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The class of deterministic one-dimensional cellular automata studied recently by Wolfram are considered. We represent a
state of an automaton as a probability distribution of patterns of a fixed size. In this way information is lost but it is possible to
approximate the stepwise action of the automaton by the iteration of an analytic mapping of the set of probability distributions
to itself. Such nonlinear analytic mappings generally have nontrivial attractors and in the most interesting cases (Wolfram
Class III) these are single points. The point attractors under appropriate circumstances provide good approximations to the
frequencies of local patterns gencrated by the discrete rules from which they were derived. Two appropriate settings for such
approximation are transient patterns generated from random starts and patterns generated in a noisy environment. In the case
with noise, improvement is found by correction of the analytic mappings for the effects of noise. Examples of both tyvpes of

approximation are considered.

1. Introduction

Since the pioneering work of von Neumann
[7, 8] on cellular automata it has been recognized
that such systems provide an interesting and pro-
vocative approach to problems of high complexity.
As noted by Wolfram [10, 11}, cellular automata
have been used to model a variety of systems in
physics, chemistry, and biology. One of the imped-
iments to progress in this area is the lack of a
generally applicable and tractable global theory of
cellular automatons which will allow the predict-
ion of “macroscopic” properties or “average” be-
havior.

In his original investigations von Neumann
[7, 8] envisioned a theory of cellular automata
which would incorporate elements of the theory of
algorithms, information theory, and thermody-
namics. Wolfram [10} has recently discussed the
“thermodynamic” and statistical aspects of a class
of relatively simple cellular automatons. Both local
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and global properties of states generated by re-
peated application of the automaton rules are con-
sidered. Local properties refer to aspects of a
single state or time sequence of states whereas
global properties refer to ensembles of states. Un-
der local properties Wolfram considers the densi-
ties of zeroes and ones which develop in a state for
short or long times and also the correlations which
develop between sites in a state during time evolu-
tion. It is pointed out however that these are
inadequate measures because “Individual con-
figurations appear to contain long sequences of
correlated sites, punctuated by disordered regions”.
This leads to the consideration of the frequency of
occurrence of various length runs of constant value
(0 or 1) within a state. Such runs correspond to
triangular structures within a time sequence of
states. Formulas are derived in important cases
using the concepts of self-similarity and fractal
dimension. A somewhat complementary approach
to local structure which is especially useful in the
limit of long times has been pioneered by
Grassberger [4] who shows many nonaddititive
rules may be understood as the local operations of
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additive rules with moving boundaries of “kinks”
between them. The boundaries are governed by
diffusion laws. In discussing global properties
Wolfram assumes the state size, N, large and
considers the states of a cellular automaton iden-
tified with the 2" binary numbers or sequences of
zeroes and ones of length N. With a periodic
boundary condition each elementary automaton
rule defines a self mapping of the set of states.
Such concepts as the ergodic nature of the
mapping, its entropy, and its irreversibility are
investigated. By repeated application of the au-
tomaton rule one may, for finite N, obtain an
equilibrium distribution of states which defines an
attractor for the mapping and a set on which it is
reversible. Related concepts when N = oo have
been considered by Farmer [2, 3], Waterman [9],
Grassberger [5], and Lind [6].

The discussion we present is concerned with the
category of local properties. Qur objective is to
develop a statistical theory to predict the patterns
of length k (some fixed k) that may develop when
an automaton evolves from some initial state. If
the initial state is random the patterns that de-
velop provide evidence of the self-organizing abil-
ity of such systems (see Wolfram [10]). Akin to
this are the local state patterns that develop when
such an automaton evolves in a noisy environ-
ment. In both cases one can hope for a tractable
statistical theory of patterns. Both cases also ap-
pear relevant to biological systems which on the
one hand convert relatively disordered environ-
ments into ordered structures and on the other
persist as ordered structures in the environment in
the face of ambient noise. The patterns considered
by Wolfram [10] which are either strings of zeroes
or strings of ones and which relate to triangular
structures are a special case of the general patterns
we wish to consider. Qur discussion will be limited
to the simple one-dimensional automatons consid-
ered by Wolfram, but the same methods are appli-
cable in a much broader context. In section 2 we
define the analytic mappings which approximate
aspects of the local behavior of the automata. It is
found that in important cases the fixed point at-
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tractors of the mappings may be associated with
patterns at various levels. In section 3 examples of
the application of this technique are given.

2. The analytic mappings

We restrict our attention to the class of one
dimensional automatons considered by Wolfram
[10]. Any cell is required to have a state in the set
B = {0,1} of binary digits. A rule is any mapping
R: B?— B. Thus there are 2* different rules corre-
sponding to the decimal numbers 0 to 255 and
following Wolfram [10] we shall employ these
numbers to represent the corresponding rules. For
any positive integer k a k-tuple is any element of
B* written (i}, i, ..., i, ). Corresponding to a given
rule R there is a function r defined on the set of
all k-tuples, k>3, which maps a k-tuple to a
k — 2 tuple. The function r is defined by

riy, iy, i) =(R(iy, iy, i3)

R(iz’ i3,i4),"‘vR(ik—Z’ik—l’ik))‘ (1)

For any k-tuple there is a circularizing function ¢
defined by

c(iyyigyennsip)=C(ig,igringenr,ip,iy). (2)

To define a cellular automaton we need the rule R
(and thus r) and a fixed positive integer N. The
cellular automaton a(R, N) is then the composite
mapping r- ¢ restricted to act on N-tuples. Any
N-tuple is a possible state of a(R, N) in this
context and a(R, N) is a self-mapping on the set
BV of states. It is of course possible to have
N = oo with a slight change in notation but this
will not be necessary for our purposes.

Now we are interested in local patterns that may
occur in a state. Such a local pattern is a k-tuple
where k is generally much smaller than N. We
shall refer to such k-tuples for small k as k-pat-
terns. Define, for any positive integers m and ¢,

S(m,q)=[(g+m—=1)mod N] + 1. (3)

-~
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Then S(m, -) is a shift operator which will shift
the indices of a state, i.e. an N-tuple, m positions
on the circle. We say a k-pattern (i, i,,...,1;)
occurs in a state (j,, j,,..., j,) iffl (if and only if)
there 1s some m > 0 with

iqzjs(m,q)’ 1§q§k' (4)
There are 2% different k-patterns and it will be
convenient to define the k-pattern S(d) by

S(d)="(i1,ip--sis),

k-1

5

d_lzz,‘(“l)*zq’ ()
q=0

for each d, 1 <d < 2*.

We wish to think of the set of k-patterns
(S(d))%-, as the set of states for a Markov pro-
cess. If an automaton a(R, N) acts on a state we
cannot circularize a k-pattern occurring in this
state and then apply r to see what k-pattern it will
transform to in the subsequent state. To predict
accurately its transformation we must know the
values in the cells on either side of the k-pattern.
For any k-pattern there are four possible exten-
sions which may be written as

e(jl’ j2)(il’ | PYRUI ik) = (j1’ PO PN S jz)-

(6)

If we know exactly which extension, say e(j;, j,),
a given k-pattern S(d) has in a state then we
know S(d) will transform to r(e(j;, j,)S(d)) after
one iteration of a(R, N). If we do not know which
extension is correct for S(d) but only that e( j, j,)
occurs with probability ¢(j,, j,, d), then
q(jy» j, d) is the probability that pattern S(d)
undergoes a transition to r(e(j,, j,)S(d)). Then
the matrix A4 defined by

Ad,d'=

Y A{4(ir, o, d)S(d’) = r(e( s, j)S(d))} (7)

is the transition matrix for the discrete Markov

A P 1hh I et

process which models k-pattern transitions under
iteration of the automaton. Strictly speaking the
transition probabilities for a given pattern depend
in some complicated way on the patterns in the
same location for previous states. Thus the process
1s a stochastic process more complicated than we
represent. Qur purpose is to ignore this complica-
tion and investigate the adequacy of the mathe-
matically much more tractable Markov model.
Even for the Markov model the numbers
q(j,, J,» d) will change with the state so that we
are not dealing with a stationary Markov process.
Without regard to the precise values of the
q(Jj,» j» d), if we assume they are all nonzero, the
maximal transition diagram between patterns is
determined. Let us call such a diagram of allowed
transitions between patterns a maximal diagram.
A maximal diagram gives information about tran-
sient states, ergodic classes, and the exclusion of
certain kinds of transitions. This already provides
some insight into how patterns can develop locally
in states. Fig. 1 shows several maximal diagrams
for Markov processes associated with patterns of
size k = 3. The diagram for rule 50 shows there is
one ergodic class of size 2 which insures the ex-
istence of certain alternating patterns in successive
states. From the diagram for rule 222 we can
deduce that beginning with any state having some
1’s, iteration will produce blocks of ones separated
at most by isolated zeroes. The rules 122 and 126
are closely related. The maximal diagram for rule
122 shows that all eight states form an ergodic
class. The diagram for rule 126 shows that pattern
010 is transient and completely disappears after a
single iteration. Of the eight patterns of length
three on which rules 122 and 126 are defined, they
only differ on 010. Thus after one iteration 126
will produce a state on which 122 and 126 would
produce identical results for any number of sub-
sequent iterations. We shall discuss the relation
between rules 122 and 126 further in the next
section.

We take up now the question of how the
q(jy» J», d) are to be determined. If all g( i, j,, d)
are set equal to 1/4 then the Markov process is an
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Fig. 1. Maximal diagrams for 3-pattern transitions for the automaton rules 50, 122, 126, and 222. See text for discussion.

accurate description of the pattern transitions that
occur when the automaton is applied for one
iteration starting with a random state (zero or one
has been randomly and independently assigned to
each cell with equal probability). After one appli-
cation of the automaton the state is seldom any
longer random; to perfectly predict k-pattern
transitions we therefore require knowledge about
extensions to k -+ 2-patterns. Essentially we re-
quire information about k + 2-patterns at one step
to produce information about k-patterns at the
next step. Our thesis is that in fact k-pattern
information at one step will generally work very
well in predicting k-patterns at the next step. We
assume that k-pattern information is given in the
form of a probability distribution { pS(d)}2.,

1t f st phh " o

where pS(d) is the probability of the pattern
S(d). Then

Pl(fl? iyigseens i 1) =p (s iy igyeeey i q)

/(P (0, iyigennsif ) +p(1, isiyseeriko))s
)

Pe(dasigsigeeenyiy) =plissizyenisipy j)
/(pliy,igye.yif,0)+p(iy, is,..., iy, 1)),

are, respectively, the conditional probability of
extending (i, i,,...,i,_;) one cell to the left to
(J1» iy i95- -+, ix_y) and the conditional probability
of extending (i, is,..., ;) one cell to the right to
(igyiss.eeyiyy jo). Thusif S(d)=(i}, i,,...,0,) we




W. J. Wilbur et al. / Local patterns in cellular automata 401

may set

q(jis Jord) =p (s insigenipy)
'pr(jz;il’iB""’ik)' 9

The approximation involved here is that j, is
predicted on the basis of i}, i,,...,i,_, and any
additional information i, and j, might supply is
ignored and a similar statement applies to the
prediction of j,. The additional information noted
here can be quantified in terms of standard for-
mulas of information theory (see Billingsly [1]). As
such it gives some insight into the goodness of the
approximations we are making. It generally de-
creases with increasing k and examples will be
considered in the next section.

The formula (9) defines the matrix 4 and if
P={pS(d))%_, is the probability distribution
vector, then we show the dependence of 4 on P
by writing A(P). The transition matrix A(P)
acting on the vector P gives the distribution vector
at the next step, i.c.

P'=F(P)=A4(P)(P) (10)

defines the function corresponding to action of the
automaton. In order for F to have desirable prop-
erties, care must be taken in properly choosing its
domain. The difficulty arises because the condi-
tional probabilities defined in (8) can have an
indeterminate value, i.e. can be a quotient of zeroes.
We arbitrarily introduce a convention to deal with
this:

If the denominator of a conditional prob-
ability defined in (8) is zero, then the
conditional probability shall assume the
value of zero.

(11)

Now let H denote the compact subset of 2% dimen-
sional Euclidean space consisting of all k-pattern
probability distribution vectors P which have non-
negative terms and sum to one. The function F
has two problems on H. First, at some points in H
the image under F is not again in H because its
components do not sum to one. This happens

PUPRP IO

when for some k-pattern S(d) with pS(d)> 0,
q(Jy- j»»d) =10 for all four possible extensions of
S(d). The second difficulty is that F is not con-
tinuous on H. This occurs because F maps any
point in H all of whose coordinates are nonzero
again to a point in H. However, points all of
whose coordinates are nonzero can be found arbi-
trarily close to those points in H which F maps
outside of H. Thus F is discontinuous at all such
points mapped outside of H. These related prob-
lems can be circumvented by choosing a subspace
of H which satisfies a simple consistency condi-
tion. This condition asserts that given a k-pattern
distribution P, the two methods of calculating the
probability of any k — 1-pattern from P must
yield the same result. This condition is defined by
the set of equations

JA(US RYPYRRS P 5 10 U P00 PYSSY Y
=p(isigyeeasip1,0) +p(iy,igeeenyipoq,1),

(12)

one for each k~— l-pattern (iy,i,,...,0,_;). Let
HC denote the subset of H which satisfies the
equations (12). We shall show that F is a continu-
ous map of HC into itself. We first show that F
preserves (12). Let P be in HC and consider the
relation

P(’]w-w i) 'P:(sz [ PYN ik) =P1(0§ ..oy ik—l)
Py i) p(asigseensiy)
(i) iy ees i)

J G iz""’ik)' (13)

This is clearly true if the denominator of the p,
factors appearing on the right is nonzero. If the
denominator of the p, factors is zero then by (12)
it is true that p(ij,iy,..., i) =0 so that (13) is
satisfied in any case. Thus (13) holds for all distri-
butions satisfying (12). Now suppose we are given
a P satisfying (12). We wish to show P’ = F(P)
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also satisfies (12). By applying (13) we can write

P00y i )+ p (L deyiy)
ZZ{P(jls’"h---vmk—l)
*p (s myseesm Nr(Gymy,.o,my_y, Jy)
=(i1""’ik~l)}’
pliy,e i y,0)+p(iy,. ... 0 _q,1)
=Z{P1(j1; My, M)

«p(my,.omyy, jo)lr(nmy,...omy g, o)

=(il""vik—l)}' (14)

Here the summands on the right are the same
provided p.(j,; my,...,m,_) and p,(j;;my,...,
m, _,) have the same denominators but that is just
what is insured by (12). Thus (12) remains true
under the mapping F. Now

pliysennsiy) =Z{P1(j13 my,...,mg_y)
«p(my,...,m)* pj; my,...,m)l
’e(jl’ jz)(mh---’ mk) = (ip---’ ik)}'

(15)

Thus if the denominator of p, or p, converges to
zero in the summand then by (12) p(m,,..., m;)
must also converge to zero. It follows that a limit-
ing indeterminancy in either quotient p, or p,
does not lead to indeterminancy in the limit of F
and F, based on (11) where necessary, therefore
preserves probability and is continuous on HC.
Thus F is a continuous mapping of HC into itself.
We may now apply the Brower fixed point theo-
rem to F to see that F must have a fixed point in
HC. To locate fixed points we have found it gener-
ally sufficient to choose a point in HC and iterate
the function F. After a few iterations the behavior
is usually clear. Oscillations are possible but gener-
ally iterations yield a fixed point. In many interest-
ing cases what appears to be a unique stable fixed
point, P, is found. The distribution P, provides
an approximation to the distribution of patterns
produced by the automaton in two important cases.
First, starting with a randomly determined state

At s St L I ot

and iterating the automaton on this state, one
generally passes through a sequence of transients
whose distribution of length k patterns come very
close to P, rather early and then move slowly away
as longer range correlations (> k) gradually build
up in the successive states. Second, if a certain
level of noise is applied to the state of a cellular
automaton after each iteration then long range
patterns are broken up and the distribution of
length k patterns that develops after a few itera-
tions is approximated by P,. Generally there is a
range of noise where the approximation is quite
good. For lower noise levels patterns of length
greater than k come to predominate and tend to
decrease the accuracy of the approximation. For
higher levels of noise the patterns of length k are
themselves progressively destroyed. This high noise
error can be corrected for by a modification of eq.
(10).

In order to correct for the effect of noise in eq.
(10) we introduce noise as a continuous time
Markov process active for unit time between each
iteration of the celtular automaton. Specifically we
assume that when noise is applied at a level A to
an automaton, then between each iteration each
cell of the automaton has its value switched by
noise events with an incoming Poisson rate A.
Such noise is to act for a unit time period and is to
act on each cell independently of what happens to
any other cell. Then if p, and p, are the probabil-
ities of zero and one in a cell, the flow due to noise
between zeroes and ones is governed by
dTpt'Q=)\(P1"Po)’ 'ddltl'=)‘(170_1’1)~ (16)
When integrated for one unit of time the transfor-
mation is

l+e 1-e2

paty p) 2 24 a7
PlTH 1—e 2 1+e 2 [\ pT
2

To apply this transformation to a k-pattern distri-
bution P = { pS(d)}3., we must for each coordi-
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nate-position i, 1 i <k, apply (17) to each pair
of patterns which differ only at the ith coordinate.
This then produces the effect of the noise level A
acting at the ith coordinate position only and may
be represented as a matrix N, which acts on the
vector P. To produce the full effect of the noise
acting on the k-patterns, all N, 1 </ < k, must act
and the order is unimportant. The result may be
represented as a single transition matrix

N(A)=N,-N,- --- -N,. (18)

Since N(A) is the transition matrix produced by
the noise and it is supposed to be applied once
following each iteration of the automaton, the net
effect of automaton and noise for each iteration on
P may be written

PT+1=G(PT) = N(A)-A(PT)(PT). (19)

Again we may iterate G, given a particular initial
distribution P, in an attempt to arrive at a fixed
point P, of G. We generally have found a unique
nontrivial fixed point. Such a fixed point then
becomes an approximation to the distribution of
patterns produced by the automaton running with
the same level of noise, after the first few steps.
With the correction afforded by N(A) the ap-
proximation gets better the higher the level of
noise and is only limited by the statistical limita-
tions imposed by the finite size of the state which
is being compared with P,.

We close this section with a word about the
relation between the functions G and F. Because
N(A) is a continuous operator, if N(A) maps HC
into HC then G must be continuous and map HC
into HC because F has these properties. N(A) is
clearly a stochastic matrix. We only need show it
preserves (12). We use the fact that N(A) is a
product of all the N, 1<j<k, in any order.
Assume (12) is satisfied. Then for each j,2 <j <k,
we let N, act on the left side of (12) while N,_,
acts on the right side. The equations (12) are
preserved in successive applications because at
each stage (12) insures that equal quantities are

DA o e ot

being mixed and we know the mixing is in the
same proportions for each coordinate. Finally we
must let N, act on the left of (12) and N, on the
right. Neither of these operations changes the value
of the operand in this case because ali that is being
mixed is already present in the sum. In this way
N(X) has acted on both sides of (12) and it re-
mains valid. We conclude that (12) is preserved
under an application N(A). Thus G is a continu-
ous map of HC into itself.

Now we can show that the limit of fixed points
of G when A converges downward to zero is a
fixed point of F. It is clear from the Brower fixed
point theorem that for each A > 0, G has at least
one fixed point in HC. Let the set of fixed points
of G in HC be denoted by U,, A > 0. Let

V= U{U0 <A <p)
and (20)
C=n{V0<px1}.

Here ¥V, denotes the closure of ¥, and V, is always
a subset of HC because HC is closed. Because
HC is bounded all 17“ are compact. Further, any
finite number of ¥, have a nonempty intersection.
It follows from the finite intersection property that
C is nonempty. We claim that each element of C
is a fixed point of F. Any such point P, is arbi-
trarily close to a distribution which satisfies

P=N(\)-A(P)(P) (21)

for an arbitrarily small A > 0. Because all points
are in HC where F is continuous and (21) is
equivalent to

P=N(A)F(P) (22)

we must obtain P,= F(P,) as X goes to zero and
P converges to P..

3. Analysis of examples

While our results have general applicabilility we
shall limit our discussion to what Wolfram [10] has




404

Table 1

Survey of the legal rules

W. J. Wilbur et al. / Local patterns in cellular automata

3-Patterns
Wolfram  Ergodic classes in  Attractors of analytic mappings on JC without noise
Ruic Class transition diagram  (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1.0.1) (1,1,0) (1.1,1)
0 1 1 Trivial, p(0,0,0)=1
4 11 1,1 2-dimensional manifold of fixed points
18 111 7 0.327 0.143 0.199  0.044 0.143 0.100 0.044 0
22 I 8 0.285 0.143 0.097 0.090 0.143 0.044 0090 0.107
32 1 1 Trivial, p(0,0,0)=1
36 1 1 1-dimensional manifold of fixed points
SO 1 2 2-dimen. manifold with 1 fixed pt. & all others period 2
54 I 8 0273 0142 0094 0081 0142 0032 0081 0.155
72 1 1 2-dimensional manifold of fixed points
76 11 1,1, 1L1,1 3-dimensional manifold of fixed points
90 HI 8 0125 0125 0125 0125 0125 0125 0125 0.125
94 1 1 1-dimensional manifold of fixed points
104 11 1 Trivial, p(0,0,0) =1
108 11 1,1,1 2-dimensional manifold of fixed points
122 Hl 8 0160 0099 O 0160 0.099 0061 0160 0259
126 1I1 7 0160 0099 O 0160 0.099 0061 0160 0259
128 1 1 Trivial, p(0,0,0)=1
132 11 1,1 2-dimensional manifold of fixed points
146 111 7 0327 0143 0199 0044 0143 0100 0.044 0
150 I 8 0125 0125 0125 0125 0125 0125 0125 0125
160 I 1 Trivial, p(0,0,0) =1
164 1I 1 1-dimensional manifold of fixed points
178 11 2 2-dimen. manifold with 1 fixed pt. & all others period 2
182 I 7 0 0.044 0.100 0143 0044 0199 0143 0327
200 I 1,1,1,1 3-dimensional manifold of fixed points
204 II identity, each ele- (identity function)
ment a class
218 1I 1 1-dimensional manifold of fixed points
222 11 1,1 2-dimensional manifold of fixed points
232 1 1,1 2-dimensional manifold of fixed points
236 11 1,1,1,1 3-dimensional manifold of fixed points
250 I 1 Trivial, p(1,1,1)=1
254 1 1 Trivial, p(1,1,1)=1

termed “legal rules”. A “legal rule” R satisfies

i) R(0,0,0)=0;

i) R(iy, iy, i3) = R(i3, iy, ip)-
Condition i) asserts that the all zero states acts as a
“stable” ground state for any automaton based on
R while condition ii) is a symmetry property re-
moving any directional bias from the automaton.
There are thirty-two legal rules and we shall begin
with a survey of the legal rules which gives their
status according to Wolfram’s classification, the
sizes of ergodic classes in their 3-pattern maximal
transition diagrams, and describes the attractors of

PRSP

their corresponding 3-pattern analytic mappings
without noise. This information is contained in
table I. The three Wolfram [11] classes relevant to
our discussion are defined as follows:

Class I-“evolution leads to a homogeneous
state in which, for example, all sites have value 0;”

Class II —“evolution leads to a set of stable or
periodic structures that are separated and simple;”

Class III — “evolution leads to a chaotic pattern.”
The important observation here is the correlation
between Wolfram class, ergodic class size, and the
nature of the attractor:

-~
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Class I - there is always a single ergodic class of
size 1 and the attractor is trivial consisting of the
ground state (all zeroes) for rules 0, 32, 104, 128,
and 160 and the state of all 1's for rules 250 and
254;

Class 11 ~ there are one or more ergodic classes
of size 1 or 2 and the attractor is a 1, 2, or
3-dimensional set of fixed points for the analytic
mapping;

Class 111 - there is one ergodic class of 7 or 8
elements and the attractor is a single point which
is nontrivial, i.e., does not correspond to a single
state of the cellular automaton as it does for class I
automatons.

Our main interest is in the class III automatons
of which there are nine.

Based on their 3-pattern attractors we can di-
vide them into five groups:

group 1: [18, 146, 182]-18 and 146 have the
same attractor and the mirror image of their com-
mon attractor is the attractor for 182;

group 2: [22]—unique single point attractor;

group 3: [54] — unique single point attractor;

group 4: [122, 126] — common attractor;

group 5: [90, 150] — common attractor.

The significance of these groupings lies in the
predicted relatedness of local patterns produced
by automatons within each group. Rule 18 and
146 of group 1 have the same ergodic class of
seven elements which does not include the triplet
111. The two rules disagree only on 111, which is
transient, so that given a random starting state the
pattern 111 disappears after some finite number of
iterations. Thus 18 and 146 not only produce the
same local state patterns eventually but they also
eventually act identically on states to produce the
same dynamic pattern (see Wolfram [10, fig. 8]).
This explains the observation of Grassberger 5]
that rules 18 and 146 produce the same attractors
in the dynamical systems approach. Rules 146 and
182 are related to each other in that each can be
thought of as the photographic negative of the
other. Thus if 182 were given the photographic
negative of the input of 146, 182’s output would be
the photographic negative of the output of 146.
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Evidently 182 has the same kind of local structure
and constraints as 146. In group 4 rule 122 has an
ergodic class one larger than that of 126 but the
extra element 010 has a probability of occurrence
which decreases exponentially with time as 122 is
iterated. Because 122 and 126 agree except on 010
they have the same attractive point and with ran-
dom initial states produce the same local patterns
and the same dynamic sequence after 010 is
eliminated (again see Wolfram [10, fig. 8]). Because
010 is progressively eliminated in patterns gener-
ated by 122 starting with randomly determined
initial states, the element 010 behaves as a tran-
sient in this case and its inclusion in the ergodic
class as determined from the maximal diagram of
fig. 1 is misleading. This illustrates the limitations
of the maximal transition diagram representation.
The linear rules 90 and 150 of group 5 have the
same attractive fixed point. Because all compo-
nents of the fixed point are equal this suggests that
all 3-patterns are equiprobable for these automa-
tons. The same is true for patterns of any finite
length. Though the attractors are the same, rules
90 and 150 behave quite differently dynamically.

4. Empirical results

Up to this point we have assumed that the
attractive points of the analytic mappings provide
reasonable approximations to the pattern frequen-
cies of the corresponding automatons. To justify
such an assumption we must justify the approxi-
mation employed in constructing the analytic
mapping. As discussed in the previous section, for
a k-pattern analytic mapping the approximation
should be good if the prediction of a cell at
position i based on the k—1 cell values to its
right (left) is only improved by a small amount by
including the next two cell values to the right (left)
of position i+k—1 (i—k+1). We need only
consider elements to the right because of symme-
try. The improvement in prediction may be calcu-
lated in bits of information. Such a calculation
may be made in any situation where one wishes to
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employ the analytic approximation. One situation
where we wish to employ the approximation is in
the transient generation of patterns by automatons
iterated on randomly determined initial states. We
have computed the relevant information in bits for
k=2,..., 8 for this problem and a representative
sample is shown in table II. For each group an
automaton was chosen (the results are identical
within a group) and started on a randomly con-
structed (0 and 1 equiprobable) initial state of
length 1000 and iterated 500 times and then the
tuple counts for various pattern sizes were sum-
med for the next 50 iterations. These counts then
provided the data from which the incremental
information was computed. The increments in in-
formation are generally small though group 3 (rule
54) for k of 2 or 3 is somewhat of an exception.
The trend is progressively downward for increas-
ing k. Note in this regard that for a given automa-
ton the sum of all figures for odd or for even k
must total less than 1 (i.e., there is at most one bit
of information to be determined). Group S pre-
sents a special case in that all patterns of any given
length should be equiprobable and hence incre-
mental information should be zero for all k. A
slight departure from zero for larger k simply
reveals the effect of the finite number of cells
counted. It provides a check on the method and

Table IT

The information increment which influences the analytic ap-
proximation for k-patterns, k=2,...,8, for the five groups of
class III automatons. See text for the method of calculation
employed here.

Group
k 1 2 3 4 5
2 0.076 0.023 0.369 0.136 0
3 0.060 0.024 0.410 0.074 0
4 0.034 0.012 0.062 0.057 0
5 0.027 0.014 0.050 0.032 0
6 0.016 0.014 0.051 0.026 0.001
1 0.012 0.012 0.029 0.015 0.002
8 0.008 0.013 0.019 0.012 0.003
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suggests the level of error introduced into the
values for other groups because of finite sample
size. Because of the special status of group 5 with
zero incremental information, the analytic ap-
proximation should be perfect with the only error
in pattern frequencies arising from the finite lengths
of states. No additional analysis of group 5 from
this approach is of interest and we shall not con-
sider group 5 further in our discussion.

The results in table II suggest the analytic map-
pings should provide a good approximation to the
frequency of different patterns in the states of
cellular automata. The fixed points are limits and
should approximate limiting pattern distributions
in the cellular automatons seen after an initial
period of iteration. To illustrate this effect we have
performed a transient analysis for rules 18, 22, 54,
and 122 which are representative of the first four
groups. This is shown in fig. 2. For each rule a
state of length 1000 was used and 2000 iterations
were performed. For each of the first 200 iterates
and at multiples of 200 thereafter the sum of the
absolute values of the differences between the 3-
pattern frequencies predicted by the fixed points
of table 1 and the observed 3-pattern frequencies
for the automata were computed. The maximal
value of such a sum of absolute values is 2. These
values were then divided by 2 and converted to
percents to represent the percentage of patterns
misclassified by the fixed point approximations.
Each curve shown represents the average of 100
such transient calculations and the dotted curve is
the standard deviation of the 100 different per-
cents computed at the different iteration numbers.
The wvalues at zero iterations represent the
difference between the fixed point predictions and
random starting states which have not been acted
on by the automaton. As such these values provide
a standard by which to judge the goodness of the
approximation. A general pattern of behavior is
seen in which the pattern frequencies rapidly ap-
proach the fixed point predictions and then move
slowly away. The movement away is explained by
the development of significant dependencies over
distances greater than that encompassed by 3-pat-
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terns. Such long range dependencies require time
to develop and even when they do the approxima-
tion of 3-pattern frequencies by the analytic at-
tractors remains much better than random. The
figures in table II were calculated between 500 and
550 iterations so that they represent the situation
after long range correlations have become quite
well developed. In this regard the relatively large
error predicted in table II, group 3 (automaton
rule 54), k = 3 is confirmed in fig. 2 for rule 54 for
500-550 iterations. While fig. 2 is based on 3-pat-
terns, little change is seen with larger patterns
except as pattern size increases, the minima in the
curves is seen at progressively higher iteration
numbers.
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While the transient analysis shows a close rela-
tionship between the analytic point attractors and
the local pattern frequencies that are produced
when an automaton is iterated, it also reveals that
long range correlations develop that tend to de-
stroy this correspondence. For a cellular automa-
ton running in a noisy environment such long
range correlations tend to be destroyed and the
higher the level of noise the shorter the range of
correlations that can develop. This suggests we
may find the analytic attractors to be even better
approximations to the local pattern frequencies
produced by cellular automatons operating in a
noisy environment. We have found such a correla-
tion by two different methods of approximation.
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Fig. 2. The deviation of actual 3-pattern frequencies from those predicted by the fixed point attractors for the rules 18, 22, 54, and
122. The average deviation (solid curves) and the standard deviation of deviations (discrete points) are based on a simulation of 100

trials whose details are explained in the text.

g VA s e o A




408 W.J. Wilbur et al. / Local patterns in cellular automara

The methods are complementary, one working for
very low levels of noise and the other for higher
levels of noise.

Approximation 1: The fixed point of the analytic
10-pattern mapping is computed and by summing
appropriate terms 3-pattern frequencies are com-
puted and used to approximate 3-pattern {requen-
cies of the automaton in an environment with low
levels of noise.

Approximation 2: The attractor of the analytic
3-pattern mapping with noise is computed and
used to approximate 3-pattern frequencies of the
automaton in a noisy environment.

In making the approximations here the cellular
automaton is assumed to have run for a sufficient
length of time to equilibrate with the effect of the
noise in the environment. Curves showing the per-
cent error (computed as in fig. 2) by approxima-
tions 1 and 2 (dotted curves) for 3-patterns at
different levels of noise for rules 18, 22, 54, and
122 are shown 1n fig. 3. States of length 2000 were
used and each automaton was run for 500 itera-
tions without noise and then for 200 iterations at
each noise level and then 3-patterns were counted
over five successive iterations to produce the
observed 3-pattern frequencies. With low levels of
noise relatively long range correlations are possible
and the analytic 10-pattern attractor (fixed point)
provides for such correlations and allows an accu-
rate prediction of the 3-pattern frequencies in the
state of the automaton. As the noise level increases
to a A of between .01 and .05 the longer range
correlations begin to be destroyed and approxima-
tion 1 degrades. It is in this region that approxi-
mation 2, which ignores long correlations, begins
to become useful. The only factors preventing the
approximation 2 from being perfect are correla-
tions at a longer range than 3-patterns and the
finite length of the automaton state. As the noise
level increases the patterns of length greater than
three are progressively destroyed so that the ap-
proximation improves and is only limited by the
state length. In our calculations we count five
successive states for a total of 10,000 cells to
obtain the frequencies of the different 3-patterns.

e a1 o it

Simulations we have performed show that this
introduces a variance due to finite length on the
order of 1% so that the approximations are close
to the theoretical limit at the extremes in the noise
levels. An excellent approximation over all noise
levels can be obtained by combining the two meth-
ods, i.e., essentially using approximation 1 but
with the 10-pattern mapping replaced by the 10-
pattern mapping with the appropriate level of
noise. This however entails much more calculation
(determination of the 10-pattern attractor for each
noise level) and also does not allow the illustration
of the effect of different factors on the approxima-
tion.

We only display results for rules 18, 22, 54, and
122 in fig. 3. However, when noise is applied at
any level greater than zero the limiting local pat-
tern frequencies produced by, for example, 18 and
146 become distinct and likewise for any pair of
automatons employing different rules. In such a
case no pattern is transient and any pattern on
which two rules disagree will occur in any state
with some finite probability. Of course the
difference that develops between a pair like 18 and
146 is greater the greater the noise level applied.
This difference is also reflected in the fixed points
of the analytic mappings with noise. Another im-
portant effect of noise is that the attractors of the
analytic mappings with noise are generally single
points regardless of the Wolfram class. We have
found no exception to this rule. Thus the variety of
different types of attractors possible without noise,
as exhibited in table I, are excluded by noise. The
behavior of the analytic mapping with noise may
be viewed as a perturbation of the analytic map-
ping without noise. Starting at a random initial
state and iterating the analytic mapping with low
noise one generally finds a rapid convergence to
the region close to the attractor without noise. For
those automatons which have attractors of dimen-
sion 1, 2, or 3 without noise (Wolfram class IT) the
initial rapid convergence is followed by a period of
slow movement approximately across the surface
of the attractor finally reaching that unique point
which is the attractor for the mapping with noise.
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Fig. 3. The deviation of actual 3-pattern frequencies with noise from those predicted by fixed point attractors based on 10-pattern
analytic mappings without noise (solid curves) and 3-pattern analytic mappings with noise (short dashed curves). Each point on a
curve is an average based on simulation of 100 trials. See text for details.

The period of slow movement may be viewed as a
consequence of the noise alone because all the
points of the attractor without noise are fixed
points of the mapping without noise.

We have developed a statistical theory of local
patterns which in some sense fulfills the thermody-
namical paradigm. Local pattern frequencies func-
tion as “macroscopic” state variables. Such state
variables provide a partial description of the state
while ignoring the fine structure of interweaving of
patterns. The state variables are approximately
governed in their evolution by the analytic map-
pings. This allows the prediction of the general
trend of events and the discussion of meaningful
equilibrium phenomena. The application of the
method to more complicated systems is straight-
forward. One important limitation on the ap-
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proach however is the fact that the number of
patterns of a given size increases exponentially
with the size of the pattern. This quickly leads to
enormous numbers of rather modest sized pat-
terns. In one sense this simply reveals the com-
plexity of the problem. On the other hand
computation of the analytic mappings can become
impractical. One solution to this difficulty may lie
in the use of array processors. The possibility of
other solutions is a subject for future research.
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