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Chapter 1

Introduction

In the present work, we will study some theorems about manifolds of positive

curvature, all of which use a common idea introduced by Synge in [10]. As in

[11], we call this idea Synge’s trick. Among these theorems are Frankel’s theorem,

Weinstein’s theorem and Wilking’s theorem. This work was inspired by some ideas

of my advisor, Prof. Grove, and also by [9].

First, we see the classical proofs of Frankel and Weinstein-Synge’s theorems,

which are proved by contradiction. Then, we present the same theorems but now

being reformulated as a computation of a lower bound for the index of a special

kinds of geodesics, called N -geodesics. Then, we give a direct proof of Frankel

and Weinstein’s theorems. We also present Wilking’s theorem, which also uses

Synge’s trick to find a lower bound for these special kind of geodesics. At the end,

we formulate and prove an optimal general index theorem which encompass the

theorems mentioned above.

In the first part of the thesis, we present the first and the second variational

formulas of the energy function 1 of paths. We also state and give proofs of the

1The energy function we use in this work, it is known in Physics as the action functional.

1



theorems mentioned in the above paragraph and illustrate how Synge’s trick in

conjunction with the second variational formula for the energy function of paths

is used in each of them.

In the second part of the thesis, we explain how these theorems have really to

do with the index of geodesics in a manifold M .

2



Chapter 2

Synge’s Trick and Some Theorems About Positive

Sectional Curvature

2.1 First and Second Variational Formulas of the

Energy Function

In this section, we compute the first and second variational formulas of the energy

function, we proceed similarly as in [8] and [2].

Let (M,<>) be a Riemannian manifold and let p, q ∈ M be two points of

M . Let γ : [0, 1] → M be a curve that joins p with q; i.e. γ(0) = p and

γ(1) = q. Consider a differentiable variation f(s, t) of the curve γ. That is, f

is a differentiable mapping

f : (−ε, ε)× [0, 1]→M

(s, t) 7→ f(s, t)

such that f(0, t) = γ(t).

Remark 1. For t =constant, the curves ft(s) := f(s, t) : (−ε, ε) → M are called

the transversal curves of the variation.
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Remark 2. Note that the vector field ∂f
∂t

(0, t) is the velocity vector field γ′(t) along

the curve γ(t).

Remark 3. The vector field W (t) := ∂f
∂s

(0, t) is called the variational vector field

along γ(t).

Next, we will compute the first variational formula of the energy function

E(0) := E(ft(0)) :=
1

2

∫ 1

0

‖γ′(t)‖2dt,

where ‖γ′(t)‖2 =< γ′(t), γ′(t) >.

Theorem 2.1.1 (First Variational Formula of the Energy Function). Let f(s, t)

be a differentiable variation of the curve γ, then

E ′(0) =
d

ds
E(ft(0)) =

〈
W (1), γ′(1)

〉
−
〈
W (0), γ′(0)

〉
−
∫ 1

0

〈
W (t),

D

dt
γ′(t)

〉
dt.

Proof. By the properties of the Levi-Civita connection, we have that the following

identities are satisfied for any parametrized surface f in a Riemannian manifold

d

ds

〈∂f
∂t

(s, t),
∂f

∂t
(s, t)

〉
= 2
〈D
ds

∂f

∂t
(s, t),

∂f

∂t
(s, t)

〉
D

ds

∂f

∂t
=
D

dt

∂f

∂s

where we have used the compatibility of the metric in the first equation and the

symmetry of the metric in the second equation. Then

E ′(s) =
d

ds
E(ft(s)) =

1

2

∫ 1

0

d

ds

〈∂f
∂t

(s, t),
∂f

∂t
(s, t)

〉
dt

=
1

2

∫ 1

0

2
〈D
ds

∂f

∂t
(s, t),

∂f

∂t
(s, t)

〉
dt

=

∫ 1

0

〈D
dt

∂f

∂s
(s, t),

∂f

∂t
(s, t)

〉
dt.
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Using again the compatibility of the connection with the metric we have that

d

dt

〈∂f
∂s

(s, t),
∂f

∂t
(s, t)

〉
=
〈D
dt

∂f

∂s
(s, t),

∂f

∂t
(s, t)

〉
+
〈∂f
∂s

(s, t),
D

dt

∂f

∂t
(s, t)

〉
.

Then

E ′(s) =

∫ 1

0

d

dt

〈∂f
∂s

(s, t),
∂f

∂t
(s, t)

〉
dt−

∫ 1

0

〈∂f
∂s

(s, t),
D

dt

∂f

∂t
(s, t)

〉
dt

=
〈∂f
∂s

(s, t),
∂f

∂t
(s, t)

〉∣∣t=1

t=0
−
∫ 1

0

〈∂f
∂s

(s, t),
D

dt

∂f

∂t
(s, t)

〉
dt

=
〈∂f
∂s

(s, 1),
∂f

∂t
(s, 1)

〉
−
〈∂f
∂s

(s, 0),
∂f

∂t
(s, 0)

〉
−
∫ 1

0

〈∂f
∂s

(s, t),
D

dt

∂f

∂t
(s, t)

〉
dt.

So, at s = 0 we have that

E ′(0) =
〈∂f
∂s

(0, 1),
∂f

∂t
(0, 1)

〉
−
〈∂f
∂s

(0, 0),
∂f

∂t
(0, 0)

〉
−
∫ 1

0

〈∂f
∂s

(0, t),
D

dt

∂f

∂t
(0, t)

〉
dt

=
〈
W (1), γ′(1)

〉
−
〈
W (0), γ′(0)

〉
−
∫ 1

0

〈
W (t),

D

dt
γ′(t)

〉
dt.

Now, let us compute the second variational formula of the energy function.

Let γ : [0, 1] → M be a geodesic that joins the points p and q of M(i.e. a

critical point of the energy function E : Ω(M ; p, q)→ R.)

Let W1,W2 ∈ TγΩ be two vector fields along the curve γ. Let f be a 2-

parameter differentiable variation of γ; that is, a differentiable function

f : U × [0, 1]→ R

(s1, s2, t) 7→ f(s1, s2, t)

where U is a neighborhood of (0, 0) ∈ R2 in such a way that

f(0, 0, t) = γ(t),
∂f

∂s1

(0, 0, t) = W1(t) and
∂f

∂s2

(0, 0, t) = W2(t).
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Then as in [8], the Hessian E∗∗(W1,W2) is defined by

E∗∗(W1,W2) :=
∂2

∂s2∂s1

E(ft(s1, s2))
∣∣
(0,0)

.

Theorem 2.1.2 (Second Variational Formula of the Energy Function).

Let γ : [0, 1] → M be a geodesic that joins the points p and q of M . Let f be a

2-parameter variation of γ as above. Then

E∗∗(W1,W2) =
∂2E

∂s2∂s1

(0, 0) =
〈 D
ds2

W1(1), γ′(1)
〉

+
〈
W1(1),

D

dt
W2(1)

〉
−
〈 D
ds2

W1(0), γ′(0)
〉
−
〈
W1(0),

D

dt
W2(0)

〉
−
∫ 1

0

〈
W1(t),

D2

dt2
W2(t) +R

(
γ′(t),W2(t)

)
γ′(t)

〉
.

Proof. By the first variational formula of the energy, we have that

∂

∂s1

E(ft(s1, s2)) =
〈 ∂f
∂s1

(s1, s2, 1),
∂f

∂t
(s1, s2, 1)

〉
−
〈 ∂f
∂s1

(s1, s2, 0),
∂f

∂t
(s1, s2, 0)

〉
−
∫ 1

0

〈 ∂f
∂s1

(s1, s2, t),
D

dt

∂f

∂t
(s1, s2, t)

〉
dt.

Then

∂E

∂s2∂s1

(s1, s2) =
∂

∂s2

{〈 ∂f
∂s1

(s1, s2, 1),
∂f

∂t
(s1, s2, 1)

〉
−
〈 ∂f
∂s1

(s1, s2, 0),
∂f

∂t
(s1, s2, 0)

〉
−
∫ 1

0

〈 ∂f
∂s1

(s1, s2, t),
D

dt

∂f

∂t
(s1, s2, t)

〉
dt
}

=
〈 D
ds2

∂f

∂s1

(s1, s2, 1),
∂f

∂t
(s1, s2, 1)

〉
+
〈 ∂f
∂s1

(s1, s2, 1),
D

ds2

∂f

∂t
(s1, s2, 1)

〉
−
〈 D
ds2

∂f

∂s1

(s1, s2, 0),
∂f

∂t
(s1, s2, 0)

〉
−
〈 ∂f
∂s1

(s1, s2, 0),
D

ds2

∂f

∂t
(s1, s2, 0)

〉
−
∫ 1

0

〈 D
ds2

∂f

∂s1

(s1, s2, t),
D

dt

∂f

∂t
(s1, s2, t)

〉
dt

−
∫ 1

0

〈 ∂f
∂s1

(s1, s2, t),
D

ds2

D

dt

∂f

∂t
(s1, s2, t)

〉
dt.

Now, evaluate the above expression at (s1, s2) = (0, 0). Since γ(t) = f(0, 0, t)

is a geodesic (i.e. D
dt
∂f
∂t

(0, 0, t) = 0) then we have that the fifth term of the above
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equality is zero. Also, if we interchange the order of the derivatives of the second

and fourth terms and using the fact that for any parametrized surface f

R
(∂f
∂t

(0, 0, t),
∂f

∂s2

(0, 0, t)
)∂f
∂t

(0, 0, t) =
D

ds2

D

dt

∂f

∂t
(0, 0, t)− D

dt

D

ds2

∂f

∂t
(0, 0, t)

in the last term of the above equality, we get precisely the second varational formula

of the energy function.

2.2 Synge’s Trick

In the study of manifolds with positive sectional curvature there are several im-

portant results that make use of Synge’s trick. Among these results are: Frankel’s

theorem, Weinstein-Synge’s theorem and Wilking’s theorem.

Although these theorems have different hypothesis, Synge’s trick can be used

once we have a basic setting: given a complete connected Riemannian manifold M

with positive sectional curvature and two distinct points p and q in M , suppose

we have a minimal geodesic γ(t) that joins p and q; then choose a unit parallel

vector field W1(t) along γ(t), which is orthogonal to the tangent field of the curve

γ(t); then make a 1-parameter variation f(s, t) = f(s1 + s2, t) = f(s1, s2, t) of γ

with variational field ∂f
∂s

(s, t)|s=0 = ∂f
∂si

(0, 0, t) = W1(t) for i = 1, 2 (in which the

transversal curves α(s) := f(s, 0) and β(s) := f(s, 1) to γ are geodesics); then by

7



the second variational formula of the energy function of curves we get that

E∗∗(W1,W1) =
〈D
ds
W1(1), γ′(1)

〉
+
〈
W1(1),

D

dt
W1(1)

〉
−
〈D
ds
W1(0), γ′(0)

〉
−
〈
W1(0),

D

dt
W1(0)

〉
−
∫ 1

0

〈
W1(t),

D2

dt2
W1(t) +R

(
γ′(t),W1(t)

)
γ′(t)

〉
dt.

Since the vector field W1(t) is parallel, then D
dt
W1(t) = 0, so the second and fourth

terms of the above expression are zero. Also, since the curves α(s) and β(s) are

geodesics then D
ds
α′(s) = 0 = D

ds
β′(s), so in particular,

D

ds
W1(0) =

D

ds
α′(0) = 0 and

D

ds
W1(1) =

D

ds
β′(0) = 0,

so the first and third terms of the second variational formula of the energy are also

zero. Since the manifold M has positive sectional curvature, the second variational

formula of the energy becomes

E∗∗(W1,W1) = −
∫ 1

0

〈
W1(t), R

(
γ′(t),W1(t)

)
γ′(t)

〉
dt

= −
∫ 1

0

sec(γ′(t),W1(t))dt < 0,

then one gets shorter curves fs(t) (that join the point α(s) to β(s)) close to the

original geodesic γ(t). In different situations, this is going to give us a contradic-

tion, as we will see in the following theorems.

2.3 Classical Theorems: Frankel and Weinstein-

Synge’s theorems

Let us see how Synge’s trick is used in the theorems mentioned above. The fol-

lowing theorem was proved by Frankel in 1960 in [3].
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p q

M

γ(t)

β(s)α(s)

W1(t)

Figure 2.1: Synge’s trick

Theorem 2.3.1 (Frankel). Let Mm be a complete connected Riemannian manifold

with positive sectional curvature and let U r and W s be compact totally geodesic

submanifolds such that r+s ≥ m, then U r and W s have a non-empty intersection.

U W

p=c(0) q=c(l)

TpU TqW

c(t)

V(t)

α(s) β(s)

Figure 2.2: Frankel’s theorem

Proof. Let U and W be two totally geodesic submanifolds of M . Suppose that U

and W does not intersect. Then, there exists a minimal geodesic c(t), with length

9



l, that joins U and W say at the points p = c(0) ∈ U , q = c(l) ∈ W . Since c(t) is

a minimal geodesic joining U and W , then c(t) is orthogonal to U and W at c(0)

and c(l), respectively.

Let W̃ ⊆ TqM be the linear subspace obtained by parallel transporting TpU

along c(t) at the point q.

Since TpU is orthogonal to c at p, then W̃ is also orthogonal to c(t) at q.

Note that TqW, W̃ ⊆ TqM are linear subspaces of TqM . Then

dim(TqW ∩ W̃ ) ≥ dimTqW + dim W̃ − (dimTqM − 1) = s+ r −m+ 1 ≥ 1.

So, TqW ∩ W̃ 6= ∅. Then, there exists a parallel vector field V (t) along c(t)

such that V (0) ∈ TpU and V (l) ∈ TqW .

Now, let f(s, t), s ∈ [−ε, ε], t ∈ [0, l] be a variation along the curve c(t), in

which the transversal curves are geodesics and which has variational field V (t).

Note that since U and W are totally geodesic submanifolds of M then the

geodesics

α(s) = f(s, 0), β(s) = f(s, l)

lie entirely in U and W , respectively. Then

D

ds
V (0) =

D

ds

(
∂f

∂s
(s, 0)

∣∣
s=0

)
=
D

ds
α′(s)|s=0 = 0

and

D

ds
V (l) =

D

ds

(
∂f

∂s
(s, l)|s=0

)
=
D

ds
β′(s)|s=0 = 0.

10



Therefore, by the second variation formula of energy we get that

d2E

ds2
(0) =

〈
D

ds
V (l), c′(l)

〉
+

〈
V (l),

D

dt
V (l)

〉
−
〈
D

ds
V (0), c′(0)

〉
−
〈
V (0),

D

dt
V (0)

〉
−
∫ l

0

〈
V (t), R

(
dc

dt
, V

)
dc

dt

〉
dt

=−
∫ l

0

sec

(
dc

dt
, V

)
dt < 0,

so we get shorter curves fs(t) than c(t) (that join U with W), which contradicts

that c(t) was minimal.

Also Weinstein used Synge’s trick in [11], the following theorem is a corollary

of a more general result mentioned in this paper (Weinstein proved his statement

for conformal diffeomorphisms not just isometries.)

Theorem 2.3.2 (Weinstein). Let f : Mm → Mm be an isometry of a compact,

oriented Riemannian manifold Mm with secM > 0. If f is orientation-preserving

if m is even and orientation-reversing if m is odd, then Fix(f) = {x ∈M : f(x) =

x} 6= ∅.

Proof. Suppose that q 6= f(q) for all q ∈M . Let d(q, f(q)) be the distance between

q ∈M and f(q) ∈M . Then d(q, f(q)) > 0 for all q ∈M .

Since M is compact and d : M −→ R+ is a continuous function given by

q 7−→ d(q, f(q)), then there exists p ∈ M such that d(p, f(p)) > 0 is a minimum

value for d.

Since M is complete, then there exists a minimal geodesic γ : [0, l] −→M that

joins p and f(p) (i.e. γ(0) = p and γ(l) = f(p)) and such that ‖γ′(t)‖ = 1 for all

11



t ∈ [0, l].

Let N and N ′ be the orthogonal complement of γ′ at p and f(p), respectively.

Note that N is a subspace of TpM and N ′ is a subspace of Tf(p)M .

We claim that dfp(N) = N ′, or equivalently that

dfp(γ
′(0)) = γ′(l).

In fact, consider the curve f ◦ γ : [0, l] −→M . Note that f ◦ γ is a geodesic.

Let p′ = γ′(t′), where t′ 6= 0, l. Then, by the triangle inequality and since γ is

a minimal geodesic, we have that

d(p′, f(p′)) ≤ d(p′, f(p)) + d(f(p), f(p′)) = d(p′, f(p)) + d(p, p′) = d(p, f(p)),

since p is a minimum value for d, the above inequality becomes equality, so the

curve γ ∗ (f ◦ γ), formed by juxtaposition of γ and f ◦ γ, is a geodesic, so

γ′(l) =
d

dt
(f ◦ γ)(t)

∣∣
t=0

= dfp(γ
′(0)),

as we claimed.

Now, consider the linear automorphism

Pf(p),p ◦ dfp : TpM −→ TpM,

where Pf(p),p : Tf(p)M −→ TpM is the parallel transport from γ(l) = f(p) to

γ(0) = p along γ(t). Note that Pf(p),p ◦ dfp leaves N invariant, since

Pf(p),p ◦ dfp(γ′(0)) = Pf(p),p(γ
′(l)) = γ′(0).

Let A : N −→ N be the restriction of Pf(p),p ◦ dfp to N . Since Pf(p),p is

orientation-preserving and det(dfp) = (−1)m, we have that

det(A) = det(Pf(p),p ◦ dfp) = det(Pf(p),p)det(dfp) = (−1)m.

12



Since A : Rm−1 → Rm−1 is an orthogonal transformation with detA = (−1)m,

we have that A has a fixed point v ∈ N .

N N'

V(t)

γ′(0)
γ′(l) = dfp(γ′(0))

v dfp(v)

γ(t)

α(s) β(s)

Figure 2.3: Weinstein-Synge’s theorem

Now, we have all the necessary ingredients to use Synge’s trick.

Let V (t) be a parallel extension of the vector v ∈ N along the curve γ(t) (i.e.

V (0) = v ∈ N , V (l) = dfp(v) ∈ N ′ and DV
dt

(t) = 0 for all t ∈ [0, l].)

Now, let h(s, t), s ∈ [−ε, ε], t ∈ [0, l], be a variation along the curve γ(t) in

which the transversal curves are geodesics and which has variational field V (t).

For example, h(s, t) can be constructed in the following way: let α(s), s ∈ [−ε, ε],

be a curve such that α(0) = p and α′(0) = v ∈ N . Then, the curve β(s) := f ◦α(s)

is such that β(0) = f(α(0)) = f(p) and β′(0) = dfp(α
′(0)) = dfp(v) ∈ N ′. Let

h(s, t) = expγ(t)(sV (t)), s ∈ [−ε, ε], t ∈ [0, l].

Then

h(s, 0) = expγ(0)(sV (0)) = expp(sv) = α(s),

h(s, l) = expγ(l)(sV (l)) = expf(p)(sdfp(v)) = β(s)

13



and

∂

∂s
h(s, t)

∣∣
s=0

= expγ(t)∗0 (V (t)) = IdTγ(t)M(V (t)) = V (t).

So V (t) is the variational field of h(s, t) with DV
dt

= 0. Also, since α and β are

geodesics, then

D

ds
V (0) =

D

ds

(
∂h

∂s
(s, 0)|s=0

)
=
D

ds
α′(0) = 0 and

D

ds
V (l) =

D

ds

(
∂h

∂s
(s, l)|s=0

)
=
D

ds
β′(0) = 0.

Then, by the second variation formula of the energy and since M has positive

sectional curvature we get that

d2E

ds2
(0) =

〈
D

ds
V (l), γ′(l)

〉
+

〈
V (l),

D

dt
V (l)

〉
−
〈
D

ds
V (0), γ′(0)

〉
−
〈
V (0),

D

dt
V (0)

〉
−
∫ l

0

〈
V (t),

D2V

dt2
+R

(
dγ

dt
, V

)
dγ

dt

〉
dt

=−
∫ l

0

〈
V (t), R

(
dγ

dt
, V

)
dγ

dt

〉
dt

=−
∫ l

0

sec

(
dγ

dt
, V

)
dt < 0,

so we get shorter curves hs(t) (which join points q ∈M to f(q) where q 6= p) than

γ(t), which contradicts that d(p, f(p)) was a minimum.

The hypothesis about f : M2m → M2m being orientation preserving can not

be relaxed, as it is shown in the following
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Example 1. Let M = S2 and f = −id be the antipodal map of S2

−id : S2 −→ S2

x 7−→ −x.

Then f is orientation-reversing since degf = −1, also note that

−id∗x : TxS
2 −→ TxS

2

v 7−→ −v

and clearly −id does not have fixed points.

p
-v

-x

v

x

CASE 1

p
v

-v

x-x

CASE 2

S2 S2

Figure 2.4: Antipodal map on S2

Similarly, the hypothesis about f : M2m+1 →M2m+1 being orientation-reversing

can not be relaxed as it shows the following

Example 2. Let M = S3 and f = −id be the antipodal map of S3. Then f is

orientation-preserving, since degf = 1, and f does not have fix points.
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As a corollary of Weinstein’s theorem we have a weaker version proved earlier

by Synge. I borrowed the main ideas of the proof from [1], [11] and [7].

Corollary 2.3.1 (Synge). Let Mm be a compact, connected, Riemannian manifold

with positive sectional curvature. Then,

a) If m is even and

(1) Mm is orientable then π1(M) = 1.

(2) Mm is not orientable then π1(M) = Z2.

b) If m is odd, then Mm is orientable.

Proof.

(a1) Suppose m is even and Mm is orientable. Let p : M̃ −→M be the universal

cover of M . Let M̃ have the covering metric (i.e. the pull-back metric of

M) and let M̃ be oriented in such a way that p preserves the orientation.

Since M̃ satisfies the same curvarture conditions as M , then M̃ has positive

sectional curvature. Then, by Myers’ theorem, M̃ is compact.

Let D : M̃ −→ M̃ be a Deck transformation of M . Then, by the way

we oriented M̃ , D is an orientation-preserving isometry. Since m is even,

by Weinstein’s theorem, we have that D has a fixed point, and therefore

D is the identity map of M̃ . Since π1(M̃) = 1, then the group of Deck

transformations G can be identified with π1(M). Then π1(M) ∼= G = {1}.

(a2) Suppose m is even and Mm is not orientable. Let M̃ be the orientable double

cover of M and let M̃ have the covering metric. As in part (a1), since M̃
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satisfies the same curvature conditions as M , then M̃ has positive sectional

curvature. Then, by Myers’ theorem, M̃ is compact.

Since m is even and M̃ is orientable, by (a1) we have that π1(M̃) = 1. Then,

since M̃ is a double cover of M we have that |π1(M)| = 2, then π1(M) ∼= Z2.

(b) Suppose m is odd and M is not orientable. Let M̃ be the orientable double

cover ofM . Let M̃ have the covering metric. As in part (a) M̃ is also compact

(by Myers’ theorem or being the double cover of a compact manifold.)

Since M̃ is a double cover of M , we have that [π1(M) : p#(π1(M̃))] = 2, so

p#(π1(M̃)) E π1(M). So the covering p : M̃ −→ M is regular. Then, the

group of Deck transformations G ∼= π1(M)/p#(π1(M̃)) ∼= Z2.

Let D ∈ G and such that D 6= id. Then, D is an orientation-reversing

isometry of M̃ . Since m is odd, by Weinstein’s theorem, D has a fixed point,

but this contradicts that D 6= id.
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Chapter 3

Index and Connectivity

3.1 Lower Bound for the Index of non-trivial N-

geodesics

All the previous theorems can be studied considering the index of N -geodesics

in M introduced in [5]. That is, let Mm be a complete, connected Riemannian

manifold with positive sectional curvature. Let Nn ↪→ Mm × Mm be a closed

totally geodesic submanifold. Let M I
N = {γ ∈ C0(I,M) : (γ(0), γ(1)) ∈ N}; i.e.

M I
N is the space of curves γ(t) : [0, 1] −→M such that (γ(0), γ(1)) ∈ N .

As in [5] we say that the geodesic γ in M is an N -geodesic if γ ∈M I
N and

(γ′(0),−γ′(1)) is normal to N , (3.1)

where γ′(t) denotes the velocity vector of γ at t and M × M has the product

metric.

Observe that

TγM
I
N = {Xγ ∈ TγC0(I,M) : (Xγ(0), Xγ(1)) ∈ T(γ(0),γ(1))N}.

From [4], we get the following remarks.
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Remark 4. When N = 4 ⊂ M ×M is the diagonal submanifold of M ×M , we

have that N-geodesics correspond just to closed geodesics in M .

Remark 5. When N = U ×W , where U and W are submanifolds of M , an N-

geodesic γ in M is just a geodesic γ in M that starts orthogonal to U and ends

orthogonal to W . Then

TγM
I
N = {Xγ ∈ TγC0(I,M) : (Xγ(0), Xγ(1)) ∈ T(γ(0),γ(1))N}

∼= {Xγ ∈ TγC0(I,M) : (Xγ(0), Xγ(1)) ∈ Tγ(0)U × Tγ(1)W}.

Remark 6. If f : M → M is an isometry on M and N = Graph(f), then an

N-geodesic γ corresponds to an f -invariant geodesic; i.e. a geodesic γ in M with

the property dfγ(0)(γ
′(0)) = γ′(1). Also, since

T(γ(0),γ(1))Graph(f) = {(v, dfγ(0)(v)) : v ∈ Tγ(0)M)},

we have that

TγM
I
N = {Xγ ∈ C0(I,M) : (Xγ(0), Xγ(1)) ∈ T(γ(0),γ(1))Graph(f)}

= {Xγ ∈ C0(I,M) : (Xγ(0), dfγ(0)(Xγ(0))) ∈ Tγ(0)M × dfγ(0)(Tγ(0)M)}.

So, in particular γ′ ∈ TγM I
N .

3.1.1 Reformulation of the Classical Theorems as an Index

of N-geodesics

Now, let us reformulate the idea of finding shorter curves in the case of Frankel

and Weinstein theorems as an index of non-trivial N -geodesics.
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Theorem 3.1.1 (Frankel). Let Mm be a complete connected Riemannian manifold

with positive sectional curvature. Let N = U r ×W s ⊂ M ×M where U r and W s

are compact totally geodesic submanifolds of M such that r+s ≥ m, then the index

of non-trivial N-geodesics is ≥ s+ r −m+ 1.

Proof. Let γ(t) : [0, 1] → M be a non-trivial N -geodesic. Then by the above

remark, we have that γ is a geodesic that joins U to W starting orthogonal to

U and ending orthogonal to W . Using a similar procedure as in the original

proof of Frankel’s theorem, we can find a parallel vector field V (t) along the curve

γ(t), which is orthogonal to this curve, so V (0) ∈ Tγ(0)U and V (1) ∈ Tγ(1)W ; i.e

V ∈ TγM I
N .

Then, performing a variation of γ that has variational field V (t), in which

the transversal curves are geodesics, using the second varational formula E∗∗ :

TγM
I
N × TγM

I
N → R of the energy function and the fact that M has positive

sectional curvature we obtain that

E∗∗(V, V ) = −
∫ 1

0

sec(γ′, V )dt < 0,

so the index of γ is ≥ s+ r −m+ 1.

Theorem 3.1.2 (Weinstein). Let f : Mm → Mm be an isometry of a compact,

oriented Riemannian manifold Mm with secM > 0. Let N = Graph(f). If f is

orientation-preserving if m is even and orientation-reversing if m is odd, then the

index of non-trivial N-geodesics is ≥ 1.

Proof. Let γ(t) : [0, 1] → M be a non-trivial N -geodesic. Then, by the above

remark γ is an f -invariant geodesic. Then, using an analogous procedure as in the

original proof of Weinstein’s theorem, we find a parallel vector field V (t) along γ(t)
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which is orthogonal to this curve such that V (1) = dfp(V (0)) (note that V 6= γ′).

Then, by the above remark we have that V ∈ TγM I
N .

Then, making a variation of γ that has variational vector field V (t), using the

second variational formula E∗∗ : TγM
I
N × TγM I

N → R of the energy function and

the fact that M has positive sectional curvature we obtain that

E∗∗(V, V ) = −
∫ 1

0

sec(γ′, V )dt < 0,

so the index of γ is at least 1.

The hypothesis of f : Mm → Mm about being orientation-preserving (revers-

ing) according to m is even (odd) for the computations of the index of N -geodesics

can not be relaxed. The same examples given in the first section illustrate this

fact.

Example 3. Let M = S2 and f = −id be the antipodal map of S2. Then f is an

orientation-reversing isometry. Let x ∈ S2 and consider a minimal geodesic γ in

S2 that joins x to −x. Then γ is a non-trivial Graph(f)-geodesic; however, it has

index 0.

Example 4. Let M = S3 and f = −id be the antipodal map of S3. Then f is an

orientation-preserving isometry. Let x ∈ S3 and consider a minimal geodesic γ in

S3 that joins x to −x. Then γ is a non-trivial Graph(f)-geodesic; however, it has

index 0.

3.1.2 Direct proofs of the Classical Theorems

Now, let us focus our attention to the energy function for paths restricted to the

space M I
N . As in [4], the critical points of the energy function restricted to M I

N
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correspond to N -geodesics. This is true, since if γ is a critical point for the energy

function restricted to M I
N , then E ′(0) = 0. The fact that γ is a geodesic is a

consequence of proposition 1.5 in [4]. Then, by the first variational formula of the

energy function, we have that

0 = E ′(0) = 〈W (1), γ′(1)〉 − 〈W (0), γ′(0)〉

= 〈(W (1),W (0)), (γ′(0),−γ′(1))〉M×M

for any W (t) ∈ TγM I
N . The above equality is precisely condition (1) of the defini-

tion of an N -geodesic; that is,

(γ′(0),−γ′(1)) ∈ (T(γ(0),γ(1))N)⊥.

That an N -geodesic is a critical point of the energy function restricted to M I
N

is clear if we use the facts that γ is a geodesic and satisfies condition (3.1) in the

first variational formula of the energy function.

Remark 7. Grove and Halperin proved in [6] that the energy function E : M I
N →

R satisfies condition (C)of Palais and Smale (a necessary condition for making

critical point theory, like Morse theory on infinite dimensional manifolds) iff the

function dist ◦ e : N → R is proper, where dist : M ×M → R is the distance

function in M and e : N ↪→M ×M is the inclusion map.

With the computations of a lower bound for the index of non-trivialN -geodesics

in the cases discussed above, we can now give a direct proof to Frankel’s and

Weinstein’s theorems.

Theorem 3.1.3 (Frankel). Let Mm be a complete connected Riemannian manifold

with positive sectional curvature and let U r and W s be compact totally geodesic

submanifolds such that r+s ≥ m, then U r and W s have a non-empty intersection.

22



Proof. Let N = U × W . Let γ be a non-trivial N -geodesic. So, γ is a critical

point of the energy function (restricted to M I
N). By our index estimates, we have

that the index of γ ≥ s + r − m + 1. Then γ is not a minimum for the energy

function, otherwise it would have index 0. Then, the minimum is reached1 at

trivial N -geodesics, i.e. points of N = U ×W . This means that U must intersect

W .

Theorem 3.1.4 (Weinstein). Let f : Mm → Mm be an isometry of a compact,

oriented Riemannian manifold Mm with secM > 0. If f is orientation-preserving

if m is even and orientation-reversing if m is odd, then Fix(f) = {x ∈M : f(x) =

x} 6= ∅.

Proof. Let N = Graph(f). Let γ be a non-trivial N -geodesic. So, γ is a critical

point of the energy function (restricted to M I
N). By our index estimates, we have

that the index of γ ≥ 1. Then γ is not a minimum for the energy function,

otherwise it would have index 0. Then, the minimum is reached2 at trivial N -

geodesics, i.e. points of N = Graph(f) = {(p, f(p)) : p ∈ M}. This means that

there exists a point x ∈M such that x = f(x).

3.2 Wilking’s theorem: The Connectedness Prin-

ciple

The next theorem, which uses Synge’s trick and Morse Theory, was proved by

Wilking in [12]. It is in some sense, a special case of Frankel’s theorem where

1see remark 7

2see remark 7
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N = U × U ⊂M ×M and U is a compact totally geodesic submanifold of M . It

uses Synge’s trick similarly as in the case of Frankel’s theorem to compute a lower

bound for the index of N -geodesics.

Theorem 3.2.1 (Connectedness Principle). Let Mm be a compact manifold with

positive sectional curvature, suppose that Um−k ⊂Mm is a compact totally geodesic

embedded submanifold of codimension k. Then the inclusion map Um−k ↪→Mm is

(m-2k+1)-connected.

Proof. Let N = U × U ⊂ M × M . Let M I
N = M I

U×U be the space of smooth

curves γ(t) : [0, 1] −→M such that (γ(0), γ(1)) ∈ U × U ; i.e. the space of smooth

curves in M that start and end in U . Consider the energy function defined on

M I
N = M I

U×U by

E(γ) =
1

2

∫ 1

0

‖γ′(t)‖2dt.

Since Um−k can be embedded in M I
U×U as the set of point paths, we have that

E−1(0) = Un−k. We will use Morse Theory to show that the space M I
U×U has the

homotopy type of a CW-complex which consists of cells of dimension ≥ m−2k+1

attached to the 0−skeleton Um−k.

By the first variational formula for the energy of paths, we have that the critical

points of E are precisely the geodesics of M that start and end perpendicular to

U ; i.e. (U × U)-geodesics. Let γ : [0, 1] −→ M be one of such geodesics. We will

use the same idea as in the proof of Frankel’s theorem, to compute a lower bound

for the index of γ(t). Let W1 = Tγ(0)U ⊂ Tγ(0)M be the tangent space to U at

the point γ(0) and let W2 ⊂ Tγ(0)M be the linear subspace obtained by parallel

transporting Tγ(1)U along γ(t) at the point γ(0). Since Tγ(1)U is orthogonal to γ
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at γ(1), then W2 is also orthogonal to γ at γ(0). Then

dim(W1∩W2) ≥ dimW1+dimW2−(dimM−1) = 2(m−k)−(m−1) = m−2k+1.

Then, there exist m−2k+1 parallel fields V (t) along γ(t) such that V (0) ∈ Tγ(0)U

and V (1) ∈ Tγ(1)U . Similarly as in the proof of Frankel’s theorem, for every parallel

field V (t) we can construct a variation of γ with variational field V (t) in which

the transversal curves are geodesics, so using the second variational formula for

the energy and the fact that secM > 0, we have that d2E
ds2

(0) < 0. Then, the index

of γ is ≥ m− 2k + 1.

Now using Morse Theory, see [8] section 22, we have that there is a Morse

function E ′ that is C∞ close to E, such that E ′ = E on a neighborhood of U =

E−1(0), and has index ≥ m − 2k + 1 on any geodesic γ ∈ M I
U×U\U . Then

πr(M
I
U×U , U) = 0 for 0 < r ≤ m− 2k; then by the short exact homotopy sequence

of a pair, it follows that the inclusion map U ↪→M I
U×U is (m− 2k)-connected.

Let Di be the closed disk with boundary ∂Di. Since any map (Di, ∂Di) −→

(M,U) induces a map (Di−1, ∂Di−1) −→ (M I
U×U , U), and viceversa, we have that

πi(M,U) ∼= πi−1(M
I
U×U , U). So, πi(M,U) = 0 for i = 1, ...,m − 2k + 1. Using

the short exact sequence for a pair, we have that the inclusion map U ↪→ M is

(m− 2k + 1)-connected.

3.3 Optimal General Index Theorem

In this section, we are going to formulate and prove an optimal general index

theorem for a lower bound of the index of non-trivial N -geodesics. This theorem
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is going to put together Frankel, Wilking and Weinstein-Synge’s theorems.

Observe that we can identify M I
N , the space of curves γ in M that start in the

first coordinate of N and end in the second coordinate of N (i.e. (γ(0), γ(1)) ∈ N),

with (M ×M)I
′

N×4, where I ′ = [0, 1
2
], the space of curves in M ×M that start in

N and end in 4, in the following way:

M I
N −→ (M ×M)I

′

N×4

γ(t), t ∈ I 7−→ γ̂(t) = (γ1(t), γ2(t)), t ∈ I ′,

where γ1(t) = γ(t) and γ2(t) = γ(1 − t), t ∈ I ′. This is well-defined, since

γ̂(0) = (γ1(0), γ2(0)) = (γ(0), γ(1)) ∈ N and if we denote γ(1/2) = p, we have

that γ1(
1
2
) = p = γ2(

1
2
), so γ̂(1

2
) = (γ1(

1
2
), γ2(

1
2
)) = (p, p) ∈ 4.

p

γ1(t) γ2(t)

γ1(0) = γ(0) γ(1) = γ2(0)

γ(t)

M

4

N

M ×M

γ̂(t) = (γ1(t), γ2(t))

Figure 3.1: Identification M I
N −→ (M ×M)I

′

N×4

The identification in the other direction is given by

(M ×M)I
′

N×4 −→M I
N

γ̂(t) = (γ1(t), γ2(t)) t ∈ I ′ 7−→ γ(t), t ∈ I,
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where γ(t) =


γ1(t) if t ∈ [0, 1

2
],

γ2(1− t) if t ∈ [1
2
, 1].

γ1(t) γ2(1− t)
γ(t)

M

4

N

M ×M

γ̂(t) = (γ1(t), γ2(t))

Figure 3.2: Identification M I
N −→ (M ×M)I

′

N×4

Remark 8. N-geodesics are in 1-1 correspondence with (N × 4)-geodesics un-

der the identification given above. This can be verified either by checking that

E|′
MI
N

(0) = E|′
(M×M)IN×4

(0) or by using directly the definition of a curve being an

N-geodesic and (N ×4)-geodesic, respectively and proving inclusion of sets.

Let γ ∈ M I
N be a non-trivial N -geodesic. Let γ̂ ∈ (M × M)I

′

N×4 be the

corresponding (N ×4)-geodesic. That is,

γ̂(t) = (γ1(t), γ2(t)) = (γ(t), γ(1− t)) t ∈ I ′.

Then since γ̂ is an (N × 4)-geodesic, we have by the remark (5) that γ is a

geodesic that starts orthogonal to N and ends orthogonal to 4.

Let P̂ (t) be a vector field along γ̂ such that P̂ (0) ∈ Tγ̂(0)N and P̂ (1) ∈ Tγ̂(1)4;

that is, P̂ ∈ Tγ̂(M ×M)I
′

N×4. Then P̂ corresponds to a vector field P along γ

given by
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P (t) =


P1(t) if t ∈ [0, 1

2
],

P2(1− t) if t ∈ [1
2
, 1]

such that (P (0), P (1)) ∈ T(γ(0),γ(1))N ; i.e. P ∈ TγM I
N .

Indeed, P (t) is well-defined since the condition

P̂ (1/2) = (P1(1/2), P2(1/2)) ∈ Tγ̂( 1
2
)4 = T(γ( 1

2
),γ( 1

2
))4

means that P1(
1
2
) = P2(

1
2
).

Since P̂ (0) = (P1(0), P2(0)) = (P (0), P (1)) and γ̂(0) = (γ1(0), γ2(0)) = (γ(0), γ(1)),

then the condition P̂ (0) ∈ Tγ̂(0)N is a different way to write (P (0), P (1)) ∈

T(γ(0),γ(1))N .

Therefore, P̂ ∈ Tγ̂(M ×M)I
′

N×4 if and only if P ∈ TγM I
N .

Moreover, it is clear that P̂ ∈ Tγ̂(M ×M)I
′

N×4 is a parallel vector field along γ̂

if and only if P ∈ TγM I
N is a parallel vector field along γ.

Now, let us compute a lower bound for the index of a non-trivial N − geodesic

(which is the same that the index of the corresponding non-trivial (N × 4)-

geodesic.)

Using the same idea as in the classical proof of Frankel’s theorem the number

of parallel fields P̂ along a non-trivial (N × 4)-geodesic γ̂ which are orthogonal

to the velocity vector field of the curve γ̂ is at least

dimN + dim4− (dim(M ×M)− 1) = n+m− (2m− 1) = n−m+ 1.
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4

N

M ×M

γ̂(t)

P̂ (t)

Figure 3.3: Parallel vector fields P̂ along γ̂

such that P̂ ⊥ γ̂′

Note that the condition P̂ ⊥ γ̂′ just means for P and γ′ that

0 = 〈(P1(t), P2(t)), (γ
′
1(t), γ

′
2(t))〉M×M ∀ t ∈ I ′

= 〈(P (t), P (1− t)), (γ′(t),−γ′(1− t))〉M×M ∀ t ∈ I ′

= 〈(P (t), γ′(t))〉M − 〈P (1− t), γ′(1− t)〉M ∀t ∈ I ′

which happens if and only if

〈(P (t), γ′(t))〉M = 〈P (1− t), γ′(1− t)〉M ∀t ∈ I ′. (3.2)

So, there are at least n −m + 1 candidates P (t) in which the Hessian of the

energy function E|MI
N

is going to be negative-definite.

Let P = {P ∈ TγM I
N : P is parallel along γ and satisfies (3.2)}. Then

dimP ≥ n−m+ 1.

So we get the following
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Theorem 3.3.1 (Lower bound for the index of non-trivial N -geodesics). Let Mm

be a complete, connected Riemannian manifold that has positive sectional curva-

ture. Let Nn ⊂ Mm ×Mm be a closed totally geodesic submanifold of M ×M .

Then, the index of a non-trivial N-geodesic γ is at least

(1) n−m if γ′ ∈ P.

(2) n−m+ 1 if γ′ 6∈ P.

Proof. Suppose W ∈ P and W 6∈ span(γ′), then by the second variational formula

of energy we get

E∗∗(W,W ) =

〈
D

ds
W (1), γ′(1)

〉
+

〈
W (1),

D

dt
W (1)

〉
−
〈
D

ds
W (0), γ′(0)

〉
−
〈
W (0),

D

dt
W (0)

〉
−
∫ 1

0

〈
W (t),

D2

dt2
W (t) +R(γ′(t),W (t))γ′(t)

〉
dt

=−
∫ 1

0

〈W (t), R(γ′(t),W (t))γ′(t)〉 dt

=−
∫ 1

0

sec(M)dt < 0,

where we have used in the second equality the fact that W (t) is parallel along γ

(i.e. D
dt
W (t) = 0 for all t ∈ I) and also we have performed a variation h(s, t) with

variational vector field W (t) in which the transversal curves h(s, 0) and h(s, 1) are

geodesics, so D
ds
W (1) = 0 = D

ds
W (0) (this last step can be done since N ⊂M ×M

is totally geodesic).

Now, suppose γ′ ∈ P . Then, by the same facts as in the above formula, the

first four terms in the second variational formula of energy are zero, then we have

that

E∗∗(γ
′, γ′) = −

∫ 1

0

〈γ′(t), R(γ′(t), γ′(t))γ′(t)〉 dt = 0,
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since R(γ′(t), γ′(t))γ′(t) = 0 for all t ∈ I.

Therefore, the index of a non-trivial N − geodesic γ is at least n−m if γ′ ∈ P

and if γ′ 6∈ P then the index is at least n−m+ 1.

Remark 9. Note that since γ is a geodesic, then γ′ is parallel and satisfies trivially

the condition (3.2) above. Then γ′ ∈ P whether or not

γ′ ∈ TγM I
N = {Xγ ∈ TγC0(I,M) : (Xγ(0), Xγ(1)) ∈ T(γ(0),γ(1))N},

that is, whether or not (γ′(0), γ′(1)) ∈ T(γ(0),γ(1))N .

So, in the case N = U r × V s with U r, V s ⊂ M compact totally geodesic

submanifolds of Mm, we obtain using the theorem above that the index of non-

trivial N -geodesics is at least r + s − m + 1, since in this case (γ′(0), γ′(1)) 6∈

T(γ(0),γ(1))N (since (γ′(0), γ′(1)) ∈ (T(γ(0),γ(1))N)⊥). So, as in Frankel’s theorem,

when r + s ≥ m then the index of γ is at least 1.

However, in the case N = Graph(f), where f : M → M is an isometry,

we get using the above theorem that the index of a non-trivial N -geodesic is at

least n − m = m − m = 0, since in this case γ′ ∈ P (since (γ′(0), f∗(γ
′(0))) =

(γ′(0), γ′(1)) ∈ T(γ(0),γ(1))N). So, in this case we do not get anything we already

knew. So, if we assume that Mm is compact, the lower bound for a non-trivial

N -geodesic we obtain using Weinstein-Synge’s theorem (i.e. at least 1) is stronger

than the lower bound we obtain using the above theorem, the reason is that the

theorem for the lower bound for non-trivial N -geodesics neglects the hypothesis

about f being orientation-preserving (reversing) in case m is even (odd). Precisely,

examples (3) and (4) illustrates this fact.

Notice that the bounds in this theorem are sharp: examples (3) and (4) satisfy

part 1 of the theorem whereas Frankel’s theorem satisfies part 2.
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It is surprising that although Synge’s theorem was the first one to be proved,

it is actually more difficult to obtain than the other theorems (Frankel, Wilking)

using the computation of the index on non-trivial N -geodesics.
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