⋃

n∈ω Sn(A,M).

Definition 4.6. Let p ∈ S(A). Assume q ∈ S(B) where A ⊆ B. We say that q is

an extension of p over B if for every a ∈ C, if a |= q then a |= p. In other words if

p = tpg(b/A) and a |= q then there exists f ∈ AutA(C) such that f(a) = b.

Example 4.3. Let K be the class of dense linear orderings without endpoints under

the elementary substructure relation. Then K is an AEC since it is first-order
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axiomatizable. Let a, b ∈ Q such that a < b. Then by the transitivity of Q we have

|S1(ab,Q)| = 3, namely, p1 = {x ∈ Q : x < a}, p2 = {x ∈ Q : a < x < b}, and

p3 = {x ∈ Q : b < x}.

Remark 4.3. Let K be an AEC. Let M,N ∈ K such that M �
K
N . Let

a ∈ M and A ⊆ M . It might be the case that tpg(a/A,M) 6= tpg(a/A,N ). This is

illustrated in the next example.

Example 4.4. Let τ = {R}, where R is a binary relation symbol. Let K be the

class of τ structures with �
K

taken to be the substructure relation. Clearly, K is

an AEC. Let M,N ∈ K such that the following hold:

1. M⊆ N

2. there are a, b ∈ M such that M |= R(a, b) and for every x, y ∈ M , M |=

R(x, y) implies that x = a and y = b

3. there exists c ∈ N\M such that N |= R(b, c) and N |= R(c, a) and for every

x, y ∈ N , N |= R(x, y) implies either (x, y) = (a, b) or (x, y) = (b, c) or

(x, y) = (c, a)

Then tpg(a/∅,M) = {a}, however, tpg(a/∅,N ) = {a, b, c} by the automorphism of

N that takes a to b and b to c and c to a.

4.4.1 Galois Splitting

Next we define the notion of splitting.
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Definition 4.7. 1. Let q ∈ S(B). Let A ⊆ B. Then we say that q does not

split over A if q ↾ A = q. Equivalently, we say that q ↾ A does not split over

B if q ↾ A has exactly one extension to a type over B.

2. Let p ∈ S(A). Let Z ⊆ p. We say that p does not self-split over Z if p has

exactly one extension to a type over A ∪ Z.

3. Let M ∈ K and let A ⊆ B ⊆ M . Let q ∈ S(B,M). Then we say that q

does not split over A inside M if q ↾ A = q. Equivalently, we say that q ↾ A

does not split over B inside M if q ↾ A has exactly one extension to a type

over B inside M.

4. Let M ∈ K and let A ⊆ M . Assume p ∈ S(A,M) and let Z ⊆ p. We say

that p does not self-split over Z if p has exactly one extension to a type over

A ∪ Z inside M.

Let p = q ↾ A and assume q\B 6= ∅. Assume that there exists an element

a ∈ B\A such that a |= p. Then p splits over B, even if q = p\B (p splits into at

least two types: q and tpg(a/B) which has a as its only element).

Assumption 4.2. In the following if p ∈ S(A) and p splits/does not split over B

then, unless otherwise stated, it will always be assumed that p ∩B = ∅.

Example 4.5. Back to Example 4.3. Let c ∈ Q. Consider the following three cases

for the relative position of c with respect to a and b and consider the type p2.

1. c < a: p2 does not split over c
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2. a < c < b: p2 self-splits over c into two types: p′2 = {x : a < x < c} and

p′′2 = {x : c < x < b}

3. b < c: p2 does not split over c

Example 4.6. Assume a language L = {E} where E is a binary relation symbol.

Let T be the first-order complete theory saying that E is an equivalence relation

with exactly two equivalence classes each has infinite cardinality. Let K be the class

of models of T with � as the strong substructure relation, then K is an AEC.

Assume the two classes in C are C1 and C2. Let A ( C1 and let a ∈ C1\A. Assume

p = tpg(a/A). Then clearly, p = C1\A. Assume b ∈ C1\(A ∪ {a}) and assume

d ∈ C2. Then

1. p does not self-split over b, that is tpg(a/Ab) = p\{b} = C1\(A ∪ {b}).

2. p does not split over d, that is tpg(a/Ad) = p.

4.4.2 Basic properties of splitting

The following theorem shows that non-splitting is invariant under isomor-

phism.

Theorem 4.2 (Invariance under isomorphism I). Let A ⊆ B ⊆ C. Let f ∈

Aut(C). Assume p ∈ S(A). Then p does not split over B if and only if f(p) does

not split over f(B).

Proof. Assume that p ∩ B = ∅. Assume p does not split over B, then we need to

show f(p) does not split over f(B). Let A′ = f(A), B′ = f(B), p′ = f(p).
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Claim I: p′ ∈ S(A′).

Proof of Claim I: Let a′, b′ ∈ p′ and let a = f−1(a′), b = f−1(b′), then a, b |= p, hence

there exists g ∈ AutA(C) such that g(a) = b. Consider the function h = f ◦ g ◦ f−1.

Then

A′ f−1

7−→ A
g7−→ A

f7−→ A′

hence h ∈ AutA′(C). And

a′
f−1

7−→ a
g7−→ b

f7−→ b′

so h(a′) = b′, hence a′, b′ realize the same type over A′. ClaimI

Since f is a permutation, p′ ∩ B′ = ∅.

Claim II: p′ ∈ S(B′) (hence p′ does not split over B′)

Proof of Claim II: Let c′, d′ |= p′ (from Claim I, we have p′ = tpg(c′/A′) = tpg(d′/A′)).

Let c = f−1(c′) and d = f−1(d′), then tpg(c/B) = tpg(d/B) since p does not split

over B, hence there exists h1 ∈ AutB(C) such tht h1(c) = d. Consider the function

h2 = f ◦ h1 ◦ f−1

B′ f−1

7−→ B
h17−→ B

f7−→ B′

so h2 ∈ AutB′(C)

c′
f−1

7−→ c
h17−→ d

f7−→ d′

so h2(c
′) = d′, hence c′, d′ realize the same type over B′. ClaimII

Now assume p′ does not split over B′, then need to show p does not split over

B. The proof is very similar to the previous direction.
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The following theorem shows that non-self splitting is invariant under isomor-

phism.

Theorem 4.3 (Invariance under isomorphism II). Let p ∈ S(A) and let B ⊆ p.

Assume f ∈ Aut(C). Then p does not self-split over B if and only if f(p) does not

self-split over f(B).

Proof. Let p′ = f(p). Assume p does not self-split over B, so we need to show p′

does not self-split over f(B). Let Z = A ∪ B and let Z ′ = f(Z) = f(A) ∪ f(B).

p does not self-split over B, hence p has exactly one extension to a type over Z,

let this type be q so q = p\B. Let q′ = f(q), then q′ = p′\f(B). By an argument

similar to that in Theorem 4.2, it can be shown that p′ ∈ S(f(A)). So it remains to

show that q′ ∈ S(Z ′) and hence q′ is the only extension of p′ to a type over Z ′. Let

a′, b′ ∈ q′, let a = f−1(a′), b = f−1(b′), then a, b |= q, hence there exists g ∈ AutZ(C)

such that g(a) = b. Consider h = f ◦ g ◦ f−1.

Z ′ f−1

7−→ Z
g7−→ Z

f7−→ Z ′

then h ∈ AutZ′(C).

a′
f−1

7−→ a
g7−→ b

f7−→ b′

so h(a′) = b′, hence a′, b′ realize the same type over Z ′.

Proof in the other direction is similar.

Theorem 4.4 (Monotonicity). Let p ∈ S(A). Let A ⊆ B. Assume p does not

split over B. Then p does not split over any Z such that A ⊆ Z ⊆ B.

Proof. Follows directly from the definition of non-splitting.
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However, non-self splitting is not monotonic as indicated by the following

example.

Example 4.7. Consider Example 4.3. Let c ∈ Q such that a < c < b. Let A =

{x : a < x ≤ c}. Then p2 does not self-split over A since it has exactly one extension

to a type over Aab, namely {x : c < x < b}. However, p2 self-splits over c ∈ A into

two types {x : a < x < c} and {x : c < x < b} hence non-self splitting is not

monotonic.

The following result shows a reflexivity behavior of splitting.

Theorem 4.5 (Reflexivity). Let p = tpg(a/A). Then p splits over b if and only if

p splits over any b′ |= tpg(b/A).

Proof. Let b′ |= tpg(b/A), then there exists f ∈ AutA(C) such that f(b) = b′. Let

a′ = f(a), then tpg(a/A) = tpg(a′/A). By Theorem 4.2, tpg(a/A) splits over b if and

only if tpg(f(a)/f(A)) splits over f(b) if and only if tpg(a′/A) splits over b′ if and

only if tpg(a/A) splits over b′.

Example 4.8. Consider the language L = {R, S1, S2} where R is a binary relation

symbol and each of S1 and S2 is a unary relation symbol. Let T be a first-order

complete theory that contains the following sentences

1. T does not have finite models

2. S1 contains exactly two elements

3. S2 contains exactly two elements
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4. there are exactly 4 elements x0, x1, y0, y1 such that the following hold

- S1(x0) and S1(x1)

- S2(y0) and S2(y1)

- R(x0, y0) and R(y0, x1)

- R(x1, y1) and R(y1, x0)

- R is interpreted on the remaining elements (all elements except x0, x1, y0, y1)

as a scattered linear ordering with a left endpoint and no right endpoint

(so for countable structures this is simply the order type of the natural

numbers)

- The above is exactly the interpretation of R.

Let K be the class of models of T with �
K

taken to be the the elementary sub-

structure relation, then K is an AEC. Let A ∈ K , let a0, a1, b0, b1 ∈ A be the

interpretations of x0, x1, y0, y1 respectively. Let A′ = A\{a0, a1, b0, b1}. Clearly, A′

is rigid, that is for any automorphism f of A, f fixes A′ pointwise. Note also that

(A′ ∩ SA
1 ) = ∅ and (A′ ∩ SA

2 ) = ∅. Let p1 = tpg(a0/∅,A) and p2 = tpg(b0/∅,A).

Then p1 = {a0, a1} and p2 = {b0, b1}, all witnessed by an automorphism f of A

where f(A′) = idA′ , f(a0) = a1, f(a1) = a0, f(b0) = b1, f(b1) = b0.

Claim I: p1 splits over b0

Proof of Claim I: Assume p1 does not split over b0, so there exists f ∈ Autb0(A)

such that f(a0) = a1. Hence R(a0, b0) implies R(f(a0), f(b0)) = R(a1, b0) which is

a contradiction. ClaimI
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By a similar argument can show that p1 splits over b1 |= tpg(b0/∅).

Corollary 4.1. Assume tpg(a/A) does not split over b. Then tpg(a/A) does not

split over tpg(b/A). Hence, tpg(a/A) = tpg(a/A ∪ tpg(b/A)).

Proof. Let tpg(b/A) be enumerated as B = 〈bi : i < κ〉. We prove the conclusion

by induction over α < κ.

Base case: tpg(a/A) does not split over b, hence by Theorem 4.5, tpg(a/A) does not

split over b0.

Successor stage: assume tpg(a/A) does not split over 〈bi : i ≤ α〉, hence by the defini-

tion of non-splitting tpg(a/A) = tpg(a/A∪{bi : i ≤ α}). tpg(a/A) does not split over

b, so by Theorem 4.5, tpg(a/A) does not split over bα+1, hence tpg(a/A∪{bi : i ≤ α})

does not split over bα+1, then tpg(a/A) = tpg(a/A ∪ {bi : i ≤ α+ 1}), tpg(a/A) does

not split over 〈bi : i ≤ α + 1〉.

Limit stage: Let δ < κ be a limit ordinal and assume that tpg(a/A) does not split

over 〈bi : i < δ〉, hence tpg(a/A) = tpg(a/A ∪ {bi : i < δ}). tpg(a/A) does not split

over b, hence tpg(a/A) does not split over bδ, hence tpg(a/A ∪ {bi : i < δ}) does not

split over bδ, hence tpg(a/A) does not split over 〈bi : i ≤ δ〉. Induction

The following several results show some compactness behavior of splitting.

The first one is a direct consequence of the reflexivity property.

Lemma 4.2. Let B ⊆ tpg(b/A). Assume tpg(a/A) splits over B. Then tpg(a/A)

splits over b.

Proof. Assume that tpg(a/A) does not split over b, then by Corollary 4.1, tpg(a/A)
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does not split over tpg(b/A), hence by monotonicity, tpg(a/A) does not split over B

which contradicts the hypothesis.

Lemma 4.3. Assume tpg(a/A) splits over Z. Assume that there exist two elements

in Z realizing the same type over A. Then tpg(a/A) splits over some Z ′ ( Z.

Proof. Let

Γ = {p ∈ S(A) : p is realized by some element in Z}

For every p ∈ Γ, assume some ap ∈ Z such that ap |= p (chosen arbitrarily from all

the elements in Z realizing p). Let Z ′ = {ap : p ∈ Γ}. There are two elements in Z

realizing the same type over A, hence Z ′ ( Z. Apply Corollary 4.2 for every type

in Γ with representative in Z ′, then we have tpg(a/A) splits over Z ′.

Then it directly follows.

Theorem 4.6. Let p ∈ S(A). Assume p splits over Z. Then p splits over B ⊆ Z

where every element in B realizes a unique type in S(A).

Next we define the notion of stability.

Definition 4.8 (Stability). Let κ be an infinite cardinal. We say that K is κ-

stable if for every A ⊆ C such that |A| ≤ κ, it holds that |S(A)| ≤ κ.

Assuming stability we can get a stronger compactness result where the cardi-

nality of the splitting set is bounded by the cardinality of the type domain. This is

given in the following theorem.
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Theorem 4.7. Assume K is µ-stable. Let p ∈ S(A) with |A| ≤ µ. Assume p

splits over Z. Then p splits over Z ′ ⊆ Z with |Z ′| ≤ µ.

Proof. If |Z| ≤ µ, then the conclusion trivially follows. So assume |Z| > µ. Let Z ′

be the set constructed in the proof of Lemma 4.3. K is µ-stable and |A| ≤ µ, so

|S(A)| ≤ µ, hence |Z ′| ≤ µ. By Lemma 4.3, p splits over Z ′.

The following result indicates that stability implies the existence of non-

splitting types.

Theorem 4.8 (Existence of non-splitting types). Assume K is µ-stable. Let

p ∈ S(A) with |A| = µ. Then there exists B ⊇ A with |B| = µ and q ∈ S(B) such

that q ↾ A = p and q does not split over any Z such that B ⊆ Z ⊆ C. (so p has an

extension that does not split over any subset of the monster)

Proof. By way of contradiction assume that the conclusion does not hold. We

will show that this contradicts the µ-stability of K . Let κ be minimal such that

2κ > µ. We will inductively construct a perfect binary tree of depth κ where each

node corresponds to a pair (r, A), where r is a type with domain A and |A| = µ.

Base case: Let (p0, A0) = (p, A) be the root of the tree.

Successor stage: Let α ∈ 2<κ and assume (pα, Aα) at the node corresponding to α

(|Aα| = µ and pα ↾ A = p). From our assumption, there exists Z ⊇ Aα such that

pα splits over Z, hence from Theorem 4.7, pα splits over Z ′ ⊆ Z with |Z ′| = µ. Let

r1, r2 be two types resulting from that splitting (r1, r2 ∈ S(Z ′)). Let (p
α∧0, Aα∧0) =

(r1, Z
′) and (p

α∧1
, A

α∧1
) = (r2, Z

′).

Limit stage: Let δ be a limit ordinal with |δ| < κ, let α ∈ 2δ and assume that
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for every i < δ, (pα|i, Aα|i) has been found at the node corresponding to α|i such

that |Aα|i| = µ and pα|i ↾ A = p. Let Aα =
⋃

i<δ Aα|i, hence |Aα| = µ. Let pα

be some extension of p to a type over Aα, hence (pα, Aα) corresponds to the node

α construction

Let A =
⋃

α<κ

⋃

ν∈2α Aν , then |A| = µ. Hence we can extend each pν to a type over

A. Then |S(A)| > µ which contradicts the µ-stability of K .

4.5 Open Problems

In the future we plan to pursue several research paths:

1. Getting a deeper understanding of the splitting relation defined above and see

whether a well-behaved independence relation can be defined based on it.

2. Based on the previous point, trying to develop a dimension theory for AEC’s

starting with strong assumptions such as adding some sort of syntactic com-

ponent to the definition of the class.

3. Investigate infinitary logic characterization of AEC’s.

4. Assume K has the amalgamation property (AP ) at the cardinal κ, does that

imply K has AP at κ+ (upward transfer of amalgamation)? Is there a Hanf

number for amalgamation, that is, a threshold cardinal after which the answer

to the first question changes?

5. Studying the difference in behavior between AEC’s that are well-founded (do

not contain infinite descending chains) and those that are not.
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6. Studying the implications of the existence of a prime model (or prime over a

set) in K .

7. Investigating the conjecture: if K is χ-tame, then K is χ′-tame for some

χ′ < Hanf(K ).
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