

ABSTRACT

Title of Document: A COMPARISON OF ARTIFICIAL NEURAL

NETWORKS AND STATISTICAL
REGRESSION WITH BIOLOGICAL
RESOURCES APPLICATIONS

 Jonathan Patrick Resop, Master of Science, 2006

Directed By: Dr. Hubert J. Montas, Ph.D.

Biological Resources Engineering

Artificial neural networks (ANNs) have been increasingly used as a model for streamflow

forecasting, time series prediction, and other applications. The high interest in ANNs

comes from their ability to approximate complex nonlinear functions. However, the

"black-box" nature of ANN models makes it difficult for researchers to design network

structure or to physically interpret the variables involved. Recent investigations in ANN

research have found connections linking ANNs and statistics-based regression modeling.

By comparing the two modeling structures, new insight can be gained on the

functionality of ANNs.

This study investigates two primary relationships between ANN and statistical models:

the potential equivalence between feed-forward neural networks (FNN) and multiple

polynomial regression (MPR) models and the potential equivalence between recurrent

neural networks (RNN) and auto-regressive moving average (ARMA) models.

Equivalence is determined through both formal and empirical methods. The real-world

phenomenon of streamflow forecasting is used to verify the equivalences found.

Results indicate that both FNNs and RNNs can be designed to replicate many regression

equations. It was also found that the optimal number of hidden nodes in an ANN is

directly dependant on the order of the underlying physical equation being modeled.

These simple relationships can be expanded to more complex models in future research.

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND STATISTICAL

REGRESSION WITH BIOLOGICAL RESOURCES APPLICATIONS

By

Jonathan Patrick Resop

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:

Dr. Hubert J. Montas, Chair
Dr. Adel Shirmohammadi
Dr. David R. Tilley

© Copyright by
Jonathan Patrick Resop

2006

Table of Contents

 Page

List of Tables ... iv

List of Figures ... viii

Chapter
 1 Introduction .. 1
 1.1 Problem Importance ... 1
 1.2 ANN Background and History .. 2
 1.3 ANN Application to Modeling ... 8
 1.4 Determining the Number of Hidden Nodes ... 11
 1.5 Potential Equivalence Between ANNs and Statistics 13
 1.6 Comparisons Between FNNs and MPR ... 17
 1.7 Comparisons Between Recurrent Models .. 22
 1.8 Summary of the Literature Review ... 24

 2 Objectives .. 26

 3 Methods and Materials .. 28
 3.1 Equivalence of FNN and MPR ... 28
 3.1.1 Perceptron-level Analysis ... 36
 3.1.1.1 Linear Perceptron and Linear Regression 36
 3.1.1.2 Sigmoid Perceptron and Polynomial Regression 36
 3.1.2 Network-level Analysis - Polynomial Activation Function 37
 3.1.2.1 Specific Example - Third Order with One Variable 37
 3.1.2.2 Generalization to MPR .. 38
 3.1.3 Network-level Analysis - Sigmoid Activation Function 39
 3.1.3.1 Specific Example - Third Order with One Variable 39
 3.1.3.2 Generalization to MPR .. 40
 3.2 Equivalence of RNN and ARMA .. 41
 3.2.1 Perceptron-level Analysis ... 45
 3.2.2 Network-level Analysis .. 46
 3.3 Application to Biological Phenomena .. 46
 3.3.1 Confirming the Accuracy of Neural Networks 47
 3.3.2 Comparison of ANNs and Regression Models 48
 3.3.2.1 Non-recursive Input - FNN versus MPR 48
 3.3.2.2 Recursive Input - RNN versus ARMA 51

 4 Results and Discussion .. 53
 4.1 Equivalence of FNN and MPR ... 53
 4.1.1 Perceptron-level Analysis ... 53
 4.1.1.1 Linear Perceptron and Linear Regression 53
 4.1.1.2 Sigmoid Perceptron and Polynomial Regression 56

 ii

 4.1.2 Network-level Analysis - Polynomial Activation Function 61
 4.1.2.1 Specific Example - Third Order with One Variable 61
 4.1.2.2 Generalization to MPR .. 71
 4.1.3 Network-level Analysis - Sigmoid Activation Function 77
 4.1.3.1 Specific Example - Third Order with One Variable 77
 4.1.3.2 Generalization to MPR .. 88
 4.2 Equivalence of RNN and ARMA .. 101
 4.2.1 Perceptron-level Analysis ... 101
 4.2.2 Network-level Analysis .. 117
 4.3 Application to Biological Phenomena .. 120
 4.3.1 Confirming the Accuracy of Neural Networks 120
 4.3.2 Comparison of ANNs and Regression Models 124
 4.3.2.1 Non-recursive Input - FNN versus MPR 124
 4.3.2.2 Recursive Input - RNN versus ARMA 141

 5 Summary and Conclusions .. 146
 5.1 Equivalence of FNN and MPR ... 147
 5.2 Equivalence of RNN and ARMA .. 149
 5.3 Application to Biological Phenomena .. 149
 5.4 Overall Conclusions ... 150

 6 Future Research ... 153

Appendices
 A Matlab Code ... 155
 B Little Patuxent River Watershed Data .. 180

References ... 186

 iii

List of Tables

 Page

3.1 The number of terms in a MPR with X variables of Nth order.

31

3.2 Minimum and maximum values for the streamflow data.

47

3.3 ANN structures to be tested.

48

3.4 The functions and input sets that will be approximated by the models.

49

3.5 Summarizes the comparisons being tested between ANNs and
regression.

52

4.1 Linear Perceptron - Prediction error from both models.

55

4.2 Linear Perceptron - Regression coefficients found by both models.

55

4.3 Sigmoid Perceptron - Prediction error from both models for scaled data.

60

4.4 Sigmoid Perceptron - Regression coefficients found by both models
(values in scaled domain).

60

4.5 One Cubic Hidden Node - Prediction error from both models.

63

4.6 One Cubic Hidden Node - Trained network weights and biases.

63

4.7 One Cubic Hidden Node - Regression coefficients found by both
models.

63

4.8 Two Cubic Hidden Nodes - Prediction error from both models.

65

4.9 Two Cubic Hidden Nodes - Trained network weights and biases.

65

4.10 Two Cubic Hidden Nodes - Regression coefficients found by both
models.

65

4.11 Two Cubic Hidden Nodes (Failed) - Prediction error from both models.

67

4.12 Two Cubic Hidden Nodes (Failed) - Trained network weights and
biases.

67

4.13 Two Cubic Hidden Nodes (Failed) - Regression coefficients found by
failed trial.

67

 iv

4.14 Modified Two Cubic Hidden Nodes - Prediction error from both
models.

70

4.15 Modified Two Cubic Hidden Nodes - Trained network weights and
biases.

70

4.16 Modified Two Cubic Hidden Nodes - Regression coefficients found by
both models.

70

4.17 Minimum number of hidden nodes required to replicate a MPR.

73

4.18 One Sigmoid Hidden Node - Prediction error from both models.

78

4.19 Two Sigmoid Hidden Nodes - Prediction error from both models.

81

4.20 Two Sigmoid Hidden Nodes - Trained network weights and biases.

81

4.21 Two Sigmoid Hidden Nodes - Regression coefficients found by sigmoid
network.

81

4.22 Trained network weights and biases when data is scaled to the range
-0.1 to +0.1.

82

4.23 Regression coefficients found when data is scaled (values in scaled
domain).

82

4.24 Modified Two Sigmoid Hidden Nodes - Prediction error from both
models.

84

4.25 Modified Two Sigmoid Hidden Nodes - Trained network weights and
biases.

84

4.26 Modified Two Sigmoid Hidden Nodes - Regression coefficients found
by both models.

84

4.27 Two Sigmoid Nodes (Smaller Range) - Prediction error from both
models.

87

4.28 Two Sigmoid Nodes (Smaller Range) - Trained network weights and
biases.

87

4.29 Two Sigmoid Nodes (Smaller Range) - Regression coefficients found
by sigmoid network.

87

4.30 Recurrent Perceptron (Stable) - Prediction error from both models.

103

 v

4.31 Recurrent Perceptron (Stable) - Time series coefficients found by both
models.

103

4.32 Recurrent Perceptron (Unstable) - Prediction error from both models.

105

4.33 Recurrent Perceptron (Unstable) - Time series coefficients found by
both models.

105

4.34 Recurrent Perceptron (Unstable) - Prediction error from both models.

106

4.35 Recurrent Perceptron (Unstable) - Time series coefficients found by
both models.

106

4.36 Recurrent Perceptron (Error Term, Stable) - Prediction error from both
models.

110

4.37 Recurrent Perceptron (Error Term, Stable) - Time series coefficients
found by both models.

110

4.38 Recurrent Perceptron (Error Term, Unstable) - Prediction error from
both models.

112

4.39 Recurrent Perceptron (Error Term, Unstable) - Time series coefficients
found by both models.

112

4.40 Recurrent Perceptron (Three Time Steps) - Prediction error from both
models.

114

4.41 Recurrent Perceptron (Three Time Steps) - Time series coefficients
found by both models.

114

4.42 Recurrent Perceptron (Three Time Steps) - Prediction error from both
models.

116

4.43 Recurrent Perceptron (Three Time Steps) - Time series coefficients
found by both models.

116

4.44 Two Sigmoid Hidden Nodes (Recurrent) - Prediction error from both
models.

119

4.45 Two Sigmoid Hidden Nodes (Recurrent) - Trained network weights and
biases.

119

4.46 Two Sigmoid Hidden Nodes (Recurrent) - Regression coefficients
found by sigmoid network.

119

 vi

4.47 Best-fit FNNs for non-recursive streamflow functions.

124

4.48 Best-fit MPR equations for non-recursive streamflow functions.

124

4.49 Results from first fifteen orders of MPR for Function 1.

126

4.50 Regression coefficients found by one hidden node sigmoid FNN.

135

4.51 Best-fit FNNs and RNNs for recursive streamflow functions.

141

4.52 Best-fit ARMA equations for recursive functions, both one-day-ahead
and multiple-day-ahead.

141

4.53 Results for the first five orders, and last order, of ARMA model for
Function 5.

143

 vii

List of Figures

 Page

1.1 A single artificial neuron, also known as a perceptron.

4

1.2 A single biological neuron (Basheer and Hajmeer, 2000).

4

1.3 A feed-forward neural network to predict streamflow based on
precipitation and temperature.

6

1.4 A biological neural network with parallel processing (Cajal, 1999).

6

1.5 A recurrent neural network used to predict streamflow.

8

3.1 General structure of a three layer feed-forward network.

29

3.2 Example of a three layer recurrent neural network.

42

3.3 Models used to estimate Function 1.

49

3.4 One-day ahead prediction models for Function 5.

51

3.5 Full prediction models for Function 5.

51

4.1 An artificial perceptron with a linear activation function.

53

4.2 Linear regression and linear perceptron trained to synthetic data.

55

4.3 An artificial perceptron with a sigmoid activation function.

56

4.4 The third order Taylor expansion of tanh(x).

57

4.5 The output function for MPR and sigmoid perceptron with non-scaled
(a) and scaled (b) data.

60

4.6 One hidden node FNN with cubic activation function.

61

4.7 The functions produced by third order regression and one hidden node
FNN.

63

4.8 Two hidden node FNN with cubic activation function.

64

4.9 The functions produced by third order regression and two hidden node
FNN.

65

 viii

4.10 Failed trial with two hidden nodes.

67

4.11 Modified two hidden node FNN with parameters w3, w4 and b3
ignored.

68

4.12 The functions produced by third order regression and modified two
hidden node FNN.

70

4.13 One hidden node FNN with sigmoid activation function.

77

4.14 A second order MPR and one hidden node FNN produce similar
outputs.

78

4.15 Two hidden node FNN with sigmoid activation function.

79

4.16 Output function for two hidden node sigmoid FNN.

81

4.17 Modified two sigmoid hidden node FNN with parameters w3, w4 and
b3 ignored.

83

4.18 The output functions from third order regression and modified two
sigmoid hidden node FNN.

84

4.19 Output function for sigmoid FNN for function with smaller range.

87

4.20 Training (a) and validation (b) error for modeling one variable, orders
one through five.

89

4.21 Training (a) and validation (b) error for modeling two variables, orders
one through five.

91

4.22 Training (a) and validation (b) error for modeling three variables, orders
one through five.

92

4.23 Training (a) and validation (b) error for modeling four variables, orders
one through five.

94

4.24 Training (a) and validation (b) error for modeling five variables, orders
one through five.

95

4.25 Modeling a three variable MPR with noise and smaller sample size. (a)
1st Order (b) 2nd Order (c) 3rd Order (d) 4th Order (e) 5th Order.

97

4.26 Modeling three variable, fifth order MPR with different model
structures: (a) Lin - Sig - Lin (b) Lin - Sig - 1 Sig - Lin (c) Lin - Sig - 2
Sig - Lin (d) Lin - Sig - 5 Sig - Lin.

100

 ix

4.27 A single recurrent perceptron.

101

4.28 Output from the recurrent perceptron when modeling a stable equation.

103

4.29 First attempt output from the recurrent perceptron when modeling an
unstable equation.

105

4.30 Second attempt output from the recurrent perceptron when modeling an
unstable equation.

106

4.31 The recurrent perceptron output with correct initial values.

107

4.32 A linear recurrent perceptron that includes an error term.

108

4.33 Using the error term to estimate a stable equation.

110

4.34 ARMA(1,1) and recurrent perceptron using an error term as input for
unstable data.

112

4.35 A linear recurrent perceptron that goes back three time steps.

113

4.36 ARMA(3,0) and recurrent perceptron output for first equation.

114

4.37 ARMA(3,0) and recurrent perceptron output for second equation.

116

4.38 A sigmoid hidden layer RNN to replicate an NARMA(1,0) equation.

117

4.39 Output function for two hidden node sigmoid RNN.

119

4.40 Predicted daily streamflow using 3 Linear - 5 Sigmoid - 1 Sigmoid
FNN, training data.

122

4.41 Predicted daily streamflow using 3 Linear - 5 Sigmoid - 1 Sigmoid
FNN, validation data.

122

4.42 Feed-forward neural network prediction accuracy for training data.

123

4.43 Feed-forward neural network prediction accuracy for validation data.

123

4.44 Training and validation error for FNN modeling Function 1.

126

4.45 Comparison of training error based on the number of parameters for
modeling Function 1.

128

4.46 The functions relating P to Q for FNN and MPR (a) and comparing the
two models (b).

130

 x

4.47 The functions for a FNN and 2nd Order MPR (a) and comparing the
two models (b).

132

4.48 The output functions for a FNN with 1 (a) and 2 (b) hidden nodes.

134

4.49 Training and validation error for linear scaled and log normal scaled
data.

136

4.50 Training (a) and validation (b) error for different network structures.

138

4.51 Comparison of error based on number of parameters for Functions 2 (a),
3 (b) and 4 (c).

140

4.52 Training and validation error for FNN (a) and RNN (b) for Function 5.

143

4.53 A comparison of the training error for both the FNN and one-day-ahead
ARMA based on the number of parameters used in the equation for
estimating Function 5.

144

4.54 Function estimates for Function 5 produced by a 3 hidden node FNN
and a 3rd order one-day-ahead ARMA.

145

5.1 General relationship between the number of hidden nodes and network
performance.

148

 xi

 1

1 Introduction

1.1 Problem Importance

 Biological and environmental systems have been historically very difficult for

scientists and engineers to model effectively. This can be seen as a result of the large

number of variables involved and the complex way in which they interact to produce

such phenomena as surface runoff, nutrient transport, or population dynamics. While

these systems are challenging to represent, they are nevertheless important for scientists

and engineers to model for purposes such as prediction and simulation. Typically,

researchers look to create models with two main goals in mind. First, the model should

accurately map the input variables to the output variables as is observed in real life

situations. And second, the model should be a fitting representation of the system's

underlying physical characteristics.

 Mathematical models have traditionally been developed from either physical

principles or by statistical regression (Salas et al., 2000). Physical models consist of

systems of ordinary or partial differential equations. These models try to represent the

underlying physical relationship between the variables involved. The benefit of physical

models is that they are based on a deep and thorough understanding of the system.

However, the limitations of these models include the difficulty of setting up and solving

complex differential equations analytically, as well as determining equation coefficients

and initial and boundary conditions (Coppola et al., 2005). Usually, these equations must

be solved using numerical methods, such as the finite element method.

 Statistical models on the other hand are designed by finding the equation that best

fits a set of historical or experimental data. These models are useful in that they are

 2

generally simple and straightforward to solve. Statistical regression equations limit the

user by requiring a large amount of sample data to estimate the parameters of the

equation and to find the data trend. Also, there are difficulties that arise when manually

determining the optimal structure of the statistical equation (Hill et al., 1994).

1.2 ANN Background and History

 The limitations of regression equations and partial differential equations have led

researchers to explore alternative models. One that has become popular over the last

decade is the artificial neural network (ANN) (Govindaraju and Rao, 2000). Artificial

neural networks are a type of model that was first conceptualized in 1943 by McCulloch

and Pitts. ANNs were designed based on biological neurons, and how neurons interact

with each other in the brain. McCulloch and Pitts (1943) started with the concept of a

perceptron, which is a single artificial neuron (Figure 1.1). This artificial neuron,

commonly referred to as a node, is analogous to a biological neuron (Figure 1.2). The

node itself is similar to the cell body, and the connections made to other nodes represent

the axon and synapses (Mehrotra et al., 2000). In the human brain, there are an estimated

1011 neurons and 1015 synapses all working in parallel (Veelenturf, 1995). The overall

result is a complex system able to take incomplete and noisy information, make

connections with pieces of existing memory and make intelligent decisions (Warner and

Misra, 1996). This concept has given way to the idea massively parallel processing.

 The thrust behind artificial neural network research has come from a desire to

improve on the limitations of the modern serial computer and tap into this concept of

parallel processing. While a computer has the ability to make complex mathematical

 3

computations much faster than the human brain, biological neurons are able to perform

tasks, such as image processing and speech recognition, with the speed and precision that

serial computers can not match (Widrow, 1990). Fields such as artificial intelligence

have attempted to adapt to the concept of parallel processing, but this connection to

biological neurons is mostly lost in the field of modeling. Instead, modelers have focused

on the ability of ANNs to estimate highly nonlinear functions.

 The artificial perceptron receives inputs from other perceptrons in the system,

multiplies each by a weight value, adds all of these products together, and then passes the

result through a function typically called the activation function. The activation function,

sometimes called the transfer function, is typically something simple and easy to

differentiate like a linear function or a sigmoid function. A perceptron also has a bias

added to inputs, which is commonly represented by a weight being multiplied by a

constant of one. Network weights and biases are randomly initialized when the network

is created and they are allowed to hold any real number value (Ellacott and Bose, 1996).

The output of the activation function becomes the output of the perceptron, and this

output is then sent out to other perceptrons in the network (Figure 1.1). A large group of

perceptrons acting together in a single system creates an artificial neural network.

 4

Figure 1.1: A single artificial neuron, also known as a perceptron.

Figure 1.2: A single biological neuron (Basheer and Hajmeer, 2000).

 5

 A widely used ANN structure among modelers is the feed-forward neural network

(FNN), also known as the multi-layer perceptron (MLP) (Cherkassky et al., 1993). Many

other structures of ANNs have been developed such as fuzzy neural networks, evolving

neural networks and radial basis function neural networks (Hayashi et al., 1992) (Yao,

1999) (Yang, 2006). A feed-forward network typically consists of three layers of

neurons. An input layer for the predictor variables, a hidden layer, and an output layer

for the criterion variables (Figure 1.3). The network sends information sequentially from

left to right, from the input layer to the output layer. Each layer waits for the information

from the previous layer before computing and sending its own value. In biological neural

networks (Figure 1.4), this process works in parallel, with all neurons firing

simultaneously. However, this approach is not yet realized in many ANN applications,

such as function approximation and modeling (Couvreur and Couvreur, 1997) where the

ANN process typically works serially, simply because contemporary computers are

designed to work in serial mode.

 6

Figure 1.3: A feed-forward neural network to predict streamflow based on precipitation and temperature.

Figure 1.4: A biological neural network with parallel processing (Cajal, 1999).

 7

 ANNs did not start to become popular among modelers until the 1980's, with the

development of the back-propagation algorithm, which is used to train the weights and

biases of a network by using experimental data. The parameters of the network are

updated with each pass of the training data with respect to the network's prediction error.

Before the application of back-propagation to network training, it was difficult for

modelers to update the weights and biases of the inner layers of the ANN. Back-

propagation solves this problem by "back-propagating" the prediction error to the inner

layers, allowing for complete network training. The main limitation of back-propagation

is that it is generally very slow compared to alternative methods such as least-squares

regression (Kruschke and Movellan, 1991).

 Recurrent neural networks (RNN) differ from standard feed-forward networks in

that they also allow backwards connections to exist between the nodes (Figure 1.5). This

means that the output of the network can also be used as an input. The positives and

negatives of using RNNs are similar to those of FNNs or any other artificial neural

network. One positive aspect unique to the RNN is that its structure is more analogous to

the original biological neural network concept of massive parallel processing. Another

benefit is that recurrent networks can use previous output values as inputs to the model,

allowing for multiple-day-ahead time series prediction. However, the recursive nature of

the RNN makes it more complex to derive and more difficult to easily understand. Also,

the recurrent connections in the network can make it more unstable and more sensitive to

noise (Mandic and Chambers, 2001).

 8

Figure 1.5: A recurrent neural network used to predict streamflow.

1.3 ANN Application to Modeling

 Artificial neural networks have been researched and used for applications in many

different fields. Many of these areas are using ANNs to solve problems previously

thought to be impossible or very difficult with traditional methods. These include face

recognition, prediction of time series events, function approximation, process

optimization, and others (Cheng and Titterington, 1994). There are many reasons for the

amount of interest being shown for ANNs. First, the structure of an artificial neural

network is generally flexible and robust. Unlike regression, where a specific equation

must be predetermined based on the data in the system to relate the input to output

variables, the general structure of an ANN can be applied to practically any system

(Zealand, 1999). Also, ANNs have been shown to outperform regression models when

outliers exist in the data (Denton, 1995). Second, a feed-forward neural network with a

sigmoid hidden layer is said to be a universal function approximator (White, 1992). As a

 9

result, artificial neural networks are viewed as a powerful model limited only by the

number of hidden nodes in the network. Third, ANNs are able to inherently model

highly nonlinear systems such as those that govern the functioning of biological systems

(Gevrey et al., 2003). Finally, the black box nature of neural networks is easy to

implement for prediction applications in any field, making it appealing to at least some

modelers.

 Over the past decade, artificial neural network research has found its way into the

areas of hydrology, ecology, medical and other biological fields. The American Society

of Civil Engineers wrote a report to investigate the usage of ANNs in hydrologic

applications, and found it being used for such purposes as rainfall-runoff modeling,

streamflow forecasting, groundwater modeling, precipitation prediction, and water

quality issues (ASCE Task Committee, 2000b). ANNs have also been used extensively

in other areas, particularly for modeling biological and environmental systems. They

have been successfully applied to systems such as ozone concentration prediction

(Prybutok et al., 2000), classifying ECG signals (Barro et al., 1998), and many others.

 For some modelers, the "black-box" nature of artificial neural networks has led

way to skepticism (Tingsanchali and Gautam, 2000). While ANNs can predict the output

variable of a system based on a set of input variables, the inner workings of the network

are not easily understood. This is because the ANN training and application usually

involves the composition of nonlinear functions that can be difficult to simplify and

reduce to terms that can be understood physically. This also makes it difficult for

example to analyze the network after it has been built and trained to determine the

 10

relative importance of the different input variables in predicting the output (Minns and

Hall, 1996).

 Another problem is that ANN structure is poorly understood, making it difficult to

design the optimal structure for a given system a priori. Currently, there are no formal

rules for developing networks (Daqi and Genxing, 2003). There is no standard method

for finding the ideal number of hidden nodes in a feed-forward network or for

determining the best activation function. This is usually a time consuming, trial-and-

error process and can lead to inelegant ANN designs (Shigidi and Garcia, 2003). Far too

often, people who apply ANNs to problems will develop network structure based on a

series of unproven empirical rules and trust the training of the network to result in

"intelligent" predictions (Gonzalez, 2000). Another common approach is to simply select

an arbitrarily large number of neurons for the model (Xiang et al., 2005). However,

having too many nodes in a network can lead to modeling issues such as poor

generalization and susceptibility to local minima in the error function instead of

converging to the global minimum (Archer and Wang, 1993).

 Overcoming the problems of network structure and size would be a large step

towards a greater understanding of artificial neural networks, which would allow for

more productive and effective use of ANN models in biological and environmental

systems. There is a need for research to improve network design and analysis through

formal methods that do not rely on trial-and-error (ASCE Task Committee, 2000a).

 11

1.4 Determining the Number of Hidden Nodes

 Towards the goal of making ANNs easier to implement and require less trial-and-

error, there has been much research to develop rules or methods for determining the

optimal number of hidden nodes to use in a network model. The number of hidden layers

and number of hidden nodes in each are some of the more difficult parameters to

determine for a neural network model, as there is no formal procedure for creating the

most efficient network. The hidden nodes are important because they directly relate to

model performance. In general, increasing the number of hidden nodes will increase the

number of bumps and curves in the network's output function (Russell and Norvig, 2003).

However, too many will lead to poor generalization and too few will result in an

ineffective model.

 According to Sarle (2004), the number of hidden nodes depends on a number of

variables such as the size of the training data set, the number of input and output

variables, the complexity of the underlying function, the amount of noise in the target

variables, and the activation function used. A number of rules of thumb have been

suggested (Kaul, 2004) (Prybutok et al., 2000) (Feng and Wang, 2003), but these rules

tend to over-simplify the problem and can lead to poor network performance.

Subramanian et al. (2003) use Kolmogorov's Theorem to initialize the number of hidden

nodes. This theorem states that twice the number of input nodes plus one is a sufficient

number of hidden nodes to model any continuous function. However, little information

outside of this article was found on this theorem. At best, these rules of thumb are

nothing more than a good first guess or estimate. Currently, it is ideal for the number of

hidden nodes to be tailored to a specific system through intensive investigation and

 12

thorough trial-and-error. However, there have been some attempts to develop methods to

aid in the hidden node selection process.

 Fletcher et al. (1998) developed a method for optimizing the number of hidden

nodes in a traditional three layer network. First, they recognize that if a network has too

few nodes, it will not accurately fit the target function. If a network has too many nodes,

it will memorize the training data and will not be able to generalize to other data.

Therefore, there must be a minimum when relating the number of hidden nodes to the

network error. The method they propose starts with an initial number of hidden nodes

and then increments the number of nodes higher or lower depending on a statistical

analysis of the error. They conclude that this procedure will find the optimal number of

hidden nodes faster than other methods, which includes simple trial-and-error. Although

one downside of this method is that it is still an iterative process, and does not formally

determine the number of hidden nodes.

 Xiang et al. (2005) offered some guidelines and methods for determining the

minimum number of hidden nodes to use for function approximation. They suggested

that the ideal number of hidden nodes is close to the number of line segments that can

represent the target equation. When designing FNNs, to first start with this number of

hidden nodes and then increment or decrement the number slowly until the best

performance is found. While this still leaves room for trial-and-error, it does give

modelers a good place to start. They confirm their results by concluding that a third

order polynomial regression equation requires a feed-forward network with three hidden

nodes to fully approximate it. The feed-forward network they use has a sigmoid hidden

function and a linear output function. They note that interesting innate ability of the

 13

sigmoid activation function is to act as a smoothing function, where normal piecewise

linear regression equations lack this ability.

 Yitian and Gu (2003) developed an interesting solution to the problem of

designing network structure and determining the number of hidden nodes for the

application of modeling sediment transport in a river system. Instead of using trial-and-

error methods for finding the optimal network structure, they designed a network to

replicate the physical flow of water through the river network. A feed-forward network

was used, since it flows much like a water system. The network parameters and transfer

function were related to the conservation of mass in the system, giving them physical

meaning. The results showed that the model could accurately predict sediment discharge

from the system.

1.5 Potential Equivalence Between ANNs and Statistics

 There has been increasing research over the last decade to address the issues of

network design and analysis and shed some light on the "mystery" behind artificial neural

network models. One area that has been gaining interest is the comparison between

artificial neural networks and statistical regression modeling. Statistical regression is a

method that has been used by statisticians and engineers for many years to fit an equation

to a set of data. Regression equations have been largely studied by mathematicians and

statisticians, as opposed to ANNs, which were developed separately by electrical

engineers and computer scientists (Maier and Dandy, 1998).

 Statistical regression models have been used by engineers for decades for

purposes such as data analysis and prediction. The basic concept of regression is to fit a

 14

specified equation to a series of independent and dependent variables. The parameters or

coefficients are estimated by using empirical data and an error minimization procedure

such as least-squares regression. Ultimately, the goal is to find an equation whose output

has a high correlation with the target data series. The most commonly used regression

approach is multiple linear regression (MLR), which uses a first order (linear) model and

is relatively easy to implement (Ayyub, 2003).

 When a more nonlinear model is necessary, a common approach is to use multiple

polynomial regression (MPR), which allows for higher order terms (Kravtsov et al.,

2005). The general form of MPR is shown in equation (1.1):

 K+++= ∑∑∑
= ==

M

i

M

ij
ji

k
ji

M

i
i

k
i

k
k XXcXccY

1
,

1
0)**()*(, k = 1 , ... , K (1.1)

where X is an input variable, Y is an output variable, c is a coefficient, M is the number of

inputs and K is the number of outputs. The main benefit for using regression models is

that there are well established methods for analysis (such as ANOVA) and ranking the

importance of independent variables. However, there are some downsides to using MPR.

First, because of the multiple orders, regression terms will innately have a potentially

high correlation between them (such as the correlation between X and X2) (Bradley and

Srivastava, 1979). This can lead to undesirable correlations between model parameters.

Second, polynomial equations can lead to unintended phenomena such as polynomial

swing. This can cause data at the edges of the training domain, and beyond, to be poorly

predicted (Stigler, 1971).

 On the surface, there are some obvious similarities between regression models

and neural network models. Both are empirical in nature and rely extensively on

experimental data to determine model parameters. In statistics, the structure of the

 15

equation used to relate the output variable to the input variables is selected by the person

developing the model (bivariate, multivariate, linear, polynomial, nonlinear, regressive).

This is also the case with neural networks but the process is typically much more

iterative, involving a trial-and-error phase, for example, to identify the approximate

number of hidden nodes to use. Also, like regression equations, ANN performance is

highly dependant on the training sample size and the amount of noise in the data

(Markham and Rakes, 1998).

 Similarities can also be seen in the methods used to derive the parameters for

these models. For ANNs the training method is generally back-propagation and for

statistical models it is least-squares regression. However, back-propagation can be

described as a generalized form of the least-squares algorithm (Mehrotra et al., 2000).

Both of these methods rely on the principle of finding the gradient of the error function.

The error for a model is calculated by equation (1.2):

 e = (ŷ - y) (1.2)

where the measured output (y) is subtracted from the predicted output (ŷ). The error

function, or objective function, F, calculates the sum of the errors squared, as shown in

equation (1.3):

 F = min ∑
=

n

i
e

1

2 (1.3)

The model parameters are then determined by taking the derivatives of F with respect to

each parameter and identifying where these derivatives are null (Ayyub, 2003).

 A major difference between ANNs and statistical regression however, is the ease

with which model parameters and structure can be understood. The parameters generated

by a regression equation can be easily analyzed to identify input-output relationships in

 16

the model and compare the effectiveness of each input variable. However, when using

artificial neural networks, researchers are inclined to rely on the network to "learn" the

relationships between variables (Kisi, 2005). This information is then stored in

convoluted network weights and biases, which are difficult to interpret.

 An extension on normal statistical regression and feed-forward network models is

the area of time series analysis. This subject deals with data series that have a temporal

aspect, usually dealing with discrete time intervals although it can also be represented in

continuous time (Brockwell and Davis, 2002). The variables used in these models are

assumed to vary in some manner with respect to time. Time series models are mostly

used for the purpose of prediction and forecasting. Two models that will be investigated

in this study are recurrent neural networks and auto-regressive moving average (ARMA)

models, defined by the equation:

 Yt = c0 + ∑p(cp * Yt-p) + ∑q(cq * Et-q) (1.4)

in which Y is the time series variable at time t, E is the error term, and c is a coefficient.

 Auto-regressive moving average models can be viewed as a more general form of

regression equations, allowing for previous values of the dependent variable to be used as

input variables. A feature that is unique to the ARMA equation is the concept of an error

term. This term is included as an input to the equation and is calculated as the prediction

error from previous time values. These models are typically designed to be linear for

simplicity, but this limits their effectiveness in nonlinear systems (Zhang, 2003). One of

the appeals of recurrent neural networks is that they do not have this limitation, since

sigmoid activation functions can easily be added to a network. Nonlinear ARMA

equations, or NARMA, also exist, but they are not commonly used by modelers due to

 17

their complexity. Another issue when modeling with ARMA is determining how far

back, in terms of the number of previous outputs, the equation should go (Zhang, 2003).

This is not an intuitive decision and no formal methods exist for finding the optimal

ARMA equation. The structure of the equation will depend on each application and must

usually be determined through trial-and-error methods.

1.6 Comparisons Between FNNs and MPR

 Most of the research comparing artificial neural networks and statistical

regression has been empirical in nature. The main focus has been to compare both

models in terms of their accuracy and performance. Sargent (2001) performed a

literature review on approximately thirty articles comparing ANNs to statistical

regression for biomedical applications and found that ANNs outperformed statistics in

only ten of the cases. The other articles either found that both models had equivalent

performance or that regression models were better. In applications with large sample

sizes, it was found that ANNs never performed better than regression. He speculated that

the reason ANN did not dominate over statistical models is because both are heavily

limited by the data being collected, in terms of the amount of data and the amount of

error or noise in the data.

 Sarle (1994) showed that that multi-layer perceptrons could be viewed as

nonlinear regression models. He showed that simple linear multivariate regression can be

represented with a single linear perceptron. Sarle also made simple comparisons between

nonlinear regression and feed-forward networks (with nonlinear activation functions) and

showed how neural networks can be designed to represent polynomial regression (using

 18

different polynomial activation functions). While the sigmoid activation function was

compared to nonlinear regression, it was not compared to MPR. Sarle suggested that one

may potentially be able to design an artificial neural network to represent the structure of

any regression model, and vice versa. However, his research was limited by providing

only a basic, theoretical comparison between the models. No consideration was made to

the number of hidden nodes in the network. Another limitation is that Sarle did not

determine any formal equations to relate the parameters of ANNs to those of statistical

regression equations.

 Warner and Misra (1996) continued this train of thought by performing empirical

tests with synthetic data to show how FNNs and statistical regression models perform

similarly. Both models were fit to linear and nonlinear data and results showed that the

neural network was able to produce a best-fit line comparable to linear and power

regression. They demonstrated that a feed-forward neural network with a sigmoid

activation function can act as a function approximator and that this is an advantage over

traditional regression when the underlying function of the system is unknown. They

further suggested that if the physical relationship is known between the input and output

of a given system, then a specific regression equation would be more desirable.

 Salas et al. (2000) used feed-forward neural networks to predict the daily average

streamflow of the Little Patuxent River in Maryland. A trial-and-error process was used

to determine the most accurate model structure. The network input sets consisted of

combinations of variables such as precipitation, temperature, evaporation, snow water

equivalent, and previous streamflow. The number of nodes in the hidden layer ranged

from one to four hundred. The best-fit model was found to have precipitation,

 19

precipitation for the previous day and temperature as inputs and ten hidden nodes. This

network model was then compared to a statistical model, a simple conceptual rainfall-

runoff (SCRR) model, and results showed that the ANN performed better than the SCRR

model for predicting streamflow.

 Tokar and Johnson (1999) also investigated the modeling of daily runoff of the

Little Patuxent River watershed, measured in the form of streamflow. They compared

the prediction abilities of feed-forward networks and regression equations. The models

were tested using different combinations of input parameters. The feed-forward networks

had sigmoid activation functions and the number of hidden nodes ranged from one to four

hundred. Selection of the number of hidden nodes was made in part in relation to the

data size of the training set (either one, two or three years worth of data). The structure

of the regression equations were a combination of linear and power models. Using error

values to measure performance, the best-fit ANN model was better then all of the

regression models by a considerable degree (validation error for the best ANN was 0.42

and for the best regression model it was 0.64). Tokar and Johnson noted that the number

of parameters in the best-fit neural network was fifty-one, while the number of

parameters in the regression equations was never greater than nine. They believed that

this difference in parameters allowed the ANN to reach a higher level of flexibility and

complexity. Another reason for the advantage of the network models was the fact that

they used a nonlinear activation function, while most of the regression equations were

linear.

 Kaul et al. (2004) compared the effectiveness of feed-forward networks and

multiple linear regression for predicting corn and soybean yield. The input data was

 20

scaled to a range of 0 to 1, and the input variables were chosen from a list of twenty

parameters which included soil rating for plant growth and various rainfall values. Three

layer FNNs were used, with a linear function in the input layer and sigmoid functions in

the hidden and output layers. The number of hidden nodes was set to be initially equal to

one-half of the total number of inputs and outputs, but no rationale was given to explain

this choice. They increased or decreased the number of hidden nodes by one as a method

of fine-tuning the model and improving performance. The statistical equation used to

compare with the FNN was a basic linear regression equation. Trials compared the

performance of both models to predict corn and soybean yield using the same input

parameters and same training data sets. Their results showed that FNNs consistently

produced higher r2 values, indicating higher accuracy, compared to MLR. However, it

should be noted that it seems unfair to compare ANNs with sigmoid activation functions,

which are highly nonlinear, to a linear regression equation.

 Schnabel and Maneta (2005) investigated the comparison between FNNs and

multiple quadratic regression. Both models were applied to the issue of estimating

sediment transport in rivers. Sensitivity analysis was used to determine the most

effective input variables for each model. The feed-forward network was defined to have

ten hidden nodes, but it was not explained why this number was used. The activation

function for the nodes was not specified. For the regression equation, the linear and

quadratic forms of each variable were used, but any cross-terms were ignored. The

results found that both neural networks and statistical regression could effectively predict

sediment transport, and that the performance of the two models was similar. However,

the best-fit model determined by the regression equation used a different set of input

 21

parameters than that used by the feed-forward network. The authors did not offer an

explanation for this difference and did not elaborate on the structures of the FNNs and

regression equations.

 Cobourn et al. (2000) compared a nonlinear regression model with a feed-forward

neural network for their ability to predict ozone concentrations. The regression model

was a combination polynomial and power model. No specific mention was made of the

activation function or the number of hidden nodes in the FNN. Both models produced

practically equivalent predictions for daily ozone concentration in Louisville, Kentucky.

However, it was found that both models used a different set of optimal input variables,

with the regression model including more inputs than the FNN. In particular, the FNN

did not include one parameter, air-mass trajectory, which was highly significant in the

nonlinear regression equation.

 Dedecker et al. (2005) investigated the effects of different river characteristics on

the population of the aquatic species Gammarus pulex L. A feed-forward network was

used with twenty four input nodes, ten hidden nodes, and one output node. All of the

nodes used a logistic sigmoid activation function. The twenty four input nodes

represented the different river characteristics that were being compared for the study. No

rationale was given for the choice of ten hidden nodes. They then used four different

network variable comparison methods as described by Gevrey et al. (2003) to determine

the most significant river parameters. The "Weights" method was based on partitioning

the network weights among the inputs, the "Profile" method involved varying one input

while keeping the others fixed, the "PaD" method used partial derivatives, and the

"Perturb" method studied small changes to the network. Dedecker et al. (2005) found

 22

that all four methods were effective at determining variable importance and produced

similar results.

1.7 Comparisons Between Recurrent Models

 Connor and Martin (1994) discussed the relationships found between auto-

regressive moving average models and recurrent neural networks. Their work essentially

extended that of Sarle from simple regression models to auto-regressive models and from

feed-forward neural networks to recurrent neural networks. Also, they proposed that by

filtering outliers out of the training data, time series models such as ARMA or RNNs can

be come more robust than by training with least-squares or back-propagation alone.

 Chon (1997) showed that feed-forward neural networks with polynomial

activation functions can be used to accurately predict the parameters of a single input and

single output ARMA model. His research showed that by using a polynomial activation

function in the hidden layer, a neural network can become mathematically equivalent to

both linear and nonlinear ARMA models. Also, the network parameter training function

of back-propagation was observed to be slightly more accurate at predicting ARMA

parameters than the least square method, although least-squares took less computation

time to complete. However, Chon (1997) did not use any recurrent neural networks, only

feed-forward networks, limiting the conclusions of his results. Also, the commonly used

sigmoid activation function and the concept of an error term were not included in the

investigation, leaving room for further research.

 Zhang (2003) developed a hybrid model for one-day-ahead time series prediction

by combining linear ARMA equations and nonlinear FNNs. The neural network was

 23

used to add nonlinearity to the model as well as provide the flexibility that ARMA can

not provide. The hybrid model proposed first uses ARMA to model the linear part of the

system, and then trains a FNN to the error found by the ARMA equation. The theory was

that the ARMA equation would model the linear aspects, leaving the nonlinear elements

for the FNN. Both of the models were then added together to produce the complete

prediction. Results showed that the hybrid model outperformed both models

independently. The author also suggested that by adding the ARMA equation first, the

network did not over fit to data as easily. Perhaps both of these models can be combined

to form one neural network, with one linear hidden layer and one nonlinear hidden layer.

 Kumar et al. (2004) investigated the application of ANNs to streamflow

forecasting using auto-regressive inputs. For this research, feed-forward networks and

recurrent networks were used to predict monthly streamflow of the Karnataka River in

India. Trial-and-error was used to design the network structures by varying the number

of inputs from three to five and number of hidden nodes from five to twenty. Both

networks were set up to have four layers, which included two hidden layers. The final

FNN structure had fourteen nodes in both hidden layers, and the final RNN had ten nodes

in both. The five previous monthly streamflow values were used for input. The recurrent

network also passed three previous output values back to the input layer. No mention

was made in the article of the activation functions used (it is likely that all nodes had a

sigmoid function). Training was accomplished using fifty-thousand epochs, which seems

rather high. Fifty years of data was used for training the models, while seven years were

used for validation. Results found that the RNN performed more accurately than the

 24

FNN. This is understandable, as the RNN is able to take advantage of its ability to factor

in previous outputs, which acts as an error term similar to those used in ARMA models.

 Amnala et al. (2000) used FNNs and RNNs along with polynomial regression and

a form of power time series model to model watershed runoff. The network structure and

hidden nodes were determined through trial-and-error. Results showed that feed-forward

networks did not significantly outperform regression models, although the recurrent

network was better than both. Also, it was noted that ANNs needed more parameters for

producing the same prediction accuracy as a regression model.

1.8 Summary of the Literature Review

 Many experiments have compared the results of using both artificial neural

networks and statistical regression equations for modeling and predicting biological

systems. Most papers concluded that the use of artificial neural networks produced data

predictions more accurate or at least comparable to regression models. However, many

of these papers also found inconclusive or conflicting results, such as Schnabel and

Maneta (2005). There is enough evidence to support the connection between neural

networks and statistical regression, but it is obvious that more research needs to be done

to get a better understanding of how both models are related. Few articles explored the

theoretical and mathematical connections between the structure of the two models, such

as the articles written by Sarle (1994) and Chon (1997). However, the formal results of

these papers were limited to simple comparisons. Also, with the exception of Chon

(1997), existing research has not gone into much depth in the area of comparing the

parameters of both models term by term to find formal equivalency equations.

 25

 While there has been some work done on comparing statistical and neural

network models, more research needs to be done to directly link the two models to each

other. This knowledge would be beneficial for many reasons. First, it could potentially

allow one to take a neural network and convert it into an equivalent regression model for

analysis. This is useful when modeling environmental systems whose variables have

complex relationships. A neural network could be trained to produce accurate output

predictions, and then an equivalent regression equation could be deduced from the

network. This regression equation could then be analyzed through statistical methods

such as ANOVA (Ayyub, 2003). Perhaps regression equation parameters could be

extracted from a corresponding ANN and vise-versa.

 Second, one can use the knowledge of a system gained through statistical analysis

to develop the best network structure to fit a given system. This can be useful for

developing a concrete method for determining the number of hidden nodes needed for a

network, since currently the number of hidden nodes is commonly determined through

trial-and-error.

 Lastly, research in this area is important simply to bridge the gap of knowledge

between statistics and neural networks. Both of these models have been developed

independently of each other. Statistics have a history of being developed and studied by

mathematicians for centuries, while artificial neural networks were originally developed

only a few decades ago by computer scientists as a form of artificial intelligence to

replicate the biological neurons in the brain. If connections can be made between the two

models to show how similar (or different) they really are, the field of modeling will

benefit as a whole.

 26

2 Objectives

 The overall goals of this research are to identify potential equivalences between

artificial neural networks and statistical regression and to verify these equivalences when

applied to modeling biological resources systems. Two main connections will be

investigated: the relationship between feed-forward neural networks (FNN) and multiple

polynomial regression (MPR) equations and the relationship between recurrent neural

networks (RNN) and auto-regressive moving average (ARMA) equations.

 The specific objectives are to:

1. Identify potential formal and empirical equivalences between FNNs and MPR

using synthetic data.

2. Identify potential formal and empirical equivalences between RNNs and ARMA

using synthetic data.

3. Apply the equivalences derived in 1 and 2 to the prediction of the

bioenvironmental phenomenon of streamflow using real-world data.

 Potential equivalences between artificial neural networks and statistical regression

equations will be pursued using both formal and empirical methods. In all cases, the

models will use the same set of input and output variables. The formal equivalences

between FNN and MPR will be identified by Taylor series expansion of the ANN

nonlinear sigmoid activation function followed by algebraic manipulation of the network

output equation for an arbitrary number of hidden nodes. For two models to be formally

equivalent, they should contain the same terms with the same order of nonlinearity. The

parameters of one model should be able to be mathematically transformed to find the

parameters of the other model, and vice-versa. The equivalence will be confirmed with

 27

empirical data by comparing graphically and through fit and error statistics the output

prediction functions and model parameters after being trained to the same series of data.

Potential equivalences between RNN and ARMA will be sought in a similar fashion

using a combination of formal techniques and empirical strategies. When comparing

models, particular attention will be made to finding the minimum, or optimal, number of

hidden nodes required for artificial neural networks to replicate a given statistical

regression equation.

 The scope of this research will be limited to a defined range of model structures.

First, the artificial neural networks and statistical models will have one output. Second,

polynomial regression orders will be investigated up to fifth order and ANNs will use up

to forty-five hidden nodes. The artificial neural networks will use zero, one, or two

hidden layers. Finally, only the training methods of least-squares and back-propagation

will be used for estimating model parameters. The purpose of these limitations is to

simplify the investigation and make it easier to find potential equivalences between the

two models.

 28

3 Methods and Materials

 Three major tasks will be accomplished to meet the objectives of this study: 1)

The potential equivalence of FNNs and MPR will be investigated; 2) The potential

equivalence of RNNs and ARMA and; 3) The application of these equivalences to

biological phenomena. The procedures and tools used to perform these tasks are

described in the following three sections.

3.1 Equivalence of FNN and MPR

 The first connection between ANNs and regression that will be investigated is the

relationship between feed-forward networks and polynomial regression. Both of these

models are non-recursive and use independent variables for predicting the output

variable. This section describes the prediction equations, training methods, error metrics,

and pre-scaling of input data involved in the application and comparison of FNN and

MPR models. This is followed by individual subsections describing the specific formal

and empirical perceptron-level and network-level comparisons of ANNs and regression

models to be performed.

 The basic structure of a feed-forward neural network is shown in Figure 3.1. A

FNN will have either three or four layers, with the number of nodes in the input layer

equal to the number of input variables and the output layer representing the number of

output variables. The input and output layers typically have linear activation functions.

The hidden layer, or layers, can have any number of nodes and any type of activation

function. Current neural network technology leaves it up to the researcher to determine

 29

empirically the optimal number of hidden nodes and the optimal activation function. The

general equation for a feed-forward network can be written as:

 Yk = F2(∑j(wj * F1(∑i (wi * Xi) + bj)) + bk) (3.1)

 Where Xi is the ith input variable, Yk is the kth output variable, the w's are the

network weights, the b's are the network biases, F1 is the activation function of the hidden

layer and F2 is the activation function of the output layer (Ripley, 1996).

Figure 3.1: General structure of a three layer feed-forward network.

 The total number of adjustable parameters (weights and biases) in a three-layer

FNN is equal to:

 Pn = 1+(1+M+K)*H (3.2)

where M is the number of inputs, K is the number of outputs, and H is the number of

hidden nodes (Salas et al., 2000). This is assuming that all of the connections between

the input, hidden and output layers have a weight and all of the nodes in the hidden and

output layers have a bias.

 In this study, a linear activation function will be used for nodes in the output layer

(F2). For the hidden layer, the activation function F1 will be either one of three functions:

 30

 Linear: f(x) = x (3.3)

 Polynomial: f(x) = xn (n = order of polynomial) (3.4)

 Sigmoid: f(x) = tanh(x) (3.5)

 The multiple polynomial regression equation is a more general form of the

commonly used multiple linear regression equation. However, the equation also allows

for higher order terms as well as cross-multiplied terms. The general form of a MPR

equation can be written as:

 K+++= ∑∑∑
= ==

M

i

M

ij
ji

k
ji

M

i
i

k
i

k
k XXcXccY

1
,

1
0)**()*(, k = 1 , ... , K (3.6)

 Where Xi is the ith input variable, Yk is the kth output variable, and the c's are the

regression coefficients for M input variables and K output variables (Ayyub, 2003). The

order N of a polynomial equation is equal to the highest order out of all of the terms. An

interesting difference to note between MPR and FNNs is how they function in multiple

output systems. For MPR, a separate regression equation is estimated for each output

variable. However, for FNNs, only one network is needed to model multiple outputs.

 For a single output variable, the number of parameters in a MPR equation

depends on the number of input variables and the maximum order of the equation. This

is assuming that all of the terms created by polynomial expansion are included in the

regression equation. For example, for a second order polynomial that uses X1 and X2 as

input parameters, the expansion of (1 + X1 + X2)2 produces the six terms X1, X2, X1*X2,

X1
2, X2

2, and a constant. Pascal's triangle can be applied to find the number of

parameters, seen in Table 3.1.

 31

Table 3.1: The number of terms in an MPR of Nth order with M input variables.
Number of Input Variables, M Equation

Order, N 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 2 3 4 5 6
2 1 3 6 10 15 21
3 1 4 10 20 35 56
4 1 5 15 35 70 126
5 1 6 21 56 126 252

 The number of parameters in a MPR equation can also be calculated using

equation (3.7) for any number of inputs M and any order N.

 ∏
=

+
=

M

i
r i

iNP
1

)((3.7)

 The software used to construct and test both the neural network and regression

models will be MATLAB Version 7.0 (MATLAB, 2004). The neural networks will be

constructed using the Neural Network Toolbox Version 4.0 (Demuth and Beale, 2004),

which has the ability to model and train many different network structures. The FNN

will be trained using the back-propagation algorithm, which will estimate the network

weights for a given data set. For regression, the least-squares method will be used to

estimate the equation coefficients. Sample MATLAB code for all tests is presented in

Appendix A.

 The back-propagation algorithm iterates for a number of epochs set by the

modeler. For each epoch, the error is determined using equation (1.2). The weights and

biases of the output layer are then updated according to equation (3.8) where k is the

interval, wi is the ith weight of the network, and F is the error function defined by

equation (1.3) (Hagan et al., 2002).

i

ii w
Fkwkw

∂
∂

−=+ α)()1((3.8)

 32

 Updating the weights and biases of the other layers is done in a similar manner,

but is slightly different because the error for each layer output cannot be directly

calculated. Instead, the error from the output layer must be back-propagated to the other

layers by starting from the end and working backwards to the input layer. ANN training

ends either when the network error is below a set level or when the maximum number of

epochs has been reached. In MATLAB, back-propagation will be run with the train

function. Five hundred epochs will be used for training feed-forward networks.

 Unlike back-propagation, the least-squares algorithm does not require multiple

iterations. Instead, the error function (Equation 1.3) is derived with respect to each of the

regression parameters and set equal to zero, as shown in equation (3.9) (Ayyub, 2003).

The system of equations is then solved to find a solution for all of the parameters.

 0=
∂
∂

ic
F (3.9)

 The least-squares method will be run in MATLAB using mldivide or the left-

division (backslash) operator as shown in equation (3.10). The vector c represents the

estimated regression coefficients, X is the matrix of input variables raised to the powers

found in the regression equation, and Y is the vector of target output values.

 c = X \ Y (3.10)

 The parameters of each model will be compared analytically to find a formal

equivalence between the two models. Both ANNs and statistical regression will be

analyzed to compare their mathematical structures. Specifically, this means comparing

the components of the neural network, such as number of hidden nodes and the activation

function, with the components of a polynomial regression model, such as the number of

terms and the highest order of the predictor variables. Then, the artificial neural network

 33

equation will be transformed using Taylor series expansion of the sigmoid functions.

Similar terms will be collected and the simplified equation will be compared to the

regression equation. Ultimately, the goal is to find an analytical relationship between the

weights and biases of an artificial neural network and the coefficients of a multiple

polynomial regression model. Formal equations will be developed to define the

regression coefficients in terms of the network parameters. Also, the minimum number

of parameters required by each model to produce the desired equation should be

comparable. Once a mathematical relationship is found, one can then reduce a neural

network to an equivalent regression model through analytical methods. These formal

equations will then be confirmed using empirical data.

 The formal results will be confirmed empirically using synthetic data. Data will

be divided into two sets, training data and validation data. The training data will be used

to train the neural networks and to estimate the parameters for the regression equations.

During the training stage, the parameters are changed to minimize the prediction error.

Afterwards, the models will be tested using the validation data and the model parameters

will be kept static. The purpose of keeping the validation data separate from the training

data is to test the model's ability to generalize and to make sure it is not memorizing the

training set. Both the training set and the validation set will be taken from the same

population.

 When comparing these models empirically, different criteria will be used to assess

their relationship. First, both the neural network and the regression model will be

optimized to predict the output data of a synthetic system. The accuracy of both models

will be compared to determine if they are able to achieve the same level of predictability.

 34

Accuracy will be determined by computing the standard error ratio, s(e)/s(y), which is the

standard deviation of the error over the standard deviation of the target output values

(Equation 3.11).

1
)(

/
)(

)(
)(2

_
2

−

−

−

−
= ∑∑

∧

n
yy

pn
yy

ys
es (3.11)

Where
∧

y is the predicted output, y is the measured output,
_
y is the mean output, n is the

sample size, and p is the number of parameters in the model. For regression, the number

of parameters is equal to the number of regression terms. For ANNs, the number of

parameters is equal to the sum of weights plus biases of all nodes. Standard error ratio

values close to zero are considered to be good models, while values close to one are

considered to be poor models (Salas et al., 2000). Models with a standard error ratio

greater than one are particularly unreliable, since this signifies that the standard deviation

for the predicted values is worse than simply using the mean value of the data as a

predictor of the entire data set.

 The FNNs and MPR equations will both be trained to the same series of synthetic

data. The output function of both will be plotted and the prediction error from both will

be compared to relate their performance. In particular, function characteristics such as

shape, bias, and ability to deal with extreme values will be investigated. Then, the

parameters of the ANN will be transformed using the formal equations derived

previously into the equivalent regression parameters and will be compared to the real

regression parameters determined through least-squares.

 When developing models, data is sometimes preprocessed before it is inputted

into the model. During the preprocessing stage, the data is transformed to modify its

 35

range or probability density function. This is usually done if the histogram of the data

reveals that the data is skewed to one side of the expected range. In ANN applications,

input and output data can be transformed to fit the range of the activation function being

used in the network. For this study, two different forms of preprocessing, linear scaled

and log normal scaled, will be used along with normal un-scaled data to train and validate

the models. The different methods of preprocessing will be compared to determine if any

particular method gives the model an advantage in accuracy.

 Linear scaling is used to transform a data series from its original range as

described by equation (3.12). The newly scaled data, represented by x', will retain the

distribution of the original series, but will have a new range. The maximum and

minimum values of the new range are set by the modeler as Rmax and Rmin respectively.

This is a common preprocessing technique for ANN applications, because activation

functions such as the sigmoid have a defined range of effectiveness. In the case of the

sigmoid, the range is somewhere between -1 and +1 (Menon et al., 1995). After the

model is trained to the linear scaled data, the output must be rescaled using the same

parameters.

2

)(
)min()max(

)min(*)(' minmax
minmax

RR
xx

xxRRx
−

−
−

−
−= (3.12)

 Log normal scaling will change the distribution of the data series to a normal

distribution. It is calculated by subtracting the natural log of the data by the mean of the

natural log of the data, and then dividing by the standard deviation of the natural log of

the data (Equation 3.13). This process will squash the data, reducing the extremity of

outlying data values. The log normal preprocessing method will be used in conjunction

 36

with the linear scaling method (Equation 3.12) so that the data is within the range of

sigmoid activation function.

))((log

))((log)(log
'

xstd
xmeanx

x
e

ee −
= (3.13)

3.1.1 Perceptron-level Analysis

 Two perceptron-level cases will be investigated: that with a linear activation

function and that with a sigmoidal activation function.

3.1.1.1 Linear Perceptron and Linear Regression

 A perceptron is defined as an ANN with only one layer and one node. A

comparison between a linear perceptron and multiple linear regression equations has

already been shown by Sarle (1994). A formal equivalence between the two models will

be identified in this study by finding the mathematical relationship between the weights

and biases of the perceptron and linear regression coefficients. This will not require

Taylor series expansion since the activation function is linear. The equivalence will be

confirmed empirically by fitting both models to a linear equation that includes noise and

comparing the regression coefficients found by both models as well as the goodness-of-fit

of their output functions. For simplicity, a single input variable will be tested.

3.1.1.2 Sigmoid Perceptron and Polynomial Regression

 The single artificial perceptron with sigmoidal activation function will be

compared to polynomial regression both formally and empirically. Third order Taylor

series expansion will be performed on the sigmoid activation function and substituted in

 37

the perceptron equation. The resulting equation will be compared, term by term, to third

order polynomial regression, with one input variable, to identify equations that transform

perceptron weights and biases into polynomial coefficients, and vice-versa. The

equations relating the perceptron parameters to the regression coefficients will be

confirmed empirically by fitting the models to a cubic data series with noise and

comparing the resulting polynomial coefficients produced by the two models. Both raw

data as well as data scaled to a smaller range using equation (3.12) will be tested to

determine the effect of input data scaling on perceptron performance.

3.1.2 Network-level Analysis - Polynomial Activation Function

 Networks of perceptrons with polynomial activation function will be compared to

MPR in two steps. First, a specific example where the target output function is a noisy

cubic polynomial will be investigated. The results of this investigation will then be

generalized to target multinomials of orders one to five with one to five input variables.

3.1.2.1 Specific Example - Third Order with One Variable

 After investigating the abilities and limitations of single perceptrons, a larger

three-layer neural network will be examined. FNNs with a linear input layer, polynomial

(cubic) hidden layer, and linear output layer will be compared analytically to multiple

polynomial regression equations. A one input variable, third order (cubic) polynomial

equation will be used as the target MPR. This regression model will be compared to

three forms of FNN: a one hidden node network, a two hidden node network, and a

modified two hidden node network that has fewer parameters. In all cases, formal

 38

equations will be developed from Taylor series expansion, substitution, and term by term

comparison to define the regression coefficients in terms of the weights and biases of the

feed-forward network. Issues such as input range, input scaling, prediction accuracy,

equivalence of estimated polynomial coefficients and the effect of the training algorithm

(back-propagation versus least-squares) will be explored for each case. The minimum

number of hidden nodes required to replicate the cubic regression equation will be

determined based on FNN performance in all of the cases.

3.1.2.2 Generalization to MPR

 The comparison of FNNs with polynomial activation function and MPR will

proceed for an increasing number of input variables and polynomial regression orders.

Empirical methods will be used to relate the number of hidden nodes in a network to the

order and number of input variables in multiple polynomial regression. Specifically, this

means to determine the minimum number of hidden nodes required to replicate a given

MPR equation.

 Multiple polynomial regression equations will be synthetically created with a

number of input variables ranging from one to five. The order of the polynomial

regression will also range from one to five. Randomly generated normalized coefficients

will be multiplied to each term of the MPR equation. The input variables will draw from

random normalized data sets, each variable having a sample size of five hundred. The

target values for the model will be found by running the input data values through the

regression equation.

 39

 A series of three layer feed-forward networks will then be trained to model the

input-target set relationship. The input and output layers of the networks will use a linear

activation function, and the hidden layer will use a polynomial activation function. The

polynomial activation function order will be equal to the polynomial regression order

being modeled. For example, for a third order target multinomial, the activation function

in the hidden layer will be f(n) = n3. The number of hidden nodes in the network will be

increased step by step from one to forty-five. For each network, the error value s(e)/s(y)

will be determined using equation (3.11). When the error reaches zero, or becomes less

than 1 * 10-10, then that network will be concluded to be able to replicate the target

multiple polynomial function. For each combination of number of variables and

polynomial order, the minimum number of hidden nodes required to reproduce the target

polynomial will be found.

3.1.3 Network-level Analysis - Sigmoid Activation Function

 Networks of perceptrons with sigmoidal activation function will be compared to

MPR in a similar, two-step, method. First, the FNNs will be investigated where the

target output function is a noisy cubic polynomial. Second, the results will be

generalized to target multinomials of orders one to five with one to five input variables.

3.1.3.1 Specific Example - Third Order with One Variable

 The network-level analysis using a polynomial activation function will be

complemented by researching feed-forward neural networks that use a sigmoid activation

function in the hidden layer. The procedure for this investigation will be similar to that

 40

for the polynomial activation function. Formal comparison between the FNN and a third

order polynomial regression equation will be carried out using Taylor expansion on the

sigmoid function. Like before, three cases will be tested: a one hidden node network, a

two hidden node network, and a modified two hidden node network that has fewer

parameters. The same testing considerations will be used, including the model prediction

accuracy and ability to estimate the polynomial coefficients. The results from using the

sigmoid activation function will be compared to the polynomial activation function

network tested in the previous section.

3.1.3.2 Generalization to MPR

 The results from the example sigmoid network will be generalized to other FNNs

and MPR equations. The methods will be similar to those used for the polynomial

activation function, except now a sigmoid activation function will be used in the hidden

layer. Again the number of hidden nodes will range from one to forty-five. Five trials

will be run for each network structure, as a means to offset the random initialization of

the network parameters. The networks will use the same training and validation sets,

both randomly generated with five hundred normal values. The training and validation

s(e)/s(y) errors will be calculated for each network. The relationship between network

prediction error and the number of hidden nodes will be observed for each combination

of number of input variables and polynomial regression order. The results will be used to

confirm the findings from the previous investigations.

 41

3.2 Equivalence of RNN and ARMA

 The second phase of testing will involve recurrent neural networks and auto-

regressive moving average functions. These models are similar in structure to FNN and

MPR, but they are inherently recurrent, allowing for previous values of the output to

influence current predictions. This section describes the prediction equations and training

methods involved in the application and comparison of RNN and ARMA models. This is

followed by individual subsections describing the specific formal and empirical

perceptron-level and network-level comparisons of ANNs and regression models to be

performed.

 A recurrent neural network is structured similarly to a feed-forward neural

network except that it also includes a temporal component. All of the input and output

variables are represented with respect to a discrete time step, t. To accomplish this

function, the RNN allows for two additional components: backwards, or feedback,

connections and delays (Connor and Martin, 1994). Backwards network connections link

nodes in the output layer to the nodes in the input layer (Figure 3.2). This allows for

recursive functionality. A delay is used for time series models to hold a particular value

and output it at the next time step. The value for the output from the delay is initially

zero for the first time step.

 42

Figure 3.2: Example of a three layer recurrent neural network.

 The RNN in Figure 3.2 can be defined by the equation:

 Yt = F2(∑j(wj * F1(∑q (wq * Xt - q) + ∑p (wp * Yt - p) + bj)) + bk) (3.14)

 Where Xt-q is the input variable at time t-q, Yt-p is the regressive output variable at

time t-p, t is the discrete time variable, the w's are the network weights, the b's are the

network biases, F1 is the hidden layer activation function, F2 is the output layer activation

function and D is a one time unit delay.

 In this network, the RNN uses one independent variable, X, as well as recursive

values of the output, Y. For simplicity, this research will deal with recurrent networks of

this form, although it should be pointed out that other forms of RNNs exist in the

literature. The network can have any number q of previous and current values of X as

input. There can also be any order p of previous network predictions for Y.

 The standard linear ARMA model has two components: the auto-regressive (AR)

part and the moving average (MA) part. The auto-regressive portion of the equation is

 43

the recursive part that takes into account previous values of the variable being modeled.

The moving average part includes the past history of model prediction error. The general

form of an auto-regressive moving average model is:

 Yt = c0 + ∑p(cp * Yt-p) + ∑q(cq * Et-q) (3.15)

 Where Yt is the time series variable being modeled at time t, p is the order of the

AR part, q is the order of the MA part, and Et represents the prediction error (Mandic and

Chambers, 2000). The equation can be represented shorthand as ARMA(p,q), where p

and q are the size of the respective orders. The non-real time values of Y (t < 1) are

defined to be zero. The error Et can be calculated with equation (3.16) where tY
^

 is the

predicted output at time t.

)(
^

ttt YYE −= (3.16)

 Et can also represent an independent input variable, and does not necessarily have

to be calculated as the network error. When it is an independent variable, it will be

represented by Xt instead of Et (Chon, 1997).

 The linear ARMA is popular in biological applications because it is relatively

easy to create and analyze. However, when a more complex model is desired, nonlinear

ARMA, or NARMA, models can be used. There are many forms of NARMA equations,

but for this study, a polynomial NARMA will be investigated, as defined by equation

(3.17) (Chon, 1997).

 Yt = (c0 + ∑p(cp * Yt-p) + ∑q(cq * Et-q))n (3.17)

 It can be seen from equations (3.15) and (3.17) that there will be essentially two

different "depths" of ARMA models that can be explored. The first is a temporal

 44

dimension, represented by the orders of p and q and the second is a nonlinear, or

polynomial, order represented by n.

 Another aspect of the ARMA equation that can be modified is the method of

prediction. For one-day-ahead prediction models, the actual value of the previous output

is used in the auto-regressive term. In full prediction, or multiple-day-ahead prediction,

the estimated value of the output is used (Young and Chan, 1993).

 The analysis of RNN and ARMA models will be performed in MATLAB.

Recursive neural networks will be developed using the Neural Network Toolbox and

trained using back-propagation similar to the way described earlier for FNNs.

Comparing the accuracy and structure of the two models will be done in a manner similar

to what is done with feed-forward networks and multiple polynomial regression

equations.

 ARMA model coefficients will be estimated using the method of least-squares.

For purely auto-regressive models, or models with independent input variables, the

standard least-squares algorithm will be used. However, when the ARMA equation

includes an error term for the moving average part, a modified form of least-squares

called the long-AR method will be used to estimate the model coefficients (Wolfram

Research, 2006). The reason a different estimation method is needed is because the error

term Et is dependent on predicted values of the output (Equation 3.16), which are

unknown at the time of coefficient estimation.

 The long-AR method first estimates the output of the ARMA equation with an

AR(k) model, where k is a large value. The next step is to use the predictions from this

 45

auto-regressive model to calculate the error from the target data. Finally, the original

ARMA equation is solved for using the estimated error terms.

3.2.1 Perceptron-level Analysis

 For the first step in investigating the potential equivalence between recurrent

networks and auto-regressive moving average models, a single linear recurrent

perceptron will be compared to linear ARMA equations. In other words, the order of the

regression polynomial order will be, n = 1. Tests will be performed on three variations of

ARMA equations. First, an ARMA(1,1) model that uses an independent input. The

inputs variables for this equation are the Yt-1 and Xt. Second, an ARMA(1,1) model that

uses an error term. The input variables for this equation are Yt-1 and Et-1. Third, an

ARMA(3,0) model with no non-recurrent inputs. The input variables for this equation

are Yt-1, Yt-2 and Yt-3. In all cases, formal equations will be derived to express ARMA

coefficients in terms of the recurrent perceptron weights and biases.

 The formal comparisons between RNNs and ARMA equations will be confirmed

with empirical data. This will be similar to the methods used in the previous section, on

comparing FNNs and MPR equations. The data will be synthetically created and trained

to estimate both models. There will be two types of synthetic time series equations

tested: stable and unstable equations. The prediction error s(e)/s(y) of both models will

be compared as well as the fit of the model output functions. It will be observed if both

the RNN and ARMA are able to find the same regression parameters for the synthetic

system.

 46

3.2.2 Network-level Analysis

 The network-level analysis for the recurrent neural network will combine the

research of both the sigmoid hidden layer feed-forward network and the recurrent

perceptron. A three-layer recurrent neural network with linear input layer, sigmoid

hidden layer, and linear output layer will be compared to a third order NARMA(1,0)

model (n = 3, p = 1 and q = 0). A single, recurrent input variable will be used for both

models. Taylor expansion will be used to transform the recurrent network equation and

the result will be compared to the third order NARMA(1,0) equation, term by term. The

formal comparisons will be confirmed by training both models to a stable, synthetic data

set. The fit of the output functions as well as the equivalence of the regression

coefficients will be taken into consideration.

3.3 Application to Biological Phenomena

 The artificial neural network and statistical regression equivalences that are

identified through tasks described in the previous sections will be applied to neural

network models in biological applications. For this thesis, the research will focus on the

field of bioenvironmental engineering and hydrology. Specifically, this research will

investigate the application of streamflow forecasting. However, it is important to note

that the technology of neural networks and statistical regression as well as the knowledge

gained on their potential equivalence can be applied to any other biological field.

 The real world biological phenomenon that will be used is the issue of streamflow

forecasting. This example will be used to compare the modeling abilities of artificial

neural networks and statistical regression equations based on the findings from the

 47

previous section. Both types of models will be used to predict the average daily

streamflow of the Little Patuxent River in Maryland. This is the same water system used

in a previous experiment that found ANNs to be a successful modeling tool (Salas et al.,

2000). Combinations of average daily temperature (°F), daily precipitation (in), and the

streamflow (cfs) from previous days will be used as independent variables.

 The stream flow data from the Little Patuxent River is obtained from the U.S.

Geological Survey (USGS, 2005). Climate data (precipitation and temperature) of the

surrounding watershed is measured at the Clarksville gauging station and was obtained

from the National Climatic Data Center (NCDC, 2005). Daily values from the years

1979, 1980, and 1984 are combined to form the training set, and the years 1989, 1991,

and 1992 are combined to form the validation set. The maximum and minimum values

for both sets are shown in Table 3.2. It is notable that the range of the validation data is

slightly larger than that of the training data. This means the models will be tested on their

ability to project predictions to data outside of their trained range. The graphs and

histograms for both the training and validation data are presented in Appendix B.

Table 3.2: Minimum and maximum values for the streamflow data.
Training Set Validation Set

Min Max Min Max
Precipitation (in) 0 3.09 0 3.80
Temperature (°F) 14 101 19 102
Streamflow (cfs) 6.7 2140 3.8 2420

3.3.1 Confirming the Accuracy of Neural Networks

 The results from Salas et al. (2000) will be replicated and confirmed. Salas et al.

(2000) concluded that a three-layer feed-forward network with sigmoid activation

functions in the hidden and output layers outperformed a simple conceptual rainfall-

 48

runoff statistical model. This study found that the best-fit model for predicting

streamflow was a feed-forward network that used the current day's temperature and the

current and previous days' precipitation as input variables, along with ten nodes in the

hidden layer. The accuracy of training and validating the FNN will be verified as well as

the optimal number of hidden nodes.

3.3.2 Comparison of ANNs and Regression Models

 A series of artificial neural networks and statistical regression equations will be

used to model the streamflow of the Little Patuxent River. The variables of interest will

be: Qt, the average daily discharge (cfs) at time t; Pt, the daily precipitation (in); Tt, the

average daily temperature (°F); and t, the day. There will be two groups of input

parameters used, non-recursive (Functions 1 through 4) and recursive (Functions 5

through 8), as displayed in Table 3.3. Each input data set uses a different combination of

precipitation, temperature and streamflow. There will always be only one output for the

models, which is streamflow.

Table 3.3: The functions and input sets that will be approximated by the models.
Non-recursive Functions Recursive Functions
Function 1: Qt = f(Pt)
Function 2: Qt = f(Pt , Pt-1)
Function 3: Qt = f(Pt , Tt)
Function 4: Qt = f(Pt , Pt-1 , Tt)

Function 5: Qt = f(Pt , Qt-1)
Function 6: Qt = f(Pt , Pt-1 , Qt-1)
Function 7: Qt = f(Pt , Tt , Qt-1)
Function 8: Qt = f(Pt , Pt-1 , Tt , Qt-1)

3.3.2.1 Non-recursive Input - FNN versus MPR

 The non-recursive functions (Functions 1 through 4) will be modeled by a series

of feed-forward networks and multiple polynomial regression equations. Function 1 for

example, which uses only precipitation as an input to predict streamflow, is represented

 49

by the network and polynomials shown in Figure 3.3. The other functions will be similar,

except that they will involve more input variables (combinations of precipitation and

temperature).

FNN: vs. MPR: n
tnttt PcPcPccQ *** 2

210 ++++=
∧

K

Figure 3.3: Models used to estimate Function 1.

 The structure of the feed-forward networks will be either a three or four layer

network. For the first phase of tests, a traditional three layer network will be used. The

input and output layers will use a linear activation function, while the hidden layer nodes

will use a hyperbolic tangent (sigmoid) activation function. Two additional commonly

used network structures, shown in Table 3.4, will also be tested to compare the accuracy

and functionality of the different networks. For the two hidden layer network, the second

sigmoid layer will only have one hidden node. For the polynomial network, the

activation function will be the third order Taylor series expansion of the sigmoid

function.

Table 3.4: ANN structures to be tested.
Network Structure
Linear - Sigmoid - Linear
Linear - Sigmoid - Sigmoid - Linear
Linear - Polynomial - Linear

 The weights and biases for the ANNs are initialized to random normal values and

will be trained using standard back-propagation. In every case investigated, five trial

networks will be trained to minimize the effects of the random initialization. A

maximum of five-hundred epochs will be used to train the FNNs. ANN predictions and

structure will be compared to those of multiple polynomial regression equations.

 50

 The streamflow and climate data will be pre-processed to be a better fit with the

critical range of the network's activation function. For the hyperbolic tangent activation

function used in this study, the best range is from -1 to +1. For one set of trials, the data

will be linearly scaled to the range -0.8 to +0.8 by using equation (3.12). For another set

of trials, the streamflow data will be transformed by taking the log of the data,

standardizing it to a normal distribution, and then scaling it to the range -0.8 to +0.8 by

using equation (3.13). The reason for attempting log-scaling is that the streamflow

distribution for both the training and validation sets is skewed, with most of the data

values being very small. The prediction accuracy for the models will be observed for

both types of pre-processing, to see if the log normal transformation has any advantage

over simple linear scaling.

 The number of hidden nodes in the ANNs will be varied from one to thirty-five.

The order of the polynomial regression equations will vary from one to fifteen. The

models will be trained and validated using the same data series, with five trials being

performed for each. For each trial, the error ratio s(e)/s(y) will be calculated, based on

equation (3.11). The error ratio for the ANNs for each number of hidden nodes will be

compared to the error ratio found for each order of MPR. Two models will be considered

to be empirically equivalent if the error ratio between the two is similar. The structure of

those models as well as the output functions that they both produce (graph) will then be

compared to determine their similarities. If possible, the network parameters will be

converted to equivalent regression parameters using the formal equations developed

earlier.

 51

3.3.2.2 Recursive Input - RNN versus ARMA

 For the recursive functions (Functions 5 through 8), feed-forward networks and

recurrent neural networks will be compared to auto-regressive moving average equations.

The models will either be used for one-day-ahead prediction or full prediction. One-day-

ahead prediction will use the actual Qt-1 as an input value, while full prediction will use

the predicted Qt-1 value as input. Keeping to the intent of the network structures, FNNs

will only be used for one-day-ahead prediction, while RNN will only be used for full

prediction (multiple-day-ahead). ARMA equations will be tested for both prediction

methods. Figures 3.4 and 3.5 show the models used to estimate Function 5 and the other

recursive functions will be tested in a similar manner.

FNN: vs. ARMA:
K++

++=

−

−

∧

14

1321

**
**

tt

ttt

QPc
QcPccQ

Figure 3.4: One-day-ahead prediction models for Function 5.

RNN: vs. ARMA:
K++

++=

−

∧

−

∧∧

14

1321

**

**

tt

ttt

QPc

QcPccQ

Figure 3.5: Full prediction models for Function 5.

 The testing in this section will proceed similarly to the non-recursive section.

Recurrent networks will have the same structure as the feed-forward networks, but will

have a connection from the output layer to the input layer with a single time-unit delay

function. Like before, five-hundred epochs will be used when training FNNs, while a

maximum of fifty epochs will be used for RNNs. The difference in number of epochs

used is due to the much longer training time required by recurrent networks. Instead of

 52

multiple polynomial regression, all ANNs will be compared to nonlinear polynomial

auto-regressive moving average (NARMA) models.

 A summary of the ANN and regression models to be tested and compared for both

the recurrent and non-recurrent sections is presented in Table 3.5.

Table 3.5: Summarizes the comparisons being tested between ANNs and regression.
Network Regression Prediction Method Pre-processing # of Hidden Nodes

and # of Orders
FNN
RNN

MPR
ARMA

One-day-ahead
Full prediction

Linear Scaled
Log Normal

1-45 Hidden Nodes
1-15 Orders

 53

4 Results and Discussion

4.1 Equivalence of FNN and MPR

4.1.1 Perceptron-level Analysis

4.1.1.1 Linear Perceptron and Linear Regression

 The first step in the investigation confirmed the proposal by Sarle (1994) that a

neural perceptron with a linear activation function can be reduced to a multiple linear

regression equation. A linear perceptron with k input variables is represented in Figure

4.1. The linear regression model is defined by:

 Y = c0 + c1 * X1 + c2 * X2 + ... + ck * Xk (4.1)

Figure 4.1: An artificial perceptron with a linear activation function.

The perceptron in Figure 4.1 can be represented mathematically by equation (4.2).

 Y = b + w1 * X1 + w2 * X2 + ... + wk * Xk (4.2)

Comparing (4.1) to (4.2) term by term, the following formal equivalences can be seen:

 c0 = b (4.3)

 c1 = w1 (4.4)

 c2 = w2 (4.5)

 ck = wk (4.6)

 This formal comparison was then tested empirically. Synthetic input and output

data was used to determine the accuracy of both the linear perceptron and linear

regression. For the training data, the value of X was given integer values ranging from

 54

-149 to 150. The target values for Y were then determined by the equation:

 Y = 100 + 2 * X + 10 * ε (4.7)

 A normalized random error, designated by ε, was assigned to the value of Y to

simulate noise in the data. A set of validation data was created in the same manner, but

with the values of X ranging from 151 to 250. The purpose of this is to test the ability of

the models to extrapolate to future values of Y not included in the training set. The linear

perceptron and linear regression model were both fit to model the synthetic data. Results

show that the models produced identical accuracy and both produced the same best-fit

line (Figure 4.2 and Table 4.1).

 Once the accuracy was confirmed, the weight and bias of the trained linear

perceptron were converted to polynomial coefficients using (4.3) and (4.4) and examined

to determine if it was able to accurately predict the parameters of the regression equation.

Results are presented in Table 4.2 and indicate that the weights of the linear perceptron

match the parameters of the linear regression equation. The structure of the equation

representing the perceptron is identical to the traditional form of a multiple linear

regression equation. This shows that the two models have the ability to produce the same

statistical equation.

 It should be noted that for natural events such as watershed response to

precipitation a wider range both during training and validation should be considered in

order to encompass the stochastic and variability in nature (i.e., the number of dry years,

wet years, and normal years in the data set).

 55

-150 -100 -50 0 50 100 150 200 250
-300

-200

-100

0

100

200

300

400

500

600

700

X

Y
Target Data
MPR
FNN

Training Validation

Figure 4.2: Linear regression and linear perceptron trained to synthetic data.

Table 4.1: Linear Perceptron - Prediction error from both models.
 1st Order MPR Linear Perceptron
Training Error s(e)/s(y) 0.0607 0.0607
Validation Error s(e)/s(y) 0.1898 0.1898

Table 4.2: Linear Perceptron - Regression coefficients found by both models.
 Target 1st Order MPR Linear Perceptron
c0 100 100.2678 100.2678
c1 2 1.9997 1.9997

 56

4.1.1.2 Sigmoid Perceptron and Polynomial Regression

 The artificial perceptron was then tested using a hyperbolic tangent activation

function. This is a function commonly used in ANN applications because of its ability to

make the network nonlinear. The sigmoid perceptron is shown in Figure 4.3. This

perceptron can be represented mathematically by:

 Y = tanh(b + w1X1 + w2X2 + ... + wkXk) (4.8)

Figure 4.3: An artificial perceptron with a sigmoid activation function.

 In this form, this equation is equivalent to a nonlinear regression equation that

uses the hyperbolic tangent function. The coefficients (b and wi) of a regression equation

in this form can be determined by taking the inverse hyperbolic tangent of the output

data, Y, and then performing least squares.

 To compare the sigmoid perceptron to multiple polynomial regression, Taylor

series expansion on equation (4.8) is performed using the taylor function in MATLAB on

the hyperbolic tangent function. The following Taylor series expansion is established:

 K−+−+−= 9753

2835
62

315
17

15
2

3
1)tanh(xxxxxx (4.9)

 For simplicity, this research will begin by using only the first two terms of (4.9) to

estimate the hyperbolic tangent function, up to the third order by:

 3

3
1)tanh(xxx −≈ (4.10)

 57

 The third order Taylor expansion of the sigmoid activation function is only a

rough estimate, and is most accurate at small values of X. A graph of both functions

show that equation (4.10) is not accurate outside of the range -0.5 to +0.5 (Figure 4.4).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(x
)

x

f(x) = tanh(x)

f(x) = x - 1/3 * x3

Figure 4.4: The third order Taylor expansion of tanh(x).

 For one input variable, X, the perceptron equation (4.8) and the third order Taylor

expansion equation (4.10) can be combined to form the approximate perceptron equation:

 3)(
3
1)(wXbwXbY +−+= (4.11)

Using polynomial expansion and combining like terms produces the equation:

 332223 *)
3
1(*)(*)()

3
1(XwXbwXwbwbbY −+−+−+−= (4.12)

This equation has the structure of a third order polynomial:

 3
3

2
210 *** XcXcXccY +++= (4.13)

 58

By comparing similar terms, the following parameter conversion equations can be set up:

 3
0 3

1 bbc −= (4.14)

 wbwc 2
1 −= (4.15)

 2
2 bwc −= (4.16)

 3
3 3

1 wc −= (4.17)

 Equations (4.14) to (4.17) show how third order polynomial regression can be

estimated by the weight and bias of a sigmoid perceptron. However, the problem with

these equations is that there are two variables being used to predict four unknowns. For a

given third order equation (4.13), it is not likely that a solution for b and w can be found.

 These formal equations were tested empirically in the same manner as the

previous section with the linear perceptron. The following third order polynomial

equation was used to create synthetic target data:

 Y = 100 + 2 * X - 0.005 * X2 + 0.0001 * X3 + 10 * ε (4.18)

 Without scaling the data, the perceptron is unable to model the data, since the

output is restricted to the range -1 to +1 (Figure 4.5a). However, even when scaling the

input and output data to a range of -0.1 to +0.1, the perceptron is still incapable of

matching the trend of the data (Figure 4.5b). The perceptron is only able to train itself to

have an error as low as s(e)/s(y) = 0.2088, which is much larger than the error of the

regression equation (0.0338) (Table 4.3). It is interesting to note that the shape of the

perceptron output function in Figure 4.5b looks linear. This suggests that with only one

perceptron, an ANN is insufficient for modeling regression orders larger than one.

 59

 Empirical results confirm that the sigmoid perceptron is unable to estimate the

parameters of the polynomial regression equation. Network training found the best-fit

weight (w = 0.7957) and bias (b = 0.0109) for the perceptron. The regression coefficients

derived from the network parameters using equations (4.14) to (4.17) are shown in Table

4.4. As expected from the linear output function in Figure 4.5b, the perceptron is not

close in predicting the higher order polynomial coefficients. In order to accurately model

the regression equation, more parameters are needed in the ANN, which means a larger

network is required.

 60

a)
-150 -100 -50 0 50 100 150 200 250

-1000

-500

0

500

1000

1500

2000

X

Y

Target Data
FNN
MPR

Training Validation

3rd Order MPR

Sigmoid Perceptron

b)
-150 -100 -50 0 50 100 150 200 250

-1000

-500

0

500

1000

1500

2000

X

Y

Target Data
FNN
MPR

Training Validation

3rd Order MPR

Sigmoid Perceptron

Figure 4.5: The output function for MPR and sigmoid perceptron with non-scaled (a) and scaled (b) data.

Table 4.3: Sigmoid Perceptron - Prediction error from both models for scaled data.
 3rd Order MPR Sigmoid Perceptron
Training Error s(e)/s(y) 0.0338 0.2088
Validation Error s(e)/s(y) 0.0395 1.3935

Table 4.4: Sigmoid Perceptron - Regression coefficients found by both models (values in scaled domain).
 3rd Order MPR Sigmoid Perceptron
c0 0.0166 0.0109
c1 0.4719 0.7956
c2 -1.7106 -0.0069
c3 53.4606 -0.1679

 61

4.1.2 Network-level Analysis - Polynomial Activation Function

4.1.2.1 Specific Example - Third Order with One Variable

 When modeling a one input variable, third order equation, a single artificial

perceptron is unable to replicate the results of a regression equation. The investigation

will continue by looking at larger artificial neural networks. This time, a three layer feed-

forward neural network will be used. Since this is a one input and one output system, the

input and output layers will only have one node in each. However, by modifying the

number of hidden nodes, the structure and number of parameters in the network will

change.

 First, a basic FNN with one hidden node will be tested (Figure 4.6). Like the

third order regression equation (4.13), this FNN also has four parameters. Combining the

equations of the perceptrons in this network produces the overall FNN equation:

3

2
3
1

2
12

2
1

2
1212

3
12

2
3

112

33

)(*

XwwXbwwXbwwbbw

bbXwwY

++++=

++=
 (4.19)

Figure 4.6: One hidden node FNN with cubic activation function.

By comparing the terms of (4.12) and (4.19), the following equivalences are found:

 2
3
120 bbwc += (4.20)

 2
1211 3 bwwc = (4.21)

 12
2
12 3 bwwc = (4.22)

 2
3
13 wwc = (4.23)

 62

 While there are now four parameters in each model, the network weight w2

appears in all of the coefficient equations (4.20) to (4.23). As a result, the neural network

is unable to train its weights and biases to find the unique solution for the regression

parameters. Both models were then trained and validated on the same synthetic data

series that was used for the single sigmoid perceptron in the previous section, which was

given as equation (4.18).

 Figure 4.7 shows that the FNN with one hidden node is unable to model the data

with the same degree of accuracy as the third order regression equation. The error for the

FNN (s(e)/s(y) = 0.2367) was much higher than for MPR (s(e)/s(y) = 0.0327). This

difference in error is even more dramatic in the validation data (2.0150 for FNN as

opposed to 0.0368 for MPR) (Table 4.5). Using equations (4.20) to (4.23), the regression

coefficients were estimated from the FNN parameters (Tables 4.6 and 4.7). Results

indicate that the one hidden node FNN is able to come close to determining the

regression coefficients, but is inaccurate enough to produce a different output function as

seen in Figure 4.7.

 63

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

2500

3000

3500

X

Y
Target Data
FNN
MPR

Training Validation

3rd Order MPR

1 Lin - 1 3rd - 1 Lin FNN

Figure 4.7: The functions produced by third order regression and one hidden node FNN.

Table 4.5: One Cubic Hidden Node - Prediction error from both models.
 3rd Order MPR 1 Lin - 1 3rd - 1 Lin FNN
Training Error s(e)/s(y) 0.0327 0.2367
Validation Error s(e)/s(y) 0.0368 2.0150

Table 4.6: One Cubic Hidden Node - Trained network weights and biases.
w1 w2 b1 b2
0.1602 0.0536 -1.4865 107.8844

Table 4.7: One Cubic Hidden Node - Regression coefficients found by both models.
 Target 3rd Order MPR 1 Lin - 1 3rd - 1 Lin FNN
c0 100 99.7267 107.7082
c1 2 2.0205 0.0569
c2 -0.005 -0.0050 -0.0061
c3 0.0001 0.0001 0.00022045

 64

 Similar tests were performed using two hidden nodes in the hidden layer (Figure

4.8). Like before, a cubic activation function was used in the hidden nodes. The output

from this FNN can be defined by:

 3
3

224
3

113)(*)(* bbXwwbXwwY ++++= (4.24)

Figure 4.8: Two hidden node FNN with cubic activation function.

 Using polynomial expansion on equation (4.24) and combining terms, the result is

compared to the polynomial regression equation (4.13). The coefficients of the

polynomial can then be defined in terms of the network weights and biases as:

 3
3
24

3
130 bbwbwc ++= (4.25)

 2
242

2
1311 33 bwwbwwc += (4.26)

 24
2
213

2
12 33 bwwbwwc += (4.27)

 4
3
23

3
13 wwwwc += (4.28)

 The results from the empirical test show that both the FNN and the MPR create

the same output function when trained to the synthetic training data (Figure 4.9). Both

models also predict the validation data with the same degree of accuracy (Table 4.8).

When the network parameters (Table 4.9) are transformed into regression coefficients,

the results are identical (Table 4.10). These results confirm that a feed-forward network

with two cubic activation functions can be equivalent to a third order regression equation

with one input variable.

 65

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

X

Y
Target Data
MPR
FNN

ValidationTraining

3rd Order MPR and
1 Lin - 2 3rd - 1 Lin FNN

Figure 4.9: The functions produced by third order regression and two hidden node FNN.

Table 4.8: Two Cubic Hidden Nodes - Prediction error from both models.
 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN
Training Error s(e)/s(y) 0.0340 0.0341
Validation Error s(e)/s(y) 0.0304 0.0309

Table 4.9: Two Cubic Hidden Nodes - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
-0.0170 0.0433 -2.1006 1.0980 -3.7277 -1.9174 0.0583

Table 4.10: Two Cubic Hidden Nodes - Regression coefficients found by both models.
 Target 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN
c0 100 101.1230 101.1230
c1 2 2.0156 2.0156
c2 -0.005 -0.0050 -0.0050
c3 0.0001 0.0001 0.000099689

 66

 It is interesting to note that the two hidden node FNN did not always match the

results of the MPR equation. Some of the trials produced results as seen in Figure 4.10

instead. In this case, the output function for the FNN looks more like the results from the

one hidden node network (Figure 4.7) and does not fit the trend of the synthetic data. As

should be expected in this situation, the FNN is unable to predict the coefficients to the

polynomial equation (Table 4.13). During the training phase for the failed network, all

five hundred of the epochs were executed by back-propagation without reaching the

target performance. In comparison, correctly trained networks would meet the target

performance and stop training after only a few epochs. The reason for the failed trials is

likely to be caused by the random initialization of network parameters. In the case of the

failed network, the initialized parameters most likely put the network in one of the local

minima of the error function, causing it to be unable to reach the true regression equation.

 67

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

2500

3000

3500

X

Y
Target Data
FNN
MPR

ValidationTraining

3rd Order MPR

1 Lin - 2 3rd - 1 Lin FNN

Figure 4.10: Failed trial with two hidden nodes.

Table 4.11: Two Cubic Hidden Nodes (Failed) - Prediction error from both models.
 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN
Training Error s(e)/s(y) 0.0328 0.2867
Validation Error s(e)/s(y) 0.0255 2.6045

Table 4.12: Two Cubic Hidden Nodes (Failed) - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
1.3882 -0.0090 0.0001 -1.1253 6.8013 -3.4058 2.2951

Table 4.13: Two Cubic Hidden Nodes (Failed) - Regression coefficients found by failed trial.
 Target 3rd Order MPR 1 Lin - 2 3rd - 1 Lin FNN
c0 100 100.7072 46.7756
c1 2 1.9837 0.3651
c2 -0.005 -0.0050 0.0038
c3 0.0001 0.0001 0.00019580

 68

 While the two hidden node FNN is able to replicate the third order regression

equation, it uses more parameters than the MPR. Seven parameters are used in the FNN

in the form of weights and biases, as opposed to the four used to represent the third order

polynomial. This can be inconvenient in situations with a large amount of data.

Typically modelers would like to find the most efficient equation for representing the

system in question, since extra parameters tend to make the equation overly complex.

 To make the two hidden node FNN simpler, the weights and biases used for the

output node were ignored. In this modified two hidden node network, w3 and w4 were set

equal to one and b3 was set to zero (Figure 4.11), reducing the network equation to:

 3
22

3
11)()(bXwbXwY +++= (4.29)

Figure 4.11: Modified two hidden node FNN with parameters w3, w4 and b3 ignored.

 This network arrangement produces polynomial coefficients determined by:

 3
2

3
10 bbc += (4.30)

 2
22

2
111 33 bwbwc += (4.31)

 2
2
21

2
12 33 bwbwc += (4.32)

 3
2

3
13 wwc += (4.33)

 When this new network was trained to the empirical data, it was able to produce

results just as effectively as the fully parameterized network. The output function

matched that of the MPR equation with the same degree of accuracy as the full parameter

 69

network (Figure 4.12). Transforming the network parameters with (4.30) to (4.33)

confirm that the network finds the same regression coefficients as MPR (Table 4.16). It

should also be noted that this network sometimes failed in the same manner as the full

parameter two hidden node network.

 It is interesting that this four parameter network succeeded where the other four

parameter network (the one hidden node network) failed. This suggests that as long as

there are enough parameters before the hidden node, the network will be able to replicate

a given MPR of the same order with the same number of parameters. The network

weights that were ignored (w3, w4 and b3) are mostly used by the network for scaling and

offsetting the output from the hidden layer, where the weights are used for scaling and the

bias for offsetting.

 70

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

X

Y
Target Data
MPR
FNN

Training Validation

3rd Order MPR and
Modified 1 Lin - 2 3rd - 1 Lin FNN

Figure 4.12: The functions produced by third order regression and modified two hidden node FNN.

Table 4.14: Modified Two Cubic Hidden Nodes - Prediction error from both models.
 3rd Order MPR Modified 1 Lin - 2 3rd - 1 Lin FNN
Training Error s(e)/s(y) 0.0343 0.0343
Validation Error s(e)/s(y) 0.0415 0.0415

Table 4.15: Modified Two Cubic Hidden Nodes - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
0.0445 0.0218 1 1 -1.9936 4.7669 0

Table 4.16: Modified Two Cubic Hidden Nodes - Regression coefficients found by both models.
 Target 3rd Order MPR Modified 1 Lin - 2 3rd - 1 Lin FNN
c0 100 100.3981 100.3981
c1 2 2.0173 2.0173
c2 -0.005 -0.0051 -0.0051
c3 0.0001 0.0001 0.00009859

 71

4.1.2.2 Generalization to MPR

 The previous section shows that the number of hidden nodes in an ANN has a

large effect on their performance. The number of hidden nodes is an important aspect of

ANN modeling. Varying the number of hidden nodes gives neural networks versatility.

However, as discussed earlier, there are no formal methods for determining the best

number of hidden nodes to use. In this section, FNNs with a variable number of hidden

nodes will be used to model polynomial regression equations of various orders. The

order and number of variables of the regression equation will be compared to the

minimum number of hidden nodes needed to replicate the equation.

 The research from the previous section in one input variable, third order

regression equations was expanded to investigate higher orders of polynomials with

multiple input variables. Synthetic data was used to fit feed-forward neural networks

with polynomial activation functions to polynomial multiple regression equations. The

minimum number of hidden nodes required to model each MPR equation is presented in

Table 4.17. In each case, initial observations indicate that the FNN has at least as many

parameters as the equivalent MPR. Most of the time, the total number of parameters is

higher for the feed-forward networks. This is due to the large number of connections that

are made between each layer of the network. Each of these connections has a weight

parameter assigned to it and each node has a bias parameter. Many of these network

parameters are most likely not required, but they are included in the interest of making

complete networks, which are typically used in real life applications.

 The results from this test confirm that for all first order equations, only one

hidden node is required. Additional hidden nodes are not required for additional

 72

variables. This is because the linear regression coefficients for each term are controlled

by the weights going from the input layer to the hidden node.

 For all of the second order MPR equations, the minimum number of hidden nodes

appears to be equal to the number of input variables. As the order of the regression

equation increases and the number of variables increases, the minimum number of hidden

nodes becomes larger. The basic trend that occurs in the results is that as the number of

parameters in the underlying regression equation increases, the number of hidden nodes

required increases, which is expected.

 73

Table 4.17: Minimum number of hidden nodes required to replicate a MPR.
Number of
Variables

(A)

MPR
Order

(B)

Number of
MPR Parms

(C)

Number of
Hid Nodes

(D)

Number of
FNN Parms

(E)

Modified
FNN (E - D)

(F)
1 2 1 4 3
2 3 1 4 3
3 4 2 7 5
4 5 2 7 5

1

5 6 3 10 7
1 3 1 5 4
2 6 2 9 7
3 10 3 13 10
4 15 5 21 16

2

5 21 8 33 25
1 4 1 6 5
2 10 3 16 13
3 20 5 26 21
4 35 9 46 37

3

5 56 16 81 65
1 5 1 7 6
2 15 4 25 21
3 35 7 43 36
4 70 15 91 76

4

5 126 26 157 131
1 6 1 8 7
2 21 5 36 31
3 56 10 71 61
4 126 22 155 133

5

5 252 47 330 283

 74

 One of the more interesting cases from these results is that for modeling a third

order, single input, regression equation. Table 4.17 confirms the results that were found

in the previous section. As discussed before, simply looking at the number of parameters

in the two types of models one would initially speculate that a feed-forward network with

one hidden node (resulting in four parameters) could accurately replicate a third order

regression model with one input (which also uses four parameters). However, the results

indicate that at least two hidden nodes (with seven parameters) are required by a FNN to

reproduce the MPR equation.

 As mentioned before, the feed-forward networks always contained more

parameters than the equivalent regression equation. This can be undesirable for

modelers, because the extra parameters make the model needlessly more complex. This

is also a concern for large systems with lots of data, where memory limitations might

become an issue. However, in many cases, this can not be avoided. For example, for a

two input variable, third order system, it was found that a minimum of three hidden nodes

were required. This FNN uses thirteen parameters, compared to the MPR's ten

parameters. If only two hidden nodes are used, the network will only have nine

parameters, making it unable to duplicate the regression equation.

 While this observation is true for many of the multiple polynomial equations, it

appears to fail for some of the examples. There are some cases where it is possible to

have fewer hidden nodes than the optimal one listed in Table 4.17 and still have more

parameters than the regression equation being modeled. Take for example, a third order

equation with three variables, which results in twenty regression parameters. The

minimal number of hidden nodes found was five, with twenty-six parameters. A four

 75

hidden node network would have twenty-one parameters, which is still larger than

twenty. However, this discrepancy can be explained by looking at the number of network

parameters minus the number of weights going from the hidden layer to the output layer,

shown in Table 4.17 as Column F. As discussed in the previous section, these weights do

not contribute much to the uniqueness of the FNN output function. As a result, they can

usually be ignored. By subtracting this number from the total number of parameters, the

result is a more accurate representation of the number of effective parameters in the

neural network. With the three input, third order example, the number of effective

parameters for a four hidden node network is twenty-one minus four, or seventeen, which

is less than the number of regression parameters. This means that the four hidden node

model is not large enough and five hidden nodes are needed.

 For all of the cases, the number of total network parameters minus the number of

secondary weights (equal to the number of hidden nodes) was still larger than the number

of regression parameters. This reaffirms that the weights connecting the hidden layer to

the output layer seem to be unnecessary and ineffective at improving the complexity of

the overall network function.

 One of the problems noticed with higher order MPR equations, mainly with fifth

order, is that it took more trials to determine the minimum number of hidden nodes. And

in most cases for fifth order polynomials, it seems like minimum number of hidden nodes

seen in Table 4.17 could be smaller. For example, for a fifth order, five input variable

equation, the lowest number of hidden nodes determined was forty-five. However, based

on comparing the number of parameters like before, a forty-two hidden node network

should be the optimal number. The complexity of these high ordered equations most

 76

likely makes it difficult for the FNN to find the unique, best-fit solution by using back-

propagation. Also, there probably exist a large number of local minima in the error

function.

 Results showed that neural networks could accurately replicate and predict the

models formed by regression based methods. Different combinations of the number of

predictor variables used and the highest polynomial order underlying the physical data

were used to compare the two models. From this, a relationship was found between the

simplest model required for the neural network and the equation used for regression. A

trend was found relating the minimal number of hidden nodes required in the feed-

forward network and the order of the equation the network represents. It has been shown

that a neural network with an activation function of order N can be reduced to a

polynomial regression equation also of order N, as long as there are enough parameters in

the ANN based on the number of hidden nodes. This is the critical number of hidden

nodes required for a particular equation order N and number of input parameters M.

Fewer hidden nodes will not allow the ANN to replicate the complexity of the underlying

polynomial regression equation. After this critical number of hidden nodes, the model

accuracy will not increase any further, because the network has already replicated the

regression equation.

 77

4.1.3 Network-level Analysis - Sigmoid Activation Function

4.1.3.1 Specific Example - Third Order with One Variable

 The previous section found that two hidden nodes were required for a FNN with a

polynomial activation function to replicate a third order regression equation. These

results were then tested with a sigmoid activation function in the hidden layer.

 First, a sigmoid network with only one hidden node was trained to the synthetic

third order polynomial equation (4.18) (Figure 4.13). Interestingly, while this network

failed to replicate the third order regression target data, the output function of this

network resembles that of a second order regression equation. When a second order

MPR is estimated along with the one hidden node network, the results are encouraging.

The training and validation error was similar for both models (Table 4.18) as well as their

output function (Figure 4.14).

Figure 4.13: One hidden node FNN with sigmoid activation function.

 However, it would be difficult to convert the network parameters into regression

coefficients in this case because the hyperbolic tangent activation function is odd. This

means that the Taylor series expansion uses only odd numbered powers. This seems to

suggest that with only one hidden node, a FNN with a sigmoid activation function is at

most able to model a second order regression equation. This evidence strengthens the

argument that there is a relationship between the number of hidden nodes in an ANN and

the order of the statistical regression equation it is equivalent to.

 78

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

X

Y
Target Data
MPR
FNN

ValidationTraining

2nd Order MPR and
1 Lin - 1 Sig - 1 Lin FNN

Figure 4.14: A second order MPR and one hidden node FNN produce similar outputs.

Table 4.18: One Sigmoid Hidden Node - Prediction error from both models.
 2nd Order MPR 1 Lin - 1 Sig - 1 Lin FNN
Training Error s(e)/s(y) 0.1748 0.1650
Validation Error s(e)/s(y) 1.8705 1.8938

 79

 The previous example showed that the one sigmoid hidden node FNN was

insufficient to model the third order MPR. This network lacked the number of effective

parameters required for the model. To increase the number of parameters, a two hidden

node network was then tested (Figure 4.15). The output, Y, of this network can be

calculated by:

 Y = w3*tanh(b1 + w1X) + w4*tanh(b2 + w2X) + b3 (4.34)

Figure 4.15: Two hidden node FNN with sigmoid activation function.

 Using the third order Taylor series expansion (Equation 4.10) to estimate the

hyperbolic tangent functions, the network equation is transformed into a polynomial

equation and like terms are combined. Comparing term by term to equation (4.13), the

following formal equations are found for the regression coefficients.

 3
3
24

3
1324130 3

1
3
1 bbwbwbwbwc +−−+= (4.35)

 2
224

2
11324131 bwwbwwwwwwc −−+= (4.36)

 2
2
241

2
132 bwwbwwc −−= (4.37)

 3
24

3
133 3

1
3
1 wwwwc −−= (4.38)

 The empirical results for the two hidden node FNN show that with the sigmoid

activation function, the network is still able to accurately find the correct trend to the

training data series (Figure 4.16). Both regression and the FNN produced similar training

 80

error (Table 4.19). However, outside of the training range, the sigmoid network was not

able to match the accuracy of the regression model. The network output function curves

under the target function.

 While the network seems to fit the training data with the same function as MPR,

the regression coefficients derived from the formal equations (4.35) to (4.38) are not

close to the actual coefficients at all (Table 4.21). The fact that all of the network derived

coefficients are negative suggests that if they were put into a third order regression

equation, it would not produce the correct function. The reason for the discrepancy is

most likely due to the fact that the range of the input and output data was well outside of

the effective range of the sigmoid activation function. This means that the data is also

outside of the range where the third order Taylor series expansion of the hyperbolic

tangent is accurate. In order to get more accurate regression parameter estimations, the

data should be within the range of -1 to +1 at least.

 81

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

X

Y
Target Data
MPR
FNN

Training Validation

3rd Order MPR

1 Lin - 2 Sig - 1 Lin FNN

Figure 4.16: Output function for two hidden node sigmoid FNN.

Table 4.19: Two Sigmoid Hidden Nodes - Prediction error from both models.
 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN
Training Error s(e)/s(y) 0.0394 0.0396
Validation Error s(e)/s(y) 0.0336 0.5522

Table 4.20: Two Sigmoid Hidden Nodes - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
0.0105 -0.0079 779.9 -2033.1 -2.0049 -1.8755 -1087.3

Table 4.21: Two Sigmoid Hidden Nodes - Regression coefficients found by sigmoid network.
 Target 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN
c0 100 100.4401 -1213.9
c1 2 1.9588 -65.1611
c2 -0.005 -0.0050 -0.0656
c3 0.0001 0.0001 -0.000635

 82

 However, even when the input and output data is scaled to the range of -0.1 to

+0.1, it was not found to be possible for the sigmoid hidden layer feed-forward network

to replicate the coefficients of the polynomial regression equation (Table 4.22 and 4.23).

Network training with the scaled data appears to have the same problem as before with

the non-scaled data. The biases of the sigmoid layer (b1 and b2) put the range of the input

values into the sigmoid function outside of the effective range for the Taylor series

expansion. It may also be difficult to compare the regression coefficients using scaled

data anyway, because the coefficients are also in the scaled domain. With this particular

regression equation and data range, the best the sigmoid activation function is able to do

is match trend of the training data. The sigmoid is unable to be analytically converted

into the correct polynomial function, which is why it incorrectly graphs the validation

data (Figure 4.16).

Table 4.22: Trained network weights and biases when data is scaled to the range -0.1 to +0.1.
w1 w2 w3 w4 b1 b2 b3
-21.6945 -9.5871 -0.0659 -0.9371 2.1625 -2.2231 -0.8356

Table 4.23: Regression coefficients found when data is scaled (values in scaled domain).
 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN
c0 0.0151 -2.1047
c1 0.4746 -40.6751
c2 -1.6823 -124.3833
c3 53.7498 -499.6091

 83

 Like with the polynomial feed-forward network, the two sigmoid hidden node

feed-forward network is modified by removing the weights and biases from the last layer

(Figure 4.17). This structure produces the network output function:

 Y = tanh(b1 + w1X) + tanh(b2 + w2X) (4.39)

Figure 4.17: Modified two sigmoid hidden node FNN with parameters w3, w4 and b3 ignored.

 The equivalent regression coefficients based on this network are determined like

before by using Taylor series expansion, resulting in equations (4.40) to (4.43).

 3
2

3
1210 3

1
3
1 bbbbc −−+= (4.40)

 2
22

2
11211 bwbwwwc −−+= (4.41)

 2
2
21

2
12 bwbwc −−= (4.42)

 3
2

3
13 3

1
3
1 wwc −−= (4.43)

 The empirical results show that the modified sigmoid feed-forward network is not

able to model the third order polynomial target data (Figure 4.18). The output range for

the network is limited to -1 to +1, which is the output range for the hyperbolic tangent

function. In order to model this particular target data, the FNN requires the extra weights

and bias. As discussed before, it is apparent that these extra parameters serve the purpose

of scaling and offsetting the output from the hidden layer. While these weights and

biases were unnecessary in the polynomial FNN, they are important in the sigmoid FNN.

 84

-150 -100 -50 0 50 100 150 200 250
-1000

-500

0

500

1000

1500

2000

X

Y
Target Data
MPR
FNN

Training Validation

3rd Order MPR

Modified 1 Lin - 2 Sig - 1 Lin FNN

Figure 4.18: The output functions from third order regression and modified two sigmoid hidden node FNN.

Table 4.24: Modified Two Sigmoid Hidden Nodes - Prediction error from both models.
 3rd Order MPR Modified 1 Lin - 2 Sig - 1 Lin FNN
Training Error s(e)/s(y) 0.0355 1.0237
Validation Error s(e)/s(y) 0.0423 3.4436

Table 4.25: Modified Two Sigmoid Hidden Nodes - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
3.8090 0.1142 1 1 -1.7213 4.5599 0

Table 4.26: Modified Two Sigmoid Hidden Nodes - Regression coefficients found by both models.
 Target 3rd Order MPR Modified 1 Lin - 2 Sig - 1 Lin FNN
c0 100 99.9237 -27.0663
c1 2 1.9866 -9.7355
c2 -0.005 -0.0049 24.9138
c3 0.0001 0.0001 -18.4218

 85

 The results have indicated that two hidden nodes are sufficient to model a third

order polynomial equation. However, the range of the data tested in the empirical studies

was shown to be poor for predicting the polynomial regression coefficients. This also led

to poor prediction in the validation stage. In order to get a better understanding of the

formal equations developed from Taylor series expansion, a new empirical equation

(4.44), with the values of X spanning from -1 to +1 was tested. Values from 1 to 1.5 were

used for validation.

 Y = 0.1 - 0.4 * X + 0.3 * X2 + 1 * X3 (4.44)

 After many trials, the FNN was able to replicate the target function, as seen in

Figure 4.19. While the FNN was not able to exactly match the MPR equation, it

produced relatively small error (Table 4.27). Not only was the two hidden node FNN

able to replicate the MPR output function, it was also able to predict the regression

coefficients with some accuracy (Table 4.28 and 4.29). The slight differences are likely

due to the data range being from -1 to +1. The coefficients would be more accurate if a

smaller range, such as -0.1 to +0.1, was used. As with the previous test with the sigmoid

activation function, the validation error for the FNN is slightly worse than for the

regression equation. This error is likely due to the imperfect prediction of the regression

coefficients by the sigmoid FNN.

 These results conflict with the results from Xiang et al. (2005), who determine

that a minimum of three hidden nodes is required by a FNN (Linear - Sigmoid - Linear

activation functions) to approximate a third order, one input variable system. The target

function used in their paper was similar to equation (4.44), with the same values for the

independent variable X. As seen in Figure 4.19, this function can be represented by three

 86

linear segments, which is the primary reason they give for using three hidden nodes.

However, it is shown here that two hidden nodes are sufficient for modeling this MPR

equation, disputing the conclusions of Xiang et al. (2005).

 These results show that a 1 Linear - 2 Sigmoid - 1 Linear FNN has the minimum

number of hidden nodes required for modeling a third order regression equation. Taylor

series expansion on the nonlinear hyperbolic tangent activation function has shown that

there is a formal equivalence between the two models. However, the effectiveness of the

Taylor expansion is limited by the range of the data. Input data series outside of the

range of ±1 can still be effectively modeled by a sigmoid FNN, but the transformation of

parameters to an equivalent MPR equation will not be accurate.

 87

-1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y
Target Data
MPR
FNN

3rd Order MPR and
1 Lin - 2 Sig - 1 Lin FNN

Training Validation

Figure 4.19: Output function for sigmoid FNN for function with smaller range.

Table 4.27: Two Sigmoid Nodes (Smaller Range) - Prediction error from both models.
 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN
Training Error s(e)/s(y) 1.0570 * 10-15 0.0118
Validation Error s(e)/s(y) 3.4901 * 10-16 0.1416

Table 4.28: Two Sigmoid Nodes (Smaller Range) - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
-0.1545 0.3753 -176.491 -73.2241 0.0884 -0.0067 15.1664

Table 4.29: Two Sigmoid Nodes (Smaller Range) - Regression coefficients found by sigmoid network.
 Target 3rd Order MPR 1 Lin - 2 Sig - 1 Lin FNN
c0 0.1 0.1000 0.1002
c1 -0.4 -0.4000 -0.4191
c2 0.3 0.3000 0.3036
c3 1 1.0000 1.0735

 88

4.1.3.2 Generalization to MPR

 The results from using a sigmoid activation function to model a third order, one

variable MPR was generalized for different orders and more input variables. The number

of hidden nodes was varied for each combination of regression order and number of input

variables, similar to what was done with the polynomial activation function. These

results were then compared to Table 4.17, which was generated using polynomial hidden

nodes. Using the sigmoid activation function better represents the modeling of nonlinear

systems than a simple polynomial activation function and is more common in ANN

research and application.

 In general, the results from these tests confirm the values for the critical, or

minimum, number of hidden nodes required to reproduce a MPR of given order and input

variables determined in the previous section (Table 4.17). For example, for a one input

system, both first order and second order MPRs are modeled at near zero error with only

one hidden node (Figure 4.20). The third, fourth and fifth orders, however, are not

successfully modeled with only one hidden node, seen by their s(e)/s(y) values over 0.2.

Once three hidden nodes are used, all five orders are being modeled efficiently by the

FNN.

 89

a)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n

E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

Figure 4.20: Training (a) and validation (b) error for modeling one variable, orders one through five.

 90

 Similar results can be seen when modeling equations with multiple input

variables. With two inputs (Figure 4.21) and three inputs (Figure 4.22), the differences

between the orders of the regression equation as well as the difference between the

training and validation error are easier to see. However, the minimum number of hidden

nodes with the sigmoid activation function required to replicate the MPR appear to be

slightly different than the values determined in the previous section with the polynomial

activation function (Table 4.17). For example, with two input variables (Figure 4.21), the

ideal number of hidden nodes is one for first order, three for second, five for third, eight

for fourth, and approximately ten for fifth. With the polynomial function, the ideal

number of nodes found was one for first order, two for second, three for third, five for

fourth and eight for fifth. The reason for the discrepancy is likely due to the limited

number of trials and the inconsistency that was observed before when using artificial

neural networks in terms of the random initiation of network parameters. In spite of the

discrepancies, it is clear that the order and structure of the underlying polynomial

regression equation has a strong effect on the optimal network structure.

 91

a)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n

E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

Figure 4.21: Training (a) and validation (b) error for modeling two variables, orders one through five.

 92

a)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n

E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

Figure 4.22: Training (a) and validation (b) error for modeling three variables, orders one through five.

 93

 However, one of the problems noticed was when modeling higher-order equations

with multiple input variables, most notably fifth order polynomials. Both training error

and validation error was poor when modeling these high order equations no matter how

many hidden nodes were added. This phenomenon is observed best with a large number

of input variables, such as with four inputs (Figure 4.23) and five inputs (Figure 4.24).

Graphing the error versus the number of hidden nodes does not produce the same clear

trend that can be observed with lower ordered polynomials. The training error decreases

slowly with the addition of new hidden nodes and the validation error is not affected by

the number of hidden nodes at all. In fact, the trend shows the validation error generally

increasing as the number of hidden nodes increases, with no obvious minimum value to

select for the optimal number of nodes. It is also important to note that the performance

of the FNN varies greatly from trial to trial, resulting in a large deviation and spread in

the trend. This indicates that local minima are impeding the back-propagation training

process and it is difficult for the network to find the global minimum error.

 94

a)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n

E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

Figure 4.23: Training (a) and validation (b) error for modeling four variables, orders one through five.

 95

a)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n

E
rro

r s
(e

)/s
(y

)

1st Order
2nd Order
3rd Order
4th Order
5th Order

Figure 4.24: Training (a) and validation (b) error for modeling five variables, orders one through five.

 96

 An interesting aspect of finding the optimal number of hidden nodes is the

relationship between the training error and the validation error. Specifically, it is how

these values relate to the number of hidden nodes in the network. To investigate this

further, another series of tests were performed on a three input system of various orders.

This time, the sample size n was decreased to two-hundred and fifty and normally

distributed random noise was added to both the training and validation error. The results

give a good illustration of how the order of the underlying system's equation affects a

FNN's performance (Figure 4.25).

 As the order of the MPR describing the system of data increases and more terms

and parameters are added to the system, then the FNN requires more hidden nodes to

represent the system. Also, the point at which the training error drops to its minimal

value corresponds to the critical number of hidden nodes determined in the previous

section (Table 4.17). One hidden node for first order, three for second, five for third, and

nine for fourth. It is harder to find this point for the fifth order polynomial.

 It is important to note that in all of these cases, the number of input variables,

output variables, and training sample size remain the same. The only difference is the

order of the physical polynomial equation that defines the relationship between the data.

This indicates that the underlying physical equation of the data plays a large role in

determining the optimal neural network structure. This could be a useful method for

implementing ANNs for modeling unknown biological systems. By graphing the error

versus the number of hidden nodes, the trend can help the modeler determine the best

order of polynomial regression to use to represent the system.

 97

a)
0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

1 Hidden Node

b)
0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

3 Hidden Nodes

c)
0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

5 Hidden Nodes

d)
0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

9 Hidden Nodes

e)
0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

16 Hidden Nodes

Figure 4.25: Modeling a three variable MPR with noise and smaller sample size. (a) 1st Order (b) 2nd
Order (c) 3rd Order (d) 4th Order (e) 5th Order.

 98

 The general trend found for all of the regression equations being modeled is that

the training error of the network begins very high (indicating poor performance). It then

decreases quickly until the critical, or minimum, number of hidden nodes is in the

network. At this point, the training error decreases slowly but does not change very

much.

 The validation also follows an interesting trend as the number of hidden nodes

varies. Like the training error, the validation error shows poor model accuracy before the

required minimum number of hidden nodes is in the network. However, after this point,

the validation error starts to increase again. This is due to the FNN memorizing the

training set with the extra parameters, resulting in poor generalization. The validation

error trend seems to have its minimum value around the point of the critical number of

hidden nodes, the point at which the network has at least as many parameters as the

underlying regression equation. These results emphasize that great care should be taken

when selecting the number of hidden nodes for an ANN. Blindly adding a lot of neurons

will only reduce the model's performance. The results indicate that prior knowledge of

the system (in terms of the number of input variables and polynomial order) can be used

to help determine the number of hidden nodes to include in the network.

 As mentioned before, network performance was reduced dramatically when a

high order polynomial, such as fifth order, was being modeled. To attempt to improve

model accuracy, the tests were repeated for the fifth order polynomial using two sigmoid

hidden layers. Feed-forward networks were trained with various numbers of hidden

nodes in the second hidden layer with mixed results (Figure 4.26). It was found that

adding a second layer could help improve the accuracy of the model for both the training

 99

and validation data. The best network, with the lowest validation error, was found with

only using one hidden node in the second layer, around twenty-eight nodes (Figure

4.26b). Adding more nodes to the second layer did not appear to improve the network

much more than the original three layer network. However, there was a large amount of

variation between the different trials, which means that the issue of local minima is still a

problem. Also, because a second sigmoid layer was added to the network, it is more

difficult to determine an equivalent MPR equation as was done with only one sigmoid

layer. A much higher ordered polynomial equation would be necessary to replicate the

network equation produced by these more complex neural networks.

 100

a)
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

b)
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

c)
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

d)
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training Data
Validation Data

Figure 4.26: Modeling three variable, fifth order MPR with different model structures: (a) Lin - Sig - Lin
(b) Lin - Sig - 1 Sig - Lin (c) Lin - Sig - 2 Sig - Lin (d) Lin - Sig - 5 Sig - Lin.

 101

4.2 Equivalence of RNN and ARMA

4.2.1 Perceptron-level Analysis

 The research will now move into investigating models for time dependant data.

For this section, the perceptron will include a connection going back to itself, making it a

recurrent perceptron (Figure 4.27). The output for Y using this perceptron can be defined

by the equation:

 Yt = b + w1 * Xt + w2 * Yt-1 (4.45)

Figure 4.27: A single recurrent perceptron.

 The output equation for this perceptron is similar to the equation for a

ARMA(1,1) model (Equation 4.41). This equation uses one recurrent time step of the

previous output for the predicted variable, Yt-1, and an independent input, Xt.

 Yt = c0 + c1 * Xt + c2 * Yt-1 (4.46)

Comparing (4.45) to (4.46) produces the trivial results:

 c0 = b (4.47)

 c1 = w1 (4.48)

 c2 = w2 (4.49)

 Now that formal equations have been found to relate the recurrent perceptron

parameters to ARMA(1,1) parameters, the models can be compared empirically. Both

models were trained to estimate a stable synthetic time series defined by equation (4.50).

Where Xt is a random normal variable and the initial value for Yt-1 is set to zero. The

 102

values for Yt are then iteratively calculated for the first three-hundred time steps to create

the training data.

 Yt = -1.5 + 5 * Xt + 0.5 * Yt-1 (4.50)

 Both the recurrent perceptron and an ARMA(1,1) equation were trained to

estimate the target equation. Also, both models used full, multiple-day-ahead, prediction.

The empirical results from using this equation are very favorable for the recurrent

perceptron. As Figure 4.28 shows, the perceptron was easily able to replicate the time

series with the same degree of accuracy as the ARMA model. The recurrent network

produces an output that is slightly less accurate than the ARMA model. Also, the

perceptron successfully predicted the regression coefficients as shown in Table 4.31.

This demonstrates that a linear recurrent perceptron is strongly comparable to linear

ARMA equations.

 103

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

t

Y

Target Data
ARMA
RNN

ARMA(1,1) and
Recurrent Perceptron

Figure 4.28: Output from the recurrent perceptron when modeling a stable equation.

Table 4.30: Recurrent Perceptron (Stable) - Prediction error from both models.
 ARMA(1,1) Recurrent Perceptron
Training Error s(e)/s(y) 3.7151 * 10-16 0.0295

Table 4.31: Recurrent Perceptron (Stable) - Time series coefficients found by both models.
 Target ARMA(1,1) Recurrent Perceptron
c0 -1.5 -1.5000 -1.5959
c1 5 5.0000 4.9997
c2 0.5 0.5000 0.5000

 104

 The test was performed again with a second synthetic time series equation (4.51).

This time, an unstable target equation was chosen to train the models.

 Yt = -1.5 + 5 * Xt + 1 * Yt-1 (4.51)

 Results indicate that while ARMA(1,1) was able to correctly estimate the

parameters of the time series, the recurrent perceptron failed in all trials. In the first case,

Figure 4.29, the recurrent perceptron was able to model the overall trend of the time

series, but failed to correctly estimate the coefficient of the independent variable, c1

(Table 4.33). In the second case, Figure 4.30, the perceptron did better at estimating c1,

but failed to find the correct value for c2 (Table 4.35), which is why the model did not fit

the overall data trend.

 It is evident that there is some limitation with the perceptron that prevents it from

finding the correct output function, while the auto-regressive moving average function is

easily able to model the correct equation simply by using the least-squares method.

Perhaps the problem is in the iterative approach of back-propagation. Another potential

explanation for the discrepancy is that the single recurrent perceptron model may not

have enough network parameters to replicate the ARMA. In the previous section, when

comparing FNNs with MPR, it was found that neural networks tend to require more

parameters than regression equation. A similar limitation may exist for recurrent

networks and perhaps a more complex RNN, with multiple layers, could perform better.

However, due to the fact that the time series being estimated is linear, it does not seem

likely that a more complex neural network would improve performance by much.

 105

0 50 100 150 200 250 300
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

t

Y

Target Data
ARMA
RNN

Recurrent
Perceptron

ARMA(1,1)

Figure 4.29: First attempt output from the recurrent perceptron when modeling an unstable equation.

Table 4.32: Recurrent Perceptron (Unstable) - Prediction error from both models.
 ARMA(1,1) Recurrent Perceptron
Training Error s(e)/s(y) 1.2877 * 10-14 0.0887

Table 4.33: Recurrent Perceptron (Unstable) - Time series coefficients found by both models.
 Target ARMA(1,1) Recurrent Perceptron
c0 -1.5 -1.5000 -1.2921
c1 5 5.0000 -0.5226
c2 1 1.0000 1.0012

 106

0 50 100 150 200 250 300
-400

-350

-300

-250

-200

-150

-100

-50

0

t

Y

Target Data
ARMA
RNN

ARMA(1,1)

Recurrent
Perceptron

Figure 4.30: Second attempt output from the recurrent perceptron when modeling an unstable equation.

Table 4.34: Recurrent Perceptron (Unstable) - Prediction error from both models.
 ARMA(1,1) Recurrent Perceptron
Training Error s(e)/s(y) 3.5497 * 10-14 0.5132

Table 4.35: Recurrent Perceptron (Unstable) - Time series coefficients found by both models.
 Target ARMA(1,1) Recurrent Perceptron
c0 -1.5 -1.5000 -63.4502
c1 5 5.0000 5.0289
c2 1 1.0000 0.6450

 107

 If the perceptron weights and bias are initialized with the correct values, then it is

capable of modeling the synthetic time series (Figure 4.31). This shows that the recurrent

perceptron does have the ability to represent the ARMA(1,1) equation if the parameters

are right. As mentioned before, the problem probably exists somewhere in the training

method of the perceptron. Another possible reason for the poor performance from the

perceptron relates to the stability of the function being modeled. There is evidence in the

literature to suggest that unstable equations are more difficult to model when using

networks due to their similarity to linear filters (Mandic and Chambers, 2001).

0 50 100 150 200 250 300
-250

-200

-150

-100

-50

0

50

t

Y

Target Data
ARMA
RNN

ARMA(1,1) and
Recurrent Perceptron

Figure 4.31: The recurrent perceptron output with correct initial values.

 108

 These results signify the potential equivalence between recurrent neural networks

and ARMA models. However, the ability of a RNN to model a time series appears to

depend on the stability of the underlying physical equation. Recurrent neural networks

seem to have a more difficult time than classic statistical regression equations when

modeling unstable equations, but the two models appear to be more on par with each

other when the equation is stable.

 In the previous tests, an independent variable, Xt, was used as an input to each of

the models. Now, this variable will be replaced with the prediction error term Et. This

change modifies the recurrent perceptron from the one used before to the new one seen in

Figure 4.32. The output function for this perceptron is defined by:

 tY
^

 = b + w1 * 1
^

−tY + w2 * Et-1 = b + w1 * 1
^

−tY + w2 * (11

^

−− − tt YY) (4.52)

Figure 4.32: A linear recurrent perceptron that includes an error term.

 As mentioned before, the equation for an ARMA(1,1) model is the same as the

recurrent perceptron equation (4.52), so the parameters for both models are the same.

One important difference between this setup and the previous one is that value for Yt-1 is

required as an input to the models so the error term Et-1 can be calculated. Also, this

equation does not use an independent variable for input. This means that instead of being

multiple-day-ahead prediction models, they will only be able to predict one-day-ahead.

Because of the error term, the ARMA(1,1) equation will use the long-AR method to

estimate its parameters.

 109

 First, the models are trained to the stable synthetic equation (4.50). Interestingly,

the recurrent perceptron seems to outperform ARMA(1,1) in replicating the time series.

This data series shows a clear difference between the performances of the two models for

estimating the coefficient to the error term (Figure 4.33). The ARMA model is unable to

estimate the magnitude of the error as well as the perceptron (Table 4.37). This is

evidence of a possible improvement of RNNs over ARMA equations. Both models have

the same structure, but use different training methods to find the regression parameters.

The iterative approach of back-propagation has an advantage over the more approximate

form of least-squares in the long-AR method used by the auto-regressive moving average

model.

 110

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

20

t

Y

Target Data
ARMA
RNN

Figure 4.33: Using the error term to estimate a stable equation.

Table 4.36: Recurrent Perceptron (Error Term, Stable) - Prediction error from both models.
 ARMA(1,1) Recurrent Perceptron
Training Error s(e)/s(y) 0.9632 0.7432

Table 4.37: Recurrent Perceptron (Error Term, Stable) - Time series coefficients found by both models.
 Target ARMA(1,1) Recurrent Perceptron
c0 -1.5 -1.3980 -1.2806
c1 5 0.0879 0.5136
c2 0.5 0.6002 0.6127

 111

 Both time series model are then trained to estimate the unstable synthetic equation

(4.51). The results from this test are similar to the last one, in that that recurrent

perceptron performs more accurately than the ARMA(1,1) equation. The output of the

perceptron closely follows the path of the time series, while the regressive model is only

able to graph the overall trend (Figure 4.34). Looking at the parameters found by both

equations on Table 4.39, both models do a decent job at estimating the coefficients for

the auto-regressive term (c2) and the bias (c0). However, the ARMA model poorly

estimates the coefficient for the error term, which explains why it is unable to fully

predict the time series. The perceptron also does not match the correct error term

parameter, but it is still better than the ARMA model. Once again, the training algorithm

for the auto-regressive moving average equation does not appear to be adequate enough

for estimating the error term, giving the back-propagation method used by recurrent

neural networks an advantage.

 112

0 50 100 150 200 250 300
-400

-350

-300

-250

-200

-150

-100

-50

0

t

Y

Target Data
ARMA
RNN

ARMA(1,1)

Recurrent
Perceptron

Figure 4.34: ARMA(1,1) and recurrent perceptron using an error term as input for unstable data.

Table 4.38: Recurrent Perceptron (Error Term, Unstable) - Prediction error from both models.
 ARMA(1,1) Recurrent Perceptron
Training Error s(e)/s(y) 0.0506 0.0226

Table 4.39: Recurrent Perceptron (Error Term, Unstable) - Time series coefficients found by both models.
 Target ARMA(1,1) Recurrent Perceptron
c0 -1.5 -2.0981 -2.3294
c1 5 -0.1062 1.0850
c2 1 0.9948 0.9939

 113

 For the last test with the recurrent perceptron, a higher order time series ARMA

model will be replicated. This time, three previous time steps will be used as input,

creating an ARMA(3,0) equation. The perceptron used is shown in Figure 4.35 and can

be represented mathematically as:

 tY
^

 = b + w1 * 1
^

−tY + w2 * 2
^

−tY + w3 * 3
^

−tY (4.53)

Figure 4.35: A linear recurrent perceptron that goes back three time steps.

This equation is equivalent to ARMA(3,0). Since the equation is still linear, a single

perceptron should be sufficient for modeling the equation.

 The models were first trained to the synthetic equation (4.54). The value for the

output Y is defined as a linear regression of the three previous time series values, without

any error terms.

 Yt = 0.5 + 1 * Yt-1 + -0.7 * Yt-2 + 0.45 * Yt-3 (4.54)

 The results show that both models have reasonable prediction accuracy for the

time series (s(e)/s(y) = 0.0533 for RNN and 0.0144 for ARMA) (Figure 4.36). Both

models also stabilize as the data series reaches an asymptote around two. The ARMA

model seems to have an advantage over the perceptron in terms of accuracy. Also, the

parameters of the ARMA equation are much closer to the target values than the

perceptron (Table 4.41).

 114

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t

Y

Target Data
RNN
ARMA

Recurrent
Perceptron

ARMA(3,0)

Figure 4.36: ARMA(3,0) and recurrent perceptron output for first equation.

Table 4.40: Recurrent Perceptron (Three Time Steps) - Prediction error from both models.
 ARMA(3,0) Recurrent Perceptron
Training Error s(e)/s(y) 0.0144 0.0533

Table 4.41: Recurrent Perceptron (Three Time Steps) - Time series coefficients found by both models.
 Target ARMA(3,0) Recurrent Perceptron
c0 0.5 0.5601 0.6170
c1 1 0.9737 0.2311
c2 -0.7 -0.7107 -0.2222
c3 0.45 0.4562 0.6847

 115

 A second equation (4.55) was also tested with the recurrent perceptron and

ARMA(3,0) models. This equation is similar to the previous one, except that a different

coefficient is used for the first auto-regressive term.

 Yt = 0.5 + 0.05 * Yt-1 + -0.7 * Yt-2 + 0.45 * Yt-3 (4.55)

 The results with this equation are similar to the previous one in that both models

are successful in producing a reasonable estimation of the time series. However, this

time, the performance of the two models has been reversed. For this time series, the

recurrent perceptron produces a lower error (s(e)/s(y) = 0.0101) than the auto-regressive

model (0.0376) (Figure 4.37). Also, the parameters of the recurrent perceptron are much

closer to the actual values of the target equation compared to the coefficients found by

the regression model (Table 4.43).

 116

0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

t

Y

Target Data
RNN
ARMA

Figure 4.37: ARMA(3,0) and recurrent perceptron output for second equation.

Table 4.42: Recurrent Perceptron (Three Time Steps) - Prediction error from both models.
 ARMA(3,0) Recurrent Perceptron
Training Error s(e)/s(y) 0.0376 0.0101

Table 4.43: Recurrent Perceptron (Three Time Steps) - Time series coefficients found by both models.
 Target ARMA(3,0) Recurrent Perceptron
c0 0.5 0.3950 0.4946
c1 0.05 0.1534 0.0566
c2 -0.7 -0.6511 -0.7052
c3 0.45 0.5504 0.4614

 117

 The results from these experiments indicate that just a single recurrent perceptron

has the power to potentially model many different complex linear auto-regressive moving

average equations. However, the ability of the perceptron to estimate a given time series

as well as its ultimate performance appears to be highly dependant on the trend of the

data being modeled. For example, the perceptron seems to respond differently depending

on whether the data is stable or unstable.

4.2.2 Network-level Analysis

 Up until this point, only linear ARMA time series equations have been examined

with relation to recurrent neural networks. However, the auto-regressive moving average

model can also be structured as nonlinear. This nonlinear ARMA, or NARMA, equation

allows the regression model to achieve a higher degree of complexity.

 A NARMA(1,0) equation can be represented by a RNN with one recurrent time

step and a sigmoid activation function in the hidden layer (Figure 4.38). This network is

similar to the one input, two hidden node network discussed in the previous section.

Except in this case there are no independent variables. This recurrent network is

represented by the equation:

 Yt = w3*tanh(b1 + w1Yt-1) + w4*tanh(b2 + w2Yt-1) + b3 (4.56)

Figure 4.38: A sigmoid hidden layer RNN to replicate an NARMA(1,0) equation.

 118

 If a third order Taylor series expansion is used on the hyperbolic tangent function

in (4.56), then this equation can be reduced to a third order NARMA(1,0) equation

(4.57).

 3
13

2
12110 *** −−− +++= tttt YcYcYccY (4.57)

 Just like in the non-recursive case in the previous section, the coefficients in the

regression model can be defined in terms of the network weights and biases using

equations (4.35) to (4.38).

 The empirical test was performed by training both models to a series of synthetic

data defined by the equation:

 3
1

2
11 *1*3.0*2.16.0 −−− ++−= tttt YYYY (4.58)

 Both models were able to replicate the time series output well, with the NARMA

model estimating the correct parameters as expected (Figure 4.39). The RNN performed

only slightly worse than the regression model (s(e)/s(y) = 0.0357). However, like with

the sigmoid feed-forward network, the sigmoid recurrent network was not able to

correctly predict the regression coefficients (Tables 4.45 and 4.46). Even though the

target data is well within the range of -1 to +1, the weights and biases of the network

(Table 4.45) make the network equation unsuitable for Taylor series expansion. This is a

recurring problem that has been noticed with the use of the sigmoid activation function

with ANNs and is a potential hindrance in developing efficient conversion equations for

the parameters of both neural networks and statistical regression. More accurate

coefficient predictions could be obtained if the weights and biases in the network going

into the sigmoid hidden layer were restricted to values within the range of -1 to +1.

 119

0 5 10 15 20 25 30 35 40 45 50

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

t

Y

Target Data
ARMA
RNN

Figure 4.39: Output function for two hidden node sigmoid RNN.

Table 4.44: Two Sigmoid Hidden Nodes (Recurrent) - Prediction error from both models.
 3rd Order NARMA(1,0) 1 Lin - 2 Sig - 1 Lin RNN
Training Error s(e)/s(y) 2.4345 * 10-15 0.0357

Table 4.45: Two Sigmoid Hidden Nodes (Recurrent) - Trained network weights and biases.
w1 w2 w3 w4 b1 b2 b3
2.3238 -2.6067 -5.3878 8.0817 -2.7606 -11.2999 3.1603

Table 4.46: Two Sigmoid Hidden Nodes (Recurrent) - Regression coefficients found by sigmoid network.
 Target 3rd Order NARMA(1,0) 1 Lin - 2 Sig - 1 Lin RNN
c0 0.6 0.6000 3775.9
c1 -1.2 -1.2000 2751.8
c2 0.3 0.3000 540.21
c3 1 1.0000 70.252

 120

4.3 Application to Biological Phenomena

 The results from the previous two sections support the equivalence between

artificial neural networks and statistical regression models. The tests that have been

performed so far have been on highly controlled and specifically defined synthetic data.

In order to get a better understanding of the practical application of both of these models,

the results found before must be applied to real life data.

4.3.1 Confirming the Accuracy of Neural Networks

 The results of Salas et al. (2000) were reproduced to get a better understanding of

how neural networks and regression models are used for predicting events in real world

problems. Salas et al. (2000) uses feed-forward neural networks to forecast streamflow.

This paper uses a basic feed-forward network and sigmoid activation function to predict

the daily streamflow of the Little Patuxent River, located in Maryland, using

combinations of temperature, precipitation, evaporation, snow fall equivalent, and

previous values of streamflow as input parameters.

 The reproduced results coincided with the results found by Salas et al. (2000).

The best-fit model determined by their research used precipitation (Pt and Pt-1) and

temperature (Tt) to predict daily streamflow (Qt). The network structure used was a

Linear - Sigmoid - Sigmoid FNN with ten hidden nodes. Similar prediction accuracy was

found for the training data as well as for the validation data. However, Salas et al. (2000)

determined that using ten hidden nodes created the best-fit model, while in this research a

best-fit model was found using only five hidden nodes. About a dozen trials were run to

 121

find a best-fit FNN, emphasizing again the problem with using randomized initial

network parameters.

 Figures 4.40 and 4.41 show the actual and predicted outputs generated by the

best-fit feed-forward network using temperature and precipitation as input parameters.

Figure 4.40 represents the streamflow data used for training the neural network, while

Figure 4.41 represents the data for validating the network. Both sets of data are modeled

fairly well by the FNN over the course of three years. Figures 4.42 and 4.43 graph the

actual streamflow values versus the predicted streamflow values calculated by the feed-

forward neural network. For the training data set seen in Figure 4.42, the predictions are

generally unbiased and the accuracy is good even at high streamflow values. Figure 4.43

shows similar results for the validation data. Now that the predictive ability of ANNs has

been confirmed, they can now be compared to the structure and performance of statistical

regression models.

 122

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Day

D
is

ch
ar

ge
 (c

fs
)

Actual
Predicted

Figure 4.40: Predicted daily streamflow using 3 Linear - 5 Sigmoid - 1 Sigmoid FNN, training data.

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Day

D
is

ch
ar

ge
 (c

fs
)

Actual
Predicted

Figure 4.41: Predicted daily streamflow using 3 Linear - 5 Sigmoid - 1 Sigmoid FNN, validation data.

 123

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Actual Discharge (cfs)

P
re

di
ct

ed
 D

is
ch

ar
ge

 (c
fs

)

Figure 4.42: Feed-forward neural network prediction accuracy for training data.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Actual Discharge (cfs)

P
re

di
ct

ed
 D

is
ch

ar
ge

 (c
fs

)

Figure 4.43: Feed-forward neural network prediction accuracy for validation data.

 124

4.3.2 Comparison of ANNs and Regression Models

4.3.2.1 Non-recursive Input - FNN versus MPR

 The different non-recursive input sets were trained with both feed-forward

networks and multiple polynomial regression to model streamflow. Table 4.47 shows the

best-fit feed-forward networks that were found for each set of input variables and Table

4.48 lists the best-fit MPR equations. The best-fit models were chosen based on the

validation error. The FNNs for these cases are using a three layer Linear - Sigmoid -

Linear network structure. The results show that all of the models do a decent job of

predicting streamflow, since all of their s(e)/s(y) error values are less than one. Neither

FNNs nor MPR seem to have an advantage over the other overall. However, in all cases,

the network models needed more parameters than the regression equations. The best-fit

model overall was a FNN with two hidden nodes estimating Function 2, using Pt and Pt-1

as input variables.

Table 4.47: Best-fit FNNs for non-recursive streamflow functions.
 Function 1

(Pt)
Function 2
(Pt, Pt-1)

Function 3
(Pt, Tt)

Function 4
(Pt, Pt-1, Tt)

Hidden Nodes 1 2 3 2
of Parameters 4 9 13 11
Training Error 0.60052 0.53060 0.51755 0.50144
Validation Error 0.79177 0.47087 0.66301 0.50923

Table 4.48: Best-fit MPR equations for non-recursive streamflow functions.
 Function 1

(Pt)
Function 2
(Pt, Pt-1)

Function 3
(Pt, Tt)

Function 4
(Pt, Pt-1, Tt)

Equation Order 1 2 2 2
of Parameters 2 6 6 10
Training Error 0.69371 0.54388 0.60039 0.49883
Validation Error 0.66123 0.55881 0.64322 0.52361

 The FNN models and MPR equations used to estimate Function 1 were compared

first. This is a simple function that uses a single input variable, precipitation, to predict

 125

streamflow. Figure 4.44 shows the training and validation error found for FNNs based on

the number of hidden nodes and Table 4.49 shows the error for the first fifteen orders of

MPR that occur when streamflow is predicted using precipitation alone. As expected, the

training error decreases for both models as the complexity of the model increases and

more parameters are added.

 With only one hidden node, the FNN produced the same training error (s(e)/s(y) =

0.60052) and validation error (0.79179) for all five trials, meaning the network converged

to a unique solution. Networks with more than one hidden node in general had validation

errors larger than one, indicating poor prediction. Also, the FNN results varied from trial

to trial between tests with the same number of hidden nodes suggesting non-uniqueness

of the trained model. This is probably due to the random initialization of the network

parameters. Each network likely found a different local minimum in the error gradient.

Only one trial out of these networks managed a validation error less than one, which

occurred with twenty-eight hidden nodes (s(e)/s(y) = 0.83878).

 When testing multiple polynomial regression, the trials for each order of

regression produced the same results. This is expected, since the nature of least-squares

will always find the best-fit line for a given regression equation. The training error

decreased as the model order increased, but the smallest validation error was produced by

the first order equation (s(e)/s(y) = 0.66123). Models larger than third order regression

had validation errors greater than one. This is mostly likely due to polynomial swing. As

the order of the polynomial increases, the equation becomes less robust to outliers in the

data. It is interesting to note that this did not occur with feed-forward networks as the

 126

complexity of the network increased. By the time the MPR equations reached fifteenth

order, the validation error was significantly larger than the errors found by the FNNs.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training
Validation

Figure 4.44: Training and validation error for FNN modeling Function 1.

Table 4.49: Results from first fifteen orders of MPR for Function 1.
Order Training Error Validation Error
1st 0.69371 0.66123
2nd 0.62129 0.66140
3rd 0.59879 0.77818
4th 0.58359 1.1603
5th 0.56836 2.7161
6th 0.56672 3.7918
7th 0.56612 5.8912
8th 0.56629 2.8392
9th 0.56346 71.81
10th 0.56335 127.78
11th 0.5632 21.189
12th 0.56334 301.0
13th 0.56296 4088.6
14th 0.5611 31182.0
15th 0.55875 2.3155 * 105

 127

 Comparing the results from the feed-forward network and multiple polynomial

regression trials, one can see a number of similarities between the results. Both models

were not effective at predicting the validation data after a specific point, FNNs after one

hidden node and MPR after the third order. While the training error for both models

decreased as the number of parameters increased, this allowed the models to better

"memorize" the training data set and reduced their ability to generalize. It is interesting,

though, to see how the two types of models correlate.

 Comparing the training error shows that both models have similar error based on

the number of parameters (Figure 4.45). This suggests again that the maximum order that

a FNN can represent is based on the number of hidden nodes it uses. One hidden node

(four parameters) will train to the data similarly to a third order regression equation, two

hidden nodes (seven parameters) will train similarly to sixth order, and so on.

 128

0 2 4 6 8 10 12 14 16
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Parameters

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

FNN
MPR

1 Hidden Node

2 Hidden Nodes 3 Hidden Nodes

4 Hidden Nodes

5 Hidden Nodes

Figure 4.45: Comparison of training error based on the number of parameters for modeling Function 1.

 129

 The validation results from both models does not compare in the same manner,

however (Figure 4.44 and Table 4.49). For MPR, the validation error increases

dramatically with order. As the complexity of the model increased with higher orders,

the model became less stable. However, the FNN was able to keep the validation error

under two for most network structures, no matter how many hidden nodes were used.

This shows that the ANN can be more robust than regression equations for predicting

data not in the training set.

 Based on the validation errors, the best FNN model for the one input, non-

recurrent case occurred with one hidden node. Comparing the training and validation

error for this feed-forward network to MPR, the closest match is a third order polynomial

equation. It is also interesting to note that both of these models have four parameters.

Figure 4.46a shows the output function that both models generate for predicting

streamflow with an input range of zero to four inches of rainfall. Both functions have a

similar shape and curve. The y-intercept is 39.3 cfs for the FNN and 34.8 cfs for MPR.

The two models predict similar streamflow for most values of precipitation except for

large values of streamflow, where the FNN predicts higher values than the third order

MPR equation (Figure 4.46b).

 130

a)
0 0.5 1 1.5 2 2.5 3 3.5 4

0

500

1000

1500

2000

2500

3000

3500

4000

Precipitation (in)

S
tre

am
flo

w
 (c

fs
)

1 Lin - 1 Sig - 1 Lin FNN

3rd Order MPR

b)
0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

Streamflow (ANN)

S
tre

am
flo

w
 (M

P
R

)

1:1

Figure 4.46: The functions relating P to Q for FNN and MPR (a) and comparing the two models (b).

 131

 While the third order MPR equation fits well with the one hidden node FNN, this

seems to contradict earlier empirical and analytical results that showed that two hidden

nodes were required for modeling a third order regression equation with one variable.

Based on the previous findings, the highest polynomial order that this particular FNN

should be able to model is a second order MPR equation. However, when observing the

output of the second order equation, the FNN does not compare favorably to it (Figure

4.47). In fact, the validation error for the second order polynomial is much better than

the one hidden node feed-forward network (0.66140 for MPR opposed to 0.79179 for the

FNN). Looking at the model outputs equations, the FNN has a much steeper slope than

the second order MPR.

 132

a)
0 0.5 1 1.5 2 2.5 3 3.5 4

0

500

1000

1500

2000

2500

3000

3500

4000

Precipitation (in)

S
tre

am
flo

w
 (c

fs
) 1 Lin - 1 Sig - 1 Lin FNN

2nd Order MPR

b)
0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

Streamflow (ANN)

S
tre

am
flo

w
 (M

P
R
)

1:1

Figure 4.47: The functions for a FNN and 2nd Order MPR (a) and comparing the two models (b).

 133

 The output of the FNN trained with two hidden nodes is even more dramatic

when compared with the third order polynomial. As seen in Figure 4.48, the output

function of the two hidden node network shows no similarity to the MPR output function.

While the FNN has good accuracy for the training data (s(e)/s(y) = 0.56626), it is terrible

for predicting the validation data (s(e)/s(y) = 17.994). It appears from Figure 4.48b that

during the training step, the network learned to pass through the three points on the far

right of the graph (around a precipitation of three) and the output function continued to

skew upwards. This leads to an unreasonably high streamflow prediction for extreme

rainfall events.

 134

a)
0 0.5 1 1.5 2 2.5 3 3.5 4

0

500

1000

1500

2000

2500

3000

3500

4000

S
tre

am
flo

w
 (c

fs
)

Precipitation (in)

1 Lin - 1 Sig - 1 Lin FNN

2nd Order MPR

Training Data

b)
0 0.5 1 1.5 2 2.5 3 3.5 4

0

500

1000

1500

2000

2500

3000

3500

4000

S
tre

am
flo

w
 (c

fs
)

Precipitation (in)

1 Lin - 2 Sig - 1 Lin FNN

3rd Order MPRTraining Data

Figure 4.48: The output functions for a FNN with 1 (a) and 2 (b) hidden nodes.

 135

 Going back to the one hidden node FNN model, the network weights and biases

are used to find the equivalent third order regression coefficients (Equation 4.13) with the

formal methods discussed before. The parameters of the network (Figure 4.13) were w1 =

0.9146, w2 = 3371, b1 = -5.0243, and b2 = 3370. A third order Taylor series expansion is

used to transform the sigmoid activation function (Equation 4.10). As Table 4.50 shows,

the regression coefficients determined by the network do not match the ones found with

least-squares by MPR. It should be noted that the MPR parameters are in the scaled

domain. However, the polynomial equation defined by the transformed FNN parameters

is not even close to the MPR equation. The problem is likely due to the fact that even

though the input to both models was scaled to -0.8 to +0.8, the bias of the hidden node

(b1) moves the range far below this. This puts the range of data going into the sigmoid

activation function considerably outside of the effective range of the third order Taylor

series expansion estimation.

Table 4.50: Regression coefficients found by one hidden node sigmoid FNN.
 3rd Order MPR 1 Lin - 1 Sig - 1 Lin FNN
c0 -0.5689 128950
c1 0.4726 -74746
c2 0.6079 14168
c3 0.4317 -859.67

 The same models were then run through the training and validation process with

stream data that was first log normalized and then scaled to the network range. The

results from the MPR models showed no improvement over the linear data. However, the

log normal transformation of the streamflow data did improve the predictive abilities of

the neural network (Figure 4.49). The smallest validation error produced by the log

normal trained networks (0.63559 with two hidden nodes) is smaller than the smallest

error found by the linear trained networks (0.79179 with one hidden node). This suggests

 136

that using a log normal transformation could have a positive influence over a network's

accuracy.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Linear Train
Linear Valid
Log Norm Train
Log Norm Valid

Figure 4.49: Training and validation error for linear scaled and log normal scaled data.

 In addition to the Linear - Sigmoid - Linear network structure, two other models

were investigated. The first was a FNN with two sigmoid hidden layers, and the second

was a FNN with one third order polynomial hidden layer. While one sigmoid hidden

layer is commonly used in ANN applications, two sigmoid hidden layers are also used by

many researchers to increase the nonlinearity and complexity of the network. The results

from training a network with two sigmoid hidden layers indicate that this structure does

have the ability to train networks to a higher degree of accuracy than with using only one

hidden layer. The two hidden layer network produced validation errors consistently

lower than the one hidden layer network (Figure 4.50). However, the downside to using

such a structure is that the parallels to regression models are less obvious. There are no

formal methods to convert the network weights and biases to equivalent regression

 137

parameters. This limits investigations into the importance of each network parameter.

Future research could apply the formal comparisons found for the one sigmoid hidden

layer to multiple hidden layer networks, but could be difficult to advance due to the

complexity of the models.

 The second alternative network structure tested used a polynomial activation

function. As expected, this activation function performed differently from the sigmoid

activation function as the number of hidden nodes increased. The addition of hidden

nodes did not improve the network performance and the best validation error was found

with just one node (Figure 4.50). The results coincide with the results from the formal

and empirical tests in the previous section on the third order polynomial activation

function. The validation error with one hidden node is similar to the error for a second

order MPR (s(e)/s(y) = 0.66140) and with two hidden nodes the error is approximate to a

third order equation (s(e)/s(y) = 0.77818). The validation error stays around this level

even with more hidden nodes because the polynomial activation function limits the

network to a third order MPR.

 138

a)
0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

Lin - Sig - Lin
Lin - Sig - Sig - Lin
Lin - Poly - Lin

b)
0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

V
al

id
at

io
n

E
rro

r s
(e

)/s
(y

)

Lin - Sig - Lin
Lin - Sig - Sig - Lin
Lin - Poly - Lin

Figure 4.50: Training (a) and validation (b) error for different network structures.

 139

 The models for the other non-recurrent functions (Functions 2 through 4) behaved

in a manner similar to those for Function 1. The comparison of the number of parameters

to the training error for each set of inputs can be seen in Figure 4.51. Function 2, which

uses Pt and Pt-1 as inputs, shows similar results to those found for Function 1 (Figure

4.51a). The error trend for the FNNs and MPR follow each other closely as the number

of parameters increases. This means that both models are able to train to the streamflow

data with the same degree of accuracy with an equivalent number of parameters.

However, for Function 3 and Function 4, the graph of the error terms is not quite the

same between the two different models (Figures 4.48b and 4.48c). In both cases, the

FNN is able to produce training error values much lower than a MPR equation with the

equivalent number of parameters. The reason for this discrepancy is unclear. In fact,

based on the results from the previous sections, it would be expected that the FNN would

require more parameters than MPR to produce the equivalent model.

 140

a)
0 20 40 60 80 100 120 140

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Parameters

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

FNN
MPR

b)
0 20 40 60 80 100 120 140

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Parameters

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

FNN
MPR

c)
0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Parameters

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

FNN
MPR

Figure 4.51: Comparison of error based on number of parameters for Functions 2 (a), 3 (b) and 4 (c).

 141

4.3.2.2 Recursive Input - RNN versus ARMA

 For the second set of testing, model functions that are more recurrent were used

by adding the term Qt-1 as an input variable to all of the input sets. Two different

methods of prediction were compared. One-day-ahead prediction used the measured Qt-1

value and was modeled by FNNs, while full prediction used the predicted Qt-1 value and

was modeled by RNNs. Both prediction methods were also modeled by polynomial

ARMA equations. Similar to before, the results show that there is comparable

accuracy between both the ANNs and the regression models (Table 4.51 and Table 4.52).

It was also shown again that in general, ANNs require more parameters. However, in all

cases, the recurrent network outperformed the equivalent multiple-day-ahead prediction

ARMA model.

Table 4.51: Best-fit FNNs and RNNs for recursive streamflow functions.
Function 5
(Pt, Qt-1)

Function 6
(Pt, Pt-1, Qt-1)

Function 7
(Pt, Tt, Qt-1)

Function 8
(Pt,Pt-1,Tt,Qt-1)

FNN RNN FNN RNN FNN RNN FNN RNN
Hidden Nodes 4 3 4 3 3 3 3 2
of Parameters 17 13 21 16 16 16 19 13
Training Error 0.4033 0.5200 0.3749 0.4893 0.3775 0.4892 0.3422 0.4914
Validation Error 0.5355 0.5403 0.5316 0.5050 0.5171 0.5662 0.4915 0.4895

Table 4.52: Best-fit ARMA equations for recursive functions, both one-day-ahead and multiple-day-ahead.

Function 5
(Pt, Qt-1)

Function 6
(Pt, Pt-1, Qt-1)

Function 7
(Pt, Tt, Qt-1)

Function 8
(Pt,Pt-1,Tt,Qt-1)

One Multi One Multi One Multi One Multi
Equation Order 3 3 3 2 2 2 2 2
of Parameters 10 10 20 10 10 10 15 15
Training Error 0.4133 0.6497 0.3857 0.6735 0.4355 0.6285 0.4157 0.6157
Validation Error 0.5185 0.6162 0.5845 0.6211 0.5188 0.6049 0.5488 0.5888

 Another aspect of the results to look at is the comparison between feed-forward

networks and recurrent neural networks. In general, the recurrent networks were able to

produce best-fit models with less hidden nodes than the FNNs. This is interesting,

 142

because the RNNs have the extra advantage over FNNs for being fully recursive with

respect to streamflow. The recurrent networks do not need to rely on the actual value of

the previous day's streamflow, and yet it is still able to perform comparably to the FNN.

Also, the best-fit network overall was found to be a recurrent network estimating

Function 8 (s(e)/s(y) = 0.4895). This shows that the addition of recurrent connections to

a network is able to produce more efficient models than a standard feed-forward network.

Looking back at the source of inspiration for ANNs, biological neural networks, it should

be reminded that feed-forward neural networks are not an accurate model for how

biological networks operate. In particular, they lack the concept of massive parallel

feedback. The method of one-directional flow used by FNNs is not able to replicate this

concept. This short sight of FNNs may be a reason for why RNNs are shown to be more

efficient in these results. The recurrent neural network is a much closer model to the

structure of biological networks. This could give RNNs an advantage for modeling

biological systems.

 Looking at Function 5 for investigating further, this function for streamflow uses

Pt and Qt-1 as input variables. Like with the one-input case, the training error for the FNN

decreased as the number of hidden nodes increased, and validation error increased

(Figure 4.52a). The lowest values for the validation error occurred when the network had

three hidden nodes. One-day-ahead ARMA trained in a similar manner, with the lowest

validation error found in the third order equation (Table 4.53). The recurrent network

consistently produced training errors larger than the equivalent feed-forward network. It

is expected that the RNN has greater error than the FNN, since the RNN is using full,

multiple-day-ahead, prediction. However, it is interesting that the RNN produced more

 143

stable results for validating data with a large number of hidden nodes than was possible

with the FNN (Figure 4.52b).

a)
0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training
Validation

b)
0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden Nodes

E
rro

r s
(e

)/s
(y

)

Training
Validation

Figure 4.52: Training and validation error for FNN (a) and RNN (b) for Function 5.

Table 4.53: Results for the first five orders, and last order, of ARMA model for Function 5.
 One-day-ahead Full Prediction
Order Training Error Validation Error Training Error Validation Error
1st 0.63793 0.6492 0.70537 0.67758
2nd 0.45203 0.54305 0.67438 0.64012
3rd 0.41334 0.5185 0.64978 0.61621
4th 0.38680 2.6744 Failed Failed
5th 0.37328 18.824 Failed Failed
15th 0.19684 4.0134 * 108 Failed Failed

 144

 Results from the one-day-ahead prediction models indicate more similarities

between the feed-forward neural network and ARMA. The training error for both models

is similar in relation to the number of parameters (Figure 4.53). The variance between

different FNN trials is likely due to the random initialization of network weights and

biases and the existence of local minima. As a result, some networks are luckier than

others at predicting the training and validation sets. A similar comparison could not be

made between RNNs and full prediction ARMA equations, because ARMA failed to

make a stable prediction after the third order (Table 4.53).

0 50 100 150

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Parameters

Tr
ai

ni
ng

 E
rro

r s
(e

)/s
(y

)

FNN
ARMAOne-day Ahead ARMA

FNN

Figure 4.53: A comparison of the training error for both the FNN and one-day-ahead ARMA based on the
number of parameters used in the equation for estimating Function 5.

 The FNN that produced the most accurate and most consistent validation results

(three hidden nodes) was then compared to an ARMA equation with similar production

(third order polynomial). The third-order equation was also the regression model with

the best validation error (0.5185). Both models used a similar number of parameters,

 145

thirteen in the FNN and ten in the ARMA model. Figure 4.54 shows the functions

created by both models. Like before, the FNN and regression equation have similar

results at low levels of streamflow and are less comparable at the higher levels.

Figure 4.54: Function estimates for Function 5 produced by a 3 hidden node FNN and a 3rd order one-
day-ahead ARMA.

 146

5 Summary and Conclusions

 This study investigated the potential equivalences between artificial neural

networks and polynomial regression models in three major steps: 1) a formal and

empirical comparison of feed-forward neural networks with multiple polynomial

regression equations using synthetic data; 2) a formal and empirical comparison of

recurrent neural networks with auto-regressive moving average equations using synthetic

data; and 3) an empirical comparison of the ability of recurrent and non-recurrent ANNs

and statistical models to simulate the bioenvironmental phenomenon of streamflow using

real-world data.

 The first two types of comparisons were performed for single perceptrons as well

as for networks of perceptrons. Formal comparisons were made by expanding the

perceptron activation functions into Taylor series, substituting the expansions into the

network equations, comparing the form of the result (term by term) with polynomial

statistical models and then developing equations that transform network weights and

biases into the coefficients of the potentially equivalent regression models. Empirical

comparisons were made by first training the neural networks and regressing the statistical

models to pre-determined training data sets, and then: 1) comparing the fit of the ANNs

and regression models to the training data sets; 2) comparing the predictions of the ANNs

and regression models to a distinct validation data set; and 3) comparing the regressed

coefficients of the statistical models to the potentially equivalent coefficients calculated

from the weights and biases of the trained neural networks.

 The study was limited to neural networks with up to five input nodes, two hidden

layers, forty-five hidden nodes, and three delays. The statistical models were limited up

 147

to five input variables, fifth order, three auto-regressive terms and one moving average

term. The neural networks were trained by back-propagation while the statistical

regression equations were estimated with least-squares.

5.1 Equivalence of FNN and MPR

 The results from this research support the theory that feed-forward neural

networks and polynomial regression equations are mathematically equivalent models.

Formal tests confirmed that FNNs with linear and polynomial activation functions can

perfectly replicate target MPR equations, as long as there are enough hidden nodes in the

network. It was also demonstrated that FNNs with a sigmoid activation function can

model the output function of polynomial equations with accuracy similar to that of FNNs

with a polynomial activation function. However, it generates a distinct prediction for

data outside the bounds of the training set. Equivalent polynomial regression coefficients

were successfully obtained from the weights and biases of trained neural networks when

the input data range was small (between -1 and +1) but not when it was large.

 A strong relationship was found between the optimal number of hidden nodes in a

FNN and the order of the underlying physical (polynomial) equation being modeled by

the network. Results demonstrated that for every system there exists an optimal, or

critical, number of hidden nodes where validation error is at a minimum (Figure 5.1).

This was found to correspond to the point where there are at least as many parameters in

the FNN as there are in the target polynomial equation being modeled. Before this point,

there are not enough parameters in the network to replicate the underlying polynomial

and afterwards the extra parameters lead to memorizing the training data and result in

 148

poor generalization by the network. A table was built (Table 4.17) that identifies this

point (the minimum number of hidden nodes) needed to replicate a polynomial model as

a function of the number of input variables and the order of the model. Results further

suggested that the second layer of network weights (that of the output layer of the

network) does not enhance the performance (uniqueness) of the FNN, because the

weights are being applied to all of the variables. However, it does appear to play a role in

scaling and offsetting to the network output function, which is important when the ANN

uses a bounded activation function, such as a sigmoid, in the hidden layer.

Figure 5.1: General relationship between the number of hidden nodes and network performance.

 149

5.2 Equivalence of RNN and ARMA

 The results found support the potential equivalence between recurrent neural

networks and auto-regressive moving average functions. It was demonstrated formally

that a recurrent network has the ability to both replicate the structure of linear ARMA

equation and empirically that it can train itself to find the correct regression parameters.

However, there was evidence that the physics of the underlying time series equation

being modeled has some effect on a RNN's ability to find these parameters. In particular,

the neural network converged to the correct parameters when the time series was stable

and appeared to have difficulty when modeling unstable equations.

 Recurrent networks were also shown to have an advantage over ARMA equations

when an error term is used in the model. RNNs are inherently able to include the error

term as an input to the network and calculate its weights and biases as it would normally

with back-propagation. On the other hand, ARMA models are required to use less

accurate methods such as long-AR to estimate the coefficients to the error terms.

5.3 Application to Biological Phenomena

 Artificial neural networks and statistical regression equations were both effective

models for predicting daily streamflow of the Little Patuxent River. With a small number

of hidden nodes, or a low order polynomial equation, both models produced equivalent

results. At high polynomial orders, statistical regression equations trained over the

calibration data set were not effective at predicting the validation data. However, the

ANN model was shown to remain effective even with a large number of hidden nodes.

Using a large number of hidden nodes, however, did not do much to increase the network

 150

performance and may hinder the network's ability to generalize and predict outliers in

other, arbitrary, validation data sets.

 Comparing the two models supported many of the formal and empirical

equivalences found in the previous two sections, although there were some discrepancies,

which are most likely due to the complex nature of real life systems. The results show

that with careful study of the data series being modeled, it is possible to create an

efficient ANN that is both an accurate predictor and easier to interpret than traditional

methods of trial-and-error.

 When comparing the application of feed-forward neural networks to recurrent

neural networks, it was observed that RNNs had two major advantages over FNNs: 1)

they allow multiple-day-ahead prediction of streamflow and 2) they are more efficient

than FNNs. In general, the multiple-day-ahead predictions of RNNs were found to be

only slightly less accurate than the one-day-ahead predictions of FNNs. And in some

cases, the RNNs were more accurate. Additionally, the best-fit recurrent networks

generally used less hidden nodes and fewer parameters than the best-fit feed-forward

networks. The best-fit RNNs performed more accurately than the best-fit multiple-day-

ahead ARMA equations. The ARMA model failed to make a prediction when the

polynomial order was larger than three, while the RNN produced reasonable predictions

even with a large number of hidden nodes.

5.4 Overall Conclusions

 It has been confirmed that there is a strong relationship between artificial neural

networks and statistical regression. Both are empirical models with their own strengths

 151

and weaknesses and while some basic similarities between the two models are obvious,

formal connections between them have not been well known to modelers. The following

conclusions can be drawn based on the results of this study:

• A single linear perceptron is equivalent to multiple linear regression with respect

to the regression coefficients.

• A feed-forward network with polynomial activation functions is equivalent to

multiple polynomial regression with respect to the regression coefficients.

• A feed-forward network with sigmoid activation functions is equivalent to

multiple polynomial regression with respect to the quality of fit. It is equivalent

with respect to the regression coefficients when the range of the input data set is

small (between -1 and +1).

• A single linear recurrent perceptron is equivalent to ARMA with respect to the

regression coefficients when the target time series is stable. It is not as good as

ARMA when the target time series is unstable.

• A single linear recurrent perceptron is better than ARMA with respect to the

regression coefficients when an error term is used in the equation instead of an

independent input variable.

• A recurrent network with sigmoid activation function is equivalent to NARMA

with respect to the quality of fit. It is not as good as NARMA with respect to the

regression coefficients.

 Hopefully, through research such as this, more connections and more strategies to

eliminate the weaknesses of both types of models can be found. Finding equivalences

and combining knowledge between these two types of models will allow researchers to

 152

design more effective models that combine the advantages of both artificial neural

networks and statistical regression. Modelers would be able to easily design models to

describe a complex biological system that are both accurate as well as easy to interpret.

The field as a whole would benefit from this knowledge.

 Additionally, it would be beneficial for modelers to give more consideration to

recurrent networks because of their strong connection to the parallel processing abilities

to biological neural networks. Feed-forward networks are currently the more common

network structure primarily because of "tradition" and because of their relative ease of

use. However, these networks have lost many of the concepts and abilities of the

biological networks that inspired them, such as massive parallel processing. It may be

conceptually advantageous for modeling, particularly when modeling biological systems,

that we retain the properties of biological systems such as the neuron as much as possible.

 153

6 Future Research

 There are many areas of research that can be explored further based on the

findings from this thesis. The empirical relationship between artificial neural networks

and statistical regression models has already been demonstrated in many applications.

Future research can be performed to strengthen the formal relationship between the two

models. Some specific ideas for future research include:

• Develop formal equations to define network parameters (such as weights and

biases) in terms of regression coefficients. This could be useful for initializing

network parameters and reducing the chance of a poor network being trained as a

result of bad initial values.

• Find formal equations relating more complex neural networks, such as those with

two hidden sigmoid layers, to statistical regression equations.

• Examine other network parameters that influence ANN performance, such as the

activation function, number of hidden layers, number of epochs, learning rate, and

others not encompassed by this thesis.

• Continue to investigate the optimal number of hidden nodes to model a particular

system. In particular, determine a stronger formal relationship between the

number of hidden nodes and the order of the output function for the network.

• Investigate formal methods for determining the optimal order (p and q) of a RNN

or ARMA model for a given time series.

• Expand the investigation of application to biological systems to include other

fields and systems where modeling is important. For example, modeling

population dynamics or electrical cardiograph signals.

 154

• Explore alternatives to back-propagation for training the parameters of an ANN.

• Evaluate the use of sigmoid functions in statistical regression models, in particular

their ability to provide robust predictions.

• Develop a relationship or guideline between the number of parameters in a model

and the optimal number of hidden nodes and activation functions in an artificial

neural network.

• Investigate potential equivalences between artificial neural networks, statistical

regression, and ordinary and partial differential equations. Particularly in the area

of time series modeling, where variables change with respect to time. The

difference between two time steps can be used to estimate the derivative, similar

to the finite difference method. This knowledge could potentially convert

discrete-time recurrent neural networks into continuous-time differential

equations.

 155

Appendix A - MATLAB Code

function [net] = percepnet()
 %This code trains both linear and third order polynomial
 %equations to both perceptrons and regression equations.

 %Training Data
 x=[-149:1:150];
 %1 Var, 1st Order
 %y = 100 + 2*x + 10*randn(1,300);
 %1 Var, 3rd Order
 y = 100 + 2*x - 0.005*x.^2 + 0.0001*x.^3 + 10*randn(1,300);

 %Scale data to range of -0.1 to +0.1
 ox = x;
 oy = y;
 for i = 1:300
 sx(i) = ((0.1 - -0.1) * x(i) + (max(x) * -0.1 - min(x) * 0.1)) / (max(x) - min(x));
 sy(i) = ((0.1 - -0.1) * y(i) + (max(y) * -0.1 - min(y) * 0.1)) / (max(y) - min(y));
 end
 tx = sx;
 ty = sy;

 %Linear Perceptron
 %net = newff([min(tx) max(tx)], [1], {'purelin'});
 %Nonlinear Perceptron
 net = newff([min(tx) max(tx)], [1], {'tansig'});
 net.trainParam.epochs = 500;
 net.trainParam.mu_max = 1.0000e+010;
 input = [tx];
 net = train(net,input,ty);
 ytn = sim(net,input);
 [net.b{1} ; net.IW{1}]

 %Linear Regression
 %input = [ones(300,1) tx'];
 %p = input \ ty'
 %ytr = p(1) + p(2) * tx;
 %Polynomial Regression
 input = [ones(300,1) tx' tx'.^2 tx'.^3];
 p = input \ ty'
 ytr = p(1) + p(2) * tx + p(3) * tx.^2 + p(4) * tx.^3;

 %Rescale data
 for i = 1:300
 sytn(i) = ((max(y) - min(y)) * ytn(i) - (max(y) * -0.1 - min(y) * 0.1)) / (0.1 - -0.1);
 sytr(i) = ((max(y) - min(y)) * ytr(i) - (max(y) * -0.1 - min(y) * 0.1)) / (0.1 - -0.1);
 end
 ytn = sytn;
 ytr = sytr;

 %Output
 se = sqrt(sum((ytn - y).^2)/(300 - 2));
 sy = sqrt(sum((y - mean(y)).^2)/(300 - 1));
 sesyn = se/sy

 156

 se = sqrt(sum((ytr - y).^2)/(300 - 4));
 sy = sqrt(sum((y - mean(y)).^2)/(300 - 1));
 sesyr = se/sy
 close
 plot(x,y,'o',x,ytn,x,ytr)

 %Validation data
 clear x y
 x=[151:1:250];
 %y = 100 + 2*x + 10*randn(1,100);
 y = 100 + 2*x - 0.005*x.^2 + 0.0001*x.^3 + 10*randn(1,100);

 %Scale
 for i = 1:100
 sx(i) = ((0.1 - -0.1) * x(i) + (max(ox) * -0.1 - min(ox) * 0.1)) / (max(ox) - min(ox));
 sy(i) = ((0.1 - -0.1) * y(i) + (max(oy) * -0.1 - min(oy) * 0.1)) / (max(oy) - min(oy));
 end
 tx = sx;
 ty = sy;

 %Validate
 input = [tx];
 yvn = sim(net,input);
 yvr = p(1) + p(2) * tx + p(3) * tx.^2 + p(4) * tx.^3;

 %Rescale data
 for i = 1:100
 syvn(i) = ((max(oy) - min(oy)) * yvn(i) - (max(oy) * -0.1 - min(oy) * 0.1)) / (0.1 - -0.1);
 syvr(i) = ((max(oy) - min(oy)) * yvr(i) - (max(oy) * -0.1 - min(oy) * 0.1)) / (0.1 - -0.1);
 end
 yvn = syvn;
 yvr = syvr;

 %Output
 se = sqrt(sum((yvn - y).^2)/(100 - 2));
 sy = sqrt(sum((y - mean(y)).^2)/(100 - 1));
 sesyn = se/sy
 se = sqrt(sum((yvr - y).^2)/(100 - 4));
 sy = sqrt(sum((y - mean(y)).^2)/(100 - 1));
 sesyr = se/sy
 hold on
 plot(x,y,'o',x,yvn,x,yvr)
end

 157

function [net sig] = cubicnet()
 %This code is used to train both polynomial and sigmoid
 %FNNs to cubic ordered polynomial equations.

 %Training Data
 x1 = [-149:1:150];
 t = [-149:1:150];
 %1 Var, 3rd Order
 y = 100 + 2*x1 - 0.005*x1.^2 + 0.0001*x1.^3 + 10*randn(1,201);
 %y = 0 - 0.4*x1 + 0.3*x1.^2 + 1*x1.^3 + 0*randn(1,21);

 %1 or 2 hidden node with third order activation function
 disp('Input - X = -149 to 150, 151 to 250')
 disp('Ouput - Y = 100 + 2*X - 0.005*X.^2 + 0.0001*X.^3 + 0*randn')
 disp('FNN - 1 Lin - 2 Third - 1 Lin + Biases, 500 Epochs')
 net = newff([min(y) max(y)], [1 2 1], {'purelin' 'third' 'purelin'});
 net.trainParam.epochs = 500;
 net.trainParam.mu_max = 1.0000e+020;
 net.biasConnect = [0;1;1];
 net.IW{1} = [1];
 net.inputWeights{1}.learn = 0;
 %net.LW{3,2} = [1 1];
 %net.layerWeights{3,2}.learn = 0;
 %net.b{3} = 0;
 %net.biases{3}.learn = 0;
 input = [x1];
 net = train(net,input,y);
 yt = sim(net,input);

 %Parameters with one hidden node
 %w1 = net.LW{2,1}(1);
 %w2 = net.LW{3,2}(1);
 %b1 = net.b{2}(1);
 %b2 = net.b{3}(1);
 %p1 = w2*b1^3 + b2
 %p2 = 3*w1*w2*b1^2
 %p3 = 3*w1^2*w2*b1
 %p4 = w1^3*w2

 %Parameters with two hidden nodes
 w1 = net.LW{2,1}(1);
 w2 = net.LW{2,1}(2);
 w3 = net.LW{3,2}(1);
 w4 = net.LW{3,2}(2);
 b1 = net.b{2}(1);
 b2 = net.b{2}(2);
 b3 = net.b{3};
 p1 = w3*b1^3 + w4*b2^3 + b3
 p2 = w3*3*w1*b1^2 + w4*3*w2*b2^2
 p3 = w3*3*w1^2*b1 + w4*3*w2^2*b2
 p4 = w3*w1^3 + w4*w2^3

 %Feed-forward network with sigmoid activation function
 disp('FNN - 1 Lin - 2 Sig - 1 Lin + Biases, 500 Epochs')
 sig = newff([min(y) max(y)], [1 2 1], {'purelin' 'tansig' 'purelin'});
 sig.trainParam.epochs = 500;

 158

 sig.trainParam.mu_max = 1.0000e+050;
 sig.biasConnect = [0;1;1];
 sig.IW{1} = [1];
 sig.inputWeights{1}.learn = 0;
 input = [x1];
 sig = train(sig,input,y);
 ys = sim(sig,input);

 %Regression Equation
 input = [ones(201,1) x1' x1'.^2 x1'.^3];
 p = input \ y'
 yr = p(1) + p(2) * x1 + p(3) * x1.^2 + p(4) * x1.^3;

 %Output
 se = sqrt(sum((yt - y).^2)/(300 - (1+(1+1+1)*2)));
 sy = sqrt(sum((y - mean(y)).^2)/(300 - 1));
 sesyn = se/sy
 se = sqrt(sum((yr - y).^2)/(300 - 4));
 sy = sqrt(sum((y - mean(y)).^2)/(300 - 1));
 sesyr = se/sy
 se = sqrt(sum((ys - y).^2)/(300 - (1+(1+1+1)*2)));
 sy = sqrt(sum((y - mean(y)).^2)/(300 - 1));
 sesys = se/sy
 close
 plot(t,y,t,yt,t,yr,t,ys)

 %Validation Data
 x1 = [151:1:250];
 t = [151:1:250];
 y = 100 + 2*x1 - 0.005*x1.^2 + 0.0001*x1.^3 + 10*randn(1,51);
 %y = 0 - 0.4*x1 + 0.3*x1.^2 + 1*x1.^3 + 0*randn(1,6);

 %Validate
 input = [x1];
 yt = sim(net,input);
 ys = sim(sig,input);
 %yr = p(1) + p(2) * x1 + p(3) * x1.^2;%2nd Order
 yr = p(1) + p(2) * x1 + p(3) * x1.^2 + p(4) * x1.^3;

 %Output
 se = sqrt(sum((yt - y).^2)/(100 - (1+(1+1+1)*2)));
 sy = sqrt(sum((y - mean(y)).^2)/(100 - 1));
 sesyn = se/sy
 se = sqrt(sum((yr - y).^2)/(100 - 4));
 sy = sqrt(sum((y - mean(y)).^2)/(100 - 1));
 sesyr = se/sy
 se = sqrt(sum((ys - y).^2)/(100 - (1+(1+1+1)*2)));
 sy = sqrt(sum((y - mean(y)).^2)/(100 - 1));
 sesys = se/sy
 hold on
 plot(t,y,t,yt,t,yr,t,ys)
end

 159

function [output] = autopolynet()
 %This code creates synthetic MPR equations with 1 to 5
 %variables from 1st to 5th order. It then trains a
 %series of FNNs with 1 to 45 hidden nodes.
 tic
 %Set up input variables
 num = 500;
 x1 = randn(1,num);
 x2 = randn(1,num);
 x3 = randn(1,num);
 x4 = randn(1,num);
 x5 = randn(1,num);
 training = [x1;x2;x3;x4;x5];
 xv1 = randn(1,num);
 xv2 = randn(1,num);
 xv3 = randn(1,num);
 xv4 = randn(1,num);
 xv5 = randn(1,num);
 validate = [xv1;xv2;xv3;xv4;xv5];

 %Used to determine the order of the activation function
 actfun = {'purelin' 'second' 'third' 'forth' 'fifth'};
 regvar = {'x1+1' 'x1+x2+1' 'x1+x2+x3+1' 'x1+x2+x3+x4+1' 'x1+x2+x3+x4+x5+1'};

 %Loop through # orders, # variables, and # hidden nodes
 index = 0;
 for ord = 1:5
 ord
 for var = 1:5
 var
 %Set up regression equation
 s = sym(char(regvar(var)));
 s = expand(s^ord);
 s = char(s);
 len = size(s);
 len = len(2);
 clear store;
 temp = '';
 count = 1;
 for i = 1:len
 if (s(i) ~= '+')
 if ((s(i) == '^') || (s(i) == '*'))
 temp = strcat(temp,'.');
 end
 temp = strcat(temp,s(i));
 else
 store(count) = cellstr(temp);
 count = count + 1;
 temp = '';
 end
 end
 store(count) = cellstr(temp);
 len = size(store);
 len = len(2);
 %Remove coefficients due to polynomial expansion
 for j = 1:len

 160

 temp = char(store(j));
 if ((temp(1) == '1') || (temp(1) == '2') || (temp(1) == '3') || (temp(1) == '4') || (temp(1) == '5') ||
(temp(1) == '6') || (temp(1) == '7') || (temp(1) == '8') || (temp(1) == '9'))
 l = size(temp);
 l = l(2);
 tem = '';
 star = 0;
 for k = 1:l;
 if ((temp(k) == '*') && (star == 0))
 star = 1;
 elseif (star == 1)
 tem = strcat(tem,temp(k));
 else
 %Do nothing
 end
 end
 store(j) = cellstr(tem);
 end
 end
 %Give random coefficients to each term
 clear c regeq;
 for j = 1:len
 c(j) = randn;
 if (strcmp(cell2mat(store(j)),''))
 regeq(j) = cellstr('c(j)');
 else
 regeq(j) = cellstr(strcat('c(j)*',char(store(j))));
 end
 end
 %Set up target y values
 y = zeros(1,num);
 for j = 1:len
 y = y + eval(cell2mat(regeq(j)));
 end
 %Error/Noise Term
 %y = y + 0.1 * randn(1,num);
 %Set up validation y values
 xt1 = x1;
 xt2 = x2;
 xt3 = x3;
 xt4 = x4;
 xt5 = x5;
 yt = y;
 x1 = xv1;
 x2 = xv2;
 x3 = xv3;
 x4 = xv4;
 x5 = xv5;
 yv = zeros(1,num);
 for j = 1:len
 yv = yv + eval(cell2mat(regeq(j)));
 end
 %Error/Noise Term
 %yv = yv + 0.1 * randn(1,num);
 %Reset
 x1 = xt1;

 161

 x2 = xt2;
 x3 = xt3;
 x4 = xt4;
 x5 = xt5;
 y = yt;
 %Test neural networks
 for hid = 1:45
 hid
 for trial = 1:5
 %Set up network
 clear inputrange;
 for k = 1:var
 inputrange(k,:) = [-50 50];
 end
 net = newff(inputrange, [var hid 1], {'purelin' char(actfun(ord)) 'purelin'});
 %net = newff(inputrange, [var hid 1], {'purelin' 'tansig' 'purelin'});
 %net = newff(inputrange, [var hid 5 1], {'purelin' 'tansig' 'tansig' 'purelin'});
 net.trainParam.epochs = 500;
 net.trainParam.mu_max = 1.0000e+010;
 net.biasConnect = [0;1;1];
 %net.biasConnect = [0;1;1;1];
 net.IW{1} = eye(var);
 net.inputWeights{1}.learn = 0;
 %Train network
 input = training(1:var,:);
 net = train(net,input,y);
 ynt = sim(net,input);
 %Validate network
 input = validate(1:var,:);
 ynv = sim(net,input);
 %Determine error
 rp = len;
 np = (1+(var+1+1)*hid);
 se = sqrt(sum((ynt - y).^2)/(num-np));
 sy = sqrt(sum((y - mean(y)).^2)/(num-1));
 sesy = se/sy
 %Validation error
 sev = sqrt(sum((ynv - yv).^2)/(num-np));
 syv = sqrt(sum((yv - mean(yv)).^2)/(num-1));
 sesyv = sev/syv
 %Save data to output
 index = index + 1;
 output(index,1) = ord;
 output(index,2) = var;
 output(index,3) = hid;
 output(index,4) = sesy;
 output(index,5) = sesyv;
 output(index,6) = rp;
 output(index,7) = np;
 output(index,8) = (sum((ynt - mean(y)).^2))/(sum((y - mean(y)).^2));
 output(index,9) = (sum((ynv - mean(yv)).^2))/(sum((yv - mean(yv)).^2));
 output(index,10) = sum((ynt - y).^2);
 output(index,11) = sum((ynv - yv).^2);
 %Stop if min error is found
 if (sesy < 1e-10)
 break;

 162

 end
 end
 if (sesy < 1e-10)
 break;
 end
 end
 end
 end
 toc
end

 163

function [rec] = armaunit()
 %This code tests AR(1,1) and the recurrent perceptron.

 %Input and Target Time Series
 len = 300;
 x = randn(1,len);
 t = [1:len];
 y(1) = 5 * x(1) + 0.5 * 0 - 1.5 + 0 * randn;
 for i = 2:len
 y(i) = 5 * x(i) + 0.5 * y(i-1) - 1.5 + 0 * randn;
 end
 ym1(2:len) = y(1:(len-1));

 %ARMA(1,1) estimation
 input = [x' ym1' ones(len,1)];
 pq = input \ y'
 yhat(1) = pq(1) * x(1) + pq(2) * 0 + pq(3) * 1;
 for i = 2:len
 yhat(i) = pq(1) * x(i) + pq(2) * yhat(i-1) + pq(3) * 1;
 %y(i-1) = One Day Ahead, yhat(i-1) = Multiple Day Ahead
 end

 %Recurrent Perceptron = Multiple Day Ahead
 rec = newff([-500 500;-500 500], [2 1], {'purelin' 'purelin'});
 rec.trainParam.epochs = 50;
 rec.trainParam.mu_max = 1.0000e+010;
 rec.IW{1} = [1 0;0 0];
 rec.inputWeights{1}.learn = 0;
 rec.layerConnect = [0 1;1 0];
 rec.LW{1,2} = [0;1];
 rec.layerWeights{1,2}.delays = 1;
 rec.layerWeights{1,2}.learn = 0;
 rec.biasConnect = [0;1];
 input = mat2cell([x' zeros(len,1)]',2,ones(len,1));
 y = mat2cell(y,1,ones(1,len));
 [rec,a,e,pf] = train(rec,input,y);
 [ynet pf af] = sim(rec,input);
 ynet = cell2mat(ynet);
 y = cell2mat(y);
 prec = [rec.LW{2,1}(1) ; rec.LW{2,1}(2) ; rec.b{2}]

 %Find Error and Output Results
 err = (yhat - y);
 se = sqrt(sum(err.^2)/(len-3));
 sy = sqrt(sum(y.^2)/(len-1));
 sesyr = se / sy
 nerr = (ynet - y);
 se = sqrt(sum(nerr.^2)/(len-3));
 sy = sqrt(sum(y.^2)/(len-1));
 sesyc = se / sy
 close
 plot(t,y,t,yhat,t,ynet)
end

 164

function [rec] = armauniterr()
 %This code tests AR(1,1) and the recurrent perceptron.
 %Also uses the error term.

 %Target Time Series
 len = 300;
 x = randn(1,len);
 t = [1:len];
 y(1) = 5 * x(1) + 1 * 0 - 1.5 + 0 * randn;
 for i = 2:len
 y(i) = 5 * x(i) + 1 * y(i-1) - 1.5 + 0 * randn;
 end

 %Long-AR Method for ARMA(1,1)
 j = 7;
 for i = 1:j
 ym((i+1):len,i) = y(1:(len-i));
 end
 input = ym;
 k = input \ y';
 khat = zeros(len,1);
 for i = 1:j
 khat = khat + k(i) * ym(:,i);
 end
 ehat = (khat - y');
 ehatm1(2:len) = ehat(1:(len-1));
 input = [ehatm1' ym(:,1) ones(len,1)];
 pq = input \ y'
 yhat(1) = pq(1) * 0 + pq(2) * 0 + pq(3) * 1;
 for i = 2:len
 yhat(i) = pq(1) * (yhat(i-1) - y(i-1)) + pq(2) * yhat(i-1) + pq(3) * 1;
 %y(i-1) = One Day Ahead, yhat(i-1) = Infinite Day Ahead
 end

 %Recurrent Neural Network = Infinite Day Ahead
 rec = newff([-500 500;-500 500], [2 1], {'purelin' 'purelin'});
 rec.trainParam.epochs = 50;
 rec.trainParam.mu_max = 1.0000e+010;
 rec.IW{1} = [1 0;0 0];
 rec.inputWeights{1}.learn = 0;
 rec.layerConnect = [0 1;1 0];
 rec.LW{1,2} = [-1;1];
 rec.layerWeights{1,2}.delays = 1;
 rec.layerWeights{1,2}.learn = 0;
 rec.biasConnect = [0;1];
 input = mat2cell([ym(:,1) zeros(len,1)]',2,ones(len,1));
 y = mat2cell(y,1,ones(1,len));
 [rec,a,e,pf] = train(rec,input,y);
 [ynet pf af] = sim(rec,input);
 ynet = cell2mat(ynet);
 y = cell2mat(y);
 prec = [rec.LW{2,1}(1) ; rec.LW{2,1}(2) ; rec.b{2}]

 % Find Error and Output Results
 err = (yhat - y);
 se = sqrt(sum(err.^2)/(len-3));

 165

 sy = sqrt(sum(y.^2)/(len-1));
 sesyr = se / sy
 nerr = (ynet - y);
 se = sqrt(sum(nerr.^2)/(len-3));
 sy = sqrt(sum(y.^2)/(len-1));
 sesyc = se / sy
 close
 plot(t,y,t,yhat,t,ynet)
end

 166

function [net] = armapnet()
 %This code tests the ARMA(3,0) equation and recurrent perceptron.

 %Target Time Series
 len = 150;
 t = [1:len];
 change = 0.05;
 y(1) = 0.5 + change * 0 - 0.70 * 0 + 0.45 * 0;
 y(2) = 0.5 + change * y(1) - 0.70 * 0 + 0.45 * 0;
 y(3) = 0.5 + change * y(1) - 0.70 * y(2) + 0.45 * 0;
 for i = 4:len
 y(i) = 0.5 + change * y(i-1) - 0.70 * y(i-2) + 0.45 * y(i-3) + 0 * randn;
 ym1(i) = y(i-1);
 ym2(i) = y(i-2);
 ym3(i) = y(i-3);
 end

 %Recurrent Perceptron Training
 net = newff([-0.9 0.9;-0.9 0.9;-0.9 0.9], [3 1], {'purelin' 'purelin'});
 net.trainParam.epochs = 500;
 net.trainParam.mu_max = 1.0000e+010;
 net.biasConnect = [0;1];
 net.IW{1} = [0 0 0;0 0 0;0 0 0];
 net.inputWeights{1}.learn = 0;
 net.layerConnect = [0 1;1 0];
 net.layerWeights{1,2}.delays = [1 2 3];
 net.LW{1,2} = [1 0 0;0 1 0;0 0 1];
 net.layerWeights{1,2}.learn = 0;
 input = zeros(3,len);
 input = mat2cell(input,3,ones(len,1));
 target = mat2cell(y,1,ones(1,len));
 net = train(net,input,target);
 yr = sim(net,input);
 yr = cell2mat(yr);
 wb = [net.b{2};net.LW{2,1}']

 %ARMA(3,0) Estimation
 input = [ones(len,1) ym1' ym2' ym3'];
 pq = input \ y'
 yhat(1) = pq(1) + pq(2) * 0 + pq(3) * 0 + pq(4) * 0;
 yhat(2) = pq(1) + pq(2) * yhat(1) + pq(3) * 0 + pq(4) * 0;
 yhat(3) = pq(1) + pq(2) * yhat(1) + pq(3) * yhat(2) + pq(4) * 0;
 for i = 4:len
 yhat(i) = pq(1) + pq(2) * yhat(i-1) + pq(3) * yhat(i-2) + pq(4) * yhat(i-3);
 %y(i-1) = One Day Ahead, yhat(i-1) = Infinite Day Ahead
 end

 %Find Error and Output Results
 nerr = (yr - y);
 se = sqrt(sum(nerr.^2)/(len-4));
 sy = sqrt(sum(y.^2)/(len-1));
 sesyc = se / sy
 err = (yhat - y);
 se = sqrt(sum(err.^2)/(len-4));
 sy = sqrt(sum(y.^2)/(len-1));
 sesyr = se / sy

 167

 close
 plot(t,y,t,yr,t,yhat)
end

 168

function [rec] = armanonlin()
 %This code tests for NARMA(1,0) equation
 len = 300;
 t = [1:len];
 y(1) = -1.2 * 0 + 0.3 * 0 + 1 * 0 + 0.6 + 0 * randn;
 for i = 2:len
 y(i) = -1.2 * y(i-1) + 0.3 * y(i-1)^2 + 1 * y(i-1)^3 + 0.6 + 0 * randn;
 end

 %Set up NARMA(1,0)
 j = 1;
 for i = 1:j
 ym((i+1):len,i) = y(1:(len-i));
 end
 input = [ones(len,1) ym(:,1) ym(:,1).^2 ym(:,1).^3];
 pq = input \ y'
 yhat(1) = pq(1) * 1 + pq(2) * 0 + pq(3) * 0 + pq(4) * 0;
 for i = 2:len
 yhat(i) = pq(1) * 1 + pq(2) * yhat(i-1) + pq(3) * yhat(i-1)^2 + pq(4) * yhat(i-1)^3;
 %y(i-1) = One Day Ahead, yhat(i-1) = Infinite Day Ahead
 end

 %Set up Recurrent Neural Network = Infinite Day Ahead
 rec = newff([-1 1], [1 2 1], {'purelin' 'tansig' 'purelin'});
 rec.trainParam.epochs = 50;
 rec.trainParam.mu_max = 1.0000e+010;
 rec.IW{1} = [0];
 rec.inputWeights{1}.learn = 0;
 rec.layerConnect = [0 0 1;1 0 0;0 1 0];
 rec.LW{1,3} = [1];
 rec.layerWeights{1,3}.delays = 1;
 rec.layerWeights{1,3}.learn = 0;
 rec.biasConnect = [0;1;1];
 input = mat2cell([zeros(len,1)]',1,ones(len,1));
 y = mat2cell(y,1,ones(1,len));
 [rec,a,e,pf] = train(rec,input,y);
 [ynet pf af] = sim(rec,input);
 ynet = cell2mat(ynet);
 y = cell2mat(y);
 w1 = rec.LW{2,1}(1);
 w2 = rec.LW{2,1}(2);
 w3 = rec.LW{3,2}(1);
 w4 = rec.LW{3,2}(2);
 b1 = rec.b{2}(1);
 b2 = rec.b{2}(2);
 b3 = rec.b{3};
 c0 = w3*b1 + w4*b2 - 1/3*w3*b1^3 - 1/3*w4*b2^3 + b3;
 c1 = w3*w1 + w4*w2 - w3*w1*b1^2 - w4*w2*b2^2;
 c2 = -w3*w1^2*b1 - w4*w2^2*b2;
 c3 = -1/3*w3*w1^3 - 1/3*w4*w2^3;
 [c0; c1; c2; c3]

 %Find Error and Output Results
 err = (yhat - y);
 se = sqrt(sum(err.^2)/(len-4));
 sy = sqrt(sum(y.^2)/(len-1));

 169

 sesyr = se / sy
 nerr = (ynet - y);
 se = sqrt(sum(nerr.^2)/(len-7));
 sy = sqrt(sum(y.^2)/(len-1));
 sesyc = se / sy
 close
 plot(t,y,t,yhat,t,ynet)
end

 170

function [store] = bigonevarnet(Q,P,T,Qt,Pt,Tt)
 %This code was used to train the FNN to estimate Function 1
 %for streamflow prediction, which uses only Pt as input.

 %Scale training inputs and outputs to a range of [-0.8, +0.8].
 smin = -0.8;
 smax = 0.8;
 for i = 1:size(Q)
 q(i) = ((smax - smin) * Q(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q));
 end
 for i = 1:size(P)
 p(i) = ((smax - smin) * P(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P));
 x = size(P);
 if (i < x(1))
 pm1(i+1) = p(i);
 end
 end
 pm1(1) = p(1);
 for i = 1:size(T)
 t(i) = ((smax - smin) * T(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T));
 end

 disp('FNN - 1 Lin - X Sig - 1 Lin + Biases')
 disp('Input - P, Output - Q, Data - WDA, 500 Epochs')
 disp('Scaled P, Scaled Q')

 %Test 1 through 45 hidden nodes.
 count = 0;
 for ii = 1:45
 for jj = 1:5
 hid = ii
 count = count + 1;
 store(count,1) = ii;
 %Set up the three-layer feed-forward network.
 net = newff([-0.9 0.9], [1 hid 1], {'purelin' 'tansig' 'purelin'});
 net.trainParam.epochs = 500;
 net.trainParam.mu_max = 1.0000e+010;
 net.biasConnect = [0;1;1];
 net.IW{1} = [1];
 net.inputWeights{1}.learn = 0;

 %Train network.
 input = [p];
 net = train(net,input,q);

 %Simulate network.
 yn = sim(net,input);

 %Rescale output.
 x = size(yn);
 for i = 1:x(2)
 Yn(i) = ((max(Q) - min(Q)) * yn(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin);
 end

 %Determine error.
 %Change for # of hidden nodes and # of parameters.

 171

 se = sqrt(sum((Yn - Q').^2)/(x(2)-(1+(1+1+1)*hid)));
 sy = sqrt(sum((Q - mean(Q)).^2)/(x(2)-1));
 sesyn = se/sy
 store(count,2) = sesyn;

 %Test on validation data. Scale the data using same scale as the training data.
 for i = 1:size(Qt)
 qt(i) = ((smax - smin) * Qt(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q));
 end
 for i = 1:size(Pt)
 pt(i) = ((smax - smin) * Pt(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P));
 x = size(Pt);
 if (i < x(1))
 pm1t(i+1) = pt(i);
 end
 end
 pm1t(1) = pt(1);
 for i = 1:size(Tt)
 tt(i) = ((smax - smin) * Tt(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T));
 end

 input = [pt];
 ynt = sim(net,input);

 %Rescale output.
 x = size(ynt);
 for i = 1:x(2)
 Ynt(i) = ((max(Q) - min(Q)) * ynt(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin);
 end

 %Determine error.
 %Change for # of hidden nodes and # of parameters.
 se = sqrt(sum((Ynt - Qt').^2)/(x(2)-(1+(1+1+1)*hid)));
 sy = sqrt(sum((Qt - mean(Qt)).^2)/(x(2)-1));
 sesyn = se/sy
 store(count,3) = sesyn;
 store(count,4) = (1+(1+1+1)*hid);
 end
 end
 store
end

 172

function [store net rec] = bigrecurnet(Q,P,T,Qt,Pt,Tt)
 %This code was used to train the FNN to estimate Function 8
 %Scale inputs and outputs to a range of [-0.8, +0.8]
 for i = 1:size(Q)
 q(i) = ((0.8 - -0.8) * Q(i) + (max(Q) * -0.8 - min(Q) * 0.8)) / (max(Q) - min(Q));
 x = size(Q);
 if (i < x(1))
 qm1(i+1) = q(i);
 end
 end
 qm1(1) = q(1);
 for i = 1:size(P)
 p(i) = ((0.8 - -0.8) * P(i) + (max(P) * -0.8 - min(P) * 0.8)) / (max(P) - min(P));
 x = size(P);
 if (i < x(1))
 pm1(i+1) = p(i);
 end
 end
 pm1(1) = p(1);
 for i = 1:size(T)
 t(i) = ((0.8 - -0.8) * T(i) + (max(T) * -0.8 - min(T) * 0.8)) / (max(T) - min(T));
 end

 disp('FNN - 4 Lin - X Sig - 1 Lin + Biases (One Day Ahead)')
 disp('RNN - 4 Lin - X Sig - 1 Lin + Biases (Multi Day Ahead)')
 disp('Input - P, P-1, T, Q-1, Output - Q, Data - WDA')

 count = 0;
 for ii = 1:30
 for jj = 1:5
 hid = ii
 count = count + 1;
 store(count,1) = ii;
 %Set up the feed-forward network
 net = newff([-0.9 0.9;-0.9 0.9;-0.9 0.9;-0.9 0.9], [4 hid 1], {'purelin' 'tansig' 'purelin'});
 net.trainParam.epochs = 500;
 net.biasConnect = [0;1;1];
 net.IW{1} = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
 net.inputWeights{1}.learn = 0;

 %Train network
 input = [p; pm1; t; qm1];
 net = train(net,input,q);

 %Simulate network
 y2 = sim(net,input);

 %Set up the recurrent network
 rec = newff([-0.9 0.9;-0.9 0.9;-0.9 0.9;-0.9 0.9], [4 hid 1], {'purelin' 'tansig' 'purelin'});
 rec.trainParam.epochs = 50;
 rec.biasConnect = [0;1;1];
 rec.IW{1} = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];
 rec.inputWeights{1}.learn = 0;
 rec.layerConnect = [0 0 1; 1 0 0; 0 1 0];
 rec.LW{1,3} = [0;0;0;1];
 rec.layerWeights{1,3}.learn = 0;

 173

 rec.layerWeights{1,3}.delays = 1;

 %Train + Simulate recurrent network
 input = mat2cell([p; pm1; t; zeros(size(qm1))],4,ones(size(Q),1));
 q = mat2cell(q,1,ones(1,size(Q)));
 rec = train(rec,input,q);
 y2c = sim(rec,input);
 q = cell2mat(q);
 y2c = cell2mat(y2c);

 %Rescale output
 x = size(y2);
 for i = 1:x(2)
 Y2(i) = ((max(Q) - min(Q)) * y2(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8);
 end
 x = size(y2c);
 for i = 1:x(2)
 Y2c(i) = ((max(Q) - min(Q)) * y2c(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8);
 end

 %Determine error
 E2 = Y2' - Q;
 se = sqrt(sum(E2.^2)/(x(2)-(1+(1+4+1)*hid)));
 sy = sqrt(sum((Q - mean(Q)).^2)/(x(2)-1));
 disp('FNN - Train')
 sesy = se/sy
 store(count,2) = se/sy;
 E2 = Y2c' - Q;
 se = sqrt(sum(E2.^2)/(x(2)-(1+(1+4+1)*hid)));
 sy = sqrt(sum((Q - mean(Q)).^2)/(x(2)-1));
 disp('RNN - Train')
 sesy = se/sy
 store(count,3) = se/sy;

 %Test on validation data
 for i = 1:size(Qt)
 qt(i) = ((0.8 - -0.8) * Qt(i) + (max(Q) * -0.8 - min(Q) * 0.8)) / (max(Q) - min(Q));
 x = size(Qt);
 if (i < x(1))
 qm1t(i+1) = qt(i);
 end
 end
 qm1t(1) = qt(1);
 for i = 1:size(Pt)
 pt(i) = ((0.8 - -0.8) * Pt(i) + (max(P) * -0.8 - min(P) * 0.8)) / (max(P) - min(P));
 x = size(Pt);
 if (i < x(1))
 pm1t(i+1) = pt(i);
 end
 end
 pm1t(1) = pt(1);
 for i = 1:size(Tt)
 tt(i) = ((0.8 - -0.8) * Tt(i) + (max(T) * -0.8 - min(T) * 0.8)) / (max(T) - min(T));
 end

 input = [pt; pm1t; tt; qm1t];

 174

 yt = sim(net,input);

 input = mat2cell([pt; pm1t; tt; zeros(size(qm1t))],4,ones(size(Qt),1));
 ytc = sim(rec,input);
 ytc = cell2mat(ytc);

 %Rescale output
 x = size(yt);
 for i = 1:x(2)
 Yt(i) = ((max(Q) - min(Q)) * yt(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8);
 end
 x = size(ytc);
 for i = 1:x(2)
 Ytc(i) = ((max(Q) - min(Q)) * ytc(i) - (max(Q) * -0.8 - min(Q) * 0.8)) / (0.8 - -0.8);
 end

 %Determine error
 Et = Yt' - Qt;
 se = sqrt(sum(Et.^2)/(x(2)-(1+(1+4+1)*hid)));
 sy = sqrt(sum((Qt - mean(Qt)).^2)/(x(2)-1));
 disp('FNN - Valid')
 sesy = se/sy
 store(count,4) = se/sy;
 Et = Ytc' - Qt;
 se = sqrt(sum(Et.^2)/(x(2)-(1+(1+4+1)*hid)));
 sy = sqrt(sum((Qt - mean(Qt)).^2)/(x(2)-1));
 disp('RNN - Valid')
 sesy = se/sy
 store(count,5) = se/sy;
 store(count,6) = (1+(1+4+1)*hid);
 store(count,7) = (1+(1+4+1)*hid);
 end
 end
 store
end

 175

function [output] = bignthreg(Q,P,T,Qt,Pt,Tt)
 %This code is used to model any combination of inputs
 %and X number of orders for predicting streamflow.
 counter = 0;
 smin = -0.8;
 smax = 0.8;
 for ii = 1:15
 for jj = 1:1
 clear store input
 clear q qm1 p pm1 t yr Yr
 %Scale training inputs and outputs to a range of [-0.8, +0.8].
 for i = 1:size(Q)
 q(i) = ((smax - smin) * Q(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q));
 x = size(Q);
 if (i < x(1))
 qm1(i+1) = q(i);
 end
 end
 for i = 1:size(P)
 p(i) = ((smax - smin) * P(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P));
 x = size(P);
 if (i < x(1))
 pm1(i+1) = p(i);
 end
 end
 pm1(1) = p(1);
 for i = 1:size(T)
 t(i) = ((smax - smin) * T(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T));
 end

 num = size(Q);
 if (num(1) > num(2))
 num = num(1);
 else
 num = num(2);
 end

 %Set up regression equation for n orders and x input variables.
 n = ii
 counter = counter + 1;
 output(counter,1) = ii;
 s = sym('p+pm1+t+qm1+1');
 s = expand(s^n);
 s = char(s);
 len = size(s);
 len = len(2);
 temp = '';
 count = 1;
 for i = 1:len
 if (s(i) ~= '+')
 if ((s(i) == '^') || (s(i) == '*'))
 temp = strcat(temp,'.');
 end
 temp = strcat(temp,s(i));
 else
 store(count) = cellstr(temp);

 176

 count = count + 1;
 temp = '';
 end
 end
 store(count) = cellstr(temp);
 len = size(store);
 len = len(2);
 for j = 1:len
 temp = char(store(j));
 if ((temp(1) == '1') || (temp(1) == '2') || (temp(1) == '3') || (temp(1) == '4') || (temp(1) == '5') ||
(temp(1) == '6') || (temp(1) == '7') || (temp(1) == '8') || (temp(1) == '9'))
 l = size(temp);
 l = l(2);
 tem = '';
 star = 0;
 for k = 1:l;
 if ((temp(k) == '*') && (star == 0))
 star = 1;
 elseif (star == 1)
 tem = strcat(tem,temp(k));
 else
 %Do nothing
 end
 end
 store(j) = cellstr(tem);
 end
 end

 %Set up input matrix for regression parameter estimation.
 for i = 1:len
 if (strcmp(cell2mat(store(i)),''))
 input(:,i) = ones(num,1);
 else
 input(:,i) = eval(cell2mat(store(i)))';
 end
 end

 %Estimate regression parameters.
 %store
 %Linear
 c = input \ q';
 %Nonlinear
 %c = input \ atanh(q)';
 size(c)

 %One Day Ahead
 yr = zeros(num,1);
 for j = 1:len
 if (strcmp(cell2mat(store(j)),''))
 yr = yr + c(j) * ones(num,1);
 else
 yr = yr + c(j) * eval(cell2mat(store(j)))';
 end
 end
 %Nonlinear
 %yr = tanh(yr);

 177

 %Multi Day Ahead
 %multi = store;
 %for j = 1:len
 % temp = char(multi(j));
 % l = size(temp);
 % l = l(2);
 % k = 1;
 % while k <= l;
 % if (temp(k) == 'p')
 % temp = strcat(temp(1:k),'(m)',temp(k+1:l));
 % end
 % if (temp(k) == 'q')
 % temp = strcat(temp(1:k-1),'yrm(m-1)',temp(k+3:l));
 % end
 % l = size(temp);
 % l = l(2);
 % k = k + 1;
 % end
 % multi(j) = cellstr(temp);
 %end
 %yrm = zeros(num,1);
 %for m = 2:num
 % for j = 1:len
 % if (strcmp(cell2mat(multi(j)),''))
 % yrm(m) = yrm(m) + c(j) * 1;
 % else
 % yrm(m) = yrm(m) + c(j) * eval(cell2mat(multi(j)));
 % end
 % end
 %end

 %Rescale output
 for i = 1:num
 Yr(i) = ((max(Q) - min(Q)) * yr(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin);
 end

 for i = 1:num
 %Yrm(i) = ((max(Q) - min(Q)) * yrm(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin);
 end

 se = sqrt(sum((Yr - Q').^2)/(1097-len));
 sy = sqrt(sum((Q - mean(Q)).^2)/(1097-1));
 sesyr = se/sy
 output(counter,2) = se/sy;

 %se = sqrt(sum((Yrm - Q').^2)/(1097-len));
 %sy = sqrt(sum((Q - mean(Q)).^2)/(1097-1));
 %sesyr = se/sy
 %output(counter,3) = se/sy;

 %figure
 %t = 1:num;
 %plot(t,Q,t,Yr)
 %Yrt = Yr;

 178

 %Test on validation data. Scale the data using same scale as the training data.
 clear q qm1 p pm1 t yr yrm Yr Yrm
 for i = 1:size(Qt)
 q(i) = ((smax - smin) * Qt(i) + (max(Q) * smin - min(Q) * smax)) / (max(Q) - min(Q));
 x = size(Qt);
 if (i < x(1))
 qm1(i+1) = q(i);
 end
 end
 for i = 1:size(Pt)
 p(i) = ((smax - smin) * Pt(i) + (max(P) * smin - min(P) * smax)) / (max(P) - min(P));
 x = size(Pt);
 if (i < x(1))
 pm1(i+1) = p(i);
 end
 end
 pm1(1) = p(1);
 for i = 1:size(Tt)
 t(i) = ((smax - smin) * Tt(i) + (max(T) * smin - min(T) * smax)) / (max(T) - min(T));
 end

 num = size(Qt);
 if (num(1) > num(2))
 num = num(1);
 else
 num = num(2);
 end

 %One Day Ahead
 yr = zeros(num,1);
 for j = 1:len
 if (strcmp(cell2mat(store(j)),''))
 yr = yr + c(j) * ones(num,1);
 else
 yr = yr + c(j) * eval(cell2mat(store(j)))';
 end
 end
 %Nonlinear
 %yr = tanh(yr);

 %Multi Day Ahead
 %yrm = zeros(num,1);
 %for m = 2:num
 % for j = 1:len
 % if (strcmp(cell2mat(multi(j)),''))
 % yrm(m) = yrm(m) + c(j) * 1;
 % else
 % yrm(m) = yrm(m) + c(j) * eval(cell2mat(multi(j)));
 % end
 % end
 %end

 %Rescale output
 for i = 1:num
 Yr(i) = ((max(Q) - min(Q)) * yr(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin);
 end

 179

 for i = 1:num
 %Yrm(i) = ((max(Q) - min(Q)) * yrm(i) - (max(Q) * smin - min(Q) * smax)) / (smax - smin);
 end

 se = sqrt(sum((Yr - Qt').^2)/(1096-len));
 sy = sqrt(sum((Qt - mean(Qt)).^2)/(1096-1));
 sesyr = se/sy
 output(counter,3) = se/sy;

 %se = sqrt(sum((Yrm - Qt').^2)/(1096-len));
 %sy = sqrt(sum((Q - mean(Qt)).^2)/(1096-1));
 %sesyr = se/sy
 %output(counter,5) = se/sy;
 output(counter,4) = len;

 %figure
 %t = 1:num;
 %plot(t,Qt,t,Yr)
 %Yrv = Yr;
 end
 end
 output
end

 180

Appendix B - Little Patuxent River Watershed Data

Training Data - Streamflow

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Day

D
is

ch
ar

ge
 (c

fs
)

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

Discharge (cfs)

N
um

be
r o

f d
ay

s

 181

Training Data - Precipitation

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Day

P
re

ci
pi

ta
tio

n
(in

)

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

700

800

900

1000

Precipitation (in)

N
um

be
r o

f d
ay

s

 182

Training Data - Temperature

0 100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

100

110

Day

Te
m

pe
ra

tu
re

 (F
)

10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

200

Temperature (F)

N
um

be
r o

f d
ay

s

 183

Validation Data - Streamflow

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Day

D
is

ch
ar

ge
 (c

fs
)

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

Discharge (cfs)

N
um

be
r o

f d
ay

s

 184

Validation Data - Precipitation

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

Day

P
re

ci
pi

ta
tio

n
(in

)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

900

1000

Precipitation (in)

N
um

be
r o

f d
ay

s

 185

Validation Data - Temperature

0 100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

100

110

Day

Te
m

pe
ra

tu
re

 (F
)

10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

200

Temperature (F)

N
um

be
r o

f d
ay

s

 186

References

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.

"Artificial Neural Networks in Hydrology. I: Preliminary Concepts." Journal of
Hydrologic Engineering. (April 2000a): 115 - 123.

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.

"Artificial Neural Networks in Hydrology. II: Hydrologic Applications." Journal
of Hydrologic Engineering. (April 2000b): 124 - 137.

Anmala, Jagadeesh, B. Zhang, and R. S. Govindaraju. "Comparison of ANNs and

Empirical Approaches for Predicting Watershed Runoff." Journal of Water
Resources Planning and Management. (June 2000): 156 - 166.

Archer, N. P. and S. Wang. "Application of the Back Propagation Neural Network

Algorithm with Monoticity Constraints for Two-Group Classification Problems."
Decision Sciences. Vol. 24. (1993): 60 - 75.

Ayyub, Bilal M. and R. H. McCuen. Probability, Statistics, and Reliability for Engineers

and Scientists. Boca Raton: Chapman & Hall/CRC Press, 2003.

Barro, S., M. Fernandez-Delgado, J. A. Vila-Sobrino, C. V. Regueiro and E. Sanchez.

"Classifying Multichannel ECG Patterns with an Adaptive Neural Network."
IEEE Engineering in Medicine and Biology. (January 1998): 45 - 55.

Basheer, I. A. and M. Hajmeer. "Artificial Neural Networks: Fundamentals, Computing,

Design, and Application." Journal of Microbiological Methods. Vol. 43. (2000):
3 - 31.

Bradley, Ralph A. and S. S. Srivastava. "Correlation in Polynomial Regression." The

American Statistician. Vol. 33. No. 1 (February 1979): 11 - 14.

Brockwell, Peter J. and R. A. Davis. Introduction to Time Series and Forecasting. New

York: Springer, 2002.

Cajal, S. R. Texture of the Nervous System of Man and the Vertebrates. New York:

Springer, 1999.

Cheng, Bing and D. M. Titterington. "Neural Networks: A Review from a Statistical

Perspective." Statistical Science. Vol. 9. No. 1 (February 1994): 2 - 30.

Cherkassky, Vladimir, J. H. Friedman, H. Wechsler. From Statistics to Neural Networks.

Berlin: Springer-Verlag, 1993.

 187

Chon, Ki H. and R. J. Cohen. "Linear and Nonlinear ARMA Model Parameter
Estimation Using an Artificial Neural Network." IEEE Transactions on Neural
Networks. Vol. 44. No. 3 (March 1997): 168 - 174.

Cobourn, W. G., L. Dolcine, M. French, and M. C. Hubbard. "A Comparison of

Nonlinear Regression and Neural Network Models for Ground-Level Ozone
Forecasting." Journal of the Air and Waste Management Association. Vol. 50.
(November 2000): 1999 - 2009.

Conner, James T. and R. Douglas Martin. "Recurrent Neural Networks and Robust

Times Series Prediction." IEEE Transactions on Neural Networks. Vol. 5. No. 2
(March 1994): 240 - 254.

Coppola, Emery A., A. J. Rana, M. M. Poulton, F. Szidarovszky and V. W. Uhl. "A

Neural Network Model for Predicting Aquifer Water Level Elevations." Ground
Water. Vol. 43. No. 2 (2005): 231 - 241.

Couvreur, Christophe and P. Couvreur. "Neural Networks and Statistics: A Naive

Comparison." Belgian Journal of Operations Research, Statistics and Computer
Science. Vol. 36. (1997): 217 - 225.

Daqi, Gao and Y. Genxing. "Influences of Variable Scales and Activation Functions on

the Performance of Multilayer Feedforward Neural Networks." Pattern
Recognition. Vol. 36. (2003): 869 - 878.

Dedecker, Andy P., P. L. M. Goethals, T. D'heygere, M. Gevrey, S. Lek, and N. De

Pauw. "Application of Artificial Neural Network Models to Analyze the
Relationships Between Gammarus Pulex L. (Crustacea, Amphipoda) and River
Characteristics." Environmental Modeling and Assessment. Vol. 111. (2005):
223 - 241.

Demuth, H. and M. Beale. Neural Network Toolbox User Guide Version 4.0. Natick:

The MathWorks Inc., 2004.

Denton, J. W. "How Good are Neural Networks for Casual Forecasting?" Journal of

Business Forecasting. Vol. 14. (1995): 17 - 20.

Ellacott, Steve and D. Bose. Neural Networks: Deterministic Methods of Anaylsis.

London: International Thomson Computer Press, 1996.

Feng, Chang-Xue and X. Wang. "Surface Roughness Predictive Modeling: Nerual

Networks Versus Regression." IIE Transactions. Vol. 35. (2003): 11 - 27.

 188

Fletcher, L., V. Katkovnik, F. E. Steffens and A. P. Engelbrecht. "Optimizing the
Number of Hidden Nodes of a Feedforward Artificial Neural Network."
Proceedings, IEEE World Congress on Computational Intelligence, International
Joint Conference on Neural Networks, Anchorage, AK. (1998): 1608 - 1612.

Gevrey, Muriel, I. Dimopoulos, and S. Lek. "Review and Comparison of Methods to

Study the Contribution of Variables in Artificial Neural Networks." Ecological
Modeling. Vol. 160. (2003): 249 - 264.

Gonzalez, Steven. "Neural Networks for Macroeconomic Forecasting: A Complimentary

Approach to Linear Regression Models." Working Paper, Department of Finance,
Canada, 2000.

Govindaraju, R. S. and A. R. Rao. "Artificial Neural Networks: A Passing Fad in

Hydrology?" Journal of Hydrologic Engineering. (July 2000): 225 - 226.

Hagan, Martin T., H. B. Demuth, M. H. Beale. Neural Network Design. Boston: PWS

Publishing Co., 2002.

Hill, Tim, L. Marquez, M. O'Connor, and W. Remus. "Artificial Neural Network Models

for Forecasting and Decision Making." International Journal of Forecasting. Vol.
10. (1994): 5 - 15.

Hayashi, Yoichi, J. J. Buckley, and E. Czogala. "Fuzzy Neural Network with Fuzzy

Signals and Weights." International Joint Conference on Neural Networks.
(1992): 696 - 701.

Kaul, M., R. L. Hill, and C. Walthall. "Artificial Neural Network for Corn and Soybean

Yield Prediction." Agricultural Systems. Vol. 85. (2005): 1 - 18.

Kisi, Ozgur. "Daily River Forecasting Using Artificial Neural Networks and Auto-

Regressive Models." Turkish Journal of Engineering and Environmental
Sciences. Vol. 29. (2005): 9 - 20.

Kravtsov, S., D. Kondrashov, and M. Ghil. "Multi-level Regression Modeling of

Nonlinear Processes: Derivation and Applications to Climatic Variability."
Journal of Climate. (2005).

Kruschke John K. and J. R. Movellan. "Benefits of Gain: Speeding Learning and

Minimal Hidden Layers in Back-Propagation Networks." IEEE Transactions on
Systems, Man and Cybernetics. Vol. 21. No. 1 (1991): 273 - 280.

Kumar, D. N., K. S. Raju, and T. Sathish. "River Flow Forecasting using Recurrent

Neural Networks." Water Resources Management. Vol. 18. (2004): 143 - 161.

 189

National Climatic Data Center (NCDC). <http://www.ncdc.noaa.gov/oa/ncdc.html>.
Accessed March 2005.

Maier, Holger R. and G. C. Dandy. "Neural Networks for the Prediction and Forecasting

of Water Resources Variables: A Review of Modeling Issues and Applications."
Environmental Modeling and Software. Vol. 15. (2000): 101 - 124.

Markham, I. S. and T. R. Rakes. "The Effect of Sample Size and Variability of Data on

the Comparative Performance of Artificial Neural Networks and Regression."
Computer Operation Resources. Vol. 25. (1998): 251 - 263.

Mandic, Danilo P. and J. A. Chambers. "Advanced RNN Based NARMA Predictors."

Journal of VLSI Signal Processing. Vol. 26. (2000): 105 - 117.

Mandic, Danilo P. and J. A. Chambers. Recurrent Neural Networks for Prediction.

Chichester: John Wiley & Sons, Inc., 2001.

MATLAB, The Language of Technical Computing, Version 7.0. Natick: The

MathWorks Inc., 2004.

McCulloch, W. S. and W. Pitts. "A Logical Calculus of Ideas Immanent in Nervous

Activity." Bulletin of Mathematical Biophysics. (1943): 115 - 133.

Mehrotra, Kishan, C. K. Mohan, and S. Ranka. Elements of Artificial Neural Networks.

Cambridge: The MIT Press, 2000.

Menon, Anil, K. Mehrotra, C. K. Mohan, and S. Ranka. "Characterization of a Class of

Sigmoid Functions with Applications to Neural Networks." Neural Networks.
Vol. 9. No. 5 (1996): 819 - 835.

Minns, A. W. and M. J. Hall. "Artificial Neural Networks as Rainfall-Runoff Models."

Hydrological Sciences Journal. Vol. 41. No. 3 (1996): 339 - 417.

Prybutok, Victor R., J. Yi and D. Mitchell. "Comparison of Neural Network Models with

ARIMA and Regression Models for Prediction of Houston's Daily Maximum
Ozone Concentrations." European Journal of Operational Research. Vol. 122.
(2000): 31-40.

Ripley, B. D. Pattern Recognition and Neural Networks. Cambridge: Cambridge

University Press, 1996.

Russell, Stuart and P. Norvig. Artificial Intelligence: A Modern Approach. Upper

Saddle River, New Jersey: Pearson Education, Inc., 2003.

 190

Salas, J. D., M. Markus, and A. S. Tokar, “Streamflow Forecasting Based on Artificial
Neural Networks,” in Artificial Neural Networks in Hydrology, R. S.
Govindaranu and A. R. Rao Editors, Kluwer, (2000): 23 - 51.

Sarle, Warren S. "Neural Networks and Statistical Methods." Proceedings of the

Nineteenth Annual SAS Users Group International Conference. (April 1994).

Schnabel, Susanne and M. Maneta. "Comparison of a Neural Network and a Regression

Model to Estimate Suspended Sediment in a Semiarid Basin." Proceedings of the
International Conference, Catalonia, Spain. (May 2004): 91 - 100.

Sargent, Daniel J. "Comparison of Artificial Neural Networks with Other Statistical

Approaches." Conference on Prognostic Factors and Staging in Cancer
Management: Contributions of Artificial Neural Networks and Other Statistical
Methods. Arlington, VA. (2001): 1636 - 1642.

Shigidi, Abdalla and L. A. Garcia. "Parameter Estimation in Groundwater Hydrology

Using Artificial Neural Networks." Journal of Computing in Civil Engineering.
(October 2003): 281 - 289.

Stigler, Stephen M. "Optimal Experimental Design for Polynomial Regression." Journal

of the American Statistical Association. Vol. 66. No. 334 (June 1971): 311 - 318.

Subramanian, Narayanaswamy, A. Yajnik, and R.S. R. Murthy. "Artificial Neural

Network as an Alternative to Multiple Regression Analysis in Optimizing
Formulation Parameters of Cytarabine Liposomes." AAPS PharmSciTech. Vol.
5. No. 1 (November 2003): 1 - 9.

Tingsanchali, Tawatchai and M. R. Gautam. "Application of Tank, NAM, ARMA and

Neural Network Models to Flood Forecasting." Hydrological Processes. Vol 14.
(2000): 2473 - 2487.

Tokar, A. Sezin and P. A. Johnson. "Rainfall-Runoff Modeling Using Artificial Neural

Networks." Journal of Hydrologic Engineering. (July 1999): 232 - 239.

U.S. Geological Survey (USDS). <http://nwis.waterdata.usgs.gov/nwis/>. Accessed

March 2005.

Veelenturf, L. P. J. Analysis and Applications of Artificial Neural Networks. London:

Prentice Hall, 1995.

Warner, Brad and M. Misra. "Understanding Neural Networks as Statistical Tools." The

American Statistician. Vol. 50. No. 4 (November 1996): 284 - 293.

 191

Widrow, Bernard. "30 Years of Adaptive Neural Networks: Perceptron, Madaline, and
Backpropagation." Proceedings of the IEEE. Vol. 78. No. 9 (September 1990):
1415 - 1442.

Wolfram Research. "Time Series Documentation: Parameter Estimation."

<http://documents.wolfram.com/applications/timeseries/>. Accessed January
2006.

White, Halbert. Artificial neural networks: Approximation and Learning Theory.

Cambridge: Blackwell, 1992.

Xiang, Cheng, S. Q. Ding, and T. H. Lee. "Geometrical Interpretation and Architecture

Selection of MLP." IEEE Transactions on Neural Networks. Vol. 16. No. 1
(January 2005): 84 - 96.

Yang, Zheng R. "A Novel Radial Basis Function Neural Network for Discriminant

Analysis." IEEE Transactions on Neural Networks. Vol. 17. No. 3 (May 2006):
604 - 612.

Yao, Xin. "Evolving Artificial Neural Networks." Proceedings of the IEEE. Vol. 87.

No. 9 (September 1999): 1423 - 1447.

Yitian, Li and R. R. Gu. "Modeling Flow and Sediment Transport in a River System

Using an Artificial Neural Network." Environmental Management. Vol. 31. No.
1 (2003): 122 - 134.

Young, Evan F. and L. Chan. "Using Recurrent Network in Time Series Prediction."

World Congress on Neural Networks. (1993): 1 - 5.

Zealand, Cameron M., D. H. Burn, and S. P. Simonovic. "Short Term Streamflow

Forecasting Using Artificial Neural Networks." Journal of Hydrology. Vol. 214.
(1999): 32 - 48.

Zhang, G. P. "Time Series Forecasting Using a Hybrid ARIMA and Neural Network

Model." Neurocomputing. Vol. 50. (2003): 159 - 175.

	Graduate Abstract.doc
	Jonathan Patrick Resop, Master of Science, 2006

	Graduate Table of Contents.doc
	Graduate Thesis.doc

