
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: QUANTIFYING THE EMISSIONS OF 

CARBON DIOXIDE (CO2), CARBON 
MONOXIDE (CO), AND NITROGEN 
OXIDES (NOx) FROM HUMAN 
ACTIVITIES: TOP-DOWN AND BOTTOM-
UP APPROACHES 

  
 Doyeon Ahn, Doctor of Philosophy, 2021 
  
Dissertation directed by: Professor Ross J. Salawitch, Department of 

Chemistry and Biochemistry, Department of 
Atmospheric and Oceanic Science, Earth 
System Science Interdisciplinary Center 
 
Professor Russell R. Dickerson, Department of 
Atmospheric and Oceanic Science 

 
 

This dissertation encompasses three projects that quantify the emissions of 

greenhouse gases and air pollutants from human activities. In the first project, we use 

the aircraft-based mass balance (MB) approach to quantify the emission of CO2 from 

the Baltimore, MD-Washington, D.C. (Balt-Wash) area during winter 2015. Based on 

analysis of aircraft observations using the MB-based top-down approach, we estimate 

the emission of 1.9 ± 0.3 million metric tons (MtC) of CO2 due to the combustion of 

fossil fuels (FFCO2) from the Balt-Wash region February 2015. Our value is 14% lower 

than the 2.2 ± 0.3 MtC mean estimate of FFCO2 from four bottom-up inventories often 

used to drive climate policy. 



  

 In the second project, we investigate the declines in the emissions of CO2 and 

CO from the Balt-Wash area during the COVID-19 pandemic. We estimate using the 

MB approach applied to aircraft data that the emission of CO2 and CO declined by 29–

32% and by 27–37%, respectively, from February 2020 (prior to COVID-19 lockdowns) 

to April – May 2020 (in the midst of COVID-19 pandemic).  We show that for February 

2020, two bottom-up emission inventories (EDGARv50 and the state of Maryland 

inventory) underestimate CO2 emissions by 13–18%, whereas two bottom-up 

inventories (EDGARv50 and NEI2017) overestimate the emission of CO by 54–66%. 

We show that the major contributor to the overestimation of the emission of CO in the 

bottom-up inventory is due to the mobile (i.e., cars and trucks) sector.  

The third project examines the emissions of CO2 and NOx from the U.S. power 

sector. We quantify reductions in the emissions due to the direct impact of COVID-19 

and changes in the fuel-mix profile during 2015-2020 (i.e., switching from coal to 

natural gas). For the contiguous U.S., we estimate the impact of COVID-19 in April 

2020 to be a decline of 18 ±4% on the emission of CO2 and of 22 ± 5% on the emission 

of NOx. For the same month, we estimate the impact of the fuel-mix transition to be 

declines of 26% on the emission of CO2 and 42% on the emission of NOx. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Atmospheric Carbon Dioxide and Climate Change 

Arrhenius (1896) provide the first quantitative description of the greenhouse 

effect of the atmospheric carbon dioxide (CO2). This paper, written more than a century 

ago, discussed the role of CO2 in the long-term variations of Earth’s climate. Molecules 

of CO2 exert the greenhouse effect with Earth’s atmosphere by absorbing and emitting 

infrared (IR) radiation at the wavelengths around 15 µm, which lies in Earth’s outgoing 

IR radiation range of 6 – 22 µm (Jacob, 1999). Since the industrial revolution, which 

began around 1860, the global CO2 emissions from burning of fossil fuels have rapidly 

increased (Keeling, 1973; Tribett et al., 2017).  

In 2020, the annual mean dry-air mole fraction of CO2 measured at the Mauna 

Loa site was 414.24 ppm, which is 98.26 ppm larger than the value measured in 1959 

(315.98 ppm) (Tans & Keeling, 2021). This rapid increase in the atmospheric 

abundance of CO2 induced a rise of global mean surface temperature of about 1°C over 

the past century (Salawitch et al., 2017). Among the major greenhouse gases (GHGs), 

atmospheric CO2 was the largest contributor to the total radiative forcing of climate 

(RF), accounting for 61% of the increase in RF from 1990 to 2019 (NOAA, 2020b). A 

large number of studies have reported the detrimental impact of global warming and 

resulting climate change on Earth’s ecosystem (Stocker et al., 2013). On 12 December 

2015, a total of 196 state-parties (i.e., countries adhered to the UNESCO World 
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Heritage Convention) adopted the Paris Climate Agreement, by consensus, to reduce 

GHG emissions “as soon as possible” and to do their best to keep global warming well 

below 2°C (UNFCCC, 2015).  

1.1.2 Greenhouse Gas Emissions from Cities 

Cities are major contributors to the global emission of GHGs. Cities consume 

about 70% of global energy, while they occupy only 2% of Earth’s surface 

(O’Shaughnessy et al., 2016). As a result of this large energy consumption in the 

world’s cities, which is generally accompanied by the  burning of fossil-fuels, cities 

contribute more than 70% of the global energy-related emissions of GHGs (UN-Habitat, 

2011). For most countries in the world, the top three largest urban areas contribute more 

than 25% of their national total carbon footprint (Moran et al., 2018). The importance 

of urban GHG emissions is projected to increase in the future. By 2050, about 68% of 

the world population is projected to live in cities, a 13% increase from the 2015 level 

of 55% of total population (UN, 2018).  

With the increasing awareness of the importance of urban emissions of GHGs, 

cities and local governments have been taking actions to reduce their emissions. As of 

2020, a total of 88 cities around the globe have joined the C40 Cities Climate 

Leadership Group (C40) and pledged to take climate actions and reduce their emissions 

of GHGs (C40, 2020). In the United States (U.S.), as of 9 March 2021, at least 16 states 

plus Puerto Rico have enacted legislation to set requirements for reducing state-wide 

emissions of GHGs (NCSL, 2021). Many of these states have not only set reduction 

targets, but have also implemented mandatory reporting requirements. For example, 



 

3 
 

the state of Maryland has set a GHG reduction target of 50% below 2006 levels by 

2030 (MDE, 2021). Also, the Maryland Department of Environment is required to 

publish a statewide GHG emissions inventory every three years, starting 2011. 

Washington, D.C. has set the reduction target of 50% below 2006 levels by 2032 and 

has plans to reach net-zero emissions of GHGs by 2050 (DOEE, 2018). 

1.1.3 Quantifying Greenhouse Gas Emissions: The Bottom-up Approach 

Many states and cities that have set the GHG emission reduction targets rely on 

self-generated bottom-up emission inventories to track progress and evaluate the 

efficacy of their climate policies and regulations (Gurney et al., 2021). In the context 

of quantifying GHG emissions, the bottom-up approach refers to accounting 

methodologies that utilize both activity metric data and corresponding emission factors 

for various source sectors (Liu et al., 2020). For example, the state of Maryland GHG 

inventory calculates the on-road transportation sector emissions of CO2 by multiplying 

fuel consumption data (i.e., gasoline, diesel, compressed natural gas, ethanol) with 

various emission factors (i.e., the amount of CO2 emitted per unit consumption of each 

fuel) (MDE, 2017). 

The emission factors are the key components to develop reliable bottom-up 

emission inventories. The accuracy of emission factors for various source sectors has 

been evaluated in previous studies. McDonald et al. (2018) found that on-road gasoline 

emission factors in the EPA’s MOtor Vehicle Emission Simulator (MOVES) model 

are 2.5 times greater for carbon monoxide (CO) emissions in comparison to a emission 

factor determined from near-roadway measurements. Gately et al. (2015) reported that 

the Emissions Database for Global Atmospheric Research (EDGAR) model uses a 
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single emission factor (i.e. emissions per km) for both low-traffic and high-traffic road, 

inducing geographical allocation errors for the CO2 emission estimates. Anderson et al. 

(2014) analyzed aircraft data obtained over the Baltimore Washington region and found 

that the national emissions inventory (NEI) overestimates mobile NOx emissions by 

51-70%. This study suggested that the MOVES model’s inaccurate treatment of vehicle 

ages and corresponding NOx emission factors could be a potential source of the model-

observation discrepancy.  Hall et al. (2020) found that the sensitivity of vehicular NOx 

emissions to the outdoor temperature is significantly underpredicted in the EPA’s 

MOVES model, in comparison to the estimate from the ambient measurements at the 

I-95 highway near-road site. Yu et al. (2021) used a deep learning approach to predict 

NOx emissions from diesel vehicles, and showed improved prediction performance 

relative to seven other models used in the study.  Zhao et al. (2011) found that a single 

emission factor is applied for almost the entire industrial sector, regardless of 

combustion technology or fuel type, in the China’s national emission inventory, which 

leads to a large uncertainty in the estimated emissions. Recently, Solazzo et al. (2021) 

estimated the complete structural uncertainty for the EDGAR emission inventory, by 

propagating uncertainties associated with individual activity data and emission factors. 

Reliable activity data are also important components of the bottom-up 

emissions inventory. Guan et al. (2012) calculated two sets of China’s annual CO2 

emissions, one from the national energy statistics data and another from the provincial 

energy statistics. They found that the two sets of CO2 emissions for 2010 differ by 1.4 

gigatonnes (the difference is similar to Japan’s annual emissions of CO2), while both 

the national and the provincial energy data are officially distributed to the public. Liu 
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et al. (2015) used harmonized energy consumption data and showed that the total 

energy consumption in China during 2000-2012 was 10% larger than the value reported 

by China’s national statistics. Liu et al. (2015) also found that emission factors for 

Chinese coal are 40% lower than the default value recommended by the 

Intergovernmental Panel on Climate Change (IPCC). By combining updated energy 

statistics and emission factors, Liu et al. (2015) estimated that 2.49 gigatonnes (2σ: 

±7.3%) of CO2 were emitted from China in 2013, 14% lower than the emissions 

reported by other bottom-up inventories. 

The bottom-up inventory cannot be completed until activity data and emission 

factors for specific source sectors are all available. Substantial resources are needed to 

collect activity data and emission factors that are differentiated by fuel type (i.e., natural 

gas, gasoline, diesel), technology type (i.e., gas-fired gas turbines, boilers, combined 

cycle), and ambient conditions (i.e., outdoor temperature, relative humidity) (EEA, 

2019). Emission factors for the leakage of methane (CH4) from various sources, such 

as coal mines, shale-gas wells, landfills, natural gas pipelines, and behind-the-meter 

home appliances, are often limited or unavailable (Alvarez et al., 2018; McKain et al., 

2015; Merrin & Francisco, 2019; Plant et al., 2019; Ren et al., 2018). Furthermore, 

Ibarra-Espinosa & Ynoue (2016) reported that the lack of data (i.e., activity data and 

emission factors) is the biggest challenge to construct the bottom-up emissions 

inventory for South American cities.  The process of data collection (i.e., activity metric 

and emission factors), data processing (i.e., aggregating data by source sector 

categories), and evaluation (i.e., comparison to estimates from atmospheric 
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observations) should be conducted with transparency to develop reliable bottom-up 

emission inventories for policy makers and stakeholders. 

1.1.4 Quantifying Greenhouse Gas Emissions: The Top-down Approach 

In the context of quantifying the emission of GHGs, the top-down approach 

refers to methodologies that utilize atmospheric observations of GHGs and atmospheric 

transport models. Common types of atmospheric observations used for the top-down 

approach include ground-tower observations (Karion et al., 2020), in-situ aircraft 

measurements (Ren et al., 2018), flask sampling (Turnbull et al., 2011), a network of 

low-cost sensors (Martin et al., 2017), and satellite remote sensing (Crisp et al., 2017). 

The atmospheric transport models are used to convert the atmospheric mole fraction of 

a GHG, measured from various platforms, to the emission flux (i.e., kgCO2 km-2 hr-1) 

by simulating the horizontal and vertical movements of air parcels. Common type of 

atmospheric transport models used for the top-down method are Hybrid Single-Particle 

Lagrangian Integrated Trajectory (HYSPLIT) (Draxler et al., 1997; Stein et al., 2015), 

Stochastic Time Inverted Lagrangian Transport (STILT) (Lin et al., 2003), GEOS-

Chem (Bey et al., 2001), and Weather Research and Forecasting coupled with 

Chemistry (WRF-Chem) (Grell et al., 2005).  

The mass balance method is a conceptually simple approach that translates 

observed mole fractions of a GHG to emission fluxes (Trainer et al., 1995; White et al., 

1983). White et al. (1983) presented a series of mathematical formula that show the 

horizontal flux of CO2 downwind of an emission source is equal to the vertical flux of 

CO2 over the emission source under steady wind conditions. The mass balance method 

relies on the principle of mass conservation with several important, implicit 
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assumptions: 1) a steady state wind is assumed over the geographical domain of interest, 

2) there must be zero net flux through either horizontal (i.e., two sides of the box 

parallel to wind direction) and vertical boundaries (i.e., planetary boundary layer) of 

the geographical domain. Once these implicit assumptions are justified via atmospheric 

measurements, the mass balance method can be quickly adopted to assess the emission 

of GHGs from cities. A complete mathematical formula and descriptions of the mass 

balance method are provided in section 2.2.5. These top-down estimates can either 

provide flux information for cities lacking a bottom-up inventory or, as examined in 

this dissertation, serve as an important constraint for the accuracy of existing bottom-

up inventories. 

In comparison to the mass balance method, the atmospheric inversion technique 

is a relatively sophisticated method that relies on numerical modeling of atmospheric 

transport. Hypothetical observations of atmospheric CO2 (or any other GHG) are 

simulated using an atmospheric transport model that disperses the prior emissions of 

CO2, which are obtained from bottom-up gridded products (Kort et al., 2013). The 

bottom-up gridded products used for the inversion technique include the 

CarbonTracker (Global, 1° lat/lon resolution,  (Peters et al., 2007)), EDGAR (global, 

0.1°, (Janssens-Maenhout et al., 2017)), Fossil Fuel Data Assimilation System (FFDAS, 

global, 0.1°, (Asefi-Najafabady et al., 2014; Rayner et al., 2010)), Open-Source Data 

Inventory for Anthropogenic CO2 (ODIAC, Global, 1 km,  (Oda et al., 2018; Oda & 

Maksyutov 2011, 2015)), Anthropogenic Carbon Emissions System v1 (ACESv1, 

Northeast U.S., 1 km, (Gately & Hutyra, 2017, 2018)). The simulated mole fractions 

of atmospheric CO2 are compared to actual mole fractions of CO2 measured from 
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various platforms (i.e., ground-based towers (Mueller et al., 2018), aircraft (Lopez-

Coto et al., 2020), satellites (Crowell et al., 2019; Maasakkers et al., 2021)). The cost 

function is defined as the sum of the difference between simulated and observed CO2 

mole fractions and the difference between prior and posterior emissions of CO2, both 

weighted by the uncertainty covariance matrix (Kort et al., 2013). The optimized 

(posterior) CO2 emissions are computed using a Bayesian framework to minimize the 

cost function (Chevallier et al., 2006). 

The tracer-to-tracer ratio method is another common type of the top-down 

approach used to quantify GHG emissions. The tracer-to-tracer correlation slope (i.e., 

CH4:CO2, CH4:CO, CO2:NOx) is often calculated from atmospheric observations of 

two trace gases attributed to a specific source of interest. Ren et al. (2018) multiplied 

the slopes of CH4:CO and CH4:CO2, determined from in-situ aircraft observations by 

the bottom-up emission inventories (EDGAR2010 for CO and NEI2014 for CO2) to 

estimate the emissions of CH4 from the Baltimore, MD-Washington, D.C. area. Plant 

et al. (2019) multiplied the slopes of CH4:CO and CH4:CO2, again computed from in-

situ aircraft observations, by bottom-up inventories of CO and CO2 to estimate the 

emission of CH4 from numerous cities along the U.S. East Coast. Furthermore, Plant 

et al. (2019) used the slope of C2H6:CH4 to quantify fugitive natural gas losses in the 

domain. Goldberg et al. (2019) estimated fossil-fuel CO2 emissions for the major U.S. 

cities using the CO2:NOx  ratio determined from bottom-up inventories. The city-

specific CO2:NOx ratios are combined with the urban NOx emissions estimated from 

column NO2 measured by the Ozone Monitoring Instrument (OMI) instrument onboard 

the National Aeronautics and Space Administration (NASA)’s Aura satellite. The 
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tracer-to-tracer ratio method provides GHG emission estimates without having to rely 

on a numerical transport model or extensive statistical analysis. For reliable results of 

the tracer-to-tracer ratio method, the emission estimate of the trace gas in the 

denominator of the ratio needs to be well-established. 

One of the main advantages of the top-down approach is the ability to detect 

previously unknown or underestimated emission hot spots. Schneising et al. (2014) 

used satellite remote sensing data to detect and quantify fugitive methane emissions 

from oil and gas production sites in the North America. Kort et al. (2014) found 

anomalously high CH4 levels over the U.S. Four Corners region by analyzing column 

averaged CH4 mole fractions retrieved from the SCanning Imaging Absorption 

SpectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the 

European Space Agency’s (ESA) Environmental Satellite (ENVISAT). Ren et al. 

(2018) attributed a number of CH4 plumes observed during aircraft flights to individual 

landfills in Maryland using HYSPLIT back trajectories. By applying the mass balance 

approach to these landfill plumes Ren et al. (2018) estimated that landfill emission of 

CH4 for the state of Maryland is 1.50 ± 0.80 kgCH4/s (mean ± 1σ), a factor of two 

greater than the state’s inventory estimate of 0.747 kgCH4/s. Viatte et al. (2017) 

quantified the methane emissions from the largest dairies in the Southern California 

region using solar-viewing ground-based spectrometers (EM27/SUN) and carbon 

isotope measurements (i.e., 13CH4 and 12CH4) from a Cavity Ring-Down Spectroscopic 

(CRDS) analyzer. Their top-down estimates of the emission of CH4 from these dairies 

showed a wide range of values, suggesting significant heterogeneity in the emission of 

CH4 from this source. 
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Several limitations and challenges remain in the top-down approach. First, the 

accuracy and precision of the top-down emission estimate are subject to the 

uncertainties associated with atmospheric measurements and numerical transport 

modeling. One of the largest sources of uncertainty is the true value of the background 

mole fraction of the trace gas (Ahn et al., 2020; Cambaliza et al., 2014). The 

background mole fraction is defined as the mole fraction of the trace gas that would 

have been measured downwind of the emission source if there were no emissions from 

the source being quantified (Turnbull et al., 2018). For cities, this quantity is physically 

impossible to measure because both urban emissions and meteorological conditions 

over cities (i.e., wind speed, wind direction, PBL height) constantly change. Therefore, 

background mole fractions used to quantify urban emissions of CO2 emissions are often 

determined from various proxies, such as the CO2 mole fraction measured upwind of 

cities (Klausner et al., 2020), mole fractions measured at the edges of a downwind flight 

track (Heimburger et al., 2017), or hypothetical CO2 mole fractions simulated using 

emissions of CO2 only upwind of the source region of interest along with a numerical 

transport model (Lopez-Coto et al., 2020). Another important source of uncertainty is 

the measurement of meteorological parameters (i.e., wind speed, wind direction, 

planetary boundary layer height) used for atmospheric transport modeling. Ahn et al. 

(2020) assessed the accuracy of aircraft measurements of wind speed and wind 

direction by making a comparison to the North American Mesoscale Forecast System 

4 km (NAM4) model estimates and wind profiler observations at the Beltsville, 

Maryland (see section 2.5.3). Deng et al. (2017) assimilated meteorological 

observations by running numerical weather prediction (NWP) model in reanalysis 
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mode, and reduced the mean absolute error (MAE) of wind speed (from 2.0 to 1.2 m/s), 

wind direction (from 26° to 14°), and PBL height by ~10%. 

The source sector attributions of the observed GHG emissions are often 

challenging to determine using the top-down approach. In many cities, different types 

of emission source sectors (i.e., residential, commercial, industrial, transportation) are 

located in close proximity. While the urban plumes of CO2 observed from aircraft in-

situ measurements or satellite remote sensing can be attributed to specific point source 

(i.e., power plants, landfills, oil and natural gas wells) by running atmospheric transport 

models (Ahn et al., 2020; Nassar et al., 2017; Ren et al., 2018), unambiguous attribution 

usually requires either obtaining measurements (from aircraft) in close proximity to the 

source or a very large point source (for satellite observations). Jackson et al.  (2014) 

drove a car equipped with a CRDS instrument (Picarro G2301) measuring CH4 mole 

fractions across 1500 road miles over the Washington, D.C, and found total of ~5900 

natural gas leaks across the city. Mitchell et al. (2018) presented public transit light-

rail vehicles, equipped with instruments which measure GHGs and meteorological 

parameters, in the Salt Lake Valley, Utah. Continuous measurements obtained from the 

light-rail vehicles, traversing across the city throughout the day, provided source-

specific enhancement signals of CO2 and CH4. These types of source sector 

determination from atmospheric observations are more the exception than the rule, 

given the laborious nature of the necessary data collection. 

1.2 Outline 

In this dissertation, I investigate the emissions of CO2 from two distinct, yet 

related, emission sources: Cities (i.e., the Baltimore, MD-Washington, D.C. 
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metropolitan area) and the U.S. power sector (i.e., electricity generating units in the 

contiguous U.S.). Throughout this work, I analyze various types of atmospheric 

measurement data (i.e., aircraft measurement data, wind profiler, power plant stack 

monitoring) using the HYSPLIT atmospheric transport model, via the top-down mass 

balance method. Various statistical approaches such as regression spline models are 

also used. The resulting top-down emission of CO2 estimates are compared to bottom-

up estimates (i.e., state inventory, gridded bottom-up product) throughout this 

dissertation. 

In Chapter 2, I focus on the emissions of CO2 from the Baltimore, MD-

Washington, D.C. area. I use in-situ aircraft research flight data, obtained during 

February 2015, and the mass balance method to quantify urban CO2 emissions. 

Resulting top-down estimate of CO2 emissions are interpreted with various models 

(i.e., HYSPLIT atmospheric transport model, VEGAS biogenic CO2 model) and 

bottom-up estimates (i.e., state GHG inventory, bottom-up gridded product). The main 

goals of the Chapter 2 are: 

1. Assessing the accuracy and precision of the aircraft-based mass balance 

method adopted to quantify CO2 emissions from the Baltimore, MD-

Washington, D.C. area. 

2. Quantifying CO2 emissions from the Baltimore, MD-Washington, D.C. area 

during February 2015. 

3. Comparing top-down CO2 emission estimate to various bottom-up 

estimates, including state GHG inventory and global/regional gridded 

products. 
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Chapter 2 was published on 14 April 2020 in the Journal of Geophysical Research - 

Atmospheres (Ahn et al., 2020). 

In Chapter 3, I investigate the emissions of CO2 and CO from the Baltimore, 

MD-Washington, D.C. area during the COVID-19 pandemic period. The aircraft-based 

mass balance method, presented and evaluated in Chapter 2, is applied to aircraft data 

obtained during the February-May 2020 period. Further, I extend the aircraft-based 

mass balance method by combining it with activity data for major source sectors (i.e., 

residential/commercial/industrial (RCI), transportation, power generation). By relating 

the reduced emissions of CO2 and CO as a function of decline in major source sectors 

during COVID-19, top-down estimates of the CO2 and CO emissions are attributed to 

specific source sectors. The main goals of Chapter 3 are: 

1. Quantification of the emissions of CO2 and CO before (i.e., February 2020) 

and after COVID-19 social lockdowns (i.e., April-May 2020) over the 

Baltimore, MD-Washington, D.C. area. 

2. Source sector attributions of the emissions of CO2 and CO from the 

Baltimore, MD-Washington, D.C. area (i.e., RCI, onroad transportation, 

off-road transportation, power generation, and others). 

3. Evaluation of the bottom-up estimates for the total emissions and source 

sector compositions of CO2 and CO (i.e., EDGAR, state inventory, and 

NEI). 

The results of Chapter 3 are being prepared for journal submission, which will occur 

soon after the dissertation defense. 



 

14 
 

In Chapter 4, I focus on the emissions of CO2 and NOx from the U.S. power 

sector during COVID-19. I use power plant operation data for the contiguous U.S. 

(CONUS), publicly available from the Environmental Protection Agency (EPA) and 

the Energy Information Administration (EIA). The multivariate adaptive regression 

splines (MARS) model is adopted to estimate daily total electricity generation as a 

function of outdoor temperature and the type-of-day (i.e., weekdays, weekends, and 

holidays). The daily operation status of ~3,000 power units over the CONUS is 

analyzed to account for fuel-mix change (i.e., transition from coal to natural gas) seen 

in the U.S. power sector. The main goals of the Chapter 4 are: 

1. Development and evaluation of the regression model which estimate daily 

total electricity generation in CONUS as a function of outdoor temperature 

and the type-of-day (i.e., weekdays, weekends, and holidays). 

2. Quantification of the impact of COVID-19 on the U.S. power sector: 

electricity generation and concomitant emissions of CO2 and NOx. 

3. Comparison of the two prominent factors affected the U.S. power sector 

emissions of CO2 and NOx: the impact of COVID-19 versus the impact of 

fuel-mix transition (i.e., transition from coal to natural gas). 

The results of Chapter 4 are also being prepared for journal submission, which again 

will occur soon after the dissertation defense. 

Finally, in Chapter 5 I briefly summarize the results of Chapters 2, 3, and 4. I 

then conclude by providing suggestions for future research. 
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Chapter 2: Fluxes of Atmospheric Greenhouse-Gases in 

Maryland (FLAGG-MD): Emissions of Carbon Dioxide in the 

Baltimore, MD-Washington, D.C. area 

 

2.1 Introduction 

A major increase in the atmospheric abundance of CO2 since the industrial 

revolution—with significant positive perturbation to the radiative forcing of climate—

has resulted in a rise of global mean surface temperature over the past century (Stocker 

et al., 2013). A large number of studies that clarified the detrimental impact of global 

warming and resulting climate change on Earth’s ecosystem have spurred individual 

nations to mitigate greenhouse gas (GHG) emissions under the Paris Climate 

Agreement (Salawitch et al., 2017). Along with the efforts by most of the world’s 

nations, the role of cities in GHG mitigation has become even more important given 

the recent U.S federal decision to pull back from the Paris Climate Agreement (UN, 

2017). Currently, the state of Maryland is on track for reducing consumption-basis 

GHG emissions by 25% in 2020 and 40% in 2030 relative to emissions in 2006 (MDE, 

2015). Washington, D.C. has set a plan to reduce consumption-basis GHG emissions 

by 50% in 2032 and by 100% in 2050 relative to 2006 emissions (DOEE, 2018). 

With increasing GHG mitigation efforts, scientific research to improve the 

quantification and attribution of carbon sources in urban areas has become more 

important (Duren & Miller, 2012; Hutyra et al., 2014; Patarasuk et al., 2016). 
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According to UN-Habitat (2011), more than 70% of global CO2 emissions related to 

energy usage comes from urban areas. Also, measuring CO2 in urban areas is more 

tractable than measuring CO2 in countries, because the CO2 signal from cities is intense 

and localized (Gratani & Varone, 2005; Idso et al., 2001). Various measurement 

techniques, data analyses, and modeling methods have been collectively used to study 

CO2 emission in urban areas. Among many U.S. cities, the Indianapolis area was chosen 

as one of the first testbed sites to develop and evaluate a framework to study urban 

GHG emissions, given its relatively simple topography and isolation from other large 

cities (Davis et al., 2017; Whetstone, 2018). The Indianapolis Flux Experiment 

(INFLUX, https://www.nist.gov/topics/greenhouse-gas-measurements/indianapolis-

flux-experiment) has successfully developed and improved the mass-balance method 

and the inversion framework, called “Top-down” approaches, as well as inventory data-

based emission models such as Hestia, a “Bottom-up” approach (Gurney et al., 2017; 

Lauvaux et al., 2016; Turnbull et al., 2015, 2018; Whetstone, 2018). Along with 

INFLUX, several projects with similar aims have been conducted in other cities. The 

Megacities Carbon Project was designed to quantify carbon emissions in some of the 

world’s largest cities, including Los Angeles, Paris, and San Paulo (Bréon et al., 2015; 

Feng et al., 2016; Newman et al., 2016). Urban GHG emissions from the Boston area 

(Sargent et al., 2018) and Salt Lake City (McKain et al., 2012; Strong et al., 2011) have 

also been extensively investigated.  

The Fluxes of Atmospheric Greenhouse-Gases in Maryland (FLAGG-MD) 

project is part of the National Institute for Standards and Technology (NIST) U.S. 

Northeast Corridor testbed which, in its first phase, is focused on the Baltimore, 
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Maryland (MD)-Washington, D.C. (Balt-Wash) area (Lopez-Coto et al., 2017; Mueller 

et al., 2018; https://www.nist.gov/topics/northeast-corridor-urban-test-bed). Taking a 

lead from the successful deployment of INFLUX, the FLAGG-MD project aims to 

understand and quantify emissions of CO2, CH4, and CO in the Balt-Wash area. While 

FLAGG-MD is similar in many ways to INFLUX, the geography of the Balt-Wash area 

engenders the following complications. The Balt-Wash area is part of the U.S. 

Northeast Corridor, which includes other major cities such as Boston, New York City, 

and Philadelphia. Also, the Balt-Wash area is located southeast of the Appalachian 

Mountains and northwest of the Chesapeake Bay, such that mesoscale circulations 

complicate the atmospheric transport of urban GHG emissions. Several large power 

plants upwind of the Balt-Wash area can episodically increase the spatiotemporal 

variability of the background mole fractions of CO2. The Balt-Wash urban testbed 

consists mainly of aircraft campaigns conducted in collaboration with Purdue 

University (Lopez-Coto et al., 2020; X. Ren et al., 2018; Salmon et al., 2017, 2018), 

along with several other assets: installations of low cost CO2 sensors (Martin et al., 

2017), meteorological data assimilation, modeling of tower-based observations (Martin 

et al., 2019; Mueller et al., 2018) and incorporation of data from the Orbiting Carbon 

Observatory 2 (OCO-2).  

In this study, emissions of CO2 from the Balt-Wash area are quantified using 

the FLAGG-MD aircraft campaign dataset obtained during the month of February 2015. 

Section 2.2 describes the aircraft campaign, the mass balance approach, and various 

models used in this study. In section 2.3.1, source apportionment of the plumes of CO2 

observed by the aircraft is presented. In section 2.3.2, the impact of plume transport 
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from out-of-state power plants on the aircraft observations is investigated. In section 

2.3.3, the accuracy and precision of the aircraft-based mass balance estimates are 

evaluated using the Continuous Emissions Monitoring Systems (CEMS) records of two 

local power plants. Section 2.3.4 discusses the uncertainty from mass balance 

parameters. In section 2.3.5 – 2.3.7, differences in the CO2 emission rate among our 

mass balance estimate, other previously published bottom-up/downscaling model 

estimates, and the state of Maryland emission inventory are investigated. 

2.2 Materials and Methods 

2.2.1 Instrumentation 

The University of Maryland (UMD) Cessna 402B aircraft was equipped with a 

cavity ring-down spectroscopic (CRDS) analyzer (Picarro Model G2401-m) that is 

used to measure the dry air mole fraction of CO2. Measurements of CO2 were calibrated 

on the ground as well as during the flight using an onboard calibration system with two 

cylinders of standard gases certified by National Institute of Standards and Technology 

(NIST). These cylinders contained CO2 of 369.19 and 445.78 µmol mol-1 (parts per 

million, or ppm). A diaphragm pump was installed to pull the ambient air from the nose 

of the Cessna through a rear-facing Perfluoroalkoxy alkanes (PFA) Teflon tube 

(O.D=0.95 cm and I.D=0.64 cm), at a total flow rate of 10 L/min. The CRDS analyzer 

was connected to the main sample line via a Tee connection, allowing air to be pumped 

continuously through the analyzer at a rate of 400 mL/min. We tested the stability of 

the analyzer by sampling a tank of breathing air continuously while the aircraft climbed 

from 50 to 3500 m altitude – the standard deviations of CO2 were very small, near the 
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measurement precision limit of the Picarro instrument. The UMD aircraft was also 

equipped with instruments to measure SO2, NO2, NO, O3, aerosols, and meteorological 

variables. A more detailed description on the instrumentation can be found in Ren et al. 

(2018). The Purdue Duchess aircraft was equipped with a CRDS analyzer (Picarro 

Model G2301-m) for measurements of CO2 and a Best Air Turbulence (BAT) probe 

for measurements of the three-dimensional wind field. A more detailed description of 

the instrumentation on the Purdue Duchess aircraft can be found in Salmon et al. (2018). 

To examine the sensitivity of our mass-balance emission estimation of CO2 

emissions (described in section 2.2.5) to the measurement uncertainties, 1𝜎 

uncertainties of the temperature, pressure, and CO2 mole fraction measurements were 

propagated into the mass balance equation. The 1𝜎 absolute uncertainty of temperature 

measurements from both UMD and Purdue flight instruments was determined to be2.0 

K, based upon a comparison of temperature measurements made from the two aircraft 

during a wingtip-to-wingtip flight segment conducted on 19 February 2015. For the 1𝜎 

uncertainty of the pressure measurements for the UMD flights, the reported instrument 

uncertainty of 0.25 hPa was used. For the Purdue flights, 1𝜎 uncertainty was 

determined to be 1.6 hPa based upon a comparison of measured pressure versus 

calculated barometric pressure. For the 1𝜎 uncertainty of the CO2 measurements, the 

reported instrument uncertainty of 0.1 ppm was used for data collected by both the 

UMD and Purdue instruments. 

2.2.2 Aircraft research flight design 

For this study, the Balt-Wash area is defined as a rectangularly-shaped region 
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enclosed by the four coordinates of 38.23°N 76.67°W, 39.46°N 75.86°W, 39.87°N 

77.04°W, 38.63°N 77.86°W (154×111 km2, see Figure 2.1). The defined study area 

consists of populated regions, within and surrounding the cities of Baltimore, MD and 

Washington, D.C. The total population within the study area was 8,153,000 in year 

2015 based on Gridded Population of the World (GPWv4) data (CIESIN, 2018). Seven 

major power plants (all within either the states of Maryland or Virginia) and a dense 

road network including major highways such as the Capital Beltway ring (I-495), the 

Baltimore Beltway (I-695), and interstate highway I-95 all lie within the study area. 

According to the Maryland GHG inventory, total of 18.8 MtC (Million tons Carbon) 

of Fossil Fuel CO2 (FFCO2) was emitted from Maryland during year 2014 (MDE, 

2016). 
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Figure 2.1. Overview of the FLAGG-MD aircraft campaign during February 2015 
conducted in the Baltimore, MD and Washington, D.C. metropolitan areas; the white 
rectangle defines the Balt-Wash study area used throughout the analysis. Yellow and 
cyan lines indicate the UMD and Purdue aircraft flight tracks, respectively. The 
dominant wind direction during the campaign period is shown by the white arrow. Point 
emission sources are shown as circles; the size and color of these circles indicate the 
amount of CO2 (size) and SO2 (color) emitted from these sources in February 2015 
(USEPA AMPD 2015). The VP labels indicate locations where vertical profile data 
were obtained. The points labeled A, B, C, and D denote the edge of the region for 
which the emission of CO2 from the Balt-Wash region is found. The boundary of the 
vertical plane AB, for which transects at various altitudes were flown, is used to define 
the downwind study area to calculate the emission of CO2 for all flights except UMD-
RF9. The vertical plane BC is used to define the downwind boundary for UMD-RF9, 
since northeasterly winds were present on 26 February 2015. 

The UMD aircraft conducted a total of nine research flights (UMD RF1-9) in 

February 2015. Figure 2.1 shows all of these flight tracks and Figure S2.1 shows 

individual flight tracks. During seven research flights (UMD RF1-6 and RF8) 

northwesterly winds prevailed, while a northeasterly wind was present on UMD RF9 

and a southwesterly wind occurred on UMD RF7. For all flights, the UMD aircraft 

departed from the Tipton airport (located between Washington, D.C. and Baltimore) 

and first flew a horizontal transect upwind of the study area to sample the incoming air. 

For the downwind transects of UMD-RF1-6 and RF8, an imaginary vertical plane AB 

was defined at the location where polluted plumes from the major emission sources—

power plants, the I-95 highway, and the Washington, D.C., and Baltimore, MD 

metropolitan areas—could be sampled separately under northwesterly wind condition 

(see Figure 2.1). The aircraft made multiple horizontal transects at different altitudes 

in the plane AB to capture the outgoing air. Several vertical profiles were taken to 

measure vertical distribution of trace gases and to estimate the planetary boundary layer 

(PBL) height. For UMD-RF9, the sampling at downwind transects at various altitudes 

was conducted along the plane BC, since this flight was conducted under northeasterly 
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winds. Data from UMD-RF7 are not used below because of the complex wind patterns 

prevalent in the study area on 24 February 2015. 

The Purdue aircraft conducted a total of six research flights between 16 

February to 11 March 2015 (Salmon et al., 2017, 2018) (Figure 2.1 and S2.1). Purdue 

flight tracks were designed in a similar manner to the UMD flights, aiming to measure 

mole fractions of CO2 upwind and downwind of the Balt-Wash area. On 19 February 

2015 (Purdue-RF3), the Purdue aircraft was coordinated with the UMD aircraft (UMD-

RF4) to conduct direct comparisons of in-situ measurements of CO2, other GHGs, and 

meteorological variables during a wingtip-to-wingtip segment that lasted about 40 

minutes. 

2.2.3 HYSPLIT transport modeling 

In this study, the Hybrid Single Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model was used to determine the sources of polluted plumes observed from 

the aircraft (Draxler et al., 1997; Stein et al., 2015). A series of back trajectories starting 

at the aircraft locations, at one second intervals, was computed using the default model 

configuration setup and NAM12 (North American Mesoscale Forecast System, 12 km 

horizontal resolution) as input meteorology. Forward transport modeling of power 

plant CO2 plumes was conducted using HYSPLIT particle dispersion mode with 

NAM4 (4 km horizontal resolution). The number of particles released per cycle 

(variable name ‘numpar’) was set to 106. The output mass was divided by air density 

to obtain mole fraction (ichem=6). Horizontal grid spacing was specified as 0.1°, given 

that the objective of the modeling is to understand the inter-state transport of power 
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plant plumes in the eastern U.S. Vertical grid spacing was set at 100 m below 2000 m 

and at 500 m above 2000 m. All other configuration parameters were set at default 

values, as described in Draxler et al. (2014). As input emission sources, we used power 

plants listed in the Environmental Protection Agency’s Clean Air Markets Division 

(EPA CAMD) datasets for Washington, D.C., Maryland, Pennsylvania, Virginia, West 

Virginia, and Ohio. The EPA CAMD emission dataset of facility-level hourly CO2 

emissions records was obtained from the Air Markets Program Data (AMPD) query 

system (USEPA AMPD, 2015). 

2.2.4 VEGAS modeling and NDVI data 

A VEgetation-Global Atmospheric-Soil (VEGAS) model simulation was used 

to calculate the biogenic flux of CO2 over the Balt-Wash area during February 2015. 

VEGAS is a dynamic soil and vegetation model that simulates the growth of plant 

functional types based on meteorological data (Zeng et al., 2004, 2005). The model was 

run hourly at 9 km resolution using re-gridded NARR (North American Regional 

Reanalysis) data as meteorological input. The simulation was started in the year 1715 

to provide a spin-up time for regional carbon pools.  

In addition to the benefit of estimating the biogenic CO2 flux for the study 

domain, gridded VEGAS biogenic CO2 flux output was combined with the Normalized 

Difference Vegetation Index (NDVI) data to investigate the impact of biogenic CO2 

emissions on the background CO2 that is needed for the mass balance calculation (see 

section 2.3.6). Since the VEGAS model was not specifically designed to compute 

biogenic emissions of CO2 in regions with complex landscapes such as the Balt-Wash 
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study area, we have combined VEGAS output with NDVI data acquired within the 

study region during February 2015. First, gridded VEGAS output of net biogenic CO2 

flux was computed for the entire Balt-Wash study area. Next, version v1r12 NDVI data 

(4 km, weekly, https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php) from 

the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National polar-

orbiting partnership (Suomi-NPP) was summed within each of the narrow grid boxes 

(NDVIGRID BOX) perpendicular to line AB as shown in Figure S2.2. Then, the horizontal 

transect of the biogenic flux of CO2 within the study region, along line AB, was found 

by multiplying the VEGAS output (i.e., a single number representative of the entire 

study region) by the value of NDVIGRID BOX for each specific grid box and dividing by 

the sum of NDVIGRID BOX for all grid boxes. In section 2.3.6, we describe the impact of 

biogenic CO2 flux on the background CO2 and the mass balance calculation. 

2.2.5 Mass balance approach and sensitivity analysis 

A mass balance approach was used to estimate the emission rate of CO2 from 

the Balt-Wash area and from two local power plants. Under steady wind conditions, 

the horizontal flux of CO2 crossing the vertical plane AB located downwind of an 

emission source can be considered as an approximation of the vertical flux of CO2 over 

the emission source, while the air parcel was passing through the source (Trainer et al., 

1995; White et al., 1983). A similar approach has been used in previous studies to 

estimate fluxes of trace gases such as CO2, CH4, CO, and NOx from various emission 

sources (Cambaliza et al., 2014; Heimburger et al., 2017; Kalthoff et al., 2002; Karion 

et al., 2015; O’Shea et al., 2014; Peischl et al., 2016; Salmon et al., 2017, 2018). In this 
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study, the emission rate of CO2 (F, mol/s) was calculated with the following equation: 

 𝐹 = ∫ 	∫ %[𝐶]!,# − [𝐶$%]!,#* ∙ 𝑈!,# ∙ 𝑘!	𝑑𝑥𝑑𝑧
!!
!"

#!
#"

    (2.1) 

 where x is the horizontal and z is the vertical location in the plane AB. Variables xi, xf 

and zi, zf are the horizontal and vertical bounds of AB influenced by the emission source 

of interest, [C] is the sampled number density of CO2, and [Cbg] is the computed 

background number density of CO2. Also, U is the wind speed perpendicular to the 

aircraft heading and k is the scaling factor for U, defined as the ratio of the mean U 

during transport time over the emission source to the value of U measured at the 

downwind flights. A detailed description of each parameter is provided in the following 

sections. 

2.2.6 Background mole fractions of CO2 

Previous studies have used the edge fitting method to estimate background CO2 

(Heimburger et al., 2017; Krautwurst et al., 2016; Salmon et al., 2018). For the Balt-

Wash area, background regions within the downwind transects were designated at 

northern and southern edges. Then, the CO2 background was defined by fitting a linear 

regression line to the mole fractions of CO2 measured at both edges of the transects 

(Figure S2.3b, d, e, g). On 19 and 23 February 2015 the mole fractions of CO2 measured 

between the Washington, D.C. and Baltimore, MD plumes along line AB in Figure 2.1 

were lower than mole fractions of CO2 measured at the edges of the downwind transect 

(Figure S2.3a, c, f). Our HYSPLIT transport modeling indicates that elevated CO2 at 

the downwind transect edges on these dates was likely due to power plant plumes 
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transported from either Pennsylvania or West Virginia (see section 2.3.2). Therefore, 

an additional background region, approximately midway between the Washington, D.C. 

and Baltimore, MD plumes, was designated for the flights conducted on 19 and 23 

February 2015.  For the three flights (UMD-RF4, UMD-RF6, and Purdue-RF3) 

conducted on these two days, background CO2 was determined by fitting two linear 

regression lines: one from the southern edge to the midway background flight segment 

and another from the midway segment to the northern edge. The background mole 

fractions of CO2 were converted into background number density ([Cbg]) using in-situ 

measurements of temperature and the pressure, for use in Equation 2.1. 

The accuracy of our estimate of the background CO2 mole fraction was 

evaluated by conducting a comparison to upwind measurements of CO2 (Figure 2.2). 

For the comparison, the CO2 background value defined at each point of every 

downwind transect was examined for potential pairing to the upwind measurements of 

CO2 conducted for the same flight. Forward HYSPLIT trajectories were computed 

every 1 sec of each upwind flight segment, which generally occurred along the line CD 

in Figure 2.1. For each forward trajectory, a successful pairing was determined if a 

trajectory crossed the downwind transect meeting the following conditions: 1) 

trajectory altitude was within the PBL at the crossing time of the downwind track, 2) 

the crossing time of the downwind track was within ±1 hour of the time the aircraft 

collected data.  The upwind data were collected in early afternoon for all of the flights, 

and the downwind sampling occurred on average 2.5 hours later. Figure 2.2a shows a 

comparison of a 10 sec running mean of CO2 within the PBL collected during the 

upwind portion of the indicated flights versus the background value of CO2 computed 
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for the location at which the trajectory crossed the downwind track. The excellent 

agreement between the upwind measurements of CO2 and our estimate background 

CO2 (mean and standard deviation of 0.18±0.79 ppm) supports the validity of the 

carbon emissions computed using the mass balance approach. We are unable to 

compare upwind CO2 to the estimate of background for UMD-RF9, because the aircraft 

flight track did not sample the composition of the atmosphere along line AD in Figure 

2.1 that corresponds to the upwind location for this flight, due to the presence of 

northeasterly winds. 

 

Figure 2.2. Scatter plot of the upwind CO2 mole fraction (10 second running mean) 
versus the paired downwind, background estimate of CO2. The number of paired data 
points for each flight is indicated on panel (a); the total number of paired points (5882) 
yields a mean and standard deviation of 0.18±0.79 ppm. Panel (b) shows the mixed 
layer depth extracted from HYSPLIT run using North American Regional Reanalysis 
(NARR) meteorological fields along the upwind aircraft flight track and the location of 
the paired, downwind data. Results are shown for six of the seven mass balance flights 
considered in the analysis, because upwind measurements of CO2 were not obtained 
for UMD-RF9. 

Figure 2.2b compares the depth of the mixed layer, for the upwind flight leg 

(ordinate) and downwind flight leg (abscissa). The values originate from the North 
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American Regional Reanalysis (NARR) meteorological fields for February 2015, 

because the depth of the PBL from NARR exhibits the closest agreement with the depth 

of the PBL inferred from our flight data. Figure 2.2 shows considerable variations in 

both the depth of the PBL and upwind CO2, between the six flights for which such a 

comparison is possible. Undoubtedly, this variation in the depth of the PBL plays a role 

in value of CO2 along the upwind leg. The fact that the depth of the PBL is stable 

between the upwind and downwind portions of the flight again supports the validity of 

the carbon emissions found using our mass balance approach. 

For power plant plumes, the horizontal bounds of the plume were determined 

based on large, sharp gradients in the in-situ measurements of CO2 as shown in Figure 

2.3. The connection of these enhancements of CO2 to local, nearby power plant 

emissions was confirmed based upon visual inspection of HYSPLIT back trajectories 

initialized every 1 s along the flight track, shown also in Figure 2.3. The CO2 

background for power plant plumes was defined as a linear function fit to the mole 

fractions of CO2, measured by the Picarro (G2401-m) on board the aircraft, at the either 

side of the plume's bounds. All 16 power plant plumes considered below displayed 

large enhancements of CO2 that could clearly be traced to a local, nearby power plant. 

2.2.7 Wind 

Recently, a systematic aircraft heading-dependent bias was identified in wind 

speed and direction recorded by the Garmin system onboard the UMD aircraft (Xinrong 

Ren et al., 2019). A series of bias correction methods was developed and applied to the 

wind measured by the UMD aircraft, utilizing a newly installed differential GPS 
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instrument, NAM4 wind data, and local wind profilers. Section 2.5.1 – 2.5.3 provide 

detailed descriptions on how the systematic bias in the aircraft wind measurements was 

corrected. The wind speed perpendicular to the aircraft heading (U) was calculated 

using the wind speed, wind direction, and true track angle of the aircraft measured 

downwind of the emission source of interest. Then, 10 second running means of U were 

used for the mass balance calculation. For the sensitivity analysis, the standard 

deviation of U during the downwind transect period was added/subtracted from the 

original U for the mass balance calculation.  

From back trajectory analysis of seven mass balance flights (UMD RF4,5,6,8,9, 

Purdue RF3,4), we found that the average air transport time over the Balt-Wash area 

was ~5 hours, given the average wind speed of ~7 m/s across the study area. However, 

the value of U varies across the study area, which does have an impact on CO2 

emissions found using the mass balance approach. To account for the variability of U 

during the transport time of air across the study area, a scaling factor k was estimated 

in following manner. For each 0.1° ´ 0.1° horizontal grid, average U within the PBL 

(hereafter 𝑼𝑷𝑩𝑳3333333) was derived from NAM4 for the hour closest to the mean aircraft 

observation time (Figure S2.4a). Then, the resulting values of  𝑼𝑷𝑩𝑳3333333 were averaged 

within a series of diagonal latitudinal bins across the Balt-Wash study area (Figure 

S2.4b). For each latitudinal bin, the scaling factor k was calculated by dividing the 

mean of all 𝑼𝑷𝑩𝑳3333333 with the 𝑼𝑷𝑩𝑳3333333 at the downwind edge. Obtained k for latitudinal bins 

were interpolated and applied to individual wind measurements (U) (Figure S2.4c). We 

found that k values averaged for each of the seven mass balance flights range from 0.75 

to 1.06 (Table 2.1). For the sensitivity analysis, k was calculated using the same method, 
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but for ±1 hour from the mean aircraft observation time. Then, the standard deviation 

of k within three hours span was added/subtracted from the original k for the mass 

balance calculation. 

Table 2.1. Summary of the mass balance parameters used to estimate the emissions of 
CO2 from the Balt-Wash area. For the boundary layer height (zf), the best estimates and 
1𝜎 uncertainties are shown. For the mole fraction of CO2 ([CO2]), CO2 background 
([CO2,bg]), perpendicular wind speed (U), and the wind variability during air transport 
across the study area (k), the mean and the standard deviation during the downwind 
flight period are shown (See section 2.2.5). The flux of CO2 was calculated for each 
point in each transect, and thus the mean [CO2], [CO2,bg], U, and k values thus not 
directly translate into the mass balance estimate results. 

Flight Date  
2015 

Zf  

[m] 
[CO2] 
[ppm] 

[CO2,bg] 
[ppm] 

U  
[m/s] 

k  

UMD-RF4 Feb 19 1,372 ± 280 409.3 ± 0.8 408.5 ± 0.3 12.8 ± 1.6 0.95 ± 0.01 

UMD-RF5 Feb 20 1,109 ± 139 411.2 ± 1.4 409.4 ± 0.2 5.6 ± 1.4 0.75 ± 0.04 

UMD-RF6 Feb 23 1,013 ± 265 406.8 ± 1.1 405.7 ± 0.4 10.6 ± 1.5 1.06 ± 0.01 

UMD-RF8 Feb 25 1,393 ± 137 410.1 ± 1.9 408.6 ± 0.9 5.3 ± 2.0 0.91 ± 0.05 

UMD-RF9 Feb 26 896 ± 268 417.9 ± 2.5 414.2 ± 0.8 3.9 ± 1.1 0.90 ± 0.04 

Purdue-RF3 Feb 19 1,372 ± 280 410.0 ± 0.5 409.2 ± 0.2 12.7 ± 1.3 1.00 ± 0.02 

Purdue-RF4 Feb 27 1,626 ± 349 414.3 ± 2.4 412.6 ± 0.6 5.1 ± 1.6 0.98 ± 0.04 

 

To address the impact of the scaling factor k on our determination of emissions 

of CO2 from the Balt-Wash area, emissions were also estimated assuming consistent 

perpendicular wind speed throughout the transport time (k=1). When consistent wind 

(k=1) is assumed, the monthly total FFCO2 emission was estimated to be 2.0 MtC, 

which is 5% larger than the estimate of 1.9 MtC that accounts for the variability of U 

during the air transport time.  Further details are given in Figures S2.5 and S2.6. Given 

the relatively short transport time of power plant plumes between emission and aircraft 
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sampling, the scaling factor k =1 was used for the calculation of power plant emissions 

of CO2.  

2.2.8 Vertical and horizontal boundary 

To include emissions of CO2 transported above the PBL into our estimate of 

CO2 emissions, the adjusted mixing height (zadj) was determined and used as a vertical 

bound (zf) of the mass balance equation. First, the well-mixed planetary boundary layer 

height (zpbl, dashed line in Figure S2.7) and the entrainment height (ze, dotted line in 

Figure S2.7), an altitude where mixing from the PBL has reached free tropospheric 

level, were determined from the vertical profiles of potential temperature and mole 

fractions of the trace gases (CO2, CH4, and H2O). Then, the adjusted mixing height (zadj) 

was calculated using zadj = (3zpbl + ze) / 4, as described by Peischl et al. (2016). Also, 

±1s uncertainty of zadj was determined as ± (zpbl − ze) / 2, again from Peischl et al. 

(2016). For flights that obtained multiple vertical profiles (UMD-RF4,5,8 and Purdue-

RF3,4), the adjusted mixing height and its uncertainty (zadj ± 1s) determined from each 

vertical profile were linearly fit as a function of the observation time. From this function, 

the vertical boundary of the PBL and its uncertainty (zf ±1s) were determined at the 

mid-point of the downwind flight period. For the flights with a single vertical profile 

in the downwind region (UMD-RF6,9), values of zadj and their 1s estimated from the 

only vertical profile were used to define zf ±1s. For the sensitivity analysis, values of 

zf ± 1s were used as the vertical boundary in the mass balance calculation. 

Horizontal boundaries (xi, xf) were determined as the locations where the 
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HYSPLIT back trajectory passed through the southern and northern bounds of the Balt-

Wash area (UMD-RF4,5,6,8 and Purdue-RF3,4). For UMD-RF9, horizontal 

boundaries were determined as the locations where the back trajectory went through 

the western or southern bound of the study area. To estimate the emission rate of CO2, 

horizontal fluxes were calculated for each point in the downwind transects (unit: gC 

m-2 sec-1). The calculated fluxes were averaged into a single value, then multiplied by 

the horizontal (xf − xi) and vertical boundary distances (zf − zi) (unit: gC sec-1), as 

described by Equation 2.1. 

2.3 Results and Discussions 

2.3.1 Source identification and attribution: Baltimore, MD-Washington, D.C. area 

During the aircraft campaign, spikes of CO2 were often observed. For example, 

for UMD-RF5 on 20 February 2015, three spikes of CO2 were recorded downwind of 

the Balt-Wash area (green shaded areas in Figure 2.3b). To determine the sources of 

these plumes, a series of HYSPLIT back trajectories were calculated. When the wind 

direction was consistent during the transport over the Balt-Wash area, which was the 

case for 20 February 2015, power plant plumes could be clearly isolated from the 

emissions of the surrounding urban region (Figure 2.3a). The first two spikes of CO2 

observed at 15:40 and 15:47 (EST) were attributed to the Morgantown (MT) and Chalk 

Point (CP) power plants, respectively. The spike of CO2 observed downwind of the 

Baltimore, MD (16:05) was attributed to the Brandon Shores and H. A. Wagner (B&W) 

power plants, which are in close proximity. According to CEMS records, the B&W, 

MT, CP power plants emitted 1470, 980, 540 tons of CO2 and 2.8, 0.8, 0.8 tons of SO2 
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respectively, during a one-hour period from 14:00 PM to 15:00 PM on 20 February 

2015. Simultaneous increases of the mole fractions of SO2 for the three spikes of CO2, 

showing ratios of SO2/CO2 mole fraction similar to those from CEMS records, confirm 

that the plumes were emitted from power plants. The B&W, MT, and CP power plants 

emitted total of 3.4 MtC in year 2015, contributing 75.4% of the annual total power 

plant emissions of CO2 in Maryland (USEPA GHGRP, 2019).  

Figure 2.3. (a) Colored lines depict back trajectories initiated along the aircraft track, 
downwind of the Balt-Wash area on 20 February 2015 (UMD-RF5). Triangles indicate 
the locations of back trajectories at every hour. Black circles indicate the major power 
plants in the study area. Mean aircraft altitude and the wind speed and direction 
measured during the flight are shown in the left box. (b) Time series of mole fractions 
of CO2 and SO2 measured during the same flight track. Green shaded areas indicate the 
plumes partially attributed to local power plants while the grey shaded areas indicate 
urban plumes. The DC+𝛼	label indicates that the plume is attributed to Washington, 
D.C. and nearby Dickerson power plant. The Balt+𝛽	label indicates that the plume is 
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attributed to Baltimore, MD and to major power plants in Pennsylvania (labelled as PA 
in the map, see Figure 2.4 for further analysis). See section 2.3.6 for detailed spatial 
distribution of fossil-fuel CO2 flux over the study area. 

Along with the three spikes of CO2 attributed to local power plants, broad areas 

of increased CO2 were observed downwind of the Washington, D.C. and Baltimore, 

MD (grey shaded areas in Figure 2.3b). We argue that increased mole fractions of CO2 

downwind of the Washington, D.C. area were mostly induced by emissions from local 

fossil fuel combustion, while increased CO2 downwind of Baltimore was induced by a 

mixture of plumes from that city and from several power plants in the state of 

Pennsylvania (See section 2.3.2).  

2.3.2 Source identification and attribution: Inter-state transport of power plant plumes 

During the aircraft campaign, several spikes in the mole fraction of SO2 were 

observed both upwind and downwind of the Balt-Wash area. To find the sources of 

these plumes of SO2, HYSPLIT back trajectories were calculated on six days (Figure 

2.4a-f). These trajectories showed that some of the SO2 plumes observed downwind of 

the Balt-Wash area are likely to be the same plumes observed on the upwind flight legs 

(Figure 2.4a, b, d, e). During UMD-RF8, the aircraft observed a broad increase of SO2 

north of Washington, D.C. due to advection from the westerly wind direction (Figure 

2.4f). Figure 2.4g shows that several plumes of SO2 observed downwind of the Balt-

Wash area were transported from the mid-west Pennsylvania area where five large 

power plants are located. The total nameplate capacity of the five power plants was 

6,444 MW (Coal: 90.3% Natural gas: 9.4%) according to USEIA (2016). The Homer 

City power plant was reported as one of the largest SO2 emitting facility in the entire 
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U.S. for 2015 (USEPA AMPD, 2015). As the five power plants are geographically 

aligned from northwest to southeast in close proximity, a northwesterly wind is likely 

to merge the plumes from these power plants, leading to the inter-state transport of a 

highly polluted plume with relatively small horizontal width into the Balt-Wash area. 

 

Figure 2.4. (a-f) Colored circles show mole fractions of SO2 measured during six 
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flights in February 2015. Colored lines are back trajectories initiated at the location of 
the SO2 plume observed downwind of the Balt-Wash area. Triangles on each trajectory 
show the location at every hour. Mean wind measured during the downwind flight is 
shown at the left-bottom corner of each panel. (g) A map showing same flight tracks 
and trajectories of (a-f) in a larger domain. The dashed box encloses the locations of 
five major power plants in Pennsylvania. The names of power plants, fuel, and their 
nameplate capacity are shown at the left-bottom corner (Source: USEIA, 2016). 

To further investigate the impact of upwind power plant plumes on the aircraft 

measurements, forward transport modeling of power plant CO2 was conducted for 19 

and 20 February 2015 (UMD-RF4, 5). Figure 2.5 shows that airborne observations of 

the spikes in CO2, induced by both local and upwind power plants, were well 

reproduced by the forward modeling (HYSPLIT CO2). A contour map of HYSPLIT 

CO2 shows that continuous flow of CO2 from power plants in Pennsylvania (PA) and 

West Virginia (WV) sometimes passed through parts of the Balt-Wash area. According 

to the HYSPLIT analysis, CO2 from power plants in PA passed downwind of Baltimore, 

MD and accounted for a significant portion of the total amount of CO2 in the model 

grids (27.5% on UMD-RF4 and 35.4% on UMD-RF5). This forward modeling result 

agrees with the result from the SO2 back trajectory analysis, which attributed some 

plumes of SO2 observed downwind of Baltimore, MD to the power plants in PA (Figure 

2.4c, d). However, CO2 emitted by power plants in Ohio (OH) was relatively well 

distributed over a large horizontal distance when it reached the Balt-Wash area. This 

result implies that power plant emissions from OH and farther upwind states would 

have negligible impact on mass balance calculation for the Balt-Wash area. The 

emissions of CO2 from power plants in PA and WV, however, must be considered in 

our analysis. 
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Figure 2.5. Maps showing HYSPLIT particle dispersion simulations of power plant 
emissions of CO2 and flight tracks of (a) UMD-RF4 and (b) UMD-RF5. “HYSPLIT 
CO2” labels (color bars and Y axes) indicate the enhancement of CO2 due to power 
plant emissions averaged within the boundary layer. “Aircraft CO2” labels indicate 
measured mole fractions of CO2 for a single transect, along the line A at 707 m (UMD-
RF4) and 614 m (UMD-RF5) altitude. The location of power plant point emission 
sources used for the modeling are shown as pink circles. (c, d) Time series of “Aircraft 
CO2” at 707 m (UMD-RF4) and 614 m (UMD-RF5) altitude along the line AB and 
stacked bar plots of “HYSPLIT CO2” that were sampled for aircraft locations of the in-
situ data. Each color of the bar indicates the state or region where the sampled 
HYSPLIT CO2 was emitted: i.e., emissions from the study area are denoted as DC/Balt. 
The percentage of power plant emissions from region, for the given transects, is also 
provided (numbers sum to 100%). 

In summary, both the SO2 back trajectory and CO2 forward modeling results 

indicate that inter-state transport of power plant plumes can induce local increases of 

the mole fractions of CO2 around the Balt-Wash area, especially when consistent 

northwesterly wind prevails. Accurate representation of the spatially varying CO2 

background is therefore needed to account for upwind power plant emissions of CO2 

in the mass flux calculation for the Balt-Wash area. 
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2.3.3 Power plant emissions: Evaluating the aircraft-based mass balance approach 

Prior to applying the mass balance approach to the Balt-Wash area, the accuracy 

and precision of the technique was evaluated using the Continuous Emissions 

Monitoring Systems (CEMS) records for CO2 from two local power plants. Several 

spikes of CO2 could be attributed to either the CP or MT power plant (Figure 2.3), and 

were used for the mass balance calculation. The total uncertainty of the CEMS records 

was determined by propagating individual uncertainty in the following terms: 

volumetric flow rate/CO2 concentration measurements by CEMS (USEPA, 2009), 

difference of CEMS records against fuel consumption based U.S. Energy Information 

Administration (EIA) datasets (Gurney et al., 2016; Quick & Marland, 2019), and 

atmospheric transport time of power plant plumes. A detailed description of this 

uncertainty propagation is given in Section 2.5.4. 

In Figure 2.6a, colored symbols show the 16 aircraft-based mass balance 

estimates of emission rates of CO2 for the CP and MT power plants. The black lines 

show the hourly emission record of each power plant reported to EPA CAMD. 

According to EPA CAMD, a total of 0.23 MtC was emitted by the two power plants 

during February 2015. Of the total emissions, 98.8% was measured directly by CEMS, 

while 1.2% was either calculated or went through substitution procedures. All 

emissions records during the mass balance flights period were solely from CEMS. 
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Figure 2.6. (a) Emission of CO2 from the Chalk Point and Morgantown power plants 
in units of metric tons of carbon per hour. Black lines indicate the reported CEMS 
emission rates. Red and green diamonds represent the emission rates that we estimated 
using in-situ measurements from the UMD and Purdue aircraft, respectively. (b) Scatter 
plot showing the comparison of the same dataset in (a). Dotted and solid lines indicate 
1 to 1 ratio and linear regression lines, respectively. Vertical error bars on each diamond 
indicate the 1𝜎 uncertainty induced by the uncertainty in the adjusted mixing height 
(zadj) (see section 2.5.3). Horizontal error bars indicate the combined uncertainty of the 
CEMS records and the plume transport time (see section 2.5.4). 

The mean percentage error (MPE) and the mean absolute percentage error 

(MAPE) were –0.3% and 24%, respectively, for all 16 mass-balance estimates the CO2 

emission rate (FLAGG-MD) relative to that provided by CEMS (Figure 2.6b). The 

mean and standard deviation of the difference between the FLAGG-MD and CEMS 

emission values are –5±43 tC/hr. However, much larger differences, ranging from –58% 

to 84%, are observed for individual plume sampling comparisons. The large variation 

in these individual relative differences implies that the emission rate of CO2 estimated 

from a single mass balance experiment may include significant random error. Such 

random error is most likely to be induced by incomplete mixing of power plant plumes 

within the boundary layer, causing the unrepresentative sampling of power plant 

plumes. The CO2 background, often considered as a significant source of uncertainty 

in the mass balance approach for urban plumes (Cambaliza et al., 2014; Heimburger et 

al., 2017; J. Turnbull et al., 2018), is unlikely be a source of error for power plant 
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plumes given their narrow horizontal widths and a large value of the term ([C] – [Cbg]) 

that appears in Equation 2.1 (Figure 2.3). The mean value of ([C] – [Cbg]) at the peak 

of the spikes for the 16 sampled plumes was ~5.5 ppm. We also found that the 

combined error for multiple mass balance estimates of power plant emissions decreases 

approximately as the square root of the number of the plume crossings rises, which 

suggests the estimates are indeed influenced by random error. Our analysis suggests 

that power plants emissions can be estimated with MPE of ~10% (or less) when the 

total number of twelve (or more) plumes were sampled by aircraft for the mass balance 

calculation (95% confidence level). The importance of repeating mass balance 

experiments for the same emission source has been discussed in Heimburger et al. 

(2017). 

2.3.4 The Baltimore, MD-Washington, D.C. area emissions: Sensitivity analysis 

The emission rate of CO2 from the Balt-Wash area was estimated based on the 

five UMD flights and two Purdue flights. Table 2.1 summarizes the mean and the 

standard deviation of the five mass balance parameters shown in Equation 2.1 for these 

seven flights. 

Table 2.2 shows the baseline estimates of the emission rate of CO2 that we 

consider to be the best estimates for the seven research flights. As the experimental 

period spans nine days in late February, the emission rate of CO2 from the study area 

may be assumed to be constant during the sampling period. This assumption is 

supported by the fact that the emission rate of CO2 derived from FFDAS shows small 

variation during the sampling period, having a relative standard deviation of 3% (See 
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section 2.3.7). Assuming a constant emission rate, the standard error of the mean at 95% 

confidence level (SEM95) can be calculated as a measure of the precision with the 

following equation: #	∗	&
√(

, where t-student = 2.306, 𝜎 is the sample standard deviation of 

the seven mass balance estimates, and n is the number of the mass balance experiments 

(Heimburger et al., 2017). The mean of the seven baseline estimates and its SEM95 

were 89,000±15,000 mol/s (3,870±630 tC/hr). This result indicates that the emission 

rate of CO2 over the Balt-Wash area in the late February could be determined with the 

precision of 16% at 95% CL by repeating the mass balance experiments seven times 

within a nine-day span. 

Table 2.2. Sensitivity test for the aircraft-based mass balance estimates of the emission 
of CO2 from the Balt-Wash area. Baseline estimates from the seven flights are shown 
on the first row. Relative differences indicate the changes of the baseline estimate when 
the ±1𝜎 uncertainty of each mass balance parameter is used to calculate the emission 
of CO2. The total 1𝜎 uncertainty of each baseline estimate is shown as the relative 
standard deviation (RSD) at the bottom row. On the column labeled “Mean”, the mean 
and SEM95 values of seven Baseline estimates were shown in the first row, and the 
mean values were shown for the remaining rows. 
 

 

The sensitivity of the baseline estimates was tested against the following five 

 UMD   Purdue    
 RF4 RF5 RF6 RF8 RF9  RF3 RF4  Mean 

 Feb 
19 

Feb 
20 

Feb 
23 

Feb 
25 

Feb 
26  Feb 

19 
Feb 
27   

Baseline estimates [105 mol/s] 1.10 0.68 0.98 0.79 0.74  1.09 0.89  0.89 ± 0.15 
Relative Differences (RD) [%]           
   Wind Variability, Downwind ± 13 ± 25 ± 14 ± 39 ± 29  ± 18 ± 39  ± 25 
   PBL height ± 20 ± 13 ± 27 ± 10 ± 30  ± 20 ± 21  ± 20 
   CO2 background ± 19  ± 11  ± 16  ± 9  ± 19   ± 18  ± 20   ± 16  
   Instruments (Temp, Pres, CO2) ± 8 ± 3 ± 6 ± 4 ± 2  ± 11 ± 5  ± 5 
   Wind Variability, Transport ± 1 ± 4 ± 1 ± 4 ± 6  ± 2 ± 3  ± 3 
Total uncertainty [RSD, &] ± 32  ± 31  ± 34  ± 41  ± 49   ± 33  ± 49   ± 38  
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parameters: background CO2, PBL height, wind variability observed during the 

downwind flight, wind variability during air transport across the study area, and 

instrument uncertainty. For the sensitivity test, the ±1𝜎	 uncertainty value of each 

parameter were used for the mass balance calculation. Section 2.2.5 describes how the 

1𝜎 uncertainty was determined for each of these five parameters. Table 2.2 shows 

relative differences (RD) of the newly calculated emission rates against their baseline 

estimates. On average, the estimated emission rate of CO2 is most sensitive to the 

uncertainty of the perpendicular wind speed observed during downwind flight, with the 

mean of the seven RD as ±25%. The PBL height and the CO2 background were the 

second and the third most important parameters contributing to the overall uncertainty 

in the emission rate of CO2. Instrument measurement uncertainties (temperature, 

pressure, CO2) and the wind variability during the air transport over the Balt-Wash area 

(parameter k) show less significant impact the emission estimate of CO2 than other 

parameters. 

The total uncertainty (1𝜎) for each baseline estimate was determined by 

propagating 1𝜎 values of the five sensitivity parameters using Monte Carlo simulations. 

The total uncertainty of seven mass balance estimates ranged from ±31% to ±49%, with 

the mean of the seven total uncertainties being ±38%. The precision assigned to the 

mean of the seven independent mass balance estimates with SEM95 is ±16%, which is 

much lower than the average of the seven total uncertainties (38%). These results are 

comparable to findings from previous INFLUX studies that made use of an aircraft-

based mass balance approach to estimate urban CO2 emissions. Cambaliza et al. (2014) 

assigned an overall uncertainty of ~37% (or conservative ~50% when including 
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unknown systematic errors) to the CO2 emission rate estimated from a single aircraft-

based mass balance experiment. Heimburger et al. (2017) estimated CO2 emission rates 

for the city of Indianapolis with SEM95 of ±17% by averaging nine aircraft-based mass 

balance estimates conducted during November-December 2014. 

2.3.5 Comparison of top-down and bottom-up emissions 

In this study, differences between atmospheric observation based (top-down) 

and inventory data based (bottom-up) approaches were studied from three different 

perspectives. First, geographical distributions of CO2 flux were compared for five 

bottom-up products: Anthropogenic Carbon Emissions System version 1 (ACESv1, 

(Gately & Hutyra, 2017, 2018)), Emissions Database for Global Atmospheric Research 

version 4.3.2 (EDGARv432, (Janssens-Maenhout et al., 2017)), FFDASv2.2, the 

Open-Source Data Inventory for Anthropogenic CO2 version 2018 (ODIAC2018, (Oda 

et al., 2018; Oda & Maksyutov 2011, 2015)), and CarbonTracker version 2017 

(CT2017, (Peters et al., 2007)). Second, hourly emissions of CO2 estimated from the 

aircraft (FLAGG-MD) were compared to hourly emissions from Fossil Fuel Data 

Assimilation System version 2.2 (FFDASv2.2, (Asefi-Najafabady et al., 2014; Rayner 

et al., 2010)). Finally, monthly emissions of CO2 estimated from FLAGG-MD were 

compared to monthly emissions from the bottom-up products.  

The bottom-up gridded products were largely developed based upon the 

emission downscaling method, which attempts to downscale national (or sub-national) 

and annual (or sub-annual) emissions inventories into model grids using spatiotemporal 

metrics (Gurney et al., 2019; Oda et al., 2019). For example, ODIAC2018 downscales 
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emissions estimates from the Carbon Dioxide Information Analysis Center (CDIAC) 

into a 1 km global grid, using the carbon monitoring action (CARMA) data for power 

plants and the Defense Meteorological Satellite Program (DMSP) nightlight imagery 

for non-point sources. FFDASv2.2 downscales national emissions estimates by the 

International Energy Agency (IEA) onto a 0.1° resolution lat/lon global grid, using data 

assimilation to combine DMSP nightlight, population, traffic pattern, and power plant 

data. EDGARv432 downscales national sectoral emissions estimates onto a 0.1° lat/lon 

global grid for each emissions sector specified by IPCC. ACESv1 downscales the 

sector-specific emissions estimates provided by the National Emissions Inventory 

(NEI), Greenhouse Gas Reporting Program (GHGRP), and Database of Road 

Transportation Emissions (DARTE) onto 1 km spatial resolution U.S. northeast 

regional grid. CT2017 is a data assimilation system with four sectors: fossil fuel 

combustion, biosphere, ocean, and fire. For the biosphere and ocean sectors, prior 

model CO2 fluxes were optimized onto a 1° lat/lon global grid using atmospheric CO2 

observations and transport simulations. For the fossil fuel combustion sector, emissions 

from ODIAC and the “Miller” emissions data set were averaged onto a 1° lat/lon global 

grid. The net amount of biogenic CO2 emitted from the Balt-Wash area during February 

2015 was computed from CT2017, and this value was compared to the VEGAS 

estimate of the biogenic CO2 emissions (section 2.3.8). 

2.3.6 The Baltimore, MD-Washington, D.C. area: Spatial distribution of CO2 flux 

Figure 2.7 shows the spatial distribution of Fossil Fuel CO2 (FFCO2) flux over 

the Balt-Wash area from the five bottom-up products. These five bottom-up emission 
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inventories indicate similar overall patterns, but distinctly different geographic 

distributions of the emissions due to variations in the underlying metrics that drive the 

emissions as well as spatial resolution. ACESv1 (with a 1 km resolution) shows highly 

resolved geographical distributions of FFCO2, such as the Beltway around Washington, 

D.C. and I-95 highway connecting major cities in the northeast corridor, due to their 

use of census block-level geospatial information (Gately & Hutyra, 2017). 

ODIAC2018, also at 1 km resolution, does not resolve individual roads due to their use 

of satellite-observed nighttime light data as a spatial emission proxy for non-point 

source emissions (Oda et al., 2018; Oda & Maksyutov, 2011). Still, it is noticeable that 

the global model ODIAC2018 shows a horizontal transect of CO2 flux summed across 

the study area that is similar to that from the regional model ACESv1 (Figure 2.7f). 

The difference between ACESv1 and ODIAC2018 emissions would be less significant 

at an aggregated coarser spatial resolution, such as the resolution of the many inverse 

model simulations (Oda et al., 2019). Maps of CO2 flux from FFDASv2.2 and 

EDGARv432 (0.1° resolution) show emission hot spots for the major power plants and 

the urban areas. Emissions from these power plants are represented by the higher 

resolution ACESv1 and ODIAC2018 inventories but are difficult to see on panels (a) 

and (b) of Figure 2.7 because the pixels are so small. Horizontal transects of the CO2 

flux derived from FFDASv2.2 and EDGARv432 exhibit an overall similar shape to 

those from ACESv1 and ODIAC2018, while spikes induced by power plants are more 

apparent in the flux transects from ACESv1 and ODIAC2018 due to higher spatial 

resolution (Figure 2.7f). The CT2017 inventory has a 1° lat/lon resolution, and hence 

the CT2017 map of FFCO2 is more spatially uniform at the scale of our study domain, 
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since there are only 4 grid cells covering the Balt-Wash area. 

According to VEGAS, the net amount of CO2 emitted by the biogenic sector 

was ~0.4 MtC in the Balt-Wash area during February 2015. However, the horizontal 

transect of biogenic CO2, simulated by VEGAS and scaled by NDVI (see section 2.2.4), 

is nearly constant across the Balt-Wash area during February 2015 (Figure 2.7f). This 

horizontal transect for biogenic emissions across our study area indicates that the CO2 

background, defined by the linear fitting method, is likely to already include the 

enhancement signal due to biogenic emissions. Therefore, we did not attribute any of 

the CO2 flux found from the mass balance estimate to the biogenic sector (Figure 2.8). 

We acknowledge that the lack of any independent source of validation for 

VEGAS/NDVI outputs, such as radiocarbon measurements or eddy covariance flux 

towers, might be a weakness in our analysis. On-going efforts to develop 13CO2 and 

radiocarbon measurements from NIST northeast corridor tower network (Karion et al., 

2019) and urban biospheric CO2 models (Hardiman et al., 2017; Smith et al., 2019) will 

provide further opportunity to study the impact of biogenic CO2 flux on the aircraft-

based mass balance estimates. 
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Figure 2.7. Maps of FFCO2 flux over the Mid-Atlantic region from (a) ACESv1, (b) 
ODIAC2018, (c) FFDASv2.2, (d) EDGARv432, (e) CT2017. The Balt-Wash study 
area is indicated as a red box. (f) Horizontal transects of CO2 flux derived from the 
biogenic model (VEGAS+NDVI) and the five FFCO2 products (Unit: Million tons 
Carbon (MtC) per month). These transects were obtained by summing the flux along 
diagonal latitudinal bins, as indicated by four grey shaded areas shown in panel (e) and 
(f) (SE corner and NE corner of a red box, Washington, D.C. and Baltimore). The x-
axis in (f) represents the latitudes along the line AB shown in panel (e). For major 
spikes, abbreviated names of the power plants are shown (see Figure 2.3). 

 

2.3.7 Hourly emission rate of CO2 from the Baltimore, MD-Washington, D.C. 
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The FLAGG-MD estimate of fossil-fuel combustion CO2 (FFCO2) emission 

rate is derived from the baseline mass balance estimates shown in Table 2.2. First, the 

emissions of CO2 from human/pet respiration (human, dog, and cat) are estimated 

based on the following assumptions: the population in the Balt-Wash study area (red 

box, Figure 2.7e) was ~8.1 million in February 2015 (CIESIN, 2018); the CO2 release 

rate by human respiration is 254 gC/person/day (Prairie & Duarte, 2007); dog/cat 

ownership is 0.22 dogs/person and 0.24 cats/person, and the dog/cat release rate of CO2 

is 25% of the human release rate (American Veterinary Medical Association, 2012). 

Next, the estimated emissions from human/pet respiration are subtracted from the 

baseline mass balance estimates. Then, the remainder of the mass balance estimates 

was apportioned to either FFCO2 or Non-FFCO2 Anthropogenic emissions (hereafter 

‘NFA-CO2’) by applying the ratio derived from the Maryland GHG inventory for year 

2014 (MDE, 2016). The NFA-CO2 consists of following sectors: 1) industrial processes 

(cement manufacture, limestone and dolomite, soda ash, ammonia and urea production), 

2) agriculture (urea fertilizer usage), 3) waste management (waste combustion, landfills, 

and residential open burning). Note that emissions from gasoline for on-road 

transportation were solely regarded as FFCO2, as the emissions from ethanol (E85) in 

gasoline comprises only ~0.1% of total emissions from gasoline for on-road 

transportation (MDE, 2016). See Section 2.5.5 for a detailed description of the method 

utilized for human/pet respiration and the FFCO2 to Non-FFCO2 ratio from the 

Maryland GHG inventory, and their associated uncertainties. Note that we did not 

apportion any of the mass balance estimates to the biogenic sector, as discussed in 

section 2.3.6. 
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Figure 2.8 shows the emission rates of CO2 from the Balt-Wash area estimated 

from seven FLAGG-MD flights and corresponding FFDASv2.2 estimates. On average, 

FFCO2 comprises 93% of the mass balance estimates, while NFA-CO2 and human/pet 

respiration comprises 4.6% and 2.6%, respectively. Overall, the emission rate of 

FFCO2 from FFDASv2.2 for the flight days was 32% larger than that from FLAGG-

MD but within the 1𝜎 uncertainty range for most flights, except UMD-RF5. Still, such 

level of agreement is very meaningful given that FLAGG-MD and FFDASv2.2 use two 

independent approaches: aircraft observation-based sampling versus a data assimilation 

framework for disaggregating the annual/national inventory into hourly/0.1° grids. 

 

Figure 2.8. The emission rates of CO2 from the Balt-Wash area during the sampling 
period of seven research flights in February 2015. Solid bars and their black vertical 
lines indicate the seven FLAGG-MD baseline estimates and their 1𝜎 uncertainty range 
(Table 2.2). FLAGG-MD mass balance estimates were apportioned to FFCO2 (purple), 
Non-FFCO2 Anthropogenic emissions (NFA-CO2, blue) and the human/pet respiration 
(yellow) (See Section 2.5.5). Dashed bars indicate corresponding FFCO2 from 
FFDASv2.2. The black vertical lines at the top of the FFDASv2.2 bars (dashed) 
indicate the minimum to maximum hourly emission rates of FFCO2 for each time 
period, and thus are not an uncertainty estimate of FFDASv2.2. 
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Turnbull et al. (2018) highlighted that the background CO2, determined from 

the edge fitting method, is likely to be overestimated when there are nonzero emissions 

over the edge region of the study domain. In their study, CO2 flux values were 

computed using an approach similar to Equation 2.1. Then, computed CO2 flux values 

were scaled to a background-corrected aircraft mass balance flux by adding a mean 

CO2 flux value for the rural area outside the aircraft footprint which was determined 

from a bottom-up inventory. Should we take the same approach, using either FFDAS 

or ODIAC to define the emissions of CO2 along the narrow vertical boxes that define 

region illustrated in Figure 2.7, our value of FFCO2 for the Balt-Wash area would 

increase by 30%, rising from 1.9 MtC to 2.5 MtC. This type of adjustment is not used 

in our analysis for two reasons.  First, this adjustment implicitly assumes our estimate 

of background CO2 is too large by approximately 0.3 ppm, whereas the comparison of 

the mole faction of background CO2 to the measured upwind mole fraction of CO2 

already indicates a potential bias of 0.18 ppm (Figure 2.2a).  If we were to adjust 

background CO2 to adjust for possible unaccounted emissions in these edge, 

rectangular regions, the scatter plot between upwind and background CO2 would 

exhibit such a bias that would begin to approach the standard deviation of the difference 

between upwind and background CO2. Second, this adjustment assumes that 

anthropogenic emissions of CO2 can be well defined in sparsely populated geographic 

regions by global models.  We are reluctant therefore to make such an adjustment to 

our estimate of FFCO2 for the Balt-Wash area, but we acknowledge that our definition 

of background CO2 found using the method illustrated in Figure S2.3 could potentially 

need revision, due to lack of explicit consideration of anthropogenic emissions of CO2 
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in these edge regions.  Our approach is similar to the methodology used in numerous 

other recent mass balance studies (Heimburger et al., 2017; Krautwurst et al., 2016; 

Xinrong Ren et al., 2019). 

Finally, we acknowledge that the rectangular-shaped region (Figure 2.7), 

determined based on the dominant wind direction, may not perfectly represent the 

emissions area that induced enhanced CO2 observed by the aircraft, especially when 

uncertainties associated with wind variability determination are significant. Such mis-

representation of the emissions area could have potentially contributed to the difference 

between top-down and bottom-up estimates (Lopez-Coto et al., 2020; J. Turnbull et al., 

2018). In this study, flight-by-flight adjustment for the geographic study area was not 

attempted, as six of the seven flights share similar flight patterns and wind conditions. 

Unlike the other flights, UMD-RF9 was conducted under northeasterly wind conditions. 

2.3.8 Monthly emissions of CO2 from the Baltimore, MD-Washington, D.C. 

The four bottom-up gridded products cover different years (i.e., EDGARv432: 

2010, ACESv1: 2014, FFDASv2.2 and ODIAC2018: 2015) with varying temporal 

resolution (i.e., EDGARv432 and ODIAC2018: monthly, FFDASv2.2 and ACESv1: 

hourly). To facilitate the comparison among these bottom-up models and our mass 

balance estimates, the amounts of FFCO2 emitted during the month of February in the 

Balt-Wash study area were computed from each bottom-up product and our seven mass 

balance estimates shown in Figure 2.8. No further attempts were made to harmonize 

the temporal mismatch existing in EDGARv432 (year 2010) and ACES v1 (year 2014). 

The FLAGG-MD monthly total FFCO2 emission was estimated by temporally scaling 
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up the seven FLAGG-MD emission rates of FFCO2, shown in Figure 2.8. The 

Temporal Improvements for Modeling Emissions by Scaling (TIMES), which provides 

scaling factors for diurnal and weekly variability of FFCO2 in global rectangular 0.25° 

lat/lon grids, was used for the temporal scaling process (Nassar et al., 2013). The 

monthly emissions from human/pet respiration and NFA-CO2 were estimated as 

described in section 2.3.7. The major challenge for comparing different bottom-up 

gridded products is to harmonize various emission source sectors covered by each 

product (Gately & Hutyra, 2017; Gurney et al., 2019; Oda et al., 2019). In this study, 

source sector harmonizing was only conducted for EDGARv432 (see Section 2.5.6), 

while all available sectors in other bottom-up products (ACESv1, FFDASv2.2, and 

ODIAC2018) were used to derive FFCO2 emissions. Thus, sectoral mismatching 

among the FLAGG-MD estimate and the four bottom-up products exists for the 

following sectors: cement manufacturing, gas flaring, aviation, and oil and gas 

extraction, refining, and transport. These mismatching sectors account for ~4% of the 

total FFCO2 in our study domain (see Section 2.5.6). Note that one of the main 

objectives set for developing these global bottom-up gridded products was to provide 

a prior CO2 flux for use in inversion modeling (Oda et al., 2018). Therefore, FFCO2 

flux values at specific time-space model grids should be regarded as a climatological 

mean rather than snapshot of the truth (Gurney 2018). 

We estimate that 2.4 MtC of CO2 was emitted from the Balt-Wash area during 

February 2015, according to the FLAGG-MD estimate (all emission other than 

biogenic) and VEGAS simulations (biogenic CO2) (Figure 2.9). The total 2.4 MtC 

consists of 1.9 MtC of FFCO2 (78% of the total), 0.4 MtC of biogenic CO2 (15%), 0.1 
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MtC of NFA-CO2 (4%), and 0.06 MtC of human/pet respiration (3%). The mean and 

the standard deviation of the four bottom-up estimates of FFCO2 were 2.2±0.3 MtC 

(FFDASv2.2: 2.5 MtC, ACESv1: 2.3 MtC, EDGARv432: 2.0 MtC, ODIAC2018: 1.9 

MtC), which is 15% larger than the FLAGG-MD estimate of FFCO2 (1.9±0.3 MtC). 

The ODIAC2018 bottom-up estimate of FFCO2 shows best agreement with the top-

down FLAGG-MD estimate. 

Figure 2.9. Monthly emission of CO2 from the Balt-Wash area for February 2015. The 
emission by human/pet respiration (yellow) was estimated using population data 
(GPWv4, (CIESIN, 2018)) and the average respiration rate from Prairie & Duarte 
(2007) (see Section 2.5.5). Non-FFCO2 Anthropogenic emissions (NFA-CO2, blue) 
were calculated from FLAGG-MD mass balance estimates using the scaling factor 
derived from the MDE GHG inventory 2014 (MDE, 2016). EDGARv432 and ACESv1 
were available for 2010 and 2014, respectively. The four bottom-up FFCO2 estimates 
(ODIAC2018, EDGARv432, ACESv1, and FFDASv2.2) contain several mismatching 
emission sectors, and thus are not directly comparable (see text). Sectoral emissions 
from EDGARv432 and ACESv1 were aggregated into four categories: electricity 
generating facilities (“ELEC”, diagonal), residential, commercial, and industrial 
(“RCI”, dotted), on-road (horizontal) and non-road transportation (vertical). See 
Section 2.5.6 for emission sectors covered by each bottom-up product. The “Bottom-
Up Mean” bar and its vertical error bar indicate the mean and standard deviation of the 
four bottom-up FFCO2 estimates. The error bar on the FLAGG-MD symbol indicates 
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the 1𝜎	uncertainty range of the best estimate. 

ACESv1 and EDGARv432 provide sectoral emissions of FFCO2 for years 2014 

and 2010, respectively. Based on ACESv1, power plant emissions were 24% of the 

monthly total FFCO2, while they were 35% of the monthly total FFCO2 according to 

EDGARv432 (Figure 2.9). Estimates from EPA CAMD and FLAGG-MD for our study 

area suggest power plant emissions accounted for 29% of the monthly total FFCO2 

emissions in February 2015. On-road transportation emissions account for 36% of the 

ACESv1 estimate, while they only account for 13% of the EDGARv432 estimate. A 

significant difference of on-road emissions between ACESv1 and EDGARv432 might 

be due to the temporal mismatching (i.e., 2010 versus 2014) of the two inventories, but 

more likely reflects a bias in either one or perhaps both products. Gately et al. (2013) 

and McDonald et al. (2014) reported that EDGAR overestimates urban vehicles 

emissions in major U.S. cities. However, the recent update of EDGAR version 4.3.2 

addressed this issue by adopting proxy layers for various roads and vehicles types 

(Janssens-Maenhout et al., 2017). We have not attempted to further quantify the source 

of the difference between on-road emissions of CO2 for these two inventories, as this 

effort is beyond the scope of this study. We leave the detailed analysis of sectoral 

composition of urban FFCO2 for future work.  

We would like to emphasize that this study provides an independent, objective 

measure for the emission comparison. Evaluation of downscaled emissions is often 

difficult mainly due to the lack of physical measurements (Andres et al., 2016; Oda et 

al., 2018) and often done by inter-comparison of emission inventories that allow only 

for characterization of differences among inventories. This study demonstrates the use 
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of atmospheric measurements for examining the errors and biases in the emission 

inventories.  

Finally, we compare ODIAC2018, which showed the best agreement against 

our aircraft-based estimate of the monthly CO2 emissions, to the Maryland GHG 

inventory published by the Maryland Department of the Environment (MDE) (MDE, 

2016). The Maryland GHG inventory estimated that 18.8 MtC of FFCO2 was emitted 

from Maryland during year 2014, while ODIAC2018 estimated 20.2 MtC for the same 

domain in 2014. The overall excellent agreement among the top-down approach, 

bottom-up models, and State emission inventory is promising given the fact that each 

relies on independent datasets and methodologies. 

2.4 Conclusions 

The first FLAGG-MD aircraft campaign was conducted during February 2015 

to study the emissions of CO2 in the Balt-Wash area. Several conclusions are drawn 

from this study. 

First, a series of HYSPLIT transport modeling analyses was conducted to 

provide source attribution of the plumes of CO2 observed by the aircraft. A number of 

plumes of CO2 could be attributed to either Washington, D.C. and Baltimore, MD, or 

the major power plants in the study area. We found that inter-state transport of power 

plant plumes can induce a substantial local increase of CO2 throughout the Balt-Wash 

area, increasing the spatial variability of background CO2. 

Second, the accuracy and precision of the aircraft-based mass balance approach 



 

56 
 

were tested against local power plant emissions, and also the sensitivity of the approach 

was tested for urban emissions. Emissions of CO2 from two local power plants were 

estimated using aircraft data and the resulting estimates were found to have no 

discernible systematic bias, with a mean percentage error of −0.3 % compared to 

corresponding CEMS data for 16 cases. Also, power plants emissions could be 

estimated with MPE of ~10% when a total number of twelve plumes was sampled by 

the aircraft for the mass balance calculation (95% CL). These results demonstrate that 

the accuracy of mass balance estimates increases and as the number of mass balance 

experiments increases for the same target emission source (Heimburger et al., 2017; 

Karion et al., 2015). From a sensitivity analysis, we found that the variability of the 

wind speed and direction downwind of the study area have the largest impact on the 

mass balance calculation, followed by the boundary layer height and the specification 

of background CO2. The 1𝜎 uncertainty of a single mass balance estimate of CO2 

emission from the Balt-Wash study area can be significant, ranging from ±31% to 

±49%. However, we also found that the precision assigned to the mean of the seven 

mass balance estimates was considerably better, with a SEM95 of ±16 %. This result 

supports the findings from previous studies: the precision of the mass balance estimate 

of CO2 emissions over urban regions is improved by repeating mass balance 

experiments numerous times, within a short span of time. 

Finally, differences among the five bottom-up models (ACESv1, CT2017, 

EDGARv432, FFDASv2.2, and ODIAC2018) and the top-down estimate were studied 

from the perspective of both the geographical distribution of CO2 flux and the total 

emissions over the Balt-Wash study area. With respect to the geographical distribution 
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of CO2, we found that horizontal transects of CO2 flux across the Balt-Wash area 

derived from four models (ACESv1, ODIAC2018, EDGARv432, and FFDASv2.2) 

have similar structures, showing spikes for the area where major power plants and 

highly developed areas are located. Only ACESv1 provided spatial distribution of CO2 

flux on the spatial scale of individual roads. From the perspective of total monthly 

emissions, the FLAGG-MD aircraft flights yield and estimated 1.9±0.3 MtC as the 

amount of FFCO2 emitted from the Balt-Wash area during February 2015, and the four 

bottom-up models (except for CT2017) estimated 2.2±0.3 MtC. ODIAC2018, which 

provides downscaled emissions for year 2015, shows best agreement with the FLAGG-

MD top-down estimate. Evaluation of subnational emissions of bottom-up models is 

often limited to an evaluation based on an inter-comparison among different models. 

This study provided an independent, objective measure for the inventory evaluation. 

Additionally, we found that the statewide annual total FFCO2 emissions in the 

Maryland (MDE) GHG inventory was 7% lower than the ODIAC2018 estimate. 

Numerous efforts are currently underway to better understand urban emissions 

of CO2. For instance, the recent installations of observation towers and low-cost sensors 

around the Balt-Wash area will provide improved constraints on spatiotemporal 

variability of the CO2 background (Lopez-Coto et al., 2017; Martin et al., 2017, 2019; 

Mueller et al., 2018). Also, radiocarbon measurements and urban-specific biospheric 

CO2 models will provide better understanding on the impact of biogenic CO2 flux on 

the aircraft-based mass balance approach. A new version of VEGAS currently under 

development will incorporate an accurate representation of the diurnal cycle of the 

biogenic flux of CO2. Lastly, frequent and regular aircraft campaigns in the future will 
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provide resources to better understand the gaps among top-down approaches, bottom-

up models, and state/local GHG inventories, benefiting both stakeholders and the 

carbon cycle modeling community. 

2.5 Supporting Information 

2.5.1 Wind Bias Detection 

The existence of the heading-dependent bias in the wind speed measured by the 

Garmin G600 system onboard the UMD Cessna aircraft was first identified by 

colleagues at the Pennsylvania State University (Ren et al., 2019). To address this issue, 

a series of calibration flights were conducted in October 2017 with the same UMD 

Cessna aircraft used for the flights in February 2015. For these calibration flights, the 

Cessna aircraft was equipped with both the original Garmin system and a newly 

installed differential GPS (DGPS) system, which measures aircraft true heading 

precisely with an accuracy of 0.05º. Figure S2.8 shows that the aircraft heading 

measured by the original Garmin system has a cosine-shaped systematic bias with 

respect to the aircraft heading measured by the DGPS system. The cosine-shaped bias 

in the Garmin heading measurement implies the existence of a hard-iron effect during 

the October 2017 flights: i.e., the permanent magnetic field that exists in the aircraft 

vessel interferes with the magnetometer's reading of the Earth's magnetic field.  

For the February 2015 flights, neither DGPS data nor other kinds of records 

exist that could be used to directly quantify the magnitude of the hard-iron effect on 

the Garmin heading. However, the difference between measured wind speed and output 

of the NAM4 model as a function of aircraft heading can be analyzed to qualitatively 
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show the existence of the hard iron effect during the February 2015 flights (Figure 

S2.8b). The 'W' shaped pattern in Figure S2.8b, where the smallest differences of the 

wind speed were found near 90º and 270º and the largest differences were found near 

0º, 180º, and 360º, demonstrates the existence of a hard iron effect during the mass 

balance flights conducted in February 2015. 

2.5.2 Wind Bias Correction 

The original wind data measured by the Garmin system during February 2015, 

which we call hereafter version 1 (v1) wind, include an error induced by the systematic 

bias in the aircraft heading reported by the Garmin G600 system (Figure S2.8). From 

the original v1 wind data, the v2 wind field (speed and direction) was derived by 

correcting the systematic heading bias. Then, the v3 wind field in which the accuracy 

is further improved was derived utilizing NAM4. Table S2.1 summarizes the 

differences in the wind speed perpendicular to the aircraft heading for these three 

versions of the wind field. The following paragraphs describe the method used to derive 

the v2 and v3 wind fields.  

First, the systematic heading bias for the February 2015 flights data was 

corrected using the fourth-degree polynomial function given at the top of Figure S2.8a, 

which was obtained from the calibration flights conducted in October 2017. Following 

the correction of the heading bias, calibration coefficients of +0.8º and +1.3% were 

applied to the headings and the true air speeds (TAS), respectively (see Supplement of 

Ren et al., 2019). Then, the v2 wind speed and wind direction were calculated based 



 

60 
 

upon the bias-corrected/calibrated headings and TAS measurements, along with the 

original records of ground speed (GS) and true track angle (TTA).  

Even after the bias correction and the calibration of the heading and TAS 

measurements, a systematic bias could still be present in the v2 wind if the magnitude 

and direction of the hard-iron effect in February 2015 was significantly different from 

that in October 2017.  

The same aircraft had been used for both flight months; there is no record of 

how internal aircraft electronics and support structures may have changed. To address 

this issue and further improve the accuracy of the v2 wind, NAM4 model wind was 

used to calculate v3 wind data in the following manner. For the downwind transects 

measurements for each flight, 10 second running means of the perpendicular wind 

speed were calculated from v2 wind and from NAM4 wind, respectively (𝑈),!,#*+  and 

𝑈),!,#,-./), as shown in Figure S2.10. From the two sets of perpendicular wind speed, the 

mean difference (𝑈),-./ − 𝑈)*+) was calculated. Then, v3 perpendicular wind speed 

was calculated by adding the mean difference to the v2 perpendicular wind speed 

during the downwind transects (i.e., 𝑈),!,#*0 =	𝑈)!,#*+ + 𝑈),-./ − 𝑈)*+33333333333333333 ). 

2.5.3 Wind Evaluation 

For the evaluation of the series of the aircraft wind correction procedures 

described in section 2.5.2, three analyses were conducted. First, wind profiler data was 

used to evaluate the accuracy and the precision of the NAM4 wind data that is a factor 

in the derivation of the v3 aircraft wind data. Second, the NAM4 wind was used to 

assess the variations among the three versions of the aircraft winds. Finally, the 
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Continuous Emissions Monitoring System (CEMS) measurement of CO2 emissions 

from power plants was utilized to evaluate the accuracy of the three versions of the 

aircraft wind field.  

Figure S2.9 shows a comparison of four variables (wind speed, wind direction, 

U and V components of the horizontal wind) between the NAM4 and the wind profiler 

observations at the Beltsville, Maryland site on 8 days in February 2015. An excellent 

correlation is found between the NAM4 and profiler data for each of these four wind 

components, without any noticeable systematic bias. The mean difference of wind 

speed between the NAM4 and the profiler was found to be 0.2 m/s, which translates 

into a 2.6 % uncertainty in the CO2 flux estimation.  

Figures S2.10 shows a comparison of the perpendicular wind speed derived 

from the NAM4 versus that derived from the three versions of the aircraft wind field, 

for flight MD RF4 conduction on 19 February 2015. The original v1 perpendicular 

wind speed was found to be consistently faster than the value from NAM4. The v2 

wind field (i.e., correct for the heading bias) caused the shape of 𝑈),!,#*+  versus time to 

change, because the aircraft heading varied as a function of time. The shape of the v2 

wind as a function of time agrees more closely with the shape of the NAM4 

perpendicular wind field. However, the v2 perpendicular wind speed was consistently 

slower compared to NAM4. The v3 perpendicular wind speed (found as described in 

section 2.5.2) shows excellent agreement with the NAM4 wind speed, retaining the 

same shape versus time as the v2 wind. Table S2.1 documents the root mean square 

error (RMSE) between the NAM4 perpendicular wind field and the three versions of 

the aircraft wind field. The v3 wind field displays either the smallest (all flights except 
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UMD RF6) or nearly the smallest (UMD RF6) value of RMSE relative to the NAM4 

perpendicular wind.  

Figure S2.11 shows a comparison between the emission rate of CO2 for two 

local power plants, Chalk Point (CP) and Morgantown (MT), from the CEMS record 

(see Figure 2.6 for a detailed description) versus the emission rate of CO2 derived from 

the v1, v2, and v3 wind fields. Three quantitative metrics for the comparison; i.e., MPE 

(mean percentage error), MAPE (mean absolute percentage error), and a linear 

regression of our computed CO2 emission versus the CEMS value all indicate that the 

v3 wind field provides the most accurate estimate of the emission rate of CO2 for the 

two local power plants. Figure S2.11c is similar to Figure 2.6, except Figure 2.6 also 

includes data from Purdue RF3 and Purdue RF4. 

2.5.4 Uncertainty in the Emission Rate of CO2 from CEMS records 

The uncertainty for CEMS CO2 emissions (𝜎CEMS) in Figure 2.6b was 

determined by combing three independent sources of uncertainty in a root mean sum 

of error fashion: 1) uncertainty in CEMS records based on the RATA performance 

specification (𝜎CEMS, RATA), 2) the difference of CEMS records against fuel-

consumption based EIA datasets (𝜎CEMS, EIA), and 3) the uncertainty in the air transport 

time (between the power plant and aircraft) estimated using HYSPLIT back trajectories 

(𝜎CEMS, Transport).  

First, 𝜎CEMS, RATA is determined based upon the main performance specification 

values described in the Relative Accuracy Test Audit (RATA). The RATA is the 

periodical comparison test of CEMS against the concurrent measurements made by the 
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EPA reference method (USEPA, 2009). The value of 𝜎CEMS, RATA was found by 

propagating the relative accuracy of 10% for concentration and volumetric flow rate 

measurements into the CO2 mass emission rate calculation equation shown in Table 6 

of USEPA (USEPA, 2009).  

Second, 𝜎CEMS, EIA was considered because Gurney et al. (2016) found that 

monthly CO2 emissions in facility CEMS records (stack measurements based 

estimates) differ by more than ±13% compared to those in EIA datasets (fuel 

consumption based estimates) for about one-fifth of U.S. power plants. Quick & 

Maryland (2019) identified and corrected systematic errors in either the U.S. EPA 

CAMD (Clean Air Markets Division) or the U.S. EIA (Energy Information 

Administration) datasets (i.e., unreported unit emissions in the CAMD dataset and 

emission factor error in the EIA dataset). We confirmed from Quick & Marland (2019) 

that the CAMD dataset for the CP and MT power plants are not affected by unreported 

unit emissions. Further, we compared CO2 emissions for CP and MT from the CAMD 

data against corresponding EIA data for February 2015. For the CP power plant, the 

monthly CO2 emission for Feb 2015 in CAMD is 4% greater than in EIA. For the MT 

power plant, the emission for Feb 2015 given by CAMD is 8% lower compared than 

that provided by EIA. While such differences could be caused by errors in either the 

CAMD or EIA estimate, we used our computed difference values of – 4% and 8% as 

𝜎CEMS, EIA for the CP and MT power plants, respectively.  

Finally, the value of 𝜎CEMS, Transport was determined as the standard deviation of 

the CEMS hourly CO2 emissions within ± 1 hour (i.e., 3 hours span) from our baseline 

estimate of the transport time from the power plant stack to the aircraft. The baseline 
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plume transport time was estimated using HYSPLIT back trajectories run with NAM12 

meteorology. 

2.5.5 Emissions of CO2 from human and pet respiration and NFA-CO2 sources and 

uncertainty propagation 

To estimate emissions of CO2 from respiration by humans and pets, we adopted 

a similar approach to Gurney et al. (2017). A value of 254 gC/person/day was used as 

the average CO2 release rate by human respiration (Prairie & Duarte, 2007). The 

population of the Balt-Wash area for 2015 was estimated as 8,153,000 based on 

GPWv4 (Gridded Population of the World) data. Emissions of CO2 from dog and cat 

respiration were also estimated assuming that the study area follows the average U.S. 

per capita ownership of 0.22 dogs/person and 0.24 cats/person, and a dog/cat release 

rate of CO2 of 25% of the human release rate (American Veterinary Medical 

Association, 2012).  

Once the human/pet respiration estimate for the emission of CO2 (~2,000 mol/s) 

was subtracted from the mass balance estimate for each flight, 4.7% of the remaining 

CO2 mass balance emission estimate was apportioned to anthropogenic sources other 

than the combustion of fossil fuel (i.e., Non-Fossil fuel Anthropogenic CO2, or NFA-

CO2). According to the MDE GHG inventory, 4.7% of the total in-state emissions of 

CO2 are from the following sectors: 1) industrial processes (cement manufacture, 

limestone and dolomite, soda ash, ammonia and urea production), 2) agriculture (urea 

fertilizer usage), 3) waste management (waste combustion, landfills, and residential 
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open burning) (MDE, 2016). The MDE estimates are based on annual emissions for 

2014; the 4.7% value was adopted, unchanged, for February 2015.  

The uncertainty range of the FLAGG-MD monthly total FFCO2 estimate was 

determined by propagating four independent sources of uncertainty: 1) uncertainty in 

the mass balance estimate (𝜎mass-balance), 2) uncertainty in the human/pet respiration 

estimate (𝜎human/pet-respiration), 3) uncertainty in the ratio of NFA-CO2 to total CO2 (𝜎NFA-

CO2), and 4) uncertainty in the temporal scaling factor used to relate our seven mass 

balance estimates to the monthly total emission of CO2 (𝜎temporal-scaling). First, 𝜎mass-balance 

was determined from a Monte Carlo simulation by propagating the uncertainties of five 

parameters that enter the mass balance equation (see Table 2.2). Second, 𝜎human/pet-

respiration was specified to be ±30%, based on a conservative estimate in how local pet 

ownership might vary relative to the national averaged. Given the preponderance of 

dogs and cats in the Balt-Wash region and the lack of large-scale animal feedstock, 

emissions of CO2 from animals other than human, dog, and cat should be well covered 

by this ±30% value. Third, 𝜎NFA-CO2 was determined to be ±1.5%, based upon as the 

standard deviation of three NFA-CO2 ratios derived from MDE GHG inventory for 

year 2006, 2011, and 2014. Finally, 𝜎temporal-scaling was determined to be 0.4%, based 

upon the standard deviation of three temporal scaling factors from FFDASv2.2, 

TIMES, and ACESv1. 

2.5.6 Bottom-up gridded emissions products: Discrepancies and harmonizing efforts 

FFDASv2.2 consists of the downscaled IEA estimate of fossil fuel combustion 

emissions and the EDGAR (Emissions Database for Global Atmospheric Research) 
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version 4.3.2 estimate of aviation and shipping emissions. FFDASv2.2 data files did 

not provide any sector specific emissions. In Figure 2.9, the FFCO2 value from 

FFDASv2.2 was directly derived from hourly NetCDF data files available at 

http://ffdas.rc.nau.edu.  

EDGARv432 monthly data for year 2010 consists of source sectors specified 

by IPCC, as detailed in Table S4 of Janssens-Maenhout et al. (2017). In Figure 2.9, the 

FFCO2 value of EDGARv432 consists of the following sectors: Power Industry, 

Energy for Buildings, Combustion for Manufacturing Industry, Road Transportation, 

Aviation (landing & take off, climbing & descending, and cruise), Shipping and 

Railways, Pipelines, and Off-Road Transport. The FFCO2 value was calculated solely 

from the long cycle C (file name: “CO2_excl_short-cycle_org_C”) to be consistent 

with our other estimates of FFCO2. In Figure 2.9, the “ELEC” label of the EDGARv432 

indicates emissions from the Power Industry sector. The “RCI” label consists of the 

Energy for Buildings and the Combustion for Manufacturing Industry sectors. The 

“Onroad” label indicates the Road Transportation sector, and the “Nonroad” label 

consists of emissions from the Aviation, Shipping, and Off-Road Transport sectors.  

The ACESv1 data for year 2014 consist of emissions from the following 

sectors: Residential, On-Road Transportation, Oil and Gas Production, Off-Road 

Vehicles/Marine/Rail, Non-Electricity Generating Facilities, Electricity Generating 

Facilities, Airport, and Industrial and Commercial. In Figure 2.9, the FFCO2 value of 

ACESv1 consists of all of the sectors listed above. The “ELEC” label for ACESv1 

denotes emissions from the Electricity Generating Facilities sector. The “RCI” label 

consists of the Residential, Industrial and Commercial, and Non-Electricity Generating 
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Facilities sectors. The “Onroad” label indicates emissions from On-Road 

Transportation, whereas the “Nonroad” label combines emissions from the Airport and 

the Off-Road Vehicles/Marine/Rail sectors. The total emissions of CO2 for 2014 from 

ACESv1 are held constant to that for their year 2011 analysis, but re-distributed based 

on variations in meteorology, fuel consumption, and traffic patterns between these two 

years (Gately & Hutyra, 2018).  

ODIAC2018 data consists of two emission categories: emissions over land 

(variable name: “land”) and emissions from international aviation and marine bunkers 

(variable name: “bunker”). The land sector consists of emissions from fossil-fuel 

combustion, cement manufacturing, and gas flaring. The bunker sector was only 

available on a 1×1° lat/lon grid provided via NetCDF data files, while the land sector 

was available on both 1×1 km spatial grid via GeoTIFF files and the 1×1° grid via 

NetCDF files. In Figure 2.9, the FFCO2 value from ODIAC2018 consists of both land 

and bunker sectors. The land emissions were obtained from the 1×1 km data file. For 

bunker emissions, the ratio of bunker to land emissions for our study domain was 

calculated using data from both 1×1° files, and the ratio was multiplied by the land 

emissions computed using data from the 1×1 km file. In Figure 2.9, the “Nonroad” 

label for ODIAC2018 indicates emissions from the bunker sector. Note that the FFCO2 

values marked by the “Nonroad” label for ACESv1 and EDGARv432 consist of not 

only aviation and bunker emissions, but also the off-road vehicle and rail sectors.  

The MDE GHG inventory for year 2014 Microsoft Excel data file consists of 

various sources sectors (including imported electricity) and sinks of GHG. The state-

wide annual total FFCO2 was calculated as the sum of emissions from following 
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sectors: In-state Energy Production (coal, natural gas, and oil), 

Residential/Commercial/Industrial Fuel Use (coal, natural gas & LPG, petroleum), 

Transportation (on-road gasoline & diesel, nonroad gasoline & diesel, rail, marine 

vessels, lubricants & natural gas & LPG, and jet fuel & aviation gasoline), and Fossil-

Fuel Industry (natural gas industry). Emissions from the following sectors were 

summed to calculate NFA-CO2 (Non-Fossil fuel Anthropogenic CO2): industrial 

processes (cement manufacture, limestone & dolomite, soda ash, and ammonia & urea 

production), agriculture (urea fertilizer usage), and waste management (waste 

combustion, landfills, and residential open burning). 

Several sector mismatches exist for FFCO2 derived from the five bottom-up 

inventory datasets. First, FFDASv2.2 does not cover the cement manufacturing and gas 

flaring sectors (CM&GF). The EDGARv432 and MDE inventories cover CM&GF, but 

we excluded these sectors when calculating FFCO2. The ACESv1 and ODIAC2018 

datasets cover CM&GF, but these two sectors could not be isolated from other FFCO2 

sectors in the data files provided by these two groups. Therefore, emissions of CO2 

from the CM&GF sectors remain the bottom-up inventories from ACESv1 and 

ODIAC2018. According to the MDE inventory, the CM&GF sectors emitted 0.4 MtC 

during year 2014, which is about 2% of the state-wide annual total FFCO2 estimate.  

Second, EDGARv432, FFDASv2.2, and ODIAC2018 cover both the aircraft 

landing & takeoff sector as well as the airborne aircraft emissions sector, while 

ACESv1 only covers the aircraft landing & takeoff sector. Note that the aircraft 

emissions sector of FFDASv2.2 was directly adopted from EDGAR. The MDE 

inventory estimate of aviation emissions was based on aviation fuel consumption 
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statistics, and thus does not necessarily indicate emission within the geographical 

boundary of the state. According to EDGARv432, airborne aircraft emissions 

(“TNR_Aviation_CDS/CRS”) emitted 0.05 MtC during February 2010, which is again 

about 2% of the monthly total FFCO2 estimate. According to the MDE inventory, 

emissions from the jet fuel & aviation gasoline usage constitute about 1% of the state-

wide annual total FFCO2 emission inventory.  

Finally, FFDASv2.2 does not cover emissions from the oil and natural gas 

refining and transformation sectors. Emissions provide by ODIAC2018 and ACESv1 

do cover these sectors. Emissions of CO2 from oil and natural gas refining and 

transformation could not be isolated from emissions of CO2 from the more dominant 

combustion sectors for ODIAC2018, whereas according to ACESv1 there was no CO2 

emitted from these oil and gas sectors in our study domain.  

EDGARv432’s oil refineries and transformation industry sector (file name: 

“REF_TRF”) and fuel exploitation sector (file name: “PRO”) denote emissions from 

these oil and gas sector; non-combustion emissions of CO2 are also provided in these 

files. Since FFFASv2.2 does not cover the oil and gas sector emissions provided by 

these “REF_TRF” and “PRO” files of EDGAR, these emissions were excluded from 

FFCO2 of EDGARv432 shown in Figure 2.9. The MDE inventory does include 

emissions from pipeline fuel combustion within the natural gas industry sector; these 

emissions are included in the calculation of FFCO2 from MDE discussed in section 

2.3.8. According to MDE, only 0.0001 MtC of CO2 was emitted from the oil and gas 

sector in year 2014 (including pipeline fuel combustion), which is less than 0.001 % of 

the total annual value of FFCO2. 
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Figure S2.1. Flight tracks of the 15 research flights conducted during the winter 2015 
FLAGG-MD campaign. A total of nine flights were conducted by the UMD aircraft 
and six flights were conducted by the Purdue aircraft. The date of each research flight 
is shown at the bottom left of each panel, in a year-month-day format. The asterisk (*) 
symbol next to each RF number indicates that in-situ data of that flight was used for 
the mass balance estimate of the emission of CO2 from the Balt-Wash area within our 
study. 
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Figure S2.2. Normalized Difference Vegetation Index (NDVI) for (a) June 2015 and 
(b) February 2015. The v1r12 weekly NDVI data on a 4 km×4 km grid from the Visible 
Infrared Imaging Radiometer Suite (VIIRS) is available from the following link: 
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php. Data for February 
2015 are used in the analysis; measurements for June 2015 are shown to illustrate that 
the VIIRS determination of NDVI is more sensitive to the rural/urban setting during 
summer than winter. Points A, B, C, and D as well as the rectangular box denoting our 
study area are the same as used in Figure 2.1. (c) Averages of NDVI along a series of 
diagonal boxes that extend from just south point B and just north of point A on panel 
(b), plotted as a function of the middle latitude of each box along line AB (called as 
“horizontal transect”). The most southerly box and the most northerly box correspond 
to “edge areas” used to define background CO2 for six of the seven mass balance flights. 
The latitudinal span of these boxes, as well as the latitudinal span of Washington, D.C. 
(DC) and the city of Baltimore (Balt), are shown by the grey shaded regions. Results 
for NDVI are shown for six months in 2015, as indicated. The slight decline in NDVI 
for DC and Balt for Feb 2015 is used to scale the results of the biogenic emission of 
CO2 computed by the VEGAS model. 
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Figure S2.3. (a-g) Mole fraction of CO2 measured downwind of the Balt-Wash area 
(colored) and the background CO2 (black, solid) for the seven mass balance flights. 
Each colored line indicates downwind horizontal transects at different altitudes. The 
flight date and the mean altitude of each horizontal transect is shown at the left-top of 
each panel. The black solid lines indicate background CO2 used to estimate the 
emission rate of CO2; the black dotted lines indicate the ±1𝜎 bound of background CO2 
used for the sensitivity analysis. Dotted vertical lines indicate the boundaries of flight 
segments used to define the values of background CO2. 
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Figure S2.4. (a) Map showing the average value of U within the PBL (𝑼𝑷𝑩𝑳3333333) derived 
from NAM4 for every cell on the 0.1°×0.1° lat/lon grid. (b) Same 𝑼𝑷𝑩𝑳3333333 data shown in 
(a) but binned in 0.1° diagonal latitudinal bins (see Figure 2.7). For each diagonal 
latitudinal bin, the black diamonds indicate 𝑼𝑷𝑩𝑳3333333 from each grid 0.1°×0.1° NAM4 grid 
point that lies within the bin. The red diamond indicates the mean value of 𝑼𝑷𝑩𝑳3333333 within 
the diagonal bin (i.e., the average of the black diamonds. The blue diamond indicates 
𝑼𝑷𝑩𝑳3333333 for the NAM4 grid located closest to the downwind portion of the study area (i.e., 
line AB in Figure 2.1). (c) Black diamonds indicate the scaling factors k derived for 
each latitudinal bin, and the black line indicates the linearly interpolated scaling factor 
applied to wind measurements for the mass balance calculation. 
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Figure S2.5. The emission rates of CO2 from the Balt-Wash area during the sampling 
period for seven research flights conducted in February 2015. This figure is identical 
to Figure 2.8, except here we have computed the FLAGG-MD mass balance emissions 
assuming a value of unity for the scaling factor k described in section 2.2.7. In other 
words, here we assume the wind speed perpendicular to the aircraft flight track was 
steady during the transport time over the Balt-Wash area (i.e., k = 1 in Equation 2.1). 
Overall, the FLAGG-MD fluxes shown here are 5% larger than those shown in Figure 
2.8. 
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Figure S2.6. Emissions of CO2 from the Balt-Wash area during February 2015. This 
figure is identical to Figure 2.9, except here we have again computed the FLAGG-MD 
emissions assuming k = 1 in Equation 2.1 (i.e., steady perpendicular winds across the 
study area). The FLAGG-MD monthly emission shown here (last vertical bar) is 5% 
larger than that shown in Figure 2.9. 
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Figure S2.7. Vertical profiles of CO2, CH4, H2O and potential temperature downwind 
of the Balt-Wash area on (a) 20 February 2015 (UMD-RF5) and (b) 25 February 2015 
(UMD-RF8). The locations of these vertical profiles are indicated as VP3 and VP5 in 
Figure 2.1. The dashed line represents the top of the well-mixed PBL. The dotted line 
represents the entrainment height. The red diamond and vertical error bar indicate the 
adjusted mixing height and its 1σ uncertainty range, used for the flux estimation in 
Equation 2.1. 
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Figure S2.8. (a) The difference of true heading measurements obtained by the Garmin 
system and the Differential GPS (DGPS) during four calibration research flights 
conducted in October 2017. (b) The difference of v1 wind speed derived from the 
Garmin output and NAM4 sampled along the flight track as a function of the Garmin 
true heading, during eight UMD research flights conducted in February 2015. 
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Figure S2.9. Scatter plots comparing the Beltsville site wind profiler measurements 
and the NAM4 meteorological model for (a) wind speed, (b) wind direction, (c) U 
component, and (d) V component wind. Dotted line indicates 1 to 1 ratio line and solid 
line indicates the linear regression fitted to the data. The data plotted were obtained 
during the eight flight days during the campaign (i.e., 13, 16, 19, 20, 23, 24, 25, and 26 
February 2015). 
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Figure S2.10. Comparisons between three versions of the aircraft wind perpendicular 
to the aircraft flight track and the perpendicular wind from NAM4. For each row, the 
left and right plots showing the same data, but as time series and scatter plots, 
respectively. The first row shows the comparison for the original v1 aircraft 
perpendicular wind. The second row shows the comparison for the v2 aircraft wind, 
which incorporates the magnetic heading bias correction and true airspeed calibration 
described in section 2.5.1 - 2.5.3. The third row shows the comparison for the v3 aircraft 
wind, which is derived by scaling the perpendicular wind speed to the NAM4 data, as 
described in section 2.5.2. 
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Figure S2.11. Scatter plots of the emission rate of CO2 from the CEMS record of Chalk 
Point (CP) and Morgantown (MT) power plants versus the emission rate of CO2 
estimated using (a) v1 wind, (b) v2 wind, and (c) v3 wind fields of the UMD Cessna 
aircraft. The data points shown in (c) are identical to the UMD data points shown in 
Figure 2.6b. The mean percentage error (MPE) and the mean absolute percentage error 
(MAPE) of the UMD mass balance versus CEMS emissions are shown at the top left 
of each panel. The dotted line shows the 1 to 1 ratio and the solid line shows a linear 
least square fit of the data points, for each version of the wind field. The close 
agreement of the linear fir on panel (c) to the 1 to 1 line supports the validity of the v3 
wind field. 

 

Table S2.1. The mean and the standard deviation of the three different versions of the 
aircraft perpendicular wind speed. The root mean square error (RMSE) of the 
perpendicular wind speed against the corresponding the NAM4 wind data are shown. 

Unit: m/s Date 
2015 

Wind v1 Wind v2 Wind v3 
U⟘ ± 1σ RMSE U⟘ ± 1σ RMSE U⟘ ± 1σ RMSE 

UMD-RF1 Feb 6 7.4±3.1 3.1 5.1±3.2 2.8 5.3±3.2 2.8 
UMD-RF3 Feb 16 5.4±1.0 2.1 2.3±1.0 1.3 3.4±1.0 0.7 
UMD-RF4 Feb 19 14.7±1.8 2.4 11.2±1.6 2.0 12.7±1.6 1.4 
UMD-RF5 Feb 20 7.2±1.6 1.5 3.4±1.5 2.9 6.1±1.5 1.0 
UMD-RF6 Feb 23 11.1±1.3 1.4 8.5±1.4 2.6 10.6±1.4 1.5 
UMD-RF8 Feb 25 6.7±2.2 2.4 2.9±1.9 2.8 5.1±1.9 1.7 
UMD-RF9 Feb 26 3.7±1.2 1.2 3.5±1.1 1.1 4.1±1.1 1.0 
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Chapter 3: Emissions of CO2 and CO in the Baltimore, MD-

Washington, D.C. area: Lessons learned from aircraft campaign 

during COVID-19 pandemic 

 

3.1 Introduction 

Cities account for 70% of global energy consumption (O’Shaughnessy et al., 

2016). Fossil-fuel combustion in the world’s cities (i.e., residential, commercial, 

industrial, transportation) produces a significant portion of global air pollutants that are 

detrimental to climate and air quality. According to UN-Habitat (2011), cities account 

for more than 70% of global CO2 emissions. Cities and local governments across the 

globe have set various climate plans to reduce the emission of greenhouse gases (GHGs) 

(C40, 2019). For example, the state of Maryland is in on track to achieving the target 

of reducing emissions of GHGs 40% by year 2030, relative to the 2006 emission level 

(Maryland Department of the Environment (MDE), 2021). Washington D.C. has also 

set a climate action plan to reduce the emission of GHGs by 50% below 2006 levels by 

year 2032, and by 80% in 2050 (Department of Energy & Environment (DOEE), 2018). 

Many states and cities rely on self-generated bottom-up emission inventories to 

track progress on their GHG emission reduction plans (Kevin Robert Gurney et al., 

2021). Even though the methodology underlying detailed inventories vary, the  bottom-

up approach estimates emissions by combining activity metric data (i.e., fossil-fuel 

consumption) and corresponding emission factors (i.e., carbon content of specific fuel, 
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combustion efficiency) for  various source sectors (Liu et al., 2020). Any inaccuracy in 

activity metric data or emission factors propagates into the uncertainty of bottom-up 

inventories (McDonald et al., 2018). Conversely, the top-down approach constrains 

emissions based upon analysis of atmospheric observations of GHGs from various 

platforms (i.e., ground, aircraft, satellite). Various top-down analysis methods exist, 

such as the mass balance approach (Ahn et al., 2020; Heimburger et al., 2017; Klausner 

et al., 2020; X. Ren et al., 2018; Ryoo et al., 2019), the inversion framework (Balashov 

et al., 2020; Cusworth et al., 2020; Lopez-Coto et al., 2020; Michalak et al., 2017; 

Staufer et al., 2016), or the trace gas ratio method (Ammoura et al., 2016; Goldberg et 

al., 2019; Plant et al., 2019; X. Ren et al., 2018; Wong et al., 2016). One of the major 

challenges in the top-down approach is to attribute observed emissions to specific 

source sectors (i.e., transportation vs residential/commercial/industrial sector) (Miller 

& Michalak, 2017). 

The Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2 or 

COVID-19) pandemic affected human activities worldwide. In the United States, 

various social activity regulations were issued starting in March 2020. On 16 March 

2020, Maryland and D.C. governments ordered the closure of restaurants and other 

recreational facilities to slow the spread of COVID-19 (NGA, 2020). Abrupt changes 

in the emission of GHGs from various sources sectors (i.e., transportation, residential, 

commercial, power) have been reported, with varying magnitudes for each sector (EIA, 

2020b; Laughner et al., 2020; Le Quéré et al., 2020). Here, we will examine the 

accuracy of several of these bottom-up emission inventories by comparing to results 

based upon airborne observations analyzed using the top-down method. 
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The University of Maryland, Purdue University, and the National Oceanic and 

Atmospheric Administration (NOAA) conducted a series research flights from 

February to May 2020. These flights focused on the measurement of the outflow of 

atmospheric pollutants from cities along the U.S. North East Corridor. The acquisition 

of these atmospheric in-situ observations during the pandemic, for which abrupt 

changes in various source sector emissions were occurring, provides an unprecedented 

opportunity to study the effect of COVID19 on air pollutant emissions from the 

Baltimore-Washington D.C. (Balt-Wash) region. 

In this study, we quantify the emission of CO2 from the Balt-Wash area during 

the COVID-19 pandemic. We also quantify the emission of carbon monoxide (CO), a 

byproduct of incomplete combustion and one of the six criteria air pollutants regulated 

under the National Ambient Air Quality Standards (NAAQS) (EPA, 2010). In section 

3.2.1 to 3.2.3, we describe the aircraft-based top-down approach used to estimate the 

emissions of CO2 and CO. In section 3.2.4, we describe how we combine the top-down 

and bottom-up approach to conduct source sector attribution. In section 3.3.1, we 

present the changes in atmospheric distribution of CO2 and CO over the Balt-Wash 

area before and after governmental stay-at-home directives issued in response to 

COVID-19 outbreaks. In section 3.3.2, we quantify the changes in emissions of CO2 

and CO during the COVID-19 pandemic period. In section 3.3.3, we evaluate three 

bottom-up inventories, using our top-down estimates of the emissions of CO2 and CO. 

3.2 Materials and Methods 

3.2.1 Aircraft Research Flights during the COVID-19 pandemic 
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The University of Maryland (UMD) conducted six research flights in February 

2020 as a part of the Fluxes of Greenhouse Gases in Maryland (FLAGG-MD) campaign, 

which aims to quantify GHG emissions from the Balt-Wash area. On 30 March 2020, 

formal stay-at-home orders were issued for the District of Columbia, Maryland, and 

Virginia areas due to the spread of COVID-19 (NGA, 2020). In April 2020, a series of 

coordination calls were conducted among the UMD, Purdue University (Purdue), and 

the National Oceanic and Atmospheric Administration (NOAA) flight panning teams. 

Although coordinated, the UMD, Purdue, and NOAA teams conducted research flights 

designed to independently investigate the impact of COVID-19 on the air pollutions 

from the major cities in the U.S. North East corridor. In this study, we focus on airborne 

measurements over the Balt-Wash area obtained from the UMD Cessna and the NOAA 

Twin Otter aircraft. Figure 3.1 shows flight tracks of UMD and NOAA aircraft 

conducted during February (red lines), April (green lines), and May 2020 (blue lines). 

The UMD research aircraft Cessna 402B was equipped with a Picarro cavity 

ring-down spectroscopic (G2401-m) to measure the dry air mole fraction of CO2 and 

CO. Measurements of CO2 were calibrated on the ground and during the flight using 

an onboard calibration system with two cylinders of trace gases certified by NIST. The 

UMD aircraft is also equipped with instruments to measure other trace gases (i.e., NO, 

NO2, SO2, O3), aerosol optical properties (black carbon, scattering, absorption 

coefficients), and meteorological variables (temperature, pressure, wind speed, wind 

direction, relative humidity). The complete list of instrumentations onboard the UMD 

research aircraft is described in Ren et al. (2018). The NOAA Twin Otter aircraft (De 

Havilland DHC‐6‐300) was equipped with a Picarro Cavity Ringdown Spectrometer 
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(G2401-m) to measure CO2, CO, CH4 and water vapor. Also, the Twin Otter aircraft 

was equipped with the Rosemount ambient sensor to record temperature and pressure 

and the wind probe along with differential GPS to record wind information (Conley et 

al., 2014). Further details of the instrumentation setup on the NOAA Twin Otter aircraft 

are given in Text S1 of Plant et al. (2019). 

 
Figure 3.1. Aircraft research flight tracks conducted in the Baltimore, MD-Washington, 
D.C. metropolitan areas during February (red), April (green), and May (blue) of 2020. 
The upper left box shows the number of UMD and NOAA flights used to calculate the 
emission rate of CO2 and CO in this study (flight dates are shown in Table 3.1). The 
gray-scale over the geographical domain indicates population density from the Gridded 
Population of the World (GPWv4.11, CIESIN (2018)). The aircraft footprint area 
covered by each flight is shown in Figure S3.1. 

3.2.2 Aircraft-based Mass Balance Approach 

The mass balance approach estimates the emission rate of trace gases from 

aircraft observations, based upon the principle of mass conservation within a 

geographical area of interest (Trainer et al., 1995; White et al., 1983). The aircraft-

based mass balance method has been widely used to estimate greenhouse gas emissions 
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in urban areas, including Indianapolis (Cambaliza et al., 2014; Heimburger et al., 2017; 

Mays et al., 2009), Sacramento (Ryoo et al., 2019; J C Turnbull et al., 2011), London 

(Ashworth et al., 2020; O’Shea et al., 2014; Pitt et al., 2019), Berlin (Klausner et al., 

2020), and the Balt-Wash area (Ahn et al., 2020; X. Ren et al., 2018). The two previous 

studies focused on Balt-Wash, Ahn et al. (2020) and Ren et al. (2018), quantified 

emissions of CO2, CO, and CH4 during the winter of 2015 and 2016. 

Here we compute the emission rate of CO2 and CO over the Balt-Wash area 

with the following equation: 

𝐹 = ∫ 	∫ %[𝐶]!,# − [𝐶$%]!,#* ∙ 𝑈!,#	𝑑𝑥𝑑𝑧
!!
!"

#!
#"

   (3.1) 

 where x is the horizontal distance and z is the vertical coordinate in the aircraft transect 

downwind of the Balt-Wash area. Variables xi, xf and zi, zf are the horizontal and vertical 

bounds of the downwind transect influenced by the emission source of interest. We 

determine zf using the same method in Ahn et al. (2020) with the following equation: 

zf = (3zwell-mixed + zentrainment) / 4. Variable zwell-mixed is the well-mixed planetary boundary 

layer (PBL) height and zentrainment is the entrainment height where mixing from the PBL 

has reached the level of the free troposphere. Both zwell-mixed and zentrainment are 

determined from the vertical profiles of potential temperature and mole fractions of the 

trace gases CO2, CO, CH4, and H2O. Variable U denotes the wind speed perpendicular 

to the aircraft heading, variable [C] represents the observed number density of a 

specific trace gas (i.e., CO2 and CO), and [Cbg] is the computed background number 

density of the trace gas of interest. We adopt the linear regression method of Ahn et al. 

(2020) to determine the background mole fraction of trace gas: a least squares linear 

regression line is fit to the mole fraction of trace gas measured at both edges of the 
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transect. If the mole fraction of the trace gas measured between Washington, D.C., and 

Baltimore, MD is lower than the mole fraction measured at either edge of the transect, 

an additional background area is designated approximately midway between 

Washington, D.C. and Baltimore, MD (Figure S3.2). The mole fractions of each trace 

gas are converted into number density ([C], [Cbg]) using in-situ measurements of 

temperature and pressure. 

3.2.3 Evaluating the impact of biospheric CO2 uptake on the aircraft-based mass 

balance approach 

The impact of the active biosphere on fluxes of CO2 found using the aircraft-

based mass balance approach varies depending on both magnitude (i.e., seasonal 

dependence of biospheric CO2 release or uptake) and spatial variability across the study 

domain (i.e., urban vs sub-urban). We assess the impact of biosphere by simulating the 

enhancement signal of urban CO2 plumes for the following two scenarios:1) only 

fossil-fuel CO2 (FFCO2) emissions exist in the study domain (∆𝐹123456278
99:;+ ); 2) both 

FFCO2 emissions and biospheric CO2 uptake exist in the study domain (∆𝐹123456278
99:;+<=>>). 

Here, GPP refers to gross primary productivity. 

We consider aircraft transects that show the absolute relative difference 

between  ∆𝐹123456278
99:;+<=>> and ∆𝐹123456278

99:;+  greater than 20% to be heavily affected by the 

biosphere: these aircraft transects are excluded from the mass flux calculation. To 

simulate the CO2 enhancement signal, we utilize the following three models: 1) the 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory 

estimate of air parcel history (Draxler et al., 2014; Stein et al., 2015); 2) the gridded 
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gross primary product developed using the solar induced fluorescence (SIF) retrieval 

from the Tropospheric Monitoring Instrument (TROPOMI) (Turner et al., 2020); 3) the 

Emissions Database for Global Atmospheric Research version v5.0 (EDGARv50, 

Crippa et al. (2020)) estimate of the flux of CO2. Further details on our simulation of 

the urban enhancement of CO2 fluxes due to the terrestrial biosphere are given in 

section 3.5.1. Table S3.1 show our estimates of the ∆𝐹123456278
99:;+<=>> and the ∆𝐹123456278

99:;+  

for the 14 research flights used in this study. 

3.2.4 Source sector attribution of the emission of CO2 and CO observed during flights 

 The abrupt changes in the emissions of CO2 and CO during the COVID-19 

pandemic period provide an opportunity to determine the source sector compositions 

of CO2 and CO. The aircraft-based estimates of the CO2 (or CO) emission rate, 

computed using Equation 3.1, can be described as the sum of emissions from four 

source sectors: 

𝐶)*+,-./0 = 𝐶)*+123 + 𝐶)*+4(5-/6 + 𝐶)*+7-(5-/6 + 𝐶)*+8982 + 𝐶)*+4.:*5;   (3.2) 

 where the variable 𝐶9?$@A423 represents the emission rate of CO2 (or CO) over the Balt-

Wash area during February 2020. The superscript ‘RCI’ indicates the 

Residential/Commercial/Industrial sector, ‘Onroad’ indicates the onroad transportation 

sector (i.e., vehicle on roads, highway ramps), ‘Nonroad’ indicates the nonroad 

transportation sector (i.e., construction equipment, lawn and garden equipment, 

commercial marine vessels), ‘Elec’ is the power sector (i.e., electricity generation), and 

‘Others’ is the sum of other source sectors. Next, the percentage change of the CO2 (or 
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CO) emission rate from February to April 2020 can be described as the sum of changes 

from the four major source sectors plus the category ‘Others’: 

∆𝐶<=5,-./0 = % 2!"#
$%&

2!"#
'()*+ ∙ ∆𝐴<=5123( + %2!"#

,-.(*/

2!"#
'()*+ ∙ ∆𝐴<=54(5-/6( + %2!"#

0(-.(*/

2!"#
'()*+ ∙ ∆𝐴<=57-(5-/6( + %2!"#

121%

2!"#
'()*+ ∙ ∆𝐴<=58982( +

%2!"#
,)3".4

2!"#
'()*+ ∙ ∆𝐴<=54.:*5;( ,												𝑤ℎ𝑒𝑟𝑒		∆𝐶<=5,-./0 =

256.
'()*+>2!"#

'()*+

2!"#
'()*+ ∙ 100		   (3.3) 

 where the variable ∆𝐶-BC59?$@A423  is the percentage change of the emission rate of CO2 or 

(CO) from February to April 2020. We estimate ∆𝐶-BC59?$@A423  using aircraft observations 

as described in section 3.2.2. Variable ∆𝐴-BC59?$
D  is the percentage change of activity 

metric for a source sector y (i.e., RCI, Onroad, Nonroad, Elec, Others) from February 

to April 2020. We determine ∆𝐴-BC59?$
D  from various activity metric data, such as the 

natural gas consumption by the RCI sector (EIA, 2021a), traffic volume (MDOT, 2020), 

gasoline/special fuel/aviation fuel sales (Comptroller of Maryland, 2020), and power 

plant operational data (EPA, 2020a). Table S3.2 provides the complete list of metric 

data used to determine ∆𝐴!59?$
D . 

 The emission of CO2 and CO from the power sector (𝐶)*+8982) is recorded by 

Continuous Emissions Monitoring Systems (CEMS) installed on power plants. The 

CEMS data are available from EPA’s Air Markets Program Data (EPA, 2020a). The 

‘Others’ sector (𝐶)*+8.? ) accounts for 6% of the state-wide emission of CO2 in 2017 

according to the state inventory (MDE, 2017) and 2% of the emission of CO for our 

study domain according to the National Emissions Inventory 2017 (EPA, 2021). 

Assuming the emission of CO2 and CO (𝐶)*+8.? ) from the ‘Others’ sector emission is 

accurately represented in the state inventory and NEI2017, three variables in Equation 

3.2 (𝐶)*+123 , 𝐶)*+4(5-/6 , 𝐶)*+7-(5-/6) remain as unknowns. These three unknowns (𝐶)*+123 , 𝐶)*+4(5-/6 ,
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𝐶)*+7-(5-/6) can be numerically solved as an intersection point of three planes (one plane 

from Equation 3.2 and two planes from Equation 3.3 for April and May). 

 
Figure 3.2. Percentage change of activity-metrics for six emission source sectors in the 
Baltimore, MD and Washington, D.C. area relative to baseline values in February 2020. 
The red line is daily residential activity (Google, 2020), orange asterisks are monthly 
aviation gasoline sales (Comptroller of Maryland, 2020), the green line is daily 
electricity generation from power plants in the Balt-Wash area (EPA, 2020a), the blue 
line represents daily retail & recreation activity (Google, 2020), the brown line denotes 
the weekly traffic count (MDOT, 2020), and purple diamonds are monthly natural gas 
delivered to residential, commercial, and industrial customers (EIA, 2021a). Vertical 
dotted lines indicate the 14 dates of the aircraft research flights. The vertical dashed 
line marks 16 March 2020, the day when the Maryland and D.C. governments ordered 
the closure of recreational facilities to slow the spread of COVID-19, which was the 
first local area governmental action taken to slow the spread of the pandemic (NGA, 
2020). 

3.3 Results and Discussions 

3.3.1 Atmospheric distribution of CO2 and CO: Before and After COVID-19 

Lockdown 

A series of aircraft research flights allow us to assess the changes in vertical 

distribution of atmospheric trace gases. Figure 3.3 shows the dry-air mole fraction of 

CO2 and CO observed during the 14 UMD and NOAA flights from February to May 

2020 (see Table 3.1). The mean and the standard deviation of the planetary boundary 

layer (PBL) height was 1,412 ± 300 m for the four flights in February 2020. The PBL 
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height increased to 1,804 ± 513 m in April, and to 1,876 ± 419 m in May 2020 (The 

diamond symbols in Figure 3.3c).  In February 2020, the mean and the standard 

deviation of CO2 within PBL was 421.8 ± 0.7 ppm (Figure 3.3a). In April, the PBL 

mean CO2 was 421.2 ± 0.7 ppm, 0.6 ppm lower than the February mean. In May, the 

PBL mean CO2 further decreased to 417.0 ± 1.5 ppm, indicating the increase in 

biospheric CO2 uptake as the domain warmed. The gridded GPP product derived from 

the TROPOMI’s solar-induced fluorescence (SIF) retrieval documents the increased 

biospheric uptake of CO2 over the Balt-Wash area during May 2020 (Figure S3.3, 

Turner (2020)). Here we quantify the impact of biospheric uptake on mass balance 

estimates of the CO2 emissions, using the gridded GPP product, the EDGARv50 CO2 

product, and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 

model, as described in section 3.2.3. 

 

Figure 3.3. Vertical profiles of CO2 (a), CO (b), and potential temperature (c) observed 
during the 14 UMD and NOAA aircraft research flights in February (red), April (green), 
and May (blue) of 2020. The number of research flights in each month are shown at 
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the top of panel (a). The solid lines and shaded areas indicate the mean and the standard 
deviation of each parameter (CO2, CO, potential temperature) within 100 m vertically 
spaced bins. The diamond symbols and their errors bars shown to the right of panel (d) 
indicate the mean and the standard deviation of the PBL height for flight days in each 
month. The triangle symbols shown on the top of each panel indicate the mean CO2, 
CO, and potential temperature within the PBL (a-d). 

 

Mean values of CO in the PBL exhibited temporal trends from February to April 

similar to these described above for CO2. During the February flights, the mean and the 

standard deviation of CO within PBL was 142 ± 3 ppb (Figure 3.3b). In April, the PBL 

mean CO decreased to 127 ± 6 ppb, 15 ppb lower from the February mean. However, 

from April to May the mean value of CO within the PBL increased to 131 ± 5 ppb, a 

behavior that contrasts that of CO2 which decreased from April to May. The observed 

temporal change in the CO mole fraction within the PBL follows a similar trend of 

traffic volume. Figure 3.2 shows that traffic volume abruptly declined on 16 March 

2020, when the state of Maryland and D.C. governments first ordered the closure of 

recreational facilities (NGA, 2020).  Reduction in traffic volume peaked during the first 

week of April 2020, then displayed signs of a slow recovery (brown line in Figure 3.2).  

The mole fraction of atmospheric trace gases varies depending on emission sources, 

sinks, PBL height, wind, and background mole fractions. We quantify the changes in 

the emission of CO2 and CO during COVID-19 pandemic in section 3.3.2. 

3.3.2 Emissions of CO2 and CO: Before and After COVID-19 Lockdown 

We now focus on the emissions of CO2 and CO over the Baltimore, MD-

Washington, D.C. area (the Balt-Wash area) during the COVID-19 pandemic period. 

On 16 March 2020, the state of Maryland and D.C. governments ordered the closure of 
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recreational facilities to slow the spread of COVID-19  (NGA, 2020). Figure 3.2 shows 

that activity-metrics of several major source sector have abruptly changed on 16 March 

2020. We estimate the emission rates of CO2 and CO during the COVID-19 pandemic 

using the aircraft-based mass balance approach (see section 3.2.2). Table 3.1 shows the 

emission rates of CO2 and CO over the Balt-Wash area determined from 14 research 

flights in February, April, and May 2020. 

For the four flight days in February 2020, we estimate the mean and the standard 

deviation of the emission rate of CO2 to be 54,700 ± 16,800 mol s-1 based on mass 

balance computations (Table 3.1). During the four flights in April 2020, our estimate 

of the CO2 emission rate is 37,200 ± 10,700 mol s-1, 32% lower than the February mean. 

As described in section 3.2.4, we attribute the observed change in the CO2 emission 

rate to the following five sectors: power generation (Elec), onroad transportation 

(Onroad), nonroad transportation (Nonroad), residential/commercial/industrial (RCI), 

and a sector denoted other. Our estimates indicate that the largest decline from February 

to April is from the Onroad sector (∆𝐶<=54(5-/6 = 2!"#
,-.(*/

2!"#
'()*+ ∙ ∆𝐴<=54(5-/6 = −11,700 mol s-1, see 

Equation 3.3), followed by the RCI sector (∆𝐶<=5123 = −4,600 mol s-1) and the Nonroad 

sector (∆𝐶<=57-(5-/6 = −1,100 mol s-1). For the six flights in May 2020, the CO2 emission 

rate was determined to be 39,100 ± 14,700 mol s-1, which is 29% lower than the 

February mean and 5% higher than the April mean. Our sector attribution analysis 

indicates that the CO2 emission rate in May was larger than that in April, mainly 

because the increase in emissions of CO2 from the transportation sector (i.e., the 

recovery in traffic volume) was about a factor of two greater than the decrease in 
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emissions of CO2 from the RCI sector (i.e., less demand for spatial heating in office 

buildings). 

For February 2020, our mass balance, top-down estimate of the emission rate 

of CO over the Balt-Wash area to be 329 ± 124 mol s-1 (Table 3.1). For April, our 

estimate of the CO emission rate is 206 ± 54 mol s-1, which is 37% (123 mol s-1) lower 

than the February mean. Our source sector attribution analysis (applications of 

Equations 3.2 and 3.3) indicates that the largest portion of the observed decrease, 30% 

(99 mol s-1), was from the onroad transportation sector. The RCI sector was the second 

largest source of this reduction, accounting for a decline of 5% (16 mol s-1). For the six 

flights in May, our estimate of the CO emission rate rose (relative to April) to a value 

of 241 ± 42 mol s-1, which is still 27% (88 mol s-1) lower than the February mean. From 

February to May, the onroad sector was the largest source of the reduction (24%, 78 

mol s-1), followed by the nonroad transportation sector (2%, 6 mol s-1). The MDOT 

traffic count data shows that the traffic volume in our domain declined by 48% from 

February to April 2020. In May 2020, the traffic volume showed a sign of recovery, 

37% lower than the traffic in February (Figure 3.2, MDOT (2020)). These aircraft-

based mass balance estimates demonstrate that this technique can capture the abrupt 

change in the CO emissions induced by COVID-19 based upon bottom-up data. 

The emissions of CO2 and CO during February-May 2020 are affected by both 

behavioral changes driven by COVID-19 and normal seasonal patterns of source 

sectors (Huang et al., 2019). The energy demand for the spatial heating/cooling varies 

as a function of outdoor temperature (Beheshti et al., 2019) and traffic volumes also 

follow seasonal patterns (Memmott & Young, 2008). According to MDOT traffic count 
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data, traffic volume in our study domain during April-May 2019 was 18% greater than 

that of February 2019. Using traffic volume in 2019 as a baseline, declines in traffic 

volume due to COVID-19 are 65% for April and 54% for May 2020. Such declines in 

traffic volumes led to 34% and 28% declines in the emission of CO2 and CO for our 

study domain, respectively, based on our source sector attribution analysis (see section 

3.2.4).  Meanwhile, the emissions from the residential sector were likely to have 

increased due to COVID-19, as people spent more time at home. Separating the impact 

of COVID-19 from natural variability would require detailed analysis of 

meteorological and socioeconomic data (Goldberg et al., 2020). For the source sectors 

other than onroad transportation, we do not attempt to separate the impact of COVID-

19 from the normal-year seasonality. 

Table 3.1. The emission rates of CO2 and CO estimated from mass balance flights 
conducted during February, April, and May 2020.  
 

Flight Date CO2 [mol s-1] CO [mol s-1] 
UMD-RF1 02/08 (SAT) 39,600 230 
UMD-RF3 02/14 (FRI)  50,500 333 
UMD-RF5 02/19 (WED) 78,700 502 
UMD-RF6 02/21 (FRI) 49,900 252 

February Mean ± 1σ 54,700 ± 16,800 329 ± 124 
UMD-RF7 04/16 (THU) 46,800 259 
UMD-RF8 04/19 (SUN) 44,400 241 
UMD-RF9 04/20 (MON) 23,200 141 
UMD-RF10 04/22 (WED) 34,600 184 

April Mean ± 1σ 37,200 ± 10,700 206 ± 54 
UMD-RF13 05/07 (THU) 49,000 232 
UMD-RF14 05/10 (SUN) 27,200 200 
UMD-RF16 05/14 (THU) 21,400 203 
NOAA-RF12 05/07 (THU) N/A* 258 
NOAA-RF14 05/12 (TUE) 41,100 241 
NOAA-RF15 05/13 (WED) 56,600 314 

May Mean ± 1σ 39,100 ± 14,700 241 ± 42 
* The impact of the active biosphere was above the threshold of 20% and excluded 
from the mass balance calculation (see section 3.2.4). 
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3.3.3 Comparison to Emission Inventories: Overview 

We next compare our top-down estimates of the CO2 and CO emission rates, 

computed using February 2020 aircraft data (i.e., prior to COVID-19 lockdowns), to 

following three bottom-up inventories: EDGARv50 (monthly, 0.1°, global, Crippa et 

al. (2021)), Maryland GHG inventory 2017 (annual, state, MDE (2017)), and the 

National Emissions Inventory (NEI) 2017 (annual, county, EPA (2021)). From the 

three bottom-up inventories (EDGARv50, MDE2017, and NEI2017), we compute the 

emission rate of CO2 and CO over our study domain as follows. First, we update the 

power sector emissions of CO2 in EDGARv50 and MDE2017, by replacing with the 

mean CO2 emission rates recorded from continuous emissions monitoring system 

(CEMS) during February 2020 (EPA, 2020a). Second, we minimize the spatial 

coverage difference between our aircraft-based estimates and three bottom-up 

inventories. For the EDGARv50, we sum the emissions of CO2 and CO for the grids 

located in our aircraft footprint area (grey area in Figure S3.1). For the NEI2017, we 

sum the CO emissions for the following counties: Montgomery, Howard, Anne 

Arundel, Prince George’s, Baltimore City, Baltimore (Maryland), Fairfax, Arlington, 

Prince William (Virginia), and Washington, D.C, which cover most of our study 

domain. For the MDE2017, the state-wide total CO2 emissions, excluding the power 

sector, are scaled by a factor of 1.27, which is the ratio of the 2020 population within 

the aircraft footprint (7.78 million) to the population of the state of Maryland in 2017 

(6.02 million). The three bottom‐up inventories cover different years (i.e., EDGARv50: 

2015, the state of Maryland inventory: 2017, and NEI2017: 2017) with varying 

temporal resolution (i.e., EDGARv50: monthly, state of Maryland inventory: annual, 
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NEI2017: annual). We do not attempt to harmonize the temporal mismatch existing 

between bottom-up inventories and our aircraft observations during 2020. 

3.3.4 CO2: Aircraft-based, EDGAR, and State Inventory 

Figure 3.4a shows the top-down and bottom-up estimates of the emissions of 

CO2 from the Baltimore, MD-Washington, D.C. area. The three leftmost bars in Figure 

3.4b are the emission estimates prior to the COVID-19 government measures, and the 

two rightmost bars are the estimates in the midst of COVID-19 pandemic. We attribute 

the aircraft-based estimate of the CO2 emissions to five source sectors using the 

observed changes the total emissions of CO2 and the percentage changes in source 

sector activities (see section 3.2.4). 

For the four research flights conducted in February 2020, prior to the major 

COVID-19 outbreak, we estimate the mean emission rate of CO2 to be 54,700 ± 16,800 

mol s-1 (Figure 3.4a). For the study domain, EDGARv50 estimates the emission rate of 

CO2 as 44,900 ± 2,600 mol s-1, which is 18% lower than our aircraft estimate. The state 

of Maryland GHG inventory, scaled by population to represent our aircraft footprint 

area, provides a CO2 emission rate of 47,300 ± 4,600 mol s-1, which is 13% lower than 

our top-down estimate. This result is consistent with the findings in Gurney et al. (2021): 

self-reported inventories for 25 cities in the Eastern U.S underestimate the fossil-fuel 

based emission of CO2 by 25% (95% CI: 12.8% to 37.8%), in comparison to the Vulcan 

CO2 product which is consistent with atmospheric measurements. 

We determine that the largest source is the onroad transportation sector (52% 

of the total emissions), followed by RCI (27%), nonroad transportation (11%), and 
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electricity generation (5%). For the EDGARv50, our sector attributions indicate that 

the onroad sector is the major source of underestimation in the EDGARv50 CO2 

emissions. Also, we find that the large underestimation in the EDGARv50’s onroad 

transportation sector (−19,990 mol s-1) is partly balanced by the overestimation in the 

RCI sector (+10,540 mol s-1). For the state of Maryland bottom-up inventory, the 

overall source sector composition for the emission of CO2 shows good agreement with 

our aircraft-based top-down sector composition estimate. The nonroad transportation 

sector is largest contributor to the underestimation in the state inventory (3,200 mol s-

1), followed by onroad transportation sector (2,300 mol s-1) and RCI sector (1,900 mol 

s-1). 

Ahn et al. (2020) (hereafter A2020) estimated the emission rate of CO2 over the 

Baltimore, MD-Washington, D.C. area to be 89,000 ± 15,000 mol s-1, based upon 

analysis of data collected during seven mass balance flights in February 2015. The 

aircraft footprint area covered in A2020 is 17,904 km2, 42% larger than the footprint 

area covered in this study (12,629 km2). Assuming the CO2 emissions scales linearly 

with geographic domain across the Baltimore-Washington metropolitan area, we scale 

our top-down estimate of 54,700 ± 16,800 mol s-1 by a factor of 1.42, a ratio of the 

footprint area in A2020 to the area in February 2020. Our estimate of the CO2 emission 

rate, scaled to represent footprint area in A2020, is 77,700 ± 23,900 mol s-1, 13% 

(11,300 mol s-1) lower than the A2020 estimate. Such decline in the CO2 emissions 

observed between 2015 and 2020 is mostly from to the power sector. According to the 

CEMS records of power plants in the study domain, the CO2 emission rate from power 
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plants was 21,000 mol s-1 in February 2015 and 5,700 mol s-1 in February 2020 (EPA, 

2020a).  

The rapid decline in the power sector emission of CO2 between February 2015 

and February 2020 for the study domain is a result of the following three factors. First, 

the warmer outdoor temperature in February 2020 compared to February 2015 (i.e., 

monthly sum heating degree days (HDD, base temperature 65°F) for the state of 

Maryland declined from 1,105 in February 2015 to 705 in February 2020 (NOAA CPC, 

2020)), resulting in a reduction in electricity demand for heating. Second, the shutdown 

of two coal-fired power plants (i.e., Charles P. Crane Generating Station retired in 2018 

and Luke Mill Power Plant retired in 2019, (EIA, 2021b)) led to less power generation 

in the study domain. Third, the increasing share of natural gas power units within the 

state of Maryland and increase in the import of electricity from nearby states also 

contributed (MDE, 2017). The state climate goal (i.e., the greenhouse gas reduction act 

(GGRA)) under the state/regional initiatives (i.e., Maryland Commission on Climate 

Change and the Regional Greenhouse Gas Initiative (RGGI)) played an important role 

in achieving these reduction in the emission of CO2 from the power sector. 
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Figure 3.4. Emission rates of CO2 (a) and CO (b) over the Baltimore-Washington, D.C. 
area. For each panel, the two leftmost estimates are based on bottom-up emission 
inventories (i.e., EDGARv50, the state of Maryland GHG inventory 2017, National 
Emissions Inventory 2017) and the three rightmost estimates are from the aircraft-based 
mass balance approach for February, April, and May 2020. The vertical dashed line 
distinguishes the time before (left to the dashed line) and after (right to the dashed line) 
the date when Maryland and D.C. governments first ordered the closure of recreational 
facilities to slow the spread of COVID-19 (see Figure 3.2). For the comparison of 
bottom-up and top-down emission estimates, bottom-up estimates are scaled to match 
the spatiotemporal footprint of aircraft observations (see section 3.3.3). The error bar 
indicates 1σ uncertainty range assigned to each estimate (see Section 3.5.2). The 
bottom-up estimates are colored by major source sector as provided by each inventory. 
The aircraft top-down estimate of CO2 and CO emissions during February 2020 are 
apportioned to major source sectors by relating observed emission reductions during 
COVID-19 pandemic to change in source sector activity-metrics such as traffic counts 
and natural gas consumptions (see section 3.2.4). 
 

3.3.5 CO: Aircraft-based, EDGAR, and NEI 

Figure 3.4b shows the top-down and bottom-up estimates of the emissions of 

CO from the Baltimore, MD-Washington, D.C. area. The three leftmost bars in Figure 

3.4b are the emission estimates prior to the COVID-19 government measures, and the 

two rightmost bars are the estimates in the midst of COVID-19 pandemic. For the four 

research flights in February 2020, prior to the COVID-19 directives, we estimate the 
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mean emission rate of CO to be 329 ± 124 mol s-1 based on the aircraft data (Table 3.1). 

The EDGARv50 bottom-up estimate of the CO emission rate for the same domain 

covered by the analysis of aircraft data is 508 ± 152 mol s-1, a value that is 54% (179 

mol s-1) greater than our top-down estimate. Several studies have reported that the 

emissions of CO in EDGAR is overestimated (Kim et al., 2013; Miller et al., 2008; 

Parrish, 2006; X. Ren et al., 2018). Our sector attribution analysis indicates that 

EDGARv50 overestimates the emission of CO by about a factor of two (71 mol s-1) for 

the RCI sector, and by 40% (81 mol s-1) for the onroad transportation sector. Also, we 

find that EDGARv50 underestimates CO emissions from the Nonroad transportation 

by 69% (35 mol s-1).  The NEI2017 value for the emission rate of CO for 2017 is 548 

± 233 mol s-1, which is also 66% greater than our top-down estimate. Our sector 

attribution analysis indicates that the largest discrepancy between the NEI and our top-

down emission estimate for CO is due to the nonroad transportation sector. The NEI 

estimates the Nonroad emission rate of CO to be 216 mol s-1, which is a factor of ~4 

greater than our estimate of 51 mol s-1 (Figure 3.4b). 

Both Salmon et al. (2018) and Ren et al. (2018) (hereafter S2018 and R2018) 

reported the emission rate of CO over the Balt-Wash area using aircraft-based, top-

down approaches. S2018 estimated the CO emission rate to be 540 ± 490 mol s-1 (mean 

and the 95% CI), based on five mass balance flights conducted during February 2015. 

R2018 estimated the emission rate of CO over the Balt-Wash area as 500 ± 411 mol s-

1 (mean ± 1σ) from seven mass balance flights in February 2015. Both S2018 and 

R2018 computed emissions using the same aircraft dataset in A2020. Assuming the 

aircraft footprint area covered in S2018 and R2018 is same as that in A2020 (17,904 
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km2), we can scale the top-down estimate for the emission of CO in this study by a 

factor of 1.42 (see section 3.3.4) to cover comparable areas. Our estimate of the CO 

emission rate for February 2020, scaled to match the footprint area in S2018 and R2018, 

is 467 ± 176 mol s-1. This estimate of the CO emission rate for 2020 is 14% lower than 

the S2018 estimate and 7% lower than the R2018 estimate. This observed 7 to 14% 

decline in the emission of CO between the winter of 2015 and 2020 could be induced 

by improved emission efficiencies via emission controls and regulations (i.e., the 

Maryland Clean Cars Program (MDOT & MDE, 2016)) and increase of electric 

vehicles (Slowik & Lutsey, 2018). We leave detailed analysis on inter-annual trend 

analysis as a future study. Multi-year aircraft/ground tower observation data will be 

needed for such trend analysis. 

3.4 Conclusions 

In this study, we have investigated the urban emissions of CO2 and CO from 

the Balt-Wash area during the COVID-19 pandemic. First, we compared the airborne 

observations of CO2 and CO obtained during February 2020 (prior to the 

implementation of COVID-19 measures) to April-May 2020 (in the midst of COVID-

19 pandemic).  Our aircraft observations show that atmospheric CO2 within the 

planetary boundary layer (PBL) decreased from February (421.8 ± 0.7 ppm), to April 

(421.2 ± 0.7 ppm), and extending into May (417.0 ± 1.5 ppm). Meanwhile, the 

atmospheric CO within PBL decreased from February (142 ± 3 ppb) to April (127 ± 6 

ppb), and showed a modest increase in May (131 ± 5 ppb). Second, we quantified the 

reductions in the emission of CO2 and CO during the COVID-19 pandemic using the 

aircraft-based mass balance approach. Our mass balance estimates indicate that the 
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mean CO2 emission rate over the Balt-Wash area declined by about 32% in April and 

by 29% in May 2020, relative to the February mean. Our estimate of the mean CO 

emission rate declined by 37% in April and 30% in May, relative to the February mean. 

For both CO2 and CO, the onroad transportation sector was determined to be the largest 

contributor to reduced emission rates in April 2020, followed by the RCI sector. 

We evaluated three bottom-up inventories (EDGARv50, the state of Maryland 

GHG inventory, and NEI2017) using our aircraft-based estimates of the CO2 and CO 

emission rates. Also, sector compositions in the bottom-up inventories were evaluated 

using our estimate of the sector contributions to these emissions.  Our analysis indicates 

that the observed, top-down emission of CO2 over the Balt-Wash area based on analysis 

of the aircraft data acquired during February 2020 is about 18% larger than the 

EDGARv50 bottom-up emission value. The Maryland data inventory underestimates 

our observed, top-down value for the emission of CO2 by 13%. These results are 

consistent with the findings of Gurney et al. (2021), who reported that the self-reported 

fossil fuel emissions of CO2 provided by 25 cities in the Eastern U.S. tend to be about 

25% (95% CI: 12.8% to 37.8%) lower than estimates from the Vulcan emissions 

product, which is consistent with atmospheric measurements. For the source sector 

composition of the emission of CO2, the state inventory showed overall better 

agreement with our estimate than the sector attribution provided by EDGARv50. 

Meanwhile, our analysis indicates that the emission of CO over the Balt-Wash 

area is overestimated by about 54% within EDGARv50 and by about 66% in NEI2017. 

Based on our sector attribution analysis, the nonroad transportation sector was the 

largest contributor to the NEI overestimate of the emission of CO during February 2020. 
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McDonald et al.  (2018) reported that bottom-up mobile source emissions of CO in the 

NEI for 2013 are about 90% higher than their own fuel-based inventory of motor-

vehicle emissions (FIVE). Similarly, Salmon et al. (2018) reported that the emission of 

CO provided by NEI2014 emissions are factor of ~2.0 greater than their average top-

down emission estimate of CO for the Baltimore, MD-Washington, D.C. region. Our 

study indicates that the nonroad sector emissions could be a major source of the 

overestimation for the Balt-Wash area. 

We leave several topics for future study. First, we did not separate the impact 

of COVID-19 from the normal-year seasonality for the source sectors, other than 

onroad transportation. Separating the normal-year seasonality would require the 

analysis of various meteorological data (i.e., outdoor temperature) and the 

socioeconomic data (i.e., gross domestic product, energy prices). Second, even though 

we compared the emissions of CO2 and CO over the Balt-wash area estimated during 

winters of 2015 and 2020 by comparing our results to previously published studies, we 

did not attempt to assess the inter-annual variability. The UMD have conducted more 

than 70 aircraft research flights over the Balt-Wash area from 2015 to 2020. In the 

future study, these aircraft measurements collected spanning 6 years will be analyzed, 

using the similar methods presented in this dissertation, to quantify trends in the 

emissions of CO2 and CO. Nonetheless, our study provides an assessment of the change 

in the CO2 and CO emissions and their source sector compositions during COVID-19 

pandemic period, highlighting both underestimations in the bottom-up CO2 emissions 

inventories and overestimations in the bottom-up CO inventories. Our study will 
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hopefully spur further scrutiny of the bottom-up emissions estimates, which are central 

to so many policy decisions. 

3.5 Supporting Information 

3.5.1 Simulating the enhancements of CO2 downwind of the Baltimore, MD-

Washington, D.C. area: Fossil-fuel emissions and biogenic uptake of CO2 

The impacts of biosphere on the aircraft-based estimate of the emissions of CO2 

were evaluated by simulating the enhancement signal of urban CO2 plumes for the 

following two scenarios:1) only fossil-fuel CO2 (FFCO2) emissions exist in the study 

domain (∆𝐹123456278
99:;+ ); 2) both FFCO2 emissions and biospheric CO2 uptake exist in 

the study domain (∆𝐹123456278
99:;+,=>> ). Here, GPP refers to gross primary productivity. To 

simulate the CO2 enhancement signal (∆𝐹123456278
99:;+  and ∆𝐹123456278

99:;+,=>> ), we compute the 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory 

starting from the aircraft locations every 1 seconds downwind of the study domain 

(Draxler et al., 2014; Stein et al., 2015). The High-Resolution Rapid Refresh (HRRR) 

is used as an input meteorology (NOAA, 2020a). For each back trajectory, we compute 

the mean biogenic CO2 uptake (𝐹E=>>, the green lines in Figure S3.3h-j) by sampling 

the gridded product of the gross primary productivity (GPP). We use the gridded GPP 

product (daily, 500 m) developed using the solar induced fluorescence (SIF) retrieval 

from the Tropospheric Monitoring Instrument (TROPOMI) (Turner et al., 2020). 

Similarly, we compute the mean FFCO2 flux (𝐹E99:;+, the red lines in Figure S3.3h-j) 

along each back trajectory by sampling grids of the Emissions Database for Global 
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Atmospheric Research version v5.0 (EDGARv50, Crippa et al. (2020)). For each back 

trajectory, which start off of every 1 second aircraft locations, we compute the 

enhanced signals of CO2 for two scenarios (∆𝐹E99:;+ and ∆𝐹E
99:;+,=>>)  by subtracting 

background values determined from the linear fitting method (red dotted lines and 

black dotted lines in Figure S3.3h-j). Lastly, the enhancement signals of urban CO2 

plume for the two scenarios are computed by integrating the enhanced CO2 flux across 

the aircraft flight leg ( ∆𝐹123456278
99:;+ = ∑∆𝐹E99:;+	 	𝑎𝑛𝑑	∆𝐹123456278

99:;+,=>> =

∑∆𝐹E
99:;+,=>>	). We consider the aircraft transect, which show the absolute relative 

difference between  ∆𝐹123456278
99:;+,=>>  and ∆𝐹123456278

99:;+  greater than 20%, as heavily 

affected by the active biosphere and exclude in the mass flux calculation. Table S3.1 

show our estimates of the ∆𝐹123456278
99:;+,=>>  and the ∆𝐹123456278

99:;+  for total 14 research 

flights used in this study. 

3.5.2 The uncertainties for the bottom-up estimates of the emissions of CO2 and CO 

from the Baltimore, MD-Washington, D.C. area 

For the EDGARv50 emissions of CO2 (the first bar in Figure 3.4a), we assume 

an 1σ uncertainty of 5.7%, determined from the total national uncertainty in Janssens-

Maenhout et al. (2017). For the EDGARv50 emissions of CO (the first bar in Figure 

3.4b), we assume an 1σ uncertainty of 30%, estimated from the total national 

uncertainty in Crippa et al. (2018). For the state of Maryland inventory emissions of 

CO2 (the second bar in Figure 3.4a), we propagate uncertainties from the following two 

sources: 1) an uncertainty of 7% determined for the state of Maryland inventory in Ahn 

et al. (2020); 2) a standard deviation of population in aircraft footprint area, which are 
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used to scale the state-wide total emissions into our aircraft footprint. For the National 

Emissions Inventory (NEI) 2017 (the second bar in Figure 3.4b), we use a standard 

deviation of the following three terms as 1σ uncertainty of the emissions of CO 

estimated for our aircraft footprint: 1) the CO emissions calculated as the sum of 9 

counties and Washington, D.C., as described in section 3.3.3; 2) the CO emissions 

calculated by scaling up the total emissions from Washington, D.C. using the ratio of 

populations (i.e., population_aircraft / population_D.C = 11.4); 3) the CO emissions 

calculated by scaling up the total emissions from the state of Maryland using the ratio 

of populations  (i.e., population_aircraft / population_D.C = 1.27). 
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Figure S3.1. Aircraft footprint area for each of the 14 research flights used to compute 
the emission rate of CO2 and CO over the Baltimore, MD-Washington, D.C. area (see 
Table 3.1). The grey shaded area represents the aircraft footprint area determined using 
HYSPLIT back trajectory ran with HRRR meteorology. The footprint areas determined 
from each of the downwind flight legs are overlapped (Each flight conducted 2-4 
downwind flight legs). The black rectangular box represents the geographical domain 
that Ahn et al. (2020) used to compute the emission rate of CO2 for February 2015 
(=17,904 km2). 
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Figure S3.2. The red lines indicate mole fractions of CO2 measured downwind of the 
Baltimore, MD-Washington, D.C. area for the three mass balance flights (a-c). The 
black solid lines indicate background CO2 used to estimate the emission rate of CO2 
([Cbg] in Equation 3.1); The black dotted lines indicate the ±1σ uncertainty range of 
background CO2. The vertical dotted lines indicate the horizontal boundaries of flight 
segments used to determine the values of background CO2 with the least square linear 
regression fits. 
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Figure S3.3. (a-c) The first-row panels show the gridded fossil-fuel CO2 (FFCO2) flux 
from the EDGARv50. The aircraft tracks are shown as blue lines. Colored area 
represents the spatial footprint area of the airmass. (d-f) The second-row panels show 
the gridded gross primary productivity (GPP) determined from the TROPOMI-SIF 
retrieval data (Turner et al., 2020). (h-j) The third-row panels show spatial variabilities 
of FFCO2 (red) and GPP (green) across the aircraft footprint area. The ordinate of the 
plot is the values of FFCO2 or GPP averaged for the grid cells sampled along with each 
back trajectory. The abscissa is the starting location of back trajectory (i.e., distance 
from the middle of downwind flight leg). The red dotted lines indicate background of 
FFCO2 (i.e., a least square linear fit to values in edges). The integral value of FFCO2 
enhancements (i.e., area between red solid line and red dotted line) is shown at the 
bottom of each panel. (k-m) The fourth-row panels show spatial variabilities of the sum 
of FFCO2 and GPP (black) across the aircraft footprint area. The black dotted lines 
indicate background of FFCO2+GPP determined using the edge fitting method. The 
left-column panels show the 19 February flight, the middle-column panels show the 14 
April flight, and the right-column panels show the 7 May 2020 flight.  
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Table S3.1. The enhancement signals of urban CO2 plumes estimated for 14 research 
flights in the following two scenarios: 1) only FFCO2 emissions exist in the Balt-Wash 
area (∆𝑆123456278

99:;+ ); 2) both FFCO2 emissions and biospheric CO2 uptake exist in the 
Balt-Wash area (∆𝑆123456278

99:;+,=>> ).  

Date Flight leg ∆𝑆123456278
99:;+  ∆𝑆123456278

99:;+<=>> Absolute  
Relative Diff [%] 

02/08/2020 UMD-RF1 (a) 3,152 3,074 2.5 
 UMD-RF1 (b) 3,602 3,361 6.7 
 UMD-RF1 (c) 2,533 2,262 10.7 
 UMD-RF1 (d) 3,189 3,293 3.3 

02/14/2020 UMD-RF3 (a) 6,827 6,895 1.0 
 UMD-RF3 (b) 5,107 5,266 3.1 
 UMD-RF3 (c) 4,791 4,778 0.3 

02/19/2020 UMD-RF5 (a) 4,409 4,396 0.3 
 UMD-RF5 (b) 4,338 4,376 0.9 
 UMD-RF5 (c) 6,216 6,207 0.1 

02/21/2020 UMD-RF6 (a) 4,371 4,609 5.5 
 UMD-RF6 (b) 2,672 2,688 0.6 
 UMD-RF6 (c) 7,123 7,983 12.1 

04/16/2020 UMD-RF7 (a) 5,120 4,883 4.6 
 UMD-RF7 (b) 4,736 5,226 10.3 

04/19/2020 UMD-RF8 (a) 2,277 2,066 9.3 
 UMD-RF8 (b) 2,116 2,492 17.7 

04/20/2020 UMD-RF9 (a) 2,466 3,542 43.6 
 UMD-RF9 (b) 2,443 2,843 16.4 
 UMD-RF9 (c) 2,674 2,978 11.3 

04/22/2020 UMD-RF10 (a) 4,849 5,805 19.7 
 UMD-RF10 (b) 2,746 3,998 45.6 

05/07/2020 UMD-RF13 (a) 4,558 3,829 16.0 
 UMD-RF13 (b) 3,983 3,963 0.5 
 NOAA-RF12 (a) 3,243 4,602 41.9 
 NOAA-RF12 (b) 3,700 5,264 42.3 
 NOAA-RF12 (c) 4,169 5,321 27.6 

05/10/2020 UMD-RF14 (a) 2,635 2,221 15.7 
 UMD-RF14 (b) 1,308 1,511 15.5 
 UMD-RF14 (c) 1,601 2,481 54.9 
 UMD-RF14 (d) 2,550 2,587 1.4 

05/12/2020 NOAA-RF14 (a) 3,974 4,684 17.9 
 NOAA-RF14 (b) 4,097 5,178 26.4 
 NOAA-RF14 (c) 4,007 4,742 18.3 

05/13/2020 NOAA-RF15 (a) 3,327 4,766 43.2 
 NOAA-RF15 (b) 4,033 4,159 3.1 

05/14/2020 UMD-RF16 (a) 3,340 3,947 18.2 
 UMD-RF16 (b) 2,677 3,538 32.2 
 UMD-RF16 (c) 3,368 4,375 29.9 
 UMD-RF16 (d) 3,994 6,097 52.7 
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Table S3.2. The percentage changes in the emissions of CO2 and CO from each of the 
four major source sectors (∆𝐴!59?$

D  of Equation 3.3) and the activity metric data used 
to determine the percentage changes in the emissions. 
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Chapter 4: Reduced Electricity Generation and Concomitant 

Emissions of CO2 and NOx in the United States during the 

COVID-19 Pandemic: Separating the Impact of COVID-19 

from the Weather and Fuel-mix changes 

 

4.1 Introduction 

The United States (U.S.) power sector provides services that include generation, 

transmission, and distribution of electricity to customers in residential, commercial, 

and industrial sectors. In 2019, the U.S. power sector generated 4,127 billion kWh of 

electricity (EIA, 2020c). Combustion of natural gas was the largest source accounting 

for 38% of the total generation, followed by coal (23%), nuclear (20%), renewables 

(18%), and petroleum/other (1%). Electricity generation from combustion of fossil 

fuels produces air pollutants detrimental to climate and air quality, such as carbon 

dioxide (CO2), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter. In 

2019, the emission of CO2 from the U.S. electricity generation sector was 1,618 million 

metric tons (MTCO2), or 31% of the U.S. total energy-related emission of CO2 (EIA, 

2020g). The emission of NOx from the electricity generation sector was 904 thousand 

metric tons in 2019, or 11% of the national total reported emission of NOx (EPA, 

2020b). 

In the past decade, the U.S. power sector has seen trends of increasing use of 

natural gas and renewables and decreasing use of coal in fuel-mix profiles, driven 
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mainly by economic considerations (Fell & Kaffine, 2018; IEA, 2019). In 2010, the 

U.S. total electricity generation was 4,125 billion kWh, only 0.05% lower than the 

generation in 2019. However, the fuel composition in 2010 was significantly different 

from that in 2019 (detailed above). In 2010, coal was the largest fuel source (45%), 

followed by natural gas (23%), nuclear (20%), renewables (10%), and petroleum and 

other sources (1%) (EIA, 2020c). As a benefit of this fuel transition, significant 

improvement in the emission intensities of CO2 and NOx of the U.S. power sector have 

been reported (de Gouw et al., 2014; Lu et al., 2012; Schivley et al., 2018). 

During the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-

2 or COVID-19) global pandemic period in 2020, human activities around the globe 

were significantly reduced (WHO, 2020). As a result, reduction in emissions of CO2  

(Liu et al., 2020; Le Quéré et al., 2020; Alexander J Turner et al., 2020) and NOx 

(Goldberg et al., 2020; Keller et al., 2020; Zhang et al., 2020) were reported for many 

countries. In the U.S., various types of social activity regulations and stay-at-home 

orders were issued at Federal, State, and Local levels starting in March 2020 (NGA, 

2020).  Several studies have assessed impacts of COVID-19 on the U.S. power sector 

using various approaches. Liu et al. (2020) reported a 7.6 % reduction in the emission 

of CO2 from the U.S. power sector during the first half of 2020, using electricity 

generation in 2019 as a baseline for their analysis. The U.S. Energy Information 

Administration (EIA) published reports that show significant disruptions in electricity 

consumption pattern over the Midcontinent Independent System Operator (MISO) and 

the New York Independent System Operator (NYISO), after accounting for 

temperature changes (EIA, 2020b, 2020a). According to these EIA reports, weekday 
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electricity demand over MISO decreased by 9% - 13%, and weekday demand over 

NYISO decreased by 11% - 14% from the expected levels during late March to April 

2020.   

The objective of this study is to assess the impact of COVID-19 on U.S 

electricity generation and the emissions of CO2 and NOx due to this sector, from 

January to December 2020, by separating out the impacts of weather and long-term 

trends of fuel-mix transition. In section 4.2, a multivariate adaptive regression splines 

(MARS) model is presented and used to estimate daily electricity generation for major 

interconnection regions as a function of various indicators such as outdoor weather, 

day of week, and holidays. In section 4.3, our estimates of reductions in electricity 

generation due to COVID-19 are presented. In section 4.4, the impacts of COVID-19 

on power sector emissions of NOx and CO2 are presented, in relation to recent trends 

in fuel-mix transition in the U.S. power sector. 

4.2 Electricity Generation and Outdoor Temperature 

The U.S. power system comprises three major grids: Western, Eastern, and 

Texas Interconnections. Within each interconnection, regional balancing authorities 

manage electricity supply to match demand, while the three interconnections operate 

independently with limited exchange of electricity (de Chalendar et al., 2019).  In this 

study, data for electricity generation as well as emissions of CO2 and NOx are obtained 

from the U.S. Environmental Protection Agency Air Markets Program Data (EPA 

AMPD) and the U.S. Energy Information Administration (EIA) (EIA, 2020e; EPA, 

2020a). To account for variability in weather, heating degree days (HDD, base 
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temperature 65°F) and cooling degree days (CDD, base temperature 65°F) data are 

obtained from the National Oceanic and Atmospheric Administration (NOAA) Climate 

Prediction Center (NOAA CPC, 2020). To represent the Western Interconnection, the 

power sector and HDD/CDD data are aggregated for the following states: Washington, 

Oregon, Idaho, California, Nevada, Utah, Arizona, Colorado, New Mexico, Montana, 

Wyoming (hereafter ‘West’, brown area in Figure 4.1g). Similar data for all other states 

in the Contiguous U.S. (CONUS) are aggregated to represent the Eastern and Texas 

Interconnections (hereafter ‘East & Texas’, purple area in Figure 4.1g). For the 

aggregation of state-level HDD/CDD data, CDD values are weighted by state 

populations and HDD values are weighted by the number of state-wide electricity 

heating households. Section 4.6.1 describes the aggregation processes of the power 

sector and HDD/CDD data. 
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Figure 4.1. Electricity generation and outdoor temperature. Left panels are for the West 
(A, C, E), and right panels are for the East & Texas (B, D, F). (A, B) Time series of 
daily electricity generation from four energy sources: Coal, natural gas (NGAS), 
nuclear (NCLR), and renewables (RNEW) (Source: EPA, EIA). The total generation is 
shown as a black line (ALL). (C, D) Heating degree days (HDD, base temperature 65°F) 
and cooling degree days (CDD, base temperature 65°F) averaged for 3-days (Source: 
NOAA CPC). (E, F) Scatter plots of electricity generation as a function of 3-day 
running mean of HDD and CDD for 2015 to 2019. Vertical and horizontal gray lines 
indicate knot (cut point) values determined for a multivariate adaptive regression spline 
model (MARS-ELEC, Equation 4.1 and Equation 4.2). (G) The geographic regions of 
the West (brown) and the East & Texas (purple). Pie charts show the electricity fuel-
mix composition of each region for 2019. 

Figures 4.1a and 4.1b show daily electricity generation for the West and East & 

Texas regions, from January 2015 to December 2020. Electricity generation in both 

regions shows a seasonal cycle, peaking in summer and winter. The heating degree 
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days (HDD) and cooling degree days (CDD), proxies of energy demand for spatial 

heating and cooling, are used for to account for variations in electricity generation due 

to weather (Beheshti et al., 2019; Chang et al., 2016). To account for the temporal lead 

and/or lag in the electricity demand in response to varying outdoor temperature, three-

day running averages are applied to the HDD and CDD values. Figures 4.1c and 4.1d 

show three-day running means of HDD and CDD, which also exhibit seasonal cycles.  

Figures 4.1e and 4.1f show the variation of electricity generation as a function of HDD 

and CDD for the West and East & Texas regions, respectively, from January 2015 to 

December 2019. Scatter plots of electricity generation versus each of HDD and CDD, 

individually, are shown in Figure S4.1.  

Several studies have shown that energy demand exhibits nonlinear relations 

with HDD and CDD: i.e., a response of energy demand (i.e. air conditioning) per degree 

increase in CDD is relatively higher at the temperature of 85°F (29°C) compared to a 

response at the temperature of 65°F (18°C) (Almuhtady et al., 2019; Giannakopoulos 

& Psiloglou, 2006; Harvey, 2020). Multivariate adaptive regression splines (MARS) is 

a numerical method used to investigate non-linear relationships in multi-dimensional 

data (Friedman, 1991; Friedman & Roosen, 1995). For MARS, a set of piecewise linear 

basis functions is used to model nonlinear relationships between a response variable 

and predictors.  In this study, MARS is adopted to estimate daily electricity generation 

as a function of HDD, CDD, and an indicator for weekends and holidays. Regression 

coefficients are determined from the training data within the period of January 2015 to 

December 2019 (1826 days). The first two months of 2020 (i.e., prior to the COVID-

19 outbreak) are excluded from the training data, as this period can be used for model 
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evaluation (Figure S2). Further description of the model is given in section 4.6.2. One 

MARS models is developed for the East & Texas (MARS-ELECE&T, Equation 4.1) and 

a second for the West (MARS-ELECWEST, Equation 4.2). MARS-ELEC consists a set 

of linear basis functions ([±(𝑥 − 𝑐)]<), a type of day variable (Di), and the intercept as 

following:  

𝐸2@8&, = 	23019.4 ∙ 8𝐻𝐷𝐷@8&, − 2.44149<B + 98905.1 ∙ 8𝐻𝐷𝐷@
8&, − 9.37323<

B
+ 255143 ∙

8𝐶𝐷𝐷@8&, − 3.27758<B − 254489 ∙ 83.27758 − 𝐶𝐷𝐷@
8&,<

B
− 610111 ∙ 𝐷@ + 8,013,300 + 𝜀@  (4.1) 

 

𝐸2@C*;. = 			15484.3 ∙ [𝐻𝐷𝐷@C*;. − 1.41964]B + 34468.5 ∙ [1.41964 − 𝐻𝐷𝐷@C*;.]B + 20524 ∙

[11.5554 − 𝐻𝐷𝐷@C*;.]B + 44397.7 ∙ [𝐶𝐷𝐷@C*;. − 0.0447815]B + 606041 ∙ [0.0447815 −

𝐶𝐷𝐷@C*;.]B − 107065 ∙ 𝐷@ + 1,590,820 + 𝜀@             (4.2) 

                                                                  

𝑤ℎ𝑒𝑟𝑒	[𝑥 − 𝑐]B = F
𝑥 − 𝑐, 𝑖𝑓	𝑥 ≥ 𝑐
0,									𝑖𝑓	𝑥 < 𝑐 			𝑎𝑛𝑑			[𝑐 − 𝑥]B = F

𝑐 − 𝑥, 𝑖𝑓	𝑥 < 𝑐
0,									𝑖𝑓	𝑥 ≥ 𝑐 	   

  

  where i represents date and E&T indicates the East & Texas. Variable 𝐸K is a model 

estimate of total electricity generation for each region, 𝐻𝐷𝐷	and 𝐶𝐷𝐷  are heating 

degree days and cooling degree days averaged in three-day running windows. The 

values of 𝑐 are knots (cut point) of the basis function ([±(𝑥 − 𝑐)]<), which partition 

the data into disjoint regions (Equation 4.2). Variable 𝐷E is 0 for regular weekdays and 

1 for weekends, federal holidays, and four additional days (the last day of year, the day 

after Thanksgiving, and the day before and after Christmas). Variable 𝜀E is the error 

component. The two standard deviations (2σ) of residuals for the period of January 

2015 to December 2019, shown in Figure S2, are determined as the uncertainty range 

of the model estimate during 2020 (orange area in Figure 2a-c). The generalized R2 of 
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the model estimates of electricity generation versus reported values is 0.95 for MARS-

ELECE&T and 0.91 for MARS-ELECWEST for the training set data (January 2015 – 

December 2019, Figure S4.2b and S4.2c). 

 

4.3 Impact of COVID-19 on Electricity Generation in the U.S. Power Sector 

We use MARS-ELECE&T and MARS-ELECWEST (Equation 4.1 and 4.2) to 

estimate the business-as-usual (BAU, i.e., No COVID-19 outbreak) electricity 

generation for the East & Texas and the West. In Figures 4.2b and 4.2c, the orange 

lines show our estimate of the BAU electricity generation from January to December 

2020. For the first two months of 2020, prior to the major outbreak of COVID-19 in 

the CONUS, the BAU estimate of electricity generation shows excellent agreement 

with the actual generation reported by EPA (combustion-based units) and the EIA 

(nuclear and renewable units), with the mean percentage error (MPE) of 0.1% for the 

East & Texas and 0.7% for the West. The MARS-ELEC performs well at reproducing 

patterns of higher generation for colder days (higher HDD) and lower generation on 

weekends and holidays.  On 19 March 2020 the state of California issued its first state-

wide stay-at-home order, and total of 44 states in CONUS and the District of Columbia 

were under partial or full lockdown by 7 April 2020 (NGA, 2020). The impact of 

COVID-19 on electricity generation becomes apparent around mid-March, as daily 

generation reported by EPA and EIA show decreased values compared to the BAU 

values. For the East & Texas, the weekly reduction in generation peaked at 9 ± 2 % 

(5.0 ± 1.2 billion kWh) during the third calendar week of April (04/13 – 04/19). For 

the West, the weekly reduction peaked at 15 ± 3 % (1.9 ± 0.3 billion kWh) during the 



 

121 
 

second calendar week of April (04/06 – 04/12) (Figures 4.2e and 4.2f). For the entire 

CONUS, the total electricity generation during April 2020 was 258.7 ± 0.1 billion kWh, 

which is 9 ± 1 % lower than our BAU estimate (Figure 4.2d). This value is also the 

lowest April level in the 20 years for which EIA records are available (1991-2020). In 

mid-April, the reduction in electricity generation due to COVID-19 begin to mitigate 

for both regions. The West showed a faster return to the BAU level than the East & 

Texas. In August 2020, a modest resurgence of reduced generation is seen in the West 

(Figure 4.2f), while electricity generation remained at the BAU level in the East & 

Texas (Figure 4.2e). 

 

Figure 4.2.  Impact of COVID-19 on electricity generation. The left panels are for the 
CONUS (A, D), the middle panels are for East & Texas (B, E), and the right panels are 
for West (C, F). Upper panels show daily electricity generation in 2020 (A, B, C). The 
black lines indicate actual generation reported by EPA (combustion-based units) and 
EIA (nuclear and renewables units). The orange lines indicate our BAU estimate of 
electricity generation, found as a function of outdoor temperature and type of day 
indicator (MARS-ELEC, Equations 4.1 and 4.2). Orange shaded areas are the 
uncertainty range of BAU generation, determined as the 2σ of model residuals for the 
five-year training dataset (see Materials and Methods). For the lower panels, the black 
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lines show the percentage reduction of actual generation relative to the BAU (D, E, F), 
and gray areas are 2σ uncertainty range. Positive numbers reflect reduced generation. 
Green diamonds and error bars show monthly mean reductions in electricity generation 
and the 2σ uncertainty, respectively. 

4.4 Impact of COVID-19 on Emissions of CO2 and NOx from the U.S. Power Sector 

We now focus on quantification of reductions in emissions of CO2 and NOx due 

to COVID-19. The emission of CO2 and NOx varies with the fuel-mix composition of 

power units affected by COVID-19. The unit commitment optimization in the 

generation of electricity (i.e., matching demand at minimum cost) is a complex process 

governed by generation costs, technical constraints on unit operations, electrical grid 

transmissions, and financial and regulatory conditions (van Ackooij et al., 2018; Siler-

Evans et al., 2012; Takriti et al., 1996).  The U.S. electricity network consists of 

traditionally regulated markets (Northwest, Southwest, and Southeast) and competitive 

wholesale electricity markets (Northeast, Midwest, Texas, and California) (FERC, 

2020). For traditionally regulated markets, wholesale bilateral trading of electricity is 

common during times of need (de Chalendar et al., 2019). For competitive markets, 

lower marginal cost units (solar, wind, hydro, geothermal, nuclear) receive priority in 

dispatch compared to higher marginal cost units (coal and natural gas), until demand is 

met (Borenstein & Bushnell, 2015). 

In this study, decline in electricity generation due to COVID-19 (Figure 4.2) is 

attributed to changes in the operation of coal-fired and natural gas-fired units. The 

business-as-usual (BAU) emissions of CO2 from NOx from power units in the East & 

Texas are estimated as following:  

𝐶𝑂D,F<G	H
8&, 		= 	𝐶𝑂DH

8&, + %∆𝐸?-/0H
8&, ∗

247,9(*+:
1&'

89(*+:
1&' ( + %∆𝐸I/;H

8&, ∗
247,<*4:

1&'

8<*4:
1&' (      (4.3) 
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𝑁𝑂J,F<G	H
8&, 		= 	𝑁𝑂JH

8&, + %∆𝐸?-/0H
8&, ∗

74=,9(*+:
1&'

89(*+:
1&' ( + %∆𝐸I/;H

8&, ∗
74=,<*4:

1&'

8<*4:
1&' (    (4.4) 

 where m is a month of 2020 and E&T indicates the East & Texas. Analogs of Equation 

4.3 and Equation 4.4 are also used to estimate BAU emissions of CO2 and NOx from 

power units in the West. Variables 𝐶𝑂+F
G&@ and 𝑁𝑂!F

G&@ are the monthly emissions of 

CO2 and NOx reported by EPA Air Markets Program Data (AMPD); Variables 

𝐸IA23F
G&@ and 𝐸%27F

G&@ are monthly electricity generation from coal-fired and gas-fired 

units reported by EPA AMPD; variables ∆𝐸IA23F
G&@ and ∆𝐸%27F

G&@ are the reduction in 

the electricity generation due to COVID-19 for coal-fired units and gas-fired units, 

respectively. To determine variables ∆𝐸IA23F
G&@ and ∆𝐸%27F

G&@, daily operational status 

of power units listed in the EPA AMPD are analyzed from 1 January to 12 August 2020 

(225 days, Figure S4.3). This EPA AMPD data lists 400 coal-fired units and 2,036 gas-

fired units in the East & Texas, and lists 67 coal-fired units and 510 gas-fired units for 

the West region.  This span of 225 days is divided into three time-bins, each with 75 

days (Period A: January 1–March 15, B: March 16–May 29, C: May 30–August 12, 

2020). Then, a subset of power units which pass the following three conditions are 

selected as a proxy of power units affected by COVID-19 (hereafter CV19 units): 1) 

units that operated more than a day for both period A and period C (i.e., before and 

after the COVID-19 lockdown); 2) units that were shut-off for the entire period B (in 

the midst of COVID-19 lockdown); 3) units that operated more than a day for each of 

the three 75 days period for 2019 (January 1 – March 15, March 16 – May 29, May 30 

– August 12, 2019). Of the selected CV19 units, the mean and two standard deviation 

of the percentage compositions in electricity generation from coal-fired versus gas-



 

124 
 

fired CV19 units are computed for the period A and C (i.e., 𝐸IA23:*JK/(𝐸IA23:*JK + 𝐸%27:*JK)).  

For the East & Texas, the computed mean and the two standard deviation are 58 ± 15 

% (coal) and 42 ± 15% (gas), and these values are determined as the fuel composition 

of reduced electricity generation: ∆𝐸IA23F
G&@ = (𝐸1-LF

G&@ − 𝐸FG&@) ∗ 0.58  and 

∆𝐸%27F
G&@ = (𝐸1-LF

G&@ − 𝐸FG&@) ∗ 0.42. For the West region, the fuel compositions are 

determined as 54 ± 25 % (coal) and 46 ± 25 % (gas). The 2σ uncertainty range of 

business-as-usual emissions of CO2 and NOx (orange areas in Figure 4.3) are 

determined by propagating uncertainties associated with each term in Equation 4.3 and 

Equation 4.4, as detailed in section 4.6.3. 

Figure 4.3 shows monthly electricity generation over the CONUS and 

concomitant emissions of CO2 and NOx from January to December 2020. For the first 

two months of 2020, BAU estimates of emissions of CO2 and NOx (the orange lines in 

Figure 4.3) show good agreement with reported emissions (the black lines in Figure 

4.3), having a mean percentage error (MPE) of 0.4% for CO2 and 0.5% for NOx. From 

March to June 2020, emissions of CO2 and NOx are significantly less than the BAU 

estimate, with the reductions peaking in April 2020. For the CONUS in April 2020, our 

estimate of the decline in the emission of CO2 due to COVID-19 is 18.3 ± 3.8 MTCO2 

(18 ± 4%), whereas the decline in the emission of NOx due to COVID-19 is 10.5 ± 2.4 

thousand metric tons (22 ± 5%).  Table S4.1 summarizes the impacts of COVID-19 on 

electricity generation and concomitant emissions of CO2 and NOx for CONUS, East & 

Texas, and West from March to December 2020. 
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Figure 4.3. Impact of COVID-19 on the U.S. power sector. The monthly electricity 
generation (A, D), CO2 emissions (B, E), and NOx emissions (C, F) from power units 
in the CONUS. Upper panels show the monthly generation and emissions of CO2 and 
NOx in 2020 (A, B, C). Black lines indicate emissions reported by EPA. The orange 
lines indicate emissions estimated for the business-as-usual (BAU) scenario (i.e., 
without COVID-19 outbreak), using the MARS-ELEC and the analysis of power unit 
operation status (see Figure S4.3). The orange shaded area shows a 2σ uncertainty 
range. Blue dotted line and area indicate the mean and the standard deviation of each 
variable from 2015 to 2019. Lower panels show percentage reductions of the reported 
values relative to the BAU estimates (orange) and the past 5-year average values (blue) 
(D, E, F). Same formatted figures for the East & Texas and the West regions are shown 
in Figures S4.4 and S4.5. 

In recent years, the U.S. power sector has seen trends of increasing natural gas 

and renewables and decreasing coal in fuel-mix profiles (see section 4.1, Figure 4.1, 

and Figure S4.6). Figure 4.3 shows the improvements in the emission intensities of CO2 

and NOx achieved by the recent fuel transition in the U.S. power sector. The monthly 

emissions of NOx in 2020 (black line) are always lower compared to the monthly 

emissions averaged for the previous five years (2015-2019, the blue dotted line in 

Figure 4.3c), while electricity generation has not shown a notable decrease relative to 
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five years mean (the blue dotted line in Figure 4.3a).  As a whole for the CONUS, 

emission of NOx during April 2020 decreased by 27.6 thousand metric tons (42%) from 

the average emission of April 2015-2019. Such reduction is ~2.6 times greater than the 

reduction induced by COVID-19 (10.5 ± 2.4 thousand metric tons). Also, the emission 

of CO2 in April 2020 declined by 29.8 MTCO2 (26%) from the average emission of 

April 2015-2019; a reduction 1.6 times greater than the impact of COVID-19 on the 

same month. These results suggest that using uncorrected prior year emissions as a 

baseline will result in an overestimation of the impact of COVID-19, given the recent 

downward trends in the emissions of CO2 and NOx from the U.S. power sector. 

Liu et al. (2020) and Le Quéré et al. (2020) assessed the impact of COVID-19 

on sector-specific CO2 emissions (power, transport, industry, residential, etc.) across 

the globe in near-real time. Our study is more focused on a single sector (power) in a 

single country (the U.S.).  According to Liu et al. (2020), U.S. power sector emissions 

of CO2 declined by 66.3 MTCO2 during the first half of 2020. Our study suggests the 

decline is 43.2 ± 6.1 MTCO2 for the first six months of 2020. Two factors might 

contribute to the greater decline reported in Liu et al. (2020). First, Liu et al. (2020) 

used CO2 emission intensity for 2019 to calculate emissions for 2020. Our analysis 

shows significant improvements in the CO2 emission intensity for the U.S. power sector, 

even from 2019 to 2020 (Figure S4.6). Second, Liu et al. (2020) corrected power 

generation for temperature differences between 2019 and 2020. The temperature 

corrections are only applied to the countries that show good correlation between daily 

power generation and temperature (R2 > 0.5). Such temperature correction may have 

not been applied to the U.S. power sector data, as Supplementary Figure 1 in Liu et al. 
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(2020) shows a significant decline in electricity generation during January and 

February 2020, prior to major outbreak of COVID-19.  Le Quéré et al. (2020) reported 

that U.S. emission of CO2 declined by 207 (112 to 314) MTCO2 from January to April 

2020 for the following six sectors: power, industry, surface transport, public buildings 

and commerce, residential, and aviation. They calculated the U.S. power sector CO2 

emissions for 2020 by multiplying the emissions for 2019 to fractional changes in 

weather-corrected electricity demand for the same weeks between 2019 and 2020. This 

approach also does not account for the decline in emission intensity in the U.S. power 

sector. 

4.5 Conclusions 

In this study we estimate the impact of COVID-19 on electricity generation and 

concomitant emissions of CO2 and NOx for the CONUS, East & Texas (geographical 

proxy of the Eastern and the Texas Interconnections, purple area in Figure 4.1g), West 

(geographical proxy of the Western Interconnections, brown area in Figure 4.1g).  As 

a whole for the CONUS, we estimate that electricity generation in April 2020 decreased 

by 9 ± 1% (24.6 ± 2.6 billion kWh) as a direct result of COVID-19 restrictions, reaching 

the lowest April level in the past 20 years. Due to the reduced generation of electricity 

in April 2020, monthly emissions of CO2 from the power sector are estimated to have 

fallen by 18 ± 4% (18.3 ± 3.8 MTCO2).  The size of reduction in CO2 emission in April 

2020 is comparable to the total amount of fossil-fuel CO2 (FFCO2) emitted from the 

State of Pennsylvania during April 2019 (16.9 MTCO2), according to the Open-Source 

Data Inventory for Anthropogenic CO2 (ODIAC2020, Oda & Maksyutov (2020)).  
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Emissions of NOx from the power sector in April 2020 are estimated to have fallen by 

22 ± 5% (10.5 ± 2.4 thousand metric tons) due to COVID-19. 

We show that both outdoor temperature and the recent trend of fuel transitions 

in the U.S. power sector play significant roles in the emissions of CO2 and NOx. 

Improvements in emission intensities of CO2 and NOx for the U.S. power sector are 

shown in section 4.4 (Figure 4.3 and Figure S4.6). Power sector emission of NOx in 

February 2020 is 40% lower compared to the average emission of NOx for February 

2015-2019, while the electricity generation in February 2020 is 2% greater than the 

average generation for February 2015-2019. This result implies that using emissions 

from previous years as a baseline will introduce bias into the quantification of the 

impact of COVID-19 on the U.S. power sector emission.  

There are several limitations to our study. First, we analyzed the daily operation 

status of 3,013 coal-fired and gas-fired electricity generating units to attribute the 

observed reductions in electricity generation to specific fuel-sources. More detailed 

source attribution would require the use of dispatch and economic models, which could 

address complicated questions such as what would be the price of coal and natural gas 

if there had not been a global outbreak of COVID-19? Second, impacts of COVID-19 

on the U.S. power sector at finer scale (i.e., hourly load, sector-specific demand) are 

not considered. Third, our study analyzed the direct impact of COVID-19 (i.e., reduced 

electricity demand due to change in human activities), while indirect impacts of 

COVID-19, such as delay in construction, maintenance, retirement of power plants, are 

not considered. We hope the limitations mentioned above will be addressed in the 

future by studies conducted at finer spatial, temporal, and sectoral scales than 
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considered here. Despite these limitations, our study provides a reliable assessment of 

the direct impact of COVID-19 on electricity generation and concomitant emissions of 

CO2 and NOx, by accounting for both meteorology and the recent trend of fuel 

transitions.  

4.6 Supporting Information 

4.6.1 Input data processing: Electricity generation, HDD, and CDD  

Electricity generation data for combustion-based units (i.e., coal, gas, oil, etc.) 

and concomitant emissions of CO2 and NOx are obtained from the U.S. Environmental 

Protection Agency’s Air Markets Program Data (EPA AMPD) website using 

customized data queries (EPA, 2020a). Unit-level daily operation data under the Acid 

Rain Program (ARP), for the period of 1 January 2015 to 31 December 2020, are used. 

ARP consists of electric generating units (EGUs) which have nameplate capacity 

greater than 25 MW, with few occasional exceptions (i.e., some non-EGUs were 

required to report operation data during 2003-2008 and still report data due to state 

requirements). In 2018, EPA AMPD data covered ~96% of the fossil fuel electricity 

generation  in the U.S. (EPA, 2017).  Gross load in the EPA AMPD dataset are 

converted into net load using the table of conversion factors in page 16 of Electric 

Power Monthly, Appendix C, Technical notes (EIA, 2020d). For “Combustion turbine” 

units, net load are computed by multiplying a fixed ratio of 0.98 to gross load values. 

For other unit types (i.e., “Combined-cycle” and “boilers”), net load was computed by 

multiplying a fixed ratio of 0.97 to gross load. The “primary fuel” column of the EPA 

AMPD dataset is used to categorize the unit-level daily net load for each fuel source. 
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If a “primary fuel” list two fuels (i.e., coal and pipeline natural gas), the given net load 

value is apportioned to each fuel by comparing the NOx emission intensity of the given 

unit to the monthly average NOx emission intensities of units using each of the two 

fuels. 

Electricity generation data for non-combustion units (i.e., geothermal, 

hydroelectric conventional, nuclear, solar thermal & photovoltaic, and wind) are 

obtained from EIA power monthly (EIA, 2020e). State-level monthly net electricity 

generation data is temporally disaggregated into daily resolution using two methods.  

For the period of January 2019 to December 2020, the monthly generation by each fuel 

source is disaggregated into daily bins by multiplying daily temporal scaling factors 

from the Hourly Electric Grid Monitor dataset (EIA, 2020f). For the period of January 

2015 to December 2018, EIA Hourly Electric Grid Monitor data are not available. For 

this period, state-level monthly net generation by each fuel-type is divided by the 

number of days in a given month and are allocated into the middle days of months (i.e., 

the 15th day for 30-days month, the 16th day for 31-days month). Then, allocated daily 

generation are linearly interpolated to determine daily generation for the remaining 

days of the month. The monthly sum of interpolated daily generation is matched to the 

original monthly generation by adding the daily mean difference to each day. 

State-level daily heating degree days (HDD, base temperature 65°F) and 

cooling degree days (CDD, base temperature 65°F) data are obtained from National 

Oceanic and Atmospheric Administration Climate Prediction Center website (NOAA 

CPC, 2020). To account for the temporal lead and/or lag in electricity demand in 

response to varying weather, three-day running averages are applied to state-level daily 
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HDD and CDD values. Next, the HDD and CDD values for the Western 

Interconnection (West) as a whole are determined as the population-weighted average 

of HDD and CDD values for the following 11 states: Washington, Oregon, Idaho, 

California, Nevada, Utah, Arizona, Colorado, New Mexico, Montana, Wyoming. The 

HDD and CDD data for remaining 37 states in the CONUS plus the District of 

Columbia are aggregated, again using population weighting, to represent the Eastern 

and the Texas Interconnections (East & Texas). For these aggregations of state-level 

CDD data, CDD for each state is weighted by the ratio of state population to the 

regional total population (𝐶𝐷𝐷K/L,@C*;. 	= ∑ 𝐶𝐷𝐷K/L,@
M./.*,N ∗ 𝑃K/L,@

M./.*,NOO
NPO /𝑃K/L,@C*;.,   where P is the 

population). Annual state-level population data are obtained from U.S. Census Bureau 

website (Census, 2019).  For the aggregation of state-level HDD data, HDD for each 

state is weighted by the ratio of the state-wide electricity heating households to the 

regional total electricity heating households ( 𝐻𝐷𝐷K/L,@C*;. 	= ∑ 𝐻𝐷𝐷K/L,@
M./.*,N ∗ 𝑃𝐸K/L,@

M./.*,NOO
NPO /

𝑃𝐸K/L,@C*;.,  where PE is the number of electricity heating households). The number of 

households using electricity as the primary space heating fuel (PE) is obtained from the 

Table WF01 of the Short-Term Energy Outlook published by EIA on January 2021 

(EIA, 2020h). 

4.6.2 Multivariate Adaptive Regression Splines (MARS) 

The Multivariate Adaptive Regression Splines (MARS) is a nonparametric 

regression technique that implements piecewise linear basis functions for each 

regressor variable (Friedman & Roosen, 1995). Linear basis functions are presented in 

the form of [𝑥 − 𝑐]< or [𝑐 − 𝑥]< as follows:  
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	[𝑥 − 𝑐]< = Y𝑥 − 𝑐, 𝑖𝑓	𝑥 ≥ 𝑐
0,																𝑖𝑓	𝑥 < 𝑐 			𝑎𝑛𝑑			[𝑐 − 𝑥]< = Y𝑐 − 𝑥, 𝑖𝑓	𝑥 < 𝑐

0,																	𝑖𝑓	𝑥 ≥ 𝑐 

The use of numerous functions with unique break point values (knot, c) allows this 

piece-wise linear model to simulate highly nonlinear relationships. The python package 

“py-earth”, which implements Jerome Friedman’s MARS algorithm, is used to build 

our MARS regression models described by Equations 4.1 and 4.2 (Rudy et al., 2020). 

The forward pass and the pruning pass of the MARS algorithm determines a set of 

regression terms by minimizing the squared error of the training set and the generalized 

cross-validation (GCV) score. The GCV score is defined as 𝐺𝐶𝑉 = 𝑅𝑆𝑆/(𝑁(1 −

G,>
,
)+), where RSS is the residual sum of squares of the training data, ENP is the 

effective number of parameters, and N is the number of training response data points. 

A more detailed description of the “py-earth” package can be found in 

https://contrib.scikit-learn.org/py-earth/content.html. For both the West as well as the 

East & Texas regions, the daily total electricity generation for the period of 1 January 

2015 to 31 December 2019 is used as the training response variable (𝐸E, unit: MWh). 

The regional HDD, CDD, and the type of day indicator for the same period are used as 

training predictors (𝐻𝐷𝐷E , 𝐶𝐷𝐷E , 𝐷E ). The type of day variable (𝐷E ) is assigned a 

default value of 0, and is set to 1 for the following days: weekends, U.S. federal 

holidays (U.S. Office of Personnel Management, 2020), and four additional days: the 

day after Thanksgiving, the days before and after Christmas, and the last day of year). 

The maximum number of linear basis function terms is set to six to prevent overfitting 

and computational memory shortage (max_terms=6). 

4.6.3 The uncertainty of business-as-usual emissions of CO2 and NOx 
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The 2σ uncertainty range of business-as-usual emissions of CO2 and NOx 

( 𝑖. 𝑒. , 𝐶𝑂+,1-L	F
G&@ , 𝑁𝑂!,1-L	F

G&@ , orange areas in Figure 4.3) are determined by 

propagating uncertainties associated with each term in Equation 4.3 and Equation 4.4. 

The uncertainties of the reported emissions of CO2 and NOx (𝐶𝑂+F
G&@ and 𝑁𝑂!F

G&@) are 

determined by propagating the hourly Relative Accuracy Test Audit (RATA) 

uncertainty of 28% (2σ) assigned to each unit, as detailed in Ahn et al. (Ahn et al., 

2020). The 2σ uncertainty of the terms ∆𝐸IA23F
G&@  and ∆𝐸%27F

G&@  are determined by 

propagating uncertainties of the following components: 1) the two standard deviation 

of the MARS-ELEC residuals for the training dataset from January 2015 to December 

2019 (𝐸1-LF
G&@, Figure S4.2); 2) the ±2% accuracy in hourly electricity metering (𝐸FG&@) 

based on American National Standard for Electric meters (Nice, 2015), 3) the 2σ 

uncertainty for the mean fuel composition of electricity from CV19 units during the 

periods A and C (±15% for the East & Texas and ±25% for the West). 
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Figure S4.1. Scatter plots of daily net electricity generation versus HDD and CDD for 
the period of January 2015 to December 2019. Upper panels are for the East & Texas 
and the lower panels are for the West. Data for weekends & holidays are shown 
separately from weekdays to highlight the impact of type of day on electricity 
generation. Black ‘X’ symbols indicate net generation values reported by EPA and EIA 
(see Section 4.6.1). Orange ‘X’ symbols show the MARS-ELEC model estimate of net 
generation (Equations 4.1 and 4.2).  
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Figure S4.2. MARS-ELEC model performance evaluation for the CONUS (a, d), East 
& Texas (b, e), and the West (c, f). Upper panels show the scatter plot of the daily 
generation estimated by MARS-ELEC model versus the daily generation reported by 
EPA AMPD and EIA (see Section 4.6.1). In this study, one MARS-ELEC model is 
developed for the East & Texas region and another for the West (Equations 4.1 and 
4.2). For the CONUS region, daily generation estimated from the both MARS-ELEC 
models are summed. Grey diamonds indicate daily electricity generation for the period 
of January 2015 to December 2019 used as training dataset to build the MARS-ELEC 
models. Red diamonds indicate daily generation data from January to February 2020, 
which are excluded from the model training dataset and also occur prior to the major 
outbreak of COVID-19 in the U.S. The mean percentage error (MPE), the mean 
absolute percentage error (MAPE), and R-squared values (based on the correlation of 
modeled versus measured electricity generation) are shown for each upper panel.  
Lower panels show the residuals of the MARS-ELC estimate (i.e., modeled minus 
measured electricity generation) as a function of our modeled estimate of daily 
electricity generation. Dashed and dotted horizontal lines indicate one standard 
deviation and two standard deviation of the residuals for the model training data points 
(January 2015 – December 2019). 
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Figure S4.3. Operating status of coal-fired electricity generating units (a, c) and gas-
fired units (b, d) for the East & Texas (a, b) and the West (c, d) from 1 January 2020 to 
12 August 2020 (225 days). The 225 days are binned into 3 consecutive periods, each 
having 75 days (Period A, B, C along Y-axis). The abscissa of the plot shows the list 
of coal-fired and gas-fired units included in the EPA AMPD dataset for both regions. 
Grey colors indicate operating days and white colors indicate shut-off days (no 
electricity generated). Red vertical bars are shown above a subset of electricity 
generating units which were operating during period A and C but shut-off during period 
B, and thus selected as proxy for the units affected COVID-19 (CV19 units) (see 
Section 4.6.3 for more details). The total number of the CV19 units (red bars) are shown 
on the top of each panel. 
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Figure S4.4. Same as Figure 4.3, but for the East & Texas region. 
 
 

 
Figure S4.5. Same as Figure 4.3, but for the West region. 
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Figure S4.6. Emission intensities of CO2 (a) and NOx (b) for the U.S. electricity 
generation sector calculated from the EPA AMPD dataset. Monthly time series are 
shown for 2015 to 2020, with specific colors for each year (as indicated). Diamond 
symbol on the ordinate of both panels indicate the annual mean emission intensity.   
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Table 4.1. The impact of COVID-19 on the electricity generation and emissions of CO2 
and NOx. Our estimates of the impact of COVID-19 are shown for the CONUS, East 
& Texas, and West regions (see Figure 4.1g for the geographic area for each region) 
from March to December 2020. The upper parts of the table show the absolute 
differences of reported values compared to business-as-usual estimates. The lower 
parts show the relative differences. 
 

 ∆Generation [109 kWh] ∆CO2 [106 MT] ∆NOx [103 MT] 
 CONUS E&T WEST CONUS E&T WEST CONUS E&T WEST 

2020-03 −8.8 −5.3 −3.6 −6.5 −3.9 −2.6 −3.8 −2.3 −1.5 
2020-04 −24.6 −18.5 −6.1 −18.3 −13.8 −4.5 −10.5 −7.9 −2.6 
2020-05 −18.9 −17.6 −1.3 −14.1 −13.1 −0.9 −7.5 −6.9 −0.6 
2020-06 −6.8 −6.9 0.1 −5.1 −5.2 0.1 −2.6 −2.7 0.0 
2020-07 −2.8 −2.5 −0.3 −2.1 −1.9 −0.2 −1.1 −1.0 −0.1 
2020-08 1.3 2.4 −1.0 1.0 1.8 −0.8 0.4 0.9 −0.5 
2020-09 −1.9 0.3 −2.2 −1.4 0.2 −1.6 −0.8 0.1 −1.0 
2020-10 −2.5 −0.5 −2.0 −1.9 −0.4 −1.5 −1.1 −0.2 −0.9 
2020-11 2.5 3.5 −1.0 1.8 2.6 −0.7 0.9 1.4 −0.5 
2020-12 3.0 2.9 0.1 2.2 2.2 0.1 1.2 1.2 0.0 

Total −59.5 −42.1 −17.3 −44.4 −31.6 −12.8 −24.9 −17.3 −7.6 
 ∆Generation [%] ∆CO2 [%] ∆NOx [%] 
 CONUS E&T WEST CONUS E&T WEST CONUS E&T WEST 

2020-03 −3.0 −2.2 −6.2 −6.1 −4.5 −13.8 −7.5 −5.5 −16.1 
2020-04 −8.7 −8.1 −11.2 −18.0 −16.6 −24.7 −21.7 −20.2 −28.1 
2020-05 −6.2 −7.1 −2.2 −13.2 −14.1 −6.8 −15.3 −16.6 −7.7 
2020-06 −2.0 −2.4 0.1 −4.0 −4.5 0.4 −4.5 −5.2 0.4 
2020-07 −0.7 −0.8 −0.5 −1.3 −1.3 −1.1 −1.4 −1.4 −1.3 
2020-08 0.3 0.8 −1.5 0.6 1.3 −3.0 0.6 1.5 −3.7 
2020-09 −0.6 0.1 −3.6 −1.1 0.2 −7.0 −1.5 0.3 −8.4 
2020-10 −0.8 −0.2 −3.5 −1.6 −0.4 −6.8 −2.1 −0.5 −8.2 
2020-11 0.9 1.6 −1.9 1.8 3.1 −4.0 1.9 3.6 −4.7 
2020-12 0.9 1.1 0.1 1.8 2.0 0.3 2.0 2.3 0.3 

Total −1.8 −1.6 −2.9 −3.6 −3.0 −6.5 −4.3 −3.7 −7.6 
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Chapter 5:  Conclusions 
 

5.1 Summary 

In this dissertation, I quantified the emissions of CO2 and two other co-emitted 

air pollutants (i.e., CO and NOx) from the cities (i.e., the Baltimore, MD-Washington, 

D.C. area, Chapter 2 and 3) and the U.S. power sector (i.e., electricity generating units 

in the contiguous U.S., Chapter 4). As detailed further below, Chapter 2 has been 

published, Chapter 3 will be submitted once all of the co-authors have had a chance to 

provide comments, Chapter 4 will be submitted for publication soon after the defense 

of this dissertation. 

In Chapter 2, the emissions of CO2 from the Baltimore, MD-Washington, D.C. 

area (the Balt-Wash area) were investigated using aircraft data collected during 

February 2015. The accuracy, precision, and sensitivity of CO2 emissions estimates 

from the mass balance approach were assessed for both power plants and cities. Our 

estimates of CO2 emissions from two local power plants agreed well with their 

Continuous Emissions Monitoring Systems (CEMS) records. For the 16 power plant 

plumes captured by the aircraft, the mean percentage difference of CO2 emissions was 

−0.3%, with the aircraft estimates smaller than the CEMS records. For the Balt‐Wash 

area as a whole, the 1σ CO2 emission rate uncertainty for any individual aircraft‐based 

mass balance approach experiment was estimated to be ±38%. Treating the seven mass 

balance experiments conducted in nine days as an individual quantification of the Balt‐

Wash CO2 emissions, the estimated uncertainty was ±16% (standard error of the mean 
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at 95% CL). Our aircraft‐based estimate was compared to various bottom‐up fossil fuel 

CO2 (FFCO2) emission inventories. Based on the FLAGG‐MD aircraft observations, 

we estimate 1.9 ± 0.3 MtC of FFCO2 from the Balt- Wash area during February 2015. 

The mean estimate of FFCO2 from the four bottom‐up models was 2.2 ± 0.3 MtC, 

which was in agreement to our top-down estimate within the 1σ uncertainty range. 

Chapter 2 was published on 14 April 2020 in the Journal of Geophysical Research - 

Atmospheres (Ahn et al., 2020). 

In Chapter 3, the emissions of CO2 and CO from the Balt-Wash area during 

COVID-19 period were quantified using aircraft data collected during February-May 

2020. The aircraft-based mass balance approach, adopted and evaluated in Chapter 2, 

was used to quantify the reductions in the emissions of CO2 and CO during the COVID-

19 pandemic. Our mass balance estimates indicated that the emission rate of CO2 over 

the Balt-Wash area declined by 32% in April and by 29% in May 2020, relative to the 

February 2020 mean (i.e., prior to COVID-19 social lockdowns). Our analysis indicates 

the emission rate of CO declined by 37% in April and 30% in May, relative to the 

February 2020 mean. Our source attribution analysis determined that the onroad 

transportation sector to be the largest contributor to reduced emission rates in April 

2020. Next, we evaluated three bottom-up emission inventories (i.e., EDGAR, state of 

Maryland inventory, NEI), using our top-down estimates of the emissions of CO2 and 

CO. For February 2020, prior to wide-spread of COVID-19 in the U.S., we found that 

EDGARv50’s estimates of the CO2 emissions were 18% lower than our aircraft top-

down estimates, and that the state of Maryland bottom-up inventory estimated of the 

emission of CO2 was 13% lower than our estimate. For the EDGARv50, we identified 
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the onroad sector as the major source of the underestimation of the emission of CO2. 

For the state of Maryland inventory, we determined that the nonroad transportation 

sector is the major source of the underestimation of CO2 emission. For the emissions 

of CO, we found that EDGARv50’s estimates were 54% larger than our top-down 

estimates, and NEI’s estimates were 66% larger than our top-down estimates in 

February 2020 (i.e., prior to COVID-19 social measures in the U.S.). We identified the 

onroad transportation sector as the largest contributor to the overestimation of the 

emission of CO by EDGAR, and the nonroad transportation sector as the largest 

contributor to the overestimate for the CO emission provided by the NEI bottom-up 

inventory during February 2020, prior to COVID-19 outbreak in the U.S. The results 

of Chapter 3 are being prepared for journal submission, which will occur soon after the 

dissertation defense. 

In Chapter 4, the emissions of CO2 and NOx from the U.S. power sector during 

2020 were investigated using power plant operation data from EPA and EIA. The 

impact of COVID-19 on U.S. electricity generation and emissions of CO2 and NOx 

were assessed by quantifying impacts of weather, weekends and holidays, and recent 

trends in fuel mix. A multivariate adaptive regression splines (MARS) model was used 

to account for the impacts of outdoor temperature and type of day. The emission of 

NOx in April 2020 for power plants in the Contiguous U.S. (CONUS) was 42% (27.6 

thousand metric tons) lower than the average emission during April 2015-2019. 

However, we showed that using prior years as a baseline will overestimate the impact 

of COVID-19 on power plant emissions, given the recent downward trend in the 

emissions of CO2 and NOx from the U.S. power sector due to changes in fuel-mix. The 
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daily operational status of 3,013 power units was analyzed to account for the fuel-mix 

change (i.e., switching from coal to natural gas). For the CONUS, we estimated the 

direct impacts of COVID-19 in April 2020 to be declines of 9±1% (24.6±2.6 billion 

kWh) on electricity generation, 18±4% (18.3±3.8 MTCO2) on the emission of CO2, and 

22±5% (10.5±2.4 thousand metric tons) on the emission of NOx. The results of Chapter 

4 are being prepared for journal submission, which will occur soon after the dissertation 

defense. 

5.2 Recommendations for Future Research 

Throughout this body of work, considerable progress was made towards the 

quantification of the emissions of CO2, CO, and NOx from cities (Chapter 2, 3) and the 

U.S. power sector (Chapter 4). Even though this dissertation represents substantial 

progress, there nonetheless exist numerous opportunities to further extend these 

research topics. 

In Chapter 2, I showed that the emissions of CO2, computed using the aircraft-

based mass balance method, are most sensitive to the following three parameters: 1) 

variability of wind speed and wind direction; 2) planetary boundary layer (PBL) height; 

3) background mole fraction of CO2. The precision of the top-down CO2 emissions 

estimates can be significantly improved by conducting research flights when wind 

speed and wind direction are consistent throughout the day. Both the HYSPLIT run 

with the high-resolution meteorological model (i.e., HRRR) and the wind visualization 

website (i.e., https://earth.nullschool.net) are useful resources to assess wind conditions 

during the flight planning process. Regular calibrations of aircraft wind measurements, 
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using either the wind profiler or the modeled wind data, are recommended to ensure 

the accuracy the aircraft wind data (Ahn et al., 2020; Ren et al., 2019). As of 2021, 

three wind profiler sites exist in the Balt-Wash area (i.e., Horn Point on the Eastern 

Shore, the Howard University Beltsville site, and Piney Run in Western Maryland) and 

wind observation data from these sites are available upon request (MDE, 2021). 

The uncertainty associated with the PBL height was the second important 

parameter for the mass balance calculation of CO2 flux. The uncertainty in the PBL 

height estimate is often driven from the spatiotemporal variability of the PBL heights 

around the study domain. This uncertainty can be effectively reduced by conducting 

multiple vertical profiles during a research flight. Conducting the missed approach (i.e., 

sampling near-surface air masses) at least once during a flight is also recommended. 

Also, evaluating the aircraft-based PBL height estimate against independent platform 

estimates, such as Lidar remote sensing, can reduce the uncertainty in the top-down 

method. The Atmospheric Lidar Group at the University of Maryland, Baltimore 

County (UMBC) manages and provides the PBL height data measured by the 

Ceilometer network (Caicedo et al., 2017).  Sampling through the boundary layer close 

to this lidar stating would provide an important check on the inference of the height of 

the PBL based upon airborne measurements of chemical tracers. 

The uncertainty associated with the background mole fraction of CO2 was the 

third important parameter for the mass balance calculation. The accuracy of 

background CO2 determined using edge fitting method needs to be evaluated.  The 

mole fraction of CO2 measured upwind of the cities can be used to evaluate background 

CO2, by pairing upwind and downwind measurements using the transport model (Ahn 
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et al., 2020). For this upwind-to-background CO2 comparison, both upwind and 

downwind flight legs are recommended to be conducted during mid-afternoon hours 

so that the difference in PBL heights is at minimum. The simultaneous deployment of 

two aircraft would provide a great opportunity to better constrain background CO2, and 

hence reduced the uncertainty in top-down determination of CO2 flux. Also, we found 

that the edge fitting method could not be applied for some downwind flight legs, as 

distinctions between the urban plume and the rural background were not evident. To 

prevent such occurrences, extending downwind flight legs far from the urban center as 

much as resources allow is recommended, especially for cities such as the Balt-Wash 

area where the urban-to-rural gradient can be ambiguous. 

In Chapter 3, I compared the top-down emissions of CO2 and CO for February 

2020 to the top-down emissions for February 2015. Our top-down estimate of the CO2 

emission rate for February 2020 was 13% lower than the top-down estimate for 

February 2015. Also, our top-down estimate of the CO emission rate for February 2020 

was 7% lower than the top-down estimate for February 2015 (Ren et al., 2018). Even 

though these comparisons showed that both the emissions of CO2 and CO from the 

Balt-Wash area decreased between 2015 and 2020, a detailed trend analysis for urban 

emissions was not conducted. The atmospheric chemistry group at the University of 

Maryland has conducted more than 70 aircraft research flights over the Balt-Wash area 

from 2015 to 2020. These aircraft measurements, spanning 6 years, can be analyzed 

using the top-down method presented in this dissertation to quantify trends of the urban 

emissions. Such top-down estimates of trends of the emissions of CO2 and CO can be 

compared to the trends described in the followings: 1) the state of Maryland inventory 
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(i.e., the state inventory has been published every three year since 2011); 2) The 

Community Multiscale Air Quality Modeling (CMAC) output for CO over the Balt-

Wash area. The research capability to estimate trends of urban GHG emissions using 

atmospheric measurements (i.e., the top-down method) will benefit policy makers and 

stakeholders by providing an independent means to: 1) evaluate the effectiveness of 

emission reduction policies from various sectors; 2) track progress toward GHG 

reduction targets for the state of Maryland, which are often set in relative terms. 

Throughout this body of work, atmospheric measurement data obtained from 

aircraft research flights were extensively used to quantify emissions of CO2 from the 

Balt-Wash area. Although the aircraft research platform was designed to study urban 

emissions, several limitations exist. One of the major challenges in analyzing aircraft 

data and relating to policy is the temporal intermittency of the flights, because 

emissions vary within a day (i.e., day vs night), a week (weekday vs weekends), and a 

year (winter vs summer). In this dissertation, diurnal and weekly temporal profiles of 

fossil fuel CO2 driven from bottom-up models were used to relate our aircraft-based 

top-down estimate to bottom-up inventories. For future work, atmospheric 

measurements data obtained from other platforms (i.e., low-cost sensors, tall towers, or 

satellite remote sensing) could be synthesized with aircraft data to overcome data 

intermittency. Pisso et al. (2019) quantified the emissions of CO2 from the Tokyo area 

for winters from 2005 to 2009 using the Bayesian inversion technique. In Pisso et al. 

(2019), in-situ measurements of CO2 from the following three platforms were 

collectively used as an input to their inversion model: 1) the Comprehensive 

Observation Network for TRace gases by AIrLiner (CONTRAIL) aircraft flights; 2) 
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a tall tower with inlets located at 25, 100, and 200 m; 3) two surface sites hosted by the 

Japan Meteorological Agency. Also, Cusworth et al. (2020) combined atmospheric 

measurements of methane from the following three platforms over the Los Angeles 

basin: surface in-situ measurements sites, mountaintop retrievals from the CLARS-FTS 

instrument, and the space-based TROPOMI methane retrievals. By combining 

measurements of methane from multiple observing platforms into one framework, 

enhanced spatiotemporal sensitivity of the resulting emission of methane was achieved. 

The Balt-Wash area is the urban test bed site designated by NIST to develop 

scientific methods for quantifying GHG emissions (Whetstone, 2018). As of 2021, a 

total of 12 ground towers in the Balt-Wash area are in operation, each measuring 

atmospheric mole fractions of CO2 and CH4 continuously (Karion et al., 2020). The 

NASA’s OCO-2 satellite, which has revisit time of 16 days, has been measuring 

column-averaged dry-air mole fraction of CO2 around the globe since 2015 (Crisp et 

al., 2017). The OCO-3 satellite, launched in 2019, is capable of scanning large areas 

(80 × 80 km2) to measure column CO2 on a single overpass (i.e., “snapshot” mode). 

Synthesizing atmospheric measurements from these platforms (i.e., ground towers, 

satellites) will provide better understanding for the CO2 emissions from the Balt-Wash 

and their temporal variations (i.e., diurnal, weekly, and seasonal patterns). 
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