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The Continuous Replenishment Inventory Routing Problem (CRIRP) is a special 
type of inventory routing problem (IRP) in which vehicle operations occur around 
the clock.  The problem requires determining how many vehicles are needed to 
resupply the sites, which sites each vehicle should resupply, and the route that 
each vehicle should take.  The objective is to minimize the number of vehicles.  
This technical report describes a special case of the CRIRP that is equivalent to 
the bin-packing problem.  For the general problem, this report presents necessary 
and sufficient conditions for feasibility, a lower bound on the number of vehicles 
needed, and procedures for finding feasible solutions.  These include solution 
construction heuristics and a genetic algorithm.  We discuss the results of 
computational tests used to test the quality and computational effort of the 
heuristics.  These results show that the route-building heuristic performs better 
than the other heuristics and the genetic algorithm. 

1. Introduction 

The Continuous Replenishment Inventory Routing Problem (CRIRP) is a special type of 

inventory routing problem (IRP) in which vehicle operations occur around the clock.  Our study 

of the CRIRP is motivated by our work with public health officials who must plan the logistics 

for resupplying points of dispensing (PODs), which will dispense medications to the public in 

case of a public health emergency such as an anthrax attack.  After receiving an initial but 

limited supply of medication, the PODs will operate continuously, around the clock, in order to 

give out thousands of doses of medication.  Vehicles will resupply the PODs continuously from a 

central depot that has a stockpile of medication.  Each vehicle repeatedly follows the same route, 

starting out as soon as it can after returning to the depot.  At each site, the vehicle must deliver 

enough medication to satisfy demand until its next visit.  Note that it is not necessary that all of 

PODs be resupplied at the same frequency.  It may be more efficient for some PODs (especially 

those with high demand) to be resupplied more often than others. 
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A central concern is to determine how many vehicles are needed to resupply the sites, 

which sites each vehicle should resupply, and the route that each vehicle should take.  

Minimizing the number of vehicles is an important objective due to the limited number of 

available drivers and vehicles.  Also, continuous replenishment means that the operating costs 

are related to the number of vehicles, which are continuously running.   

Although motivated by this application, the CRIRP can occur in any setting where 

operations occur continuously and the resupply frequency of sites can vary.  Problems with 

travel times of many days between deliveries can be viewed as continuous replenishment as well. 

In a typical formulation of the IRP (see, for instance, Campbell et al., 1998), there is a 

single product that each customer consumes at a constant daily rate.  Each customer also has a 

predetermined inventory capacity.  A customer’s existing inventory must not run out before a 

vehicle resupply.  The IRP is solved over a planning horizon (for example, one week).  There is a 

fleet of homogenous vehicles of a given capacity, and the objective is to minimize the cost of 

supplying the customers by identifying which days each customer should be supplied, 

determining the quantity to be supplied to each customer, and routing the fleet of vehicles to 

supply the determined quantities to the customers assigned to a particular day.  Other notable 

work on the IRP includes Golden et al. (1984), Bard et al. (1998), and Jaillet et al. (2002).  Moin 

and Salhi (2007) provide a recent review of the IRP. 

In more recent work Campbell and Savelberg (2004a) take a two-phase approach to 

solving the IRP.  The first phase uses integer programming to determine which customers to 

serve over the next several days and the quantities to be delivered.  The results of the first phase 

are used as inputs for the second phase.  This phase uses the VRP and scheduling techniques to 

plan delivery routes and schedules.  Constraints encountered in the second phase may lead to a 
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modification of the results obtained in the first phase.  In another recent work, Campbell and 

Savelsbergh (2004b), present Vendor Managed Inventory Replenishment.  In this version of the 

IRP, a vendor monitors customers’ inventories and conducts replenishment of their inventories 

by coordinating inventory levels and vehicle deliveries to minimize long term costs. 

In the IRP, vehicle routing decisions are made for each day.  The routes start and end in 

the same day; they don’t go into the next day.  All of the vehicles are available at the beginning 

of the next day.  There is a “jump” from one day to the next where no vehicles are operating.  

This characteristic does not exist in the CRIRP, in which customers are supplied continuously, 

around the clock.  When vehicles return to the depot, they immediately reload and resupply their 

customers.  These continuous operations are essential in a public health emergency. 

Additionally, unlike the IRP, the CRIRP does not consider limits on the maximum 

inventory that can be stored at the customer sites.  If they existed, such limits would place an 

upper bound on the duration of the routes that could be considered, a topic we address later in 

this paper. 

The CRIRP problem can be viewed as a strategic IRP, in that we consider a fleet sizing 

problem that is similar to Webb and Larson (1995).  However, unlike Webb and Larson, we 

consider the case where replenishments happen continuously.  That is, a route begins as soon as 

the vehicle completes its route and returns to the depot.   

This paper addresses the single-product, deterministic, steady-state problem in which the 

loading and unloading times at each site are modeled as a constant time.  (This is reasonable if 

the marginal time needed to unload an item is small compared to the travel times.)  Inventory is 

treated as a continuous variable.  The storage capacity at each site is not given, for it will be set 
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appropriately after the routing problem is solved.  The depot always has enough inventory to 

load trucks. 

The contribution of this paper is to introduce the CRIRP, which has not been previously 

studied, and to present a special case, a lower bound, heuristics, and a genetic algorithm.  

Fomundam (2008) developed a branch-and-bound scheme that can be used for small instances 

and tested a third, randomized heuristic that was shown to perform poorly.  The conclusions 

discuss directions for future work on the problem. 

2. Problem Formulation  

In the CRIRP, there are n sites (customers).  Each site (i = 1, …, n) has a demand rate of iL  items 

per time unit.  This is the rate at which the site consumes material.  There is a depot (i = 0) that 

has an unlimited amount of material.  The time spent at site i (to refill a vehicle or deliver 

material) is ip  for i = 0, …, n.  The time to travel from site i to site j is ijc .  The vehicles are 

identical, each with capacity of C items of material. 

The problem is to find a feasible solution with the smallest number of vehicles.  A 

feasible solution specifies a route for each vehicle, and each site is assigned to one route.  The 

delivery amount at a site is the route duration multiplied by the site’s demand rate. 

A vehicle may visit the depot multiple times during a route to refill.  A partial route that 

starts at the depot and ends at the depot is a “subroute.”  A vehicle may have multiple subroutes 

but visits each site just once on its route. 

Given a solution, we evaluate its feasibility as follows.  Let vehicle v have r subroutes.  

Let the sequence [ ] [ ]{ }0, 1 ,...,vjs k=  be subroute j for vehicle v, where k is the number of sites on 

the subroute and [i] is the index of the i-th site visited.  The total demand for the subroute is 

( ) [ ] [ ]1vj kD s L L= + + .  The total time to complete the subroute is 
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( ) 0 0[1] [1] [1][2] [ ] [ ]0vj k kT s p c p c p c= + + + + + + .  The total time for vehicle v to complete all of its 

subroutes is ( ) ( )1v v vrT T s T s= + + . 

When the vehicle visits site i, it will need to deliver i vLT  units of material in order to keep 

the site supplied until the vehicle’s next visit.  When vehicle v starts subroute vjs , it should take 

( )vj vD s T  items in order to satisfy the demand of all the sites on that subroute; this quantity is the 

load of that subroute.  Let ( ) ( ){ }*
1max , ,v v vrD D s D s= … .  The maximum load for vehicle v is 

*
v v vM D T= .  The solution is feasible if each site is assigned to exactly one vehicle and each 

vehicle’s maximum load is not greater than the vehicle capacity.  That is, vM C≤  for all 

vehicles 1, ,v K= … . 

In order to demonstrate the existence of feasible solutions, consider the trivial subroutes 

{ }0,iz i= , for 1, ,i n= … .  Then, ( ) 0 0 0i i i iT z p c p c= + + +  and ( )i iD z L= .  Clearly there are 

feasible solutions to CRIRP if and only if ( ) ( )i iD z T z C≤  for all 1, ,i n= … .  

The objective is to find a feasible solution with the minimal number of vehicles.  It is 

easy to see that CRIRP is NP-hard, like virtually all vehicle routing problems (Lenstra and 

Rinnooy Kan, 1981). 

3. Example 

Consider the six-site problem instance (along with three subroutes) shown in Figure 1.  At each 

site, the demand rate iL  (in items per time unit) is shown in parentheses.  The service time 1ip =  

time unit at the depot and all sites.  The travel time equals one time unit between the depot and 

sites 1, 2, 4, and 6 as well as between sites 2 and 3, between sites 3 and 4, between sites 5 and 6.  

The travel time between the depot and site 5 equals 1.4 time units.   
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#1 (5,000) 

Depot 

#2 (700) 

#6 (600) 

#4 (200) 

#5 (500) 

#3 (300) 

 
Figure 1.  A six-site instance of the CRIRP, showing three subroutes. 

 
If the vehicle capacity C = 20,000 items, then one feasible solution to the instance in 

Figure 1 has two vehicles.  The first vehicle follows only one subroute 11 {0,1}s = .  The demand 

( )*
1 11 5,000D D s= =  items per time unit, and the route duration ( )1 11 4T T s= =  time units, so the 

load 1M  = 20,000 items.  The second vehicle has two subroutes: 21 {0, 2,3,4}s =  and 

22 {0,5,6}s = .  The first subroute demand ( )21D s  = 1,200 items per time unit, and the subroute 

duration ( )21 8T s =  time units.  The second subroute demand ( )22D s  = 1,100 items per time 

unit, and the subroute duration ( )22 6.4T s =  time units.  Therefore, the total route duration 

( ) ( )2 21 22 14.4T T s T s= + =  time units.  ( ) ( ){ }*
2 21 21max , 1, 200D D s D s= =  items, so 

*
2 2 2 17,280M D T= =  items.  The load for the first subroute equals 17,280 items, and the load for 

the second subroute equals 15,840 items.   

4. The Special Case of Identical Demand 

Consider the special case in which all iL L= .  (This special case is a useful model for the POD 

resupply problem if the jurisdiction’s mass dispensing plans call for a set of identical PODs.)  In 

this case, we can show that the non-trivial subroutes of a feasible solution can be split into the 
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trivial subroutes without increasing the maximum load of any vehicle.  Thus, there is an optimal 

solution in which every vehicle’s route is the concatenation of trivial subroutes.   

Consider a feasible solution in which a vehicle v visits n sites using r subroutes, where 

r n< .  (The n here may be less than the number of sites in the entire problem.)  Therefore, at 

least one subroute visits more than one site.  Let 0 0m = .  Renumber the sites and define km  

( 1, ,k r= … ) so that the first subroute visits sites 11, ,m… , the second subroute visits sites 

1 21, ,m m+ … , and so forth, with rm n= . 

Let { }11
max k kk r

h m m −≤ ≤
= − .  Note that 2h ≥  and hr n≥ .  Let kTT  be the travel time of 

subroute k.  Note that 0 0k i iTT c c≥ +  for any { }1 1, ,k ki m m−∈ + … . 

Now consider the duration of each subroute k, and let 0T  be the duration of the current  

route: 
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On subroute k the demand ( ) ( )1vk k kD s m m L−= − .  The maximum subroute demand is 

therefore hL, and the maximum load is 0hLT .  Because the solution is feasible, 0hLT C≤ . 

Now, modify this solution to construct a new solution in which this vehicle visits all of 

the same sites using trivial subroutes.  Let 0 0 0i i i it p c p c= + + +  for all 1, ,i n= … .  Let 1T  be the 

duration of the new route: 
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In this solution, the maximum subroute demand is L, and the maximum load is 1LT .  

Now, we will show that 1 0LT hLT<  by proving that  0 1hT T−  is positive. 

 ( ) ( ) ( )0 1 0 0 0
1 1 1

1
n r n

i k i i
i k i

hT T p hr n h p hTT c c
= = =

⎛ ⎞− = − + − + − +⎜ ⎟
⎝ ⎠

∑ ∑ ∑  

Because hr n≥ , the first term is non-negative.  Because 2h ≥ , the second term is 

positive.  To analyze the third term, we regroup the terms in the last summation by the subroutes 

to get the following: 
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Each term of this double summation is non-negative.  Therefore, 0 1hT T−  is positive, and 

1 0LT hLT C< ≤ .  This shows that using the trivial subroutes is also feasible because they reduce 

the load of the vehicle.  Therefore, there is an optimal solution with all trivial subroutes. 

Which vehicle should do which subroutes?  Let 0 0 0i i i it p c p c= + + +  for all 1, ,i n= … .  

Suppose vehicle v completes a set vS  of trivial subroutes.  The route is feasible if and only if 

v

v i
i S

M L t C
∈

= ≤∑ , which is equivalent to /
v

i
i S

t C L
∈

≤∑ .  Thus, the problem becomes a bin packing 

problem in which the item size is it  and the bin size is C/L.  The packing of items into bins 

corresponds to the assignment of sites (and their trivial subroutes) to vehicles.  Interestingly, the 

routing is trivial, because the load does not depend upon the sequence, so any sequence for a 
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vehicle’s route is sufficient in this special case.  (Of course, the vehicle must follow the same 

sequence every time.) 

5. Lower Bound 

This special case can be used to justify the following lower bound for the more general case. 

Given an instance I of CRIRP, let L = min{ iL }.  Modify the instance I by replacing each 

iL  by L.  Any solution that is feasible for I is still feasible for the new instance because this 

change cannot increase the load of any subroute.  In the new instance, the sites have identical 

demand, so we know that there is an optimal solution that uses all of the trivial subroutes.  Let 1T  

be the total duration of all of the trivial subroutes.  Because the special case is essentially a bin-

packing problem, we know that 1 /T L C⎡ ⎤⎢ ⎥  is a lower bound on the number of vehicles needed for 

the new instance and, consequently, a lower bound on the number of vehicles needed for the 

instance I. 

We expect this bound to be tighter when all of the iL  are nearly equal but worse when the 

iL  have a large range. 

5. Heuristics 

Because CRIRP is NP-hard and we have no exact techniques that are useful for large instances, 

we developed and tested procedures for constructing solutions the problem.  We know of no 

other existing techniques for this problem. 

We generated five construction heuristics and developed a genetic algorithm.  The 

following sections describe these procedures.  The third, fourth, and fifth heuristics are route-

first, cluster-second heuristics (cf. Beasley, 1983). 

5.1 Bin-packing Heuristic 
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The first heuristic (which we denote BP) is a three-stage bin-packing approach that has a 

parameter W.  The parameter W is varied from the greatest iL  to the sum of all iL .  In the first 

step, the heuristic uses the first-fit-decreasing algorithm to find a solution to the bin-packing 

problem in which each site i is an item, the item size is the demand rate iL , and the bin capacity 

is W.  This assigns sites to subroutes so that the subroute demands are roughly equal and no 

larger than W.   

In the second stage, the heuristic uses the nearest neighbor algorithm on each subroute to 

find a path that begins and ends at the depot and visits all of the sites in that subroute.  If 

( ) ( )k kD s T s C>  for any subroute k, then there is no feasible solution with this subroute.  Any 

subroute k with ( ) ( )/ k kC D s T s≥  > C/W is assigned to its own vehicle. 

In the third stage, the heuristic uses the first-fit-decreasing algorithm to find a solution to 

the bin-packing problem in which each unassigned subroute k is an item, the item size is the 

subroute duration ( )kT s , and the bin capacity is C/W.  This assigns these subroutes to vehicles.  

Each vehicle can visit its subroutes in any sequence.  Each route has a duration no bigger than 

C/W, and each subroute has a demand that is no larger than W, so the route is feasible. 

The BP heuristic loops over values of W from the maximal value of iL  to the sum of all 

iL  and keeps the best feasible solution found.  In our implementation, this loop considered six 

values of W. 

The computational effort of the BP heuristic depends upon WN , the number of values of 

the parameter W that are considered.  For a value of W, the bin packing heuristics in the first and 
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third stages each take ( )O logn n  effort, and the nearest neighbor algorithm requires ( )2O n  

effort, so the BP heuristic requires ( )2O WN n  effort. 

5.2 Route-building Heuristic 

The second heuristic (which we denote RB) builds routes by creating instances of the 

capacitated vehicle routing problem (CVRP), which has been studied extensively (see, for 

example, Toth and Vigo, 1998).  First, the RB heuristic sequences the sites by demand rate from 

low to high.  Then it begins building routes, starting with the low-demand sites.  When a route 

has been built, the sites assigned to that route are removed from the instance, and the RB 

heuristic continues to build routes until all sites have been assigned to routes. 

To build a route, the RB heuristic first finds a lower bound on how many of the 

unassigned sites can be placed feasibly into a route.  Starting with the first unassigned site, it 

adds the trivial subroutes corresponding to those sites until adding the next one would cause the 

maximum vehicle load to exceed vehicle capacity.  Let LL be the largest number of trivial 

subroutes that can fit into a feasible route.  Then, starting with N = LL + 1, the RB heuristic tries 

to find a feasible route with the first N unassigned sites. 

To find a feasible route, the RB heuristic constructs instances of CVRP that have the 

depot and the first N unassigned sites.  The vehicle capacity remains equal to C, but the 

quantities to be delivered to the sites in the CVRP instance are determined by the duration bound 

B.  The RB heuristic uses different values of B in the range from C/ maxL  down to / iC L∑  

(where the max and the sum are taken over the set of N sites in the CVRP instance).  For each 

value of B, the RB heuristic multiplies each site’s demand rate by B to create that site’s delivery 

quantity and then uses the Clarke-Wright savings algorithm to construct for a solution to the 

CVRP instance.  If the total duration of the routes in the solution is less than B, then the solution 
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forms a feasible route for the CRIRP problem by using the solution’s routes as the subroutes for 

a vehicle.  (If a feasible solution is found for one value of B, no more values of B need to be 

checked.) 

If no feasible solution can be found for N = LL + 1, then the RB heuristic sets N = LL and 

finds a feasible route (which must be possible because the LL trivial subroutes are a feasible 

solution.)  Otherwise, it increases N by 1 and tries to find a feasible route for the expanded set of 

unassigned sites. It repeats this until, for some value of N, it can find no feasible route using the 

Clarke-Wright savings algorithm for any value of B (or all unassigned sites are in the feasible 

solution).  At this point, the heuristic saves the last feasible solution found as a route for one 

vehicle (the routes from the CVRP solution become the subroutes for this vehicle).  As 

mentioned above, the sites on that route are removed from the instance, and the RB heuristic 

continues with the remaining sites until all of them have been assigned to routes.  The number of 

vehicles in the solution equals the number of feasible routes that were saved. 

It is easy to see that a CRIRP route built from a feasible CVRP solution is feasible.  

Consider a subroute [ ] [ ]{ }0, 1 ,...,vjs k= .  The total demand for the subroute is 

( ) [ ] [ ]1vj kD s L L= + + , and its load is therefore ( )vj vD s T , where vT  is the route duration.  

Because vT B≤ , the load is not greater than ( )[1] [ ] [1] [ ]k kB L L BL BL+ + = + + , which is the 

sum of the delivery quantities for the sites on this subroute.  Because these sites are a feasible 

route in the CVRP problem, this sum must be no greater than C.  Therefore, the subroute load is 

not greater than C. 

For example, if we consider the example from Section 3, then the RB heuristic will, at 

some point during its execution, consider the N = 5 smallest demand sites, which are sites 4, 3, 5, 



 13

6, and 2.  When B = C/ maxL  = 20,000/700 = 28.57, it creates an instance of CVRP with delivery 

quantities for sites 2 to 6 of 20,000, 8,570, 5,710, 14,290, and 17,140.  A feasible solution to the 

CVRP has four routes: 0-4-5-0, 0-3-0, 0-6-0, and 0-2-0.  The total duration is 19.24 time units, 

which is less than B, so this is a feasible CRIRP route.  To confirm this, note that the maximum 

subroute demand is 700 items per time unit, so the maximum load is 13,470 items, which is less 

than the vehicle capacity.   

However, when N = 6, the largest value of B = 20,000/5,000 = 4, and there is no feasible 

solution because it is impossible to find a feasible route with a duration less than or equal to 4.  

So the solution with five sites becomes the route for the first vehicle.  A second vehicle is 

required for the last unassigned site (site 1). 

In our implementation of the RB heuristic, the loop over B considered six equally-spaced 

values from C/ maxL  down to / iC L∑ . 

The computational effort of the RB heuristic depends upon BN , the number of values of 

the duration bound B that are considered.  The Clarke-Wright savings algorithm requires 

( )2O logn n  effort (Golden et al., 1980), and this is performed up to BN  times in order to find a 

feasible route for N unassigned sites.  Altogether, the RB heuristic will try to find at most n 

feasible routes.  Thus, the RB heuristic requires ( )3O logBN n n  effort. 

5.3 Space-filling curve heuristic 

The third heuristic (which we denote SFC) builds routes in two steps.  First, it generates a 

space-filling curve that begins at the depot and visits all of the sites.  Then, it generates a feasible 

solution from this sequence. 
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To generate the space-filling curve, we use the procedure described in Bartholdi and 

Platzman (1988).  The locations of the depot and sites are scaled and translated so that the depot 

is at the center of a unit square, and all of the sites fit into the unit square.  The space-filling 

curve assigns each site to a position between 0 and 1.  Because sites near 0 and 1 are in a corner 

of the unit square (and far away from the depot), we generate a sequence of sites by starting with 

the sites in the interval [7/8, 1] and then visiting the sites in the interval [0, 7/8). 

For example, consider the depot and five sites shown in Figure D.  The figure shows the 

scaled and translated position of each site and each site’s position on the space-filling curve.  

Although A has the lowest position, the sequence starts with site E, which is in the interval [7/8, 

1].  After site E, the sequence has sites A, B, C, and D in order by their position on the space-

filling curve.  

Depot (0.5, 0.5) 

B (0.30, 0.25) 

E (0.25, 0.30) 

A (0.10, 0.08) 

C (1.0, 0.25) 

D (0.7, 1.0) Position 
A = 0.0064 
B = 0.0928 
C = 0.2656 
D = 0.5478 
E = 0.9072 

 

Figure D.  Example with a depot and five sites, showing each site’s position in the unit square 

and each site’s position on the space-filling curve. 

Given this sequence of sites, we then construct a feasible sequence by splitting it into 

routes and subroutes as follows. 
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We construct a graph with 1n +  nodes, numbered from 1 to 1n + .  Nodes 1 to n represent 

the sites in the given sequence.  That is, the node 1 is the first site in the sequence, node 2 is the 

second site in the sequence, and so forth.  Node 1n +  is a sink node. 

Each node has four labels: ( )rL i  is the shortest length of a route starting at this node.  

( )dL i  is the maximum subroute demand in the route starting at this node.  ( )nL i  is the node at 

the end of the best arc.  ( )fL i  denotes whether there is a feasible subroute starting at this node.  

Set ( ) ( ) ( )1 1 1 0r d nL n L n L n+ = + = + = . 

There are arcs between nodes.  Arc (i, j) represents a subroute that begins with the site at 

node i and ends with the site at node 1j − .  Associated with arc (i, j) are three values: m(i, j) 

equals the duration of the subroute, including the trips from and to the depot and the load and 

unload times; d(i, j) is the total subroute demand rate; and f(i, j) denotes whether the subroute is 

feasible. 

The basic idea of this routine is to build routes starting with the last site by finding 

shortest paths.  Once one route is found, those sites are removed from the problem, and then it 

begins again with the last site not included. 

S is the sequence of sites.  S(k) is the k-th site in the sequence. 

Let L = n.  Set all node labels to zero. 
repeat 

if L = 1 then create a route with only S(L) 
else 

( ) ( ), 1rL L m L L= + , ( ) ( ), 1dL L d L L= + , ( ) 1nL L L= + , ( ) 1fL L = . 
k = L – 1 
repeat 

for i = 1k +  to 1L +  
if ( ) ( )( ) ( ), ,rm k i L i d k i C+ > ) then f(k, i) = 0 
else 

f(k, i) = 1 
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if ( ) 0fL k =  or ( ) ( ) ( ), r rm k i L i L k+ <  then 

( ) ( ) ( ),r rL k m k i L i= + , ( ) ( ) ( ){ }max , ,d dL k d k i L i= , ( )nL k i= , 

( ) 1fL k =  
endif 

endif 
end for  
if ( ) 0fL k =  then 

set k = 1k +  
create route starting at S(k) 

elseif ( ) ( )r dL k L k C≤  then 
if k = 1 then create route starting at S(k) 
else set k = 1k −  
endif 

else 
( )rB L k=  

repeat 
for i = k to L 

for j = 1i +  to 1L +  
if ( ),B d k i C⋅ >  then f(i, j) = 0 
endif 

end for 
end for 
for i = L downto k 

( ) 0fL i = , ( )rL i M=  
for j = 1i +  to 1L +  

if f(i, j) =1 and ( ) ( ) ( ), r rm i j L j L i+ <  then  

( ) ( ) ( ),r rL i m i j L j= + , ( ) ( ) ( ){ }max , ,d dL i d i j L j= , 

( )nL i j= , ( ) 1fL i =  
endif 

end for 
end for 
if ( ) 0fL k =  then 

set k = 1k +  
create route starting at S(k) 

elseif ( ) ( )r dL k L k C≤  then 
if k = 1 then create route starting at S(k) 
else we have a feasible route; set k = 1k −   
endif 

else ( )rB L k=  
endif 
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until we find a feasible route or created a route 
endif 

until we created a route  
set L = 1k −  

endif 
until all sites are assigned to routes 
 

For example, given the six-site example presented earlier, consider the sequence (1, 2, 3, 

4, 5, 6).  The algorithm first finds a feasible route with one subroute containing sites 5 and 6.  

Then it finds a feasible route with one subroute containing sites 4, 5, and 6.  Then it finds a 

feasible route with one subroute containing sites 3, 4, 5, and 6.   

When it gets to k = 2, it first determines that there is a shortest path with two subroutes: 2 

and 3-4-5-6.  The duration is approximately 14.4 time units.  But the demand rate of the second 

subroute is 1600, so the load is over 23,000, which exceed the vehicle capacity.  Thus, the 

algorithm eliminates the arcs corresponding to subroutes that have a demand rate greater than 

20000/14.4 = 1389 and finds a shortest path using the remaining arcs.  This creates a feasible 

route with two subroutes: 2-3 and 4-5-6.  When k = 1, there are no feasible subroutes, so k = 2, 

and the previous feasible route is created.  The only remaining site is site 1, so the algorithm 

creates a second route with only this site. 

Note that this algorithm assumes that all trivial subroutes are feasible and is thus 

guaranteed to find a feasible solution.  It is easy to see that, given a sequence that corresponds to 

an optimal solution, this algorithm will generate a solution with the same number of routes (the 

composition of the routes and subroutes could be different, however). 

The computational effort of sequencing the sites using the space-filling is ( )O n  to 

generate the positions and ( )2O n  to sort the sites based on position.   
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The computational effort of the splitting algorithm is ( )4O n .  The loop to find a new 

shortest path if the current one is infeasible eliminates at least one arc on each pass; moreover, 

these arcs, once eliminated, never become feasible again.  Therefore, the loop can be run at most 

( )2O n  times over the course of the algorithm.  The loop itself requires ( )2O n  time to find the 

shortest path. 

5.4 Sweep heuristic 

The fourth heuristic (which we denote SWP) is also a route-first-cluster-second heuristic.  

First, it sequences the sites using a simplified version of the sweep algorithm (Gillett and Miller, 

1974). 

The algorithm translates all of the sites so that the depot is at (0, 0), determines each 

site’s location in polar coordinates (with vectorial angles between -180 and 180 degrees) for each 

translated site, and sorts the sites by their vectorial angles to generate a sequence. 

Given this sequence of sites, we then construct a feasible sequence by splitting it into 

routes and subroutes using the splitting algorithm described above. 

The computational effort of sequencing the sites is ( )O n  to generate the vectorial angles 

and ( )2O n  to sort the sites based on position.  The computational effort of the splitting 

algorithm is ( )4O n , as described above.   

5.5 Nearest neighbor heuristic 

The fifth heuristic (which we denote NN) is also a route-first-cluster-second heuristic.  

First, it generates a tour (starting at the depot) using the standard nearest neighbor algorithm.    

Given this sequence of sites, we then construct a feasible sequence by splitting it into 

routes and subroutes using the splitting algorithm described above. 
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The computational effort of sequencing the sites is ( )2O n .  The computational effort of 

the splitting algorithm is ( )4O n , as described above.   

5.6 Genetic algorithm 

In addition to the above heuristics, we implemented a hybrid genetic algorithm (GA) 

based on the one that Prins (2004) developed to solve the VRP.  Like the Prins GA, the 

chromosome is simply a sequence of sites.  We use the splitting procedure described above to 

construct a feasible CRIRP solution from a sequence.  We use the same order crossover as Prins.  

We tested versions using a simple mutation operator and using a local search as a mutation 

operator.  In both the mutation and the local search, we used the nine types of moves described 

by Prins and added a tenth move that combines two routes.   

Like Prins, we avoid clones in the population to avoid premature convergence and 

enforce a minimum difference in solution quality.  We do allow solutions with the same number 

of routes (vehicles) if the sum of the route durations is different by a constant DELTA.  If two 

solutions have the same number of routes, then the one with the smaller sum of the route 

durations has a better fitness. 

Like Prins, we select parents with the binary tournament method.  If the child is mutated 

and the mutation is not well spaced, then we try to add the child instead.  The GA is controlled 

by two parameters, α, an upper bound on the number of replacements, and β, an upper bound on 

the number of replacements without improving the best solution. 

To initialize the GA, we use the SFC, SWP, and NN algorithms described above to 

generate initial solutions.  The remaining individuals are generated randomly.  No local search is 

used to improve these solutions.   
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We set σ = 30 and set δ equal to the total route duration of the SFC solution divided by 

1000.  We set the probability of mutation to 0.1, as a high mutation rate is consistent with this 

type of GA.  (Prins uses mutation rates of 0.05, 0.1, and 0.2.)  We ran five trials of the GA on 

each instance.   

We conducted a pilot study to see how different initial solutions, using local search or 

simple mutation, and run length affected the GA performance.  The results are discussed in the 

next section. 

6. Computational Tests 

The purpose of the computational tests was to evaluate the relative performance of the heuristics.  

The heuristics were coded in Matlab.  We used an implementation of the Clarke-Wright saving 

algorithm from Matlog, the Logistics Engineering Matlab Toolbox, created by Michael G. Kay at 

North Carolina State University. 

To test the heuristics developed, we use four sets of location data obtained from the 

TSPLIB, a library of sample instances that provide either location data or the costs associated 

with the paths of a graph.  They serve as test data for TSP solvers.  We selected the following 4 

sets of data: 

• Burma 14: 14 cities in Burma; and  

• Ulyssess 22: 22 locations from the Odyssey of Ulysses. 

• Berlin 52: 52 locations in Berlin, Germany; 

• Bier 127: 127 beer gardens in Augsburg, Germany; 

In each of these four data sets, the locations are sequentially indexed using positive 

integers.  Each location also has Cartesian coordinates.  Although the data are sufficient for 

testing TSP solvers, more data is needed for the CRIRP. 
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We made the first location the depot.  The other locations are then designated as sites and 

numbered from 1.  We used the Euclidean distance between each pair of sites as the (symmetric) 

travel times between the sites.  We then calculated the average travel time A of the instance.  We 

then specified four values for the load time: A/50, A/5, A, and 3A.  (Every site in the data set had 

the same load time.)   

We constructed three values for the vehicle capacity for each data set.  To do this, we set 

the load times equal to the 3A and then found the maximum of the durations of the trivial 

subroutes for those sites.  We multiplied this longest duration by 400 to get the maximum 

subroute load.  (As discussed below, 400 is an upper bound on site demand rate.)  We multiplied 

this by 1.5, 5, and 10 to get the values for the vehicle capacity.   

We arbitrarily chose an average demand rate of 200 items per time unit.  The depot 

demand rate was set to zero.  We then generated a set of samples from a standard normal 

distribution.  (Samples less than -2.5 and samples greater than 2.5 were discarded.)  We 

constructed three sets of demand rates using three different values for the standard deviation: 80, 

40, and 20.  The demand rates at each site were determined by multiplying the standard deviation 

by the sample and adding 200 (so the average demand rate was approximately 200).  Note that 

all of the demand rates are between 0 and 400. 

This scheme ensures that the trivial subroutes are all feasible routes.  Therefore each 

instance has at least one feasible solution. 

In this manner, for each of the four TSP data sets, we created 4 load times, 3 sets of 

demand rates, and 3 vehicle capacities.  Thus, we generated 36 instances of CRIRP for each TSP 

data set, giving us a total of 144 instances. 

We determined the lower bound and ran the heuristics on each CRIRP instance. 
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We also tracked the time needed to run the heuristics.  The average time for the BP 

heuristic was 0.21 seconds, but the time ranged from 0.02 seconds on the 14-site instances to 

0.66 seconds on the 127-site instances.  The average time for the RB heuristic was 0.94 seconds, 

but the time ranged from 0.06 seconds on the 14-site instances to 3.05 seconds on the 127-site 

instances.  The computational effort of the BP heuristic was not significantly affected by other 

changes in the instance, but the computational effort of the RB heuristic decreased when the 

vehicle capacity was small or when the load time was high.  This occurs because, in these 

scenarios, long routes are not feasible, so the RB heuristic needed less time to build a route. 

Tables 1 and 2 are summaries of the results, aggregated over different problem 

parameters.  The number in parentheses is the number of instances in that category.   

The RB heuristic always found the best solution of those generated by the construction 

heuristics.  For 58 instances, the number of vehicles equaled the lower bound.  The BP heuristic 

found equally good solutions in 102 instances.  These included 20 instances with small capacity, 

38 with medium capacity, and 44 with large capacity.  The performance of the SFC, SWP, and 

NN heuristics was similar.   

Not surprisingly, as vehicle capacity increases, the number of vehicles needed reduces.  

The performance of the heuristics are nearly identical when the vehicle capacity is high.  When 

the vehicle capacity is low, the solutions that the RB heuristic generates are significantly better, 

while the solutions that the BP heuristic generates are worse. 

We tested different versions of the genetic algorithm.  First, we considered different 

initial sequences.  We tried four options: including the SFC solution, including the SWP 

solution, including the NN solution, and including all three solutions.  We ran five replications of 
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this GA using the simple mutation and with short runs (αmax = 300 and βmax = 100).  The results 

showed that there was no significant difference in solution quality or run time.   

We also considered using local search instead of a simple mutation.  We ran five 

replications of the GA on the Berlin 52 instances using the local search and with short runs (αmax 

= 300 and βmax = 100).  The results showed that using local search increased run times 

dramatically but did not lead to better solutions. 

We also ran much longer replications.  We ran five replications of the GA on the Berlin 

52 instances using simple mutation and with long runs (αmax = 30000 and βmax = 10000).  The 

results showed that using the longer runs increased run times dramatically but did not lead to 

better solutions. 

Table 1.  CRIRP problem instances and heuristic performance. 
 Average number of vehicles 

Instances LB BP RB SFC SWP NN  
Burma 14 1.17 1.61 1.50 1.61 1.61 1.58  
Ulysses 22 1.25 1.86 1.78 1.86 1.89 1.83  
Berlin 52 2.22 4.92 4.11 4.58 4.53 4.50  
Bier 127 3.39 10.31 7.94 9.44 9.50 9.28  

Low capacity 3.33 9.23 7.17 8.40 8.44 8.29  
Medium capacity 1.52 2.98 2.63 2.92 2.90 2.83  

High capacity 1.17 1.81 1.71 1.81 1.81 1.77  
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Table 2A.  Number of vehicles in solutions generated by different heuristics  
for the Burma 14 instances. 

 Heuristics 
Instance  
Number 

Lower 
Bound 

BP RB SFC SWP NN 

1 1 5 4 5 5 5 
2 1 3 2 3 3 3 
3 1 2 2 2 2 2 
4 1 2 1 1 1 1 
5 3 5 4 5 5 5 
6 2 2 2 2 2 2 
7 1 2 2 2 2 2 
8 1 1 1 1 1 1 
9 3 4 4 5 5 4 
10 2 2 2 2 2 2 
11 1 2 2 2 2 2 
12 1 1 1 1 1 1 
13 1 2 2 2 2 2 
14 1 1 1 1 1 1 
15 1 1 1 1 1 1 
16 1 1 1 1 1 1 
17 1 2 2 2 2 2 
18 1 1 1 1 1 1 
19 1 1 1 1 1 1 
20 1 1 1 1 1 1 
21 1 2 2 2 2 2 
22 1 1 1 1 1 1 
23 1 1 1 1 1 1 
24 1 1 1 1 1 1 
25 1 1 1 1 1 1 
26 1 1 1 1 1 1 
27 1 1 1 1 1 1 
28 1 1 1 1 1 1 
29 1 1 1 1 1 1 
30 1 1 1 1 1 1 
31 1 1 1 1 1 1 
32 1 1 1 1 1 1 
33 1 1 1 1 1 1 
34 1 1 1 1 1 1 
35 1 1 1 1 1 1 
36 1 1 1 1 1 1 
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Table 2B.  Number of vehicles in solutions generated by different heuristics  
 for the Ulysses 22 instances. 

 Heuristics 
Instance  
Number 

Lower 
Bound 

BP RB SFC SWP NN 

1 2 7 5 7 7 6 
2 1 3 3 3 3 3 
3 1 2 2 2 2 2 
4 1 2 2 2 2 2 
5 3 6 6 6 7 6 
6 2 3 3 3 3 3 
7 1 2 2 2 2 2 
8 1 2 2 2 2 2 
9 4 6 5 6 6 6 
10 2 3 3 3 3 3 
11 1 2 2 2 2 2 
12 1 2 2 2 2 2 
13 1 2 2 2 2 2 
14 1 1 1 1 1 1 
15 1 1 1 1 1 1 
16 1 1 1 1 1 1 
17 1 2 2 2 2 2 
18 1 1 1 1 1 1 
19 1 1 1 1 1 1 
20 1 1 1 1 1 1 
21 2 2 2 2 2 2 
22 1 1 1 1 1 1 
23 1 1 1 1 1 1 
24 1 1 1 1 1 1 
25 1 1 1 1 1 1 
26 1 1 1 1 1 1 
27 1 1 1 1 1 1 
28 1 1 1 1 1 1 
29 1 1 1 1 1 1 
30 1 1 1 1 1 1 
31 1 1 1 1 1 1 
32 1 1 1 1 1 1 
33 1 1 1 1 1 1 
34 1 1 1 1 1 1 
35 1 1 1 1 1 1 
36 1 1 1 1 1 1 
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Table 2C.  Number of vehicles in solutions generated by different heuristics  
for the Berlin 52 instances. 

 Heuristics 
Instance  
Number 

Lower 
Bound 

BP RB SFC SWP NN 

1 4 25 17 21 21 20 
2 2 10 8 9 10 9 
3 1 6 4 5 5 5 
4 1 5 4 4 4 4 
5 8 20 16 18 17 18 
6 4 9 7 8 8 8 
7 2 5 4 5 5 5 
8 2 4 4 4 4 4 
9 11 18 15 16 16 16 
10 5 8 7 8 7 8 
11 3 4 4 4 4 4 
12 3 4 3 4 4 4 
13 2 7 5 6 6 6 
14 1 3 3 3 3 3 
15 1 2 2 2 2 2 
16 1 2 2 2 2 2 
17 3 6 5 6 5 5 
18 2 3 3 3 3 3 
19 1 2 2 2 2 2 
20 1 2 2 2 2 2 
21 4 5 5 5 5 5 
22 2 3 2 3 3 3 
23 1 2 2 2 2 2 
24 1 1 1 1 1 1 
25 1 3 3 4 4 3 
26 1 2 2 2 2 2 
27 1 1 1 1 1 1 
28 1 1 1 1 1 1 
29 2 3 3 3 3 3 
30 1 2 2 2 2 2 
31 1 1 1 1 1 1 
32 1 1 1 1 1 1 
33 2 3 3 3 3 3 
34 1 2 2 2 2 2 
35 1 1 1 1 1 1 
36 1 1 1 1 1 1 
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Table 2D.  Number of vehicles in solutions generated by different heuristics  
for the Bier 127 instances. 

 Heuristics 
Instance  
Number 

Lower 
Bound 

BP RB SFC SWP NN 

1 1 57 34 44 43 43 
2 1 22 15 20 20 20 
3 1 12 8 10 11 10 
4 1 10 7 8 9 8 
5 15 44 33 40 39 39 
6 7 19 15 18 18 18 
7 4 10 8 10 10 10 
8 3 8 6 8 8 8 
9 22 39 33 36 37 36 
10 10 17 14 16 17 16 
11 6 9 8 9 9 9 
12 5 7 6 7 7 7 
13 1 14 10 14 14 13 
14 1 7 5 7 7 6 
15 1 4 3 4 4 3 
16 1 3 3 3 3 3 
17 5 13 10 12 12 12 
18 2 6 5 6 6 6 
19 2 3 3 3 3 3 
20 1 3 3 3 3 3 
21 7 11 10 11 11 11 
22 3 5 5 5 5 5 
23 2 3 3 3 3 3 
24 2 3 2 2 2 2 
25 1 7 6 7 7 7 
26 1 4 3 4 4 3 
27 1 2 2 2 2 2 
28 1 2 2 2 2 2 
29 3 7 5 6 6 6 
30 1 3 3 3 3 3 
31 1 2 2 2 2 2 
32 1 2 2 2 2 2 
33 4 6 5 6 6 6 
34 2 3 3 3 3 3 
35 1 2 2 2 2 2 
36 1 2 2 2 2 2 
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Table 3A.  Heuristic run times for the Burma 14 instances. 
(All times in seconds.) 

 Heuristics 
Instance  
Number 

BP RB SFC SWP NN 

1 0.2463 1.0038 0.3017 0.0352 0.0059 
2 0.0163 0.0511 0.0049 0.0018 0.0023 
3 0.0161 0.0646 0.0034 0.0021 0.0025 
4 0.0152 0.0312 0.0038 0.0026 0.0027 
5 0.0145 0.0509 0.0030 0.0017 0.0020 
6 0.0163 0.0522 0.0031 0.0019 0.0021 
7 0.0161 0.0794 0.0036 0.0024 0.0023 
8 0.0158 0.0211 0.0038 0.0025 0.0028 
9 0.0146 0.0524 0.0030 0.0017 0.0019 
10 0.0163 0.0536 0.0029 0.0019 0.0021 
11 0.0161 0.1020 0.0039 0.0026 0.0029 
12 0.0159 0.0205 0.0037 0.0025 0.0027 
13 0.0151 0.0769 0.0034 0.0022 0.0024 
14 0.0262 0.0170 0.0037 0.0025 0.0027 
15 0.0183 0.0172 0.0037 0.0025 0.0027 
16 0.0185 0.0169 0.0039 0.0025 0.0027 
17 0.0160 0.0790 0.0034 0.0023 0.0024 
18 0.0184 0.0203 0.0037 0.0025 0.0028 
19 0.0191 0.0203 0.0037 0.0025 0.0027 
20 0.0196 0.0204 0.0037 0.0025 0.0027 
21 0.0161 0.0842 0.0041 0.0023 0.0026 
22 0.0184 0.0203 0.0045 0.0025 0.0027 
23 0.0191 0.0204 0.0037 0.0025 0.0027 
24 0.0194 0.0205 0.0037 0.0025 0.0027 
25 0.0164 0.0170 0.0037 0.0025 0.0027 
26 0.0186 0.0169 0.0037 0.0025 0.0027 
27 0.0185 0.0169 0.0037 0.0025 0.0026 
28 0.0183 0.0170 0.0037 0.0025 0.0027 
29 0.0174 0.0203 0.0038 0.0026 0.0028 
30 0.0192 0.0203 0.0037 0.0025 0.0028 
31 0.0192 0.0204 0.0038 0.0025 0.0027 
32 0.0194 0.0204 0.0037 0.0025 0.0027 
33 0.0175 0.0203 0.0038 0.0025 0.0027 
34 0.0192 0.0203 0.0037 0.0025 0.0027 
35 0.0193 0.0205 0.0037 0.0025 0.0027 
36 0.0194 0.0204 0.0037 0.0025 0.0027 
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Table 3B.  Heuristic run times for the Ulysses 22 instances. 
(All times in seconds.) 

 Heuristics 
Instance  
Number 

BP RB SFC SWP NN 

1 0.0257 0.0866 0.0046 0.0028 0.0031 
2 0.0256 0.1268 0.0052 0.0032 0.0035 
3 0.0281 0.1535 0.0067 0.0045 0.0040 
4 0.0282 0.1713 0.0073 0.0051 0.0042 
5 0.0275 0.0932 0.0047 0.0028 0.0030 
6 0.0271 0.1318 0.0053 0.0033 0.0034 
7 0.0286 0.1557 0.0067 0.0047 0.0040 
8 0.0301 0.1654 0.0070 0.0051 0.0042 
9 0.0275 0.0874 0.0048 0.0028 0.0031 
10 0.0273 0.1345 0.0053 0.0033 0.0060 
11 0.0286 0.1692 0.0069 0.0047 0.0041 
12 0.0300 0.2436 0.0073 0.0058 0.0047 
13 0.0269 0.1196 0.0057 0.0038 0.0040 
14 0.0304 0.0390 0.0076 0.0058 0.0061 
15 0.0335 0.0390 0.0074 0.0055 0.0059 
16 0.0335 0.0390 0.0076 0.0056 0.0060 
17 0.0295 0.1429 0.0058 0.0038 0.0040 
18 0.0316 0.0516 0.0077 0.0057 0.0060 
19 0.0344 0.0518 0.0075 0.0056 0.0060 
20 0.0345 0.0515 0.0074 0.0056 0.0059 
21 0.0302 0.1516 0.0059 0.0040 0.0042 
22 0.0314 0.0517 0.0076 0.0057 0.0060 
23 0.0342 0.0519 0.0075 0.0056 0.0059 
24 0.0342 0.0518 0.0074 0.0055 0.0060 
25 0.0305 0.0391 0.0078 0.0058 0.0061 
26 0.0334 0.0388 0.0075 0.0056 0.0059 
27 0.0347 0.0388 0.0074 0.0055 0.0058 
28 0.0350 0.0389 0.0077 0.0055 0.0059 
29 0.0300 0.0520 0.0077 0.0059 0.0061 
30 0.0346 0.0518 0.0075 0.0056 0.0060 
31 0.0355 0.0518 0.0074 0.0055 0.0058 
32 0.0357 0.0517 0.0075 0.0056 0.0059 
33 0.0298 0.0520 0.0077 0.0057 0.0061 
34 0.0343 0.0517 0.0076 0.0056 0.0061 
35 0.0352 0.0517 0.0075 0.0055 0.0059 
36 0.0356 0.0518 0.0074 0.0055 0.0059 
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Table 3C.  Heuristic run times for the Berlin 52 instances. 
(All times in seconds.) 

 Heuristics 
Instance  
Number 

BP RB SFC SWP NN 

1 0.1130 0.2257 0.0119 0.0074 0.0083 
2 0.1102 0.2857 0.0117 0.0071 0.0082 
3 0.1100 0.4419 0.0140 0.0091 0.0108 
4 0.1099 0.5257 0.0157 0.0107 0.0119 
5 0.1225 0.2280 0.0115 0.0069 0.0079 
6 0.1197 0.2996 0.0119 0.0075 0.0085 
7 0.1189 0.4480 0.0157 0.0096 0.0109 
8 0.1188 0.5431 0.0155 0.0112 0.0120 
9 0.1250 0.2326 0.0112 0.0068 0.0082 
10 0.1230 0.3032 0.0130 0.0077 0.0087 
11 0.1224 0.4816 0.0150 0.0106 0.0118 
12 0.1223 0.5145 0.0166 0.0127 0.0134 
13 0.1099 0.4023 0.0127 0.0082 0.0091 
14 0.1096 0.6645 0.0173 0.0128 0.0139 
15 0.1091 0.9605 0.0245 0.0191 0.0183 
16 0.1198 1.1100 0.0323 0.0271 0.0249 
17 0.1216 0.4047 0.0131 0.0088 0.0098 
18 0.1189 0.7095 0.0177 0.0134 0.0157 
19 0.1188 1.0070 0.0245 0.0207 0.0195 
20 0.1261 1.4527 0.0327 0.0284 0.0250 
21 0.1231 0.4134 0.0135 0.0091 0.0101 
22 0.1225 0.5329 0.0207 0.0160 0.0164 
23 0.1220 1.2503 0.0299 0.0252 0.0235 
24 0.1317 0.3035 0.0354 0.0299 0.0305 
25 0.1095 0.5948 0.0168 0.0115 0.0134 
26 0.1116 1.1893 0.0243 0.0197 0.0206 
27 0.1198 0.2210 0.0355 0.0305 0.0308 
28 0.1285 0.2187 0.0350 0.0297 0.0302 
29 0.1193 0.6729 0.0176 0.0127 0.0146 
30 0.1256 1.1246 0.0272 0.0233 0.0243 
31 0.1296 0.2969 0.0352 0.0305 0.0312 
32 0.1394 0.2967 0.0349 0.0298 0.0300 
33 0.1226 0.7362 0.0185 0.0142 0.0149 
34 0.1221 1.2893 0.0329 0.0281 0.0280 
35 0.1313 0.3041 0.0353 0.0306 0.0309 
36 0.1418 0.3040 0.0350 0.0299 0.0303 
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Table 3D.  Heuristic run times for the Bier 127 instances. 
(All times in seconds.) 

 Heuristics 
Instance  
Number 

BP RB SFC SWP NN 

1 0.6049 0.6047 0.0323 0.0214 0.0237 
2 0.5954 0.8566 0.0309 0.0198 0.0228 
3 0.5910 1.3584 0.0388 0.0249 0.0326 
4 0.5923 1.6940 0.0425 0.0285 0.0383 
5 0.6917 0.5808 0.0311 0.0204 0.0229 
6 0.6802 0.8434 0.0307 0.0199 0.0233 
7 0.6789 1.3604 0.0387 0.0267 0.0323 
8 0.6754 1.6123 0.0428 0.0308 0.0408 
9 0.7203 0.5886 0.0302 0.0200 0.0222 
10 0.7132 0.8203 0.0314 0.0203 0.0238 
11 0.7089 1.3849 0.0414 0.0281 0.0342 
12 0.7092 1.5544 0.0480 0.0329 0.0419 
13 0.5920 1.1583 0.0333 0.0224 0.0250 
14 0.5917 2.0215 0.0477 0.0363 0.0403 
15 0.5879 3.2075 0.0728 0.0592 0.0754 
16 0.5887 4.4894 0.0956 0.0695 0.0805 
17 0.6764 1.1445 0.0342 0.0238 0.0266 
18 0.6745 2.1219 0.0503 0.0385 0.0416 
19 0.6720 3.3967 0.0778 0.0657 0.0753 
20 0.6715 4.0983 0.0954 0.0766 0.0858 
21 0.7086 1.1626 0.0356 0.0247 0.0275 
22 0.7086 2.2547 0.0528 0.0417 0.0456 
23 0.7065 3.8589 0.0793 0.0680 0.0689 
24 0.7056 3.5016 0.1084 0.0922 0.1142 
25 0.5911 1.9364 0.0442 0.0336 0.0360 
26 0.5902 3.3200 0.0761 0.0640 0.0721 
27 0.5887 6.9229 0.1226 0.1090 0.0969 
28 0.5929 6.8051 0.1713 0.1311 0.1312 
29 0.6765 1.9185 0.0505 0.0377 0.0408 
30 0.6771 3.6014 0.0780 0.0679 0.0697 
31 0.6763 5.2115 0.1237 0.1123 0.0982 
32 0.6737 14.1241 0.1756 0.1460 0.1370 
33 0.7131 1.9848 0.0507 0.0399 0.0424 
34 0.7092 4.0174 0.0830 0.0710 0.0734 
35 0.7041 6.4394 0.1341 0.1205 0.1090 
36 0.7229 7.6474 0.1971 0.1821 0.1824 
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Table 4A.  Average number of vehicles in best solutions generated by five replications  
of the GA for the Burma 14 instances for four different sets of initial sequences. 

These replications used simple mutation and short runs. 
 Initial sequence(s) 

Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 4 4 4 4 
2 2 2 2 2 
3 2 2 2 2 
4 1 1 1 1 
5 4 4 4 4 
6 2 2 2 2 
7 2 2 2 2 
8 1 1 1 1 
9 4 4 4 4 
10 2 2 2 2 
11 2 2 2 2 
12 1 1 1 1 
13 2 2 2 2 
14 1 1 1 1 
15 1 1 1 1 
16 1 1 1 1 
17 2 2 2 2 
18 1 1 1 1 
19 1 1 1 1 
20 1 1 1 1 
21 2 2 2 2 
22 1 1 1 1 
23 1 1 1 1 
24 1 1 1 1 
25 1 1 1 1 
26 1 1 1 1 
27 1 1 1 1 
28 1 1 1 1 
29 1 1 1 1 
30 1 1 1 1 
31 1 1 1 1 
32 1 1 1 1 
33 1 1 1 1 
34 1 1 1 1 
35 1 1 1 1 
36 1 1 1 1 
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Table 4B.  Average number of vehicles in best solutions generated by five replications  
of the GA for the Ulysses 22 instances for four different sets of initial sequences. 

These replications used simple mutation and short runs. 
 Initial sequence(s) 

Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 6 6 5.8 5.6 
2 3 3 3 3 
3 2 2 2 2 
4 2 2 2 2 
5 5 5 5 5 
6 3 3 3 3 
7 2 2 2 2 
8 2 2 2 2 
9 5 5 5 5 
10 3 3 3 3 
11 2 2 2 2 
12 2 2 2 2 
13 2 2 2 2 
14 1 1 1 1 
15 1 1 1 1 
16 1 1 1 1 
17 2 2 2 2 
18 1 1 1 1 
19 1 1 1 1 
20 1 1 1 1 
21 2 2 2 2 
22 1 1 1 1 
23 1 1 1 1 
24 1 1 1 1 
25 1 1 1 1 
26 1 1 1 1 
27 1 1 1 1 
28 1 1 1 1 
29 1 1 1 1 
30 1 1 1 1 
31 1 1 1 1 
32 1 1 1 1 
33 1 1 1 1 
34 1 1 1 1 
35 1 1 1 1 
36 1 1 1 1 
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Table 4C.  Average number of vehicles in best solutions generated by five replications  
of the GA for the Berlin 52 instances for four different sets of initial sequences. 

These replications used simple mutation and short runs. 
 Initial sequence(s) 

Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 18 18.4 18.2 18.2 
2 9 9 9 9 
3 5 5 5 5 
4 4 4 4 4 
5 16.4 16 16.2 16 
6 8 8 8 8 
7 4.8 4.4 4.6 4.4 
8 4 4 4 4 
9 15 15 15 15 
10 7 7 7 7 
11 4 4 4 4 
12 3 3 3 3 
13 6 6 6 6 
14 3 3 3 3 
15 2 2 2 2 
16 2 2 2 2 
17 5 5 5 5 
18 3 3 3 3 
19 2 2 2 2 
20 2 2 2 2 
21 5 5 5 5 
22 2.8 2.8 2.8 3 
23 2 2 2 2 
24 1 1 1 1 
25 3 3 3 3 
26 2 2 2 2 
27 1 1 1 1 
28 1 1 1 1 
29 3 3 3 3 
30 2 2 2 2 
31 1 1 1 1 
32 1 1 1 1 
33 3 3 3 3 
34 2 2 2 2 
35 1 1 1 1 
36 1 1 1 1 
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Table 4D.  Average number of vehicles in best solutions generated by five replications  
of the GA for the Bier 127 instances for four different sets of initial sequences. 

These replications used simple mutation and short runs. 
 Initial sequence(s) 

Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 40.6 40.2 40.4 40.4 
2 19 19 19 19 
3 10 10.4 10 10 
4 8 8.2 8 8 
5 36.6 36.8 36.8 37.2 
6 17.2 17 17 17 
7 9.2 9.2 9 9.4 
8 8 8 8 8 
9 34.2 34.6 34.6 34.4 
10 16 16 16 16 
11 8.8 8.6 9 8.8 
12 7 7 7 7 
13 13 13 13 13 
14 6 6.2 6 6 
15 3.6 4 3 3 
16 3 3 3 3 
17 12 11.8 11.6 11.8 
18 6 6 6 6 
19 3 3 3 3 
20 3 3 3 3 
21 10.2 10 10 10 
22 5 5 5 5 
23 3 3 3 3 
24 2 2 2 2 
25 7 7 7 7 
26 3.4 3.8 3 3 
27 2 2 2 2 
28 2 2 2 2 
29 6 6 6 6 
30 3 3 3 3 
31 2 2 2 2 
32 2 2 2 2 
33 5.6 6 6 5.6 
34 3 3 3 3 
35 2 2 2 2 
36 2 2 2 2 
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Table 5A.  Average run times for five replications of the GA  
for the Burma 14 instances for four different sets of initial sequences. 

These replications used simple mutation and short runs. 
 Initial sequence(s) 

Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 0.8545 0.6385 0.7632 0.7717 
2 0.7435 0.8686 0.9965 0.6623 
3 1.0504 0.5418 1.4002 0.5042 
4 0.1208 0.1124 0.1104 0.1081 
5 0.8416 0.8618 0.9500 0.8739 
6 0.6362 0.7184 0.6594 0.6187 
7 2.0130 1.5286 2.5972 1.4455 
8 1.1084 1.1040 1.1006 1.1081 
9 1.0040 0.8766 0.8369 0.8454 
10 0.8447 0.8436 0.8985 0.8933 
11 1.2640 1.2637 1.2623 1.2677 
12 1.1642 1.1659 1.1632 1.1648 
13 1.1363 1.0207 1.2322 1.1843 
14 0.0999 0.1012 0.0931 0.0957 
15 0.0912 0.0881 0.0864 0.0902 
16 0.0919 0.0867 0.0866 0.0868 
17 0.3903 0.4781 0.4904 0.4182 
18 0.1047 0.0947 0.0958 0.0957 
19 0.0936 0.0876 0.0884 0.0894 
20 0.0902 0.0863 0.0862 0.0894 
21 0.6591 0.5787 0.6379 0.7174 
22 0.0993 0.0900 0.0933 0.0953 
23 0.0895 0.0910 0.0868 0.0881 
24 0.0921 0.0894 0.0885 0.0880 
25 0.1285 0.1147 0.1126 0.1106 
26 0.0953 0.0954 0.0943 0.0951 
27 0.0899 0.0877 0.0882 0.0887 
28 0.0888 0.0850 0.0849 0.0890 
29 0.1088 0.1132 0.1098 0.1096 
30 0.0989 0.0928 0.0976 0.0938 
31 0.0904 0.0868 0.0864 0.0894 
32 0.0875 0.0865 0.0868 0.0849 
33 0.1258 0.1284 0.1247 0.1226 
34 0.0922 0.0904 0.0965 0.0937 
35 0.0895 0.0877 0.0875 0.0878 
36 0.0868 0.0872 0.0901 0.0865 
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Table 5B.  Average run times for five replications of the GA  
for the Ulysses 22 instances for four different sets of initial sequences. 

These replications used simple mutation and short runs. 
 Initial sequence(s) 

Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 1.2328 1.2903 1.1408 0.9626 
2 1.7304 1.2496 1.7154 1.2172 
3 1.7266 1.6062 1.7353 2.2621 
4 2.1263 1.6550 2.1955 2.4456 
5 1.4316 1.5179 1.4112 1.4508 
6 1.9796 1.9409 2.0659 2.6516 
7 2.3248 2.0415 2.5778 1.7660 
8 1.1494 2.7196 3.3119 1.4159 
9 1.5858 1.3975 1.0985 1.0375 
10 1.6591 2.8269 1.9410 2.4709 
11 3.6161 3.3743 2.4688 2.8503 
12 1.5259 1.3581 1.4424 2.0275 
13 2.2569 2.0625 1.8158 2.0659 
14 0.2153 0.2272 0.2103 0.2293 
15 0.1959 0.1961 0.1985 0.1927 
16 0.1862 0.1894 0.2018 0.1862 
17 3.4121 2.5549 2.4929 2.6608 
18 0.2059 0.1989 0.1979 0.2004 
19 0.1998 0.1964 0.1903 0.1955 
20 0.1947 0.1916 0.1859 0.1893 
21 0.3417 0.3758 0.3454 0.3535 
22 0.4253 0.4505 0.5502 0.4266 
23 0.2009 0.1916 0.1928 0.1928 
24 0.1943 0.1964 0.1939 0.1850 
25 0.2577 0.2443 0.2507 0.2351 
26 0.2223 0.2102 0.2116 0.2074 
27 0.1870 0.1908 0.1912 0.1867 
28 0.1870 0.1873 0.1920 0.1872 
29 0.6577 0.7741 0.7581 0.6308 
30 0.1985 0.2220 0.2139 0.1994 
31 0.1899 0.1846 0.1919 0.1924 
32 0.1850 0.1838 0.1840 0.1847 
33 2.6973 2.7293 2.6110 2.4648 
34 0.2078 0.2110 0.2090 0.2123 
35 0.1959 0.1901 0.1926 0.1880 
36 0.1896 0.1895 0.1828 0.1905 
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Table 5C.  Average run times for five replications of the GA  

for the Berlin 52 instances for four different sets of initial sequences. 
These replications used simple mutation and short runs. 

 Initial sequence(s) 
Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 3.8631 3.2056 3.6175 3.5456 
2 2.7899 3.6435 1.6910 1.7040 
3 2.5727 3.9989 4.6195 3.1642 
4 5.1212 4.6721 4.6653 4.5535 
5 4.2705 5.3687 3.6270 3.8427 
6 4.6097 4.7565 4.9718 5.9132 
7 5.1031 5.4263 4.9755 3.6282 
8 5.0959 7.3038 4.1533 5.3364 
9 4.4695 3.6607 7.1697 6.4802 
10 4.6795 3.8261 3.5292 3.3428 
11 4.7361 3.8770 7.1166 5.5300 
12 4.3942 3.6415 5.2756 3.4518 
13 6.3172 4.9251 5.1190 4.5433 
14 7.2862 7.7693 8.0968 8.0680 
15 8.5886 10.7146 9.7537 9.1530 
16 13.8212 12.5638 11.3095 10.0927 
17 5.4253 7.7988 3.9986 4.0217 
18 6.5002 10.4881 6.1207 9.7788 
19 12.0787 15.0048 13.6630 15.9585 
20 7.3960 6.8192 8.7395 12.7525 
21 2.9984 3.2214 2.8683 2.8771 
22 4.8742 4.7718 5.1321 6.0506 
23 6.6232 4.1530 5.7640 14.0572 
24 13.6724 13.6827 12.9101 12.9505 
25 7.2476 6.0910 6.8231 8.4757 
26 12.2771 14.2342 13.9938 13.6248 
27 1.0859 1.0444 1.0082 1.0178 
28 1.0304 1.0333 1.0203 0.9510 
29 6.7101 5.1190 5.7465 6.2653 
30 8.8499 11.2243 10.0152 17.1050 
31 1.1474 1.0961 1.0632 1.0376 
32 1.0166 1.0207 0.9767 1.0030 
33 5.5082 5.5895 5.7038 5.2740 
34 8.7482 7.9959 9.7490 8.4060 
35 1.1058 1.1612 1.0406 1.0665 
36 0.9888 1.0153 0.9497 0.9964 
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Table 5D.  Average run times for five replications of the GA  

for the Bier 127 instances for four different sets of initial sequences. 
These replications used simple mutation and short runs. 

 Initial sequence(s) 
Instance  
Number 

SFC SWP NN SFC, 
SWP and 

NN 
1 12.2286 12.6972 12.6231 12.3973 
2 11.9593 13.3357 10.9179 10.3244 
3 6.6103 15.2879 13.1106 9.1703 
4 14.5786 15.0912 14.0074 14.1458 
5 16.1669 17.3896 11.5147 11.0007 
6 11.4677 13.3766 11.3934 12.0898 
7 14.6427 15.5527 14.7492 12.0596 
8 14.2898 18.0836 11.3887 8.2979 
9 15.1084 10.3060 15.0510 15.6147 
10 9.1494 6.6239 9.8338 6.4492 
11 22.9538 10.4229 25.6508 17.1166 
12 31.5646 23.9675 21.3391 25.9806 
13 11.2033 14.5856 18.0786 13.9414 
14 23.3403 28.8014 23.3244 16.0480 
15 31.2708 42.9698 20.5947 13.9106 
16 30.5790 50.2740 34.5108 30.6385 
17 18.9210 12.4450 10.6708 23.2236 
18 21.3551 25.6860 43.9601 33.0732 
19 35.2149 68.6512 39.7994 44.2835 
20 31.3969 66.2408 41.0632 35.3572 
21 9.3631 8.0747 8.3922 9.3085 
22 22.7671 22.9663 20.7351 21.5932 
23 55.6465 60.6299 54.9186 49.9905 
24 33.5089 32.7125 28.7772 35.3453 
25 29.2705 30.2440 33.7611 28.9785 
26 51.6632 51.6230 54.2669 44.6006 
27 60.0084 84.6435 51.2066 51.5031 
28 84.0703 102.8928 22.6867 61.2047 
29 9.9007 17.9801 25.8101 13.4411 
30 76.5579 24.7793 49.9393 45.8875 
31 75.1979 74.3360 90.0702 111.1157 
32 92.5607 128.0737 93.6478 80.1756 
33 13.2855 11.2671 12.8739 14.5679 
34 56.5019 37.9880 40.7225 65.0335 
35 101.2287 80.6153 79.6529 105.7196 
36 76.1413 76.8837 74.7479 75.8575 
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Table 6.  Average number of vehicles in solutions from and run times  

for five replications of the GA for the Berlin 52 instances  
using local search (with short runs) and simple mutation (with long runs). 

 Local search  
with short runs 

Simple mutation 
with long runs 

Instance  
Number 

Average 
number of 
vehicles 

Average 
run time 

(seconds) 

Average 
number of 
vehicles 

Average 
run time 

(seconds) 
1 17.8 178.9564 17 357.1714 
2 8.8 178.6973 9 324.0521 
3 5 270.6053 5 525.2008 
4 4 408.4143 4 585.1433 
5 16.2 104.5844 15.8 194.8333 
6 8 95.2655 8 248.1333 
7 4.6 330.1949 4.6 326.3183 
8 4 756.3902 4 431.9377 
9 15 27.4770 15 12.6426 
10 7 6.7784 7 3.5744 
11 4 58.6032 4 5.5247 
12 3 4.4651 3 3.0069 
13 6 222.0894 6 192.1085 
14 3 284.8046 3 520.2556 
15 2 608.9143 2 551.6539 
16 2 919.6634 2 1468.1637 
17 5 18.4188 5 4.3748 
18 3 150.4596 3 108.4222 
19 2 745.3417 2 137.8749 
20 2 894.2812 2 22.3771 
21 5 33.1429 5 2.8049 
22 3 16.6558 2.8 5.5593 
23 2 61.6236 2 6.2294 
24 1 13.6835 1 13.0081 
25 3 156.9601 3 535.8973 
26 2 477.7522 2 725.3166 
27 1 1.1114 1 1.0560 
28 1 0.9757 1 0.9723 
29 3 197.1747 3 3.8092 
30 2 296.2467 2 23.5356 
31 1 1.0250 1 1.0030 
32 1 0.9565 1 0.9599 
33 3 10.3759 3 6.0284 
34 2 13.8292 2 10.1665 
35 1 1.0816 1 1.0822 
36 1 0.9659 1 1.0218 
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Table 7.  CRIRP problem instances and GA performance. 

 Initial sequence(s)  
Instances SFC SWP NN SFC, 

SWP and 
NN 

 

Burma 14 1.50 1.50 1.50 1.50  
Ulysses 22 1.78 1.78 1.77 1.77  
Berlin 52 4.31 4.29 4.30 4.29  
Bier 127 9.01 9.05 8.98 8.99  

Low capacity 7.85 7.85 7.85 7.84  
Medium capacity 2.83 2.83 2.80 2.81  

High capacity 1.77 1.79 1.77 1.76  
 

Table 8.  GA performance on the Berlin 52 instances. 
GA options Average 

number of 
vehicles 

Average 
run time 

(seconds) 

 

Simple mutation, short runs 4.29 6.2783  
Local search, short runs 4.29 209.6657  

Simple mutation, long runs 4.26 204.4783  
 

8. Summary and Conclusions 

This paper introduced the CRIRP, a type of inventory routing problem that has an interesting link 

between the elements of time and demand.  The continuous replenishment means that the 

operating costs are related to the number of vehicles.  The demand at each site is a rate (items per 

time unit), not a fixed amount.  In the special case in which all sites have the same demand, the 

problem is equivalent to the bin packing problem.  However, the more general case involves the 

traditional elements of routing as well as assignment.  Experimental results show that a heuristic 

that finds vehicle routes with the Clarke-Wright savings algorithm creates solutions that are 

generally better than those generated by bin packing and route-first cluster-second heuristics.  

The genetic algorithm did not produce better solutions, even when local search was used or when 

replications were allowed to run much longer.   

This work has focused on formulating the problem and suggesting some approaches that 

can generate high-quality solutions quickly.  Additional work will consider improving the lower 
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bound, refining the heuristics (by using different route construction heuristics or including route 

improvement techniques, for instance), and developing exact methods such as column generation 

and branch-and-cut procedures. 
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