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Artificial neural networks (ANNs) have been increasingly used as a model for streamflow 

forecasting, time series prediction, and other applications.  The high interest in ANNs 

comes from their ability to approximate complex nonlinear functions.  However, the 

"black-box" nature of ANN models makes it difficult for researchers to design network 

structure or to physically interpret the variables involved.  Recent investigations in ANN 

research have found connections linking ANNs and statistics-based regression modeling.  

By comparing the two modeling structures, new insight can be gained on the 

functionality of ANNs. 

 

This study investigates two primary relationships between ANN and statistical models: 

the potential equivalence between feed-forward neural networks (FNN) and multiple 

polynomial regression (MPR) models and the potential equivalence between recurrent 

neural networks (RNN) and auto-regressive moving average (ARMA) models.  

 



Equivalence is determined through both formal and empirical methods.  The real-world 

phenomenon of streamflow forecasting is used to verify the equivalences found. 

 

Results indicate that both FNNs and RNNs can be designed to replicate many regression 

equations.  It was also found that the optimal number of hidden nodes in an ANN is 

directly dependant on the order of the underlying physical equation being modeled.  

These simple relationships can be expanded to more complex models in future research. 
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1  Introduction 

1.1  Problem Importance 

 Biological and environmental systems have been historically very difficult for 

scientists and engineers to model effectively.  This can be seen as a result of the large 

number of variables involved and the complex way in which they interact to produce 

such phenomena as surface runoff, nutrient transport, or population dynamics.  While 

these systems are challenging to represent, they are nevertheless important for scientists 

and engineers to model for purposes such as prediction and simulation.  Typically, 

researchers look to create models with two main goals in mind.  First, the model should 

accurately map the input variables to the output variables as is observed in real life 

situations.  And second, the model should be a fitting representation of the system's 

underlying physical characteristics. 

 Mathematical models have traditionally been developed from either physical 

principles or by statistical regression (Salas et al., 2000).  Physical models consist of 

systems of ordinary or partial differential equations.  These models try to represent the 

underlying physical relationship between the variables involved.  The benefit of physical 

models is that they are based on a deep and thorough understanding of the system.  

However, the limitations of these models include the difficulty of setting up and solving 

complex differential equations analytically, as well as determining equation coefficients 

and initial and boundary conditions (Coppola et al., 2005).  Usually, these equations must 

be solved using numerical methods, such as the finite element method. 

 Statistical models on the other hand are designed by finding the equation that best 

fits a set of historical or experimental data.  These models are useful in that they are 
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generally simple and straightforward to solve.  Statistical regression equations limit the 

user by requiring a large amount of sample data to estimate the parameters of the 

equation and to find the data trend.  Also, there are difficulties that arise when manually 

determining the optimal structure of the statistical equation (Hill et al., 1994). 

 

1.2  ANN Background and History 

 The limitations of regression equations and partial differential equations have led 

researchers to explore alternative models.  One that has become popular over the last 

decade is the artificial neural network (ANN) (Govindaraju and Rao, 2000).  Artificial 

neural networks are a type of model that was first conceptualized in 1943 by McCulloch 

and Pitts.  ANNs were designed based on biological neurons, and how neurons interact 

with each other in the brain.  McCulloch and Pitts (1943) started with the concept of a 

perceptron, which is a single artificial neuron (Figure 1.1).  This artificial neuron, 

commonly referred to as a node, is analogous to a biological neuron (Figure 1.2).  The 

node itself is similar to the cell body, and the connections made to other nodes represent 

the axon and synapses (Mehrotra et al., 2000).  In the human brain, there are an estimated 

1011 neurons and 1015 synapses all working in parallel (Veelenturf, 1995).  The overall 

result is a complex system able to take incomplete and noisy information, make 

connections with pieces of existing memory and make intelligent decisions (Warner and 

Misra, 1996).  This concept has given way to the idea massively parallel processing. 

 The thrust behind artificial neural network research has come from a desire to 

improve on the limitations of the modern serial computer and tap into this concept of 

parallel processing.  While a computer has the ability to make complex mathematical 
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computations much faster than the human brain, biological neurons are able to perform 

tasks, such as image processing and speech recognition, with the speed and precision that 

serial computers can not match (Widrow, 1990).  Fields such as artificial intelligence 

have attempted to adapt to the concept of parallel processing, but this connection to 

biological neurons is mostly lost in the field of modeling.  Instead, modelers have focused 

on the ability of ANNs to estimate highly nonlinear functions. 

 The artificial perceptron receives inputs from other perceptrons in the system, 

multiplies each by a weight value, adds all of these products together, and then passes the 

result through a function typically called the activation function.  The activation function, 

sometimes called the transfer function, is typically something simple and easy to 

differentiate like a linear function or a sigmoid function.  A perceptron also has a bias 

added to inputs, which is commonly represented by a weight being multiplied by a 

constant of one.  Network weights and biases are randomly initialized when the network 

is created and they are allowed to hold any real number value (Ellacott and Bose, 1996).  

The output of the activation function becomes the output of the perceptron, and this 

output is then sent out to other perceptrons in the network (Figure 1.1).  A large group of 

perceptrons acting together in a single system creates an artificial neural network. 
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Figure 1.1: A single artificial neuron, also known as a perceptron. 

 
 
 

 
Figure 1.2: A single biological neuron (Basheer and Hajmeer, 2000). 
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 A widely used ANN structure among modelers is the feed-forward neural network 

(FNN), also known as the multi-layer perceptron (MLP) (Cherkassky et al., 1993).  Many 

other structures of ANNs have been developed such as fuzzy neural networks, evolving 

neural networks and radial basis function neural networks (Hayashi et al., 1992) (Yao, 

1999) (Yang, 2006).  A feed-forward network typically consists of three layers of 

neurons.  An input layer for the predictor variables, a hidden layer, and an output layer 

for the criterion variables (Figure 1.3).  The network sends information sequentially from 

left to right, from the input layer to the output layer.  Each layer waits for the information 

from the previous layer before computing and sending its own value.  In biological neural 

networks (Figure 1.4), this process works in parallel, with all neurons firing 

simultaneously.  However, this approach is not yet realized in many ANN applications, 

such as function approximation and modeling (Couvreur and Couvreur, 1997) where the 

ANN process typically works serially, simply because contemporary computers are 

designed to work in serial mode. 
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Figure 1.3: A feed-forward neural network to predict streamflow based on precipitation and temperature. 

 

 
Figure 1.4: A biological neural network with parallel processing (Cajal, 1999). 
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 ANNs did not start to become popular among modelers until the 1980's, with the 

development of the back-propagation algorithm, which is used to train the weights and 

biases of a network by using experimental data.  The parameters of the network are 

updated with each pass of the training data with respect to the network's prediction error.  

Before the application of back-propagation to network training, it was difficult for 

modelers to update the weights and biases of the inner layers of the ANN.  Back-

propagation solves this problem by "back-propagating" the prediction error to the inner 

layers, allowing for complete network training.  The main limitation of back-propagation 

is that it is generally very slow compared to alternative methods such as least-squares 

regression (Kruschke and Movellan, 1991). 

 Recurrent neural networks (RNN) differ from standard feed-forward networks in 

that they also allow backwards connections to exist between the nodes (Figure 1.5).  This 

means that the output of the network can also be used as an input.  The positives and 

negatives of using RNNs are similar to those of FNNs or any other artificial neural 

network.  One positive aspect unique to the RNN is that its structure is more analogous to 

the original biological neural network concept of massive parallel processing.  Another 

benefit is that recurrent networks can use previous output values as inputs to the model, 

allowing for multiple-day-ahead time series prediction.  However, the recursive nature of 

the RNN makes it more complex to derive and more difficult to easily understand.  Also, 

the recurrent connections in the network can make it more unstable and more sensitive to 

noise (Mandic and Chambers, 2001). 
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Figure 1.5: A recurrent neural network used to predict streamflow. 

 
 

1.3  ANN Application to Modeling 

 Artificial neural networks have been researched and used for applications in many 

different fields.  Many of these areas are using ANNs to solve problems previously 

thought to be impossible or very difficult with traditional methods.  These include face 

recognition, prediction of time series events, function approximation, process 

optimization, and others (Cheng and Titterington, 1994).  There are many reasons for the 

amount of interest being shown for ANNs.  First, the structure of an artificial neural 

network is generally flexible and robust.  Unlike regression, where a specific equation 

must be predetermined based on the data in the system to relate the input to output 

variables, the general structure of an ANN can be applied to practically any system 

(Zealand, 1999).  Also, ANNs have been shown to outperform regression models when 

outliers exist in the data (Denton, 1995).  Second, a feed-forward neural network with a 

sigmoid hidden layer is said to be a universal function approximator (White, 1992).  As a 
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result, artificial neural networks are viewed as a powerful model limited only by the 

number of hidden nodes in the network.  Third, ANNs are able to inherently model 

highly nonlinear systems such as those that govern the functioning of biological systems 

(Gevrey et al., 2003).  Finally, the black box nature of neural networks is easy to 

implement for prediction applications in any field, making it appealing to at least some 

modelers. 

 Over the past decade, artificial neural network research has found its way into the 

areas of hydrology, ecology, medical and other biological fields.  The American Society 

of Civil Engineers wrote a report to investigate the usage of ANNs in hydrologic 

applications, and found it being used for such purposes as rainfall-runoff modeling, 

streamflow forecasting, groundwater modeling, precipitation prediction, and water 

quality issues (ASCE Task Committee, 2000b).  ANNs have also been used extensively 

in other areas, particularly for modeling biological and environmental systems.  They 

have been successfully applied to systems such as ozone concentration prediction 

(Prybutok et al., 2000), classifying ECG signals (Barro et al., 1998), and many others. 

 For some modelers, the "black-box" nature of artificial neural networks has led 

way to skepticism (Tingsanchali and Gautam, 2000).  While ANNs can predict the output 

variable of a system based on a set of input variables, the inner workings of the network 

are not easily understood.  This is because the ANN training and application usually 

involves the composition of nonlinear functions that can be difficult to simplify and 

reduce to terms that can be understood physically.  This also makes it difficult for 

example to analyze the network after it has been built and trained to determine the 
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relative importance of the different input variables in predicting the output (Minns and 

Hall, 1996). 

 Another problem is that ANN structure is poorly understood, making it difficult to 

design the optimal structure for a given system a priori.  Currently, there are no formal 

rules for developing networks (Daqi and Genxing, 2003).  There is no standard method 

for finding the ideal number of hidden nodes in a feed-forward network or for 

determining the best activation function.  This is usually a time consuming, trial-and-

error process and can lead to inelegant ANN designs (Shigidi and Garcia, 2003).  Far too 

often, people who apply ANNs to problems will develop network structure based on a 

series of unproven empirical rules and trust the training of the network to result in 

"intelligent" predictions (Gonzalez, 2000).  Another common approach is to simply select 

an arbitrarily large number of neurons for the model (Xiang et al., 2005).  However, 

having too many nodes in a network can lead to modeling issues such as poor 

generalization and susceptibility to local minima in the error function instead of 

converging to the global minimum (Archer and Wang, 1993). 

 Overcoming the problems of network structure and size would be a large step 

towards a greater understanding of artificial neural networks, which would allow for 

more productive and effective use of ANN models in biological and environmental 

systems.  There is a need for research to improve network design and analysis through 

formal methods that do not rely on trial-and-error (ASCE Task Committee, 2000a). 

 



 11

1.4  Determining the Number of Hidden Nodes 

 Towards the goal of making ANNs easier to implement and require less trial-and-

error, there has been much research to develop rules or methods for determining the 

optimal number of hidden nodes to use in a network model.  The number of hidden layers 

and number of hidden nodes in each are some of the more difficult parameters to 

determine for a neural network model, as there is no formal procedure for creating the 

most efficient network.  The hidden nodes are important because they directly relate to 

model performance.  In general, increasing the number of hidden nodes will increase the 

number of bumps and curves in the network's output function (Russell and Norvig, 2003).  

However, too many will lead to poor generalization and too few will result in an 

ineffective model. 

 According to Sarle (2004), the number of hidden nodes depends on a number of 

variables such as the size of the training data set, the number of input and output 

variables, the complexity of the underlying function, the amount of noise in the target 

variables, and the activation function used.  A number of rules of thumb have been 

suggested (Kaul, 2004) (Prybutok et al., 2000) (Feng and Wang, 2003), but these rules 

tend to over-simplify the problem and can lead to poor network performance.  

Subramanian et al. (2003) use Kolmogorov's Theorem to initialize the number of hidden 

nodes.  This theorem states that twice the number of input nodes plus one is a sufficient 

number of hidden nodes to model any continuous function.  However, little information 

outside of this article was found on this theorem.  At best, these rules of thumb are 

nothing more than a good first guess or estimate.  Currently, it is ideal for the number of 

hidden nodes to be tailored to a specific system through intensive investigation and 
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thorough trial-and-error.  However, there have been some attempts to develop methods to 

aid in the hidden node selection process. 

 Fletcher et al. (1998) developed a method for optimizing the number of hidden 

nodes in a traditional three layer network.  First, they recognize that if a network has too 

few nodes, it will not accurately fit the target function.  If a network has too many nodes, 

it will memorize the training data and will not be able to generalize to other data.  

Therefore, there must be a minimum when relating the number of hidden nodes to the 

network error.  The method they propose starts with an initial number of hidden nodes 

and then increments the number of nodes higher or lower depending on a statistical 

analysis of the error.  They conclude that this procedure will find the optimal number of 

hidden nodes faster than other methods, which includes simple trial-and-error.  Although 

one downside of this method is that it is still an iterative process, and does not formally 

determine the number of hidden nodes. 

 Xiang et al. (2005) offered some guidelines and methods for determining the 

minimum number of hidden nodes to use for function approximation.  They suggested 

that the ideal number of hidden nodes is close to the number of line segments that can 

represent the target equation.  When designing FNNs, to first start with this number of 

hidden nodes and then increment or decrement the number slowly until the best 

performance is found.  While this still leaves room for trial-and-error, it does give 

modelers a good place to start.  They confirm their results by concluding that a third 

order polynomial regression equation requires a feed-forward network with three hidden 

nodes to fully approximate it.  The feed-forward network they use has a sigmoid hidden 

function and a linear output function.  They note that interesting innate ability of the 
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sigmoid activation function is to act as a smoothing function, where normal piecewise 

linear regression equations lack this ability. 

 Yitian and Gu (2003) developed an interesting solution to the problem of 

designing network structure and determining the number of hidden nodes for the 

application of modeling sediment transport in a river system.  Instead of using trial-and-

error methods for finding the optimal network structure, they designed a network to 

replicate the physical flow of water through the river network.  A feed-forward network 

was used, since it flows much like a water system.  The network parameters and transfer 

function were related to the conservation of mass in the system, giving them physical 

meaning.  The results showed that the model could accurately predict sediment discharge 

from the system. 

 

1.5  Potential Equivalence Between ANNs and Statistics 

 There has been increasing research over the last decade to address the issues of 

network design and analysis and shed some light on the "mystery" behind artificial neural 

network models.  One area that has been gaining interest is the comparison between 

artificial neural networks and statistical regression modeling.  Statistical regression is a 

method that has been used by statisticians and engineers for many years to fit an equation 

to a set of data.  Regression equations have been largely studied by mathematicians and 

statisticians, as opposed to ANNs, which were developed separately by electrical 

engineers and computer scientists (Maier and Dandy, 1998). 

 Statistical regression models have been used by engineers for decades for 

purposes such as data analysis and prediction.  The basic concept of regression is to fit a 
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specified equation to a series of independent and dependent variables.  The parameters or 

coefficients are estimated by using empirical data and an error minimization procedure 

such as least-squares regression.  Ultimately, the goal is to find an equation whose output 

has a high correlation with the target data series.  The most commonly used regression 

approach is multiple linear regression (MLR), which uses a first order (linear) model and 

is relatively easy to implement (Ayyub, 2003). 

 When a more nonlinear model is necessary, a common approach is to use multiple 

polynomial regression (MPR), which allows for higher order terms (Kravtsov et al., 

2005).  The general form of MPR is shown in equation (1.1): 
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where X is an input variable, Y is an output variable, c is a coefficient, M is the number of 

inputs and K is the number of outputs.  The main benefit for using regression models is 

that there are well established methods for analysis (such as ANOVA) and ranking the 

importance of independent variables.  However, there are some downsides to using MPR.  

First, because of the multiple orders, regression terms will innately have a potentially 

high correlation between them (such as the correlation between X and X2) (Bradley and 

Srivastava, 1979).  This can lead to undesirable correlations between model parameters.  

Second, polynomial equations can lead to unintended phenomena such as polynomial 

swing.  This can cause data at the edges of the training domain, and beyond, to be poorly 

predicted (Stigler, 1971). 

 On the surface, there are some obvious similarities between regression models 

and neural network models.  Both are empirical in nature and rely extensively on 

experimental data to determine model parameters.  In statistics, the structure of the 
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equation used to relate the output variable to the input variables is selected by the person 

developing the model (bivariate, multivariate, linear, polynomial, nonlinear, regressive).  

This is also the case with neural networks but the process is typically much more 

iterative, involving a trial-and-error phase, for example, to identify the approximate 

number of hidden nodes to use.  Also, like regression equations, ANN performance is 

highly dependant on the training sample size and the amount of noise in the data 

(Markham and Rakes, 1998). 

 Similarities can also be seen in the methods used to derive the parameters for 

these models.  For ANNs the training method is generally back-propagation and for 

statistical models it is least-squares regression.  However, back-propagation can be 

described as a generalized form of the least-squares algorithm (Mehrotra et al., 2000).  

Both of these methods rely on the principle of finding the gradient of the error function.  

The error for a model is calculated by equation (1.2): 

 e = (ŷ - y)                (1.2) 

where the measured output (y) is subtracted from the predicted output (ŷ).  The error 

function, or objective function, F, calculates the sum of the errors squared, as shown in 

equation (1.3): 

 F = min ∑
=

n

i
e

1

2                (1.3) 

The model parameters are then determined by taking the derivatives of F with respect to 

each parameter and identifying where these derivatives are null (Ayyub, 2003). 

 A major difference between ANNs and statistical regression however, is the ease 

with which model parameters and structure can be understood.  The parameters generated 

by a regression equation can be easily analyzed to identify input-output relationships in 
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the model and compare the effectiveness of each input variable.  However, when using 

artificial neural networks, researchers are inclined to rely on the network to "learn" the 

relationships between variables (Kisi, 2005).  This information is then stored in 

convoluted network weights and biases, which are difficult to interpret. 

 An extension on normal statistical regression and feed-forward network models is 

the area of time series analysis.  This subject deals with data series that have a temporal 

aspect, usually dealing with discrete time intervals although it can also be represented in 

continuous time (Brockwell and Davis, 2002).  The variables used in these models are 

assumed to vary in some manner with respect to time.  Time series models are mostly 

used for the purpose of prediction and forecasting.  Two models that will be investigated 

in this study are recurrent neural networks and auto-regressive moving average (ARMA) 

models, defined by the equation: 

 Yt = c0 + ∑p(cp * Yt-p) + ∑q(cq * Et-q)            (1.4) 

in which Y is the time series variable at time t, E is the error term, and c is a coefficient. 

 Auto-regressive moving average models can be viewed as a more general form of 

regression equations, allowing for previous values of the dependent variable to be used as 

input variables.  A feature that is unique to the ARMA equation is the concept of an error 

term.  This term is included as an input to the equation and is calculated as the prediction 

error from previous time values.  These models are typically designed to be linear for 

simplicity, but this limits their effectiveness in nonlinear systems (Zhang, 2003).  One of 

the appeals of recurrent neural networks is that they do not have this limitation, since 

sigmoid activation functions can easily be added to a network.  Nonlinear ARMA 

equations, or NARMA, also exist, but they are not commonly used by modelers due to 
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their complexity.  Another issue when modeling with ARMA is determining how far 

back, in terms of the number of previous outputs, the equation should go (Zhang, 2003).  

This is not an intuitive decision and no formal methods exist for finding the optimal 

ARMA equation.  The structure of the equation will depend on each application and must 

usually be determined through trial-and-error methods. 

 

1.6  Comparisons Between FNNs and MPR 

 Most of the research comparing artificial neural networks and statistical 

regression has been empirical in nature.  The main focus has been to compare both 

models in terms of their accuracy and performance.  Sargent (2001) performed a 

literature review on approximately thirty articles comparing ANNs to statistical 

regression for biomedical applications and found that ANNs outperformed statistics in 

only ten of the cases.  The other articles either found that both models had equivalent 

performance or that regression models were better.  In applications with large sample 

sizes, it was found that ANNs never performed better than regression.  He speculated that 

the reason ANN did not dominate over statistical models is because both are heavily 

limited by the data being collected, in terms of the amount of data and the amount of 

error or noise in the data. 

 Sarle (1994) showed that that multi-layer perceptrons could be viewed as 

nonlinear regression models.  He showed that simple linear multivariate regression can be 

represented with a single linear perceptron.  Sarle also made simple comparisons between 

nonlinear regression and feed-forward networks (with nonlinear activation functions) and 

showed how neural networks can be designed to represent polynomial regression (using 
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different polynomial activation functions).  While the sigmoid activation function was 

compared to nonlinear regression, it was not compared to MPR.  Sarle suggested that one 

may potentially be able to design an artificial neural network to represent the structure of 

any regression model, and vice versa.  However, his research was limited by providing 

only a basic, theoretical comparison between the models.  No consideration was made to 

the number of hidden nodes in the network.  Another limitation is that Sarle did not 

determine any formal equations to relate the parameters of ANNs to those of statistical 

regression equations. 

 Warner and Misra (1996) continued this train of thought by performing empirical 

tests with synthetic data to show how FNNs and statistical regression models perform 

similarly.  Both models were fit to linear and nonlinear data and results showed that the 

neural network was able to produce a best-fit line comparable to linear and power 

regression.  They demonstrated that a feed-forward neural network with a sigmoid 

activation function can act as a function approximator and that this is an advantage over 

traditional regression when the underlying function of the system is unknown.  They 

further suggested that if the physical relationship is known between the input and output 

of a given system, then a specific regression equation would be more desirable. 

 Salas et al. (2000) used feed-forward neural networks to predict the daily average 

streamflow of the Little Patuxent River in Maryland.  A trial-and-error process was used 

to determine the most accurate model structure.  The network input sets consisted of 

combinations of variables such as precipitation, temperature, evaporation, snow water 

equivalent, and previous streamflow.  The number of nodes in the hidden layer ranged 

from one to four hundred.  The best-fit model was found to have precipitation, 



 19

precipitation for the previous day and temperature as inputs and ten hidden nodes.  This 

network model was then compared to a statistical model, a simple conceptual rainfall-

runoff (SCRR) model, and results showed that the ANN performed better than the SCRR 

model for predicting streamflow. 

 Tokar and Johnson (1999) also investigated the modeling of daily runoff of the 

Little Patuxent River watershed, measured in the form of streamflow.  They compared 

the prediction abilities of feed-forward networks and regression equations.  The models 

were tested using different combinations of input parameters.  The feed-forward networks 

had sigmoid activation functions and the number of hidden nodes ranged from one to four 

hundred.  Selection of the number of hidden nodes was made in part in relation to the 

data size of the training set (either one, two or three years worth of data).  The structure 

of the regression equations were a combination of linear and power models.  Using error 

values to measure performance, the best-fit ANN model was better then all of the 

regression models by a considerable degree (validation error for the best ANN was 0.42 

and for the best regression model it was 0.64).  Tokar and Johnson noted that the number 

of parameters in the best-fit neural network was fifty-one, while the number of 

parameters in the regression equations was never greater than nine.  They believed that 

this difference in parameters allowed the ANN to reach a higher level of flexibility and 

complexity.  Another reason for the advantage of the network models was the fact that 

they used a nonlinear activation function, while most of the regression equations were 

linear. 

 Kaul et al. (2004) compared the effectiveness of feed-forward networks and 

multiple linear regression for predicting corn and soybean yield.  The input data was 
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scaled to a range of 0 to 1, and the input variables were chosen from a list of twenty 

parameters which included soil rating for plant growth and various rainfall values.  Three 

layer FNNs were used, with a linear function in the input layer and sigmoid functions in 

the hidden and output layers.  The number of hidden nodes was set to be initially equal to 

one-half of the total number of inputs and outputs, but no rationale was given to explain 

this choice.  They increased or decreased the number of hidden nodes by one as a method 

of fine-tuning the model and improving performance.  The statistical equation used to 

compare with the FNN was a basic linear regression equation.  Trials compared the 

performance of both models to predict corn and soybean yield using the same input 

parameters and same training data sets.  Their results showed that FNNs consistently 

produced higher r2 values, indicating higher accuracy, compared to MLR.  However, it 

should be noted that it seems unfair to compare ANNs with sigmoid activation functions, 

which are highly nonlinear, to a linear regression equation. 

 Schnabel and Maneta (2005) investigated the comparison between FNNs and 

multiple quadratic regression.  Both models were applied to the issue of estimating 

sediment transport in rivers.  Sensitivity analysis was used to determine the most 

effective input variables for each model.  The feed-forward network was defined to have 

ten hidden nodes, but it was not explained why this number was used.  The activation 

function for the nodes was not specified.  For the regression equation, the linear and 

quadratic forms of each variable were used, but any cross-terms were ignored.  The 

results found that both neural networks and statistical regression could effectively predict 

sediment transport, and that the performance of the two models was similar.  However, 

the best-fit model determined by the regression equation used a different set of input 
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parameters than that used by the feed-forward network.  The authors did not offer an 

explanation for this difference and did not elaborate on the structures of the FNNs and 

regression equations. 

 Cobourn et al. (2000) compared a nonlinear regression model with a feed-forward 

neural network for their ability to predict ozone concentrations.  The regression model 

was a combination polynomial and power model.  No specific mention was made of the 

activation function or the number of hidden nodes in the FNN.  Both models produced 

practically equivalent predictions for daily ozone concentration in Louisville, Kentucky.  

However, it was found that both models used a different set of optimal input variables, 

with the regression model including more inputs than the FNN.  In particular, the FNN 

did not include one parameter, air-mass trajectory, which was highly significant in the 

nonlinear regression equation. 

 Dedecker et al. (2005) investigated the effects of different river characteristics on 

the population of the aquatic species Gammarus pulex L.  A feed-forward network was 

used with twenty four input nodes, ten hidden nodes, and one output node.  All of the 

nodes used a logistic sigmoid activation function.  The twenty four input nodes 

represented the different river characteristics that were being compared for the study.  No 

rationale was given for the choice of ten hidden nodes.  They then used four different 

network variable comparison methods as described by Gevrey et al. (2003) to determine 

the most significant river parameters.  The "Weights" method was based on partitioning 

the network weights among the inputs, the "Profile" method involved varying one input 

while keeping the others fixed, the "PaD" method used partial derivatives, and the 

"Perturb" method studied small changes to the network.  Dedecker et al. (2005) found 
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that all four methods were effective at determining variable importance and produced 

similar results. 

 

1.7  Comparisons Between Recurrent Models 

 Connor and Martin (1994) discussed the relationships found between auto-

regressive moving average models and recurrent neural networks.  Their work essentially 

extended that of Sarle from simple regression models to auto-regressive models and from 

feed-forward neural networks to recurrent neural networks.  Also, they proposed that by 

filtering outliers out of the training data, time series models such as ARMA or RNNs can 

be come more robust than by training with least-squares or back-propagation alone. 

 Chon (1997) showed that feed-forward neural networks with polynomial 

activation functions can be used to accurately predict the parameters of a single input and 

single output ARMA model.  His research showed that by using a polynomial activation 

function in the hidden layer, a neural network can become mathematically equivalent to 

both linear and nonlinear ARMA models.  Also, the network parameter training function 

of back-propagation was observed to be slightly more accurate at predicting ARMA 

parameters than the least square method, although least-squares took less computation 

time to complete.  However, Chon (1997) did not use any recurrent neural networks, only 

feed-forward networks, limiting the conclusions of his results.  Also, the commonly used 

sigmoid activation function and the concept of an error term were not included in the 

investigation, leaving room for further research. 

 Zhang (2003) developed a hybrid model for one-day-ahead time series prediction 

by combining linear ARMA equations and nonlinear FNNs.  The neural network was 
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used to add nonlinearity to the model as well as provide the flexibility that ARMA can 

not provide.  The hybrid model proposed first uses ARMA to model the linear part of the 

system, and then trains a FNN to the error found by the ARMA equation.  The theory was 

that the ARMA equation would model the linear aspects, leaving the nonlinear elements 

for the FNN.  Both of the models were then added together to produce the complete 

prediction.  Results showed that the hybrid model outperformed both models 

independently.  The author also suggested that by adding the ARMA equation first, the 

network did not over fit to data as easily.  Perhaps both of these models can be combined 

to form one neural network, with one linear hidden layer and one nonlinear hidden layer. 

 Kumar et al. (2004) investigated the application of ANNs to streamflow 

forecasting using auto-regressive inputs.  For this research, feed-forward networks and 

recurrent networks were used to predict monthly streamflow of the Karnataka River in 

India.  Trial-and-error was used to design the network structures by varying the number 

of inputs from three to five and number of hidden nodes from five to twenty.  Both 

networks were set up to have four layers, which included two hidden layers.  The final 

FNN structure had fourteen nodes in both hidden layers, and the final RNN had ten nodes 

in both.  The five previous monthly streamflow values were used for input.  The recurrent 

network also passed three previous output values back to the input layer.  No mention 

was made in the article of the activation functions used (it is likely that all nodes had a 

sigmoid function).  Training was accomplished using fifty-thousand epochs, which seems 

rather high.  Fifty years of data was used for training the models, while seven years were 

used for validation.  Results found that the RNN performed more accurately than the 
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FNN.  This is understandable, as the RNN is able to take advantage of its ability to factor 

in previous outputs, which acts as an error term similar to those used in ARMA models. 

 Amnala et al. (2000) used FNNs and RNNs along with polynomial regression and 

a form of power time series model to model watershed runoff.  The network structure and 

hidden nodes were determined through trial-and-error.  Results showed that feed-forward 

networks did not significantly outperform regression models, although the recurrent 

network was better than both.  Also, it was noted that ANNs needed more parameters for 

producing the same prediction accuracy as a regression model. 

 

1.8  Summary of the Literature Review 

 Many experiments have compared the results of using both artificial neural 

networks and statistical regression equations for modeling and predicting biological 

systems.  Most papers concluded that the use of artificial neural networks produced data 

predictions more accurate or at least comparable to regression models.  However, many 

of these papers also found inconclusive or conflicting results, such as Schnabel and 

Maneta (2005).  There is enough evidence to support the connection between neural 

networks and statistical regression, but it is obvious that more research needs to be done 

to get a better understanding of how both models are related.  Few articles explored the 

theoretical and mathematical connections between the structure of the two models, such 

as the articles written by Sarle (1994) and Chon (1997).  However, the formal results of 

these papers were limited to simple comparisons.  Also, with the exception of Chon 

(1997), existing research has not gone into much depth in the area of comparing the 

parameters of both models term by term to find formal equivalency equations. 
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 While there has been some work done on comparing statistical and neural 

network models, more research needs to be done to directly link the two models to each 

other.  This knowledge would be beneficial for many reasons.   First, it could potentially 

allow one to take a neural network and convert it into an equivalent regression model for 

analysis.  This is useful when modeling environmental systems whose variables have 

complex relationships.  A neural network could be trained to produce accurate output 

predictions, and then an equivalent regression equation could be deduced from the 

network.  This regression equation could then be analyzed through statistical methods 

such as ANOVA (Ayyub, 2003).  Perhaps regression equation parameters could be 

extracted from a corresponding ANN and vise-versa. 

 Second, one can use the knowledge of a system gained through statistical analysis 

to develop the best network structure to fit a given system.  This can be useful for 

developing a concrete method for determining the number of hidden nodes needed for a 

network, since currently the number of hidden nodes is commonly determined through 

trial-and-error. 

 Lastly, research in this area is important simply to bridge the gap of knowledge 

between statistics and neural networks.  Both of these models have been developed 

independently of each other.  Statistics have a history of being developed and studied by 

mathematicians for centuries, while artificial neural networks were originally developed 

only a few decades ago by computer scientists as a form of artificial intelligence to 

replicate the biological neurons in the brain.  If connections can be made between the two 

models to show how similar (or different) they really are, the field of modeling will 

benefit as a whole. 
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2  Objectives 

 The overall goals of this research are to identify potential equivalences between 

artificial neural networks and statistical regression and to verify these equivalences when 

applied to modeling biological resources systems.  Two main connections will be 

investigated: the relationship between feed-forward neural networks (FNN) and multiple 

polynomial regression (MPR) equations and the relationship between recurrent neural 

networks (RNN) and auto-regressive moving average (ARMA) equations. 

 The specific objectives are to: 

1. Identify potential formal and empirical equivalences between FNNs and MPR 

using synthetic data. 

2. Identify potential formal and empirical equivalences between RNNs and ARMA 

using synthetic data. 

3. Apply the equivalences derived in 1 and 2 to the prediction of the 

bioenvironmental phenomenon of streamflow using real-world data. 

 
 Potential equivalences between artificial neural networks and statistical regression 

equations will be pursued using both formal and empirical methods.  In all cases, the 

models will use the same set of input and output variables.  The formal equivalences 

between FNN and MPR will be identified by Taylor series expansion of the ANN 

nonlinear sigmoid activation function followed by algebraic manipulation of the network 

output equation for an arbitrary number of hidden nodes.  For two models to be formally 

equivalent, they should contain the same terms with the same order of nonlinearity.  The 

parameters of one model should be able to be mathematically transformed to find the 

parameters of the other model, and vice-versa.  The equivalence will be confirmed with 
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empirical data by comparing graphically and through fit and error statistics the output 

prediction functions and model parameters after being trained to the same series of data.  

Potential equivalences between RNN and ARMA will be sought in a similar fashion 

using a combination of formal techniques and empirical strategies.  When comparing 

models, particular attention will be made to finding the minimum, or optimal, number of 

hidden nodes required for artificial neural networks to replicate a given statistical 

regression equation. 

 The scope of this research will be limited to a defined range of model structures.  

First, the artificial neural networks and statistical models will have one output.  Second, 

polynomial regression orders will be investigated up to fifth order and ANNs will use up 

to forty-five hidden nodes.  The artificial neural networks will use zero, one, or two 

hidden layers.  Finally, only the training methods of least-squares and back-propagation 

will be used for estimating model parameters.  The purpose of these limitations is to 

simplify the investigation and make it easier to find potential equivalences between the 

two models. 



 28

3  Methods and Materials 

 Three major tasks will be accomplished to meet the objectives of this study: 1) 

The potential equivalence of FNNs and MPR will be investigated; 2) The potential 

equivalence of RNNs and ARMA and; 3) The application of these equivalences to 

biological phenomena.  The procedures and tools used to perform these tasks are 

described in the following three sections. 

 

3.1  Equivalence of FNN and MPR 

 The first connection between ANNs and regression that will be investigated is the 

relationship between feed-forward networks and polynomial regression.  Both of these 

models are non-recursive and use independent variables for predicting the output 

variable.  This section describes the prediction equations, training methods, error metrics, 

and pre-scaling of input data involved in the application and comparison of FNN and 

MPR models.  This is followed by individual subsections describing the specific formal 

and empirical perceptron-level and network-level comparisons of ANNs and regression 

models to be performed. 

 The basic structure of a feed-forward neural network is shown in Figure 3.1.  A 

FNN will have either three or four layers, with the number of nodes in the input layer 

equal to the number of input variables and the output layer representing the number of 

output variables.  The input and output layers typically have linear activation functions.  

The hidden layer, or layers, can have any number of nodes and any type of activation 

function.  Current neural network technology leaves it up to the researcher to determine 
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empirically the optimal number of hidden nodes and the optimal activation function.  The 

general equation for a feed-forward network can be written as: 

 Yk = F2(∑j( wj * F1(∑i (wi * Xi) + bj)) + bk)           (3.1) 

 Where Xi is the ith input variable, Yk is the kth output variable, the w's are the 

network weights, the b's are the network biases, F1 is the activation function of the hidden 

layer and F2 is the activation function of the output layer (Ripley, 1996). 

 
Figure 3.1: General structure of a three layer feed-forward network. 

 The total number of adjustable parameters (weights and biases) in a three-layer 

FNN is equal to: 

 Pn = 1+(1+M+K)*H              (3.2) 

where M is the number of inputs, K is the number of outputs, and H is the number of 

hidden nodes (Salas et al., 2000).  This is assuming that all of the connections between 

the input, hidden and output layers have a weight and all of the nodes in the hidden and 

output layers have a bias. 

 In this study, a linear activation function will be used for nodes in the output layer 

(F2).  For the hidden layer, the activation function F1 will be either one of three functions: 
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 Linear:  f(x) = x       (3.3) 

 Polynomial:  f(x) = xn  (n = order of polynomial)   (3.4) 

 Sigmoid:  f(x) = tanh(x)       (3.5) 

 The multiple polynomial regression equation is a more general form of the 

commonly used multiple linear regression equation.  However, the equation also allows 

for higher order terms as well as cross-multiplied terms.  The general form of a MPR 

equation can be written as: 
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 Where Xi is the ith input variable, Yk is the kth output variable, and the c's are the 

regression coefficients for M input variables and K output variables (Ayyub, 2003).  The 

order N of a polynomial equation is equal to the highest order out of all of the terms.  An 

interesting difference to note between MPR and FNNs is how they function in multiple 

output systems.  For MPR, a separate regression equation is estimated for each output 

variable.  However, for FNNs, only one network is needed to model multiple outputs. 

 For a single output variable, the number of parameters in a MPR equation 

depends on the number of input variables and the maximum order of the equation.  This 

is assuming that all of the terms created by polynomial expansion are included in the 

regression equation.  For example, for a second order polynomial that uses X1 and X2 as 

input parameters, the expansion of (1 + X1 + X2)2 produces the six terms X1, X2, X1*X2, 

X1
2, X2

2, and a constant.  Pascal's triangle can be applied to find the number of 

parameters, seen in Table 3.1. 
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Table 3.1: The number of terms in an MPR of Nth order with M input variables. 
Number of Input Variables, M Equation 

Order, N 0 1 2 3 4 5 
0 1 1 1 1 1 1 
1 1 2 3 4 5 6 
2 1 3 6 10 15 21 
3 1 4 10 20 35 56 
4 1 5 15 35 70 126 
5 1 6 21 56 126 252 

 
 The number of parameters in a MPR equation can also be calculated using 

equation (3.7) for any number of inputs M and any order N. 
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 The software used to construct and test both the neural network and regression 

models will be MATLAB Version 7.0 (MATLAB, 2004).  The neural networks will be 

constructed using the Neural Network Toolbox Version 4.0 (Demuth and Beale, 2004), 

which has the ability to model and train many different network structures.  The FNN 

will be trained using the back-propagation algorithm, which will estimate the network 

weights for a given data set.  For regression, the least-squares method will be used to 

estimate the equation coefficients.  Sample MATLAB code for all tests is presented in 

Appendix A. 

 The back-propagation algorithm iterates for a number of epochs set by the 

modeler.  For each epoch, the error is determined using equation (1.2).  The weights and 

biases of the output layer are then updated according to equation (3.8) where k is the 

interval, wi is the ith weight of the network, and F is the error function defined by 

equation (1.3) (Hagan et al., 2002). 
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 Updating the weights and biases of the other layers is done in a similar manner, 

but is slightly different because the error for each layer output cannot be directly 

calculated.  Instead, the error from the output layer must be back-propagated to the other 

layers by starting from the end and working backwards to the input layer.  ANN training 

ends either when the network error is below a set level or when the maximum number of 

epochs has been reached.  In MATLAB, back-propagation will be run with the train 

function.  Five hundred epochs will be used for training feed-forward networks. 

 Unlike back-propagation, the least-squares algorithm does not require multiple 

iterations.  Instead, the error function (Equation 1.3) is derived with respect to each of the 

regression parameters and set equal to zero, as shown in equation (3.9) (Ayyub, 2003).  

The system of equations is then solved to find a solution for all of the parameters. 

 0=
∂
∂

ic
F                 (3.9) 

 The least-squares method will be run in MATLAB using mldivide or the left-

division (backslash) operator as shown in equation (3.10).  The vector c represents the 

estimated regression coefficients, X is the matrix of input variables raised to the powers 

found in the regression equation, and Y is the vector of target output values. 

 c = X \ Y                (3.10) 

 The parameters of each model will be compared analytically to find a formal 

equivalence between the two models.  Both ANNs and statistical regression will be 

analyzed to compare their mathematical structures.  Specifically, this means comparing 

the components of the neural network, such as number of hidden nodes and the activation 

function, with the components of a polynomial regression model, such as the number of 

terms and the highest order of the predictor variables.  Then, the artificial neural network 
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equation will be transformed using Taylor series expansion of the sigmoid functions.  

Similar terms will be collected and the simplified equation will be compared to the 

regression equation.  Ultimately, the goal is to find an analytical relationship between the 

weights and biases of an artificial neural network and the coefficients of a multiple 

polynomial regression model.  Formal equations will be developed to define the 

regression coefficients in terms of the network parameters.  Also, the minimum number 

of parameters required by each model to produce the desired equation should be 

comparable.  Once a mathematical relationship is found, one can then reduce a neural 

network to an equivalent regression model through analytical methods.  These formal 

equations will then be confirmed using empirical data. 

 The formal results will be confirmed empirically using synthetic data.  Data will 

be divided into two sets, training data and validation data.  The training data will be used 

to train the neural networks and to estimate the parameters for the regression equations.  

During the training stage, the parameters are changed to minimize the prediction error.  

Afterwards, the models will be tested using the validation data and the model parameters 

will be kept static.  The purpose of keeping the validation data separate from the training 

data is to test the model's ability to generalize and to make sure it is not memorizing the 

training set.  Both the training set and the validation set will be taken from the same 

population. 

 When comparing these models empirically, different criteria will be used to assess 

their relationship.  First, both the neural network and the regression model will be 

optimized to predict the output data of a synthetic system.  The accuracy of both models 

will be compared to determine if they are able to achieve the same level of predictability.  
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Accuracy will be determined by computing the standard error ratio, s(e)/s(y), which is the 

standard deviation of the error over the standard deviation of the target output values 

(Equation 3.11). 
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Where 
∧

y  is the predicted output, y is the measured output, 
_
y  is the mean output, n is the 

sample size, and p is the number of parameters in the model.  For regression, the number 

of parameters is equal to the number of regression terms.  For ANNs, the number of 

parameters is equal to the sum of weights plus biases of all nodes.  Standard error ratio 

values close to zero are considered to be good models, while values close to one are 

considered to be poor models (Salas et al., 2000).  Models with a standard error ratio 

greater than one are particularly unreliable, since this signifies that the standard deviation 

for the predicted values is worse than simply using the mean value of the data as a 

predictor of the entire data set. 

 The FNNs and MPR equations will both be trained to the same series of synthetic 

data.  The output function of both will be plotted and the prediction error from both will 

be compared to relate their performance.  In particular, function characteristics such as 

shape, bias, and ability to deal with extreme values will be investigated.  Then, the 

parameters of the ANN will be transformed using the formal equations derived 

previously into the equivalent regression parameters and will be compared to the real 

regression parameters determined through least-squares. 

 When developing models, data is sometimes preprocessed before it is inputted 

into the model.  During the preprocessing stage, the data is transformed to modify its 
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range or probability density function.  This is usually done if the histogram of the data 

reveals that the data is skewed to one side of the expected range.  In ANN applications, 

input and output data can be transformed to fit the range of the activation function being 

used in the network.  For this study, two different forms of preprocessing, linear scaled 

and log normal scaled, will be used along with normal un-scaled data to train and validate 

the models.  The different methods of preprocessing will be compared to determine if any 

particular method gives the model an advantage in accuracy. 

 Linear scaling is used to transform a data series from its original range as 

described by equation (3.12).  The newly scaled data, represented by x', will retain the 

distribution of the original series, but will have a new range.  The maximum and 

minimum values of the new range are set by the modeler as Rmax and Rmin respectively.  

This is a common preprocessing technique for ANN applications, because activation 

functions such as the sigmoid have a defined range of effectiveness.  In the case of the 

sigmoid, the range is somewhere between -1 and +1 (Menon et al., 1995).  After the 

model is trained to the linear scaled data, the output must be rescaled using the same 

parameters. 
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 Log normal scaling will change the distribution of the data series to a normal 

distribution.  It is calculated by subtracting the natural log of the data by the mean of the 

natural log of the data, and then dividing by the standard deviation of the natural log of 

the data (Equation 3.13).  This process will squash the data, reducing the extremity of 

outlying data values.  The log normal preprocessing method will be used in conjunction 
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with the linear scaling method (Equation 3.12) so that the data is within the range of 

sigmoid activation function. 
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3.1.1     Perceptron-level Analysis 

 Two perceptron-level cases will be investigated: that with a linear activation 

function and that with a sigmoidal activation function. 

 

3.1.1.1     Linear Perceptron and Linear Regression 

 A perceptron is defined as an ANN with only one layer and one node.  A 

comparison between a linear perceptron and multiple linear regression equations has 

already been shown by Sarle (1994).  A formal equivalence between the two models will 

be identified in this study by finding the mathematical relationship between the weights 

and biases of the perceptron and linear regression coefficients.  This will not require 

Taylor series expansion since the activation function is linear.  The equivalence will be 

confirmed empirically by fitting both models to a linear equation that includes noise and 

comparing the regression coefficients found by both models as well as the goodness-of-fit 

of their output functions.  For simplicity, a single input variable will be tested. 

 

3.1.1.2     Sigmoid Perceptron and Polynomial Regression 

 The single artificial perceptron with sigmoidal activation function will be 

compared to polynomial regression both formally and empirically.  Third order Taylor 

series expansion will be performed on the sigmoid activation function and substituted in 
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the perceptron equation.  The resulting equation will be compared, term by term, to third 

order polynomial regression, with one input variable, to identify equations that transform 

perceptron weights and biases into polynomial coefficients, and vice-versa.  The 

equations relating the perceptron parameters to the regression coefficients will be 

confirmed empirically by fitting the models to a cubic data series with noise and 

comparing the resulting polynomial coefficients produced by the two models.  Both raw 

data as well as data scaled to a smaller range using equation (3.12) will be tested to 

determine the effect of input data scaling on perceptron performance. 

 

3.1.2     Network-level Analysis - Polynomial Activation Function 

 Networks of perceptrons with polynomial activation function will be compared to 

MPR in two steps.  First, a specific example where the target output function is a noisy 

cubic polynomial will be investigated.  The results of this investigation will then be 

generalized to target multinomials of orders one to five with one to five input variables. 

 

3.1.2.1     Specific Example - Third Order with One Variable 

 After investigating the abilities and limitations of single perceptrons, a larger 

three-layer neural network will be examined.  FNNs with a linear input layer, polynomial 

(cubic) hidden layer, and linear output layer will be compared analytically to multiple 

polynomial regression equations.  A one input variable, third order (cubic) polynomial 

equation will be used as the target MPR.  This regression model will be compared to 

three forms of FNN: a one hidden node network, a two hidden node network, and a 

modified two hidden node network that has fewer parameters.  In all cases, formal 
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equations will be developed from Taylor series expansion, substitution, and term by term 

comparison to define the regression coefficients in terms of the weights and biases of the 

feed-forward network.  Issues such as input range, input scaling, prediction accuracy, 

equivalence of estimated polynomial coefficients and the effect of the training algorithm 

(back-propagation versus least-squares) will be explored for each case.  The minimum 

number of hidden nodes required to replicate the cubic regression equation will be 

determined based on FNN performance in all of the cases. 

 

3.1.2.2     Generalization to MPR 

 The comparison of FNNs with polynomial activation function and MPR will 

proceed for an increasing number of input variables and polynomial regression orders.  

Empirical methods will be used to relate the number of hidden nodes in a network to the 

order and number of input variables in multiple polynomial regression.  Specifically, this 

means to determine the minimum number of hidden nodes required to replicate a given 

MPR equation. 

 Multiple polynomial regression equations will be synthetically created with a 

number of input variables ranging from one to five.  The order of the polynomial 

regression will also range from one to five.  Randomly generated normalized coefficients 

will be multiplied to each term of the MPR equation.  The input variables will draw from 

random normalized data sets, each variable having a sample size of five hundred.  The 

target values for the model will be found by running the input data values through the 

regression equation. 
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 A series of three layer feed-forward networks will then be trained to model the 

input-target set relationship.  The input and output layers of the networks will use a linear 

activation function, and the hidden layer will use a polynomial activation function.  The 

polynomial activation function order will be equal to the polynomial regression order 

being modeled.  For example, for a third order target multinomial, the activation function 

in the hidden layer will be f(n) = n3.  The number of hidden nodes in the network will be 

increased step by step from one to forty-five.  For each network, the error value s(e)/s(y) 

will be determined using equation (3.11).  When the error reaches zero, or becomes less 

than 1 * 10-10, then that network will be concluded to be able to replicate the target 

multiple polynomial function.  For each combination of number of variables and 

polynomial order, the minimum number of hidden nodes required to reproduce the target 

polynomial will be found. 

 

3.1.3     Network-level Analysis - Sigmoid Activation Function 

 Networks of perceptrons with sigmoidal activation function will be compared to 

MPR in a similar, two-step, method.  First, the FNNs will be investigated where the 

target output function is a noisy cubic polynomial.  Second, the results will be 

generalized to target multinomials of orders one to five with one to five input variables. 

 

3.1.3.1     Specific Example - Third Order with One Variable 

 The network-level analysis using a polynomial activation function will be 

complemented by researching feed-forward neural networks that use a sigmoid activation 

function in the hidden layer.  The procedure for this investigation will be similar to that 
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for the polynomial activation function.  Formal comparison between the FNN and a third 

order polynomial regression equation will be carried out using Taylor expansion on the 

sigmoid function.  Like before, three cases will be tested: a one hidden node network, a 

two hidden node network, and a modified two hidden node network that has fewer 

parameters.  The same testing considerations will be used, including the model prediction 

accuracy and ability to estimate the polynomial coefficients.  The results from using the 

sigmoid activation function will be compared to the polynomial activation function 

network tested in the previous section. 

 

3.1.3.2     Generalization to MPR 

 The results from the example sigmoid network will be generalized to other FNNs 

and MPR equations.  The methods will be similar to those used for the polynomial 

activation function, except now a sigmoid activation function will be used in the hidden 

layer.  Again the number of hidden nodes will range from one to forty-five.  Five trials 

will be run for each network structure, as a means to offset the random initialization of 

the network parameters.  The networks will use the same training and validation sets, 

both randomly generated with five hundred normal values.  The training and validation 

s(e)/s(y) errors will be calculated for each network.  The relationship between network 

prediction error and the number of hidden nodes will be observed for each combination 

of number of input variables and polynomial regression order.  The results will be used to 

confirm the findings from the previous investigations. 
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3.2  Equivalence of RNN and ARMA 

 The second phase of testing will involve recurrent neural networks and auto-

regressive moving average functions.  These models are similar in structure to FNN and 

MPR, but they are inherently recurrent, allowing for previous values of the output to 

influence current predictions.  This section describes the prediction equations and training 

methods involved in the application and comparison of RNN and ARMA models.  This is 

followed by individual subsections describing the specific formal and empirical 

perceptron-level and network-level comparisons of ANNs and regression models to be 

performed. 

 A recurrent neural network is structured similarly to a feed-forward neural 

network except that it also includes a temporal component.  All of the input and output 

variables are represented with respect to a discrete time step, t.  To accomplish this 

function, the RNN allows for two additional components: backwards, or feedback, 

connections and delays (Connor and Martin, 1994).  Backwards network connections link 

nodes in the output layer to the nodes in the input layer (Figure 3.2).  This allows for 

recursive functionality.  A delay is used for time series models to hold a particular value 

and output it at the next time step.  The value for the output from the delay is initially 

zero for the first time step. 
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Figure 3.2: Example of a three layer recurrent neural network. 

 The RNN in Figure 3.2 can be defined by the equation: 

 Yt = F2(∑j( wj * F1(∑q (wq * Xt - q) + ∑p (wp * Yt - p) + bj)) + bk)         (3.14) 

 Where Xt-q is the input variable at time t-q, Yt-p is the regressive output variable at 

time t-p, t is the discrete time variable, the w's are the network weights, the b's are the 

network biases, F1 is the hidden layer activation function, F2 is the output layer activation 

function and D is a one time unit delay. 

 In this network, the RNN uses one independent variable, X, as well as recursive 

values of the output, Y.  For simplicity, this research will deal with recurrent networks of 

this form, although it should be pointed out that other forms of RNNs exist in the 

literature.  The network can have any number q of previous and current values of X as 

input.  There can also be any order p of previous network predictions for Y. 

 The standard linear ARMA model has two components: the auto-regressive (AR) 

part and the moving average (MA) part.  The auto-regressive portion of the equation is 



 43

the recursive part that takes into account previous values of the variable being modeled.  

The moving average part includes the past history of model prediction error.  The general 

form of an auto-regressive moving average model is: 

 Yt = c0 + ∑p(cp * Yt-p) + ∑q(cq * Et-q)            (3.15) 

 Where Yt is the time series variable being modeled at time t, p is the order of the 

AR part, q is the order of the MA part, and Et represents the prediction error (Mandic and 

Chambers, 2000).  The equation can be represented shorthand as ARMA(p,q), where p 

and q are the size of the respective orders.  The non-real time values of Y (t < 1) are 

defined to be zero.  The error Et can be calculated with equation (3.16) where tY
^

 is the 

predicted output at time t. 

 )(
^

ttt YYE −=                (3.16) 

 Et can also represent an independent input variable, and does not necessarily have 

to be calculated as the network error.  When it is an independent variable, it will be 

represented by Xt instead of Et (Chon, 1997). 

 The linear ARMA is popular in biological applications because it is relatively 

easy to create and analyze.  However, when a more complex model is desired, nonlinear 

ARMA, or NARMA, models can be used.  There are many forms of NARMA equations, 

but for this study, a polynomial NARMA will be investigated, as defined by equation 

(3.17) (Chon, 1997). 

 Yt = (c0 + ∑p(cp * Yt-p) + ∑q(cq * Et-q))n            (3.17) 

 It can be seen from equations (3.15) and (3.17) that there will be essentially two 

different "depths" of ARMA models that can be explored.  The first is a temporal 
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dimension, represented by the orders of p and q and the second is a nonlinear, or 

polynomial, order represented by n. 

 Another aspect of the ARMA equation that can be modified is the method of 

prediction.  For one-day-ahead prediction models, the actual value of the previous output 

is used in the auto-regressive term.  In full prediction, or multiple-day-ahead prediction, 

the estimated value of the output is used (Young and Chan, 1993). 

 The analysis of RNN and ARMA models will be performed in MATLAB.  

Recursive neural networks will be developed using the Neural Network Toolbox and 

trained using back-propagation similar to the way described earlier for FNNs.  

Comparing the accuracy and structure of the two models will be done in a manner similar 

to what is done with feed-forward networks and multiple polynomial regression 

equations. 

 ARMA model coefficients will be estimated using the method of least-squares.  

For purely auto-regressive models, or models with independent input variables, the 

standard least-squares algorithm will be used.  However, when the ARMA equation 

includes an error term for the moving average part, a modified form of least-squares 

called the long-AR method will be used to estimate the model coefficients (Wolfram 

Research, 2006).  The reason a different estimation method is needed is because the error 

term Et is dependent on predicted values of the output (Equation 3.16), which are 

unknown at the time of coefficient estimation. 

 The long-AR method first estimates the output of the ARMA equation with an 

AR(k) model, where k is a large value.  The next step is to use the predictions from this 
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auto-regressive model to calculate the error from the target data.  Finally, the original 

ARMA equation is solved for using the estimated error terms. 

 

3.2.1     Perceptron-level Analysis 

 For the first step in investigating the potential equivalence between recurrent 

networks and auto-regressive moving average models, a single linear recurrent 

perceptron will be compared to linear ARMA equations.  In other words, the order of the 

regression polynomial order will be, n = 1.  Tests will be performed on three variations of 

ARMA equations.  First, an ARMA(1,1) model that uses an independent input.  The 

inputs variables for this equation are the Yt-1 and Xt.  Second, an ARMA(1,1) model that 

uses an error term.  The input variables for this equation are Yt-1 and Et-1.  Third, an 

ARMA(3,0) model with no non-recurrent inputs.  The input variables for this equation 

are Yt-1, Yt-2 and Yt-3.  In all cases, formal equations will be derived to express ARMA 

coefficients in terms of the recurrent perceptron weights and biases. 

 The formal comparisons between RNNs and ARMA equations will be confirmed 

with empirical data.  This will be similar to the methods used in the previous section, on 

comparing FNNs and MPR equations.  The data will be synthetically created and trained 

to estimate both models.  There will be two types of synthetic time series equations 

tested: stable and unstable equations.  The prediction error s(e)/s(y) of both models will 

be compared as well as the fit of the model output functions.  It will be observed if both 

the RNN and ARMA are able to find the same regression parameters for the synthetic 

system. 
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3.2.2     Network-level Analysis 

 The network-level analysis for the recurrent neural network will combine the 

research of both the sigmoid hidden layer feed-forward network and the recurrent 

perceptron.  A three-layer recurrent neural network with linear input layer, sigmoid 

hidden layer, and linear output layer will be compared to a third order NARMA(1,0) 

model (n = 3, p = 1 and q = 0).  A single, recurrent input variable will be used for both 

models.  Taylor expansion will be used to transform the recurrent network equation and 

the result will be compared to the third order NARMA(1,0) equation, term by term.  The 

formal comparisons will be confirmed by training both models to a stable, synthetic data 

set.  The fit of the output functions as well as the equivalence of the regression 

coefficients will be taken into consideration. 

 

3.3  Application to Biological Phenomena 

 The artificial neural network and statistical regression equivalences that are 

identified through tasks described in the previous sections will be applied to neural 

network models in biological applications.  For this thesis, the research will focus on the 

field of bioenvironmental engineering and hydrology.  Specifically, this research will 

investigate the application of streamflow forecasting.  However, it is important to note 

that the technology of neural networks and statistical regression as well as the knowledge 

gained on their potential equivalence can be applied to any other biological field. 

 The real world biological phenomenon that will be used is the issue of streamflow 

forecasting.  This example will be used to compare the modeling abilities of artificial 

neural networks and statistical regression equations based on the findings from the 
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previous section.  Both types of models will be used to predict the average daily 

streamflow of the Little Patuxent River in Maryland.  This is the same water system used 

in a previous experiment that found ANNs to be a successful modeling tool (Salas et al., 

2000).  Combinations of average daily temperature (°F), daily precipitation (in), and the 

streamflow (cfs) from previous days will be used as independent variables. 

 The stream flow data from the Little Patuxent River is obtained from the U.S. 

Geological Survey (USGS, 2005).  Climate data (precipitation and temperature) of the 

surrounding watershed is measured at the Clarksville gauging station and was obtained 

from the National Climatic Data Center (NCDC, 2005).  Daily values from the years 

1979, 1980, and 1984 are combined to form the training set, and the years 1989, 1991, 

and 1992 are combined to form the validation set.  The maximum and minimum values 

for both sets are shown in Table 3.2.  It is notable that the range of the validation data is 

slightly larger than that of the training data.  This means the models will be tested on their 

ability to project predictions to data outside of their trained range.  The graphs and 

histograms for both the training and validation data are presented in Appendix B. 

Table 3.2: Minimum and maximum values for the streamflow data. 
Training Set Validation Set  

Min Max Min Max 
Precipitation (in) 0 3.09 0 3.80 
Temperature (°F) 14 101 19 102 
Streamflow (cfs) 6.7 2140 3.8 2420 
 
 

3.3.1  Confirming the Accuracy of Neural Networks 

 The results from Salas et al. (2000) will be replicated and confirmed.  Salas et al. 

(2000) concluded that a three-layer feed-forward network with sigmoid activation 

functions in the hidden and output layers outperformed a simple conceptual rainfall-
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runoff statistical model.  This study found that the best-fit model for predicting 

streamflow was a feed-forward network that used the current day's temperature and the 

current and previous days' precipitation as input variables, along with ten nodes in the 

hidden layer.  The accuracy of training and validating the FNN will be verified as well as 

the optimal number of hidden nodes. 

 

3.3.2  Comparison of ANNs and Regression Models 

 A series of artificial neural networks and statistical regression equations will be 

used to model the streamflow of the Little Patuxent River.  The variables of interest will 

be: Qt, the average daily discharge (cfs) at time t; Pt, the daily precipitation (in); Tt, the 

average daily temperature (°F); and t, the day.  There will be two groups of input 

parameters used, non-recursive (Functions 1 through 4) and recursive (Functions 5 

through 8), as displayed in Table 3.3.  Each input data set uses a different combination of 

precipitation, temperature and streamflow.  There will always be only one output for the 

models, which is streamflow. 

Table 3.3: The functions and input sets that will be approximated by the models. 
Non-recursive Functions Recursive Functions 
Function 1: Qt = f(Pt) 
Function 2: Qt = f(Pt , Pt-1) 
Function 3: Qt = f(Pt , Tt) 
Function 4: Qt = f(Pt , Pt-1 , Tt) 

Function 5: Qt = f(Pt , Qt-1) 
Function 6: Qt = f(Pt , Pt-1 , Qt-1) 
Function 7: Qt = f(Pt , Tt , Qt-1) 
Function 8: Qt = f(Pt , Pt-1 , Tt , Qt-1) 

 
 

3.3.2.1  Non-recursive Input - FNN versus MPR 

 The non-recursive functions (Functions 1 through 4) will be modeled by a series 

of feed-forward networks and multiple polynomial regression equations.   Function 1 for 

example, which uses only precipitation as an input to predict streamflow, is represented 
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by the network and polynomials shown in Figure 3.3.  The other functions will be similar, 

except that they will involve more input variables (combinations of precipitation and 

temperature). 

FNN:  vs. MPR:  n
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Figure 3.3: Models used to estimate Function 1. 
 
 The structure of the feed-forward networks will be either a three or four layer 

network.  For the first phase of tests, a traditional three layer network will be used.  The 

input and output layers will use a linear activation function, while the hidden layer nodes 

will use a hyperbolic tangent (sigmoid) activation function.  Two additional commonly 

used network structures, shown in Table 3.4, will also be tested to compare the accuracy 

and functionality of the different networks.  For the two hidden layer network, the second 

sigmoid layer will only have one hidden node.  For the polynomial network, the 

activation function will be the third order Taylor series expansion of the sigmoid 

function. 

Table 3.4: ANN structures to be tested. 
Network Structure 
Linear - Sigmoid - Linear 
Linear - Sigmoid - Sigmoid - Linear 
Linear - Polynomial - Linear 
 
 The weights and biases for the ANNs are initialized to random normal values and 

will be trained using standard back-propagation.  In every case investigated, five trial 

networks will be trained to minimize the effects of the random initialization.  A 

maximum of five-hundred epochs will be used to train the FNNs.  ANN predictions and 

structure will be compared to those of multiple polynomial regression equations. 
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 The streamflow and climate data will be pre-processed to be a better fit with the 

critical range of the network's activation function.  For the hyperbolic tangent activation 

function used in this study, the best range is from -1 to +1.  For one set of trials, the data 

will be linearly scaled to the range -0.8 to +0.8 by using equation (3.12).  For another set 

of trials, the streamflow data will be transformed by taking the log of the data, 

standardizing it to a normal distribution, and then scaling it to the range -0.8 to +0.8 by 

using equation (3.13).  The reason for attempting log-scaling is that the streamflow 

distribution for both the training and validation sets is skewed, with most of the data 

values being very small.  The prediction accuracy for the models will be observed for 

both types of pre-processing, to see if the log normal transformation has any advantage 

over simple linear scaling. 

 The number of hidden nodes in the ANNs will be varied from one to thirty-five.  

The order of the polynomial regression equations will vary from one to fifteen.  The 

models will be trained and validated using the same data series, with five trials being 

performed for each.  For each trial, the error ratio s(e)/s(y) will be calculated, based on 

equation (3.11).  The error ratio for the ANNs for each number of hidden nodes will be 

compared to the error ratio found for each order of MPR.  Two models will be considered 

to be empirically equivalent if the error ratio between the two is similar.  The structure of 

those models as well as the output functions that they both produce (graph) will then be 

compared to determine their similarities.  If possible, the network parameters will be 

converted to equivalent regression parameters using the formal equations developed 

earlier. 
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3.3.2.2  Recursive Input - RNN versus ARMA 

 For the recursive functions (Functions 5 through 8), feed-forward networks and 

recurrent neural networks will be compared to auto-regressive moving average equations.  

The models will either be used for one-day-ahead prediction or full prediction.  One-day-

ahead prediction will use the actual Qt-1 as an input value, while full prediction will use 

the predicted Qt-1 value as input.  Keeping to the intent of the network structures, FNNs 

will only be used for one-day-ahead prediction, while RNN will only be used for full 

prediction (multiple-day-ahead).  ARMA equations will be tested for both prediction 

methods.  Figures 3.4 and 3.5 show the models used to estimate Function 5 and the other 

recursive functions will be tested in a similar manner. 
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Figure 3.4: One-day-ahead prediction models for Function 5. 
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Figure 3.5: Full prediction models for Function 5. 
 
 The testing in this section will proceed similarly to the non-recursive section.  

Recurrent networks will have the same structure as the feed-forward networks, but will 

have a connection from the output layer to the input layer with a single time-unit delay 

function.  Like before, five-hundred epochs will be used when training FNNs, while a 

maximum of fifty epochs will be used for RNNs.  The difference in number of epochs 

used is due to the much longer training time required by recurrent networks.  Instead of 
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multiple polynomial regression, all ANNs will be compared to nonlinear polynomial 

auto-regressive moving average (NARMA) models. 

 A summary of the ANN and regression models to be tested and compared for both 

the recurrent and non-recurrent sections is presented in Table 3.5. 

Table 3.5: Summarizes the comparisons being tested between ANNs and regression. 
Network Regression Prediction Method Pre-processing # of Hidden Nodes 

and # of Orders 
FNN 
RNN 

MPR 
ARMA 

One-day-ahead 
Full prediction 

Linear Scaled 
Log Normal 

1-45 Hidden Nodes
1-15 Orders 
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4  Results and Discussion 

4.1  Equivalence of FNN and MPR 

4.1.1  Perceptron-level Analysis 

4.1.1.1  Linear Perceptron and Linear Regression 

 The first step in the investigation confirmed the proposal by Sarle (1994) that a 

neural perceptron with a linear activation function can be reduced to a multiple linear 

regression equation.  A linear perceptron with k input variables is represented in Figure 

4.1.  The linear regression model is defined by: 

 Y = c0 + c1 * X1 + c2 * X2 + ... + ck * Xk            (4.1) 

 
Figure 4.1: An artificial perceptron with a linear activation function. 

 
The perceptron in Figure 4.1 can be represented mathematically by equation (4.2). 

 Y = b + w1 * X1 + w2 * X2 + ... + wk * Xk           (4.2) 

Comparing (4.1) to (4.2) term by term, the following formal equivalences can be seen: 

 c0 = b                (4.3) 

 c1 = w1                (4.4) 

 c2 = w2                (4.5) 

 ck = wk                (4.6) 

 This formal comparison was then tested empirically.  Synthetic input and output 

data was used to determine the accuracy of both the linear perceptron and linear 

regression.  For the training data, the value of X was given integer values ranging from  
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-149 to 150.  The target values for Y were then determined by the equation: 

 Y = 100 + 2 * X + 10 * ε              (4.7) 

 A normalized random error, designated by ε, was assigned to the value of Y to 

simulate noise in the data.  A set of validation data was created in the same manner, but 

with the values of X ranging from 151 to 250.  The purpose of this is to test the ability of 

the models to extrapolate to future values of Y not included in the training set.  The linear 

perceptron and linear regression model were both fit to model the synthetic data.  Results 

show that the models produced identical accuracy and both produced the same best-fit 

line (Figure 4.2 and Table 4.1). 

 Once the accuracy was confirmed, the weight and bias of the trained linear 

perceptron were converted to polynomial coefficients using (4.3) and (4.4) and examined 

to determine if it was able to accurately predict the parameters of the regression equation.  

Results are presented in Table 4.2 and indicate that the weights of the linear perceptron 

match the parameters of the linear regression equation.  The structure of the equation 

representing the perceptron is identical to the traditional form of a multiple linear 

regression equation.  This shows that the two models have the ability to produce the same 

statistical equation. 

 It should be noted that for natural events such as watershed response to 

precipitation a wider range both during training and validation should be considered in 

order to encompass the stochastic and variability in nature (i.e., the number of dry years, 

wet years, and normal years in the data set). 



 55

-150 -100 -50 0 50 100 150 200 250
-300

-200

-100

0

100

200

300

400

500

600

700

X

Y
Target Data
MPR
FNN

Training Validation

 
Figure 4.2: Linear regression and linear perceptron trained to synthetic data. 
 
Table 4.1: Linear Perceptron - Prediction error from both models. 
 1st Order MPR Linear Perceptron 
Training Error s(e)/s(y) 0.0607 0.0607 
Validation Error s(e)/s(y) 0.1898 0.1898 
 
Table 4.2: Linear Perceptron - Regression coefficients found by both models. 
 Target 1st Order MPR Linear Perceptron 
c0 100 100.2678 100.2678 
c1 2 1.9997 1.9997 
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4.1.1.2  Sigmoid Perceptron and Polynomial Regression 

 The artificial perceptron was then tested using a hyperbolic tangent activation 

function.  This is a function commonly used in ANN applications because of its ability to 

make the network nonlinear.  The sigmoid perceptron is shown in Figure 4.3.  This 

perceptron can be represented mathematically by: 

 Y = tanh(b + w1X1 + w2X2 + ... + wkXk)            (4.8) 

 
Figure 4.3: An artificial perceptron with a sigmoid activation function. 

 
 In this form, this equation is equivalent to a nonlinear regression equation that 

uses the hyperbolic tangent function.  The coefficients (b and wi) of a regression equation 

in this form can be determined by taking the inverse hyperbolic tangent of the output 

data, Y, and then performing least squares. 

 To compare the sigmoid perceptron to multiple polynomial regression, Taylor 

series expansion on equation (4.8) is performed using the taylor function in MATLAB on 

the hyperbolic tangent function.  The following Taylor series expansion is established: 

 K−+−+−= 9753

2835
62

315
17

15
2

3
1)tanh( xxxxxx           (4.9) 

 For simplicity, this research will begin by using only the first two terms of (4.9) to 

estimate the hyperbolic tangent function, up to the third order by: 

 3

3
1)tanh( xxx −≈               (4.10) 
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 The third order Taylor expansion of the sigmoid activation function is only a 

rough estimate, and is most accurate at small values of X.  A graph of both functions 

show that equation (4.10) is not accurate outside of the range -0.5 to +0.5 (Figure 4.4). 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(x
)

x

f(x) = tanh(x)

f(x) = x - 1/3 * x3

 
Figure 4.4: The third order Taylor expansion of tanh(x). 

 
 For one input variable, X, the perceptron equation (4.8) and the third order Taylor 

expansion equation (4.10) can be combined to form the approximate perceptron equation: 

 3)(
3
1)( wXbwXbY +−+=              (4.11) 

Using polynomial expansion and combining like terms produces the equation: 

 332223 *)
3
1(*)(*)()

3
1( XwXbwXwbwbbY −+−+−+−=          (4.12) 

This equation has the structure of a third order polynomial: 

 3
3

2
210 *** XcXcXccY +++=             (4.13) 
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By comparing similar terms, the following parameter conversion equations can be set up: 

 3
0 3

1 bbc −=                (4.14) 

 wbwc 2
1 −=                (4.15) 

 2
2 bwc −=                (4.16) 

 3
3 3

1 wc −=                (4.17) 

 Equations (4.14) to (4.17) show how third order polynomial regression can be 

estimated by the weight and bias of a sigmoid perceptron.  However, the problem with 

these equations is that there are two variables being used to predict four unknowns.  For a 

given third order equation (4.13), it is not likely that a solution for b and w can be found. 

 These formal equations were tested empirically in the same manner as the 

previous section with the linear perceptron.  The following third order polynomial 

equation was used to create synthetic target data: 

 Y = 100 + 2 * X - 0.005 * X2 + 0.0001 * X3 + 10 * ε          (4.18) 

 Without scaling the data, the perceptron is unable to model the data, since the 

output is restricted to the range -1 to +1 (Figure 4.5a).  However, even when scaling the 

input and output data to a range of -0.1 to +0.1, the perceptron is still incapable of 

matching the trend of the data (Figure 4.5b).  The perceptron is only able to train itself to 

have an error as low as s(e)/s(y) = 0.2088, which is much larger than the error of the 

regression equation (0.0338) (Table 4.3).  It is interesting to note that the shape of the 

perceptron output function in Figure 4.5b looks linear.  This suggests that with only one 

perceptron, an ANN is insufficient for modeling regression orders larger than one. 
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 Empirical results confirm that the sigmoid perceptron is unable to estimate the 

parameters of the polynomial regression equation.  Network training found the best-fit 

weight (w = 0.7957) and bias (b = 0.0109) for the perceptron.  The regression coefficients 

derived from the network parameters using equations (4.14) to (4.17) are shown in Table 

4.4.  As expected from the linear output function in Figure 4.5b, the perceptron is not 

close in predicting the higher order polynomial coefficients.  In order to accurately model 

the regression equation, more parameters are needed in the ANN, which means a larger 

network is required. 
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Figure 4.5: The output function for MPR and sigmoid perceptron with non-scaled (a) and scaled (b) data. 
 
Table 4.3: Sigmoid Perceptron - Prediction error from both models for scaled data. 
 3rd Order MPR Sigmoid Perceptron 
Training Error s(e)/s(y) 0.0338 0.2088 
Validation Error s(e)/s(y) 0.0395 1.3935 
 
Table 4.4: Sigmoid Perceptron - Regression coefficients found by both models (values in scaled domain). 
 3rd Order MPR Sigmoid Perceptron 
c0 0.0166 0.0109 
c1 0.4719 0.7956 
c2 -1.7106 -0.0069 
c3 53.4606 -0.1679 
 
 



 61

4.1.2  Network-level Analysis - Polynomial Activation Function 

4.1.2.1  Specific Example - Third Order with One Variable 

 When modeling a one input variable, third order equation, a single artificial 

perceptron is unable to replicate the results of a regression equation.  The investigation 

will continue by looking at larger artificial neural networks.  This time, a three layer feed-

forward neural network will be used.  Since this is a one input and one output system, the 

input and output layers will only have one node in each.  However, by modifying the 

number of hidden nodes, the structure and number of parameters in the network will 

change. 

 First, a basic FNN with one hidden node will be tested (Figure 4.6).  Like the 

third order regression equation (4.13), this FNN also has four parameters.  Combining the 

equations of the perceptrons in this network produces the overall FNN equation: 
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Figure 4.6: One hidden node FNN with cubic activation function. 

 
By comparing the terms of (4.12) and (4.19), the following equivalences are found: 

 2
3
120 bbwc +=                (4.20) 

 2
1211 3 bwwc =                (4.21) 

 12
2
12 3 bwwc =                (4.22) 

 2
3
13 wwc =                (4.23) 
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 While there are now four parameters in each model, the network weight w2 

appears in all of the coefficient equations (4.20) to (4.23).  As a result, the neural network 

is unable to train its weights and biases to find the unique solution for the regression 

parameters.  Both models were then trained and validated on the same synthetic data 

series that was used for the single sigmoid perceptron in the previous section, which was 

given as equation (4.18). 

 Figure 4.7 shows that the FNN with one hidden node is unable to model the data 

with the same degree of accuracy as the third order regression equation.  The error for the 

FNN (s(e)/s(y) = 0.2367) was much higher than for MPR (s(e)/s(y) = 0.0327).  This 

difference in error is even more dramatic in the validation data (2.0150 for FNN as 

opposed to 0.0368 for MPR) (Table 4.5).  Using equations (4.20) to (4.23), the regression 

coefficients were estimated from the FNN parameters (Tables 4.6 and 4.7).  Results 

indicate that the one hidden node FNN is able to come close to determining the 

regression coefficients, but is inaccurate enough to produce a different output function as 

seen in Figure 4.7. 
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Figure 4.7: The functions produced by third order regression and one hidden node FNN. 
 
Table 4.5: One Cubic Hidden Node - Prediction error from both models. 
 3rd Order MPR 1 Lin - 1 3rd - 1 Lin FNN 
Training Error s(e)/s(y) 0.0327 0.2367 
Validation Error s(e)/s(y) 0.0368 2.0150 
 
Table 4.6: One Cubic Hidden Node - Trained network weights and biases. 
w1 w2 b1 b2 
0.1602 0.0536 -1.4865 107.8844
 
Table 4.7: One Cubic Hidden Node - Regression coefficients found by both models. 
 Target 3rd Order MPR 1 Lin - 1 3rd - 1 Lin FNN 
c0 100 99.7267 107.7082 
c1 2 2.0205 0.0569 
c2 -0.005 -0.0050 -0.0061 
c3 0.0001 0.0001 0.00022045 
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 Similar tests were performed using two hidden nodes in the hidden layer (Figure 

4.8).  Like before, a cubic activation function was used in the hidden nodes.  The output 

from this FNN can be defined by: 

 3
3

224
3

113 )(*)(* bbXwwbXwwY ++++=            (4.24) 

 
Figure 4.8: Two hidden node FNN with cubic activation function. 

 
 Using polynomial expansion on equation (4.24) and combining terms, the result is 

compared to the polynomial regression equation (4.13).  The coefficients of the 

polynomial can then be defined in terms of the network weights and biases as: 

 3
3
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3
130 bbwbwc ++=               (4.25) 

 2
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2
1311 33 bwwbwwc +=               (4.26) 
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2
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2
12 33 bwwbwwc +=               (4.27) 

 4
3
23

3
13 wwwwc +=               (4.28) 

 The results from the empirical test show that both the FNN and the MPR create 

the same output function when trained to the synthetic training data (Figure 4.9).  Both 

models also predict the validation data with the same degree of accuracy (Table 4.8).  

When the network parameters (Table 4.9) are transformed into regression coefficients, 

the results are identical (Table 4.10).  These results confirm that a feed-forward network 

with two cubic activation functions can be equivalent to a third order regression equation 

with one input variable. 
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Figure 4.9: The functions produced by third order regression and two hidden node FNN. 
 
Table 4.8: Two Cubic Hidden Nodes - Prediction error from both models. 
 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN 
Training Error s(e)/s(y) 0.0340 0.0341 
Validation Error s(e)/s(y) 0.0304 0.0309 
 
Table 4.9: Two Cubic Hidden Nodes - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
-0.0170 0.0433 -2.1006 1.0980 -3.7277 -1.9174 0.0583 
 
Table 4.10: Two Cubic Hidden Nodes - Regression coefficients found by both models. 
 Target 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN 
c0 100 101.1230 101.1230 
c1 2 2.0156 2.0156 
c2 -0.005 -0.0050 -0.0050 
c3 0.0001 0.0001 0.000099689 
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 It is interesting to note that the two hidden node FNN did not always match the 

results of the MPR equation.  Some of the trials produced results as seen in Figure 4.10 

instead.  In this case, the output function for the FNN looks more like the results from the 

one hidden node network (Figure 4.7) and does not fit the trend of the synthetic data.  As 

should be expected in this situation, the FNN is unable to predict the coefficients to the 

polynomial equation (Table 4.13).  During the training phase for the failed network, all 

five hundred of the epochs were executed by back-propagation without reaching the 

target performance.  In comparison, correctly trained networks would meet the target 

performance and stop training after only a few epochs.  The reason for the failed trials is 

likely to be caused by the random initialization of network parameters.  In the case of the 

failed network, the initialized parameters most likely put the network in one of the local 

minima of the error function, causing it to be unable to reach the true regression equation. 
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Figure 4.10: Failed trial with two hidden nodes. 
 
Table 4.11: Two Cubic Hidden Nodes (Failed) - Prediction error from both models. 
 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN 
Training Error s(e)/s(y) 0.0328 0.2867 
Validation Error s(e)/s(y) 0.0255 2.6045 
 
Table 4.12: Two Cubic Hidden Nodes (Failed) - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
1.3882 -0.0090 0.0001 -1.1253 6.8013 -3.4058 2.2951 
 
Table 4.13: Two Cubic Hidden Nodes (Failed) - Regression coefficients found by failed trial. 
 Target 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN 
c0 100 100.7072 46.7756 
c1 2 1.9837 0.3651 
c2 -0.005 -0.0050 0.0038 
c3 0.0001 0.0001 0.00019580 
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 While the two hidden node FNN is able to replicate the third order regression 

equation, it uses more parameters than the MPR.  Seven parameters are used in the FNN 

in the form of weights and biases, as opposed to the four used to represent the third order 

polynomial.  This can be inconvenient in situations with a large amount of data.  

Typically modelers would like to find the most efficient equation for representing the 

system in question, since extra parameters tend to make the equation overly complex. 

 To make the two hidden node FNN simpler, the weights and biases used for the 

output node were ignored.  In this modified two hidden node network, w3 and w4 were set 

equal to one and b3 was set to zero (Figure 4.11), reducing the network equation to: 

 3
22

3
11 )()( bXwbXwY +++=              (4.29) 

 
Figure 4.11: Modified two hidden node FNN with parameters w3, w4 and b3 ignored. 

 
 This network arrangement produces polynomial coefficients determined by: 
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2

3
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3
13 wwc +=                (4.33) 

 When this new network was trained to the empirical data, it was able to produce 

results just as effectively as the fully parameterized network.  The output function 

matched that of the MPR equation with the same degree of accuracy as the full parameter 
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network (Figure 4.12).  Transforming the network parameters with (4.30) to (4.33) 

confirm that the network finds the same regression coefficients as MPR (Table 4.16).  It 

should also be noted that this network sometimes failed in the same manner as the full 

parameter two hidden node network. 

 It is interesting that this four parameter network succeeded where the other four 

parameter network (the one hidden node network) failed.  This suggests that as long as 

there are enough parameters before the hidden node, the network will be able to replicate 

a given MPR of the same order with the same number of parameters.  The network 

weights that were ignored (w3, w4 and b3) are mostly used by the network for scaling and 

offsetting the output from the hidden layer, where the weights are used for scaling and the 

bias for offsetting. 
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Figure 4.12: The functions produced by third order regression and modified two hidden node FNN. 
 
Table 4.14: Modified Two Cubic Hidden Nodes - Prediction error from both models. 
 3rd Order MPR Modified 1 Lin - 2 3rd - 1 Lin FNN 
Training Error s(e)/s(y) 0.0343 0.0343 
Validation Error s(e)/s(y) 0.0415 0.0415 
 
Table 4.15: Modified Two Cubic Hidden Nodes - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
0.0445 0.0218 1 1 -1.9936 4.7669 0 
 
Table 4.16: Modified Two Cubic Hidden Nodes - Regression coefficients found by both models. 
 Target 3rd Order MPR Modified 1 Lin - 2 3rd - 1 Lin FNN 
c0 100 100.3981 100.3981 
c1 2 2.0173 2.0173 
c2 -0.005 -0.0051 -0.0051 
c3 0.0001 0.0001 0.00009859 
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4.1.2.2  Generalization to MPR 

 The previous section shows that the number of hidden nodes in an ANN has a 

large effect on their performance.  The number of hidden nodes is an important aspect of 

ANN modeling.  Varying the number of hidden nodes gives neural networks versatility.  

However, as discussed earlier, there are no formal methods for determining the best 

number of hidden nodes to use.  In this section, FNNs with a variable number of hidden 

nodes will be used to model polynomial regression equations of various orders.  The 

order and number of variables of the regression equation will be compared to the 

minimum number of hidden nodes needed to replicate the equation. 

 The research from the previous section in one input variable, third order 

regression equations was expanded to investigate higher orders of polynomials with 

multiple input variables.  Synthetic data was used to fit feed-forward neural networks 

with polynomial activation functions to polynomial multiple regression equations.  The 

minimum number of hidden nodes required to model each MPR equation is presented in 

Table 4.17.  In each case, initial observations indicate that the FNN has at least as many 

parameters as the equivalent MPR.  Most of the time, the total number of parameters is 

higher for the feed-forward networks.  This is due to the large number of connections that 

are made between each layer of the network.  Each of these connections has a weight 

parameter assigned to it and each node has a bias parameter.  Many of these network 

parameters are most likely not required, but they are included in the interest of making 

complete networks, which are typically used in real life applications. 

 The results from this test confirm that for all first order equations, only one 

hidden node is required.  Additional hidden nodes are not required for additional 
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variables.  This is because the linear regression coefficients for each term are controlled 

by the weights going from the input layer to the hidden node. 

 For all of the second order MPR equations, the minimum number of hidden nodes 

appears to be equal to the number of input variables.  As the order of the regression 

equation increases and the number of variables increases, the minimum number of hidden 

nodes becomes larger.  The basic trend that occurs in the results is that as the number of 

parameters in the underlying regression equation increases, the number of hidden nodes 

required increases, which is expected. 
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Table 4.17: Minimum number of hidden nodes required to replicate a MPR. 
Number of 
Variables 

(A) 

MPR 
Order 

(B) 

Number of 
MPR Parms 

(C) 

Number of 
Hid Nodes 

(D) 

Number of 
FNN Parms 

(E) 

Modified 
FNN (E - D) 

(F) 
1 2 1 4 3 
2 3 1 4 3 
3 4 2 7 5 
4 5 2 7 5 

 
 
1 

5 6 3 10 7 
1 3 1 5 4 
2 6 2 9 7 
3 10 3 13 10 
4 15 5 21 16 

 
 
2 

5 21 8 33 25 
1 4 1 6 5 
2 10 3 16 13 
3 20 5 26 21 
4 35 9 46 37 

 
 
3 

5 56 16 81 65 
1 5 1 7 6 
2 15 4 25 21 
3 35 7 43 36 
4 70 15 91 76 

 
 
4 

5 126 26 157 131 
1 6 1 8 7 
2 21 5 36 31 
3 56 10 71 61 
4 126 22 155 133 

 
 
5 

5 252 47 330 283 
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 One of the more interesting cases from these results is that for modeling a third 

order, single input, regression equation.  Table 4.17 confirms the results that were found 

in the previous section.  As discussed before, simply looking at the number of parameters 

in the two types of models one would initially speculate that a feed-forward network with 

one hidden node (resulting in four parameters) could accurately replicate a third order 

regression model with one input (which also uses four parameters).  However, the results 

indicate that at least two hidden nodes (with seven parameters) are required by a FNN to 

reproduce the MPR equation. 

 As mentioned before, the feed-forward networks always contained more 

parameters than the equivalent regression equation.  This can be undesirable for 

modelers, because the extra parameters make the model needlessly more complex.  This 

is also a concern for large systems with lots of data, where memory limitations might 

become an issue.  However, in many cases, this can not be avoided.  For example, for a 

two input variable, third order system, it was found that a minimum of three hidden nodes 

were required.  This FNN uses thirteen parameters, compared to the MPR's ten 

parameters.  If only two hidden nodes are used, the network will only have nine 

parameters, making it unable to duplicate the regression equation. 

 While this observation is true for many of the multiple polynomial equations, it 

appears to fail for some of the examples.  There are some cases where it is possible to 

have fewer hidden nodes than the optimal one listed in Table 4.17 and still have more 

parameters than the regression equation being modeled.  Take for example, a third order 

equation with three variables, which results in twenty regression parameters.  The 

minimal number of hidden nodes found was five, with twenty-six parameters.  A four 
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hidden node network would have twenty-one parameters, which is still larger than 

twenty.  However, this discrepancy can be explained by looking at the number of network 

parameters minus the number of weights going from the hidden layer to the output layer, 

shown in Table 4.17 as Column F.  As discussed in the previous section, these weights do 

not contribute much to the uniqueness of the FNN output function.  As a result, they can 

usually be ignored.  By subtracting this number from the total number of parameters, the 

result is a more accurate representation of the number of effective parameters in the 

neural network.  With the three input, third order example, the number of effective 

parameters for a four hidden node network is twenty-one minus four, or seventeen, which 

is less than the number of regression parameters.  This means that the four hidden node 

model is not large enough and five hidden nodes are needed. 

 For all of the cases, the number of total network parameters minus the number of 

secondary weights (equal to the number of hidden nodes) was still larger than the number 

of regression parameters.  This reaffirms that the weights connecting the hidden layer to 

the output layer seem to be unnecessary and ineffective at improving the complexity of 

the overall network function. 

 One of the problems noticed with higher order MPR equations, mainly with fifth 

order, is that it took more trials to determine the minimum number of hidden nodes.  And 

in most cases for fifth order polynomials, it seems like minimum number of hidden nodes 

seen in Table 4.17 could be smaller.  For example, for a fifth order, five input variable 

equation, the lowest number of hidden nodes determined was forty-five.  However, based 

on comparing the number of parameters like before, a forty-two hidden node network 

should be the optimal number.  The complexity of these high ordered equations most 
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likely makes it difficult for the FNN to find the unique, best-fit solution by using back-

propagation.  Also, there probably exist a large number of local minima in the error 

function. 

 Results showed that neural networks could accurately replicate and predict the 

models formed by regression based methods.  Different combinations of the number of 

predictor variables used and the highest polynomial order underlying the physical data 

were used to compare the two models.  From this, a relationship was found between the 

simplest model required for the neural network and the equation used for regression.  A 

trend was found relating the minimal number of hidden nodes required in the feed-

forward network and the order of the equation the network represents.  It has been shown 

that a neural network with an activation function of order N can be reduced to a 

polynomial regression equation also of order N, as long as there are enough parameters in 

the ANN based on the number of hidden nodes.  This is the critical number of hidden 

nodes required for a particular equation order N and number of input parameters M.  

Fewer hidden nodes will not allow the ANN to replicate the complexity of the underlying 

polynomial regression equation.  After this critical number of hidden nodes, the model 

accuracy will not increase any further, because the network has already replicated the 

regression equation. 
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4.1.3  Network-level Analysis - Sigmoid Activation Function 

4.1.3.1  Specific Example - Third Order with One Variable 

 The previous section found that two hidden nodes were required for a FNN with a 

polynomial activation function to replicate a third order regression equation.  These 

results were then tested with a sigmoid activation function in the hidden layer. 

 First, a sigmoid network with only one hidden node was trained to the synthetic 

third order polynomial equation (4.18) (Figure 4.13).  Interestingly, while this network 

failed to replicate the third order regression target data, the output function of this 

network resembles that of a second order regression equation.  When a second order 

MPR is estimated along with the one hidden node network, the results are encouraging.  

The training and validation error was similar for both models (Table 4.18) as well as their 

output function (Figure 4.14). 

 
Figure 4.13: One hidden node FNN with sigmoid activation function. 

 
 However, it would be difficult to convert the network parameters into regression 

coefficients in this case because the hyperbolic tangent activation function is odd.  This 

means that the Taylor series expansion uses only odd numbered powers.  This seems to 

suggest that with only one hidden node, a FNN with a sigmoid activation function is at 

most able to model a second order regression equation.  This evidence strengthens the 

argument that there is a relationship between the number of hidden nodes in an ANN and 

the order of the statistical regression equation it is equivalent to. 
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Figure 4.14: A second order MPR and one hidden node FNN produce similar outputs. 
 
Table 4.18: One Sigmoid Hidden Node - Prediction error from both models. 
 2nd Order MPR 1 Lin - 1 Sig - 1 Lin FNN 
Training Error s(e)/s(y) 0.1748 0.1650 
Validation Error s(e)/s(y) 1.8705 1.8938 
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 The previous example showed that the one sigmoid hidden node FNN was 

insufficient to model the third order MPR.  This network lacked the number of effective 

parameters required for the model.  To increase the number of parameters, a two hidden 

node network was then tested (Figure 4.15).  The output, Y, of this network can be 

calculated by: 

 Y = w3*tanh(b1 + w1X) + w4*tanh(b2 + w2X) + b3          (4.34) 

 
Figure 4.15: Two hidden node FNN with sigmoid activation function. 

 
 Using the third order Taylor series expansion (Equation 4.10) to estimate the 

hyperbolic tangent functions, the network equation is transformed into a polynomial 

equation and like terms are combined.  Comparing term by term to equation (4.13), the 

following formal equations are found for the regression coefficients. 
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 The empirical results for the two hidden node FNN show that with the sigmoid 

activation function, the network is still able to accurately find the correct trend to the 

training data series (Figure 4.16).  Both regression and the FNN produced similar training 
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error (Table 4.19).  However, outside of the training range, the sigmoid network was not 

able to match the accuracy of the regression model.  The network output function curves 

under the target function. 

 While the network seems to fit the training data with the same function as MPR, 

the regression coefficients derived from the formal equations (4.35) to (4.38) are not 

close to the actual coefficients at all (Table 4.21).  The fact that all of the network derived 

coefficients are negative suggests that if they were put into a third order regression 

equation, it would not produce the correct function.  The reason for the discrepancy is 

most likely due to the fact that the range of the input and output data was well outside of 

the effective range of the sigmoid activation function.  This means that the data is also 

outside of the range where the third order Taylor series expansion of the hyperbolic 

tangent is accurate.  In order to get more accurate regression parameter estimations, the 

data should be within the range of -1 to +1 at least.
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Figure 4.16: Output function for two hidden node sigmoid FNN. 
 
Table 4.19: Two Sigmoid Hidden Nodes - Prediction error from both models. 
 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN 
Training Error s(e)/s(y) 0.0394 0.0396 
Validation Error s(e)/s(y) 0.0336 0.5522 
 
Table 4.20: Two Sigmoid Hidden Nodes - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
0.0105 -0.0079 779.9 -2033.1 -2.0049 -1.8755 -1087.3 
 
Table 4.21: Two Sigmoid Hidden Nodes - Regression coefficients found by sigmoid network. 
 Target 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN 
c0 100 100.4401 -1213.9 
c1 2 1.9588 -65.1611 
c2 -0.005 -0.0050 -0.0656 
c3 0.0001 0.0001 -0.000635 
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 However, even when the input and output data is scaled to the range of -0.1 to 

+0.1, it was not found to be possible for the sigmoid hidden layer feed-forward network 

to replicate the coefficients of the polynomial regression equation (Table 4.22 and 4.23).  

Network training with the scaled data appears to have the same problem as before with 

the non-scaled data.  The biases of the sigmoid layer (b1 and b2) put the range of the input 

values into the sigmoid function outside of the effective range for the Taylor series 

expansion.  It may also be difficult to compare the regression coefficients using scaled 

data anyway, because the coefficients are also in the scaled domain.  With this particular 

regression equation and data range, the best the sigmoid activation function is able to do 

is match trend of the training data.  The sigmoid is unable to be analytically converted 

into the correct polynomial function, which is why it incorrectly graphs the validation 

data (Figure 4.16). 

Table 4.22: Trained network weights and biases when data is scaled to the range -0.1 to +0.1. 
w1 w2 w3 w4 b1 b2 b3 
-21.6945 -9.5871 -0.0659 -0.9371 2.1625 -2.2231 -0.8356 
 
Table 4.23: Regression coefficients found when data is scaled (values in scaled domain). 
 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN 
c0 0.0151 -2.1047 
c1 0.4746 -40.6751 
c2 -1.6823 -124.3833 
c3 53.7498 -499.6091 
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 Like with the polynomial feed-forward network, the two sigmoid hidden node 

feed-forward network is modified by removing the weights and biases from the last layer 

(Figure 4.17).  This structure produces the network output function: 

 Y = tanh(b1 + w1X) + tanh(b2 + w2X)            (4.39) 

 
Figure 4.17: Modified two sigmoid hidden node FNN with parameters w3, w4 and b3 ignored. 

 
 The equivalent regression coefficients based on this network are determined like 

before by using Taylor series expansion, resulting in equations (4.40) to (4.43). 
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 The empirical results show that the modified sigmoid feed-forward network is not 

able to model the third order polynomial target data (Figure 4.18).  The output range for 

the network is limited to -1 to +1, which is the output range for the hyperbolic tangent 

function.  In order to model this particular target data, the FNN requires the extra weights 

and bias.  As discussed before, it is apparent that these extra parameters serve the purpose 

of scaling and offsetting the output from the hidden layer.  While these weights and 

biases were unnecessary in the polynomial FNN, they are important in the sigmoid FNN. 
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Figure 4.18: The output functions from third order regression and modified two sigmoid hidden node FNN. 
 
Table 4.24: Modified Two Sigmoid Hidden Nodes - Prediction error from both models. 
 3rd Order MPR Modified 1 Lin - 2 Sig - 1 Lin FNN 
Training Error s(e)/s(y) 0.0355 1.0237 
Validation Error s(e)/s(y) 0.0423 3.4436 
 
Table 4.25: Modified Two Sigmoid Hidden Nodes - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
3.8090 0.1142 1 1 -1.7213 4.5599 0 
 
Table 4.26: Modified Two Sigmoid Hidden Nodes - Regression coefficients found by both models. 
 Target 3rd Order MPR Modified 1 Lin - 2 Sig - 1 Lin FNN 
c0 100 99.9237 -27.0663 
c1 2 1.9866 -9.7355 
c2 -0.005 -0.0049 24.9138 
c3 0.0001 0.0001 -18.4218 
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 The results have indicated that two hidden nodes are sufficient to model a third 

order polynomial equation.  However, the range of the data tested in the empirical studies 

was shown to be poor for predicting the polynomial regression coefficients.  This also led 

to poor prediction in the validation stage.  In order to get a better understanding of the 

formal equations developed from Taylor series expansion, a new empirical equation 

(4.44), with the values of X spanning from -1 to +1 was tested.  Values from 1 to 1.5 were 

used for validation. 

 Y = 0.1 - 0.4 * X + 0.3 * X2 + 1 * X3            (4.44) 

 After many trials, the FNN was able to replicate the target function, as seen in 

Figure 4.19.  While the FNN was not able to exactly match the MPR equation, it 

produced relatively small error (Table 4.27).  Not only was the two hidden node FNN 

able to replicate the MPR output function, it was also able to predict the regression 

coefficients with some accuracy (Table 4.28 and 4.29).  The slight differences are likely 

due to the data range being from -1 to +1.  The coefficients would be more accurate if a 

smaller range, such as -0.1 to +0.1, was used.  As with the previous test with the sigmoid 

activation function, the validation error for the FNN is slightly worse than for the 

regression equation.  This error is likely due to the imperfect prediction of the regression 

coefficients by the sigmoid FNN. 

 These results conflict with the results from Xiang et al. (2005), who determine 

that a minimum of three hidden nodes is required by a FNN (Linear - Sigmoid - Linear 

activation functions) to approximate a third order, one input variable system.  The target 

function used in their paper was similar to equation (4.44), with the same values for the 

independent variable X.  As seen in Figure 4.19, this function can be represented by three 
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linear segments, which is the primary reason they give for using three hidden nodes.  

However, it is shown here that two hidden nodes are sufficient for modeling this MPR 

equation, disputing the conclusions of Xiang et al. (2005). 

 These results show that a 1 Linear - 2 Sigmoid - 1 Linear FNN has the minimum 

number of hidden nodes required for modeling a third order regression equation.  Taylor 

series expansion on the nonlinear hyperbolic tangent activation function has shown that 

there is a formal equivalence between the two models.  However, the effectiveness of the 

Taylor expansion is limited by the range of the data.  Input data series outside of the 

range of ±1 can still be effectively modeled by a sigmoid FNN, but the transformation of 

parameters to an equivalent MPR equation will not be accurate. 
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Figure 4.19: Output function for sigmoid FNN for function with smaller range. 
 
Table 4.27: Two Sigmoid Nodes (Smaller Range) - Prediction error from both models. 
 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN 
Training Error s(e)/s(y) 1.0570 * 10-15 0.0118 
Validation Error s(e)/s(y) 3.4901 * 10-16 0.1416 
 
Table 4.28: Two Sigmoid Nodes (Smaller Range) - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
-0.1545 0.3753 -176.491 -73.2241 0.0884 -0.0067 15.1664 
 
Table 4.29: Two Sigmoid Nodes (Smaller Range) - Regression coefficients found by sigmoid network. 
 Target 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN 
c0 0.1 0.1000 0.1002 
c1 -0.4 -0.4000 -0.4191 
c2 0.3 0.3000 0.3036 
c3 1 1.0000 1.0735 
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4.1.3.2  Generalization to MPR 

 The results from using a sigmoid activation function to model a third order, one 

variable MPR was generalized for different orders and more input variables.  The number 

of hidden nodes was varied for each combination of regression order and number of input 

variables, similar to what was done with the polynomial activation function.  These 

results were then compared to Table 4.17, which was generated using polynomial hidden 

nodes.  Using the sigmoid activation function better represents the modeling of nonlinear 

systems than a simple polynomial activation function and is more common in ANN 

research and application. 

 In general, the results from these tests confirm the values for the critical, or 

minimum, number of hidden nodes required to reproduce a MPR of given order and input 

variables determined in the previous section (Table 4.17).  For example, for a one input 

system, both first order and second order MPRs are modeled at near zero error with only 

one hidden node (Figure 4.20).  The third, fourth and fifth orders, however, are not 

successfully modeled with only one hidden node, seen by their s(e)/s(y) values over 0.2.  

Once three hidden nodes are used, all five orders are being modeled efficiently by the 

FNN. 
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Figure 4.20: Training (a) and validation (b) error for modeling one variable, orders one through five. 
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 Similar results can be seen when modeling equations with multiple input 

variables.  With two inputs (Figure 4.21) and three inputs (Figure 4.22), the differences 

between the orders of the regression equation as well as the difference between the 

training and validation error are easier to see.  However, the minimum number of hidden 

nodes with the sigmoid activation function required to replicate the MPR appear to be 

slightly different than the values determined in the previous section with the polynomial 

activation function (Table 4.17).  For example, with two input variables (Figure 4.21), the 

ideal number of hidden nodes is one for first order, three for second, five for third, eight 

for fourth, and approximately ten for fifth.  With the polynomial function, the ideal 

number of nodes found was one for first order, two for second, three for third, five for 

fourth and eight for fifth.  The reason for the discrepancy is likely due to the limited 

number of trials and the inconsistency that was observed before when using artificial 

neural networks in terms of the random initiation of network parameters.  In spite of the 

discrepancies, it is clear that the order and structure of the underlying polynomial 

regression equation has a strong effect on the optimal network structure. 
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Figure 4.21: Training (a) and validation (b) error for modeling two variables, orders one through five. 
 



 92

a)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

 

b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n 

E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

 
Figure 4.22: Training (a) and validation (b) error for modeling three variables, orders one through five. 
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 However, one of the problems noticed was when modeling higher-order equations 

with multiple input variables, most notably fifth order polynomials.  Both training error 

and validation error was poor when modeling these high order equations no matter how 

many hidden nodes were added.  This phenomenon is observed best with a large number 

of input variables, such as with four inputs (Figure 4.23) and five inputs (Figure 4.24).  

Graphing the error versus the number of hidden nodes does not produce the same clear 

trend that can be observed with lower ordered polynomials.  The training error decreases 

slowly with the addition of new hidden nodes and the validation error is not affected by 

the number of hidden nodes at all.  In fact, the trend shows the validation error generally 

increasing as the number of hidden nodes increases, with no obvious minimum value to 

select for the optimal number of nodes.  It is also important to note that the performance 

of the FNN varies greatly from trial to trial, resulting in a large deviation and spread in 

the trend.  This indicates that local minima are impeding the back-propagation training 

process and it is difficult for the network to find the global minimum error. 
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Figure 4.23: Training (a) and validation (b) error for modeling four variables, orders one through five. 
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Figure 4.24: Training (a) and validation (b) error for modeling five variables, orders one through five. 
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 An interesting aspect of finding the optimal number of hidden nodes is the 

relationship between the training error and the validation error.  Specifically, it is how 

these values relate to the number of hidden nodes in the network.  To investigate this 

further, another series of tests were performed on a three input system of various orders.  

This time, the sample size n was decreased to two-hundred and fifty and normally 

distributed random noise was added to both the training and validation error.  The results 

give a good illustration of how the order of the underlying system's equation affects a 

FNN's performance (Figure 4.25). 

 As the order of the MPR describing the system of data increases and more terms 

and parameters are added to the system, then the FNN requires more hidden nodes to 

represent the system.  Also, the point at which the training error drops to its minimal 

value corresponds to the critical number of hidden nodes determined in the previous 

section (Table 4.17).  One hidden node for first order, three for second, five for third, and 

nine for fourth.  It is harder to find this point for the fifth order polynomial. 

 It is important to note that in all of these cases, the number of input variables, 

output variables, and training sample size remain the same.  The only difference is the 

order of the physical polynomial equation that defines the relationship between the data.  

This indicates that the underlying physical equation of the data plays a large role in 

determining the optimal neural network structure.  This could be a useful method for 

implementing ANNs for modeling unknown biological systems.  By graphing the error 

versus the number of hidden nodes, the trend can help the modeler determine the best 

order of polynomial regression to use to represent the system. 
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Figure 4.25: Modeling a three variable MPR with noise and smaller sample size. (a) 1st Order (b) 2nd 
Order (c) 3rd Order (d) 4th Order (e) 5th Order. 
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 The general trend found for all of the regression equations being modeled is that 

the training error of the network begins very high (indicating poor performance).  It then 

decreases quickly until the critical, or minimum, number of hidden nodes is in the 

network.  At this point, the training error decreases slowly but does not change very 

much. 

 The validation also follows an interesting trend as the number of hidden nodes 

varies.  Like the training error, the validation error shows poor model accuracy before the 

required minimum number of hidden nodes is in the network.  However, after this point, 

the validation error starts to increase again.  This is due to the FNN memorizing the 

training set with the extra parameters, resulting in poor generalization.  The validation 

error trend seems to have its minimum value around the point of the critical number of 

hidden nodes, the point at which the network has at least as many parameters as the 

underlying regression equation.  These results emphasize that great care should be taken 

when selecting the number of hidden nodes for an ANN.  Blindly adding a lot of neurons 

will only reduce the model's performance.  The results indicate that prior knowledge of 

the system (in terms of the number of input variables and polynomial order) can be used 

to help determine the number of hidden nodes to include in the network. 

 As mentioned before, network performance was reduced dramatically when a 

high order polynomial, such as fifth order, was being modeled.  To attempt to improve 

model accuracy, the tests were repeated for the fifth order polynomial using two sigmoid 

hidden layers.  Feed-forward networks were trained with various numbers of hidden 

nodes in the second hidden layer with mixed results (Figure 4.26).  It was found that 

adding a second layer could help improve the accuracy of the model for both the training 
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and validation data.  The best network, with the lowest validation error, was found with 

only using one hidden node in the second layer, around twenty-eight nodes (Figure 

4.26b).  Adding more nodes to the second layer did not appear to improve the network 

much more than the original three layer network.  However, there was a large amount of 

variation between the different trials, which means that the issue of local minima is still a 

problem.  Also, because a second sigmoid layer was added to the network, it is more 

difficult to determine an equivalent MPR equation as was done with only one sigmoid 

layer.  A much higher ordered polynomial equation would be necessary to replicate the 

network equation produced by these more complex neural networks. 
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Figure 4.26: Modeling three variable, fifth order MPR with different model structures: (a) Lin - Sig - Lin 
(b) Lin - Sig - 1 Sig - Lin (c) Lin - Sig - 2 Sig - Lin (d) Lin - Sig - 5 Sig - Lin. 
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4.2  Equivalence of RNN and ARMA 

4.2.1  Perceptron-level Analysis 

 The research will now move into investigating models for time dependant data.  

For this section, the perceptron will include a connection going back to itself, making it a 

recurrent perceptron (Figure 4.27).  The output for Y using this perceptron can be defined 

by the equation: 

 Yt = b + w1 * Xt + w2 * Yt-1             (4.45) 

 
Figure 4.27: A single recurrent perceptron. 

 
 The output equation for this perceptron is similar to the equation for a 

ARMA(1,1) model (Equation 4.41).  This equation uses one recurrent time step of the 

previous output for the predicted variable, Yt-1, and an independent input, Xt. 

 Yt = c0 + c1 * Xt + c2 * Yt-1             (4.46) 

Comparing (4.45) to (4.46) produces the trivial results: 

 c0 = b                (4.47) 

 c1 = w1                (4.48) 

 c2 = w2                (4.49) 

 Now that formal equations have been found to relate the recurrent perceptron 

parameters to ARMA(1,1) parameters, the models can be compared empirically.  Both 

models were trained to estimate a stable synthetic time series defined by equation (4.50).  

Where Xt is a random normal variable and the initial value for Yt-1 is set to zero.  The 
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values for Yt are then iteratively calculated for the first three-hundred time steps to create 

the training data. 

 Yt = -1.5 + 5 * Xt + 0.5 * Yt-1             (4.50) 

 Both the recurrent perceptron and an ARMA(1,1) equation were trained to 

estimate the target equation.  Also, both models used full, multiple-day-ahead, prediction.  

The empirical results from using this equation are very favorable for the recurrent 

perceptron.  As Figure 4.28 shows, the perceptron was easily able to replicate the time 

series with the same degree of accuracy as the ARMA model.  The recurrent network 

produces an output that is slightly less accurate than the ARMA model.  Also, the 

perceptron successfully predicted the regression coefficients as shown in Table 4.31.  

This demonstrates that a linear recurrent perceptron is strongly comparable to linear 

ARMA equations. 
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Figure 4.28: Output from the recurrent perceptron when modeling a stable equation. 
 
Table 4.30: Recurrent Perceptron (Stable) - Prediction error from both models. 
 ARMA(1,1) Recurrent Perceptron 
Training Error s(e)/s(y) 3.7151 * 10-16 0.0295 
 
Table 4.31: Recurrent Perceptron (Stable) - Time series coefficients found by both models. 
 Target ARMA(1,1) Recurrent Perceptron 
c0 -1.5 -1.5000 -1.5959 
c1 5 5.0000 4.9997 
c2 0.5 0.5000 0.5000 
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 The test was performed again with a second synthetic time series equation (4.51).  

This time, an unstable target equation was chosen to train the models. 

 Yt = -1.5 + 5 * Xt + 1 * Yt-1             (4.51) 

 Results indicate that while ARMA(1,1) was able to correctly estimate the 

parameters of the time series, the recurrent perceptron failed in all trials.  In the first case, 

Figure 4.29, the recurrent perceptron was able to model the overall trend of the time 

series, but failed to correctly estimate the coefficient of the independent variable, c1 

(Table 4.33).  In the second case, Figure 4.30, the perceptron did better at estimating c1, 

but failed to find the correct value for c2 (Table 4.35), which is why the model did not fit 

the overall data trend. 

 It is evident that there is some limitation with the perceptron that prevents it from 

finding the correct output function, while the auto-regressive moving average function is 

easily able to model the correct equation simply by using the least-squares method.  

Perhaps the problem is in the iterative approach of back-propagation.  Another potential 

explanation for the discrepancy is that the single recurrent perceptron model may not 

have enough network parameters to replicate the ARMA.  In the previous section, when 

comparing FNNs with MPR, it was found that neural networks tend to require more 

parameters than regression equation.  A similar limitation may exist for recurrent 

networks and perhaps a more complex RNN, with multiple layers, could perform better.  

However, due to the fact that the time series being estimated is linear, it does not seem 

likely that a more complex neural network would improve performance by much. 
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Figure 4.29: First attempt output from the recurrent perceptron when modeling an unstable equation. 
 
Table 4.32: Recurrent Perceptron (Unstable) - Prediction error from both models. 
 ARMA(1,1) Recurrent Perceptron 
Training Error s(e)/s(y) 1.2877 * 10-14 0.0887 
 
Table 4.33: Recurrent Perceptron (Unstable) - Time series coefficients found by both models. 
 Target ARMA(1,1) Recurrent Perceptron 
c0 -1.5 -1.5000 -1.2921 
c1 5 5.0000 -0.5226 
c2 1 1.0000 1.0012 
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Figure 4.30: Second attempt output from the recurrent perceptron when modeling an unstable equation. 
 
Table 4.34: Recurrent Perceptron (Unstable) - Prediction error from both models. 
 ARMA(1,1) Recurrent Perceptron 
Training Error s(e)/s(y) 3.5497 * 10-14 0.5132 
 
Table 4.35: Recurrent Perceptron (Unstable) - Time series coefficients found by both models. 
 Target ARMA(1,1) Recurrent Perceptron 
c0 -1.5 -1.5000 -63.4502 
c1 5 5.0000 5.0289 
c2 1 1.0000 0.6450 
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 If the perceptron weights and bias are initialized with the correct values, then it is 

capable of modeling the synthetic time series (Figure 4.31).  This shows that the recurrent 

perceptron does have the ability to represent the ARMA(1,1) equation if the parameters 

are right.  As mentioned before, the problem probably exists somewhere in the training 

method of the perceptron.  Another possible reason for the poor performance from the 

perceptron relates to the stability of the function being modeled.  There is evidence in the 

literature to suggest that unstable equations are more difficult to model when using 

networks due to their similarity to linear filters (Mandic and Chambers, 2001). 
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Figure 4.31: The recurrent perceptron output with correct initial values. 
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 These results signify the potential equivalence between recurrent neural networks 

and ARMA models.  However, the ability of a RNN to model a time series appears to 

depend on the stability of the underlying physical equation.  Recurrent neural networks 

seem to have a more difficult time than classic statistical regression equations when 

modeling unstable equations, but the two models appear to be more on par with each 

other when the equation is stable. 

 In the previous tests, an independent variable, Xt, was used as an input to each of 

the models.  Now, this variable will be replaced with the prediction error term Et.  This 

change modifies the recurrent perceptron from the one used before to the new one seen in 

Figure 4.32.  The output function for this perceptron is defined by: 

 tY
^

 = b + w1 * 1
^

−tY  + w2 * Et-1 = b + w1 * 1
^

−tY  + w2 * ( 11

^

−− − tt YY )        (4.52) 

 
Figure 4.32: A linear recurrent perceptron that includes an error term. 

 
 As mentioned before, the equation for an ARMA(1,1) model is the same as the 

recurrent perceptron equation (4.52), so the parameters for both models are the same.  

One important difference between this setup and the previous one is that value for Yt-1 is 

required as an input to the models so the error term Et-1 can be calculated.  Also, this 

equation does not use an independent variable for input.  This means that instead of being 

multiple-day-ahead prediction models, they will only be able to predict one-day-ahead.  

Because of the error term, the ARMA(1,1) equation will use the long-AR method to 

estimate its parameters. 
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 First, the models are trained to the stable synthetic equation (4.50).  Interestingly, 

the recurrent perceptron seems to outperform ARMA(1,1) in replicating the time series.  

This data series shows a clear difference between the performances of the two models for 

estimating the coefficient to the error term (Figure 4.33).  The ARMA model is unable to 

estimate the magnitude of the error as well as the perceptron (Table 4.37).  This is 

evidence of a possible improvement of RNNs over ARMA equations.  Both models have 

the same structure, but use different training methods to find the regression parameters.  

The iterative approach of back-propagation has an advantage over the more approximate 

form of least-squares in the long-AR method used by the auto-regressive moving average 

model. 
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Figure 4.33: Using the error term to estimate a stable equation. 
 
Table 4.36: Recurrent Perceptron (Error Term, Stable) - Prediction error from both models. 
 ARMA(1,1) Recurrent Perceptron 
Training Error s(e)/s(y) 0.9632 0.7432 
 
Table 4.37: Recurrent Perceptron (Error Term, Stable) - Time series coefficients found by both models. 
 Target ARMA(1,1) Recurrent Perceptron 
c0 -1.5    -1.3980    -1.2806 
c1 5     0.0879     0.5136 
c2 0.5     0.6002     0.6127 
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 Both time series model are then trained to estimate the unstable synthetic equation 

(4.51).  The results from this test are similar to the last one, in that that recurrent 

perceptron performs more accurately than the ARMA(1,1) equation.  The output of the 

perceptron closely follows the path of the time series, while the regressive model is only 

able to graph the overall trend (Figure 4.34).  Looking at the parameters found by both 

equations on Table 4.39, both models do a decent job at estimating the coefficients for 

the auto-regressive term (c2) and the bias (c0).  However, the ARMA model poorly 

estimates the coefficient for the error term, which explains why it is unable to fully 

predict the time series.  The perceptron also does not match the correct error term 

parameter, but it is still better than the ARMA model.  Once again, the training algorithm 

for the auto-regressive moving average equation does not appear to be adequate enough 

for estimating the error term, giving the back-propagation method used by recurrent 

neural networks an advantage. 
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Figure 4.34: ARMA(1,1) and recurrent perceptron using an error term as input for unstable data. 
 
Table 4.38: Recurrent Perceptron (Error Term, Unstable) - Prediction error from both models. 
 ARMA(1,1) Recurrent Perceptron 
Training Error s(e)/s(y) 0.0506 0.0226 
 
Table 4.39: Recurrent Perceptron (Error Term, Unstable) - Time series coefficients found by both models. 
 Target ARMA(1,1) Recurrent Perceptron 
c0 -1.5    -2.0981    -2.3294 
c1 5    -0.1062     1.0850 
c2 1     0.9948     0.9939 
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 For the last test with the recurrent perceptron, a higher order time series ARMA 

model will be replicated.  This time, three previous time steps will be used as input, 

creating an ARMA(3,0) equation.  The perceptron used is shown in Figure 4.35 and can 

be represented mathematically as: 

 tY
^

 = b + w1 * 1
^

−tY  + w2 * 2
^

−tY  + w3 * 3
^

−tY            (4.53) 

 
Figure 4.35: A linear recurrent perceptron that goes back three time steps. 

 
This equation is equivalent to ARMA(3,0).  Since the equation is still linear, a single 

perceptron should be sufficient for modeling the equation. 

 The models were first trained to the synthetic equation (4.54).  The value for the 

output Y is defined as a linear regression of the three previous time series values, without 

any error terms. 

 Yt = 0.5 + 1 * Yt-1 + -0.7 * Yt-2 + 0.45 * Yt-3           (4.54) 

 The results show that both models have reasonable prediction accuracy for the 

time series (s(e)/s(y) = 0.0533 for RNN and 0.0144 for ARMA) (Figure 4.36).  Both 

models also stabilize as the data series reaches an asymptote around two.  The ARMA 

model seems to have an advantage over the perceptron in terms of accuracy.  Also, the 

parameters of the ARMA equation are much closer to the target values than the 

perceptron (Table 4.41). 
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Figure 4.36: ARMA(3,0) and recurrent perceptron output for first equation. 
 
Table 4.40: Recurrent Perceptron (Three Time Steps) - Prediction error from both models. 
 ARMA(3,0) Recurrent Perceptron 
Training Error s(e)/s(y) 0.0144 0.0533 
 
Table 4.41: Recurrent Perceptron (Three Time Steps) - Time series coefficients found by both models. 
 Target ARMA(3,0) Recurrent Perceptron 
c0 0.5     0.5601     0.6170 
c1 1     0.9737     0.2311 
c2 -0.7    -0.7107    -0.2222 
c3 0.45     0.4562     0.6847 
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 A second equation (4.55) was also tested with the recurrent perceptron and 

ARMA(3,0) models.  This equation is similar to the previous one, except that a different 

coefficient is used for the first auto-regressive term. 

 Yt = 0.5 + 0.05 * Yt-1 + -0.7 * Yt-2 + 0.45 * Yt-3           (4.55) 

 The results with this equation are similar to the previous one in that both models 

are successful in producing a reasonable estimation of the time series.  However, this 

time, the performance of the two models has been reversed.  For this time series, the 

recurrent perceptron produces a lower error (s(e)/s(y) = 0.0101) than the auto-regressive 

model (0.0376) (Figure 4.37).  Also, the parameters of the recurrent perceptron are much 

closer to the actual values of the target equation compared to the coefficients found by 

the regression model (Table 4.43). 
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Figure 4.37: ARMA(3,0) and recurrent perceptron output for second equation. 
 
Table 4.42: Recurrent Perceptron (Three Time Steps) - Prediction error from both models. 
 ARMA(3,0) Recurrent Perceptron 
Training Error s(e)/s(y) 0.0376 0.0101 
 
Table 4.43: Recurrent Perceptron (Three Time Steps) - Time series coefficients found by both models. 
 Target ARMA(3,0) Recurrent Perceptron 
c0 0.5     0.3950     0.4946 
c1 0.05     0.1534     0.0566 
c2 -0.7    -0.6511    -0.7052 
c3 0.45     0.5504     0.4614 
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 The results from these experiments indicate that just a single recurrent perceptron 

has the power to potentially model many different complex linear auto-regressive moving 

average equations.  However, the ability of the perceptron to estimate a given time series 

as well as its ultimate performance appears to be highly dependant on the trend of the 

data being modeled.  For example, the perceptron seems to respond differently depending 

on whether the data is stable or unstable. 

 

4.2.2  Network-level Analysis 

 Up until this point, only linear ARMA time series equations have been examined 

with relation to recurrent neural networks.  However, the auto-regressive moving average 

model can also be structured as nonlinear.  This nonlinear ARMA, or NARMA, equation 

allows the regression model to achieve a higher degree of complexity. 

 A NARMA(1,0) equation can be represented by a RNN with one recurrent time 

step and a sigmoid activation function in the hidden layer (Figure 4.38).  This network is 

similar to the one input, two hidden node network discussed in the previous section.  

Except in this case there are no independent variables.  This recurrent network is 

represented by the equation: 

 Yt = w3*tanh(b1 + w1Yt-1) + w4*tanh(b2 + w2Yt-1) + b3          (4.56) 

 
Figure 4.38: A sigmoid hidden layer RNN to replicate an NARMA(1,0) equation. 
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 If a third order Taylor series expansion is used on the hyperbolic tangent function 

in (4.56), then this equation can be reduced to a third order NARMA(1,0) equation 

(4.57). 

 3
13

2
12110 *** −−− +++= tttt YcYcYccY             (4.57) 

 Just like in the non-recursive case in the previous section, the coefficients in the 

regression model can be defined in terms of the network weights and biases using 

equations (4.35) to (4.38). 

 The empirical test was performed by training both models to a series of synthetic 

data defined by the equation: 

 3
1

2
11 *1*3.0*2.16.0 −−− ++−= tttt YYYY             (4.58) 

 Both models were able to replicate the time series output well, with the NARMA 

model estimating the correct parameters as expected (Figure 4.39).  The RNN performed 

only slightly worse than the regression model (s(e)/s(y) = 0.0357).  However, like with 

the sigmoid feed-forward network, the sigmoid recurrent network was not able to 

correctly predict the regression coefficients (Tables 4.45 and 4.46).  Even though the 

target data is well within the range of -1 to +1, the weights and biases of the network 

(Table 4.45) make the network equation unsuitable for Taylor series expansion.  This is a 

recurring problem that has been noticed with the use of the sigmoid activation function 

with ANNs and is a potential hindrance in developing efficient conversion equations for 

the parameters of both neural networks and statistical regression.  More accurate 

coefficient predictions could be obtained if the weights and biases in the network going 

into the sigmoid hidden layer were restricted to values within the range of -1 to +1. 
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Figure 4.39: Output function for two hidden node sigmoid RNN. 
 
Table 4.44: Two Sigmoid Hidden Nodes (Recurrent) - Prediction error from both models. 
 3rd Order NARMA(1,0) 1 Lin - 2 Sig - 1 Lin RNN 
Training Error s(e)/s(y) 2.4345 * 10-15 0.0357 
 
Table 4.45: Two Sigmoid Hidden Nodes (Recurrent) - Trained network weights and biases. 
w1 w2 w3 w4 b1 b2 b3 
2.3238 -2.6067 -5.3878 8.0817 -2.7606 -11.2999 3.1603 
 
Table 4.46: Two Sigmoid Hidden Nodes (Recurrent) - Regression coefficients found by sigmoid network. 
 Target 3rd Order NARMA(1,0) 1 Lin - 2 Sig - 1 Lin RNN 
c0 0.6 0.6000 3775.9 
c1 -1.2 -1.2000 2751.8 
c2 0.3 0.3000 540.21 
c3 1 1.0000 70.252 
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4.3  Application to Biological Phenomena 

 The results from the previous two sections support the equivalence between 

artificial neural networks and statistical regression models.  The tests that have been 

performed so far have been on highly controlled and specifically defined synthetic data.  

In order to get a better understanding of the practical application of both of these models, 

the results found before must be applied to real life data. 

 

4.3.1  Confirming the Accuracy of Neural Networks 

 The results of Salas et al. (2000) were reproduced to get a better understanding of 

how neural networks and regression models are used for predicting events in real world 

problems.  Salas et al. (2000) uses feed-forward neural networks to forecast streamflow.   

This paper uses a basic feed-forward network and sigmoid activation function to predict 

the daily streamflow of the Little Patuxent River, located in Maryland, using 

combinations of temperature, precipitation, evaporation, snow fall equivalent, and 

previous values of streamflow as input parameters. 

 The reproduced results coincided with the results found by Salas et al. (2000).  

The best-fit model determined by their research used precipitation (Pt and Pt-1) and 

temperature (Tt) to predict daily streamflow (Qt).  The network structure used was a 

Linear - Sigmoid - Sigmoid FNN with ten hidden nodes.  Similar prediction accuracy was 

found for the training data as well as for the validation data.  However, Salas et al. (2000) 

determined that using ten hidden nodes created the best-fit model, while in this research a 

best-fit model was found using only five hidden nodes.  About a dozen trials were run to 
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find a best-fit FNN, emphasizing again the problem with using randomized initial 

network parameters. 

 Figures 4.40 and 4.41 show the actual and predicted outputs generated by the 

best-fit feed-forward network using temperature and precipitation as input parameters.  

Figure 4.40 represents the streamflow data used for training the neural network, while 

Figure 4.41 represents the data for validating the network.  Both sets of data are modeled 

fairly well by the FNN over the course of three years.  Figures 4.42 and 4.43 graph the 

actual streamflow values versus the predicted streamflow values calculated by the feed-

forward neural network.  For the training data set seen in Figure 4.42, the predictions are 

generally unbiased and the accuracy is good even at high streamflow values.  Figure 4.43 

shows similar results for the validation data.  Now that the predictive ability of ANNs has 

been confirmed, they can now be compared to the structure and performance of statistical 

regression models. 
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Figure 4.40: Predicted daily streamflow using 3 Linear - 5 Sigmoid - 1 Sigmoid FNN, training data. 
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Figure 4.41: Predicted daily streamflow using 3 Linear - 5 Sigmoid - 1 Sigmoid FNN, validation data. 
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Figure 4.42: Feed-forward neural network prediction accuracy for training data. 
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Figure 4.43: Feed-forward neural network prediction accuracy for validation data. 
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4.3.2  Comparison of ANNs and Regression Models 

4.3.2.1  Non-recursive Input - FNN versus MPR 

 The different non-recursive input sets were trained with both feed-forward 

networks and multiple polynomial regression to model streamflow.  Table 4.47 shows the 

best-fit feed-forward networks that were found for each set of input variables and Table 

4.48 lists the best-fit MPR equations.  The best-fit models were chosen based on the 

validation error.  The FNNs for these cases are using a three layer Linear - Sigmoid - 

Linear network structure.  The results show that all of the models do a decent job of 

predicting streamflow, since all of their s(e)/s(y) error values are less than one.  Neither 

FNNs nor MPR seem to have an advantage over the other overall.  However, in all cases, 

the network models needed more parameters than the regression equations.  The best-fit 

model overall was a FNN with two hidden nodes estimating Function 2, using Pt and Pt-1 

as input variables. 

Table 4.47: Best-fit FNNs for non-recursive streamflow functions. 
 Function 1 

(Pt) 
Function 2 
(Pt, Pt-1) 

Function 3 
(Pt, Tt) 

Function 4 
(Pt, Pt-1, Tt) 

# Hidden Nodes 1 2 3 2 
# of Parameters 4 9 13 11 
Training Error 0.60052 0.53060 0.51755 0.50144 
Validation Error 0.79177 0.47087 0.66301 0.50923 
 
Table 4.48: Best-fit MPR equations for non-recursive streamflow functions. 
 Function 1 

(Pt) 
Function 2 
(Pt, Pt-1) 

Function 3 
(Pt, Tt) 

Function 4 
(Pt, Pt-1, Tt) 

Equation Order 1 2 2 2 
# of Parameters 2 6 6 10 
Training Error 0.69371 0.54388 0.60039 0.49883 
Validation Error 0.66123 0.55881 0.64322 0.52361 
 
 The FNN models and MPR equations used to estimate Function 1 were compared 

first.  This is a simple function that uses a single input variable, precipitation, to predict 
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streamflow.  Figure 4.44 shows the training and validation error found for FNNs based on 

the number of hidden nodes and Table 4.49 shows the error for the first fifteen orders of 

MPR that occur when streamflow is predicted using precipitation alone.  As expected, the 

training error decreases for both models as the complexity of the model increases and 

more parameters are added. 

 With only one hidden node, the FNN produced the same training error (s(e)/s(y) = 

0.60052) and validation error (0.79179) for all five trials, meaning the network converged 

to a unique solution.  Networks with more than one hidden node in general had validation 

errors larger than one, indicating poor prediction.  Also, the FNN results varied from trial 

to trial between tests with the same number of hidden nodes suggesting non-uniqueness 

of the trained model.  This is probably due to the random initialization of the network 

parameters.  Each network likely found a different local minimum in the error gradient.  

Only one trial out of these networks managed a validation error less than one, which 

occurred with twenty-eight hidden nodes (s(e)/s(y) = 0.83878). 

 When testing multiple polynomial regression, the trials for each order of 

regression produced the same results.  This is expected, since the nature of least-squares 

will always find the best-fit line for a given regression equation.  The training error 

decreased as the model order increased, but the smallest validation error was produced by 

the first order equation (s(e)/s(y) = 0.66123).  Models larger than third order regression 

had validation errors greater than one.  This is mostly likely due to polynomial swing.  As 

the order of the polynomial increases, the equation becomes less robust to outliers in the 

data.  It is interesting to note that this did not occur with feed-forward networks as the 
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complexity of the network increased.  By the time the MPR equations reached fifteenth 

order, the validation error was significantly larger than the errors found by the FNNs. 
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Figure 4.44: Training and validation error for FNN modeling Function 1. 
 
Table 4.49: Results from first fifteen orders of MPR for Function 1. 
Order Training Error Validation Error
1st 0.69371 0.66123 
2nd 0.62129 0.66140 
3rd 0.59879 0.77818 
4th 0.58359 1.1603 
5th 0.56836 2.7161 
6th 0.56672 3.7918 
7th 0.56612 5.8912 
8th 0.56629 2.8392 
9th 0.56346 71.81 
10th 0.56335 127.78 
11th 0.5632 21.189 
12th 0.56334 301.0 
13th 0.56296 4088.6 
14th 0.5611 31182.0 
15th 0.55875 2.3155 * 105 
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 Comparing the results from the feed-forward network and multiple polynomial 

regression trials, one can see a number of similarities between the results.  Both models 

were not effective at predicting the validation data after a specific point, FNNs after one 

hidden node and MPR after the third order.  While the training error for both models 

decreased as the number of parameters increased, this allowed the models to better 

"memorize" the training data set and reduced their ability to generalize.  It is interesting, 

though, to see how the two types of models correlate. 

 Comparing the training error shows that both models have similar error based on 

the number of parameters (Figure 4.45).  This suggests again that the maximum order that 

a FNN can represent is based on the number of hidden nodes it uses.  One hidden node 

(four parameters) will train to the data similarly to a third order regression equation, two 

hidden nodes (seven parameters) will train similarly to sixth order, and so on. 
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Figure 4.45: Comparison of training error based on the number of parameters for modeling Function 1. 
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 The validation results from both models does not compare in the same manner, 

however (Figure 4.44 and Table 4.49).  For MPR, the validation error increases 

dramatically with order.  As the complexity of the model increased with higher orders, 

the model became less stable.  However, the FNN was able to keep the validation error 

under two for most network structures, no matter how many hidden nodes were used.  

This shows that the ANN can be more robust than regression equations for predicting 

data not in the training set. 

 Based on the validation errors, the best FNN model for the one input, non-

recurrent case occurred with one hidden node.  Comparing the training and validation 

error for this feed-forward network to MPR, the closest match is a third order polynomial 

equation.  It is also interesting to note that both of these models have four parameters.  

Figure 4.46a shows the output function that both models generate for predicting 

streamflow with an input range of zero to four inches of rainfall.  Both functions have a 

similar shape and curve.  The y-intercept is 39.3 cfs for the FNN and 34.8 cfs for MPR.  

The two models predict similar streamflow for most values of precipitation except for 

large values of streamflow, where the FNN predicts higher values than the third order 

MPR equation (Figure 4.46b). 
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Figure 4.46: The functions relating P to Q for FNN and MPR (a) and comparing the two models (b). 
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 While the third order MPR equation fits well with the one hidden node FNN, this 

seems to contradict earlier empirical and analytical results that showed that two hidden 

nodes were required for modeling a third order regression equation with one variable.  

Based on the previous findings, the highest polynomial order that this particular FNN 

should be able to model is a second order MPR equation.  However, when observing the 

output of the second order equation, the FNN does not compare favorably to it (Figure 

4.47).  In fact, the validation error for the second order polynomial is much better than 

the one hidden node feed-forward network (0.66140 for MPR opposed to 0.79179 for the 

FNN).  Looking at the model outputs equations, the FNN has a much steeper slope than 

the second order MPR. 
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Figure 4.47: The functions for a FNN and 2nd Order MPR (a) and comparing the two models (b). 
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 The output of the FNN trained with two hidden nodes is even more dramatic 

when compared with the third order polynomial.  As seen in Figure 4.48, the output 

function of the two hidden node network shows no similarity to the MPR output function.  

While the FNN has good accuracy for the training data (s(e)/s(y) = 0.56626), it is terrible 

for predicting the validation data (s(e)/s(y) = 17.994).  It appears from Figure 4.48b that 

during the training step, the network learned to pass through the three points on the far 

right of the graph (around a precipitation of three) and the output function continued to 

skew upwards.  This leads to an unreasonably high streamflow prediction for extreme 

rainfall events. 
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Figure 4.48: The output functions for a FNN with 1 (a) and 2 (b) hidden nodes. 
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 Going back to the one hidden node FNN model, the network weights and biases 

are used to find the equivalent third order regression coefficients (Equation 4.13) with the 

formal methods discussed before.  The parameters of the network (Figure 4.13) were w1 = 

0.9146, w2 = 3371, b1 = -5.0243, and b2 = 3370.  A third order Taylor series expansion is 

used to transform the sigmoid activation function (Equation 4.10).  As Table 4.50 shows, 

the regression coefficients determined by the network do not match the ones found with 

least-squares by MPR.  It should be noted that the MPR parameters are in the scaled 

domain.  However, the polynomial equation defined by the transformed FNN parameters 

is not even close to the MPR equation.  The problem is likely due to the fact that even 

though the input to both models was scaled to -0.8 to +0.8, the bias of the hidden node 

(b1) moves the range far below this.  This puts the range of data going into the sigmoid 

activation function considerably outside of the effective range of the third order Taylor 

series expansion estimation. 

Table 4.50: Regression coefficients found by one hidden node sigmoid FNN. 
 3rd Order MPR 1 Lin - 1 Sig - 1 Lin FNN 
c0 -0.5689 128950 
c1 0.4726 -74746 
c2 0.6079 14168 
c3 0.4317 -859.67 
 
 The same models were then run through the training and validation process with 

stream data that was first log normalized and then scaled to the network range.  The 

results from the MPR models showed no improvement over the linear data.  However, the 

log normal transformation of the streamflow data did improve the predictive abilities of 

the neural network (Figure 4.49).  The smallest validation error produced by the log 

normal trained networks (0.63559 with two hidden nodes) is smaller than the smallest 

error found by the linear trained networks (0.79179 with one hidden node).  This suggests 
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that using a log normal transformation could have a positive influence over a network's 

accuracy. 
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Figure 4.49: Training and validation error for linear scaled and log normal scaled data. 
 
 In addition to the Linear - Sigmoid - Linear network structure, two other models 

were investigated.  The first was a FNN with two sigmoid hidden layers, and the second 

was a FNN with one third order polynomial hidden layer.  While one sigmoid hidden 

layer is commonly used in ANN applications, two sigmoid hidden layers are also used by 

many researchers to increase the nonlinearity and complexity of the network.  The results 

from training a network with two sigmoid hidden layers indicate that this structure does 

have the ability to train networks to a higher degree of accuracy than with using only one 

hidden layer.  The two hidden layer network produced validation errors consistently 

lower than the one hidden layer network (Figure 4.50).  However, the downside to using 

such a structure is that the parallels to regression models are less obvious.  There are no 

formal methods to convert the network weights and biases to equivalent regression 
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parameters.  This limits investigations into the importance of each network parameter.  

Future research could apply the formal comparisons found for the one sigmoid hidden 

layer to multiple hidden layer networks, but could be difficult to advance due to the 

complexity of the models. 

 The second alternative network structure tested used a polynomial activation 

function.  As expected, this activation function performed differently from the sigmoid 

activation function as the number of hidden nodes increased.  The addition of hidden 

nodes did not improve the network performance and the best validation error was found 

with just one node (Figure 4.50).  The results coincide with the results from the formal 

and empirical tests in the previous section on the third order polynomial activation 

function.  The validation error with one hidden node is similar to the error for a second 

order MPR (s(e)/s(y) = 0.66140) and with two hidden nodes the error is approximate to a 

third order equation (s(e)/s(y) = 0.77818).  The validation error stays around this level 

even with more hidden nodes because the polynomial activation function limits the 

network to a third order MPR. 
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Figure 4.50: Training (a) and validation (b) error for different network structures. 
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 The models for the other non-recurrent functions (Functions 2 through 4) behaved 

in a manner similar to those for Function 1.  The comparison of the number of parameters 

to the training error for each set of inputs can be seen in Figure 4.51.  Function 2, which 

uses Pt and Pt-1 as inputs, shows similar results to those found for Function 1 (Figure 

4.51a).  The error trend for the FNNs and MPR follow each other closely as the number 

of parameters increases.  This means that both models are able to train to the streamflow 

data with the same degree of accuracy with an equivalent number of parameters.  

However, for Function 3 and Function 4, the graph of the error terms is not quite the 

same between the two different models (Figures 4.48b and 4.48c).  In both cases, the 

FNN is able to produce training error values much lower than a MPR equation with the 

equivalent number of parameters.  The reason for this discrepancy is unclear.  In fact, 

based on the results from the previous sections, it would be expected that the FNN would 

require more parameters than MPR to produce the equivalent model. 
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Figure 4.51: Comparison of error based on number of parameters for Functions 2 (a), 3 (b) and 4 (c). 
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4.3.2.2  Recursive Input - RNN versus ARMA 

 For the second set of testing, model functions that are more recurrent were used 

by adding the term Qt-1 as an input variable to all of the input sets.  Two different 

methods of prediction were compared.  One-day-ahead prediction used the measured Qt-1 

value and was modeled by FNNs, while full prediction used the predicted Qt-1 value and 

was modeled by RNNs.  Both prediction methods were also modeled by polynomial 

ARMA equations.   Similar to before, the results show that there is comparable 

accuracy between both the ANNs and the regression models (Table 4.51 and Table 4.52).  

It was also shown again that in general, ANNs require more parameters.  However, in all 

cases, the recurrent network outperformed the equivalent multiple-day-ahead prediction 

ARMA model. 

Table 4.51: Best-fit FNNs and RNNs for recursive streamflow functions. 
Function 5 
(Pt, Qt-1) 

Function 6 
(Pt, Pt-1, Qt-1) 

Function 7 
(Pt, Tt, Qt-1) 

Function 8 
(Pt,Pt-1,Tt,Qt-1) 

 

FNN RNN FNN RNN FNN RNN FNN RNN 
# Hidden Nodes 4 3 4 3 3 3 3 2 
# of Parameters 17 13 21 16 16 16 19 13 
Training Error 0.4033 0.5200 0.3749 0.4893 0.3775 0.4892 0.3422 0.4914
Validation Error 0.5355 0.5403 0.5316 0.5050 0.5171 0.5662 0.4915 0.4895
 
Table 4.52: Best-fit ARMA equations for recursive functions, both one-day-ahead and multiple-day-ahead. 

Function 5 
(Pt, Qt-1) 

Function 6 
(Pt, Pt-1, Qt-1) 

Function 7 
(Pt, Tt, Qt-1) 

Function 8 
(Pt,Pt-1,Tt,Qt-1) 

 

One Multi One Multi One Multi One Multi 
Equation Order 3 3 3 2 2 2 2 2 
# of Parameters 10 10 20 10 10 10 15 15 
Training Error 0.4133 0.6497 0.3857 0.6735 0.4355 0.6285 0.4157 0.6157
Validation Error 0.5185 0.6162 0.5845 0.6211 0.5188 0.6049 0.5488 0.5888
 
 Another aspect of the results to look at is the comparison between feed-forward 

networks and recurrent neural networks.  In general, the recurrent networks were able to 

produce best-fit models with less hidden nodes than the FNNs.  This is interesting, 
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because the RNNs have the extra advantage over FNNs for being fully recursive with 

respect to streamflow.  The recurrent networks do not need to rely on the actual value of 

the previous day's streamflow, and yet it is still able to perform comparably to the FNN.  

Also, the best-fit network overall was found to be a recurrent network estimating 

Function 8 (s(e)/s(y) = 0.4895).  This shows that the addition of recurrent connections to 

a network is able to produce more efficient models than a standard feed-forward network.  

Looking back at the source of inspiration for ANNs, biological neural networks, it should 

be reminded that feed-forward neural networks are not an accurate model for how 

biological networks operate.  In particular, they lack the concept of massive parallel 

feedback.  The method of one-directional flow used by FNNs is not able to replicate this 

concept.  This short sight of FNNs may be a reason for why RNNs are shown to be more 

efficient in these results.  The recurrent neural network is a much closer model to the 

structure of biological networks.  This could give RNNs an advantage for modeling 

biological systems. 

 Looking at Function 5 for investigating further, this function for streamflow uses 

Pt and Qt-1 as input variables.  Like with the one-input case, the training error for the FNN 

decreased as the number of hidden nodes increased, and validation error increased 

(Figure 4.52a).  The lowest values for the validation error occurred when the network had 

three hidden nodes.  One-day-ahead ARMA trained in a similar manner, with the lowest 

validation error found in the third order equation (Table 4.53).  The recurrent network 

consistently produced training errors larger than the equivalent feed-forward network.  It 

is expected that the RNN has greater error than the FNN, since the RNN is using full, 

multiple-day-ahead, prediction.  However, it is interesting that the RNN produced more 
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stable results for validating data with a large number of hidden nodes than was possible 

with the FNN (Figure 4.52b). 
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Figure 4.52: Training and validation error for FNN (a) and RNN (b) for Function 5. 
 
Table 4.53: Results for the first five orders, and last order, of ARMA model for Function 5. 
 One-day-ahead Full Prediction 
Order Training Error Validation Error Training Error Validation Error 
1st 0.63793 0.6492 0.70537 0.67758 
2nd 0.45203 0.54305 0.67438 0.64012 
3rd 0.41334 0.5185 0.64978 0.61621 
4th 0.38680 2.6744 Failed Failed 
5th 0.37328 18.824 Failed Failed 
15th 0.19684 4.0134 * 108 Failed Failed 
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 Results from the one-day-ahead prediction models indicate more similarities 

between the feed-forward neural network and ARMA.  The training error for both models 

is similar in relation to the number of parameters (Figure 4.53).  The variance between 

different FNN trials is likely due to the random initialization of network weights and 

biases and the existence of local minima.  As a result, some networks are luckier than 

others at predicting the training and validation sets.  A similar comparison could not be 

made between RNNs and full prediction ARMA equations, because ARMA failed to 

make a stable prediction after the third order (Table 4.53). 
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Figure 4.53: A comparison of the training error for both the FNN and one-day-ahead ARMA based on the 
number of parameters used in the equation for estimating Function 5. 
 
 The FNN that produced the most accurate and most consistent validation results 

(three hidden nodes) was then compared to an ARMA equation with similar production 

(third order polynomial).  The third-order equation was also the regression model with 

the best validation error (0.5185).  Both models used a similar number of parameters, 
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thirteen in the FNN and ten in the ARMA model.  Figure 4.54 shows the functions 

created by both models.  Like before, the FNN and regression equation have similar 

results at low levels of streamflow and are less comparable at the higher levels. 

 
Figure 4.54: Function estimates for Function 5 produced by a 3 hidden node FNN and a 3rd order one-
day-ahead ARMA. 
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5  Summary and Conclusions 

 This study investigated the potential equivalences between artificial neural 

networks and polynomial regression models in three major steps: 1) a formal and 

empirical comparison of feed-forward neural networks with multiple polynomial 

regression equations using synthetic data; 2) a formal and empirical comparison of 

recurrent neural networks with auto-regressive moving average equations using synthetic 

data; and 3) an empirical comparison of the ability of recurrent and non-recurrent ANNs 

and statistical models to simulate the bioenvironmental phenomenon of streamflow using 

real-world data. 

 The first two types of comparisons were performed for single perceptrons as well 

as for networks of perceptrons.  Formal comparisons were made by expanding the 

perceptron activation functions into Taylor series, substituting the expansions into the 

network equations, comparing the form of the result (term by term) with polynomial 

statistical models and then developing equations that transform network weights and 

biases into the coefficients of the potentially equivalent regression models.  Empirical 

comparisons were made by first training the neural networks and regressing the statistical 

models to pre-determined training data sets, and then: 1) comparing the fit of the ANNs 

and regression models to the training data sets; 2) comparing the predictions of the ANNs 

and regression models to a distinct validation data set; and 3) comparing the regressed 

coefficients of the statistical models to the potentially equivalent coefficients calculated 

from the weights and biases of the trained neural networks. 

 The study was limited to neural networks with up to five input nodes, two hidden 

layers, forty-five hidden nodes, and three delays.  The statistical models were limited up 
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to five input variables, fifth order, three auto-regressive terms and one moving average 

term.  The neural networks were trained by back-propagation while the statistical 

regression equations were estimated with least-squares. 

 

5.1  Equivalence of FNN and MPR 

 The results from this research support the theory that feed-forward neural 

networks and polynomial regression equations are mathematically equivalent models.  

Formal tests confirmed that FNNs with linear and polynomial activation functions can 

perfectly replicate target MPR equations, as long as there are enough hidden nodes in the 

network.  It was also demonstrated that FNNs with a sigmoid activation function can 

model the output function of polynomial equations with accuracy similar to that of FNNs 

with a polynomial activation function.  However, it generates a distinct prediction for 

data outside the bounds of the training set.  Equivalent polynomial regression coefficients 

were successfully obtained from the weights and biases of trained neural networks when 

the input data range was small (between -1 and +1) but not when it was large. 

 A strong relationship was found between the optimal number of hidden nodes in a 

FNN and the order of the underlying physical (polynomial) equation being modeled by 

the network.  Results demonstrated that for every system there exists an optimal, or 

critical, number of hidden nodes where validation error is at a minimum (Figure 5.1).  

This was found to correspond to the point where there are at least as many parameters in 

the FNN as there are in the target polynomial equation being modeled.  Before this point, 

there are not enough parameters in the network to replicate the underlying polynomial 

and afterwards the extra parameters lead to memorizing the training data and result in 
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poor generalization by the network.  A table was built (Table 4.17) that identifies this 

point (the minimum number of hidden nodes) needed to replicate a polynomial model as 

a function of the number of input variables and the order of the model.  Results further 

suggested that the second layer of network weights (that of the output layer of the 

network) does not enhance the performance (uniqueness) of the FNN, because the 

weights are being applied to all of the variables.  However, it does appear to play a role in 

scaling and offsetting to the network output function, which is important when the ANN 

uses a bounded activation function, such as a sigmoid, in the hidden layer. 

 
Figure 5.1: General relationship between the number of hidden nodes and network performance. 
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5.2  Equivalence of RNN and ARMA 

 The results found support the potential equivalence between recurrent neural 

networks and auto-regressive moving average functions.  It was demonstrated formally 

that a recurrent network has the ability to both replicate the structure of linear ARMA 

equation and empirically that it can train itself to find the correct regression parameters.  

However, there was evidence that the physics of the underlying time series equation 

being modeled has some effect on a RNN's ability to find these parameters.  In particular, 

the neural network converged to the correct parameters when the time series was stable 

and appeared to have difficulty when modeling unstable equations. 

 Recurrent networks were also shown to have an advantage over ARMA equations 

when an error term is used in the model.  RNNs are inherently able to include the error 

term as an input to the network and calculate its weights and biases as it would normally 

with back-propagation.  On the other hand, ARMA models are required to use less 

accurate methods such as long-AR to estimate the coefficients to the error terms. 

 

5.3  Application to Biological Phenomena 

 Artificial neural networks and statistical regression equations were both effective 

models for predicting daily streamflow of the Little Patuxent River.  With a small number 

of hidden nodes, or a low order polynomial equation, both models produced equivalent 

results.  At high polynomial orders, statistical regression equations trained over the 

calibration data set were not effective at predicting the validation data.  However, the 

ANN model was shown to remain effective even with a large number of hidden nodes.  

Using a large number of hidden nodes, however, did not do much to increase the network 
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performance and may hinder the network's ability to generalize and predict outliers in 

other, arbitrary, validation data sets. 

 Comparing the two models supported many of the formal and empirical 

equivalences found in the previous two sections, although there were some discrepancies, 

which are most likely due to the complex nature of real life systems.  The results show 

that with careful study of the data series being modeled, it is possible to create an 

efficient ANN that is both an accurate predictor and easier to interpret than traditional 

methods of trial-and-error. 

 When comparing the application of feed-forward neural networks to recurrent 

neural networks, it was observed that RNNs had two major advantages over FNNs:  1) 

they allow multiple-day-ahead prediction of streamflow and 2) they are more efficient 

than FNNs.  In general, the multiple-day-ahead predictions of RNNs were found to be 

only slightly less accurate than the one-day-ahead predictions of FNNs.  And in some 

cases, the RNNs were more accurate.  Additionally, the best-fit recurrent networks 

generally used less hidden nodes and fewer parameters than the best-fit feed-forward 

networks.  The best-fit RNNs performed more accurately than the best-fit multiple-day-

ahead ARMA equations.  The ARMA model failed to make a prediction when the 

polynomial order was larger than three, while the RNN produced reasonable predictions 

even with a large number of hidden nodes. 

 

5.4  Overall Conclusions 

 It has been confirmed that there is a strong relationship between artificial neural 

networks and statistical regression.  Both are empirical models with their own strengths 
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and weaknesses and while some basic similarities between the two models are obvious, 

formal connections between them have not been well known to modelers.  The following 

conclusions can be drawn based on the results of this study: 

• A single linear perceptron is equivalent to multiple linear regression with respect 

to the regression coefficients. 

• A feed-forward network with polynomial activation functions is equivalent to 

multiple polynomial regression with respect to the regression coefficients. 

• A feed-forward network with sigmoid activation functions is equivalent to 

multiple polynomial regression with respect to the quality of fit.  It is equivalent 

with respect to the regression coefficients when the range of the input data set is 

small (between -1 and +1). 

• A single linear recurrent perceptron is equivalent to ARMA with respect to the 

regression coefficients when the target time series is stable.  It is not as good as 

ARMA when the target time series is unstable. 

• A single linear recurrent perceptron is better than ARMA with respect to the 

regression coefficients when an error term is used in the equation instead of an 

independent input variable. 

• A recurrent network with sigmoid activation function is equivalent to NARMA 

with respect to the quality of fit.  It is not as good as NARMA with respect to the 

regression coefficients. 

 
 Hopefully, through research such as this, more connections and more strategies to 

eliminate the weaknesses of both types of models can be found.  Finding equivalences 

and combining knowledge between these two types of models will allow researchers to 
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design more effective models that combine the advantages of both artificial neural 

networks and statistical regression.  Modelers would be able to easily design models to 

describe a complex biological system that are both accurate as well as easy to interpret.  

The field as a whole would benefit from this knowledge. 

 Additionally, it would be beneficial for modelers to give more consideration to 

recurrent networks because of their strong connection to the parallel processing abilities 

to biological neural networks.  Feed-forward networks are currently the more common 

network structure primarily because of "tradition" and because of their relative ease of 

use.  However, these networks have lost many of the concepts and abilities of the 

biological networks that inspired them, such as massive parallel processing.  It may be 

conceptually advantageous for modeling, particularly when modeling biological systems, 

that we retain the properties of biological systems such as the neuron as much as possible. 
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6  Future Research 

 There are many areas of research that can be explored further based on the 

findings from this thesis.  The empirical relationship between artificial neural networks 

and statistical regression models has already been demonstrated in many applications.  

Future research can be performed to strengthen the formal relationship between the two 

models.  Some specific ideas for future research include: 

• Develop formal equations to define network parameters (such as weights and 

biases) in terms of regression coefficients.  This could be useful for initializing 

network parameters and reducing the chance of a poor network being trained as a 

result of bad initial values. 

• Find formal equations relating more complex neural networks, such as those with 

two hidden sigmoid layers, to statistical regression equations. 

• Examine other network parameters that influence ANN performance, such as the 

activation function, number of hidden layers, number of epochs, learning rate, and 

others not encompassed by this thesis. 

• Continue to investigate the optimal number of hidden nodes to model a particular 

system.  In particular, determine a stronger formal relationship between the 

number of hidden nodes and the order of the output function for the network. 

• Investigate formal methods for determining the optimal order (p and q) of a RNN 

or ARMA model for a given time series. 

• Expand the investigation of application to biological systems to include other 

fields and systems where modeling is important.  For example, modeling 

population dynamics or electrical cardiograph signals. 
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• Explore alternatives to back-propagation for training the parameters of an ANN. 

• Evaluate the use of sigmoid functions in statistical regression models, in particular 

their ability to provide robust predictions. 

• Develop a relationship or guideline between the number of parameters in a model 

and the optimal number of hidden nodes and activation functions in an artificial 

neural network. 

• Investigate potential equivalences between artificial neural networks, statistical 

regression, and ordinary and partial differential equations.  Particularly in the area 

of time series modeling, where variables change with respect to time.  The 

difference between two time steps can be used to estimate the derivative, similar 

to the finite difference method.  This knowledge could potentially convert 

discrete-time recurrent neural networks into continuous-time differential 

equations. 
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Appendix A - MATLAB Code 
 
function [net] = percepnet() 
    %This code trains both linear and third order polynomial 
    %equations to both perceptrons and regression equations. 
     
    %Training Data 
    x=[-149:1:150]; 
    %1 Var, 1st Order 
    %y = 100 + 2*x + 10*randn(1,300); 
    %1 Var, 3rd Order 
    y = 100 + 2*x - 0.005*x.^2 + 0.0001*x.^3 + 10*randn(1,300); 
     
    %Scale data to range of -0.1 to +0.1 
    ox = x; 
    oy = y; 
    for i = 1:300 
        sx(i) = ((0.1 - -0.1) * x(i) + (max(x) * -0.1 - min(x) * 0.1)) / (max(x) - min(x)); 
        sy(i) = ((0.1 - -0.1) * y(i) + (max(y) * -0.1 - min(y) * 0.1)) / (max(y) - min(y)); 
    end 
    tx = sx; 
    ty = sy; 
     
    %Linear Perceptron 
    %net = newff([min(tx) max(tx)], [1], {'purelin'}); 
    %Nonlinear Perceptron 
    net = newff([min(tx) max(tx)], [1], {'tansig'}); 
    net.trainParam.epochs = 500; 
    net.trainParam.mu_max = 1.0000e+010; 
    input = [tx]; 
    net = train(net,input,ty); 
    ytn = sim(net,input); 
    [net.b{1} ; net.IW{1}] 
     
    %Linear Regression 
    %input = [ones(300,1) tx']; 
    %p = input \ ty' 
    %ytr = p(1) + p(2) * tx; 
    %Polynomial Regression 
    input = [ones(300,1) tx' tx'.^2 tx'.^3]; 
    p = input \ ty' 
    ytr = p(1) + p(2) * tx + p(3) * tx.^2 + p(4) * tx.^3; 
     
    %Rescale data 
    for i = 1:300 
        sytn(i) = ((max(y) - min(y)) * ytn(i) - (max(y) * -0.1 - min(y) * 0.1)) / (0.1 - -0.1); 
        sytr(i) = ((max(y) - min(y)) * ytr(i) - (max(y) * -0.1 - min(y) * 0.1)) / (0.1 - -0.1); 
    end 
    ytn = sytn; 
    ytr = sytr; 
     
    %Output 
    se = sqrt(sum((ytn - y).^2)/(300 - 2)); 
    sy = sqrt(sum((y - mean(y)).^2)/(300 - 1)); 
    sesyn = se/sy 
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    se = sqrt(sum((ytr - y).^2)/(300 - 4)); 
    sy = sqrt(sum((y - mean(y)).^2)/(300 - 1)); 
    sesyr = se/sy 
    close 
    plot(x,y,'o',x,ytn,x,ytr) 
     
    %Validation data 
    clear x y 
    x=[151:1:250]; 
    %y = 100 + 2*x + 10*randn(1,100); 
    y = 100 + 2*x - 0.005*x.^2 + 0.0001*x.^3 + 10*randn(1,100); 
     
    %Scale 
    for i = 1:100 
        sx(i) = ((0.1 - -0.1) * x(i) + (max(ox) * -0.1 - min(ox) * 0.1)) / (max(ox) - min(ox)); 
        sy(i) = ((0.1 - -0.1) * y(i) + (max(oy) * -0.1 - min(oy) * 0.1)) / (max(oy) - min(oy)); 
    end 
    tx = sx; 
    ty = sy; 
     
    %Validate 
    input = [tx]; 
    yvn = sim(net,input); 
    yvr = p(1) + p(2) * tx + p(3) * tx.^2 + p(4) * tx.^3; 
     
    %Rescale data 
    for i = 1:100 
        syvn(i) = ((max(oy) - min(oy)) * yvn(i) - (max(oy) * -0.1 - min(oy) * 0.1)) / (0.1 - -0.1); 
        syvr(i) = ((max(oy) - min(oy)) * yvr(i) - (max(oy) * -0.1 - min(oy) * 0.1)) / (0.1 - -0.1); 
    end 
    yvn = syvn; 
    yvr = syvr; 
     
    %Output 
    se = sqrt(sum((yvn - y).^2)/(100 - 2)); 
    sy = sqrt(sum((y - mean(y)).^2)/(100 - 1)); 
    sesyn = se/sy 
    se = sqrt(sum((yvr - y).^2)/(100 - 4)); 
    sy = sqrt(sum((y - mean(y)).^2)/(100 - 1)); 
    sesyr = se/sy 
    hold on 
    plot(x,y,'o',x,yvn,x,yvr) 
end 
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function [net sig] = cubicnet() 
    %This code is used to train both polynomial and sigmoid 
    %FNNs to cubic ordered polynomial equations. 
     
    %Training Data 
    x1 = [-149:1:150]; 
    t = [-149:1:150]; 
    %1 Var, 3rd Order 
    y = 100 + 2*x1 - 0.005*x1.^2 + 0.0001*x1.^3 + 10*randn(1,201); 
    %y = 0 - 0.4*x1 + 0.3*x1.^2 + 1*x1.^3 + 0*randn(1,21); 
     
    %1 or 2 hidden node with third order activation function 
    disp('Input - X = -149 to 150, 151 to 250') 
    disp('Ouput - Y = 100 + 2*X - 0.005*X.^2 + 0.0001*X.^3 + 0*randn') 
    disp('FNN - 1 Lin - 2 Third - 1 Lin + Biases, 500 Epochs') 
    net = newff([min(y) max(y)], [1 2 1], {'purelin' 'third' 'purelin'}); 
    net.trainParam.epochs = 500; 
    net.trainParam.mu_max = 1.0000e+020; 
    net.biasConnect = [0;1;1]; 
    net.IW{1} = [1]; 
    net.inputWeights{1}.learn = 0; 
    %net.LW{3,2} = [1 1]; 
    %net.layerWeights{3,2}.learn = 0; 
    %net.b{3} = 0; 
    %net.biases{3}.learn = 0; 
    input = [x1]; 
    net = train(net,input,y); 
    yt = sim(net,input); 
     
    %Parameters with one hidden node 
    %w1 = net.LW{2,1}(1); 
    %w2 = net.LW{3,2}(1); 
    %b1 = net.b{2}(1); 
    %b2 = net.b{3}(1); 
    %p1 = w2*b1^3 + b2 
    %p2 = 3*w1*w2*b1^2 
    %p3 = 3*w1^2*w2*b1 
    %p4 = w1^3*w2 
     
    %Parameters with two hidden nodes 
    w1 = net.LW{2,1}(1); 
    w2 = net.LW{2,1}(2); 
    w3 = net.LW{3,2}(1); 
    w4 = net.LW{3,2}(2); 
    b1 = net.b{2}(1); 
    b2 = net.b{2}(2); 
    b3 = net.b{3}; 
    p1 = w3*b1^3 + w4*b2^3 + b3 
    p2 = w3*3*w1*b1^2 + w4*3*w2*b2^2 
    p3 = w3*3*w1^2*b1 + w4*3*w2^2*b2 
    p4 = w3*w1^3 + w4*w2^3 
     
    %Feed-forward network with sigmoid activation function 
    disp('FNN - 1 Lin - 2 Sig - 1 Lin + Biases, 500 Epochs') 
    sig = newff([min(y) max(y)], [1 2 1], {'purelin' 'tansig' 'purelin'}); 
    sig.trainParam.epochs = 500; 
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    sig.trainParam.mu_max = 1.0000e+050; 
    sig.biasConnect = [0;1;1]; 
    sig.IW{1} = [1]; 
    sig.inputWeights{1}.learn = 0; 
    input = [x1]; 
    sig = train(sig,input,y); 
    ys = sim(sig,input); 
     
    %Regression Equation 
    input = [ones(201,1) x1' x1'.^2 x1'.^3]; 
    p = input \ y' 
    yr = p(1) + p(2) * x1 + p(3) * x1.^2 + p(4) * x1.^3; 
     
    %Output 
    se = sqrt(sum((yt - y).^2)/(300 - (1+(1+1+1)*2))); 
    sy = sqrt(sum((y - mean(y)).^2)/(300 - 1)); 
    sesyn = se/sy 
    se = sqrt(sum((yr - y).^2)/(300 - 4)); 
    sy = sqrt(sum((y - mean(y)).^2)/(300 - 1)); 
    sesyr = se/sy 
    se = sqrt(sum((ys - y).^2)/(300 - (1+(1+1+1)*2))); 
    sy = sqrt(sum((y - mean(y)).^2)/(300 - 1)); 
    sesys = se/sy 
    close 
    plot(t,y,t,yt,t,yr,t,ys) 
     
    %Validation Data 
    x1 = [151:1:250]; 
    t = [151:1:250]; 
    y = 100 + 2*x1 - 0.005*x1.^2 + 0.0001*x1.^3 + 10*randn(1,51); 
    %y = 0 - 0.4*x1 + 0.3*x1.^2 + 1*x1.^3 + 0*randn(1,6); 
     
    %Validate 
    input = [x1]; 
    yt = sim(net,input); 
    ys = sim(sig,input); 
    %yr = p(1) + p(2) * x1 + p(3) * x1.^2;%2nd Order 
    yr = p(1) + p(2) * x1 + p(3) * x1.^2 + p(4) * x1.^3; 
     
    %Output 
    se = sqrt(sum((yt - y).^2)/(100 - (1+(1+1+1)*2))); 
    sy = sqrt(sum((y - mean(y)).^2)/(100 - 1)); 
    sesyn = se/sy 
    se = sqrt(sum((yr - y).^2)/(100 - 4)); 
    sy = sqrt(sum((y - mean(y)).^2)/(100 - 1)); 
    sesyr = se/sy 
    se = sqrt(sum((ys - y).^2)/(100 - (1+(1+1+1)*2))); 
    sy = sqrt(sum((y - mean(y)).^2)/(100 - 1)); 
    sesys = se/sy 
    hold on 
    plot(t,y,t,yt,t,yr,t,ys) 
end 
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function [output] = autopolynet() 
    %This code creates synthetic MPR equations with 1 to 5 
    %variables from 1st to 5th order.  It then trains a 
    %series of FNNs with 1 to 45 hidden nodes. 
    tic 
    %Set up input variables 
    num = 500; 
    x1 = randn(1,num); 
    x2 = randn(1,num); 
    x3 = randn(1,num); 
    x4 = randn(1,num); 
    x5 = randn(1,num); 
    training = [x1;x2;x3;x4;x5]; 
    xv1 = randn(1,num); 
    xv2 = randn(1,num); 
    xv3 = randn(1,num); 
    xv4 = randn(1,num); 
    xv5 = randn(1,num); 
    validate = [xv1;xv2;xv3;xv4;xv5]; 
     
    %Used to determine the order of the activation function 
    actfun = {'purelin' 'second' 'third' 'forth' 'fifth'}; 
    regvar = {'x1+1' 'x1+x2+1' 'x1+x2+x3+1' 'x1+x2+x3+x4+1' 'x1+x2+x3+x4+x5+1'}; 
     
    %Loop through # orders, # variables, and # hidden nodes 
    index = 0; 
    for ord = 1:5 
        ord 
        for var = 1:5 
            var 
            %Set up regression equation 
            s = sym(char(regvar(var))); 
            s = expand(s^ord); 
            s = char(s); 
            len = size(s); 
            len = len(2); 
            clear store; 
            temp = ''; 
            count = 1; 
            for i = 1:len 
                if (s(i) ~= '+') 
                    if ((s(i) == '^') || (s(i) == '*')) 
                        temp = strcat(temp,'.'); 
                    end 
                    temp = strcat(temp,s(i)); 
                else 
                    store(count) = cellstr(temp); 
                    count = count + 1; 
                    temp = ''; 
                end 
            end 
            store(count) = cellstr(temp); 
            len = size(store); 
            len = len(2); 
            %Remove coefficients due to polynomial expansion 
            for j = 1:len 
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                temp = char(store(j)); 
                if ((temp(1) == '1') || (temp(1) == '2') || (temp(1) == '3') || (temp(1) == '4') || (temp(1) == '5') || 
(temp(1) == '6') || (temp(1) == '7') || (temp(1) == '8') || (temp(1) == '9')) 
                    l = size(temp); 
                    l = l(2); 
                    tem = ''; 
                    star = 0; 
                    for k = 1:l; 
                        if ((temp(k) == '*') && (star == 0)) 
                            star = 1; 
                        elseif (star == 1) 
                            tem = strcat(tem,temp(k)); 
                        else 
                            %Do nothing 
                        end 
                    end 
                    store(j) = cellstr(tem); 
                end 
            end 
            %Give random coefficients to each term 
            clear c regeq; 
            for j = 1:len 
                c(j) = randn; 
                if (strcmp(cell2mat(store(j)),'')) 
                    regeq(j) = cellstr('c(j)'); 
                else 
                    regeq(j) = cellstr(strcat('c(j)*',char(store(j)))); 
                end 
            end 
            %Set up target y values 
            y = zeros(1,num); 
            for j = 1:len 
                y = y + eval(cell2mat(regeq(j))); 
            end 
            %Error/Noise Term 
            %y = y + 0.1 * randn(1,num); 
            %Set up validation y values 
            xt1 = x1; 
            xt2 = x2; 
            xt3 = x3; 
            xt4 = x4; 
            xt5 = x5; 
            yt = y; 
            x1 = xv1; 
            x2 = xv2; 
            x3 = xv3; 
            x4 = xv4; 
            x5 = xv5; 
            yv = zeros(1,num); 
            for j = 1:len 
                yv = yv + eval(cell2mat(regeq(j))); 
            end 
            %Error/Noise Term 
            %yv = yv + 0.1 * randn(1,num); 
            %Reset 
            x1 = xt1; 
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            x2 = xt2; 
            x3 = xt3; 
            x4 = xt4; 
            x5 = xt5; 
            y = yt; 
            %Test neural networks 
            for hid = 1:45 
                hid 
                for trial = 1:5 
                    %Set up network 
                    clear inputrange; 
                    for k = 1:var 
                        inputrange(k,:) = [-50 50]; 
                    end 
                    net = newff(inputrange, [var hid 1], {'purelin' char(actfun(ord)) 'purelin'}); 
                    %net = newff(inputrange, [var hid 1], {'purelin' 'tansig' 'purelin'}); 
                    %net = newff(inputrange, [var hid 5 1], {'purelin' 'tansig' 'tansig' 'purelin'}); 
                    net.trainParam.epochs = 500; 
                    net.trainParam.mu_max = 1.0000e+010; 
                    net.biasConnect = [0;1;1]; 
                    %net.biasConnect = [0;1;1;1]; 
                    net.IW{1} = eye(var); 
                    net.inputWeights{1}.learn = 0; 
                    %Train network 
                    input = training(1:var,:); 
                    net = train(net,input,y); 
                    ynt = sim(net,input); 
                    %Validate network 
                    input = validate(1:var,:); 
                    ynv = sim(net,input); 
                    %Determine error 
                    rp = len; 
                    np = (1+(var+1+1)*hid); 
                    se = sqrt(sum((ynt - y).^2)/(num-np)); 
                    sy = sqrt(sum((y - mean(y)).^2)/(num-1)); 
                    sesy = se/sy 
                    %Validation error 
                    sev = sqrt(sum((ynv - yv).^2)/(num-np)); 
                    syv = sqrt(sum((yv - mean(yv)).^2)/(num-1)); 
                    sesyv = sev/syv 
                    %Save data to output 
                    index = index + 1; 
                    output(index,1) = ord; 
                    output(index,2) = var; 
                    output(index,3) = hid; 
                    output(index,4) = sesy; 
                    output(index,5) = sesyv; 
                    output(index,6) = rp; 
                    output(index,7) = np; 
                    output(index,8) = (sum((ynt - mean(y)).^2))/(sum((y - mean(y)).^2)); 
                    output(index,9) = (sum((ynv - mean(yv)).^2))/(sum((yv - mean(yv)).^2)); 
                    output(index,10) = sum((ynt - y).^2); 
                    output(index,11) = sum((ynv - yv).^2); 
                    %Stop if min error is found 
                    if (sesy < 1e-10) 
                        break; 
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                    end 
                end 
                if (sesy < 1e-10) 
                    break; 
                end 
            end 
        end 
    end 
    toc 
end 
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function [rec] = armaunit() 
    %This code tests AR(1,1) and the recurrent perceptron. 
     
    %Input and Target Time Series 
    len = 300; 
    x = randn(1,len); 
    t = [1:len]; 
    y(1) = 5 * x(1) + 0.5 * 0 - 1.5 + 0 * randn; 
    for i = 2:len 
        y(i) = 5 * x(i) + 0.5 * y(i-1) - 1.5 + 0 * randn; 
    end 
    ym1(2:len) = y(1:(len-1)); 
     
    %ARMA(1,1) estimation 
    input = [x' ym1' ones(len,1)]; 
    pq = input \ y' 
    yhat(1) = pq(1) * x(1) + pq(2) * 0 + pq(3) * 1; 
    for i = 2:len 
        yhat(i) = pq(1) * x(i) + pq(2) * yhat(i-1) + pq(3) * 1; 
        %y(i-1) = One Day Ahead, yhat(i-1) = Multiple Day Ahead 
    end 
     
    %Recurrent Perceptron = Multiple Day Ahead 
    rec = newff([-500 500;-500 500], [2 1], {'purelin' 'purelin'}); 
    rec.trainParam.epochs = 50; 
    rec.trainParam.mu_max = 1.0000e+010; 
    rec.IW{1} = [1 0;0 0]; 
    rec.inputWeights{1}.learn = 0; 
    rec.layerConnect = [0 1;1 0]; 
    rec.LW{1,2} = [0;1]; 
    rec.layerWeights{1,2}.delays = 1; 
    rec.layerWeights{1,2}.learn = 0; 
    rec.biasConnect = [0;1]; 
    input = mat2cell([x' zeros(len,1)]',2,ones(len,1)); 
    y = mat2cell(y,1,ones(1,len)); 
    [rec,a,e,pf] = train(rec,input,y); 
    [ynet pf af] = sim(rec,input); 
    ynet = cell2mat(ynet); 
    y = cell2mat(y); 
    prec = [rec.LW{2,1}(1) ; rec.LW{2,1}(2) ; rec.b{2}] 
     
    %Find Error and Output Results 
    err = (yhat - y); 
    se = sqrt(sum(err.^2)/(len-3)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyr = se / sy 
    nerr = (ynet - y); 
    se = sqrt(sum(nerr.^2)/(len-3)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyc = se / sy 
    close 
    plot(t,y,t,yhat,t,ynet) 
end 
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function [rec] = armauniterr() 
    %This code tests AR(1,1) and the recurrent perceptron. 
    %Also uses the error term. 
     
    %Target Time Series 
    len = 300; 
    x = randn(1,len); 
    t = [1:len]; 
    y(1) = 5 * x(1) + 1 * 0 - 1.5 + 0 * randn; 
    for i = 2:len 
        y(i) = 5 * x(i) + 1 * y(i-1) - 1.5 + 0 * randn; 
    end 
     
    %Long-AR Method for ARMA(1,1) 
    j = 7; 
    for i = 1:j 
        ym((i+1):len,i) = y(1:(len-i)); 
    end 
    input = ym; 
    k = input \ y'; 
    khat = zeros(len,1); 
    for i = 1:j 
        khat = khat + k(i) * ym(:,i); 
    end 
    ehat = (khat - y'); 
    ehatm1(2:len) = ehat(1:(len-1)); 
    input = [ehatm1' ym(:,1) ones(len,1)]; 
    pq = input \ y' 
    yhat(1) = pq(1) * 0 + pq(2) * 0 + pq(3) * 1; 
    for i = 2:len 
        yhat(i) = pq(1) * (yhat(i-1) - y(i-1)) + pq(2) * yhat(i-1) + pq(3) * 1; 
        %y(i-1) = One Day Ahead, yhat(i-1) = Infinite Day Ahead 
    end 
     
    %Recurrent Neural Network = Infinite Day Ahead 
    rec = newff([-500 500;-500 500], [2 1], {'purelin' 'purelin'}); 
    rec.trainParam.epochs = 50; 
    rec.trainParam.mu_max = 1.0000e+010; 
    rec.IW{1} = [1 0;0 0]; 
    rec.inputWeights{1}.learn = 0; 
    rec.layerConnect = [0 1;1 0]; 
    rec.LW{1,2} = [-1;1]; 
    rec.layerWeights{1,2}.delays = 1; 
    rec.layerWeights{1,2}.learn = 0; 
    rec.biasConnect = [0;1]; 
    input = mat2cell([ym(:,1) zeros(len,1)]',2,ones(len,1)); 
    y = mat2cell(y,1,ones(1,len)); 
    [rec,a,e,pf] = train(rec,input,y); 
    [ynet pf af] = sim(rec,input); 
    ynet = cell2mat(ynet); 
    y = cell2mat(y); 
    prec = [rec.LW{2,1}(1) ; rec.LW{2,1}(2) ; rec.b{2}] 
     
    % Find Error and Output Results 
    err = (yhat - y); 
    se = sqrt(sum(err.^2)/(len-3)); 
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    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyr = se / sy 
    nerr = (ynet - y); 
    se = sqrt(sum(nerr.^2)/(len-3)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyc = se / sy 
    close 
    plot(t,y,t,yhat,t,ynet) 
end 
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function [net] = armapnet() 
    %This code tests the ARMA(3,0) equation and recurrent perceptron. 
     
    %Target Time Series 
    len = 150; 
    t = [1:len]; 
    change = 0.05; 
    y(1) = 0.5 + change * 0 - 0.70 * 0 + 0.45 * 0; 
    y(2) = 0.5 + change * y(1) - 0.70 * 0 + 0.45 * 0; 
    y(3) = 0.5 + change * y(1) - 0.70 * y(2) + 0.45 * 0; 
    for i = 4:len 
        y(i) = 0.5 + change * y(i-1) - 0.70 * y(i-2) + 0.45 * y(i-3) + 0 * randn; 
        ym1(i) = y(i-1); 
        ym2(i) = y(i-2); 
        ym3(i) = y(i-3); 
    end 
     
    %Recurrent Perceptron Training 
    net = newff([-0.9 0.9;-0.9 0.9;-0.9 0.9], [3 1], {'purelin' 'purelin'}); 
    net.trainParam.epochs = 500; 
    net.trainParam.mu_max = 1.0000e+010; 
    net.biasConnect = [0;1]; 
    net.IW{1} = [0 0 0;0 0 0;0 0 0]; 
    net.inputWeights{1}.learn = 0; 
    net.layerConnect = [0 1;1 0]; 
    net.layerWeights{1,2}.delays = [1 2 3]; 
    net.LW{1,2} = [1 0 0;0 1 0;0 0 1]; 
    net.layerWeights{1,2}.learn = 0; 
    input = zeros(3,len); 
    input = mat2cell(input,3,ones(len,1)); 
    target = mat2cell(y,1,ones(1,len)); 
    net = train(net,input,target); 
    yr = sim(net,input); 
    yr = cell2mat(yr); 
    wb = [net.b{2};net.LW{2,1}'] 
     
    %ARMA(3,0) Estimation 
    input = [ones(len,1) ym1' ym2' ym3']; 
    pq = input \ y' 
    yhat(1) = pq(1) + pq(2) * 0 + pq(3) * 0 + pq(4) * 0; 
    yhat(2) = pq(1) + pq(2) * yhat(1) + pq(3) * 0 + pq(4) * 0; 
    yhat(3) = pq(1) + pq(2) * yhat(1) + pq(3) * yhat(2) + pq(4) * 0; 
    for i = 4:len 
        yhat(i) = pq(1) + pq(2) * yhat(i-1) + pq(3) * yhat(i-2) + pq(4) * yhat(i-3); 
        %y(i-1) = One Day Ahead, yhat(i-1) = Infinite Day Ahead 
    end 
     
    %Find Error and Output Results 
    nerr = (yr - y); 
    se = sqrt(sum(nerr.^2)/(len-4)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyc = se / sy 
    err = (yhat - y); 
    se = sqrt(sum(err.^2)/(len-4)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyr = se / sy 
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    close 
    plot(t,y,t,yr,t,yhat) 
end 
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function [rec] = armanonlin() 
    %This code tests for NARMA(1,0) equation 
    len = 300; 
    t = [1:len]; 
    y(1) = -1.2 * 0 + 0.3 * 0 + 1 * 0 + 0.6 + 0 * randn; 
    for i = 2:len 
        y(i) = -1.2 * y(i-1) + 0.3 * y(i-1)^2 + 1 * y(i-1)^3 + 0.6 + 0 * randn; 
    end 
     
    %Set up NARMA(1,0) 
    j = 1; 
    for i = 1:j 
        ym((i+1):len,i) = y(1:(len-i)); 
    end 
    input = [ones(len,1) ym(:,1) ym(:,1).^2 ym(:,1).^3]; 
    pq = input \ y' 
    yhat(1) = pq(1) * 1 + pq(2) * 0 + pq(3) * 0 + pq(4) * 0; 
    for i = 2:len 
        yhat(i) = pq(1) * 1 + pq(2) * yhat(i-1) + pq(3) * yhat(i-1)^2 + pq(4) * yhat(i-1)^3; 
        %y(i-1) = One Day Ahead, yhat(i-1) = Infinite Day Ahead 
    end 
     
    %Set up Recurrent Neural Network = Infinite Day Ahead 
    rec = newff([-1 1], [1 2 1], {'purelin' 'tansig' 'purelin'}); 
    rec.trainParam.epochs = 50; 
    rec.trainParam.mu_max = 1.0000e+010; 
    rec.IW{1} = [0]; 
    rec.inputWeights{1}.learn = 0; 
    rec.layerConnect = [0 0 1;1 0 0;0 1 0]; 
    rec.LW{1,3} = [1]; 
    rec.layerWeights{1,3}.delays = 1; 
    rec.layerWeights{1,3}.learn = 0; 
    rec.biasConnect = [0;1;1]; 
    input = mat2cell([zeros(len,1)]',1,ones(len,1)); 
    y = mat2cell(y,1,ones(1,len)); 
    [rec,a,e,pf] = train(rec,input,y); 
    [ynet pf af] = sim(rec,input); 
    ynet = cell2mat(ynet); 
    y = cell2mat(y); 
    w1 = rec.LW{2,1}(1); 
    w2 = rec.LW{2,1}(2); 
    w3 = rec.LW{3,2}(1); 
    w4 = rec.LW{3,2}(2); 
    b1 = rec.b{2}(1); 
    b2 = rec.b{2}(2); 
    b3 = rec.b{3}; 
    c0 = w3*b1 + w4*b2 - 1/3*w3*b1^3 - 1/3*w4*b2^3 + b3; 
    c1 = w3*w1 + w4*w2 - w3*w1*b1^2 - w4*w2*b2^2; 
    c2 = -w3*w1^2*b1 - w4*w2^2*b2; 
    c3 = -1/3*w3*w1^3 - 1/3*w4*w2^3; 
    [c0; c1; c2; c3] 
     
    %Find Error and Output Results 
    err = (yhat - y); 
    se = sqrt(sum(err.^2)/(len-4)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
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    sesyr = se / sy 
    nerr = (ynet - y); 
    se = sqrt(sum(nerr.^2)/(len-7)); 
    sy = sqrt(sum(y.^2)/(len-1)); 
    sesyc = se / sy 
    close 
    plot(t,y,t,yhat,t,ynet) 
end 
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function [store] = bigonevarnet(Q,P,T,Qt,Pt,Tt) 
    %This code was used to train the FNN to estimate Function 1 
    %for streamflow prediction, which uses only Pt as input. 
     
    %Scale training inputs and outputs to a range of [-0.8, +0.8]. 
    smin = -0.8; 
    smax = 0.8; 
    for i = 1:size(Q) 
        q(i) = ((smax - smin) * Q(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q)); 
    end 
    for i = 1:size(P) 
        p(i) = ((smax - smin) * P(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P)); 
        x = size(P); 
        if (i < x(1)) 
            pm1(i+1) = p(i); 
        end 
    end 
    pm1(1) = p(1); 
    for i = 1:size(T) 
        t(i) = ((smax - smin) * T(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T)); 
    end 
     
    disp('FNN - 1 Lin - X Sig - 1 Lin + Biases') 
    disp('Input - P, Output - Q, Data - WDA, 500 Epochs') 
    disp('Scaled P, Scaled Q') 
     
    %Test 1 through 45 hidden nodes. 
    count = 0; 
    for ii = 1:45 
        for jj = 1:5 
            hid = ii 
            count = count + 1; 
            store(count,1) = ii; 
            %Set up the three-layer feed-forward network. 
            net = newff([-0.9 0.9], [1 hid 1], {'purelin' 'tansig' 'purelin'}); 
            net.trainParam.epochs = 500; 
            net.trainParam.mu_max = 1.0000e+010; 
            net.biasConnect = [0;1;1]; 
            net.IW{1} = [1]; 
            net.inputWeights{1}.learn = 0; 
             
            %Train network. 
            input = [p]; 
            net = train(net,input,q); 
             
            %Simulate network. 
            yn = sim(net,input); 
             
            %Rescale output. 
            x = size(yn); 
            for i = 1:x(2) 
                Yn(i) = ((max(Q) - min(Q)) * yn(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin); 
            end 
             
            %Determine error. 
            %Change for # of hidden nodes and # of parameters. 
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            se = sqrt(sum((Yn - Q').^2)/(x(2)-(1+(1+1+1)*hid))); 
            sy = sqrt(sum((Q - mean(Q)).^2)/(x(2)-1)); 
            sesyn = se/sy 
            store(count,2) = sesyn; 
 
            %Test on validation data.  Scale the data using same scale as the training data. 
            for i = 1:size(Qt) 
                qt(i) = ((smax - smin) * Qt(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q)); 
            end 
            for i = 1:size(Pt) 
                pt(i) = ((smax - smin) * Pt(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P)); 
                x = size(Pt); 
                if (i < x(1)) 
                    pm1t(i+1) = pt(i); 
                end 
            end 
            pm1t(1) = pt(1); 
            for i = 1:size(Tt) 
                tt(i) = ((smax - smin) * Tt(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T)); 
            end 
             
            input = [pt]; 
            ynt = sim(net,input); 
             
            %Rescale output. 
            x = size(ynt); 
            for i = 1:x(2) 
                Ynt(i) = ((max(Q) - min(Q)) * ynt(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin); 
            end 
             
            %Determine error. 
            %Change for # of hidden nodes and # of parameters. 
            se = sqrt(sum((Ynt - Qt').^2)/(x(2)-(1+(1+1+1)*hid))); 
            sy = sqrt(sum((Qt - mean(Qt)).^2)/(x(2)-1)); 
            sesyn = se/sy 
            store(count,3) = sesyn; 
            store(count,4) = (1+(1+1+1)*hid); 
        end 
    end 
    store 
end 
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function [store net rec] = bigrecurnet(Q,P,T,Qt,Pt,Tt) 
    %This code was used to train the FNN to estimate Function 8 
    %Scale inputs and outputs to a range of [-0.8, +0.8] 
    for i = 1:size(Q) 
        q(i) = ((0.8 - -0.8) * Q(i) + (max(Q) * -0.8 - min(Q) * 0.8)) / (max(Q) - min(Q)); 
        x = size(Q); 
        if (i < x(1)) 
            qm1(i+1) = q(i); 
        end 
    end 
    qm1(1) = q(1); 
    for i = 1:size(P) 
        p(i) = ((0.8 - -0.8) * P(i) + (max(P) * -0.8 - min(P) * 0.8)) / (max(P) - min(P)); 
        x = size(P); 
        if (i < x(1)) 
            pm1(i+1) = p(i); 
        end 
    end 
    pm1(1) = p(1); 
    for i = 1:size(T) 
        t(i) = ((0.8 - -0.8) * T(i) + (max(T) * -0.8 - min(T) * 0.8)) / (max(T) - min(T)); 
    end 
     
    disp('FNN - 4 Lin - X Sig - 1 Lin + Biases (One Day Ahead)') 
    disp('RNN - 4 Lin - X Sig - 1 Lin + Biases (Multi Day Ahead)') 
    disp('Input - P, P-1, T, Q-1, Output - Q, Data - WDA') 
     
    count = 0; 
    for ii = 1:30 
        for jj = 1:5 
            hid = ii 
            count = count + 1; 
            store(count,1) = ii; 
            %Set up the feed-forward network 
            net = newff([-0.9 0.9;-0.9 0.9;-0.9 0.9;-0.9 0.9], [4 hid 1], {'purelin' 'tansig' 'purelin'}); 
            net.trainParam.epochs = 500; 
            net.biasConnect = [0;1;1]; 
            net.IW{1} = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; 
            net.inputWeights{1}.learn = 0; 
             
            %Train network 
            input = [p; pm1; t; qm1]; 
            net = train(net,input,q); 
             
            %Simulate network 
            y2 = sim(net,input); 
             
            %Set up the recurrent network 
            rec = newff([-0.9 0.9;-0.9 0.9;-0.9 0.9;-0.9 0.9], [4 hid 1], {'purelin' 'tansig' 'purelin'}); 
            rec.trainParam.epochs = 50; 
            rec.biasConnect = [0;1;1]; 
            rec.IW{1} = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0]; 
            rec.inputWeights{1}.learn = 0; 
            rec.layerConnect = [0 0 1; 1 0 0; 0 1 0]; 
            rec.LW{1,3} = [0;0;0;1]; 
            rec.layerWeights{1,3}.learn = 0; 
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            rec.layerWeights{1,3}.delays = 1; 
             
            %Train + Simulate recurrent network 
            input = mat2cell([p; pm1; t; zeros(size(qm1))],4,ones(size(Q),1)); 
            q = mat2cell(q,1,ones(1,size(Q))); 
            rec = train(rec,input,q); 
            y2c = sim(rec,input); 
            q = cell2mat(q); 
            y2c = cell2mat(y2c); 
           
            %Rescale output 
            x = size(y2); 
            for i = 1:x(2) 
                Y2(i) = ((max(Q) - min(Q)) * y2(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8); 
            end 
            x = size(y2c); 
            for i = 1:x(2) 
                Y2c(i) = ((max(Q) - min(Q)) * y2c(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8); 
            end 
             
            %Determine error 
            E2 = Y2' - Q; 
            se = sqrt(sum(E2.^2)/(x(2)-(1+(1+4+1)*hid))); 
            sy = sqrt(sum((Q - mean(Q)).^2)/(x(2)-1)); 
            disp('FNN - Train') 
            sesy = se/sy 
            store(count,2) = se/sy; 
            E2 = Y2c' - Q; 
            se = sqrt(sum(E2.^2)/(x(2)-(1+(1+4+1)*hid))); 
            sy = sqrt(sum((Q - mean(Q)).^2)/(x(2)-1)); 
            disp('RNN - Train') 
            sesy = se/sy 
            store(count,3) = se/sy; 
             
            %Test on validation data 
            for i = 1:size(Qt) 
                qt(i) = ((0.8 - -0.8) * Qt(i) + (max(Q) * -0.8 - min(Q) * 0.8)) / (max(Q) - min(Q)); 
                x = size(Qt); 
                if (i < x(1)) 
                    qm1t(i+1) = qt(i); 
                end 
            end 
            qm1t(1) = qt(1); 
            for i = 1:size(Pt) 
                pt(i) = ((0.8 - -0.8) * Pt(i) + (max(P) * -0.8 - min(P) * 0.8)) / (max(P) - min(P)); 
                x = size(Pt); 
                if (i < x(1)) 
                    pm1t(i+1) = pt(i); 
                end 
            end 
            pm1t(1) = pt(1); 
            for i = 1:size(Tt) 
                tt(i) = ((0.8 - -0.8) * Tt(i) + (max(T) * -0.8 - min(T) * 0.8)) / (max(T) - min(T)); 
            end 
             
            input = [pt; pm1t; tt; qm1t]; 
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            yt = sim(net,input); 
             
            input = mat2cell([pt; pm1t; tt; zeros(size(qm1t))],4,ones(size(Qt),1)); 
            ytc = sim(rec,input); 
            ytc = cell2mat(ytc); 
 
            %Rescale output 
            x = size(yt); 
            for i = 1:x(2) 
                Yt(i) = ((max(Q) - min(Q)) * yt(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8); 
            end 
            x = size(ytc); 
            for i = 1:x(2) 
                Ytc(i) = ((max(Q) - min(Q)) * ytc(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8); 
            end 
             
            %Determine error 
            Et = Yt' - Qt; 
            se = sqrt(sum(Et.^2)/(x(2)-(1+(1+4+1)*hid))); 
            sy = sqrt(sum((Qt - mean(Qt)).^2)/(x(2)-1)); 
            disp('FNN - Valid') 
            sesy = se/sy 
            store(count,4) = se/sy; 
            Et = Ytc' - Qt; 
            se = sqrt(sum(Et.^2)/(x(2)-(1+(1+4+1)*hid))); 
            sy = sqrt(sum((Qt - mean(Qt)).^2)/(x(2)-1)); 
            disp('RNN - Valid') 
            sesy = se/sy 
            store(count,5) = se/sy; 
            store(count,6) = (1+(1+4+1)*hid); 
            store(count,7) = (1+(1+4+1)*hid); 
        end 
    end 
    store 
end 
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function [output] = bignthreg(Q,P,T,Qt,Pt,Tt) 
    %This code is used to model any combination of inputs 
    %and X number of orders for predicting streamflow. 
    counter = 0; 
    smin = -0.8; 
    smax = 0.8; 
    for ii = 1:15 
        for jj = 1:1 
            clear store input 
            clear q qm1 p pm1 t yr Yr 
            %Scale training inputs and outputs to a range of [-0.8, +0.8]. 
            for i = 1:size(Q) 
                q(i) = ((smax - smin) * Q(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q)); 
                x = size(Q); 
                if (i < x(1)) 
                    qm1(i+1) = q(i); 
                end 
            end 
            for i = 1:size(P) 
                p(i) = ((smax - smin) * P(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P)); 
                x = size(P); 
                if (i < x(1)) 
                    pm1(i+1) = p(i); 
                end 
            end 
            pm1(1) = p(1); 
            for i = 1:size(T) 
                t(i) = ((smax - smin) * T(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T)); 
            end 
             
            num = size(Q); 
            if (num(1) > num(2)) 
                num = num(1); 
            else 
                num = num(2); 
            end 
             
            %Set up regression equation for n orders and x input variables. 
            n = ii 
            counter = counter + 1; 
            output(counter,1) = ii; 
            s = sym('p+pm1+t+qm1+1'); 
            s = expand(s^n); 
            s = char(s); 
            len = size(s); 
            len = len(2); 
            temp = ''; 
            count = 1; 
            for i = 1:len 
                if (s(i) ~= '+') 
                    if ((s(i) == '^') || (s(i) == '*')) 
                        temp = strcat(temp,'.'); 
                    end 
                    temp = strcat(temp,s(i)); 
                else 
                    store(count) = cellstr(temp); 
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                    count = count + 1; 
                    temp = ''; 
                end 
            end 
            store(count) = cellstr(temp); 
            len = size(store); 
            len = len(2); 
            for j = 1:len 
                temp = char(store(j)); 
                if ((temp(1) == '1') || (temp(1) == '2') || (temp(1) == '3') || (temp(1) == '4') || (temp(1) == '5') || 
(temp(1) == '6') || (temp(1) == '7') || (temp(1) == '8') || (temp(1) == '9')) 
                    l = size(temp); 
                    l = l(2); 
                    tem = ''; 
                    star = 0; 
                    for k = 1:l; 
                        if ((temp(k) == '*') && (star == 0)) 
                            star = 1; 
                        elseif (star == 1) 
                            tem = strcat(tem,temp(k)); 
                        else 
                            %Do nothing 
                        end 
                    end 
                    store(j) = cellstr(tem); 
                end 
            end 
             
            %Set up input matrix for regression parameter estimation. 
            for i = 1:len 
                if (strcmp(cell2mat(store(i)),'')) 
                    input(:,i) = ones(num,1); 
                else 
                    input(:,i) = eval(cell2mat(store(i)))'; 
                end 
            end 
             
            %Estimate regression parameters. 
            %store 
            %Linear 
            c = input \ q'; 
            %Nonlinear 
            %c = input \ atanh(q)'; 
            size(c) 
             
            %One Day Ahead 
            yr = zeros(num,1); 
            for j = 1:len 
                if (strcmp(cell2mat(store(j)),'')) 
                    yr = yr + c(j) * ones(num,1); 
                else 
                    yr = yr + c(j) * eval(cell2mat(store(j)))'; 
                end 
            end 
            %Nonlinear 
            %yr = tanh(yr); 
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            %Multi Day Ahead 
            %multi = store; 
            %for j = 1:len 
            %    temp = char(multi(j)); 
            %    l = size(temp); 
            %    l = l(2); 
            %    k = 1; 
            %    while k <= l; 
            %        if (temp(k) == 'p') 
            %            temp = strcat(temp(1:k),'(m)',temp(k+1:l)); 
            %        end 
            %        if (temp(k) == 'q') 
            %            temp = strcat(temp(1:k-1),'yrm(m-1)',temp(k+3:l)); 
            %        end 
            %        l = size(temp); 
            %        l = l(2); 
            %        k = k + 1; 
            %    end 
            %    multi(j) = cellstr(temp); 
            %end 
            %yrm = zeros(num,1); 
            %for m = 2:num 
            %    for j = 1:len 
            %        if (strcmp(cell2mat(multi(j)),'')) 
            %            yrm(m) = yrm(m) + c(j) * 1; 
            %        else 
            %            yrm(m) = yrm(m) + c(j) * eval(cell2mat(multi(j))); 
            %        end 
            %    end 
            %end 
             
            %Rescale output 
            for i = 1:num 
                Yr(i) = ((max(Q) - min(Q)) * yr(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin); 
            end 
             
            for i = 1:num 
                %Yrm(i) = ((max(Q) - min(Q)) * yrm(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin); 
            end 
             
            se = sqrt(sum((Yr - Q').^2)/(1097-len)); 
            sy = sqrt(sum((Q - mean(Q)).^2)/(1097-1)); 
            sesyr = se/sy 
            output(counter,2) = se/sy; 
             
            %se = sqrt(sum((Yrm - Q').^2)/(1097-len)); 
            %sy = sqrt(sum((Q - mean(Q)).^2)/(1097-1)); 
            %sesyr = se/sy 
            %output(counter,3) = se/sy; 
             
            %figure 
            %t = 1:num; 
            %plot(t,Q,t,Yr) 
            %Yrt = Yr; 
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            %Test on validation data.  Scale the data using same scale as the training data. 
            clear q qm1 p pm1 t yr yrm Yr Yrm 
            for i = 1:size(Qt) 
                q(i) = ((smax - smin) * Qt(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q)); 
                x = size(Qt); 
                if (i < x(1)) 
                    qm1(i+1) = q(i); 
                end 
            end 
            for i = 1:size(Pt) 
                p(i) = ((smax - smin) * Pt(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P)); 
                x = size(Pt); 
                if (i < x(1)) 
                    pm1(i+1) = p(i); 
                end 
            end 
            pm1(1) = p(1); 
            for i = 1:size(Tt) 
                t(i) = ((smax - smin) * Tt(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T)); 
            end 
             
            num = size(Qt); 
            if (num(1) > num(2)) 
                num = num(1); 
            else 
                num = num(2); 
            end 
             
            %One Day Ahead 
            yr = zeros(num,1); 
            for j = 1:len 
                if (strcmp(cell2mat(store(j)),'')) 
                    yr = yr + c(j) * ones(num,1); 
                else 
                    yr = yr + c(j) * eval(cell2mat(store(j)))'; 
                end 
            end 
            %Nonlinear 
            %yr = tanh(yr); 
             
            %Multi Day Ahead 
            %yrm = zeros(num,1); 
            %for m = 2:num 
            %    for j = 1:len 
            %        if (strcmp(cell2mat(multi(j)),'')) 
            %            yrm(m) = yrm(m) + c(j) * 1; 
            %        else 
            %            yrm(m) = yrm(m) + c(j) * eval(cell2mat(multi(j))); 
            %        end 
            %    end 
            %end 
             
            %Rescale output 
            for i = 1:num 
                Yr(i) = ((max(Q) - min(Q)) * yr(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin); 
            end 
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            for i = 1:num 
                %Yrm(i) = ((max(Q) - min(Q)) * yrm(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin); 
            end 
             
            se = sqrt(sum((Yr - Qt').^2)/(1096-len)); 
            sy = sqrt(sum((Qt - mean(Qt)).^2)/(1096-1)); 
            sesyr = se/sy 
            output(counter,3) = se/sy; 
             
            %se = sqrt(sum((Yrm - Qt').^2)/(1096-len)); 
            %sy = sqrt(sum((Q - mean(Qt)).^2)/(1096-1)); 
            %sesyr = se/sy 
            %output(counter,5) = se/sy; 
            output(counter,4) = len; 
             
            %figure 
            %t = 1:num; 
            %plot(t,Qt,t,Yr) 
            %Yrv = Yr; 
        end 
    end 
    output 
end 
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Appendix B - Little Patuxent River Watershed Data 
 
Training Data - Streamflow 
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Training Data - Precipitation 
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Training Data - Temperature 

0 100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

100

110

Day

Te
m

pe
ra

tu
re

 (F
)

 

10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

200

Temperature (F)

N
um

be
r o

f d
ay

s

 
 



 183

Validation Data - Streamflow 

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Day

D
is

ch
ar

ge
 (c

fs
)

 

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

Discharge (cfs)

N
um

be
r o

f d
ay

s

 
 



 184

Validation Data - Precipitation 
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Validation Data - Temperature 
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