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Chapter 1

Introduction

1.1 Rationale

Departure time choice is an important component of the travel decision-making

process. Understanding the factors and behavioral mechanisms that determine trav-

elers’ departure time choices is a prerequisite to designing and evaluating policies

aimed at mitigating congestion and reducing emissions.

With a great number of vehicles traveling on the road especially during the

peak hours, the congestion level of Washington D.C.’s major corridors, including

the Capital Beltway (I-495), I-270, and I-95, is far from satisfactory. In response

to the changing congestion pattern and travel condition, naturally, commuters may

deviate from their habitual departure time to avoid extreme delay in peak hour

and/or to avoid being late. In this regard, travelers’ preference toward alternative

departure times is an important dimension for travel demand and policy analysis

when peak spreading is of concern.

Multiple congestion management initiatives have received increased attention

recently including dynamic tolling and managed lanes, due to their efficiency in al-

tering travelers’ departure time and route choice [3]. Time varying charges influence

trip makers to make departure timing decision so as to minimize their associated

travel cost. Managed lanes such as HOV/HOT lanes can move at full speed even
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when parallel lanes suffer delays from queuing, which also play an alternative role

of avoiding peak congestion. The consideration of trip timing behavior is essential

for modeling the impact of congestion pricing and any other scenarios corresponded

to peak spreading and dynamic route/lane choice. Thus, the ability to realistically

capture trip makers’ response to time varying road charges is essential for predicting

network flows under dynamic road (congestion) pricing.

However, traditional four-step transport planning models and traffic opera-

tions models usually neglect the within-day temporal dynamics of the travel de-

mand, only focusing on getting the average travel pattern. In the state of Maryland,

several effective modeling tools for traffic analysis and travel forecasting has been

successfully developed in recent years. Examples include the I-270 corridor micro-

scopic traffic simulation model and the Maryland Statewide Transportation Model

(MSTM). In order to comprehensively analyze the traffic and demand impact of

the aforementioned various operations and planning strategies, a fully operational

departure time choice model, as well as the integration of traffic models and travel

demand models at the corridor, multi-corridor, and even statewide levels, is badly

needed.

1.2 Research Objectives

Therefore, the main research objective is to specify, estimate, validate, and

demonstrate a fully operational departure time choice model.

The normative behavioral theory, which assumes substantial rationality, com-
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plete information, and utility maximization, has been applied extensively in mod-

eling departure time choice as the following chapter of literature review will show.

Following this line of research, the thesis first develops discrete choice models and

highlights the latent class model which considers heterogeneous taste by specifying

different user classes.

Then the thesis alternatively develops a novel positive approach to departure

time choice modeling, which considers the role of Search, Information, Learning,

and Knowledge (SILK) in travel decision-making, and focuses on how departure time

decisions are actually made. Departure time choice is theorized as a continual search

process with several key concepts defined and operationalized including spatial-

temporal travel knowledge, adaptive learning, subjective beliefs, subjective search

gain, perceived search cost, search starting and stopping conditions, search rules,

and decision rules.

In practice, there is imperative need for incorporating departure time choices

into both microscopic traffic operations analysis and micro/macro-level travel de-

mand studies. For instance, short-term congestion management strategies including

peak-period pricing, traveler information systems, and operational improvements

often induce departure time shifts and peak spreading (i.e. trips diverting from

peak to off-peak, and from peak-peak to shoulder-peak period). Long-term travel

demand growth will likely cause even worse congestion during peak travel hours,

and subsequently lead to departure time shifts. The proposed positive model tracks

the departure time changes of each individual user in the transportation system,

and therefore is especially suitable for integration with microscopic traffic simula-
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tors, simulation-based dynamic traffic assignment models, and activity/agent-based

travel demand models.

Microscopic traffic simulation models exhibit strong advantages in capturing

detailed traffic dynamics and have been approved in practice a valuable tool for eval-

uating corridor capacity expansion and traffic operation improvements. Their ap-

plications have recently been extended to address a broader range of transportation-

related issues, including congestion management, multimodal corridor improvements,

evacuation planning, land use and economic development. However, a compre-

hensive analysis of many of these issues requires models that can consider various

demand responses to these traffic management strategies such as peak spreading,

modal shifts, and traffic diversions at the corridor and regional levels, all of which

are conventionally taken as given in micro-simulation models. Another challenge

for applying micro-simulation models to large network is due to the difficulty of

obtaining reliable travel demand data (usually as time-dependent origin-destination

matrices).

Although planning models are traditionally used to address these demand-side

problems, they are criticized for:

• Assigning traffic flow over link/corridor capacity;

• Lacking the ability to output micro-level performance measures; and

• Being unable to capture the impact of policy changes and/or operational im-

provements such as better signal timing.

As planning models move from the aggregate four-step models into more realistic

4



individual-based models, more details on travel experience (e.g. time-dependent

travel time) are required to make these models operational in practice. Surveys

based on hypothetical scenarios, which are heavily relied on during the model devel-

opment and calibration process, can only support analysis for a limited number of

OD pairs due to budget and man-power constraints. However, these inputs can be

easily extracted from microscopic traffic simulation models. Naturally, it becomes

very attractive for both researchers and practitioners to develop integrated models

to benefit from strengths of both sides. Therefore, this thesis also puts consider-

able effort into taking all the advantages of the traffic simulators while applying the

departure time choice models.

1.3 Contributions

This thesis focuses on the development of a fully operational and theoretically

sound departure time choice model. And at the mean time, it aims at testing the

feasibility of integrating the behavioral model to traffic models in order to analyze

traffic operations, route diversion, peak spreading, and other major demand shifts

under a variety of traffic operations and planning scenarios. Compared with previous

studies, this thesis has made contribution in the following aspects:

Firstly, the thesis explores the discrete choice models and highlights the mer-

its brought in by the latent class modeling, which is largely unexploited in travel

behavior research. Compared with mixed logit, the latent class model relaxes the

strong assumption regarding the parameter distribution and performs statistically
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as good without consuming as much computational time as mixed logit since the

latter often requires a number of simulation draws.

Secondly, the thesis recognizes the limitations of the normative approach and

develops a novel positive approach to model the departure time choice. This model

considers the drivers’ actual behavior rather than the behavior that maximizes the

utility. Overall, it successfully removes the assumption about perfect information

and utility maximization. Each individual can only identify finite departure time al-

ternatives in the model, which addresses the limitation regarding the unrealistically

large alternative set. In addition, the heuristics and rules derived in this approach

are extracted from behavioral data. They are intuitive and can easily be imple-

mented in micro-simulation. The extra information necessary for estimating this

model is gathered by a carefully designed retrospective recall survey questionnaire.

Finally, the thesis demonstrates the idea of integrated behavioral and traffic

simulation model based on a real world application. This is one of the earliest re-

search attempt to consider rich behavioral response in the multi-corridor planning

and operations modeling. One of the strengths of the rule-based positive departure

time choice model is that the execution of the rules requires minimum computa-

tional resources, which makes the micro-simulation, which involves a large number

of decision agents, computationally feasible.

1.4 Outline of Thesis

The remainder of the thesis is organized as follows.

6



In Chapter 2, the literature related to the departure time choice modeling is

reviewed and discussed thoroughly. Two behavioral theories are contrasted, i.e. nor-

mative theory and positive theory. Normative theory assumes perfect information

and maximizes the random utility. And it is applied in two lines of research, in-

cluding equilibrium scheduling theory and discrete choice analysis. Positive theory

focuses on what individuals actually behave and relaxes the strong assumptions of

rationality. The work that combines the departure time choice models and traffic

models is also reviewed in this chapter.

In Chapter 3, we present the survey design and data collection procedure. To

estimate the departure time choice models, a web-based joint stated preference (SP)

and revealed preference (RP) departure time, mode/lane choice, and departure time

search survey has been conducted in the year of 2011. It consists of two waves of

data collection collecting a total number of 151 effective samples.

In Chapter 4, three discrete choice models based on rational normative theory

are presented. A latent class study is highlighted here for its unique capability of

representing the behavioral heterogeneity without assuming unwarranted distribu-

tion of random parameters. The latent class model reveals drivers’ latent preference

towards sharing ride (i.e. carpooling using high-occupancy vehicle lane). It further

reveals that this latent preference is associated with age and whether they are cur-

rently carpooling or not. Thus, the taste variation is represented by the two latent

classes, with one class preferring carpooling.

Chapter 5 develops a novel positive approach to model the departure time

choice, focusing on how the departure decisions are actually made. The choice is

7



theorized as a continuous search process with several key concepts defined and opera-

tionalized including spatial-temporal travel knowledge, adaptive learning, subjective

search gain, perceived search cost, search starting and stopping conditions, search

rules, and decision rules. A numerical example highlights that the proposed positive

model tracks the departure time changes of each individual user in the transporta-

tion system and is able to estimate rich behavioral dynamics, such as day-to-day

evolution of congestion by departure intervals and individual-level learning, search,

and decision-making processes over time.

Chapter 6 demonstrates the positive model’s suitability for integration with

microscopic traffic simulators. This integrated model covers three inter-state freeway

corridors (i.e. I-270, I-495, and I-95) in the Northern Washington D.C. metropolitan

area, capturing the regional impacts of new policies and infrastructure development.

Firstly, a large-scale traffic micro-simulation model has been built and calibrated.

Then the integrated modeling framework is developed and tested on a designed

scenario. With this valuable tool, regional and corridor-level planning analysis is

able to capture temporal demand dynamics in a more accurate manner.

Chapter 7 provides the conclusion to the thesis.

8



Chapter 2

Literature Review

2.1 Overview

Conventional four-step planning models usually neglect the within-day tem-

poral dynamics of the travel demand, only focusing on getting the average travel

pattern. However, the severity of road congestion also largely depends on the dis-

tribution of travel demand among different time periods of the day. Thus, under-

standing how people schedule their trips becomes very crucial in managing conges-

tion and making policy/planning decisions. The study of departure time choice has

started as early as half century ago. From then on, researchers have investigated

this interesting scheduling behavior from various aspects, either formulating it as a

supply-demand equilibrium problem, or discretizing the time axis and empirically

modeling it as a choice based on random utility theory.

This chapter reviews comprehensively the literature world of the departure

time studies, as well as the applications of the departure time models in various

planning/operations analysis. Firstly, the materials based on utility maximization

theory are summarized. This line of research is often referred as the “normative”

approach, being prescriptive and making claims about how the individuals should

behave. On the other hand, the descriptive “positive” approach also exists. And

it claims about how the individuals actually behave. While this positive behavior
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theory is seldom seen in modeling departure time choice and other travel behavior,

a thorough interpretation of the theory is provided. In particular, travelers’ relevant

spatial-temporal knowledge, subjective beliefs, search process, and decision making

are within the theoretical framework. Lastly, the relevant integrated models are

reviewed, which typically involves dynamic traffic assignment (DTA) models and/or

traffic micro-simulators. This chapter paves a solid background of the thesis. The

contribution made by the thesis in advancing both the state-of-the-art and the state-

of-the-practice is also highlighted in this chapter.

2.2 Utility Maximization Theory

Rational behavior theory assumes that individuals can identify all feasible al-

ternatives, measure all of their attributes, and choose the alternative that maximizes

their utility (Von Neumann et al. [79], Samuelson, [65], Savage, [66]). There have

been extensive research efforts applying this approach to departure time choice anal-

ysis. In particular, some earlier studies have adopted the following utility function

V (t) with respect to departure time t:

V (t) = αT (t) + βmax(0, (PAT − t− T (t))) + γmax(0, (t+ T (t) − PAT )) (2.1)

Where, T (t) is the travel time associated with departure at time t; PAT is the

preferred arrival time at destination; α, β, and γ are parameters to be estimated.

In addition, the departure time choice set may be assumed to be either continuous

(i.e. infinite number of options) or discrete (i.e. several predefined departure time

intervals).
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2.2.1 Equilibrium Scheduling Theory

Vickrey [78] examined a single bottleneck and derived supply-demand equilib-

rium conditions with departure time considerations. Inspired by Vickrey’s seminal

contribution, several researchers, including Arnott et al. [3], de Palma et al. [23], and

van Vuren et al. [77], have developed continuous departure time modeling frame-

works, collectively referred to as the “Equilibrium Scheduling Theory” (EST). Later,

EST was integrated with route choice analysis (Mannering [49], Mahmassani et al.

[48]). Bates [7] and Hague Consulting Group et al. [37] employed EST for network-

level transportation models and for dynamic traffic assignment. The HADES (i.e.

Heterogeneous Arrival and Departure times based on EST) model represents the

latest achievement of the EST-line of research.

2.2.2 Discrete Choice Analysis

The second line of research based on rational behavior theory focuses on dis-

crete departure time choice modeling. Small [70] adopted the multinomial logit

(MNL) approach to model departure time decision-making. However, the under-

lying assumption of independence from irrelevant alternatives (IIA) in MNL may

not hold for departure time choice analysis because adjacent departure time options

tend to exhibit correlated unobservable factors. In other words, if a decision-maker

prefers departure interval t, the same decision-maker probably also prefers departure

time intervals t−1 and t+1 to other intervals due to some unobservable factors (e.g.

dropping off/picking up a child as part of the trip, unknown scheduling constraints).
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Various methods for relax the IIA assumption have been proposed by researchers in

subsequent studies.

Nested logit (NL) models have been used to identify and address the correlated

departure time intervals (Polak and Jones [57], COWI et al. 1997, Browman et al.

[16]). Small [71] and Bhat [13] both tested the NL and a more general ordered

generalized extreme value (OGEV) model, which allows for a correlation parameter,

for a pair of alternatives, depending on the distance between these alternatives

along some natural ordering such as the clock time in departure time choice. And

they concluded that both the NL and the OGEV models performed better than

MNL. More recently, Ozbay and Yanmaz-Tuzel [55] estimated the NL model based

on SP data to evaluate the New Jersey Turnpike time-of-day pricing program. In

the model, the upper nest represents transponder ownership and the lower nest

represents departure time choice. Their departure time choice is categorized into

three alternatives: pre-peak, peak, and post-peak period. The contribution of this

study is the value of travel time (VOTT) estimation for a specific user influenced

by departure/arrival time in the presence of time-of-day pricing applications.

An even more general approach in identifying correlation parameter is the

paired combinatorial logit (PCL) model. The PCL model allows for different cor-

relation between each pair of alternatives; however, the correlation factor does not

depend on the distance between the alternatives as in the OGEV model. Koppelman

and Wen [44] developed paired combinatorial logit (PCL) model based on the inter-

city mode/departure time choice data from the Toronto-Montreal corridor in 1989.

Their result indicated that PCL with paired structure provides the best statistical

12



fit compared to MNL and NL. The PCL was shown to provide a better prediction

on direct and cross elasticities compared to MNL and NL models.

Cross-nested logit (CNL) models, which allow more flexible substitution pat-

terns than NL, were also explored by researchers, including Vovsha [80], Ben-Akiva

and Bierlaire [8], Wen and Koppelman [81], and Papola [56]. More recently, Lemp

et al. [45] introduced the continuous cross-nested logit (CCNL) model, which con-

siders correlations across alternatives in a way similar to the continuous response

variable approach but still retains the random utility theoretical framework. This

approach takes advantage of the ease of the application of random utility theory

and recognizes the continuity in time.

Another line of discrete choice research focuses on the mixed logit (ML) models

with random-coefficients and/or error components. Bhat [12] and de Jong et al. [22]

adopted the error components logit (EClogit) specification, taking into account the

different degrees of substitution among departure time intervals. Borjesson [15]

developed a mixed logit model considering three alternatives (two for autos and one

for public transit) using joint stated preference (SP) and revealed preference (RP)

data. ML models are highly flexible that they can approximate any random utility

models [51]. However, they are often criticized for requiring the analyst to make

specific assumptions about the distributions of parameters across individuals [36].

Unlike the ML which assumes specific distributions of parameters, the latent

class (LC) models capture unobserved preference heterogeneity by assuming that

dividing the population into a discrete number of classes can sufficiently represent

the taste variation [67]. Greene and Hensher [36] and Shen et al. [67] compared LC
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and ML and raised the special merits offered by the LC models. The LC models are

often used in marketing research, while there are few studies in transportation. Very

recently, Ben-Elia et al. [11] applied LC based on the notion of a latent preferred

arrival time to study the reward effect on peak-hour avoidance. Based on the LC

specification, they drew interesting conclusions regarding the latent heterogeneity

in arrival time preference.

2.3 Positive Behavior Theory

Most previous studies have adopted the utility maximization and perfect in-

formation assumptions of rational behavior theory. Tversky and Kahneman [76]

argue on the basis of a number of empirically studies that individuals rely on men-

tal shortcuts or heuristics that “are highly economical and usually effective but

lead to systematic and predictable errors.” This is especially true when making

choices among a large number of alternatives (e.g. departure time choice) because

individuals obviously cannot obtain complete travel time and travel reliability in-

formation for every feasible departure time interval. Ettema et al. [30] developed

a model for departure time and route choice analysis, wherein individuals update

their knowledge about traffic conditions based on their respective travel experience.

The CHAID decision tree algorithm was used to model departure time choices based

on learned travel time and travel uncertainty information. Utility maximization is

still assumed in the modeling framework, and therefore their method is probably

better described as a hybrid modeling method.
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In reality, an individual’s knowledge about the travel condition of different

alternative departure time choices is obviously incomplete and often biased. Each

traveler actually accumulates the travel experience day by day and gradually forms

spatial knowledge through the learning process, according to the nature of spatial

knowledge interpreted by Golledge and Stimson [34]. Thus, explicitly modeling this

spatial learning and knowledge accumulation process becomes crucial in a positive

model which aims at modeling what the travelers actually behave. Bayesian learning

has been applied in several route choice studies (Iida et al. [40],Jha et al. [41]) which

model route perception and travel time learning without considering the complete

spatial-temporal knowledge. Other methods such as latent variables [60], measure-

ment of functional hierarchies [4] have also been employed by researchers to model

network knowledge.

There are at least two general theories of human behavior that do not assume

substantial rationality: prospect theory [42] and bounded rationality theory [68].

Based on the prospect theory, values are assigned to gains and losses. Decision-

makers use subjective and biased weights to replace probabilities in knowledge rep-

resentation and decision-making. The bounded rationality theory suggests that

decision-makers must spend time, money, and mental efforts to obtain information

and evaluate options, and their goal of utility maximization is bounded by the re-

sulting incomplete information and human computational capabilities. In the end,

individuals exhibit satisficing behavior instead of true utility maximization. Other

decision-making paradigms such as dominance, elimination by aspect, and lexico-

graphical rules all suggest that individual may adopt heuristics in decision-making,
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especially when they need to select from a large number of alternatives (Slovic et

al. [69], Svenson [73], Ben-Akiva and Lerman [10]).

Researchers have long realized that the assumption of a full choice set is often

unacceptable and thus devoted themselves to improving the behavioral realism of the

choice set generation process (Manski [50], Swait and Ben-Akiva [74], Ben-Akiva and

Boccara [9], Cascetta et al. [17]). The choice set generation process in the context

of departure time analysis is the search for alternative departure times, which is

often assumed away in previous research. Search theory, originally developed in

economics (Stigler [72], Salop [64], Rothschild [62]), may be applied for departure

time choices. It theorizes the process in which individuals search for alternatives

with various behavioral and environmental constraints. In contrast with the obvious

relevance of search theory to travel decision-making, few travel behavior studies have

applied this theory (Timmermans [75], Richardson [61], Williams and Ortúzar [82]).

Mahmassani and Chang applied a boundedly rational search process [47], using the

notion of indifferent bands to theorize travelers’ satisficing behavior under imperfect

information. But they did not fully specify search starting and ending conditions

with concepts such as search gain and search cost.

As individuals identify new departure time alternatives from the search pro-

cess, they need to decide whether or not they will use the new alternatives. This

requires a set of decision rules in departure time models. While maximizing util-

ity acts as the decision rule for rational behavior analysis, positive departure time

models need to focus on how individuals actually make departure time choice de-

cisions. Several knowledge representation methods, such as machine learning and
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logical programming, can estimate a set of decision rules based on observed decision

outcomes and decision environment (Durkin [28], Arentze and Timmermans [2]).

Building on previous theoretical and experimental human behavior research in

other fields, Zhang [85] developed a positive theoretical framework (referred to as the

SILK theory) for travel decision-making analysis, which was subsequently applied

to model route choices on a real-world transportation network. The framework

explicitly considers learning, knowledge updating, belief/expectation adjustment,

search process, and decision rules.

2.4 Integrated Models

Although planning models are traditionally used to address the demand-side

problems, they are criticized for: (1) assigning traffic flow over capacity and (2) un-

able to capture operational improvements such as better signal timing. As planning

models move from the aggregate four-step models into more realistic individual-

based models, more details on travel experience (e.g. time-dependent travel time)

are required to make these models operational in practice. Surveys based on hypo-

thetical scenarios, which are heavily relied on during the model development and

calibration process, can only support analysis for a limited number of OD pairs due

to budget and manpower constraints. However, these inputs can be easily extracted

from microscopic traffic simulation models. Therefore, it becomes very attractive

for both researchers and practitioners to develop integrated models to benefit from

strengths of both sides.
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The integration of microscopic traffic simulation with demand models has been

proposed for years. For example, Antoniou et al. [1] introduced a demand simula-

tion tool for DTA models, in which the departure time choice is determined within

a more general trip decision structure. The departure time was divided into five

intervals: depart two intervals earlier; depart one interval earlier; depart on her/his

preferred time; depart one interval later; depart two intervals later. The analysis

in this thesis follows his choice-set structure with the interval length pre-set as 20

minutes. Several years after Antoniou, Esser and Nagel [29] studied the home-based

work trips in Portland, Oregon by implementing a systematic feedback between

demand generation and traffic simulation. Route and destination decisions are con-

sidered and the objective is to match the overall commute time distribution. The

demand model lacks behavioral foundation and explicit departure time choice is not

considered.

Recently, a number of studies have been conducted to combine Dynamic Traf-

fic Assignment (DTA) models with advanced demand models (e.g. activity-based

models). Examples include Miller and Roorda [53],Lin et al. [46], and Hao et al.

[39]. These studies generate activity patterns from synthesized travelers. And then

the travel demand is dumped into simulation-based DTA models to decide traffic

pattern, which will in turn be fed back into the activity generator. This iterative

process is repeated until a convergence in behavior is reached. Departure time is

selected from pre-determined sets for each individual. Most of these models are cali-

brated against aggregate travel demand instead of individual behavior. In contract,

Flötteröd et al. [32] explicitly modeled learning behavior in travel “plan” genera-
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tion. In a more recent study, Flötteröd et al. [31] further discussed the calibration of

behavioral model parameters (such as the coefficients of a utility function) from traf-

fic counts. Two previous studies are specifically centered on departure time choice

problem in integrated modeling framework. De Palma and Marchal [24] modeled

the aggregate probability of departing during each time slot for each OD pair by

applying Vickery’s model, while Ettema et al. [30] use a mental model to describe

the effect of learning and adaptation processes on departure time decisions. As

mentioned, Ettema’s model also provides a good example considering individuals’

learning and adapting behavior.

Two major limitations of the existing integrated models that are worth noting

are identified by the author here. Firstly, previous studies exclusively follow the

utility maximization paradigm in describing individual responses to traffic condi-

tion changes. As discussed in the previous section, however, many researchers [5]

criticize random utility maximization, arguing that it describes how travelers should

behave instead of how they actually behave. It is crucial to realize that people are

limited to either knowledge about ever-evolving network conditions and willingness

or capacity to optimize their travel decisions. Many behavioral studies suggest that

decisions are guided by simple rules rather than a complex evaluation process [34].

Secondly, most previous studies focused on integrating travel demand models with

microscopic simulation are either limited in scale (e.g. only one corridor is modeled

in Ettema’s model [30]) or not detailed enough to capture impact of traffic operation

improvements (e.g. DTA-based analysis cannot model traffic signal with sufficient

detail). These two limitations are discussed and partially addressed in this thesis.
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2.5 Summary of the Literatures

Overall, departure time choice is still an immature area, in which none of

the models is well accepted. The current departure time choice research is classified

here into two types: first, the studies developing continuous departure time modeling

within the EST framework; second, the studies that discretize the departure time

and apply discrete choice models based on random utility theory. These two types of

models can be together referred as the normative approach which assumes individual

rationality and maximizes random utility. Much research effort has been put on

this line of studies. CNL and CCNL models have been developed to address the

issue regarding the correlation among the different choice alternatives in the large

departure time choice set. Random parameters and error components have been

employed in ML and EClogit models to address the issue regarding individuals’

taste variation.

When dealing with heterogeneity and taste variation, the strong assumption

made in ML and EClogit models that certain parameters follow certain distribu-

tion(s) often lacks credibility. The LC model, while semi-parametric, frees the mod-

elers from possibly strong or unwarranted distributional assumptions about indi-

vidual heterogeneity. Moreover, with the specification of a class probability model

within the LC, the model’s accuracy can be further improved. However, this type of

model specification is seldom tested in departure time studies. The thesis develops

a LC model, as well as a mixed logit model, in the Chapter 4, taking the latent

carpooling preference into consideration.
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While some researchers criticize utility maximization theory for representing

what travelers should do instead of representing what they actually behave, the

author reviews research work regarding the positive theory, including knowledge

representation, Bayesian learning, and search theory. An innovative positive model

can be found in the Chapter 5 applying the other school of methods: positive

modeling theory, wherein the imperfect information is assumed and the decisions

made by travelers are guided by simple heuristics. Obvious merits of this approach

include its relaxation of the strong assumption regarding perfect information, its

intuitive representation of human decision heuristics, and the unique simplicity that

it offers to agent-based/activity-based demand models and simulation-based traffic

models. The last point of its merits is fully interpreted in the Chapter 6 using a

case study designed with microscopic traffic simulator.
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Chapter 3

Survey Design and Data Collection Procedure

3.1 Overview

In the previous chapters, the need of analyzing peak spreading or departure

time switching has been highlighted. And the existing literature on modeling this

phenomenon has been summarized. Based on the literature review, the common lim-

itations in previous works have been recognized by the author. One major research

gap lies in the linkage between the behavioral models and traffic simulation models,

as well as in the development of a feasible tool that can be efficiently implemented

in large-scale simulation process.

To initiate the development of the departure time choice model and the inte-

grated traffic simulation model, Maryland State Highway Administration (SHA) and

University of Maryland conducted a web-based joint stated preference (SP) and re-

vealed preference (RP) departure time, mode/lane choice, and departure time search

survey. It consists of two waves of data collection collecting a total number of 151

effective samples. The first-wave survey was conducted on March 21-25, 2011, the

second one being conducted on May 23-27, 2011.

The survey questionnaire consisted of two parts. The first part was a list of RP

questions about the current travel behavior of respondents and their socio-economic

status. The second part contained an SP experiment, which used the answers given
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to the RP questions to determine the values of attributes presented to respondents.

3.2 Sampling and Data Collection

The survey used simple random sampling method. The population from which

the respondents were recruited consisted of car drivers traveling on the Capital

Beltway in the Washington DC metropolitan area during weekday morning and

afternoon peak period (6:00 a.m.-10:00 a.m., and 3:00 p.m.-7:00 p.m.). Drivers

were intercepted during their journeys when they were waiting at traffic lights on

several off-ramps of the Beltway. A flyer designed for this study was distributed

to the drivers, and the link to a web-based joint revealed/stated preference survey

on departure time and lane/mode choices was provided in the flyer. 2,200 drivers

had been reached by the research team during the data collection period. And 173

drivers responded the survey questionnaire, which results in the overall response

rate of 7.9%. Within the 173 responded surveys, 80 of the respondents completed

the survey, which results in the effective sample size of 80 observations.

The 2nd-wave survey used the same sampling method and data collection

procedure as the 1st-wave survey. 1,800 drivers had been intercepted and 131 re-

sponded the web-based survey, which results in the overall response rate of 7.3%.

71 respondents completed the survey and thus made the final sample size of the two

consecutive waves of survey adding to 151 observations. Figure 3.1 compare the

distributions of age and income of the final sample with those from the 2010 U.S.

Census. In general, the sample is representative of all drivers in the study area in
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terms of gender, age, ethnicity, with slight oversampling of higher-income drivers

(typical for web-based surveys). Descriptive statistics are presented in the Table

3.1.

Figure 3.1: Comparison of the Distributions of Age and Income

3.3 Revealed Preference

The RP questionnaire consisted of two sections: respondents’ socioeconomics

and recent trip information. In the first section, the drivers’ gender, age, household

income range, education, occupation, number of workers per household, number

of vehicles in the household, vehicle type, vehicle age, and work place ZIP code

information has been collected.

The second section gathered data about the drivers’ most recent trip on the

Beltway. The purpose of this section was to use their experienced trip condition as

the pivot point when designing the stated preference (SP) questions. This ensured

that the stated scenario in the SP part was realistic for each individual in the survey.
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Table 3.1: Descriptive Statistics

Variables Description Mean Std. Dev.

Individual Summary Statistics

gender Dummy= 1 if the respondent is male 0.5 0.5

age The respondent’s age 43.85 13.26

workers Number of workers in the household 1.76 0.64

cars number of vehicles in the household 1.98 0.87

income Household income $50K - $100K -

Most Recent Trip Statistics

TT Travel time (minute) 33.91 66.95

FC Fuel cost ($) 6.24 10.63

distance Travel distance (mile) 28.56 57.38

The respondent was asked to recall and describe his/her most recent trip information

on the Beltway via the following constructs:

• General information (mode, number of passengers, trip purpose, work start-

ing/ending time, and schedule flexibility);

• Trip time (departure time, arrival time, preferred departure time, and pre-

ferred arrival time);

• Trip cost (fuel cost, toll cost, park cost); and

• Travel uncertainty information (experienced shortest and longest total travel

time, the shortest and longest time spent on the Beltway)
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3.4 Departure Time Search Recall Questionnaire

Secondly, a series of carefully designed memory-recall questions were employed

to gather behavior process data related to the search for alternative departure times.

Each respondent was asked to recall the order of alternative departure times they

had considered and actually tried, as well as the travel conditions corresponding

to those departure time choices. The distribution of the number of alternative

departure times considered is illustrated in the Figure 3.2.

Figure 3.2: Sample Distribution of Number of Alternatives Considered

About 10% of the respondents had only experimented with just one departure

time, while most individuals had considered two to three departure times. About

20% of the respondents had tried more than four departure times. In the subsequent

modeling section, the reported departure time search characteristics and reported

travel conditions (travel delay, schedule delay early or late, etc.) are used to em-

pirically model both the search process, search rules for identifying new alternative
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departure times, and the distribution of perceived search costs among commuters.

3.5 Stated Preference

The third and final part of the survey is based on stated preference (SP) de-

sign, wherein the respondents were asked to make choices in seven hypothetical

choice situations. Unique SP alternatives were designed for each respondent based

on her/his reported current commuting trip attributes in the RP part of the survey.

Information collected in this part of the survey was used in the following chapters

to estimate both the departure time choice utility functions and the departure de-

cision rules that commuters employ to select departure times after they identify

alternatives from the search process. Each choice situation included three departure

time alternatives with different travel delay, schedule delay, and monetary costs:

(1) solo driver on normal lane, (2) high occupancy toll (HOT) lane, and (3) high

occupancy vehicle (HOV) lane. Figure 3.3 shows the interface of the departure time

choice on the website. As illustrated in Figure 3.3, each alternative is specified with

five variables, each of which has up to five levels of variation per alternative. The

variables included in the departure time choice experiment includes: (1) Departure

time, (2) Travel time range, (3) Arrival time range, (4) Fuel cost, and (5) Toll.

These variables are designed to account for traffic conditions by time of day taking

into account the observed respondents’ departure time [21]. The description of the

variables used in the SP scenarios is as follows:

• Departure time: Departure time is pivoted from respondents’ reported depar-
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Figure 3.3: Departure Time Questionnaire Interface

ture time in the RP.

• Total travel time range: This variable is designed to account for both time-of-

day conditions based on the respondents’ reported departure time and travel

condition on toll lane. It is aimed at capturing travel time uncertainty.

• Arrival time range: This variable is calculated corresponded to the departure

time and travel time range of the scenario provided to the respondent.

• Fuel cost: The fuel cost is designed to reflect higher expenses in the peak

period and on the normal lane. The fuel cost is pivoted from the reported fuel

cost in the RP part.

• Toll cost: The toll cost is designed as a mileage based using the Intercounty

Connector toll rates as a reference. The toll rate for the HOT lane accounts

varies depending on whether the respondents’ reported departure time is in
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the peak or non-peak period.

The survey is designed with orthogonal design approach where numerical eval-

uations in a wide range of parameters values was undertaken to guarantee sufficient

efficiency of the design. The pilot study, in combination with expert judgments,

was also used to arrive at the final levels of attribute in the SP experiment. The

questionnaire design of departure time choice game is shown in Appendix A. The

variable lists can be found in Appendix B.

3.6 Limitation/issues

One major limitation of the combined two-wave departure time and mode/lane

choice survey dataset is that the survey response rate is relatively low (about 8%).

And as shown in the Section 3.2, when compared with the values of all potential

participants, the survey respondents’ education and income level is slightly higher.

These may possibly be the evidence of the non-response bias and therefore further

tests for this bias are necessary. For instance, those who didn’t answer the web

survey should be reached and given a small number of questions. After judging if

their answers differ significantly from those who have responded the survey or not,

we can determine whether or not there is non-response bias. Once the tests prove

the existence of the non-response bias, the method of weighting adjustments should

be employed to deal with the low response rates as discussed by Groves [38] and

Dey [26].

One possible explanation for the low response rate is that this pilot survey
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is conducted without any incentives motivating people to respond. Although the

weighting technique can be implemented to address the bias issue, the first and most

important point is to avoid low response rate in the first place [26]. Many studies

focusing on improving web-based survey response rates are readily available in the

literature (Deutskens et al. [25], Dillman [27], among others). Some well-accepted

incentives that we should consider in the future surveys include: charitable giving,

lotteries with small prize but a higher chance of winning, enhancing visual elements

(such as product images), sending a reminder, identifying the importance of the

survey, sharing the results, and so on.
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Chapter 4

A Discrete Choice Analysis with Latent Carpooling Preference

This chapter presents a model of departure time choice based on the notion of a

latent carpooling preference. The model has been built using the combined revealed

preference and stated preference survey data described in the Chapter 3. The author

first estimates a conditional logit model to identify drivers’ choice of departure

time when toll is added. This interim model is then used to generate starting

values for a mixed logit model and a new modeling framework assuming latent class

in drivers’ preference towards sharing ride (i.e. carpooling using high-occupancy

vehicle lane). The latent class model suggests the heterogeneity of drivers’ behavior.

It further asserts that drivers’ preference towards HOV lanes is associated with age

and whether they are currently carpooling or not.

4.1 Objectives

Multiple congestion management initiatives have recently received increased

attention including dynamic tolling and managed lanes, due to their efficiency in al-

tering travelers’ departure time choice as well as route choice. Time varying charges

influence trip makers to make departure decision so as to either ‘buy’ desired travel

condition or avoid paying extra money by switching departure time. Managed lanes,

such as high occupancy vehicle (HOV) and high occupancy toll (HOT) lanes, can
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assure that the vehicles on the lane move at a reasonable speed even when the par-

allel lanes suffer delays from queuing. This also plays an alternative role of avoiding

peak hour congestion. Obviously, these pricing schemes and congestion management

tools greatly influence the choice of departure time, and thus should be modeled very

carefully.

This chapter develops discrete choice models investigating the impact of var-

ious congestion management policies such as tolling and managed lanes. We first

estimate several interim models to identify travelers’ choice. And then these interim

models are used to generate starting values for a new modeling framework assuming

latent class (LC) in carpooling preference.

4.2 Models

4.2.1 Data Preparation

The departure time can only be modeled in a binary choice pattern, since

in each observation the departure time is generated randomly, shifting 20 or 40

minutes earlier or later than the habitual departure time. Thus, the dataset is

treated and transformed into a series of binary choices. Take the Figure 3.3 as an

instance. Without loss of generality, let’s denote the three alternatives as A, B,

and C, respectively. If this particular respondent has chosen alternative A, then

there are two observations generated as: (1) A is better than B ; and (2) A is better

than C. It is worth noting that it represents only one observation if alternative B

or C has been chosen, since B and C are not directly comparable with the same
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departure time. The observations that have chosen to change routes are excluded

in the dataset.

4.2.2 Conditional Logit Model

One of the most widely used models is the conditional logit form: Vij =

βXij + εij which arises when each εij is an independent and identically distributed

(iid) draw from the type I extreme value distribution with scale parameter µ. The

probability (Equation 4.1) that individual i prefers alternative j takes the well known

form [52]:

Pij =
exp(β′xij)∑
k exp(β′xik)

(4.1)

The conditional logit model embodies the IIA property (which means that the odds

ratio for any two alternatives is unaffected by the inclusion of any third alternative).

And individual’s taste variance is not very well represented since in the random

utility function, each explanatory variable has the same marginal utility for each

individual. Albeit this method has these two well-known limitations, it is a good

starting point to explore the dataset and reveal the econometric nature. Thus we

consider the following variables in the utility functions:

• TTj = (TTmin + TTmax)/2: mean travel time if choosing alternative j, as

provided by the SP survey;

• FCj: fuel cost if choosing alternative j;

• TCj: toll cost if choosing alternative j;
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• DSDE = max(PDT − DT, 0): departure schedule delay early if choosing

alternative j;

• DSDL = max(DT − PDT, 0): departure schedule delay late if choosing al-

ternative j;

• INC4 TT : interaction variable for income level 4 (> $150K) and mean travel

time; and

• AGE FC: interaction variable for age (> 45) and fuel cost.

The model has been estimated using the software package STATA. The coefficients

of the attributes of the choice model are all significant and with the correct sign.

The results are listed in the Table 4.1.

Table 4.1: Estimation Results for the Conditional Logit Model

Variables Coefficients Std. Err. t-Statistic

TT -0.022 0.009 -3.389

FC -0.339 0.147 -4.371

TC -0.403 0.066 -11.204

DSDE -0.007 0.005 -2.241

DSDL -0.006 0.003 -2.562

DHOV -2.200 0.191 -16.319

INC4 TT -0.017 0.019 -2.421

AGE FC 0.395 0.174 4.240

# of Obs. 1,457

Log Likelihood -707.01

Pseudo R2 0.300

The first five variables are impedances, thus having negative signs. This model

shows the different levels of impact resulted from travel time, fuel cost, toll cost, and
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schedule delays. DHOV is a dummy variable which equals one if the alternative is

associated with carpooling mode. Normally, picking up carpoolers is considered as a

discomfort, which agrees with its negative coefficient. The rest three variables show

different effects of level-of-service on different socioeconomic groups. The coefficient

of INC4 TT is -0.017, which indicates that travel time has an extra penalty on

higher-income group of people. AGE FC shows that when choosing departure

time, fuel cost is more influential to younger drivers.

4.2.3 Mixed Logit Model

A random component logit specification has first been investigated to improve

the model. This type of models allows for a higher level of flexibility by specify-

ing taste coefficients to be randomly distributed across individuals. Normally dis-

tributed coefficients have been tested in the model. The model shows that drivers’

taste variation is very significant on the variable of departure schedule delay early

(DSDE ). The estimated results are reported in Table 4.2 with all parameters’ signs

correct and significant. Compared to the conditional logit model result, a slight

improvement has been obtained.

4.2.4 Latent Class Model

Another improvement for the conditional logit model is based on latent class

specifications. Many respondents in the survey reported that they have been al-

ready carpooling with passengers. Thus, DHOV should have different penalties on
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Table 4.2: Estimation Results for the Mixed Logit Model

Variables Coefficients Std. Err. t-Statistic

TT -0.024 0.009 -3.458

FC -0.325 0.147 -4.008

TC -0.445 0.066 -10.553

DSDE(Mean) -0.011 0.005 -2.583

DSDE(Std.Dev.) 0.035 0.011 3.226

DSDL -0.006 0.003 -2.870

DHOV -2.201 0.193 -14.680

INC4 TT -0.017 0.019 -1.822

AGE FC 0.392 0.176 3.850

# of Obs. 1,457

Log Likelihood -703.31

Pseudo R2 0.305

different group of people. For instance, those who are already sharing their ride with

others are more likely to keep choosing HOV rather than paying the toll. On the

other hand, traveling-alone drivers may be penalized more severely by the discom-

fort of choosing HOV. The information whether the respondent was driving alone

or not has been recorded by the RP survey questions. Secondly, the author assumes

that females are more likely to prefer sharing their ride.

Therefore, the author investigates a latent class logit model. This type of

models recognizes latent heterogeneity by classifying individuals into several groups.

And thus the taste variation is somewhat realized among individuals belonging to

different classes. Thus, the probability that individual i prefers alternative j is

defined by the Equation 4.2:

Pij =
C∑
c=1

QcPij|c =
C∑
c=1

Qc
exp(β′cxij)∑
k exp(β′cxik)

(4.2)

Where Pij|c denotes the conditional probability that i prefers j, and Qc denotes
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the probability that individual i belongs to class c. The class membership model is

estimated as a binary logit choice model. The following variables have been selected

to build the class membership model, which is based on the previous work and

after corrections of trial and error estimation and clearing out of non-significant

coefficients.

• AGE : dummy variable for the age (= 1 if age > 45); and

• CARPOOL: dummy variable for carpooling (equals 1 if the driver in the RP

is recorded having at least one passenger).

Therefore, three latent class logit models have been estimated and the results are

reported in the Table 4.3. Model 1 is a full model with 15 coefficients. Model 2

reduces the degree of freedom from 15 to 13 by fixing the coefficient of DSDE in

the Latent Class 1 and that of FC in the Latent Class 2 to be equal to zero. Model

3 further reduces the degree of freedom by regulating the coefficients of DHOV in

the Latent Class 1 to be equal to zero.

The models have been estimated using NLogit. The coefficients of the variables

are all significant and with the correct signs. The coefficients of the class probability

model are also significant and with the correct signs. Model 1 seems to be the best

in terms of log likelihood and pseudo Rho-squared statistic. Model 2 and 3 put

restrictions on the parameters in the likelihood expression that effectively reduce

the total number of unknown parameters. Likelihood ratio tests for Model 2 and

Model 3 have been conducted. The null hypothesis has been accepted at the 95%

significance level and thereby has all the assumptions about the coefficients accepted.
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The calculation procedure of the Model 2 is shown by Equation 4.3.

χ2
m2 = −2 ln

Lm2

Lm1

= 0.020 < χ2(0.95, 2) = 0.103 (4.3)

The class probability model suggests that younger drivers and current carpool-

ers are more likely to belong to the Latent Class 1, which is more sensitive to travel

time, fuel cost, and schedule delay late, as shown in the model. Class 1 has a very

low DHOV coefficient, which means this class is less penalized by HOV mode. The

taste variation of toll cost is also shown explicitly in the model. Table 4.4 reports

the probability to belong to the class of individuals with a HOV penalty for each

segment of the population. The average probability that individuals belong to Class

1 is 11.5%.

The cross tabulation of the conditional logit model, and the latent class model

has been examined by the author. The latent class model has a considerable better

success rate predicting the outcomes within the sample. The prediction accuracy of

the latent class model is 79.00% (1,151 successful predicts out of 1,457 observations),

while the accuracy of the conditional logit model is only 71.60%. In terms of log

likelihood and pseudo Rho squared statistic, the latent class model also does a better

job.

4.3 Summary

This chapter mainly investigates empirical models of departure time choice

based on the Capital Beltway travel survey data. This data provides a unique

opportunity to analyze departure time choice based on stated preference capturing
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individuals’ behavior response to road charges and other travel condition dynamics.

A conditional logit model, a mixed logit model, and a latent class model regarding

carpooling preference have been presented.

The dataset is of high quality since it delivers a substantial amount of variabil-

ity that has been captured by the two improved models. Heterogeneity in behavior

is apparent in the mixed logit model. The random terms of schedule delay early is

highly significant, indicating the large degree of variation amongst the drivers. The

latent class model is supported by stronger statistical results (on this occasion). It

interprets the heterogeneity in another context. The class probability model sug-

gests that younger drivers and current carpoolers are more likely to belong to Latent

Class 1, whose departure time choice is more sensitive to travel time, toll cost, and

fuel cost, as these coefficients are negative and statistically significant. This is an

interesting finding, which invokes further exploration of age-specific considerations

in incentive-based programs.

Secondly, the model also manifests that compared to Class 2, individuals of

Class 1 ’s departure time decision are more dependent to schedule delay late and they

are more likely to use HOV mode. Aside from avoiding toll charge, using HOV/HOT

lanes is also often associated with narrower travel time bandwidth, which means less

travel time uncertainty and thus less risk to suffer from extremely high congestion.

This result interprets that there exists a group of drivers having more fixed travel

schedule and preferring carpooling rather than paying toll to avoid possible extreme

delays.

In the future, certain improvements on this study can be foreseen by the
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author. Firstly, the complex departure time decisions need for better representation.

As a major contribution, individuals’ preference towards tolling and HOV/HOT lane

is revealed to some extent in the latent class model. Given the richness of the dataset,

jointly modeling the lane choice and departure time choice may further enhance the

model’s ability in this regard as the survey combines multiple dimensions of choices.

Secondly, without specifying the departure time periods as the alternatives in the

survey, the empirical study ends up using discrete choice methodology where the

IIA assumption cannot be avoided. We may build more flexible models such as error

component logit and generalized nested logit models to relax the strong assumptions

on which our current models heavily rely.
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Table 4.3: Estimation Results for the Latent Class Logit Model

Variables Model 1 Model 2 Model 3

Coeff. (Std. Err.) Coeff. (Std. Err.) Coeff. (Std. Err.)

Latent Class 1

TT -0.129 (0.023)***a -0.133 (0.071)* -0.151 (0.091)*

FC -0.828 (0.212)*** -0.836 (0.409)** -0.818 (0.458)*

TC -1.331 (0.210)*** -1.346 (0.519)*** -1.387 (0.564)**

DSDE 0.002 (0.009) 0 (fixed) 0 (fixed)

DSDL -0.029 (0.008)*** -0.029 (0.016)* -0.031 (0.017)*

DHOV -0.453 (0.267)* -0.446 (0.529) 0 (fixed)

Latent Class 2

TT -0.023 (0.007)*** -0.022 (0.005)*** -0.022 (0.005)***

FC -0.001 (0.054) 0 (fixed) 0 (fixed)

TC -0.339 (0.039)*** -0.340 (0.025)*** -0.343 (0.025)***

DSDE 0.010 (0.004)*** -0.010 (0.003)*** -0.010 (0.002)***

DSDL -0.005 (0.003)* -0.005 (0.002)** -0.005 (0.001)***

DHOV -3.098 (0.771)*** -3.081 (0.178)*** -3.121 (0.182)***

Class Probability Model

CONSTANT -2.374 (0.350)*** -2.406 (0.429)*** -3.253 (1.369)***

AGE -1.360 (0.563)** -1.371 (0.496)*** -1.334 (0.466)***

CARPOOL 2.826 (0.771)*** 2.844 (0.573)*** 2.754 (0.536)***

# of Obs. 1,457 1,457 1,457

Log Likelihood -681.58 -681.59 -681.91

Pseudo R2 0.319 0.319 0.319

asignificance level: * - 90% ** - 95% *** - 99%
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Table 4.4: Latent Class Model: Probability to be Penalized by Carpooling

Age Currently Carpooling? Probability

> 45 Yes 71.3%

> 45 No 97.7%

≤ 45 Yes 38.9%

≤ 45 No 91.5%
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Chapter 5

A Positive Model of Departure Time and Peak Spreading Dynamics

This chapter presents a novel positive departure time choice model under the

positive theoretical framework. Several modeling methods that traditionally are

not used in departure time choice analysis are adopted for their ability of rep-

resenting actual behavior and computational efficiency, including Bayesian learn-

ing, rule-based knowledge representation, search model, evolutionary analysis, and

agent-based micro-simulation.

It is necessary to gather behavior process data for the estimation of the pro-

posed model, though most existing datasets for departure time analysis are cross-

sectional and therefore insufficient. As mentioned in the Chapter 3, a practical

memory-recall survey method with relatively low respondent burden is also de-

signed in this research and employed for behavior process data collection in a joint

reveal/stated-preference survey in the Washington, DC metropolitan area.

Following the introduction of the model, a well-designed numerical example

demonstrates the capability of this model in reflecting the peak spreading dynamics

and the day-to-day traffic congestion evolution.
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5.1 Theoretical Framework

The proposed theoretical framework for positive departure time choice analysis

is illustrated in Figure 5.1.
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Figure 5.1: Theoretical Framework for Positive Departure Time Choice Analysis

From prior travel experience or other sources (e.g. traveler information sys-

tems), an individual accumulates information about travel conditions on the trans-

portation network corresponding to different departure times. Through a perception

and learning process which may be biased, the individual forms a certain degree of
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spatial knowledge, which produces subject beliefs. For instance, if a person who

believes that it is very likely that she/he can find a departure time with less con-

gested traffic conditions and schedule delay, she/he is more likely to start searching

for alternative departure times. But after several rounds of search, if the person still

encounters severe congestion and/or schedule delay repetitively, her/his subjective

beliefs will change and she/he will gradually become content with the best departure

time found in previous searches.

To theorize when a person starts and stops searching for alternative departure

times, the concepts of subjective search gain and perceived search cost are developed.

The subjective search gain is the amount of benefits the person believes she/he can

expect to obtain from an additional round of search. It is determined by the person’s

spatial knowledge and subjective beliefs, and therefore continually adjusted in the

search process. The perceived search cost is a personal characteristic that reflects

the time, monetary, mental efforts, and/or risk involved in each round of search

as perceived by the person herself/himself. The tradeoff between the subjective

search gain and the perceived search cost determines when the search for alternative

departure times starts and ends (i.e. gain>cost, start search; gain<cost, end search).

While the subjective search gain can be analytically derived from a person’s spatial

knowledge and subjective beliefs, the perceived search cost needs to be empirically

estimated and is likely to be different for different individuals. This will be discussed

in detail in the Model section.

If a person decides not to search, repetitive/habitual behavior is executed.

Otherwise, the person will employ a set search rules to identify a new departure
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time alternative. The search rules constitute a mapping from spatial knowledge and

current departure time to a new feasible departure time. In the positive approach,

the search rules should be empirically estimated from observed search processes. It

is hypothesized that the search process actually employed by decision-makers are not

random, and feasible alternatives are not identified in the search process with equal

probabilities. Instead, the search rules may systematically favor certain departure

time alternatives. For instance, if a person currently departs at 8 a.m. and is not

satisfied with the resulting travel and/or schedule delay, the person may be more

likely to try departing at 7:30 a.m. and 8:30 a.m. than 7 a.m. and 9 a.m. (i.e.

an anchoring effect). Also, in search for alternative departure times for trips with

a preferred arrival time (e.g. work trips), the search process may be biased toward

earlier departure times.

If a person decides to search and finds an alternative departure time, she/he

needs to determine whether or not to change departure time after experiencing

traffic conditions associated with the new departure time. Again in the positive

approach, the set of decision rules actually employed by the decision-maker should

be empirically derived from observed behavior process data. The decision rules con-

stitute a mapping from spatial knowledge (especially experienced traffic conditions

corresponding to different departure times) to a binary decision: choose the new

departure time or retain the current departure time. In addition to decision rules, a

personal characteristic, better described as patience with new alternatives, also in-

fluence the outcome of this decision step. During the trial of a new departure time, a

very impatient person may make decisions based on just one observation of the traffic
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conditions at that new departure time, while a more patent person may be willing to

experience the traffic conditions multiple times before making departure time choice

decisions. No matter what the decision outcome is, the decision-maker will never-

theless continue accumulating experience and update her/his spatial knowledge and

beliefs.

The proposed theoretical framework considers departure time choice a con-

tinuous evolutionary process. If all individuals stop searching for alternatives, the

transportation system will reach a “departure time equilibrium”. In contrast, in

the normative approach, the departure time equilibrium is achieved when individ-

uals departing from all used time intervals experience equal and maximum utility.

The equilibrium derived from the positive approach should be different from that

in the normative approach. Therefore, we shall refer to the departure time equilib-

rium in the positive approach as Behavior User Equilibrium (BUE) to highlight the

difference.

5.2 Model

5.2.1 Knowledge and Learning

In this section, Pólya’s Urn model sheds light in the modeling of the human

knowledge and learning process. In Pólya’s model, as discussed by Blackwell et al.

[14] an urn containing balls of I different colors is considered (α1 balls of color 1,

α2 balls of color 2, etc.). Then N random draws from the urn are performed. The

ball is placed back into the urn with an additional ball of the same color after each
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draw. As N approaches infinity, the proportions of different colored balls follow a

Dirichlet distribution Dir(α1, ..., αi, ..., αI).

This model best illustrates the properties of the process that each individual

forms and updates her/his spatial and temporal knowledge. An individual’s spatial

knowledge for departure time choice is based on experienced utility from previous

learning and trials. Due to perception and memory limitation, spatial knowledge and

perceived utilities from previous experience are assumed to be stored in I discrete

categories. Let ni be the number of times utility level ui has been experienced by a

particular individual. Therefore, the individual’s knowledge about departure times

can be quantified as a single-dimension vector K (n1, ..., ni, ..., nI). According to

Bayesian learning rules, the perceived weights of past observations are the same. For

instance, when a new alternative departure time is experienced and the associated

utility falls into category i, the updated knowledge becomes: K (n1, ..., ni+1, ..., nI).

Let vector P(p1, ..., pi, ..., pI) represent an individual’s subjective beliefs, where pi

is the subjective probability that an additional search would lead to an alternative

departure time with utility level ui.

Therefore, we assumed that individuals’ prior beliefs follow a Dirichlet distri-

bution, which is an n parameter distribution, to establish a quantitative relationship

between knowledge K and beliefs P. Since the Dirichlet is the conjugate prior of the

multinomial distribution, the posterior beliefs will also be a Dirichlet distribution

[62]. This assumption is equivalent to assuming Equation 5.1, where N denotes the
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total number of observations (N =
∑

(ni)).

pi = ni/N (5.1)

Based on this assumption, if an individual has experienced utility level ui twice out

of five previous departure time trials, this individual would believe that the chance

of experiencing utility level ui again in the next departure time trial is 2/5 = 40%.

5.2.2 Subjective Search Gain and Perceived Search Cost

The decision to search for a new alternative departure time is based on the

relationship between subjective search gain and perceived search cost. Let an indi-

vidual’s utility on the currently used departure time be u. The subjective search gain

(g) is based on subjective beliefs P, and defined as the expected utility improvement

from an additional search:

g =
∑

i(ui>u)

pi · (ui − u) (5.2)

where u is the maximum of all observed utility levels (umax) because individuals can

selected from all tried departure times.

Let u∗ be the theoretically maximum utility level under free-flow travel con-

dition, and assume all individuals initially believe there is no congestion. As the

search process proceeds, the subjective probability of finding a departure time with

utility level u∗ after N searches is 1/(N + 1). Therefore, Equation 5.2 can be fur-

ther simplified as Equation 5.3. The subjective search gain is always positive since

u∗ (theoretical maximum) is always higher or equal to umax (actually experienced
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maximum). Equation 5.3 also indicates that subjective search gain decreases when

the number of searches increases, and/or when a better alternative is identified (i.e.

higher umax).

g = (u∗ − umax)/(N + 1) (5.3)

In order to model search start and stopping conditions, perceived search cost needs

to be empirically estimated and then compared with subjective search gain. Per-

ceived search cost is assumed to be constant for the same individual throughout the

search process, but varies across individuals. It represents both the variety-seeking

propensity of individuals and the perceived mental/monetary cost associated with

search. If we empirically observe that an individual stops searching after n rounds

of search, the perceived search cost for that individual must be lower than the sub-

jective search gain after (n-1) searches such that search n is meaningful, and must

be higher than the subjective search gain after n searches such that search (n+1)

does not occur. These lower and upper bounds of perceived search cost can be

calculated using Equations 5.4 and 5.5 respectively. The average of the lower- and

upper-bound estimates is taken as the final estimated perceived search cost (c) for

the individual (Equation 5.6):

cLOW = gn =
u∗ − umax,n

n+ 1
(5.4)

cHIGH = gn−1 =
u∗ − umax,n−1

n
(5.5)

c =
1

2
(cLOW + cHIGH) (5.6)

We also allow perceived search cost to vary for different trips because it may be more

different to search for alternatives for certainly trips than for other trips (e.g., trips

50



with different destinations, distances, and scheduling constraints). The method is to

empirically estimate the relative perceived search cost (c∗ = c/u∗). In order to em-

pirically derive the distribution of relative perceived search cost, information about

searched alternatives, the order by which alternatives are searched, and attributes of

each alternative departure time was extracted from the memory-recall survey data

(Part 2 of the survey described in Chapter 3). The estimated cumulative density

distribution function of c∗, as well as its lognormal and Weibull approximations,

is plotted in Figure 5.2. From the graph, we can observe that about 80 percent of

individuals will search for new alternative departure times for their commuting trips

if the subjective search gain exceeds 0.6u∗, while only 30 percent of individuals will

continue searching when the subjective search gain decreases to 0.2u∗ (i.e. 20% of

the theoretical maximum utility from that trip). It is also interesting to find from

the empirical estimates that about 5% of individuals will never search for alterative

departure times because their perceived search cost is higher than the theoretical

maximum utility from that trip (the region where the value on the horizontal axis

exceeds 1). The utility function (u) itself is also empirically estimated based on

Small’s multinomial logit specification [70] using the memory-recall survey data.

The function consists of four explanatory variables including travel time, schedule

delay early, schedule delay late, and monetary cost. While this term is denoted in

this analysis as utility, u is really a measure, in the true behavioral sense, the level of

satisfaction associated with various alternative departure times. It is not assumed

in the research that individual can maximize utility. Instead, the positive behavior

model estimates how individuals try to improve their satisfaction level subject to
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Figure 5.2: Distribution of Relative Search Costs

learning, limited knowledge, perception and belief, and perceived search cost.

5.2.3 Search Rules

Once an individual decides to start searching for alternatives (i.e. subjective

search gain becomes larger than perceived search cost due to either new spatial

knowledge or external stimuli such as increase level of congestion and/or schedule

delay associated with the current departure time choice), the individual employs a

set of rules to search alternative departure times, which need to be empirically de-

rived for the positive modeling approach. The search for alternative departure times

is obviously not random due to scheduling constraints and anchoring effects. For

example, an individual, whose current departure time is 7:30 a.m. with a preferred

arrival time at 8:00 a.m., may adjust the departure time when congestion worsens.
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It is more likely that this individual will first experiment with alternative departure

times closer to 7:30 a.m. (anchoring effect). In addition, it is less likely that this

individual will consider departure times later than 7:30 a.m. due to scheduling con-

straints. To consider these factors, we define departure time alternatives that anchor

at the current departure time, e.g., 0−15 min earlier, 0−15 min later, 15 − 30 min

earlier, 15−30 min later, and so on. Schedule delay considerations are incorporated

into the explanatory variables in the search rules.

If-then rules are selected to represent departure time search heuristics for sev-

eral reasons because they are shown to be capable of replicating various types of

human heuristics and decision-making processes in previous expert systems and

knowledge extraction research, and because the execution of if-then rules at the

model implementation stage requires minimum computational resources which is

important especially for large-scale departure time and peak spreading models in-

volving millions of independent decision-makers.

Part 2 of the survey data on search processes (see Chapter 3) are used to derive

search rules. The variables used in the search rule induction model include: arrival

schedule delay early (ASDE ), arrival schedule delay late (ASDL), travel time (TT ),

and free flow travel time (TT* ). Equation 5.7 defines the arrival schedule delay

variables (i.e. ASDE, ASDL, and Delay), which is consistent with the definition in

previous research. PAT denotes the preferred arrival time, AT the actual arrival

time, Delay the difference between actual travel time (TT ) and free flow travel time

(TT* ).

ASDE = max(0, PAT − AT ) (5.7)
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ASDL = max(0, AT − PAT ) (5.8)

Delay = (TT − TT ∗)/TT ∗ (5.9)

Various machine learning algorithms [83] are able to derive if-then rules from

behavior process survey data. We have tested four proven algorithms including

C4.5 [59], PRISM [18], PART [33], and RIPPER [20], and selected PART based on

predictive accuracy of the derived search rules on a validation dataset. The complete

departure time rule sets are presented below:

Search 60+ min earlier, if

[ASDL > 70] Rule 1

Search 30-60 min earlier, if

[45 < ASDL ≤ 70] Rule 2

Search 0-30 min earlier, if

[0 < ASDL ≤ 30 AND Delay > 0] Rule 3

Search 0-30 min later, if

[ASDL > 30 AND Delay > 50%] Rule 4

OR [ASDL ≤ 10 AND ASDE ≤ 40 AND Delay ≤ 50% AND TT ≤ 65] Rule 5

Search 30-60 min later, if

[ASDL = 0] Rule 6

Search 60+ min later, if

[ASDE > 75] Rule 7

OR [ASDE > 45 AND Delay > 10%] Rule 8

Otherwise, search 0-30 min earlier. Rule 9
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Rule 1 states that individuals will consider shifting their departure times earlier

by more than 60 if their experienced arrival schedule delay late is over 70 minutes.

All other rules can be similarly interpreted. These rules collectively replicate the

heuristics individuals use to identify alternative departure times based on their cur-

rent experiences and knowledge. As spatial knowledge is updated during the search

process, the same rule set can generate different alternatives for the same individual.

This set of rules is in a full disjunctive normal form [83], a form of closed-

world assumption. In the rule set, each of its variables appears exactly once in

every clause. In another word, in each round of searching, any particular searcher

can only be classified into one class and follow one of those derived search rules at

a time. Therefore, in the set, rules cannot conflict and there is no ambiguity in rule

interpretation.

5.2.4 Decision Rules

Once an individual found a new departure time alternative with the search

rules in Section 5.2.3, the individual after experimenting with the new departure

time will either change or not change departure time. This departure time adjust-

ment decision-making process can be modeled with a set of decision rules. Sub-

jects’ actual departure time changing behaviors observed in Part 3 of the survey

(see Chapter 3 for details), which allow us to extract decision rules with machine

learning algorithms. The empirically derived decision rule set consists of 6 rules,

presented below. RIPPER is chosen for its superior predictive performance on vali-
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dation dataset, and the clear physical meaning of the derived behavioral rules. The

explanatory variables in the decision rules include: preferred arrival time (PAT ),

departure time (DT ), preferred departure time (PDT ), travel time (TIME ), house-

hold income (INCOME ), trip purpose (PURPOSE ), fuel cost (FC ), and toll cost

(TC ).The variable n-peak is a dummy variable that is equal to one if the trip occurs

during off-peak hours, and zero otherwise. ∆ denotes changes or percentage changes

from attributes of current departure time choice.

The rules are listed as follows. Similar to the search rules, this set of decision

rules is also in disjunctive normal form (i.e. if a particular instance decides not to

switch, then it must continue to use its habitual departure time).

Switch to the alternative departure time, if

[∆TIME ≤ −35% AND ∆FC ≤ −8%] Rule 1

[∆TC ≤ $2.5 AND ∆ASDL ≤ −48%] Rule 2

[∆TC ≤ $2.4 AND INCOME ≥ $150K AND ∆ASDL ≤ −31%] Rule 3

[n-peak = 1 AND PURPOSE = Other AND ∆TIME ≤ −8% AND ∆ASDL ≤

53%] Rule 4

[∆ASDE ≤ −20% AND ∆TC ≤ $0.7] Rule 5

Otherwise, continue to use the current departure time. Rule 6

There apparently exist perception thresholds in departure time changing be-

havior. For instance, Rule 1 implies individuals will change departure times as

long as travel time and monetary cost can be reduced by 35% and 8% respectively.

Variable “toll cost” is represented in several rules, which is evidence of individuals’

responses to dynamic congestion pricing. For instance, the second rule can be inter-
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preted as follows: if the toll cost is not too high (less than 2.5 dollars), individuals

will use the toll facility in order to avoid being late at work (in this case, reduce the

arrival schedule delay late by 48%).

5.2.5 Evaluation

Validating the rule sets is an important process proving the model’s credibil-

ity. Usually when the study involves a vast supply of data, the validation can be

conducted on a large test dataset while the model is estimated from another dataset

called training set. In this research, however, we only have limited data. Thus, at

this stage, we conduct within-sample validation, applying ten-fold cross-validation

which is typically seen in most practical limited-data situations [43]. Future research

may explore how innovative data collection and advanced survey methods, such as

web-based interactive games, simulation-based group dynamics, GPS surveys, and

smart-phone applications, can support and improve the validation.

In the ten-fold cross-validation, the original data sample is first randomly

partitioned into ten sub-groups. One sub-group is retained as the test set. The rest

nine sub-groups are used as the training set. Then the estimation and validation

process is repeated ten times so that each data sample is used exactly once for

validation. This process is carried out for evaluating the search rules and the decision

rules. The cross-validation accuracy for the search rules is 61.1%, while six search

scopes have been specified in the rules set. And the validation of the decision rules

can get 80.5% correctly classified instances. Table 5.1 reports the confusion matrix
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for the search rules.

Table 5.1: The Confusion Matrix for the Search Rules

Search: a b c d e f

a: 60+ min. earlier 8 5 2 1 0 0

b: 30-60 min. earlier 5 14 0 2 0 2

c: 0-30 min. earlier 2 0 6 0 1 0

d: 0-30 min. later 0 5 0 6 0 2

e: 30-60 min. later 1 0 2 0 9 0

f: 60+ min. later 0 1 0 4 0 12

5.2.6 Behavioral Departure Time Equilibrium

The quantitative model of departure time choice based on the positive be-

havior theory proposed in Section 5.1 has been fully developed and validated in

Sections 5.2.1 to 5.2.5. According to this model, a behavioral departure time equi-

librium (BDTE) will be achieved when all individuals in the transportation system

have subjective search gains lower than their respective perceived search costs, and

therefore stop searching for alterative departure times. When system conditions

change due to increasing level of congestion and/or policies such as dynamic pric-

ing, flexible work hours, and other peak spreading incentives, an existing BDTE will

be disturbed and certain individuals will restart the search process and potentially

adjust their departure times until the system reaches a new BDTE.

Equations 5.3, 5.4, and 5.5 guarantee the existence of the BDTE, because

subjective search gain decrease as number of searches increases. There exists a suf-

ficiently large number, N∗, such that for a particular individual her/his subjective

search gain will become lower than her/his perceived search cost which is a con-
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stant. The largest N∗ across all individuals determines the maximum number of

search iterations for the transportation system to arrive at the BDTE, which proves

its existence. However, BDTE is not stable in that after an infinitesimally small

disturbance, the system is not guaranteed to return to the original BDTE due to

historical dependency in the behavioral process represented in the positive depar-

ture time choice model. Computational properties of BDTE are explored further in

the next section.

5.3 Demonstration

The positive departure time choice model can be combined with various macro-

/meso/micro-scopic network traffic models for peak spreading analysis. Such appli-

cations require an initial time-sliced origin-destination (OD) matrix and an initial

dynamic network user equilibrium. To analyze the impact of a particular policy

scenario on peak spreading, an iterative procedure needs to be executed, where

simulated network congestion statistics are transferred from the traffic model to the

departure time model and updated time-sliced OD matrices from the departure time

model to the traffic model. After the joint departure time and traffic equilibrium is

obtained, the peak spreading effect of the tested policy scenario is quantified.

In this section, we present a numerical example to demonstrate how the posi-

tive departure time choice model developed in the previous section can be applied to

estimate peak spreading effects due to increased level of congestion on a linear cor-

ridor. The model is also ready to be applied to other policy scenarios with expected

59



peak spreading effects (e.g., dynamic pricing, flexible work hours) on a general net-

work. The Bureau of Public Roads (BPR) volume-delay function is selected herein

to compute traffic congestion for simplicity. In the next Chapter, the positive depar-

ture time choice model is integrated with TransModeler (microscopic) traffic model

for the before-and-after peak spreading study on a new toll road in Maryland. The

numerical example is set up as follows:

• Link capacity is 1,600 vehicles per hour.

• Link length is 33 miles, which is the average commuting distance of all subjects

in the survey described in Chapter 3.

• The base-case scenario is characterized by an initial demand in 20-minute

intervals from 4 a.m. to 11 a.m., illustrated by the thin dotted line in Figure

5.3.

• The policy scenario assumes a uniform 30% increase in OD demand across all

time intervals (see the thick dotted line in Figure 5.3), which is expected to

cause significant increase in congestion (especially during the peak hours of the

study period) and subsequently adjustment of departure times for certainly

commuters. And

• Commuters’ arrival times in the base case are assumed to be their preferred

arrival times.

The iterative implementation of the positive departure time choice model and

the BPR traffic model predicts significant peak spreading effects, and the final OD
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Figure 5.3: Peak Spreading Effect of the Numerical Example

demand at the new equilibrium after departure time adjustments is shown by the

solid line in Figure 5.3. About 14% of the commuters who originally depart between

7 a.m. and 8 a.m. now depart either before 7 a.m. or after 8 a.m. (from peak-peak

to shoulder peak). About 4 percent of trips between 6 a.m. and 9 a.m. in the

base case now occur either before 6 a.m. or after 9 a.m. (from peak to off peak).

Consequently, the original 3-hour peak period (6 a.m. to 9 a.m.) has expanded to

4 hours (5:30 a.m. to 9:30 a.m.). The predicted peak spreading pattern appears to

be reasonable.

An in-depth examination into the equilibration process predicted by the posi-

tive model reveals interesting behavioral adjustment dynamics. Figure 5.4 presents

two convergence measures in the positive behavior modeling approach: number

of individuals changing departure times (bottom line) and number of individuals

searching for new departure times (top line). Results show that the most significant

behavioral adjustments occur within the first two weeks, as the number of individu-
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als changing departure times decreases quickly. After 50 days, 2% of the commuters

are still searching and only 0.24% of the commuters are still changing departure

times.

Since the most significant behavior adjustments occur in the first two weeks, we

Figure 5.4: Model Convergence

also examine the evolution of congestion in various departure time intervals in Fig-

ure 5.5. With 30% demand increase, delay increases from 25 minutes to 70 minutes

between 7 a.m. and 8 a.m., which causes long schedule delay late for peak-hour

commuters. In the first two days, a large number of these commuters departure

about an hour earlier between 6 a.m. and 7 a.m. This actually leads to longer delay

between 6 a.m. and 7 a.m. than delay from 7 a.m. to 8 a.m. Commuters continue

to adjust their departure times in the next several days, and some of them switch

back to 7-8 a.m. departure times and some others depart even earlier (before 6

a.m.). Commuters who originally depart after 8 a.m. only made minor adjustment
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because departing earlier results in much longer delay and departure later causes

increase in schedule delay late. Nevertheless, we can still observe some departure

time shifts from 8 - 9 a.m. to 9 - 9:40 a.m.

Figure 5.5: Day-to-Day Delay Evolution by Departure Time Intervals

5.4 Summary

This chapter applies a positive behavioral theory to model departure time

choices and peak spreading effects. The theoretical framework removes assumptions

of perfect information and maximum utility. Instead, travelers’ spatial knowledge,

learning, subjective beliefs, perception, search for alternatives, and decision-making

with limited computational abilities are explicitly theorized and modeled with em-

pirical data. The proposed positive approach enhances both our understanding of

the travel decision-making process and the realism of departure time choice models.
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The positive departure time choice model is fully operational, and can ready

to be integrated with traffic models (e.g. microscopic traffic simulators, dynamic

traffic assignment models) or demand models (e.g. activity-based/micro-simulation

models) for various transportation operations and planning applications that require

peak spreading analysis. The numerical example presented in the chapter highlights

the capabilities of the positive model in estimating rich behavioral dynamics, such as

day-to-day evolution of congestion by departure time intervals and individual-level

learning, search, and decision-making processes over time.

A possible future research direction lies in the application of the positive theo-

retical framework and modeling methods to multidimensional travel decision-making

analysis (i.e. not just departure time choice, but integrated routing, scheduling,

mode, destination, and trip frequency decisions).

64



Chapter 6

Integrating the Departure Time Model with Large-Scale Traffic

Simulation Models: A Case Study

Existing traffic models often neglect departure time change as a possible re-

sponse to congestion and/or policy changes. Moreover, they often lack a formal

scheme modeling how travelers accumulate experience gathered from repetitively

traveling through the network and how they make their daily travel decisions based

on the accumulated knowledge. This Chapter proposes an integrated modeling

framework to address these shortcomings.

Previous chapters focus on the development of a departure time choice model.

Different modeling approaches have been discussed and tested. Chapter 5 has devel-

oped a positive rule-based model considering learning, adapting, and search behav-

ior. In this chapter, an agent-based micro-simulation approach is applied, wherein

travelers base their consecutive departure time decisions on the rule-based model

developed in Chapter 5. The agent-based behavioral model is then linked to a mi-

croscopic traffic simulation model to incorporate individuals’ daily departure time

choices into system-level performance and traffic operations analysis. The feasibility

of this approach is supported by a case study whose simulation system is based on a

real-world network - the Inter-County Connector corridor-level network in Maryland

State.
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6.1 Overview

Thanks to the computational power that had been greatly enhanced dur-

ing the past half century, micro-simulating a huge number of vehicles/vehicle pla-

toons in a large-scale network becomes possible. It has been gradually revealed

that microscopic/mesoscopic traffic simulation models exhibit strong advantages

in capturing detailed traffic dynamics and have been approved in practice a valu-

able tool for evaluating corridor capacity expansion and traffic operation improve-

ments. Their applications have recently been extended to address a broader range of

transportation-related issues, including congestion management, multimodal corri-

dor improvements, evacuation planning, land use and economic development. How-

ever, a comprehensive analysis of many of these issues requires models that can con-

sider various demand responses to these traffic management strategies such as peak

spreading, modal shifts, and traffic diversions at the corridor and regional levels, all

of which are conventionally taken as given in simulation models. Another challenge

for applying micro-simulation models to large network is due to the difficulty of

obtaining reliable travel demand data (usually as time-dependent origin-destination

matrices).

6.2 The Agent-Based Micro-Simulation

Therefore, this study develops a micro-simulation framework (see Figure 6.1)

to describe the effect of learning and departure time search and integrate agent-based

travel behavior models with large-scale microscopic traffic simulation models.
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Figure 6.1: Framework of the Integrated Model
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The two red boxes highlight the two important components of the agent-based

micro-simulation:

• Agents. Individuals’ learning and knowledge accumulation, departure time

searching processes, and decisions are simulated. In other word, agents are

hereby modeled individually that they are able to acquire information through

experience and use the information to update their perception and search/decision

rules. The rule-based behavioral model is documented in Chapter 5.

• Environment. The environment where the agents interact is represented by

a microscopic traffic simulation model. The traffic model generates output

(simulated travel time, experienced delay, etc.) for each trip, which is fed back

to the behavioral model to update agents’ knowledge and travel decisions.

The framework, as presented in Figure 6.1, is then applied to the case study of

the Inter-County Connector (ICC) region in the North Washington D.C. metropoli-

tan area which also involves I-270, I-495, and I-95 corridors. The ICC (see Figure

6.2), recognized as the most significant and high-profile highway project in Mary-

land since the completion of the existing interstate freeway system, is a new toll

facility connecting two busiest travel corridors (i.e. I-270 and I-95) in the region.

Framework set up in this study can support future analysis of transportation policy

and operation strategies in this area.

A microscopic traffic simulator is built using TransModeler, one of the ma-

jor commercial packages for micro-simulation. Models are constructed to build the

origin-destination (OD) matrices for the simulator based on demand data obtained
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from the regional planning model. The dynamic OD matrices and parameters for

the micro-simulation model are then calibrated using field traffic counts. On the

demand/behavior side, an agent-based departure time choice model is developed as

the previous chapters summarize. It is then integrated to capture the behavioral

reactions to network changes. The integrated model will operate iteratively until

nobody is willing or able to adjust their travel decisions and a stable network con-

dition is thus reached. Details for each component of the model will be discussed in

the following sections.

Using agents in the microscopic traffic simulator helps us study the interac-

tion between the individuals and the transport system. The simulator simulates

each single trip through a transport network, with a given (fixed) departure time.

Microscopic simulators can simulate many details, such as drivers’ car following and

lane changing behaviors.

Many microscopic traffic simulators (e.g. CORSIM [58], TransModeler [84],

VISSIM [35], AIMSUN [6], or non-commercial traffic simulators [19]) have been used

in previous studies. These models differ in the underlining car-following models

and the way how different traveler/driver modules are implemented. No consensus

is reached about the superiority of any simulators in literature. TransModeler is

selected in this study because it has a well-developed interface with Geographic

Information System (GIS), which is important when working with different data

sources.

A microscopic simulation model that includes all freeways, major arterials,

most minor arterials, and some local streets along the I-270/I-495/I-95 corridor in
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the North Washington D.C. metropolitan area is developed, specifying physical lay-

out of the real-world road network and including signal systems. It covers the central

and eastern Montgomery County and the northwestern Prince George’s County of

the State of Maryland, where several new developments, such as Great Seneca Sci-

ence Corridor (GSSC) in West Gaithersburg and military bases in Fort Meade, has

been proposed. The Inter-County Connector, a new freeway currently under con-

struction, also traverses this area. The simulation network (see Figure 6.3), which

includes approximately 7,200 links, 3,600 nodes, and over 40,000 OD pairs, is devel-

oped on top of satellite images provided by Google Earth and conforms to the true

geometry with high accuracy.

Figure 6.3: Simulated Network (in Red) in the Study Area

It has always been a great challenge to calibrate such a large-scale micro-

simulation model. The reasons are three-fold:
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• Complete information of traffic control strategies (such as signal timing plans)

are usually not available;

• It is extremely hard to obtain the dynamic origin-destination (OD) tables on

large network; and

• The number of parameters are so large that it is hard to identify which one

(or ones) should be adjusted to match the field counts.

Surprisingly, the first challenge related to traffic control information is not

widely discussed in previous studies on large-scale traffic micro-simulation. Ideally,

signal timing plan used in the field should also be used in simulation. However, the

complete information is usually not available for a large network such as the one

in this study. Due to the complexity of various intersection geometry designs in

the field, it is almost infeasible to apply the state-of-the-art optimization algorithms

in literature, most of which require detailed and extremely accurate inputs about

demand patterns and turning movement designs. In this study, the field signal

timing plan is applied wherever it is available. A total number of 466 signalized

intersections has been implemented, 80 of which use the actual signal plan. For the

rest of them, a stylized ring-and-barrier plan (with a cycle length of 150 seconds

typically seen from field plans) is applied and the length of green phases is assigned

proportionate to the turning demand. Future research will explore more effective

approaches to implement optimized signal plans on large network.

Then, this research has done the calibration of the dynamic OD. The algo-

rithm seeks to match the observed link flow by adjusting the OD demand. The
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procedure starts from the static OD matrices obtained from the regional planning

models. Then, a variation of the Multiple Path Matrix Estimation Method (MPME)

proposed by Nielsen [54] is applied to estimate and adjust the dynamic OD. After

10 rounds of iterative calibration, the root mean square error (RMSE) measure falls

below 15%. Given the size of the network and the associated computational bur-

den, the research team claims satisfaction with the calibration results and reserves

further calibration efforts for future research. More details about this calibration

process can be found elsewhere [86].

The third difficulty, the large number of parameters controlling both driving

and traveling behavior, has been extensively studied in previous research focusing

on the development of microscopic traffic simulation models. Due to the complexity

of this problem, this thesis will use the recommended value for most parameters

and only make minor changes whenever necessary (for instance, the drivers’ value

of time distribution).

6.3 Scenario Analysis

This scenario test demonstrates how the aforementioned departure time choice

model is integrated with the traffic micro-simulator and how the peak spreading is

achieved by the integrated model. Overall, the model is capable to predict individ-

uals’ departure time changes responding to various road conditions (e.g. different

congestion level, varied toll cost, etc.) for the entire network when considering de-

velopments that are planned for the next 10-30 years. This scenario considers the
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additional trips generated in the study area due to planned growths in Gaithersburg.

West Gaithersburg is part of the Great Seneca Science Corridor (GSSC) Mas-

ter Plan; which is proposing the development of 4,360 acres in the center of the I-270

Corridor. This development will be under construction for the next 25-30 years and

is to be named the Life Science Center (LSC). The LSC will add 5,750 additional

residences and is projected to attract 52,500 jobs (based on existing, approved, and

proposed development) (The Maryland-National Capitol Park and Planning Com-

mission). This development will add a substantial amount of automotive volume

to the surrounding network. Therefore, for demonstration purpose, in this study

we assume that the West Gaithersburg developments will generate 30% more travel

demand. The additional demand will change the congestion pattern in the region,

and thus motivate some travelers to adjust their departure time accordingly. The

updated OD tables will be simulated in TransModeler to generate new traffic pat-

tern, which will in turn be fed back into the agent-based departure time choice

model until the dynamic OD adjustment achieves a stable pattern. Other scenario

features are listed below:

• The base scenario adopts an original dynamic travel demand (20-minute in-

terval);

• The tested scenario assumes 30% higher travel demand generated from the

LSC study area (i.e. Centroid 77, 78, 168, and 169 in Figure 6.4) based on the

base case; and

• Peak spreading effect for traffic going through this area is also considered and
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tested. As an explorative process, this study only considers the closest external

station (Centroid 170) while keeps departure time pattern for demand from

other more remote TAZ centroids unchanged. This assumption can be easily

relaxed later.

Figure 6.4: The LSC Study Area in the Microscopic Traffic Simulator

As aforementioned, for comparison purposes, the scenario has tested the re-

sponse of both the demand generated from the LSC study area and the travelers

going through this area. Assuming that individuals’ preferred arrival time is their

individual arrival time in the base case without increasing the demand, travelers who

are now experiencing higher schedule delay and longer travel time due to the de-

mand growth are more likely to consider deviating their departure schedules. After

8 iterations, the departure pattern becomes stable and the results are summarized

in Figure 6.5 and 6.6.
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Figure 6.5: Peak Spreading Effect of the LSC Traffic

Figure 6.6: Peak Spreading Effect of the Through Traffic

76



Depicted in Figure 6.5, as the congestion deteriorates, a number of travelers

originally traveling between 8 a.m. and 9 a.m. leave earlier to avoid being late.

This forms a new peak in the demand pattern. Evidently, travelers from the LSC

zones begin to consider shoulder hours (time periods that are slightly earlier or later

than the a.m. peak period) as their alternative departure time. Additionally, as the

demand grows, the congestion in LSC area is expected to be exaggerated. Thus, the

external travelers traversing this region during peak hours are also likely to consider

switching departure times to avoid possible delay. As illustrated in Figure 6.5, the

model is capable to capture this behavioral change as well. Although the travel

demand remains unchanged, the travelers going through the study area also adjust

their departure schedule to adapt to the new travel condition in LSC region.

This scenario test demonstrates the capability of the integrated model in rep-

resenting individuals’ behavioral response to various travel conditions. The results

overall illustrate a reasonable departure time shift in response to the assumed more

congested situation. As displayed in the Figure 6.5 and 6.6, about 6.2 percent of

peak-hour trips have switched to depart either earlier or later to avoid higher con-

gestion and delay. Moreover, the original 3-hour peak period (6 a.m. to 9 a.m.), as

predicted by the model, has spread out to cover a wider time period (approximately

from 5:30 a.m. to 9:30 a.m., Figure 6.5). Figure 6.7 illustrates the evolution of

congestion level. As drivers getting reasonably familiar with the time-dependent

travel condition, the extreme delay has gradually been mitigated.
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Figure 6.7: Day-to-Day Congestion Evolution

6.4 Summary

This chapter is concerned with the integration of demand models and traf-

fic models. In particular, a positive rule-based departure time choice model has

been integrated with a large-scale traffic micro-simulation to capture the behav-

ioral responses to traffic condition changes. We reiterate that the rule-based model

differs from the utility-based modeling paradigm which is widely used in previous

studies. Moreover, it is intuitive to interpret and its implementation only involves

a series of logic evaluation and is more efficient compared to utility evaluation.

A multi-corridor microscopic traffic simulation tool has been set up based on the

Transmodeler platform. Although many challenges still exist for the calibration of

large-scale simulation-based traffic models, the iterative calibration process proposed

in this study works reasonably well. Future research is needed to further improve
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the calibration accuracy.

Moreover, this positive model of learning and decision-making can be gen-

eralized to account for multiple choice dimensions such as mode and destination,

departure times, and routes. This agent-based modeling approach provides an eas-

ier way to maintain consistency in simultaneous decisions of different choices (the

prefer arrival time of individual agent could affect both departure time and mode

choice (such as HOV for higher reliability)). In this chapter we only focus on de-

parture time choice and assume that decisions on other dimensions are constrained.

The case study well demonstrates its potential in capturing various behavioral re-

actions to system-level performance changes and policy initiatives. The inclusion of

multiple decision dimensions is left for future development.

The integration of agent-based travel behavior models with micro-simulation

model also provides a low-cost resource for capturing individual experience and net-

work conditions, and thus makes such models operational in policy analysis. This

framework also provides a valuable tool for the evaluation of new transportation

infrastructure, such as the ICC corridor currently under construction, and its oper-

ation strategies. More research efforts are needed to explore the full potentials of

the integrated model.
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Chapter 7

Conclusion

This thesis focuses on modeling departure time choice and testing the in-

tegration of the behavioral model and the simulation-based traffic models. After

reviewing previous research in modeling departure time choice as well as the papers

describing the integrated models, the survey design and data collection procedure

has been introduced in the Chapter 3. Then, two departure time choice models have

been developed in the Chapter 4 and 5 based on different theoretical framework (i.e.

utility maximization theory v.s. rule-based positive theory). In the Chapter 6, the

rule-based model has been applied in a real-world traffic simulation study built on

the ICC network in Maryland State. From the integration work, the merit brought

in by the combination of the behavioral models and the traffic models, as well as

the usefulness and effectiveness of the rule-based positive approach, has been high-

lighted.

7.1 Discussions

This thesis aims at making contributions to both the state-of-the-art and the

state-of-the-practice of the departure time choice modeling and its applications.

Based on the normative utility maximization theory, a conditional logit model,

a mixed logit model, and a latent class model regarding carpooling preference have
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been estimated in the Chapter 4. The latent class model is supported by stronger

statistical results, interpreting the heterogeneity in another context. Its class prob-

ability model suggests that younger drivers and current carpoolers are more likely

to belong to the user class whose decision is more sensitive to travel time, toll cost,

and fuel cost. Secondly, the model also manifests that there exists a group of drivers

having more fixed travel schedule and preferring carpooling rather than paying toll

to avoid possible extreme delays. These are interesting findings, invoking further

considerations in incentive-based schemes for congestion management.

The discrete choice analysis of departure time scheduling is the main-stream

school of research during the past several decades. However, the survey data suggests

that travelers are not perfectly rational, given the fact that most of them only

search 2 to 6 alternative departure times. In the Chapter 5 of the thesis, a positive

modeling framework has been proposed and estimated. This represents a departure

from strong rational behavior assumptions for travel modeling and analysis, which is

one of the major contributions of this thesis. Nevertheless, it usually implies needs

for additional behavior process data. Whether or not the increased data need can

be justified by improved model realism and model performance in applications has

been a subject for debate. This thesis here employs retrospective recall and joint

reveal-/stated preference survey to gather necessary behavior process data, which

represents a marginal increase in data collection effort compared to the traditional

utility maximization approach. Future research may explore how advanced survey

methods such as web-based interactive games, simulation-assisted group dynamics,

GPS-surveys, smart-phone applications, and social networking tools can improve
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the affordability and quality of behavior process data, and support the positive

modeling method.

In the discrete choice models, the work schedule flexibility is considered ini-

tially in the model but not statistically significant when included as a dummy vari-

able in the utility function. However, this variable is actually a crucial factor. There

are studies considering the circumstances where departure time choice is affected

by factors such as work schedule flexibility and other scheduling constraints such

as child-care, dropping spouse, and other activities before work [63]. Thus, these

variables should be carefully considered in the further research. Moreover, when

considering congestion pricing, the toll charge could cause an additional penalty for

drivers with inflexible schedule. For this group of people, certain policies, such as

before/after-work childcare facilities provided by the employer, could greatly affect

their departure time choice and thus should be measured in conjunction with the

pricing policies.

With the workable tool deviating drivers’ departure time, the Chapter 6 links

the rule-based departure time model to a large-scale traffic simulation and micro-

simulates behavior changes for each individual, in order to capture the behavioral

responses to traffic condition changes. Although many challenges still exist for

the calibration of large-scale microscopic traffic simulation model as discussed in

the chapter, the intuitive iterative calibration process proposed in this case study

works reasonably well. Future research is needed to further improve the calibration

accuracy.
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7.2 Contributions

The major contributions made by this thesis are listed as follows:

• Exploring the discrete choice models and highlighting the merits of the latent

class modeling, which is largely unexploited in travel behavior research.

• Discovering an alternative approach in parallel to the utility-based normative

approach. This rule-based model considers the drivers’ actual behavior rather

than the behavior that maximizes the utility.

• The corresponding survey data collection necessary for the estimation of the

rule-based positive model has been designed and conducted with relatively low

cost and low respondent burden.

• Demonstrating the usefulness and effectiveness of the integrated modeling

framework in the real-world network by performing a case study on the ICC

multi-corridor network in Maryland State. It may be noted that such appli-

cation in the large-scale multi-corridor network is very rare.

7.3 Future Research

A utility-based departure time choice model and a rule-based positive model

have been developed. And the effectiveness and practical realism of the integrated

model have been demonstrated in the thesis. In the future, certain improvements

on this study can be foreseen by the author. They are as follows:
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• Firstly, the complex departure time decisions need for better representation.

As a major contribution, individuals’ preference towards tolling and HOV/HOT

lane is revealed to some extent in the latent class model. Given the richness

of the dataset, jointly modeling the lane choice and departure time choice

may further enhance the model’s ability in this regard as the survey combines

multiple dimensions of choices.

• Secondly, without specifying the departure time periods as the alternatives

in the survey, the empirical study ends up using discrete choice methodology

where the IIA assumption cannot be avoided. We may build more flexible

models such as error component logit and generalized nested logit models to

relax the strong assumptions on which our current models heavily rely.

• Thirdly, future research may also explore the innovative data collection, includ-

ing web-based interactive games, simulation-assisted group dynamics, GPS

surveys, smart-phone applications, social networking tools, and so forth. These

advanced methods may enhance the behavior data sources and support the

positive modeling method.

• Another possible direction lies in the extension of the positive theoretical

framework and modeling methods to multiple travel decision-making pro-

cesses, integrating routing, trip scheduling, mode choice, destination choice,

and trip frequency decisions.
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Appendix A

Departure Time Choice SP Survey Design

Table A.1: Estimation Results for the Conditional Logit Model

Variables Normal HOT Lane HOV Lane

Departure Time DT − 40 min; DT − 20 min; DT ; DT + 20 min; DT + 40 min

Total Travel TTmin + 20 to TTmin + 30 TTmin + 10 to TTmin + 20 TTmin + 10 to TTmin + 20

Time Range TTmin + 20 to TTmin + 40 TTmin + 10 to TTmin + 25 TTmin + 10 to TTmin + 25

(min.) TTmin + 20 to TTmax TTmin + 10 to TTmin + 30 TTmin + 10 to TTmin + 30

If DT in TTmin + 20 to TTmin + 45 TTmin + 10 to TTmin + 25 TTmin + 10 to TTmin + 25

Peak Hour TTmin + 20 to TTmin + 35 TTmin + 10 to TTmin + 20 TTmin + 10 to TTmin + 20

If DT not in TTmin + 10 to TTmin + 20 TTmin + 5 to TTmin + 10 TTmin + 5 to TTmin + 10

Peak Hour TTmin + 10 to TTmin + 30 TTmin + 5 to TTmin + 15 TTmin + 5 to TTmin + 15

TTmin + 10 to TTmax − 10 TTmin + 5 to TTmin + 20 TTmin + 5 to TTmin + 20

TTmin + 10 to TTmax − 20 TTmin + 5 to TTmin + 15 TTmin + 5 to TTmin + 15

TTmin + 10 to TTmax − 30 TTmin + 5 to TTmin + 10 TTmin + 5 to TTmin + 10

Fuel Cost ($) 1.1 · FC FC FC

If DT in 1.2 · FC 1.1 · FC 1.1 · FC

Peak Hour 1.3 · FC 1.2 · FC 1.2 · FC

If DT not in 1.1 · FC FC FC

Peak Hour 1.15 · FC 1.15 · FC 1.15 · FC

1.2 · FC 1.2 · FC 1.2 · FC

Toll Cost ($) 0 $0.3/mile · distance 0

If DT in $0.35/mile · distance
Peak Hour $0.4/mile · distance

$0.45/mile · distance
$0.5/mile · distance

If DT not in $0.1/mile · distance
Peak Hour $0.15/mile · distance

$0.2/mile · distance
$0.25/mile · distance
$0.3/mile · distance
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Appendix B

Survey Variable List

Table B.1: Most Recent Trip Variables

Variables Description

trip purpose 1 =commute, 2 =shopping, 3 =social, 4 =other

travel time Travel time (minute)

depart time Departure time (total number of minutes starting from midnight)

prefer depart Prefered departure time

(total number of minutes starting from midnight)

arrival time Arrival time (total number of minutes starting from midnight)

prefer arrival Prefered arrival time

(total number of minutes starting from midnight)

distance Total mileage for the trip (mile)

fuel cost Fuel cost ($)

park cost Park cost ($)

toll cost Toll cost ($)

enter location The exit where the driver enters the Beltway

exit location The exit where the driver exits the Beltway

shortest trip The shortest experienced travel time for the same travel (min.)

longest trip The longest experienced travel time for the same travel (min.)

tt min 495 The shortest travel time on the Beltway for the same travel (min.)

tt max 495 The longest travel time on the Beltway for the same travel (min.)
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Table B.2: Socio-economic Variables

Variables Description

gender 1 =commute, 2 =shopping, 3 =social, 4 =other

age Travel time (minute)

income Departure time (total number of minutes starting from midnight)

education Total mileage for the trip (mile)

occupation Fuel cost ($)

workers per hh Number of workers in the household

cars per hh Number of vehicles in the household

vehicle size 1 =small, 2 =medium, 3 =large

vehicle age 1 =< 1 year, 2 = 1 − 5 years, 3 = 5 − 10 years, 4 => 10years

work zip The ZIP code of the work location

work start Work start time (total number of minutes starting from midnight)

flexavail 1 =work schedule is flexible, 2 =otherwise
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