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Quantum Computing leverages the quantum properties of subatomic matter to enable comp-

utations faster than those possible on a regular computer. Quantum Computers have become

increasingly practical in recent years, with some small-scale machines becoming available for

public use. The rising importance of machine learning has highlighted a large class of computing

and optimization problems that process massive amounts of data and incur correspondingly

large computational costs. This raises the natural question of how quantum computers may be

leveraged to solve these problems more efficiently. This dissertation presents some encouraging

results on the design of quantum algorithms for machine learning and optimization.

We first focus on tasks with provably more efficient quantum algorithms. We show a

quantum speedup for convex optimization by extending quantum gradient estimation algorithms

to efficiently compute subgradients of non-differentiable functions. We also develop a quantum

framework for simulated annealing algorithms which is used to show a quantum speedup in



estimating the volumes of convex bodies. Finally, we demonstrate a quantum algorithm for

solving matrix games, which can be applied to a variety of learning problems such as linear

classification, minimum enclosing ball, and `− 2 margin SVMs.

We then shift our focus to variational quantum algorithms, which describe a family of

heuristic algorithms that use parameterized quantum circuits as function models that can be

fit for various learning and optimization tasks. We seek to analyze the properties of these

algorithms including their efficient formulation and training, expressivity, and the convergence

of the associated optimization problems. We formulate a model of quantum Wasserstein GANs

in order to facilitate the robust and scalable generative learning of quantum states. We also

investigate the expressivity of so called Quantum Neural Networks compared to classical ReLU

networks and investigate both theoretical and empirical separations. Finally, we leverage the

theory of overparameterization in variational systems to give sufficient conditions on the converge-

nce of Variational Quantum Eigensolvers. We use these conditions to design principles to study

and evaluate the design of these systems.
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Chapter 1: Introduction

1.1 Motivations

Quantum Computers were conceptualized in the early 1980s [4], and were initially seen as

being necessary to solve the problem of simulating general quantum mechanical processes [5],

which seemed infeasible using only classical computers. The work of Deutsch and Josza [6],

and Simon [7] made it apparent that speedups from quantum computation could apply to general

computing problems that are unmotivated by quantum physics. This culminated in the seminal

work of Shor [8], that showed quantum algorithms for the prime factorization and discrete

logarithmic problems that are exponentially faster than the best known classical alternatives.

Around the same time, Grover [9] developed an algorithm for unstructured search that was

quadratically faster than the classical alternative. Exponential quantum speedups naturally draw

the most attention, however these have only been found for problems with some algebraic structure,

or those with quantum mechanical motivations or properties. On the other hand, polynomial

quantum speedups seem viable for a much larger class of computing problems.

The success of machine learning in the 21st century, has highlighted a host of interesting

computational problems. These problems are often of great practical significance, and are applied

to massive datasets consisting of very high-dimensional data. The amount of data being processed

makes it so that even polynomial quantum speedups could have significant ramifications in the
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practical solution of these problems. Recent years have seen many efforts in the development of

quantum algorithms, including algorithms with provable gaurantees (see for eg. [10, 11]), and

heuristic approaches (see for eg. [12, 13]). This raises the natural question of whether similar

algorithms can be obtained for machine learning tasks, or the optimization problems that power

them. The search for a quantum advantage in machine learning has been the subject of countless

recent works (see for eg. [14, 15, 16, 17]) This dissertation will present several new works in this

direction. The focus of these works will be two-fold:

1. To establish quantum algorithms for important machine learning and optimization tasks

that require computational costs that are provably lower than their best known classical

counterparts, and to investigate limitations on the degree of quantum advantage possible.

2. To explore the properties of heuristic quantum algorithms; in an attempt to obtain principled

approaches to improving their robustness, scalability, trainability, and usefulness. To this

end we theoretically investigate simplified models of these algorithms and verify and extend

our hypotheses through empirical study.

1.2 Contributions

Algorithms with provable guarantees. Quantum algorithms with provable guarantees have

been traditionally the most studied route to quantum advantage; since their computational require-

ments can be bounded analytically one can be certain that an advantage is obtained over the

best classical counterparts. Such guarantees are especially desirable in the case of quantum

algorithms, since the hardware challenges in constructing large scale quantum computers can

limit the scope of empirical analysis. Such algorithms have been proposed in the domain of
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machine learning for tasks including semi-definite programming [17, 18, 19], principle component

analysis [15], and singular value decomposition [16], and learning with quantum examples [14].

Interest in provable quantum advantage for machine learning grew after the seminal work

of Harrow, Hassidim and Lloyd [20] that demonstrated a quantum algorithm for solving linear

systems of equations. This algorithm has been further refined several times to improve the scaling

on the error margin and condition number of the equation system [10, 21]. The ubiquity of linear

systems in machine learning led to the anticipation of quantum linear system algorithms being

applied in many areas of machine learning. The algorithm in [20] suffers however from two

issues that limit its usefulness; it requires the data to be encoded in a quantum data structure, and

while it requires exponentially fewer resources than a classical linear equation solver, it provides

a much weaker solution wherein instead of a full description of the solution we obtain instead a

quantum system allowing us to sample based on its coefficients. This algorithm has however been

employed in several settings; most notably in an algorithm with claimed exponential advantage

for recommendation systems [22], however certain preprocessing assumptions in [22] allow

a classical algorithm [23] to also obtain performance exponentially faster than the previous

classical state of the art. In order to avoid the subtleties arising from such a comparison, we focus

on algorithms that return a complete classical description of the output; at the cost of smaller

(polynomial) speedups.

This dissertation presents three works on quantum algorithms with provable guarantees for

optimization and machine learning tasks:

1. Chapter 2 describes a quantum algorithm for convex optimization (based on [24] published

in Quantum in 2020 and presented at QIP 2019. Convex optimization represents the largest
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class of efficiently solvable classical optimization problems and is the central computational

step in many machine learning applications. The general problem asks for an estimate of

the minimum of a convex function f over a convex set C; using queries to oracles that

evaluate f and indicate membership in C. Our algorithm is found to require quadratically

fewer queries to problem oracles than the best known classical counterpart (in terms of

the input dimension n); corresponding lower bounds are also established that rule out an

exponential quantum speedup.

2. Chapter 3 describes a quantum algorithm for estimating the volumes of convex bodies

(based on [25]) that was presented at QIP 2020. This is a task of historic importance in

convex geometry and has intimate connections with sampling and optimization routines

that are commonplace in machine learning. The problem is to estimate the volume of a

convex body given access only to a membership oracle. We obtain quantum speedups in

both arithmetic and oracle complexity, and show corresponding lower bounds.

3. Chapter 4 describes an optimal quantum algorithm for linear classification that is quadratic-

ally faster than the classical state of the art. The approach is generalized to obtain new

optimal classical and quantum algorithms for a range of matrix games and is applied to

other problems such as the caratheodery, SVMs and zero-sum games. This chapter is based

on [26] and [27] published in the proceedings of ICML 2019 and AAAI 2020 respectively.

Variational Quantum Algorithms. Quantum Variational Methods (QVMs) (see for eg. [12,

28, 29] have become a leading candidate for quantum applications on Near-Term Intermediate

Scale Quantum Computers. These algorithms use classically parameterized quantum circuits
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as function models that can be trained to satisfy various properties. The classical parameters are

optimized on a classical computer, thereby eliminating the need to have precise control operations

and arithmetic executed on a quantum machine. The quantum machine is then simply used to

evaluate the parameterized function models, and these models can be chosen to be amenable to

implementation on near-term hardware. It is commonly conjectured that QVMs will help resolve

quantum physics related computational problems in the near future. They are also likely helpful

for solving general information/computational tasks, especially when the nature of these tasks

exhibits certain structures that can be exploited by quantum mechanics. The success of deep

learning in classical computer science has led to a paradigm shift where case by case algorithm

designs are often replaced by fitting extremely flexible function models.

A lot of study has already been devoted to the design, analysis, and small-scale implementa-

tion of QVMs (e.g., see the survey [30]). A prominent example is the variational quantum

eigensolver (VQE) [28] which is a QVM that finds the ground state/energy of physically-interesting

Hamiltonian systems and finds promising applications in quantum chemistry. Another one is the

quantum approximate optimization algorithm (QAOA) [29] which proposes a near-term feasible

variational circuits that mimic the behavior of quantum adiabatic algorithms to solve optimization

problems. One can also further leverage variational quantum circuits for classification [12] (under

the name of Quantum Neural Networks (QNNs)), generative models [13], and several other

learning tasks.

In contrast to deep learning, where empirical research has played a major role in investigating

the training methods, empirical research in quantum variational methods is limited by the available

quantum hardware as well as the exponential complexity of simulating them by classical means.

As a result, current empirical findings do not necessarily generalize to intermediate-size variational
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quantum circuits, which are predicted to be available in the near future. A more principled

approach is thus required to understand the properties of these systems including their robustness,

expressivity, and trainability. This dissertation presents three works that leverage ideas from the

theoretical study of deep learning to better understand these aspects of QVMs.

1. Chapter 5 presents a proposal of a quantum Wasserstein GAN that is used to facilitate more

robust and scalable learning of unknown target quantum states. This chapter is based on

[31] published in the proceedings of NeurIPS 2019.

2. Chapter 6 (based on work currently under review) makes a compares the expressive power

of QNNs and feed-forward ReLU networks. Separations are discovered in both directions;

indicating that the choice of classical vs quantum neural networks is dependent on the

particular problem and disproving a commonly held notion that QNNs are a strictly more

powerful alternative.

3. Chapter 7 (based on work currently under review) studies the convergence of the non-

convex optimization problems involved in VQEs. We provide the first rigorous proof of

convergence for over-parameterized VQEs and obtain sufficient conditions on the number

of required parameters. These conditions are then used as guiding principles to study and

evaluate the design of parameterized ansatz that are commonly used in VQEs.

Acknowledgement. Chapter 2 is based on joint work with Andrew Childs, Tongyang Li, and

Xiaodi Wu. Chapter 3 is based on joint work with Andrew Childs, Tongyang Li, Shih-Han Hung,

Chunhao Wang, and Xiaodi Wu. Chapter 4 is based on joint work with Tongyang Li, Chunhao

Wang, and Xiaodi Wu. Chapter 5 is based on joint work with Yiming Huang, Tongyang Li,
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Soheil Feizi, and Xiaodi Wu. Chapter 6 is bsaed on joint work with Xiaodi Wu. Chapter 7 is

based on joint work with Xuchen You and Xiaodi Wu.

1.3 Preliminaries on Quantum Information

Quantum systems are represented by quantum states, which are L2-normalized vectors in a

complex vector space (or Hilbert Space). The Hilbert space has an orthonormal basis, where each

basis vector corresponds to a distinct classical outcome. For example, a quantum bit (or qubit)

is represented by a state in the vector space spanned by |0〉 (the 0 basis vector) and |1〉 (the 1

basis vector). In general therefore, a qubit can be in the state |ψ〉 = α|0〉+ β|1〉, where α, β ∈ C

such that |α2| + |β2| = 1. A state that is a linear superposition of the basis states is said to be in

superposition. The coefficients α, β are referred to as the amplitudes of the quantum state. The

Hilbert space corresponding to a system made up of disjoint subsystems is the tensor product of

the underlying Hilbert spaces.

Quantum computations are normally carried out on an array of one or more quantum

bits. The associated Hilbert space is spanned by a basis consisting of vectors corresponding

to each possible bitstring (this is termed the computational basis). Computational basis vectors

are often associated with the integer represented by the bitstring. A system of n qubits thus has an

associated Hilbert space of dimension 2n. State vectors can also be viewed as normalized column

vectors, in which case the computational basis consists of the fundamental basis vectors ei. The

innner product of two vectors |ψ〉, |φ〉 is denoted by 〈ψ|φ〉 and defined as a bilinear, complex

conjugate map that maintains the orthonormality of the computational basis. In column vector

form, 〈ψ|φ〉 is given by the product of the conjugate transpose of |ψ〉 with |φ〉.
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The dynamics of quantum states are given by linear maps that preserve their normalization.

Such mappings U are called unitary maps and satisfy the condition that U †U = UU † = I

where † denotes the adjoint operation. In column vector form, each mapping M is denoted by a

matrix with entries Mij = 〈i|M |j〉 where |i〉, |j〉 are the ith and jth compuational basis vectors

respectively. In matrix form, the adjoint of a mapping is given by its conjugate transpose. An

important (non-unitary) linear map, is the inner product between two vectors (|φ〉, |ψ〉) denoted

by |φ〉〈ψ| that maps any vector |ν〉 to 〈ψ|ν〉|φ〉. The inner product of a vector with itself is the

projection map into that vector. In general, any map P such that P 2 = P is a projection operator

onto some subspace of the Hilbert space.

An observation (or measurement) of a quantum state associates a real value (or outcome)

to every vector of some basis of the Hilbert space. For a basis |bj〉 and outcomes mj the

measurement can be encoded in the self-adjoint (Hermitian) matrixM =
∑

jmj|bj〉〈bj| . Corresp-

ondingly, any self-adjoint operator represents a measurement, where its eigenvectors form the

basis of measurement and the eigenvalues represent the associated outcomes. On applying

measurementM =
∑

jmj|bj〉〈bj| to a quantum state |ψ〉 the resultmj is obtained with probability

|〈bj|mj〉|2.

A vector in a composite Hilbert space is said to be entangled if it is not the tensor product of

two vectors from the Hilbert Spaces of the subsystems. The quantum state |β00〉 = 1√
2
(|00〉+|11〉)

over 2 qubits, is entangled as it cannot be written as the tensor product of two single qubit states.

In contrast, the state 1
2
(|00〉+ |01〉+ |10〉+ |11〉) = 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) is unentangled.

Any unitary matrix U is invertible. This implies that any quantum operation must be

reversible, unlike classical computing where common operations such as AND are irreversible.

There is a standard recipe to make any classical operation into a quantum operation as follows:
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given a classical operation x → f(x) on bitstrings, we define the unitary Uf that operates as

|x〉|y〉 → |x〉|y ⊕ f(x)〉 when |x〉, |y〉 are compuational basis states. This unitary map can be

used to evaluate the function f(x) by setting y to the zero bitstring.

Quantum Gates: Quantum Circuits are built out of universal gate sets consisting of 1 or 2

qubit operations known as quantum gates. It is known that these gate sets can all approximate

each other with overhead that is polylogarithmic in the approximation error.

Complexity of a Quantum Algorithm: The analogue of runtime of a classical algorithm is the

number of gates of a universal gate set required to implement the required quantum circuits. This

is referred to as gate complexity but is often used interchangeably with runtime while comparing

the performance of algorithms.

Ensembles of quantum states: Consider an ensemble of quantum states {(pi, |ψi〉)}. This

ensemble can be encoded in a Hermitian positive definite matrix with trace 1 called the density

matrix as ρ =
∑

i pi|ψi〉〈ψi|. Conversely, any Hermitian p.s.d matrix with unit trace is a valid

density matrix as its eigenbasis forms a valid ensemble. The expectation value when a measurement

operator M is applied to a density matrix ρ is Tr(ρM). Density matrices that represent one

quantum state are referred to as pure states and have a rank of 1. Ensembles of more than one

state are referred to as mixed states, and the corresponding matrix has a rank greater than 1.

For a Hilbert space X the sets of Hermitian, Unitary and density matrices are denoted by

H(X ), U(X ), and D(X ) respectively.
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Chapter 2: Quantum Algorithms and Lower Bounds for Convex Optimization

In this section we study the problem of convex optimization on quantum computers. The

presented discussion is based on results initially obtained in [32].

2.1 Introduction

Convex optimization has been a central topic in the study of mathematical optimization,

theoretical computer science, and operations research over the last several decades. On the one

hand, it has been used to develop numerous algorithmic techniques for problems in combinatorial

optimization, machine learning, signal processing, and other areas. On the other hand, it is a

major class of optimization problems that admit efficient classical algorithms [33, 34]. Approaches

to convex optimization include the ellipsoid method [34], interior-point methods [35, 36], cutting-

plane methods [37, 38], and random walks [39, 40].

The fastest known classical algorithm for general convex optimization solves an n-dimensio-

nal instance using Õ(n2) queries to oracles for the convex body and the objective function, and

runs in time Õ(n3) [41].1 The novel step of [41] is a construction of a separation oracle by a

subgradient calculation with O(n) objective function calls and O(n) extra time. It then relies

on a reduction from optimization to separation that makes Õ(n) separation oracle calls and runs

1The notation Õ suppresses poly-logarithmic factors in n,R, r, ε, i.e., Õ(f(n)) = f(n) logO(1)(nR/rε).
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in time Õ(n3) [42]. Although it is unclear whether the query complexity of Õ(n2) is optimal

for all possible classical algorithms, it is the best possible result using the above framework.

This is because it takes Ω̃(n) queries to compute the (sub)gradient (see Section 2.5.1) and it also

requires Ω(n) queries to produce an optimization oracle from a separation oracle (see [43] and

[44, Section 10.2.2]).

It is natural to ask whether quantum computers can solve convex optimization problems

faster. Recently, there has been significant progress on quantum algorithms for solving a special

class of convex optimization problems called semidefinite programs (SDPs). SDPs generalize the

better-known linear programs (LPs) by allowing positive semidefinite matrices as variables. For

an SDP with n-dimensional, s-sparse input matrices and m constraints, the best known classical

algorithm [42] finds a solution in time Õ(m(m2 + nω + mns) poly log(1/ε)), where ω is the

exponent of matrix multiplication and ε is the accuracy of the solution. Brandão and Svore gave

the first quantum algorithm for SDPs with worst-case running time Õ(
√
mns2(Rr/ε)32), where

R and r upper bound the norms of the optimal primal and dual solutions, respectively [17].

Compared to the aforementioned classical SDP solver [42], this gives a polynomial speedup in

m and n. Van Apeldoorn et al. [45] further improved the running time of a quantum SDP solver

to Õ(
√
mns2(Rr/ε)8), which was subsequently improved to Õ

(
(
√
m +

√
n(Rr/ε))s(Rr/ε)4

)
[46, 47]. The latter result is tight in the dependence of m and n since there is a quantum lower

bound of Ω(
√
m+

√
n) for constant R, r, s, ε [17].

However, semidefinite programming is a structured form of convex optimization that does

not capture the problem in general. In particular, SDPs are specified by positive semidefinite

matrices, and their solution is related to well-understood tasks in quantum computation such

as solving linear systems (e.g., [10, 20]) and Gibbs sampling (e.g., [46, 47]). General convex
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optimization need not include such structural information, instead only offering the promise

that the objective function and constraints are convex. Currently, little is known about whether

quantum computers could provide speedups for general convex optimization. Our goal is to shed

light on this question.

2.1.1 Convex optimization

We consider the following general minimization problem:

min
x∈K

f(x), where K ⊆ Rn is a convex set and f : K → R is a convex function. (2.1)

We assume we are given upper and lower bounds on the function values, namely

m ≤ minx∈K f(x) ≤M , and inner and outer bounds on the convex set K, namely

B2(0, r) ⊆ K ⊆ B2(0, R), (2.2)

where B2(x, l) is the ball of radius l in L2 norm centered at x ∈ Rn. We ask for a solution x̃ ∈ K

with precision ε, in the sense that

f(x̃) ≤ min
x∈K

f(x) + ε. (2.3)

We consider the very general setting where the convex body K and convex function f are

only specified by oracles. In particular, we have:

• A membership oracle OK for K, which determines whether a given x ∈ Rn belongs to K;
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• An evaluation oracle Of for f , which outputs f(x) for a given x ∈ K.

Convex optimization has been well-studied in the model of membership and evaluation

oracles since this provides a reasonable level of abstraction of K and f , and it helps illuminate

the algorithmic relationship between the optimization problem and the relatively simpler task of

determining membership [34, 41, 42]. The efficiency of convex optimization is then measured

by the number of queries to the oracles (i.e., the query complexity) and the total number of other

elementary gates (i.e., the gate complexity).

It is well known that a general bounded convex optimization problem is equivalent to one

with a linear objective function over a different bounded convex set. In particular, if promised

that minx∈K f(x) ≤M , (2.1) is equivalent to the problem

min
x′∈R, x∈K

x′ such that f(x) ≤ x′ ≤M. (2.4)

Observe that a membership query to the new convex set

K ′ := {(x′, x) ∈ R×K | f(x) ≤ x′ ≤M} (2.5)

can be implemented with one query to the membership oracle for K and one query to the

evaluation oracle for f . Thus the ability to optimize a linear function

min
x∈K

cTx (2.6)

for any c ∈ Rn and convex set K ⊆ Rn is essentially equivalent to solving a general convex
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optimization problem. A procedure to solve such a problem for any specified c is known as an

optimization oracle. Thus convex optimization reduces to implementing optimization oracles

over general convex sets (Lemma 2.2.1). The related concept of a separation oracle takes as

input a point p /∈ K and outputs a hyperplane separating p from K.

In the quantum setting, we model oracles by unitary operators instead of classical procedures.

In particular, in the quantum model of membership and evaluation oracles, we are promised to

have unitaries OK and Of such that

• For any x ∈ Rn, OK |x, 0〉 = |x, δ[x ∈ K]〉, where δ[P ] is 1 if P is true and 0 if P is false;

• For any x ∈ Rn, Of |x, 0〉 = |x, f(x)〉.

In other words, we allow coherent superpositions of queries to both oracles. If the classical

oracles can be implemented by explicit circuits, then the corresponding quantum oracles can be

implemented by quantum circuits of about the same size, so the quantum query model provides

a useful framework for understanding the quantum complexity of convex optimization.

2.1.2 Contributions

Our first main result is a quantum algorithm for optimizing a convex function over a convex

body. Specifically, we show the following:

Theorem 2.1.1. There is a quantum algorithm for minimizing a convex function f over a convex

set K ⊆ Rn using Õ(n) queries to an evaluation oracle for f and Õ(n) queries to a membership

oracle for K. The gate complexity of this algorithm is Õ(n3).

Recall that the state-of-the-art classical algorithm [41] for general convex optimization with

evaluation and membership oracles uses Õ(n2) queries to each. Thus our algorithm provides a
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quadratic improvement over the best known classical result. While the query complexity of [41]

is not known to be tight, it is the best possible result that can be achieved using subgradient

computation to implement a separation oracle, as discussed above.

The proof of Theorem 2.1.1 follows the aforementioned classical strategy of constructing a

separating hyperplane for any given point outside the convex body [41]. We find this hyperplane

using a fast quantum algorithm for gradient estimation using Õ(1) evaluation queries2, as first

proposed by Jordan [48] and later refined by [49] with more rigorous analysis. However, finding a

suitable hyperplane in general requires calculating approximate subgradients of convex functions

that may not be differentiable, whereas the algorithms in [48] and [49] both require bounded

second derivatives or more stringent conditions. To address this issue, we introduce classical

randomness into the algorithm to produce a suitable approximate subgradient with Õ(1) evaluation

queries, and show how to use such an approximate subgradient in the separation framework to

produce a faster quantum algorithm. Moreover, our subgradient algorithm only relies on an

approximate membership oracle with precision 1/ poly(n) (see Definition 2.2.5).

Our new quantum algorithm for subgradient computation is the source of the quantum

speedup of the entire algorithm and establishes a separation in query complexity for the subgradient

computation between quantum (Õ(1)) and classical (Ω̃(n), see Section 2.5.1) algorithms. This

subroutine could also be of independent interest, in particular in the study of quantum algorithms

based on gradient descent and its variants (e.g., [50, 51]).

On the other hand, we also aim to establish corresponding quantum lower bounds to

understand the potential for quantum speedups for convex optimization. To this end, we prove:

Theorem 2.1.2. There exists a convex body K ⊆ Rn, a convex function f on K, and a precision

2Here Õ(1) has the same definition as footnote 1, i.e., Õ(1) = logO(1)(nR/rε).
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ε > 0, such that a quantum algorithm needs at least Ω(
√
n) queries to a membership oracle for

K and Ω(
√
n/ log n) queries to an evaluation oracle for f to output a point x̃ satisfying

f(x̃) ≤ min
x∈K

f(x) + ε (2.7)

with high success probability (say, at least 0.8).

We establish the query lower bound on the membership oracle by reductions from search

with wildcards [52]. The lower bound on evaluation queries uses a similar reduction, but this only

works for an evaluation oracle with low precision. To prove a lower bound on precise evaluation

queries, we propose a discretization technique that relates the difficulty of the continuous problem

to a corresponding discrete one. This approach might be of independent interest since optimization

problems naturally have continuous inputs and outputs, whereas most previous work on quantum

lower bounds focuses on discrete inputs. Using this technique, we can simulate one perfectly

precise query by one low-precision query at discretized points, thereby establishing the evaluation

lower bound as claimed in Theorem 2.1.2. As a side point, this evaluation lower bound holds even

for an unconstrained convex optimization problem on Rn, which might be of independent interest

since this setting has also been well-studied classically [33, 43, 44, 53].

We summarize our main results in Table 2.1.

Classical bounds Quantum bounds (this paper)

Membership queries Õ(n2) [41], Ω(n) [54] Õ(n), Ω(
√
n)

Evaluation queries Õ(n2) [41], Ω(n) [54] Õ(n), Ω̃(
√
n)

Time complexity Õ(n3) [41] Õ(n3)

Table 2.1: Summary of classical and quantum complexities of convex optimization.
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2.1.3 Overview of techniques

2.1.3.1 Upper bound

To prove our upper bound result in Theorem 2.1.1, we use the well-known reduction

from general convex optimization to the case of a linear objective function, which simplifies the

problem to implementing an optimization oracle using membership oracle queries (Lemma 2.2.1).

For the reduction from optimization to membership, we follow the best known classical result

in [41] which implements an optimization oracle using Õ(n2) membership queries and Õ(n3)

arithmetic operations. In [41], the authors first show a reduction from separation oracles to

membership oracles that uses Õ(n) queries and then use a result from [42] to implement an

optimization oracle using Õ(n) queries to a separation oracle, giving an overall query complexity

of Õ(n2).

The reduction from separation to membership involves the calculation of a height function

defined by the authors (see Eq. (2.50)), whose evaluation oracle can be implemented in terms of

the membership oracle of the original set. A separating hyperplane is determined by computing

a subgradient, which already takes Õ(n) queries. In fact, it is not hard to see that any classical

algorithm requires Ω̃(n) classical queries (see Section 2.5.1), so this part of the algorithm cannot

be improved classically. The possibility of using the quantum Fourier transform to compute

the gradient of a function using Õ(1) evaluation queries ([48, 49]) suggests the possibility of

replacing the subgradient procedure with a faster quantum algorithm. However, the techniques

described in [48, 49] require the function whose gradient is to be computed to have bounded

second (or even higher) derivatives, and the height function is only guaranteed to be Lipschitz
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continuous (Definition 2.2.9) and in general is not even differentiable.

To compute subgradients of general (non-differentiable) convex functions, we introduce

classical randomness (taking inspiration from [41]) and construct a quantum subgradient algorithm

that uses Õ(1) queries. Our proof of correctness (Section 2.2.2) has three main steps:

1. We analyze the average error incurred when computing the gradient using the quantum

Fourier transform. Specifically, we show that this approach succeeds if the function has

bounded second derivatives in the vicinity of the point where the gradient is to be calculated

(see Algorithm 1, Algorithm 2, and Lemma 2.2.3). Some of our calculations are inspired

by [49].

2. We use the technique of mollifier functions (a common tool in functional analysis [55],

suggested to us by [54] in the context of [41]) to show that it is sufficient to treat infinitely

differentiable functions (the mollified functions) with bounded first derivatives (but possibly

large second derivatives). In particular, it is sufficient to output an approximate gradient

of the mollified function at a point near the original point where the subgradient is to be

calculated (see Lemma 2.2.4).

3. We prove that convex functions with bounded first derivatives have second derivatives that

lie below a certain threshold with high probability for a random point in the vicinity of the

original point (Lemma 2.2.5). Furthermore, we show that a bound on the second derivatives

can be chosen so that the smooth gradient calculation techniques work on a sufficiently

large fraction of the neighborhood of the original point, ensuring that the final subgradient

error is small (see Algorithm 3 and Theorem 2.2.2).

The new quantum subgradient algorithm is then used to construct a separation oracle as in
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[41] (and a similar calculation is carried out in Theorem 2.2.3). Finally the reduction from [42]

is used to construct the optimization oracle using Õ(n) separation queries. From Lemma 2.2.1,

this shows that the general convex optimization problem can be solved using Õ(n) membership

and evaluation queries and Õ(n3) gates.

2.1.3.2 Lower bound

We prove our quantum lower bounds on membership and evaluation queries separately

before showing how to combine them into a single optimization problem. Both lower bounds

work over n-dimensional hypercubes.

In particular, we prove both lower bounds by reductions from search with wildcards [52].

In this problem, we are given an n-bit binary string s and the task is to determine all bits of s

using wildcard queries that check the correctness of any subset of the bits of s: more formally,

the input in the wildcard model is a pair (T, y) where T ⊆ [n] and y ∈ {0, 1}|T |, and the query

returns 1 if s|T = y (here the notation s|T represents the subset of the bits of s restricted to T ).

Reference [52] shows that the quantum query complexity of search with wildcards is Ω(
√
n).

For our lower bound on membership queries, we consider a simple objective function,

the sum of all coordinates
∑n

i=1 xi. In other words, we take c = 1n in (2.6). However, the

position of the hypercube is unknown, and to solve the optimization problem (formally stated in

Definition 2.3.1), one must use the membership oracle to locate it.

Specifically, the hypercube takes the form×n

i=1
[si − 2, si + 1] (where× is the Cartesian

product) for some offset binary string s ∈ {0, 1}n. In Section 2.3.1, we prove:

• Any query x ∈ Rn to the membership oracle of this problem can be simulated by one query
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to the search-with-wildcards oracle for s. To achieve this, we divide the n coordinates of

x into four sets: Tx,0 for those in [−2,−1), Tx,1 for those in (1, 2], Tx,mid for those in

[−1, 1], and Tx,out for the rest. Notice that Tx,mid corresponds to the coordinates that are

always in the hypercube and Tx,out corresponds to the coordinates that are always out of

the hypercube; Tx,0 (resp., Tx,1) includes the coordinates for which si = 0 (resp., si = 1)

impacts the membership in the hypercube. We prove in Section 2.3.1 that a wildcard query

with T = Tx,0 ∪ Tx,1 can simulate a membership query to x.

• The solution of the sum-of-coordinates optimization problem explicitly gives s, i.e., it

solves search with wildcards. This is because this solution must be close to the point

(s1 − 2, . . . , sn − 2), and applying integer rounding would recover s.

These two points establish the reduction of search with wildcards to the optimization problem,

and hence establishes the Ω(
√
n) membership quantum lower bound in Theorem 2.1.2 (see

Theorem 2.3.2).

For our lower bound on evaluation queries, we assume that membership is trivial by fixing

the hypercube at C = [0, 1]n. We then consider optimizing the max-norm function

f(x) = max
i∈[n]
|xi − ci| (2.8)

for some unknown c ∈ {0, 1}n. Notice that learning c is equivalent to solving the optimization

problem; in particular, outputting an x̃ ∈ C satisfying (2.3) with ε = 1/3 would determine the

string c. This follows because for all i ∈ [n], we have |x̃i− ci| ≤ maxi∈[n] |x̃i− ci| ≤ 1/3, and ci

must be the integer rounding of x̃i, i.e., ci = 0 if x̃i ∈ [0, 1/2) and ci = 1 if x̃i ∈ [1/2, 1]. On the
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other hand, if we know c, then we know the optimum x = c.

We prove an Ω(
√
n/ log n) lower bound on evaluation queries for learning c. Our proof,

which appears in Section 2.3.2, is composed of three steps:

1) We first prove a weaker lower bound with respect to the precision of the evaluation oracle.

Specifically, if f(x) is specified with b bits of precision, then using binary search, a query

to f(x) can be simulated by b queries to an oracle that inputs (f(x), t) for some t ∈ R

and returns 1 if f(x) ≤ t and returns 0 otherwise. We further without loss of generality

assume x ∈ [0, 1]n. If x /∈ [0, 1]n, we assign a penalty of the L1 distance between x and

its projection π(x) onto [0, 1]n; by doing so, f(π(x)) and x fully characterizes f(x) (see

(2.81)). Therefore, f(x) ∈ [0, 1], and f(x) having b bits of precision is equivalent to having

precision 2−b.

Similar to the interval dividing strategy in the proof of the membership lower bound, we

prove that one query to such an oracle can be simulated by one query to the search-with-

wildcards oracle for s. Furthermore, the solution of the max-norm optimization problem

explicitly gives s, i.e., it solves the search-with-wildcards problem. This establishes the

reduction to search with wildcards, and hence establishes an Ω(
√
n/b) lower bound on the

number of quantum queries to the evaluation oracle f with precision 2−b (see Lemma 2.3.1).

2) Next, we introduce a technique we call discretization, which effectively simulates queries

over an (uncountably) infinite set by queries over a discrete set. This technique might be of

independent interest since proving lower bounds on functions with an infinite domain can

be challenging.

We observe that the problem of optimizing (2.8) has the following property: if we are
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given two strings x, x′ ∈ [0, 1]n such that x1, . . . , xn, 1−x1, . . . , 1−xn and x′1, . . . , x
′
n, 1−

x′1, . . . , 1− x′n have the same ordering (for instance, x = (0.1, 0.2, 0.7) and x′ = (0.1, 0.3,

0.6) both have the ordering x1 ≤ x2 ≤ 1− x3 ≤ x3 ≤ 1− x2 ≤ 1− x1), then

arg max
i∈[n]
|xi − ci| = arg max

i∈[n]
|x′i − ci|. (2.9)

Furthermore, if x′1, . . . , x
′
n, 1− x′1, . . . , 1− x′n are 2n different numbers, then knowing the

value of f(x′) implies the value of the arg max in (2.9) (denoted i∗) and the corresponding

ci∗ , and we can subsequently recover f(x) given x since f(x) = |xi∗−ci∗ |. In other words,

f(x) can be computed given x and f(x′).

Therefore, it suffices to consider all possible ways of ordering 2n numbers, rendering the

problem discrete. Without loss of generality, we focus on x′ satisfying {x′1, . . . , x′n, 1 −

x′1, . . . , 1 − x′n} = { 1
2n+1

, . . . , 2n
2n+1
}, and we denote the set of all such x′ by Dn (see

also (2.97)). In Lemma 2.3.4, we prove that one classical (resp., quantum) evaluation

query from [0, 1]n can be simulated by one classical evaluation query (resp., two quantum

evaluation queries) from Dn using Algorithm 5. To illustrate this, we give a concrete

example with n = 3 in Section 2.3.2.2.

3) Finally, we use discretization to show that one perfectly precise query to f can be simulated

by one query to f with precision 1
5n

; in other words, b in step 1) is at most dlog2 5ne =

O(log n) (see Lemma 2.3.3). This is because by discretization, the input domain can be

limited to the discrete set Dn. Notice that for any x ∈ Dn, f(x) is an integer multiple of

1
2n+1

; even if f(x) can only be computed with precision 1
5n

, we can round it to the closest
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integer multiple of 1
2n+1

which is exactly f(x), since the distance 2n+1
5n

< 1
2
. As a result,

we can precisely compute f(x) for all x ∈ Dn, and thus by discretization we can precisely

compute f(x) for all x ∈ [0, 1]n.

In all, the three steps above establish an Ω(
√
n/ log n) quantum lower bound on evaluation

queries to solve the problem in Eq. (2.8) (see Theorem 2.3.2). In particular, this lower bound is

proved for an unconstrained convex optimization problem on Rn, which might be of independent

interest.

As a side result, we prove that our quantum lower bound is optimal for the problem in

(2.8) (up to poly-logarithmic factors in n), as we can prove a matching Õ(
√
n) upper bound

(Theorem 2.5.1). Therefore, a better quantum lower bound on the number of evaluation queries

for convex optimization would require studying an essentially different problem.

Having established lower bounds on both membership and evaluation queries, we combine

them to give Theorem 2.1.2. This is achieved by considering an optimization problem of dimension

2n; the first n coordinates compose the sum-of-coordinates function in Section 2.3.1, and the

last n coordinates compose the max-norm function in Section 2.3.2. We then concatenate both

parts and prove Theorem 2.1.2 via reductions to the membership and evaluation lower bounds,

respectively (see Section 2.3.3).

In addition, all lower bounds described above can be adapted to a convex body that is

contained in the unit hypercube and that contains the discrete set Dn to facilitate discretization;

we present a “smoothed” hypercube (see Section 2.3.4) as a specific example.

Organization. Our quantum upper bounds are given in Section 2.2 and lower bounds are given

in Section 2.3. Technical details that are not essential to the main discussion, included auxiliary
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lemmas (Section 2.5.1) and proof details for upper bounds (Section 2.5.2) and lower bounds

(Section 2.5.3) are provided in an appendix section at the end of the chapter for completeness.

2.2 Upper bound

In this section, we prove:

Theorem 2.2.1. An optimization oracle for a convex setK ⊆ Rn can be implemented using Õ(n)

quantum queries to a membership oracle for K, with gate complexity Õ(n3).

The following lemma shows the equivalence of optimization oracles to a general convex

optimization problem.

Lemma 2.2.1. Suppose a reduction from an optimization oracle to a membership oracle for

convex sets requires O(g(n)) queries to the membership oracle. Then the problem of optimizing

a convex function over a convex set can be solved using O(g(n)) queries to both the membership

oracle and the evaluation oracle.

Proof. The problem minx∈K f(x) reduces to the problem min(x′,x)∈K′ x
′ where K ′ is defined as

in (2.4). K ′ is the intersection of convex sets and is therefore itself convex. A membership oracle

forK ′ can be implemented using 1 query each to the membership oracle forK and the evaluation

oracle for f . Since O(g(n)) queries to the membership oracle for K ′ are sufficient to optimize

any linear function, the result follows.

Theorem 2.1.1 directly follows from Theorem 2.2.1 and Lemma 2.2.1.

Overview. This part of the paper is organized following the plan outlined in Section 2.1.3.1.

Precise definitions of oracles and other relevant terminology appear in Section 2.2.1. Section 2.2.2
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develops a fast quantum subgradient procedure that can be used in the classical reduction from

optimization to membership. This is done in two parts:

1. Section 2.2.2.1 presents an algorithm based on the quantum Fourier transform that calculates

the gradient of a function with bounded second derivatives (i.e., a β-smooth function) with

bounded expected one-norm error.

2. Section 2.2.2.2 uses mollification to restrict the analysis to infinitely differentiable functions

without loss of generality, and then uses classical randomness to eliminate the need for

bounded second derivatives.

In Section 2.2.3 we show that the new quantum subgradient algorithm fits into the classical

reduction from [41]. Finally, we describe the reduction from optimization to membership in

Section 2.2.4.

2.2.1 Oracle definitions

In this section, we provide precise definitions for the oracles for convex sets and functions

that we use in our algorithm and its analysis. We also provide precise definitions of Lipschitz

continuity and β-smoothness, which we will require in the rest of the section.

Definition 2.2.1 (Ball in Lp norm). The ball of radius r > 0 in Lp norm ‖·‖p centered at x ∈ Rn

is Bp(x, r) := {y ∈ Rn | ‖x− y‖p ≤ r}.

Definition 2.2.2 (Interior of a convex set). For any δ > 0, the δ-interior of a convex set K is

defined as B2(K,−δ) := {x | B2(x, δ) ⊆ K}.
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Definition 2.2.3 (Neighborhood of a convex set). For any δ > 0, the δ-neighborhood of a convex

set K is defined as B2(K, δ) := {x | ∃ y ∈ K s.t. ‖x− y‖2 ≤ δ}.

Definition 2.2.4 (Evaluation oracle). When queried with x ∈ Rn and δ > 0, output α such that

|α − f(x)| ≤ δ. We use EVALδ(f) to denote the time complexity. The classical procedure or

quantum unitary representing the oracle is denoted by Of .

Definition 2.2.5 (Membership oracle). When queried with x ∈ Rn and δ > 0, output an assertion

that x ∈ B2(K, δ) or x /∈ B2(K,−δ). The time complexity is denoted by MEMδ(K). The

classical procedure or quantum unitary representing the membership oracle is denoted by OK .

Definition 2.2.6 (Separation oracle). When queried with x ∈ Rn and δ > 0, with probability

1− δ, either

• assert x ∈ B2(K, δ) or

• output a unit vector ĉ such that ĉTx ≤ ĉTy + δ for all y ∈ B2(K,−δ).

The time complexity is denoted by SEPδ(K).

Definition 2.2.7 (Optimization oracle). When queried with a unit vector c, find y ∈ Rn such that

cTx ≤ cTy + δ for all x ∈ B2(K,−δ) or asserts that B2(K, δ) is empty. The time complexity of

the oracle is denoted by OPTδ(K).

Definition 2.2.8 (Subgradient). A subgradient of a convex function f : Rn → R at x, is a vector

g such that

f(y) ≥ f(x) + 〈g, y − x〉 (2.10)

for all y ∈ Rn. For a differentiable convex function, the gradient is the only subgradient. The set

of subgradients of f at x is called the subdifferential at x and denoted by ∂f(x).
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Definition 2.2.9 (L-Lipschitz continuity). A function f : Rn → R is said to be L-Lipschitz

continuous (or simply L-Lipschitz) in a set S if for all x ∈ S, ‖g‖∞ ≤ L for any g ∈ ∂f(x). An

immediate consequence of this is that for any x, y ∈ S,

|f(y)− f(x)| ≤ L‖y − x‖∞. (2.11)

Definition 2.2.10 (β-smoothness). A function f : Rn → R is said to be β-smooth in a set S if

for all x ∈ S, the magnitudes of the second derivatives of f in all directions are bounded by β.

This also means that the largest magnitude of an eigenvalue of the Hessian ∇2f(x) is at most β.

Consequently, for any x, y ∈ S, we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2

∞. (2.12)

2.2.2 Evaluation to subgradient

In this section we present a procedure that, given an evaluation oracle for an L-Lipschitz

continuous function f : Rn → R with evaluation error at most ε > 0, a point x ∈ Rn, and

an “approximation scale” factor r1 > 0, computes an approximate subgradient g̃ of f at x.

Specifically, g̃ satisfies

f(q) ≥ f(x) + 〈g̃, q − x〉 − ζ‖q − x‖∞ − 4nr1L (2.13)

for all q ∈ Rn, where Eζ ≤ ξ(r1, ε) and ξ must monotonically increase with ε as εα for some

α > 0. Here ζ is the error in the subgradient that is bounded in expectation by the function ξ.
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2.2.2.1 Smooth functions

We first describe how to approximate the gradient of a smooth function. Algorithm 1 and

Algorithm 2 use techniques from [48] and [49] to evaluate the gradient of a function with bounded

second derivatives in the neighborhood of the evaluation point. To analyze their behavior, we

begin with the following lemma showing that Algorithm 1 provides a good estimate of the

gradient with bounded failure probability.

Algorithm 1: GradientEstimate(f, ε, L, β, x0)

Data: Function f , evaluation error ε, Lipschitz constant L, smoothness parameter β,
and point x0.

Define
• l = 2

√
ε/nβ to be the size of the grid used,

• b ∈ N such that 24π
√
nεβ

L
≤ 1

2b
= 1

N
≤ 48π

√
nεβ

L
,

• b0 ∈ N such that Nε
2Ll
≤ 1

2b0
= 1

N0
≤ Nε

Ll
,

• F (x) = N
2Ll

[f(x0 + l
N

(x−N/2))− f(x0)], and,
• γ : {0, 1, . . . , N − 1} → G := {−N/2,−N/2 + 1, . . . , N/2− 1} such that
γ(x) = x−N/2.

Let OF denote a unitary operation acting as OF |x〉 = e2πiF̃ (x)|x〉, where
|F̃ (x)− F (x)| ≤ 1

N0
, with x represented using b bits and F̃ (x) represented using b0

bits.
1 Start with n b-bit registers set to 0 and Hadamard transform each to obtain

1√
Nn

∑
x1,...,xd∈{0,1,...,N−1}

|x1, . . . , xd〉; (2.14)

2 Perform the operation OF and the map |x〉 7→ |γ(x)〉 to obtain

1

Nn/2

∑
g∈Gn

e2πiF̃ (g)|g〉; (2.15)

3 Apply the inverse QFT over G to each of the registers;
4 Measure the final state to get k1, k2, . . . , kd and report g̃ = 2L

N
(k1, k2, . . . , kd) as the

result.

Lemma 2.2.2. Let f : Rn → R be an L-Lipschitz function that is specified by an evaluation
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oracle with error at most ε. Let f be β-smooth in B∞(x, 2
√
ε/β), and let g̃ be the output of

GradientEstimate(f, ε, L, β, x0) (from Algorithm 1). Then

Pr
[
|g̃i −∇f(x)i| > 1500

√
nεβ

]
<

1

3
, ∀ i ∈ [n]. (2.16)

The proof of Lemma 2.2.2 is deferred to Lemma 2.5.5 in the final section.

Next we analyze Algorithm 2, which uses several calls to Algorithm 1 to provide an

estimate of the gradient that is close in expected L1 distance to the true value.

Algorithm 2: SmoothQuantumGradient(f, ε, L, β, x)

Data: Function f , evaluation error ε, Lipschitz constant L, smoothness parameter β,
and point x.

1 Set T such that 2e−T
2/24 ≤ 1500

√
nεβ/L;

2 for t = 1, 2, . . . , T do
3 e(t) ← GradientEstimate(f, ε, L, β, x);

4 for i = 1, 2, . . . , n do
5 If more than T/2 of e(t)

i lie in an interval of size 3000
√
nεβ, set g̃i to be the median

of the points in that interval;
6 Otherwise, set g̃i = 0;

7 Output g̃.

Lemma 2.2.3. Let f be a convex, L-Lipshcitz continuous function that is specified by an evaluation

oracle with error at most ε. Suppose f is β-smooth in B∞(x, 2
√
ε/β). Let

g̃ = SmoothQuantumGradient(f, ε, L, β, x) (2.17)

(from Algorithm 2). Then for any i ∈ [n], we have |g̃i| ≤ L and E|g̃i − ∇f(x)i| ≤ 3000
√
nεβ;
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hence

E‖g̃ −∇f(x)‖1 ≤ 3000n3/2
√
εβ. (2.18)

If L, 1/β, and 1/ε are poly(n), the SmoothQuantumGradient algorithm uses Õ(1) queries

to the evaluation oracle and Õ(n) gates.

Proof. For each dimension i ∈ [n] and each iteration t ∈ [T ], consider the random variable

X t
i =


1 if |e(t)

i −∇f(x)i| > 1500
√
nεβ

0 otherwise.

(2.19)

From the conditions on function f , Lemma 2.2.2 applies to GradientEstimate(f, ε, L, β, x),

and thus Pr(X t
i = 1) < 1/3. Thus, by the Chernoff bound, Pr

[
|g̃i −∇f(x)i| ≤ 1500

√
nεβ

]
>

1 − 2e−T
2/24 ≥ 1 − 1500

√
nεβ/L. In the remaining cases, |g̃i − ∇f(x)i| ≤ L (see Line 4 of

Algorithm 1). Thus E|g̃i −∇f(x)i| ≤ 3000
√
nεβ for all i ∈ [n], and (2.18) follows.

The algorithm makes T = poly(log(1/nεβ)) calls to a procedure that makes one query

to the evaluation oracle. Thus the query complexity is Õ(1). To evaluate the gate complexity,

observe that we iterate over n dimensions, using poly(b) = poly(log(1/nεβ)) gates for the

quantum Fourier transform over each. This process is repeated T = poly(log(1/nεβ)) times.

Thus the entire algorithm uses Õ(n) gates.
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2.2.2.2 Extension to non-smooth functions

Now consider a general L-Lipschitz continuous convex function f . We show that any such

function is close to a smooth function, and we consider the relationship between the subgradients

of the original function and the gradient of its smooth approximation.

For any δ > 0, let mδ : Rn → R be the mollifier function of width δ, defined as

mδ(x) :=


1
In

exp
(
− 1

1−‖x/δ‖22

)
x ∈ B2(0, δ)

0 otherwise,

(2.20)

where In is chosen such that
∫
B2(0,δ)

mδ(x) dnx = 1. The mollification of f , denoted Fδ :=

f ∗mδ, is obtained by convolving it with the mollifier function, i.e.,

Fδ(x) = (f ∗mδ)(x) =

∫
Rn
f(x− y)mδ(y) dnx. (2.21)

The mollification of f has several key properties, as follows:

Proposition 2.2.1. Let f : Rn → R be an L-Lipschitz convex function with mollification Fδ. Then

(i) Fδ is infinitely differentiable,

(ii) Fδ is convex,

(iii) Fδ is L-Lipschitz continuous, and

(iv) |Fδ(x)− f(x)| ≤ Lδ.

These properties of the mollifier function are well known in functional analysis [55]. For

completeness a proof is provided in Lemma 2.5.2.
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Lemma 2.2.4. Let f : Rn → R be an infinitely differentiable L-Lipschitz continuous convex

function with mollification Fδ. Then any g̃ satisfying ‖g̃−∇Fδ(y)‖1 = ζ for some y ∈ B∞(x, r1)

satisfies

f(q) ≥ f(x) + 〈g̃, q − x〉 − ζ‖q − x‖∞ − 4nr1L− 2Lδ. (2.22)

Here ζ is the error in the subgradient and δ is the parameter used in the mollifier function.

Proof. For all q ∈ Rn, convexity of Fδ implies

Fδ(q) ≥ Fδ(y) + 〈∇Fδ(y), q − y〉 (2.23)

= Fδ(x) + 〈∇Fδ(y), q − x〉+ 〈∇Fδ(y), x− y〉+ (Fδ(y)− Fδ(x)) (2.24)

≥ Fδ(x) + 〈∇Fδ(y), q − x〉 − 4nr1L (2.25)

≥ Fδ(x) + 〈g̃, q − x〉 − ζ‖q − x‖∞ − 4nr1L, (2.26)

so (2.22) follows from Proposition 2.2.1(iv).

Now consider δ such that Lδ � ε. Then the evaluation oracle with error ε for f is also

an evaluation oracle for Fδ with error ε + Lδ ≈ ε. Thus the given evaluation oracle is also the

evaluation oracle for an infinitely differentiable convex function with the same Lipschitz constant,

with almost equal error, allowing us to analyze infinitely differentiable functions without loss

of generality (as long as we make no claim about the second derivatives). This idea is made

precise in Theorem 2.2.2. (Note that the mollification of f is never computed or estimated by our

algorithm. It is only a tool for analysis.)

Unfortunately, Lemma 2.2.3 cannot be directly used to calculate subgradients for Fδ as

δ → 0. Note that for the given evaluation oracle for f to also be an ∼ ε-evaluation oracle for Fδ,
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we must have δ ≤ ε. Furthermore, there exist convex functions (such as f(x) = |x|) where if

|f(x) − g(x)| ≤ δ and g(x) is β-smooth, then βδ ≥ c for some constant c (see Lemma 2.5.3 in

the final section). Thus using the SmoothQuantumGradient algorithm at x = 0 will give us

a one-norm error of 3000n3/2
√
εβ ≥ 3000n3/2

√
c, which is independent of ε.

To avoid this problem, we take inspiration from [41] and introduce classical randomness

into the gradient evaluation. In particular, the following lemma shows that for a Lipschitz

continuous function, if we sample at random from the neighborhood of any given point, the

probability of having large second derivatives is small. Let y ∈R Y indicate that y is sampled

uniformly at random from the set Y . Also, let λ(x) be the largest eigenvalue of the Hessian matrix

∇2f(x) at x. Since the Hessian is positive semidefinite, we have λ(x) ≤ ∆f(x) := Tr(∇2f(x)).

Thus the second derivatives of a function are bounded by ∆f(x).

Lemma 2.2.5. Let f : Rn → R be a twice differentiable L-Lipschitz function. Then

Ey∈RB∞(x,r1)∆f(y) ≤ nL

r1

. (2.27)

Proof. We have

Ey∈RB∞(x,r1)∆f(y) =
1

(2r1)n

∫
B∞(x,r1)

∆f(y) dny (2.28)

=
1

(2r1)n

∫
∂B∞(x,r1)

〈∇f(y), η(y)〉 dn−1y (2.29)

≤ 1

(2r1)n
(2n)(2r1)n−1L =

nL

r1

(2.30)

where (2.29) comes from the divergence theorem (the integral of the divergence of a vector field
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over a set is equal to the integral of the vector field over the surface of the set) and η(y) is the

area element on the surface ∂B∞(x, r1) defined as

η(y)i =


1 if yi − xi ≥ r1

0 otherwise.

(2.31)

Using Markov’s inequality with Lemma 2.2.5, we have

Pr
y∼B∞(x,r1)

[
∆f(y) >

pnL

r1

]
≤ 1

p
(2.32)

for p > 1. We use this fact to argue that at most points y ∈ B∞(x, r1), we can use the

SmoothQuantumGradient procedure (with a second derivative bound β0 = pnL/r1) and

obtain good estimates to the gradient (with error that monotonically decreases with ε).

From Lemma 2.2.3, we see that for SmoothQuantumGradient to be successful at a

point y, the second derivative bound β0 = pnL/r1 must hold not only at y, but at every point

z ∈ B∞(y, l), where l := 2
√
ε/β0. Thus we wish to upper bound the probability that a point y

lies in the l-neighborhood of the set of points with second derivatives greater than β0. Specifically,

we have the following.

Lemma 2.2.6. Let f : Rn → R be an L-Lipschitz convex function with L ≥ 1. Suppose n > 1

and ε ∈ (0, 1). Then for any r1 > 0,

Pr
y∈RB∞(x,r1)

[
∃ z ∈ B∞(y, l),∆f(z) ≥ 16nL

ε1/3

]
≤ ε1/3

8r1

(2.33)
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where l = ε2/3/2
√
nL (i.e., l = 2

√
ε/β0 with β0 = pnL/r1 and p = 16r1/ε

1/3).

Proof. We denote the measure of a set S by M(S). Consider y ∈R B∞(x, r1). Then the

probability that y ∈ S ⊆ B∞(x, r1) isM(S)/(2r1)n. Let B∞(S, l) := {y | ∃ z ∈ B∞(y, l), z ∈

S}. From the union bound,

M(B∞(S, l)) ≤M(S) +M(S)M(B∞(0, l)) =
(
1 + (2l)n

)
M(S). (2.34)

Therefore, we have

Pr
y∈RB∞(x,r1)

[∃ z ∈ B∞(y, l), z ∈ S] =
M(B∞(S, l))

(2r1)n
(2.35)

≤
(
1 + (2l)n

)M(S)

(2r1)n
(2.36)

=
(
1 + (2l)n

)
Pr

y∈RB∞(x,r1)
[y ∈ S]. (2.37)

Considering S = {z | ∆f(x) ≥ pnL/r1} for any p > 1, combining (2.37) and (2.32) gives

Pr
y∈RB∞(x,r1)

[
∃ z ∈ B∞(y, l),∆f(z) ≥ pnL

r1

]
≤ 1

p
+

(2l)n

p
(2.38)

=
1

p
+

4n

p

(
ε

β0

)n/2
(2.39)

=
1

p
+

1

p

(
16εr1

pnL

)n/2
. (2.40)

Using the assumptions that n > 1, ε < 1, and L ≥ 1, we have

Pr
y∈RB∞(x,r1)

[
∃ z ∈ B∞(y, l),∆f(z) ≥ pnL

r1

]
≤ 1

p
+

1

p

(
16r1

p

)n/2
. (2.41)
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Finally, with p = 16r1/ε
1/3, we have

Pr
y∈RB∞(x,r1)

[
∃ z ∈ B∞(y, l),∆f(z) ≥ 16nL

ε1/3

]
≤ ε1/3

16r1

+
ε1/3εn/6

16r1

≤ ε1/3

8r1

(2.42)

as claimed.

Thus we have shown that if we choose a point at random in the r1-neighborhood of the given

point x, every point in its l-neighborhood has small second derivatives with high probability. Note

the assumption that L ≥ 1 is without loss of generality since otherwise we could simply run the

algorithm with L = 1.

Algorithm 3: QuantumSubgradient(f, ε, L, x, r1)

Data: Function f , evaluation error ε, Lipschitz constant L, point x ∈ Rn, length
r1 > 0.

1 Sample y ∈R B∞(x, r1);
2 Output g̃ = SmoothQuantumGradient(f, ε, L, 16nL/ε1/3, y).

Now we are ready to show that Algorithm 3 produces a good approximate subgradient.

Theorem 2.2.2. Let f be a convex, L-Lipschitz function that is specified by an evaluation oracle

with error ε < min{1, 8192r3
1}. Let g̃ = QuantumSubgradient(f, ε, L, x, r1) (Algorithm 3).

Then for all q ∈ Rn,

f(q) ≥ f(x) + 〈g̃, q − x〉 − ζ‖q − x‖∞ − 4nr1L, (2.43)

where Eζ ≤ Lε1/3
(
15000n2 + n

4r1

)
.

Proof. Consider Fδ such that Lδ � ε. From Proposition 2.2.1, Fδ is infinitely differentiable,

convex, and L-Lipschitz. The given evaluation oracle for f is also an evaluation oracle for Fδ
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with error ε1 = ε+ Lδ ≤ ε.

We have ε < 8192r3
1 and ε1 < 4096r3

1, so p = 16r1/ε
1/3
1 > 1. Thus by Lemma 2.2.6, an

invocation of the algorithm g = SmoothQuantumGradient(Fδ, ε1, L, 16r1/ε
1/3
1 , y) behaves

correctly with probability at least 1− ε1/31 /8r1. Thus for each i ∈ [n], we have:

1. With probability at least 1− ε1/31 /8r1,

E|gi −∇Fδ(y)i| ≤ 3000

√
16r1n2Lε1

r1ε
1/3
1

< 15000ε
1/3
1 nL1/2 ≤ 15000ε

1/3
1 Ln. (2.44)

2. With probability at most ε1/31 /8r1, the algorithm fails. From Lipschitz continuity, |∇Fδ(x)i| ≤

L, and from Lemma 2.2.3, |gi| ≤ L. Therefore,

E|gi −∇Fδ(y)i| ≤ 2L. (2.45)

Finally, we have

Ey∈RB∞(x,r1)|gi −∇Fδ(y)i| ≤ 15000Lε
1/3
1 n+

Lε
1/3
1

4r1

, (2.46)

so

Ey∈RB∞(x,r1)‖g −∇Fδ(y)‖1 ≤ Lε
1/3
1

(
15000n2 +

n

4r1

)
. (2.47)

Thus from Lemma 2.2.4,

f(q) ≥ f(x) + 〈g, q − x〉 − ζ‖q − x‖∞ − 4nr1L− 2Lδ (2.48)

for all q ∈ Rn where Eζ ≤ Lε
1/3
1

(
15000n2 + n

4r1

)
. Now let δ → 0. Then Fδ → f , ε1 → ε, and
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g → g̃. Finally,

f(q) ≥ f(x) + 〈g̃, q − x〉 − ζ‖q − x‖∞ − 4nr1L (2.49)

for all q ∈ Rn, where Eζ ≤ Lε1/3
(
15000n2 + n

4r1

)
.

2.2.3 Membership to separation

Algorithm 4: SeparatingHalfspace(K, p, ρ, δ)

Data: Convex set K such that B2(0, r) ⊂ K ⊂ B2(0, R), κ = R/r, δ-precision
membership oracle for K, point p.

1 if the membership oracle asserts that p ∈ B2(K, δ) then
2 Output: p ∈ B2(K, δ).

3 else if p /∈ B2(0, R) then
4 Output: the halfspace {x ∈ Rn | 0 > 〈x− p, p〉}.
5 else
6 Define hp(x) as in (2.50). The evaluation oracle for hp(x) for any x ∈ B(0, r/2)

can be implemented to precision ε = 7κδ using log(1/ε) queries to the
membership oracle for K;

7 Compute g̃ = QuantumSubgradient(hp, ε, L, 0,
R1/2ε1/3

4κ1/2 );
8 Output: the halfspace

{x ∈ Rn |
(
100000R + 12R1/2 + 1

)
n2ε1/6κ3/2/ρ ≥ 〈g̃, x− p〉}.

In this section we show how the approximate subgradient procedure Algorithm 3 fits into

the reduction from separation to membership presented in [41]. We use the height function

hp : Rn → R defined in [41] for any vector p ∈ Rn, as

hp(x) = −max{t ∈ R | x+ tp̂ ∈ K}. (2.50)

, where p̂ is the unit vector in the direction of p. The height function has the following properties:
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Proposition 2.2.2 (Lemmas 11 and 12 of [41]). Let K ⊂ Rn be a convex set with B2(0, r) ⊆

K ⊆ B2(0, R) for some R > r > 0. Then for any p ∈ Rn, the height function (2.50) satisfies

(i) hp(x) is convex,

(ii) hp(x) ≤ 0 for all x ∈ K, and

(iii) for all δ > 0, hp(x) is R+δ
r−δ -Lipschitz continuous for x ∈ B2(0, δ).

Now we are ready to analyze Algorithm 4.

Theorem 2.2.3. Let K ⊂ Rn be a convex set such that B2(0, r) ⊆ K ⊆ B2(0, R) for some

R > r > 0. Let ρ ∈ (0, 1) and δ ∈ (0,min{r/7κ, 1/7κ}). Then with probability at least 1 − ρ,

SeparatingHalfspace(K, p, ρ, δ) outputs a halfspace that contains K and not p.

Proof. Since δ ≤ min{r/7κ, 1/7κ}, ε ≤ min{1, r}.

If p ∈ B2(K, δ) the algorithm is trivially correct.

If p /∈ B2(0, R), the algorithm outputs a halfspace that contains B2(0, R) (and therefore

contains K), and not p.

Finally, suppose p /∈ B2(K,−δ) and p ∈ B2(0, R). Since ε ≥ δ, p /∈ B2(K,−ε). The

height function hp(x) is 3κ-Lipschitz for all x ∈ B2(0, r/2), where κ := R/r. Since ε <

min{1, r}, we have ε < r, so Theorem 2.2.2 implies

hp(x) ≥ hp(0) + 〈g̃, x〉 − ζ‖x‖∞ − 12nr1κ (2.51)

for any x ∈ K, where Eζ ≤ 3κε1/3(15000n2 + n
4r1

).
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Notice that −p/κ ∈ K and hp (−p/κ) = hp(0)− 1
κ
‖p‖2. From (2.51),

hp(0)− 1

κ
‖p‖2 ≥ hp(0) + 〈g̃,−p/κ〉 − 1

κ
ζ‖p‖∞ − 12nr1κ (2.52)

so

〈g̃, p〉 ≥ ‖p‖2 − ζ‖p‖∞ − 12nr1κ
2. (2.53)

As claimed in Line 6 of Algorithm 4, hp(x) can be evaluated with any precision ε such that

7κδ ≤ ε using O(log(1/ε)) queries to a membership oracle with error δ; the proof is deferred to

Lemma 2.5.6.

Since the membership oracle returns a negative response p /∈ B2(K,−δ), and the error ε

in hp(x) must be ≥ δ, p /∈ B2(K,−ε). We are also given that B2(0, r) ⊆ K. Thus we have(
1− ε

r

)
K ⊆ B2(K,−ε). Thus,

hp(0) ≥ −
(

1− ε

r

)
‖p‖2 ≥ −‖p‖2 + εκ. (2.54)

From (2.51), (2.52), and (2.54), we have

hp(x) ≥ 〈g̃, x− p− ζ‖x‖∞ − ζ‖p‖∞ − 12nr1κ− 12nr1κ
2 − εκ (2.55)

≥ 〈g̃, x− p〉 − 2ζR− 24nr1κ
2 − εκ, (2.56)
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so 〈g̃, x− p〉 ≤ ζ̃ for all x ∈ K, where

Eζ̃ ≤ 6Rκε1/3
(

15000n2 +
n

4r1

)
+ 24nr1κ

2 + εκ (2.57)

≤ 90000Rn2ε1/3κ+ 12nR1/2ε1/6κ3/2 + εκ (2.58)

< (100000R + 12R1/2 + 1)n2ε1/6κ3/2. (2.59)

Thus the result follows from Markov’s inequality.

Theorem 2.2.4. Let K ⊂ Rn be a convex set with B2(0, r) ⊆ K ⊆ B2(0, R) and κ = R/r

for some R > r > 0, and let η > 0 be fixed. Further suppose that R, r, κ ∈ poly(n). Then a

separating oracle for K with error η can be implemented using Õ(1) queries to a membership

oracle for K and Õ(n) gates.

Proof. Clearly, the unit vector in the direction g̃ (from Algorithm 4) determines a separating

hyperplane given a point p /∈ B2(K,−ε).

From (2.52), we have

〈g̃, p〉 ≥ ‖p‖2 − 3κε1/3
(

15000n2 +
n

4r1

)
‖p‖∞. (2.60)

Letting 3ε1/3
(

15000n2 + n
4r1

)
< 1

2κ2 , we have

‖g̃‖2R ≥ r − R

2κ
⇒ ‖g‖ ≥ 1

2κ
. (2.61)

Thus, we have a separating oracle with error margin
(
200000R + 24R1/2 + 2

)
n2ε1/6κ5/2ρ−1

and failure probability ρ. Setting ρ =
(
(200000R + 24R1/2 + 2)n2ε1/6κ5/2

)1/2, we have a
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composite error of (200000R + 24R1/2 + 2)n2ε1/6κ5/2. To have error at most η, we take ε ≤

η6/
(
(200000R + 24R1/2 + 1)6n12κ15

)
.

We finally obtain

δ =
ε

7κ
≤ 1

7κ
min

{
η6

(200000R + 24R1/2 + 1)
6
n12κ15

,
1

216κ6
(

15000n2 + n
4r1

)3 , r, 1

}
.

(2.62)

Consequently, we have SEPη = Õ(1) MEMδ, where

δ =
1

7κ
min

{
η6

(200000R + 24R1/2 + 1)
6
n12κ15

,
1

216κ6
(

15000n2 + n
8r1

)3 , r, 1

}
. (2.63)

Therefore, 1/ε and 1/δ are both O(poly(n)). Implementing the evaluation oracle takes

poly(log(1/ε)) membership queries and a further Õ(1) queries are used for the sub-gradient.

The evaluation requires Õ(1/ε) gates and SmoothQuantumGradient uses

n poly(log(1/ε)) gates. Thus a total of poly(log(1/η)) queries and n poly(log(1/η)) gates are

used.

2.2.4 Separation to optimization

It is known that an optimization oracle for a convex set can be implemented in Õ(n) queries

to a separation oracle. Specifically, Theorem 15 of [41] states:

Theorem 2.2.5 (Separation to Optimization). Let K be a convex set satisfying B2(0, r) ⊂ K ⊂

B2(0, R) and let κ = 1/r. For any 0 < ε < 1, with probability 1 − ε, we can compute x ∈

B2(K, ε) such that cTx ≤ minx∈K c
Tx + ε‖c‖2, using O(n log(nκ/ε)) queries to SEPη(K),
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where η = poly(ε/nκ), and Õ(n3) arithmetic operations.

From Theorem 2.2.5 and Theorem 2.2.4, we have the following result

Theorem 2.2.6 (Membership to Optimization). Let K be a convex set satisfying B2(0, r) ⊂

K ⊂ B2(0, R) and let κ = 1/r. For any 0 < ε < 1, with probability 1 − ε, we can compute

x ∈ B2(K, ε) such that cTx ≤ minx∈K c
Tx + ε, using Õ(n) queries to a membership oracle for

K with error δ, where δ = O(poly(ε)), and Õ(n3) gates.

Proof. Using Theorem 2.2.4 with η = poly(ε/nκ), each query to the separation oracle requires

Õ(1) queries to a membership oracle with error δ = O(poly(ε)). We make Õ(n) separation

queries and perform a further Õ(n3) arithmetic operations, so the result follows.

Theorem 2.2.1 follows directly from Theorem 2.2.6.

2.3 Lower bound

In this section, we prove our quantum lower bound on convex optimization (Theorem 2.1.2).

We prove separate lower bounds on membership queries (Section 2.3.1) and evaluation queries

(Section 2.3.2). We then combine these lower bounds into a single optimization problem in

Section 2.3.3, establishing Theorem 2.1.2.

2.3.1 Membership queries

In this subsection, we establish a membership query lower bound using a reduction from

the following search-with-wildcards problem:
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Theorem 2.3.1 ([52, Theorem 1]). For any s ∈ {0, 1}n, let Os be a wildcard oracle satisfying

Os|T 〉|y〉|0〉 = |T 〉|y〉|Qs(T, y)〉 (2.64)

for all T ⊆ [n] and y ∈ {0, 1}|T |, whereQs(T, y) = δ[s|T = y]. Then the bounded-error quantum

query complexity of determining s is O(
√
n log n) and Ω(

√
n).

We use Theorem 2.3.1 to give an Ω(
√
n) lower bound on membership queries for convex

optimization. Specifically, we consider the following sum-of-coordinates optimization problem:

Definition 2.3.1. Let

Cs :=
n×
i=1

[si − 2, si + 1], si ∈ {0, 1} ∀ i ∈ [n], (2.65)

where×is the Cartesian product on different coordinates. In the sum-of-coordinates optimization

problem, the goal is to minimize

f(x) =
∑
i∈[n]

xi s.t. x ∈ Cs. (2.66)

Intuitively, Definition 2.3.1 concerns an optimization problem on a hypercube where the function

is simply the sum of the coordinates, but the position of the hypercube is unknown. Note that the

function f in (2.66) is convex and 1-Lipschitz continuous.

We prove the hardness of solving sum-of-coordinates optimization using its membership

oracle:

Theorem 2.3.2. Given an instance of the sum-of-coordinates optimization problem with members-
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hip oracle OCs , it takes Ω(
√
n) quantum queries to OCs to output an x̃ ∈ Cs such that

f(x̃) ≤ min
x∈Cs

f(x) +
1

3
, (2.67)

with success probability at least 0.9.

Proof. Assume that we are given an arbitrary string s ∈ {0, 1}n together with the membership

oracle OCs for the sum-of-coordinates optimization problem.

We prove that a quantum query toOCs can be simulated by a quantum query to the oracleOs

in (2.64) for search with wildcards. Consider an arbitrary point x ∈ Rn in the sum-of-coordinates

problem. We partition [n] into four sets:

Tx,0 :=
{
i ∈ [n] | xi ∈ [−2,−1)

}
(2.68)

Tx,1 :=
{
i ∈ [n] | xi ∈ (1, 2]

}
(2.69)

Tx,mid :=
{
i ∈ [n] | xi ∈ [−1, 1]

}
(2.70)

Tx,out :=
{
i ∈ [n] | |xi| > 2

}
, (2.71)

and denote Tx := Tx,0 ∪ Tx,1 and y(x) ∈ {0, 1}|Tx| such that

y
(x)
i =


0 if i ∈ Tx,0

1 if i ∈ Tx,1.

(2.72)

We prove that OCs(x) = Qs(Tx, y
(x)) if Tx,out = ∅, and OCs(x) = 0 otherwise. On the one hand,

if OCs(x) = 1, we have x ∈ Cs. Because for all i ∈ [n], xi ∈ [si − 2, si + 1] ⊂ [−2, 2] for
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both si = 0 and si = 1, we must have Tx,out = ∅. Now consider any i ∈ Tx. If i ∈ Tx,0, then

xi ∈ [−2,−1). Because xi ∈ [0 − 2, 0 + 1] and xi /∈ [1 − 2, 1 + 1], we must have si = 0 since

xi ∈ [si− 2, si + 1]. Similarly, if i ∈ Tx,1, then we must have si = 1. As a result of (2.72), for all

i ∈ Tx we have si = y
(x)
i ; in other words, s|Tx = y(x) and Qs(Tx, y

(x)) = 1 = OCs(x).

On the other hand, if OCs(x) = 0, there exists an i0 ∈ [n] such that xi0 /∈ [si0 − 2, si0 + 1].

We must have i0 /∈ Tx,mid because [−1, 1] ⊂ [si0 − 2, si0 + 1] regardless of whether si0 = 0 or

si0 = 1. Next, if i0 ∈ Tx,out, then Tx,out 6= ∅ and we correctly obtain OCs(x) = 0. The remaining

cases are i0 ∈ Tx,0 and i0 ∈ Tx,1. If i0 ∈ Tx,0, because xi0 ∈ [−2,−1) ⊂ [0 − 2, 0 + 1] and

xi0 /∈ [si0 − 2, si0 + 1], we must have si0 = 1, and thus s|Tx 6= y(x) because y(x)
i0

= 0 by (2.72). If

i0 ∈ Tx,1, we similarly have si0 = 0, y(x)
i0

= 1, and thus s|Tx 6= y(x). In both cases, s|Tx 6= y(x), so

Qs(Tx, y
(x)) = 0 = OCs(x).

Therefore, we have established that OCs(x) = Qs(Tx, y
(x)) if Tx,out = ∅, and OCs(x) = 0

otherwise. In other words, a quantum query to OCs can be simulated by a quantum query to Os.

We next prove that a solution x̃ of the sum-of-coordinates problem satisfying (2.67) solves

the search-with-wildcards problem in Theorem 2.3.1. Because minx∈Cs f(x) =
∑n

i=1(si − 2),

we have

f(x̃) =
n∑
i=1

x̃i ≤
1

3
+

n∑
i=1

(si − 2). (2.73)

On the one hand, for all j ∈ [n] we have x̃j ≥ sj − 2 since x̃ ∈ Cs; on the other hand, by (2.73)
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we have

1

3
+

n∑
i=1

(si − 2) ≥
n∑
i=1

x̃i ≥ x̃j +
∑

i∈[n], i 6=j

(si − 2), (2.74)

which implies x̃j ≤ sj − 2 + 1
3
. In all,

x̃i ∈ [si − 2, si − 2 + 1
3
] ∀ i ∈ [n]. (2.75)

Define a rounding function sgn−3/2 : R→ {0, 1} as

sgn−3/2(z) =


0 if z < −3/2

1 otherwise.

(2.76)

We prove that sgn−3/2(x̃) = s (here sgn−3/2 is applied on all n coordinates, respectively). For all

i ∈ [n], if si = 0, then x̃i ∈ [−2,−5
3
] ⊂ (−∞,−3

2
) by (2.75), which implies sgn−3/2(x̃i) = 0

by (2.76). Similarly, if si = 1, then x̃i ∈ [−1,−2
3
] ⊂ (−3

2
,+∞) by (2.75), which implies

sgn−3/2(x̃i) = 1 by (2.76).

In all, if we can solve the sum-of-coordinates optimization problem with an x̃ satisfying

(2.67), we can solve the search-with-wildcards problem. By Theorem 2.3.2, the search-with-

wildcards problem has quantum query complexity Ω(
√
n); since a query to the membership

oracle OCs can be simulated by a query to the wildcard oracle Os, we have established an

Ω(
√
n) quantum lower bound on the number of membership queries needed to solve the sum-of-

coordinates optimization problem.
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2.3.2 Evaluation queries

In this subsection, we establish an evaluation query lower bound by considering the following

max-norm optimization problem:

Definition 2.3.2. In the max-norm optimization problem, the goal is to minimize a function

fc : Rn → R satisfying

fc(x) = max
i∈[n]
|π(xi)− ci|+

( n∑
i=1

|π(xi)− xi|
)

(2.77)

for some c ∈ {0, 1}n, where π : R→ [0, 1] is defined as

π(x) =



0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1.

(2.78)

Observe that for all x ∈ [0, 1]n, we have fc(x) = maxi∈[n] |xi − ci|. Intuitively, Definition 2.3.2

concerns an optimization problem under the max-norm (i.e., L∞ norm) distance from c for all

x in the unit hypercube [0, 1]n; for all x not in the unit hypercube, the optimizing function pays

a penalty of the L1 distance between x and its projection π(x) onto the unit hypercube. The

function fc is 2-Lipschitz continuous with a unique minimum at x = c; we prove in Lemma 2.5.7

that fc is convex.

We prove the hardness of solving max-norm optimization using its evaluation oracle:

Theorem 2.3.3. Given an instance of the max-norm optimization problem with an evaluation
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oracle Ofc , it takes Ω(
√
n/ log n) quantum queries to Ofc to output an x̃ ∈ [0, 1]n such that

fc(x̃) ≤ min
x∈[0,1]n

fc(x) +
1

3
, (2.79)

with success probability at least 0.9.

The proof of Theorem 2.3.3 has two steps. First, we prove a weaker lower bound with

respect to the precision of the evaluation oracle:

Lemma 2.3.1. Suppose we are given an instance of the max-norm optimization problem with an

evaluation oracle Ofc that has precision 0 < δ < 0.05, i.e., fc is provided with dlog2(1/δ)e bits

of precision. Then it takes Ω(
√
n/ log(1/δ)) quantum queries toOfc to output an x̃ ∈ [0, 1]n such

that

fc(x̃) ≤ min
x∈[0,1]n

fc(x) +
1

3
, (2.80)

with success probability at least 0.9.

The second step simulates a perfectly precise query to fc by a rough query:

Lemma 2.3.2. One classical (resp., quantum) query toOfc with perfect precision can be simulated

by one classical query (resp., two quantum queries) to Ofc with precision 1/5n.

Theorem 2.3.3 simply follows from the two propositions above: by Lemma 2.3.2, we can

assume that the evaluation oracle Ofc has precision 1/5n, so Lemma 2.3.1 implies that it takes

Ω(
√
n/ log 5n) = Ω(

√
n/ log n) quantum queries toOfc to output an x̃ ∈ [0, 1]n satisfying (2.79)

with success probability 0.9.
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The proofs of Lemma 2.3.1 and Lemma 2.3.2 are given in Section 2.3.2.1 and Section 2.3.2.2,

respectively.

2.3.2.1 Ω̃(
√
n) quantum lower bound on a low-precision evaluation oracle

Similar to the proof of Theorem 2.3.2, we also use Theorem 2.3.1 (the quantum lower

bound on search with wildcards) to give a quantum lower bound on the number of evaluation

queries required to solve the max-norm optimization problem.

Proof of 2.3.1. Assume that we are given an arbitrary string c ∈ {0, 1}n together with the

evaluation oracle Ofc for the max-norm optimization problem. To show the lower bound, we

reduce the search-with-wildcards problem to the max-norm optimization problem.

We first establish that an evaluation query to Of can be simulated using wildcard queries

on c. Notice that if we query an arbitrary x ∈ Rn, by (2.77) we have

fc(x) = max
i∈[n]
|π(xi)− ci|+

( n∑
i=1

|π(xi)− xi|
)

= fc(π(x)) +
( n∑
i=1

|π(xi)− xi|
)

(2.81)

where π(x) := (π(x1), . . . , π(xn)). In particular, the difference of fc(x) and fc(π(x)) is an

explicit function of x that is independent of c. Thus the query Ofc(x) can be simulated using one

query to Ofc(π(x)) where π(x) ∈ [0, 1]n. It follows that we can restrict ourselves without loss of

generality to implementing evaluation queries for x ∈ [0, 1]n.

Now we consider a decision version of oracle queries to fc, denoted Ofc,dec , where
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fc,dec : [0, 1]n × [0, 1]→ {0, 1} such that

fc,dec(x, t) = δ[fc(x) ≤ t]. (2.82)

(We restrict to t ∈ [0, 1] because fc(x) ∈ [0, 1] always holds for x ∈ [0, 1]n.) Using binary search,

a query to Ofc with precision δ can be simulated by at most dlog2(1/δ)e = O(log 1/δ) queries to

the oracle Ofc,dec .

Next, we prove that a query to Ofc,dec can be simulated by a query to the search-with-

wildcards oracle Oc in (2.64). Consider an arbitrary query (x, t) ∈ [0, 1]n × [0, 1] to Ofc,dec . For

convenience, we denote J0,t := [0, t], J1,t := [1− t, 1], and

I0,t := J0,t − (J0,t ∩ J1,t) (2.83)

I1,t := J1,t − (J0,t ∩ J1,t) (2.84)

Imid,t := J0,t ∩ J1,t (2.85)

Iout,t := [0, 1]− (J0,t ∪ J1,t). (2.86)

We partition [n] into four sets:

Tx,0,t :=
{
i ∈ [n] | xi ∈ I0,t

}
(2.87)

Tx,1,t :=
{
i ∈ [n] | xi ∈ I1,t

}
(2.88)

Tx,mid,t :=
{
i ∈ [n] | xi ∈ Imid,t

}
(2.89)

Tx,out,t :=
{
i ∈ [n] | xi ∈ Iout,t

}
. (2.90)
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The strategy here is similar to the proof of Theorem 2.3.2: Tx,mid,t corresponds to the coordinates

such that |xi− ci| ≤ t regardless of whether ci = 0 or 1 (and hence ci does not influence whether

or not maxi∈[n] |xi − ci| ≤ t); Tx,out,t corresponds to the coordinates such that |xi − ci| > t

regardless of whether ci = 0 or 1 (so maxi∈[n] |xi − ci| > t provided Tx,out,t is nonempty); and

Tx,0,t (resp., Tx,1,t) corresponds to the coordinates such that |xi− ci| ≤ t only when ci = 0 (resp.,

ci = 1).

Denote Tx,t := Tx,0,t ∪ Tx,1,t and let y(x,t) ∈ {0, 1}|Tx,t| such that

y
(x,t)
i =


0 if i ∈ Tx,0,t

1 if i ∈ Tx,1,t.

(2.91)

We will prove that Ofc,dec(x) = Qc(Tx,t, y
(x,t)) if Tx,out,t = ∅, and Ofc,dec(x) = 0 otherwise.

On the one hand, if Ofc,dec(x) = 1, we have fc(x) ≤ t. In other words, for all i ∈ [n] we

have |xi − ci| ≤ t, which implies

xi ∈ Jci,t ∀ i ∈ [n]. (2.92)

Since Jci,t ⊆ J0,t ∪ J1,t, we have xi ∈ J0,t ∪ J1,t for all i ∈ [n], and thus Tx,out,t = ∅ by (2.86)

and (2.90). Now consider any i ∈ Tx,t. If i ∈ Tx,0,t, then xi ∈ I0,t by (2.87). By (2.83) we have

xi ∈ J0,t and xi /∈ J1,t, and thus ci = 0 by (2.92). Similarly, if i ∈ Tx,1,t, then we must have

ci = 1. As a result of (2.91), for all i ∈ Tx,t we have ci = y
(x,t)
i ; in other words, c|Tx,t = y(x,t) and

Qc(Tx,t, y
(x,t)) = 1 = Ofc,dec(x).
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On the other hand, if Ofc,dec(x) = 0, there exists an i0 ∈ [n] such that

xi0 /∈ Jci0 ,t. (2.93)

Therefore, we must have i0 /∈ Tx,mid,t since (2.85) implies Imid,t = J0,t ∩ J1,t ⊆ Jci0 ,t. Next, if

i0 ∈ Tx,out,t, then Tx,out,t 6= ∅ and we correctly obtain Ofc,dec(x) = 0. The remaining cases are

i0 ∈ Tx,0,t and i0 ∈ Tx,1,t.

If i0 ∈ Tx,0,t, then y(x,t)
i0

= 0 by (2.91). By (2.87) we have xi0 ∈ I0,t, and by (2.83) we have

xi0,t ∈ J0,t and xi0 /∈ J1,t; therefore, we must have ci0 = 1 by (2.93). As a result, c|Tx,t 6= y(x,t) at

i0. If i0 ∈ Tx,1,t, we similarly have ci0 = 0, y(x,t)
i0

= 1, and thus c|Tx,t 6= y(x,t) at i0. In either case,

c|Tx,t 6= y(x,t), and Qc(Tx,t, y
(x,t)) = 0 = Ofc,dec(x).

We have established that Ofc,dec(x) = Qc(Tx,t, y
(x,t)) if Tx,out,t = ∅, and Ofc,dec(x) = 0

otherwise. In other words, a quantum query to Ofc,dec can be simulated by a quantum query to the

search-with-wildcards oracle Oc. Together with the fact that a query to Ofc with precision δ can

be simulated by O(log 1/δ) queries to Ofc,dec , it can also be simulated by O(log 1/δ) queries to

Oc.

We next prove that a solution x̃ of the max-norm optimization problem satisfying (2.80)

solves the search-with-wildcards problem in Theorem 2.3.1. Because minx∈[0,1]n fc(x) = 0,

considering the precision of at most δ < 0.05 we have

fc(x̃) ≤ 1
3

+ δ ≤ 0.4. (2.94)
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In other words,

x̃i ∈ [ci − 0.4, ci + 0.4] ∀ i ∈ [n]. (2.95)

Similar to (2.76), we define a rounding function sgn1/2 : R→ {0, 1} as

sgn1/2(z) =


0 if z < 1/2

1 otherwise.

(2.96)

We prove that sgn1/2(x̃) = c (here sgn1/2 is applied coordinate-wise). For all i ∈ [n], if ci = 0,

then x̃i ∈ [0, 0.4] ⊂ (−∞, 1/2) by (2.95), which implies sgn1/2(x̃i) = 0 by (2.96). Similarly, if

ci = 1, then x̃i ∈ [0.6, 1] ⊂ (1/2,+∞) by (2.95), which implies sgn1/2(x̃i) = 1 by (2.96).

We have shown that if we can solve the max-norm optimization problem with an x̃ satisfying

(2.80), we can solve the search-with-wildcards problem. By Theorem 2.3.2, the search-with-

wildcards problem has quantum query complexity Ω(
√
n); since a query to the evaluation oracle

Ofc can be simulated by O(log 1/δ) queries to the wildcard oracle Oc, we have established an

Ω(
√
n/ log(1/δ)) quantum lower bound on the number of evaluation queries needed to solve the

max-norm optimization problem.

2.3.2.2 Discretization: simulating perfectly precise queries by low-precision

queries

In this subsection we prove Lemma 2.3.2, which we rephrase more formally as follows.

For our convenience, the function fc in (2.77) is abbreviated as f throughout this subsection.
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Lemma 2.3.3. Assume that f̂ : [0, 1]n → [0, 1] satisfies |f̂(x) − f(x)| ≤ 1
5n
∀x ∈ [0, 1]n. Then

one classical (resp., quantum) query to Of can be simulated by one classical query (resp., two

quantum queries) to Of̂ .

To achieve this, we present an approach that we call discretization. Instead of considering

queries on all of [0, 1]n, we only consider a discrete subset Dn ⊆ [0, 1]n defined as

Dn :=
{
χ(a, π) | a ∈ {0, 1}n and π ∈ Sn

}
, (2.97)

where Sn is the symmetric group on [n] and χ : {0, 1}n × Sn → [0, 1]n satisfies

χ(a, π)i = (1− ai) π(i)
2n+1

+ ai(1− π(i)
2n+1

) ∀ i ∈ [n]. (2.98)

Observe that Dn is a subset of [0, 1]n.

Since |Sn| = n! and there are 2n choices for a ∈ {0, 1}n, we have |Dn| = 2nn!. For

example, when n = 2, we have

D2 =
{(

1
5
, 2

5

)
,
(

1
5
, 3

5

)
,
(

4
5
, 2

5

)
,
(

4
5
, 3

5

)
,
(

2
5
, 1

5

)
,
(

2
5
, 4

5

)
,
(

3
5
, 1

5

)
,
(

3
5
, 4

5

)}
(2.99)

with |D2| = 22 · 2! = 8.

We denote the restriction of the oracle Of to Dn by Of |Dn , i.e.,

Of |Dn|x〉|0〉 = |x〉|f(x)〉 ∀x ∈ Dn. (2.100)

In fact, this restricted oracle entirely captures the behavior of the unrestricted function.
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Lemma 2.3.4 (Discretization). A classical (resp., quantum) query to Of can be simulated using

one classical query (resp., two quantum queries) to Of |Dn .

Algorithm 5: Simulate one query to Of using one query to Of |Dn .

Input: x ∈ [0, 1]n;
Output: f(x) ∈ [0, 1];

1 Compute b ∈ {0, 1}n and σ ∈ Sn such that the 2n numbers
x1, x2, . . . , xn, 1− x1, . . . , 1− xn are arranged in decreasing order as

bσ(1)xσ(1) + (1− bσ(1))(1− xσ(1)) ≥ · · · ≥ bσ(n)xσ(n) + (1− bσ(n))(1− xσ(n))

≥ (1− bσ(n))xσ(n) + bσ(n)(1− xσ(n)) ≥ · · · ≥ (1− bσ(1))xσ(1) + bσ(1)(1− xσ(1));
(2.101)

2 Compute x∗ ∈ Dn such that χ(b, σ−1) = x∗ (where χ is defined in (2.98));
3 Query f(x∗) and let k∗ = (2n+ 1)(1− f(x∗));
4 Return

f(x) =

{
(1− bσ(n))xσ(n) + bσ(n)(1− xσ(n)) if k∗ = n+ 1

bσ(k∗)xσ(k∗) + (1− bσ(k∗))(1− xσ(k∗)) otherwise.
(2.102)

We prove this proposition by giving an algorithm (Algorithm 5) that performs the simulation.

The main idea is to compute f(x) only using x and f(x∗) for some x∗ ∈ Dn. We observe that

max-norm optimization has the following property: if two strings x ∈ [0, 1]n and x∗ ∈ Dn satisfy

that x1, . . . , xn, 1 − x1, . . . , 1 − xn and x∗1, . . . , x
∗
n, 1 − x∗1, . . . , 1 − x∗n have the same ordering,

then

arg max
i∈[n]
|xi − ci| = arg max

i∈[n]
|x∗i − ci|. (2.103)

Furthermore, x∗ ∈ Dn promises that {x∗1, . . . , x∗n, 1 − x∗1, . . . , 1 − x∗n} = { 1
2n+1

, . . . , 2n
2n+1
} are

2n different numbers, and hence knowing the value of f(x∗) implies the value of the arg max

above (denoted i∗) and the corresponding ci∗; we can subsequently recover f(x) given x since
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f(x) = |xi∗ − ci∗ |. In other words, f(x) can be computed given x and f(x∗). Moreover, f(x∗) is

an integer multiple of 1
2n+1

; even if f(x∗) can only be computed with precision 1
5n

, we can round

it to the closest integer multiple of 1
2n+1

which is exactly f(x∗), since the distance 2n+1
5n

< 1
2
. As a

result, we can precisely compute f(x∗) for all x ∈ Dn, and thus we can precisely compute f(x).

We illustrate Algorithm 5 by a simple example. For convenience, we define an order

function Ord: [0, 1]n → {0, 1}n × Sn by Ord(x) = (b, σ) for all x ∈ [0, 1]n, where b and σ

satisfy Eq. (2.101).

An example with n = 3. Consider the case where the ordering in (2.101) is

1− x3 ≥ x1 ≥ x2 ≥ 1− x2 ≥ 1− x1 ≥ x3. (2.104)

Then Algorithm 5 proceeds as follows:

• Line 1: With the ordering (2.104), we have σ(1) = 3, σ(2) = 1, σ(3) = 2; b3 = 0, b1 = 1,

b2 = 1.

• Line 2: The point x∗ ∈ D3 that we query given Ord(x) satisfies 1 − x∗3 = 6/7, x∗1 = 5/7,

x∗2 = 4/7, 1−x∗2 = 3/7, 1−x∗1 = 2/7, and x∗3 = 1/7; in other words, x∗ = (5/7, 4/7, 1/7).

• Line 3: Now we query f(x∗). Since f(x∗) is a multiple of 1/7 and f(x∗) ∈ [1/7, 6/7],

there are only 6 possibilities: f(x∗) = 6/7, f(x∗) = 5/7, f(x∗) = 4/7, f(x∗) = 3/7,

f(x∗) = 2/7, or f(x∗) = 1/7.

After running Line 1, Line 2, and Line 3, we have a point x∗ from the discrete set D3 such

that Ord(x) = Ord(x∗). Since they have the same ordering and |xi − ci| is either xi or
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1− xi for all i ∈ [3], the function value f(x∗) should essentially reflect the value of f(x);

this is made precise in Line 4.

• Line 4: Depending on the value of f(x∗), we have six cases:

– f(x∗) = 6/7: In this case, we must have c3 = 1, so that |x3 − c3| = |1/7− 1| = 6/7

(|x1 − c1| can only give 5/7 or 2/7, and |x2 − c2| can only give 4/7 or 3/7). Because

1− x3 is the largest in (2.104), we must have f(x) = 1− x3.

– f(x∗) = 5/7: In this case, we must have c1 = 0, so that |x1 − c1| = |5/7− 0| = 5/7.

Furthermore, we must have c3 = 1 (otherwise if c3 = 0, f(x) ≥ |x3− c3| = 6/7). As

a result of (2.104), we must have f(x) = x1 since x1 ≥ x3 and x1 ≥ max{x2, 1−x2}.

– f(x∗) = 4/7: In this case, we must have c2 = 0, so that |x2 − c2| = |4/7− 0| = 4/7.

Furthermore, we must have c3 = 1 (otherwise if c3 = 0, f(x) ≥ |x3− c3| = 6/7) and

c1 = 1 (otherwise if c1 = 0, f(x) ≥ |x1− c1| = 5/7). As a result of (2.104), we must

have f(x) = x2 since x2 ≥ 1− x1 ≥ 1− x3.

– f(x∗) = 3/7: In this case, we must have c2 = 1, so that |x2 − c2| = |4/7− 1| = 3/7.

Furthermore, we must have c3 = 1 (otherwise if c3 = 0, f(x) ≥ |x3− c3| = 6/7) and

c1 = 1 (otherwise if c1 = 0, f(x) ≥ |x1− c1| = 5/7). As a result of (2.104), we must

have f(x) = 1− x2 since since 1− x2 ≥ 1− x1 ≥ 1− x3.

– f(x∗) = 2/7 or f(x∗) = 1/7: This two cases are impossible because f(x∗) ≥

|x2 − c2| = |4/7− c2| ≥ 3/7, no matter c2 = 0 or c2 = 1.

While Algorithm 5 is a classical algorithm for querying Of using a query to Of |Dn , it is

straightforward to perform this computation in superposition using standard techniques to obtain
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a quantum query to Of . However, note that this requires two queries to a quantum oracle for

Of |Dn since we must uncompute f(x∗) after computing f(x).

Having the discretization technique at hand, Lemma 2.3.3 is straightforward.

Proof of Lemma 2.3.3. Recall that |f̂(x) − f(x)| ≤ 1
5n
∀x ∈ [0, 1]n. We run Algorithm 5 to

compute f(x) for the queried value of x, except that in Line 3 we take k∗ = d(2n+1)(1−f̂(x∗))c

(here dac is the closest integer to a). Because |f̂(x∗)− f(x∗)| ≤ 1
5n

, we have

∣∣(2n+ 1)(1− f̂(x∗))− (2n+ 1)(1− f(x∗))
∣∣ = (2n+ 1)|f̂(x∗)− f(x∗)| ≤ 2n+1

5n
< 1

2
;

(2.105)

as a result, k∗ = (2n+1)(1−f(x∗)) because the latter is an integer (see Lemma 2.5.9). Therefore,

due to the correctness of Algorithm 5 established in Section 2.5.3, and noticing that the evaluation

oracle is only called at Line 3 (with the replacement described above), we successfully simulate

one query to Of by one query to Of̂ (actually, to Of̂ |Dn).

The full analysis of Algorithm 5 is deferred to Section 2.5.3. In particular,

• In Section 2.5.3 we prove that the discretized vector x∗ obtained in Line 2 is a good

approximation of x in the sense that Ord(x∗) = Ord(x);

• In Section 2.5.3 we prove that the value k∗ obtained in Line 3 satisfies k∗ ∈ {1, . . . , n+1};

• In Section 2.5.3 we finally prove that the output returned in Line 4 is correct.
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2.3.3 Proof of full lower bound

We now prove Theorem 2.1.2 using Theorem 2.3.2 and Theorem 2.3.3. Recall that our

lower bounds on membership and evaluation queries are both proved on the n-dimensional

hypercube. It remains to combine the two lower bounds to establish them simultaneously.

Theorem 2.3.4. Let Cs :=×n

i=1
[si − 2, si + 1] for some s ∈ {0, 1}n. Consider a function

f : Cs × [0, 1]n → R such that f(x) = fM(x) + fE,c(x), where for any x = (x1, x2, . . . , x2n) ∈

Cs × [0, 1]n,

fM(x) =
n∑
i=1

xi, fE,c(x) = max
i∈{n+1,...,2n}

|xi − ci−n| (2.106)

for some c ∈ {0, 1}n. Then outputting an x̃ ∈ Cs × [0, 1]n satisfying

f(x̃) ≤ min
x∈Cs×[0,1]n

f(x) + 1
3

(2.107)

with success probability at least 0.8 requires Ω(
√
n) quantum queries toOCs×[0,1]n and Ω(

√
n/ log n)

quantum queries to Of .

Notice that the dimension of the optimization problem above is 2n instead of n; however,

the constant overhead of 2 does not influence the asymptotic lower bounds.

Proof of Theorem 2.3.4. First, we prove that

min
x∈Cs×[0,1]n

f(x) = S and arg min
x∈Cs×[0,1]n

f(x) = (s− 2n, c), (2.108)
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where 2n is the n-dimensional all-twos vector and S :=
∑n

i=1(si − 2). On the one hand,

fM(x) ≥ S ∀x ∈ Cs × [0, 1]n, (2.109)

with equality if and only if (x1, . . . , xn) = s− 2n. On the other hand,

fE,c(x) ≥ 0 ∀x ∈ Cs × [0, 1]n, (2.110)

with equality if and only if (xn+1, . . . , x2n) = c. Thus f(x) = fM(x) + fE,c(x) ≥ S for all

x ∈ Cs × [0, 1]n, with equality if and only if x = (x1, . . . , xn, xn+1, . . . , x2n) = (s− 2n, c).

If we can solve this optimization problem with an output x̃ satisfying (2.107), then

fM(x̃) + fE,c(x̃) = f(x̃) ≤ S + 1
3
. (2.111)

Eqs. (2.109), (2.110), and (2.111) imply

fM(x̃) ≤ S + 1
3

= min
x∈Cs×[0,1]n

fM(x) + 1
3
; (2.112)

fE,c(x̃) ≤ 1
3

= min
x∈Cs×[0,1]n

fE,c(x) + 1
3
. (2.113)

On the one hand, Eq. (2.112) says that x̃ also minimizes fM with approximation error ε = 1
3
.

By Theorem 2.3.2, this requires Ω(
√
n) queries to the membership oracle OCs . Also notice that

one query to OCs×[0,1]n can be trivially simulated one query to OCs; therefore, minimizing f

with approximation error ε = 1
3

with success probability 0.9 requires Ω(
√
n) quantum queries to

OCs×[0,1]n .
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On the other hand, Eq. (2.113) says that x̃ minimizes fE,c with approximation error ε = 1
3
.

By Theorem 2.3.3, it takes Ω(
√
n/ log n) queries to OfE,c to output x̃. Also notice that

f(x) = fM(x) + fE,c(x) =
n∑
i=1

xi + fE,c(x); (2.114)

therefore, one query to Of can be simulated by one query to OfE,c . Therefore, approximately

minimizing f with success probability 0.9 requires Ω(
√
n/ log n) quantum queries to Of .

In addition, fM is independent of the coordinates xn+1, . . . , x2n and only depends on the

coordinates x1, . . . , xn, whereas fE,c is independent of the coordinates x1, . . . , xn and only depends

on the coordinates xn+1, . . . , x2n. As a result, the oracle OCs×[0,1]n reveals no information about

c, and Of reveals no information about s. Since solving the optimization problem reveals both s

and c, the lower bounds on query complexity must hold simultaneously.

Overall, to output an x̃ ∈ Cs × [0, 1]n satisfying (2.107) with success probability at least

0.9 ·0.9 > 0.8, we need Ω(
√
n) quantum queries toOCs×[0,1]n and Ω(

√
n/ log n) quantum queries

to Of , as claimed.

2.3.4 Smoothed hypercube

As a side point, our quantum lower bound in Theorem 2.3.4 also holds for a smooth convex

body. Given an n-dimensional hypercube Cx,l :=×n

i=1
[xi − l, xi], we define a smoothed version

as

SCx,l := B2

( n×
i=1

[
xi −

2n

2n+ 1
l, xi −

1

2n+ 1
l
]
,

1

2n+ 1
l

)
(2.115)
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using Definition 2.2.3. For instance, a smoothed 3-dimensional cube is shown in Figure 2.1.

Figure 2.1: Smoothed hypercube of dimension 3.

The smoothed hypercube satisfies

Cx− 1
2n+1

ln,
2n−1
2n+1

l ⊆ SCx,l ⊆ Cx,l (2.116)

where ln is l times the n-dimensional all-ones vector; in other words, it is contained in the original

(non-smoothed) hypercube, and it contains the hypercube with the same center but edge length

2n−1
2n+1

l. For instance,×n

i=1
[ 1
2n+1

, 2n
2n+1

] ⊆ SC1n,1 ⊆×n

i=1
[0, 1]; by Eq. (2.97), Dn ⊆ SC1n,1. It

can be verified that the proof of Theorem 2.3.2 still holds if the hypercube×n

i=1
[si− 2, si + 1] =

Cs+1n,3 is replaced by SCs+1n,3, and the proof of Theorem 2.3.3 still holds if the unit hypercube

[0, 1]n is replaced by SC1n,1; consequently Theorem 2.3.4 also holds. More generally, the proofs

remain valid as long as the smoothed hypercube is contained in [0, 1]n and contains Dn (for

discretization).
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2.4 Conclusions

This chapter has presented quantum algorithms for convex optimization that are quadratical-

ly faster than the best known classical algorithms [41] in terms of the membership and evaluation

oracles required. The corresponding lower bounds show that despite these speedups, no exponential

quantum speedups are possible for this problem.

Related independent work. In independent simultaneous work, van Apeldoorn, Gilyén, Gribl-

ing, and de Wolf [56] establish a similar upper bound, showing that Õ(n) quantum queries to a

membership oracle suffice to optimize a linear function over a convex body (i.e., to implement an

optimization oracle). Their proof follows a similar strategy to ours, using a quantum algorithm

for evaluating gradients in Õ(1) queries to implement a separation oracle. Those authors also

establish quantum lower bounds on the query complexity of convex optimization, showing in

particular that Ω(
√
n) quantum queries to a separation oracle are needed to implement an optimiza-

tion oracle, implying an Ω(
√
n) quantum lower bound on the number of membership queries

required to optimize a convex function. While Ref. [56] does not explicitly focus on evaluation

queries, those authors have pointed out to us that an Ω(
√
n) lower bound on evaluation queries

can be obtained from their lower bound on membership queries, using a careful application

of techniques inspired by [41] (although our approach gives a bound with a better Lipschitz

parameter).

Open questions. This work leaves several natural open questions for future investigation. In

particular:
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• Can we close the gap for both membership and evaluation queries? Our upper bounds on

both oracles in Theorem 2.1.1 uses Õ(n) queries, whereas the lower bounds of Theorem 2.1.2

are only Ω̃(
√
n).

• Can we improve the time complexity of our quantum algorithm? The time complexity

Õ(n3) of our current quantum algorithm matches that of the classical state-of-the-art algorithm

[41] since our second step, the reduction from optimization to separation, is entirely classical.

Is it possible to improve this reduction quantumly?

• What is the quantum complexity of convex optimization with a first-order oracle (i.e.,

with direct access to the gradient of the objective function)? This model has been widely

considered in the classical literature (see for example Ref. [53]).

2.5 Deferred Technical Details

2.5.1 Auxiliary lemmas

Classical gradient computation. Here we prove that the classical query complexity of gradient

computation is linear in the dimension.

Lemma 2.5.1. Let f be an L-Lipschitz convex function that is specified by an evaluation oracle

with precision δ = 1/ poly(n). Any (deterministic or randomized) classical algorithm to calculate

a subgradient of f with L∞-norm error ε = 1/ poly(n) must make Ω̃(n) queries to the evaluation

oracle.

Proof. Consider the linear function f(x) = cTx where each ci ∈ [0, 1]. Since each ci must be

determined to precision ε, the problem hides n log(1/ε) bits of information. Furthermore, since
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the evaluation oracle has precision δ, each query reveals only log(1/δ) bits of information. Thus

any classical algorithm must make at least n log(1/ε)
log(1/δ)

= n/ log(n) evaluation queries.

Mollified functions. The following lemma establishes properties of mollified functions:

Lemma 2.5.2 (Mollifier properties). Let f : Rn → R be an L-Lipschitz convex function with

mollification Fδ = f ∗mδ, where mδ is defined in (2.20). Then

(i) Fδ is infinitely differentiable,

(ii) Fδ is convex,

(iii) Fδ is L-Lipschitz continuous, and

(iv) |Fδ(x)− f(x)| ≤ Lδ.

Proof.

(i) Convolution satisfies d(p∗q)
dx

= p ∗ dq
dx

, so because mδ is infinitely differentiable, Fδ is

infinitely differentiable.

(ii) We have Fδ(x) =
∫
Rn f(x− z)mδ(z) dz =

∫
Rn f(z)mδ(x− z) dz. Thus

Fδ(λx+ (1− λ)y) =

∫
Rn

f(λx+ (1− λ)y − z)mδ(z) dz (2.117)

≥
∫
Rn

[λf(x− z) + (1− λ)f(y − z)]mδ(z) dz (2.118)

= λFδ(x) + (1− λ)Fδ(y), (2.119)

where the inequality holds by convexity of f and the fact that mδ ≥ 0. Thus Fδ is convex.

66



(iii) We have

‖Fδ(x)− Fδ(y)‖ = ‖
∫
Rn

[f(x− z)− f(y − z)]mδ(z) dz‖ (2.120)

≤
∫
Rn

‖f(x− z)− f(y − z)‖mδ(z) dz (2.121)

≤ L‖x− y‖
∫
Rn

mδ(z) dz (2.122)

= L‖x− y‖. (2.123)

Thus from Definition 2.2.9, Fδ is L-Lipschitz.

(iv) We have

|Fδ(x)− f(x)| =

∣∣∣∣∣∣
∫
Rn

f(x− z)g(z) dz −
∫
Rn

f(x)g(z) dz

∣∣∣∣∣∣ (2.124)

≤
∫
Rn

|f(x− z)− f(z)| g(z) dz (2.125)

≤ L

∫
Rn

|z| g(z) dz (2.126)

= L

∫
B2(0,δ)

|z|
In

exp

(
− 1

1− ‖z/δ‖2

)
dz (2.127)

= Lδ

∫
B2(0,1)

|u|
In

exp

(
− 1

1− ‖u‖2

)
du (2.128)

≤ Lδ

∫
B2(0,1)

1

In
exp

(
− 1

1− ‖u‖2

)
du (2.129)

= Lδ (2.130)

67



as claimed.

The following lemma shows strong convexity of mollified functions, ruling out the possibility

of directly applying Lemma 2.5.5 to calculate subgradients.

Lemma 2.5.3. There exists a 1-Lipschitz convex function f such that for any β-smooth function

g with |f(x)− g(x)| ≤ δ for all x, βδ ≥ c where c is a constant.

Proof. Let f(x) = |x|. Consider x ≥ 0. By the smoothness of g,

g(x) ≤ g(0) +∇g(0)Tx+
β

2
x2, (2.131)

g(−x) ≤ g(0)−∇g(0)Tx+
β

2
x2. (2.132)

As a result, we have g(x) + g(−x) ≤ 2g(0) + βx2 for all x > 0. Since |f(x)− g(x)| ≤ δ,

f(x) + f(−x) ≤ 2f(0) + βx2 + 4δ ⇒ βx2 − 2x+ 4δ ≥ 0 (2.133)

for all x > 0.

Since 4δ > 0, the discriminant must be non-positive. Therefore, 16 − 16βδ ≤ 0, so

βδ ≥ 1.

2.5.2 Proof details for upper bound

We give the complete proof of Lemma 2.2.2 in this section.
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Given a quantum oracle that computes the function N0F in the form

UF |x〉|y〉 = |x〉|y ⊕ (N0F (x) mod N)〉, (2.134)

it is well known that querying UF with

|y0〉 =
1√
N0

∑
i∈{0,1,...,N−1}

e
2πix
N0 |i〉 (2.135)

allows us to implement the phase oracle OF in one query. This is a common technique used in

quantum algorithms known as phase kickback.

First, we prove the following lemma:

Lemma 2.5.4. LetG := {−N/2,−N/2+1, . . . , N/2−1} and define γ : {0, 1, . . . , N−1} → G

by γ(x) = x − N/2 for all x ∈ {0, 1, . . . , N − 1}. Consider the inverse quantum Fourier

transforms

QFT−1
N |x〉 :=

1√
N

∑
y∈[0,N−1]

e−
2πixy
N |y〉, ∀x ∈ [0, N − 1]; (2.136)

QFT−1
G |γ(x)〉 :=

1√
N

∑
γ(y)∈G

e−
2πiγ(x)γ(y)

N |γ(y)〉, ∀ γ(x) ∈ G (2.137)

over [0, N − 1] := {0, 1, . . . , N − 1} and G, respectively. Then we have QFT−1
G = U QFT−1

N U ,

where U is a tensor product of b = log2N single-qubit unitaries.
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Proof. For any x ∈ [0, N − 1], we have

QFT−1
G |x〉 =

1√
N

∑
y∈[0,N−1]

e−
2πiγ(x)γ(y)

N |y〉 (2.138)

which is equivalent to

1√
N

∑
y∈[0,N−1]

e−
2πixy
N eπi(x+y)|y〉 (2.139)

up to a global phase. Setting U |x〉 = eπix|x〉 for all x ∈ {0, 1, . . . , N−1}, we have the result.

The above shows that we can implement QFT−1
G on a single b-bit register usingO(b) gates.

Thus there is no significant overhead in gate complexity that results from using QFTG instead of

the usual QFT.

Now we prove Lemma 2.2.2, which is rewritten below:

Lemma 2.5.5. Let f : Rn → R be an L-Lipschitz function that is specified by an evaluation

oracle with error at most ε. Let f be β-smooth in B∞(x, 2
√
ε/β), and let g̃ be the output of

GradientEstimate(f, ε, L, β, x0) (from Algorithm 1). Let g = ∇f(x0). Then

Pr
[
|g̃i − gi| > 1500

√
nεβ

]
<

1

3
, ∀ i ∈ [n]. (2.140)

Proof. To analyze the GradientEstimate algorithm, let the actual state obtained before

applying the inverse QFT over G be

|ψ〉 =
1

Nn/2

∑
x∈Gd

e2πiF̃ (x)|x〉, (2.141)

70



where |F̃ (x)− N
2Ll

[f(x0 + lx
N

)− f(x0)]| ≤ 1
N0

. Also consider the idealized state

|φ〉 =
1

Nn/2

∑
x∈Gd

e
2πig·x

2L |x〉. (2.142)

From Lemma 2.5.4 we can efficiently apply the inverse QFT over G; from the analysis of

phase estimation (see [57]), we know that

∀ i ∈ [n] Pr

[∣∣∣Ngi
2L
− ki

∣∣∣ > w

]
<

1

2(w − 1)
, (2.143)

so in particular,

∀ i ∈ [n] Pr

[∣∣∣Ngi
2L
− ki

∣∣∣ > 4

]
<

1

6
. (2.144)

Now, let g = ∇f(x0). The difference in the probabilities of any measurement on |ψ〉 and

|φ〉 is bounded by the trace distance between the two density matrices, which is

‖|ψ〉〈ψ| − |φ〉〈φ|‖1 = 2
√

1− |〈ψ|φ〉|2 ≤ 2‖|ψ〉 − |φ〉‖. (2.145)

Since f is β-smooth in B∞(x, 2
√

ε
β
),
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F̃ (x) ≤ N

2Ll

[
f

(
x0 +

lx

N

)
− f(x0)

]
+

1

N0

(2.146)

≤ N

2Ll

(
l

N
∇f(x0) · x+

βl2x2

2N2

)
+

1

N0

(2.147)

≤ 1

2L
∇f(x0) · x+

Nβln

4L
+
Nε

Ll
. (2.148)

Then we have

‖|ψ〉 − |φ〉‖2 =
1

Nd

∑
x∈Gd

|e2πiF̃ (x) − e
2πig.x

2L |2 (2.149)

=
1

Nd

∑
x∈Gd

4π2
(
F̃ (x)− g · x

2L

)2

(2.150)

≤ 1

Nd

∑
x∈Gd

4π2N2

L2

(
βln

4
+
ε

l

)2

(2.151)

=
4π2N2βεn

L2
. (2.152)

In Algorithm 1, N is chosen such that N ≤ L
24π
√
nεβ

. Plugging this into (2.149),

‖|ψ〉 − |φ〉‖2 ≤ 1

144
. (2.153)

Thus the trace distance is at most 1
6
. Therefore, Pr

[∣∣ki − Ngi
2L

∣∣ > 4
]
< 1

3
. Thus we have

Pr

[
|g̃i − gi| >

8L

N

]
<

1

3
, ∀i ∈ [n]. (2.154)

From Algorithm 1, 1
N
≤ 48π

√
nεβ

L
, so 8L

N
< 384π

√
nεβ < 1500

√
nεβ, and the result follows.
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Finally, we prove that the height function hp can be evaluated with precision ε using

O(log(1/ε)) queries to a membership oracle:

Lemma 2.5.6. The function hp(x) can be evaluated for any x ∈ B∞(0, r/2) with any precision

ε ≥ 7κδ using O(log(1/ε)) queries to a membership oracle with error δ.

θ

Q

H
θ

−∆~qy

~p

x

error

~q

δ δ

∆
cos θ

Figure 2.2: Relating the error to 2δ in n = 2 dimensions.

Proof. We denote the intersection of the ray x+ t~p and the boundary of K by Q, and let H be an

(n − 1)-dimensional hyperplane that is tangent to K at Q. Because K is convex, it lies on only

one side of H; we let ~q denote the unit vector at Q that is perpendicular to H and points out of

K. Let θ := arccos〈~p, ~q〉.

Using binary search with log(1/δ) queries, we can find a point P on the ray x + t~p such

that P /∈ B(K,−δ) and P ∈ B(K, δ). The total error for t is then at most 2δ
cos θ

. Now consider

y = x−∆~q for some small ∆ > 0. Then hp(y)− hp(x) = ∆
cos θ

+ o( ∆
cos θ

) (see Figure 2.2 for an

illustration with n = 2).

By Proposition 2.2.2, hp(x) is 3κ-Lipschitz for any x ∈ B(0, r/2); therefore, hp(y) −
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hp(x) ≤ 3κ‖y − x‖ = 3κ∆, and hence

∆

cos θ
+ o
( ∆

cos θ

)
≤ 3κ∆ ⇒ 1

cos θ
≤ 3.5κ (2.155)

for a small enough ∆ > 0. Thus the error in hp(x) is at most 2δ
cos θ

≤ 7κδ, and the result

follows.

2.5.3 Proof details for lower bound

In this section, we give proof details for our claims in Section 2.3.2.

Convexity of max-norm optimization. In this subsection, we prove:

Lemma 2.5.7. The function

fc(x) = max
i∈[n]
|π(xi)− ci|+

( n∑
i=1

|π(xi)− xi|
)

(2.156)

is convex on Rn, where c ∈ {0, 1}n and π : R→ [0, 1] is defined as

π(x) =



0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1.

(2.157)
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Proof. For convenience, we define gi : Rn → R for i ∈ [n] as

gi(x) := |π(xi)− xi| =



−xi if xi < 0

0 if 0 ≤ xi ≤ 1

xi − 1 if xi > 1

(2.158)

where the second equality follows from (2.157). From (2.158), it is clear that gi(x) = max{−xi, 0,

xi − 1}. Since the pointwise maximum of convex functions is convex, gi(x) is convex for all

i ∈ [n].

Moreover, for all i ∈ [n] we define hc,i : Rn → R as hc,i(x) := |π(xi)− ci|+ |π(xi)− xi|.

We claim that hc,i(x) = |xi−ci|, and thus hc,i is convex. If ci = 0, then |π(xi)−ci|+|π(xi)−xi| =

π(xi) + |π(xi)− xi|; as a result,

xi < 0 ⇒ π(xi) + |π(xi)− xi| = 0 + |0− xi| = −xi; (2.159)

0 ≤ xi ≤ 1 ⇒ π(xi) + |π(xi)− xi| = xi + |xi − xi| = xi; (2.160)

xi > 1 ⇒ π(xi) + |π(xi)− xi| = 1 + |1− xi| = xi. (2.161)

Therefore, ∀ i ∈ [n], hc,i(x) = |xi − ci|. The proof is similar when ci = 1.
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Now we have

fc(x) = max
i∈[n]

(
|π(xi)− ci|+

n∑
j=1

|π(xj)− xj|
)

(2.162)

= max
i∈[n]

((
|π(xi)− ci|+ |π(xi)− xi|

)
+
∑
j 6=i

gj(x)
)

(2.163)

= max
i∈[n]

(
hc,i(x) +

∑
j 6=i

gj(x)
)
. (2.164)

Because hc,i and gj are both convex functions on Rn for all i, j ∈ [n], the function hc,i(x) +∑
j 6=i gj(x) is convex on Rn. Thus fc is the pointwise maximum of n convex functions and is

therefore itself convex.

Proof of Lemma 2.3.4.

Correctness of Line 1 and Line 2. In this subsection, we prove:

Lemma 2.5.8. Let b and σ be the values computed in Line 1 of Algorithm 5, and let x∗ =

χ(b, σ−1). Then Ord(x∗) = Ord(x).

Proof. First, observe that b ∈ {0, 1}n and σ ∈ Sn because

• For all i ∈ [n], both xi and 1 − xi can be written as bixi + (1 − bi)(1 − xi) for some

bi ∈ {0, 1};

• Ord(x) is palindrome, i.e., if xi1 is the largest in {x1, . . . , xn, 1 − x1, . . . , 1 − xn} then

1− xi1 is the smallest in {x1, . . . , xn, 1− x1, . . . , 1− xn}; if 1− xi2 is the second largest

in {x1, . . . , xn, 1 − x1, . . . , 1 − xn} then xi2 is the second smallest in {x1, . . . , xn, 1 −

x1, . . . , 1− xn}; etc.
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Recall that in (2.101), the decreasing order of {x1, . . . , xn, 1− x1, . . . , 1− xn} is

bσ(1)xσ(1) + (1− bσ(1))(1− xσ(1)) ≥ · · · ≥ bσ(n)xσ(n) + (1− bσ(n))(1− xσ(n))

≥ (1− bσ(n))xσ(n) + bσ(n)(1− xσ(n)) ≥ · · · ≥ (1− bσ(1))xσ(1) + bσ(1)(1− xσ(1)). (2.165)

On the other hand, by the definition of Dn, we have

{x∗1, . . . , x∗n, 1− x∗1, . . . , 1− x∗n} =
{ 1

2n+ 1
,

2

2n+ 1
, . . . ,

2n

2n+ 1

}
. (2.166)

Combining (2.165) and (2.166), it suffices to prove that for any i ∈ [n],

bσ(i)x
∗
σ(i) + (1− bσ(i))(1− x∗σ(i)) = 1− i

2n+ 1
; (2.167)

(1− bσ(i))x
∗
σ(i) + bσ(i)(1− x∗σ(i)) =

i

2n+ 1
. (2.168)

We only prove (2.167); the proof of (2.168) follows symmetrically.

By (2.98), we have x∗j = (1 − bj)σ
−1(j)

2n+1
+ bj(1 − σ−1(j)

2n+1
) for all j ∈ [n]; taking j = σ(i),

we have x∗σ(i) = (1 − bσ(i))
i

2n+1
+ bσ(i)(1 − i

2n+1
). Moreover, since bσ(i) ∈ {0, 1} implies that
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bσ(i)(1− bσ(i)) = 0 and b2
σ(i) + (1− bσ(i))

2 = 1, we have

bσ(i)x
∗
σ(i) + (1− bσ(i))(1− x∗σ(i)) = bσ(i)

[
(1− bσ(i))

i
2n+1

+ bσ(i)

(
1− i

2n+1

)]
+ (1− bσ(i))

[
bσ(i)

i
2n+1

+ (1− bσ(i))
(
1− i

2n+1

)]
(2.169)

= 2bσ(i)(1− bσ(i))
i

2n+1
+
(
b2
σ(i) + (1− bσ(i))

2
)(

1− i
2n+1

)
(2.170)

= 1− i
2n+1

, (2.171)

which is exactly (2.167).

Correctness of Line 3. In this subsection, we prove:

Lemma 2.5.9. There is some k∗ ∈ {1, . . . , n+ 1} such that f(x∗) = 1− k∗

2n+1
.

Proof. Because |x∗i − ci| is an integer multiple of 1
2n+1

for all i ∈ [n], f(x∗) must also be an

integer multiple of 1
2n+1

. As a result, k∗ = (2n+ 1)(1− f(x∗)) ∈ Z.

It remains to prove that 1 ≤ k∗ ≤ n+ 1. By the definition of Dn in (2.97), we have

x∗i = (1− bi)
σ−1(i)

2n+ 1
+ bi

(
1− σ−1(i)

2n+ 1

)
∀ i ∈ [n]; (2.172)

since bi = 0 or 1, we have x∗i ∈ {
σ−1(i)
2n+1

, 1− σ−1(i)
2n+1
}. Because we also have ci ∈ {0, 1},

|x∗i − ci| ≤ 1− σ−1(i)

2n+ 1
≤ 2n

2n+ 1
. (2.173)
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As a result,

f(x∗) = max
i∈[n]
|x∗i − ci| ≤

2n

2n+ 1
⇒ k∗ ≥ 1. (2.174)

It remains to prove k∗ ≤ n+ 1. By (2.172), we have

x∗σ(n) ∈
{ n

2n+ 1
,
n+ 1

2n+ 1

}
; (2.175)

because cσ(n) ∈ {0, 1}, we have

|x∗σ(n) − cσ(n)| ≥
n

2n+ 1
. (2.176)

Therefore, we have

f(x∗) = max
i∈[n]
|x∗i − ci| ≥ |x∗σ(n) − cσ(n)| ≥

n

2n+ 1
, (2.177)

which implies k∗ ≤ n+ 1.

Correctness of Line 4. In this subsection, we prove:

Lemma 2.5.10. The output of f(x) in Line 4 is correct.

Proof. A key observation we use in the proof, following directly from (2.172), is that

|x∗σ(i) − cσ(i)| =


i

2n+1
if cσ(i) = bσ(i);

1− i
2n+1

if cσ(i) = 1− bσ(i).

(2.178)
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First, assume that k∗ ∈ {1, . . . , n} (i.e., the “otherwise” case in (2.102) happens). By

(2.178),

x∗σ(k∗) ∈
{ k∗

2n+ 1
, 1− k∗

2n+ 1

}
; x∗σ(i) /∈

{ k∗

2n+ 1
, 1− k∗

2n+ 1

}
∀ i 6= k∗, (2.179)

which implies that for all i 6= k∗, |x∗σ(i) − cσ(i)| 6= 1 − k∗

2n+1
since cσ(i) ∈ {0, 1}. As a result, we

must have

|x∗σ(k∗) − cσ(k∗)| = 1− k∗

2n+ 1
. (2.180)

Together with (2.178), this implies

cσ(k∗) = 1− bσ(k∗). (2.181)

For any i < k∗, if cσ(i) = 1− bσ(i), then (2.178) implies that

f(x∗) ≥ |x∗σ(i) − cσ(i)| = 1− i

2n+ 1
> 1− k∗

2n+ 1
, (2.182)

which contradicts with the assumption that f(x∗) = 1− k∗

2n+1
. Therefore, we must have

cσ(i) = bσ(i) ∀ i ∈ {1, . . . , k∗ − 1}. (2.183)
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Recall that the decreasing order of {x1, . . . , xn, 1− x1, . . . , 1− xn} is

bσ(1)xσ(1) + (1− bσ(1))(1− xσ(1)) ≥ · · · ≥ bσ(n)xσ(n) + (1− bσ(n))(1− xσ(n))

≥ (1− bσ(n))xσ(n) + bσ(n)(1− xσ(n)) ≥ · · · ≥ (1− bσ(1))xσ(1) + bσ(1)(1− xσ(1)). (2.184)

Based on (2.181), (2.183), and (2.184), we next prove

|xσ(k∗) − cσ(k∗)| ≥ |xσ(i) − cσ(i)| ∀ i ∈ [n]. (2.185)

If (2.185) holds, it implies

f(x) = max
i∈[n]
|xi − ci| = |xσ(k∗) − cσ(k∗)|. (2.186)

If bσ(k∗) = 0, then (2.181) implies cσ(k∗) = 1, (2.186) implies f(x) = 1 − xσ(k∗), and the output

in Line 4 satisfies

bσ(k∗)xσ(k∗) + (1− bσ(k∗))(1− xσ(k∗)) = 1− xσ(k∗) = f(x); (2.187)

If bσ(k∗) = 1, then (2.181) implies cσ(k∗) = 0, (2.186) implies f(x) = xσ(k∗), and the output in

Line 4 satisfies

bσ(k∗)xσ(k∗) + (1− bσ(k∗))(1− xσ(k∗)) = xσ(k∗) = f(x). (2.188)

The correctness of Line 4 follows.
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It remains to prove (2.185). We divide its proof into two parts:

• Suppose i < k∗. By (2.184), we have

bσ(k∗)xσ(k∗) + (1− bσ(k∗))(1− xσ(k∗)) ≥ (1− bσ(i))xσ(i) + bσ(i)(1− xσ(i)). (2.189)

– If bσ(k∗) = 0 and bσ(i) = 0, we have cσ(k∗) = 1 and cσ(i) = 0 by (2.181) and (2.183),

respectively; (2.189) reduces to 1− xσ(k∗) ≥ xσ(i);

– If bσ(k∗) = 0 and bσ(i) = 1, we have cσ(k∗) = 1 and cσ(i) = 1 by (2.181) and (2.183),

respectively; (2.189) reduces to 1− xσ(k∗) ≥ 1− xσ(i);

– If bσ(k∗) = 1 and bσ(i) = 0, we have cσ(k∗) = 0 and cσ(i) = 0 by (2.181) and (2.183),

respectively; (2.189) reduces to xσ(k∗) ≥ xσ(i);

– If bσ(k∗) = 1 and bσ(i) = 1, we have cσ(k∗) = 0 and cσ(i) = 1 by (2.181) and (2.183),

respectively; (2.189) reduces to xσ(k∗) ≥ 1− xσ(i).

In each case, the resulting expression is exactly (2.185). Overall, we see that (2.185) is

always true when i < k∗.

• Suppose i > k∗. By (2.184), we have

bσ(k∗)xσ(k∗) + (1− bσ(k∗))(1− xσ(k∗)) ≥ bσ(i)xσ(i) + (1− bσ(i))(1− xσ(i)); (2.190)

bσ(k∗)xσ(k∗) + (1− bσ(k∗))(1− xσ(k∗)) ≥ (1− bσ(i))xσ(i) + bσ(i)(1− xσ(i)). (2.191)

– If bσ(k∗) = 0, we have cσ(k∗) = 1 by (2.181); (2.190) and (2.191) give 1 − xσ(k∗) ≥

max{xσ(i), 1− xσ(i)};
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– If bσ(k∗) = 1, we have cσ(k∗) = 0 by (2.181); (2.190) and (2.191) give xσ(k∗) ≥

max{xσ(i), 1− xσ(i)}.

Both cases imply (2.185), so we see this also holds for i > k∗.

The same proof works when k∗ = n + 1. In this case, there is no i ∈ [n] such that i > k∗;

on the other hand, when i < k∗, we replace (2.189) by

(1− bσ(n))xσ(n) + bσ(n)(1− xσ(n)) ≥ (1− bσ(i))xσ(i) + bσ(i)(1− xσ(i)), (2.192)

and the argument proceeds unchanged.

Optimality of Theorem 2.3.3. In this section, we prove that the lower bound in Theorem 2.3.3

is optimal (up to poly-logarithmic factors in n) for the max-norm optimization problem:

Theorem 2.5.1. Let fc : [0, 1]n → [0, 1] be an objective function for the max-norm optimization

problem (Definition 2.3.2). Then there exists a quantum algorithm that outputs an x̃ ∈ [0, 1]n

satisfying (2.79) with ε = 1/3 usingO(
√
n log n) quantum queries toOf , with success probability

at least 0.9.

In other words, the quantum query complexity of the max-norm optimization problem is Θ̃(
√
n).

We prove Theorem 2.5.1 also using search with wildcards (Theorem 2.3.1).

Proof. It suffices to prove that one query to the wildcard query model Oc in (2.64) can be

simulated by one query to Ofc , where the c in (2.77) is the string c in the wildcard query model.

Assume that we query (T, y) using the wildcard query model. Then we query Ofc(x
(T,y))
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where for all i ∈ [n],

x
(T,y)
i =



1
2

if i /∈ T ;

0 if i ∈ T and yi = 0;

1 if i ∈ T and yi = 1.

(2.193)

If c|T = y, then

• if |T | = n (i.e., T = [n]), then

fc(x) = max
i∈[n]
|x(T,y)
i − ci| = 0 (2.194)

because for any i ∈ [n], x(T,y)
i = yi = ci;

• if |T | ≤ n− 1, then

fc(x) = max
i∈[n]
|x(T,y)
i − ci|+ gi =

1

2
, (2.195)

because for all i ∈ T we have x(T,y)
i = yi = ci and hence |x(T,y)

i − ci| = 0, and for all i /∈ T

we have |x(T,y)
i − ci| = |12 − ci| =

1
2
.

Therefore, if c|T = y, then we must have fc(x(T,y)) ∈
{

0, 1
2

}
.

On the other hand, if c|T 6= y, then there exists an i0 ∈ T such that ci0 6= yi0 . This implies

x
(T,y)
i0

= 1−ci0; as a result, fc(x(T,y)) = 1 because on the one hand fc(x(T,y)) ≥ |1−ci0−ci0| = 1,

and on the other hand fc(x(T,y)) ≤ 1 as |x(T,y)
i − ci| ≤ 1 for all i ∈ [n].

Notice that the sets
{

0, 1
2

}
and {1} do not intersect. Therefore, after we query Ofc(x

(T,y))
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and obtain the output, we can tell Qs(T, y) = 1 in (2.64) if Ofc(x
(T,y)) ∈

{
0, 1

2

}
, and output

Qs(T, y) = 0 if Ofc(x
(T,y)) = 1. In all, this gives a simulation of one query to the wildcard query

model Oc by one query to Ofc .

As a result of Theorem 2.3.1, there is a quantum algorithm that outputs the c in (2.77) using

O(
√
n log n) quantum queries to Of . If we take x̃ = c, then fc(x̃) = maxi |ci − ci| = 0, which is

actually the optimal solution with ε = 0 in (2.79). This establishes Theorem 2.5.1.
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Chapter 3: Quantum Algorithms for Estimating Volumes of Convex Bodies

In this chapter we present a quantum algorithm with a polynomial speedup for estimating

the volumes of convex bodies. The results presented were first established in [58].

3.1 Introduction

Estimating the volume of a convex body is a central challenge in theoretical computer

science. Volume estimation is a basic problem in convex geometry and can be viewed as a

continuous version of counting. Furthermore, algorithms for a generalization of volume estimation,

namely log-concave sampling—can be directly used to perform convex optimization, and hence

can be widely applied to problems in statistics, machine learning, operations research, etc. See

the survey [59] for a more comprehensive introduction.

Volume estimation is a notoriously difficult problem. References [60, 61] proved that

any deterministic algorithm that approximates the volume of an n-dimensional convex body

within a factor of no(n) necessarily makes exponentially many queries to a membership oracle

for the convex body. Furthermore, Refs. [62, 63, 64] showed that estimating the volume exactly

(deterministically) is #P-hard, even for explicitly described polytopes.

Surprisingly, volumes of convex bodies can be approximated efficiently by randomized

algorithms. Dyer, Frieze, and Kannan [65] gave the first polynomial-time randomized algorithm
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for estimating the volume of a convex body in Rn. They present an iterative algorithm that

constructs a sequence of convex bodies. The volume of the convex body of interest can be

written as the telescoping product of the ratios of the volumes of consecutive convex bodies, and

these ratios are estimated by Markov chain Monte Carlo (MCMC) methods via random walks

inside these convex bodies. The algorithm in [65] has complexity1 Õ(n23) with multiplicative

error ε = Θ(1). Subsequent work [66, 67, 68, 69, 70, 71, 72] improved the design of the iterative

framework and the choice of the random walks. The state-of-the-art algorithm for estimating the

volume of a general convex body [73] uses Õ(n4) queries to the oracle for the convex body and

Õ(n6) additional arithmetic operations.

It is natural to ask whether quantum computers can solve volume estimation even faster

than classical randomized algorithms. Although there are frameworks with potential quantum

speedup for simulated annealing algorithms in general, with volume estimation as a possible

application [74], we are not aware of any previous quantum speedup for volume estimation. There

are several reasons to develop such a result. First, quantum algorithms for volume estimation

can be seen as performing a continuous version of quantum counting [75, 76], a key algorithmic

technique with wide applications in quantum computing. Second, quantum algorithms for volume

estimation can exploit quantum MCMC methods (e.g., [11, 77, 78]), and a successful quantum

volume estimation algorithm may illuminate the application of quantum MCMC methods in other

scenarios. Third, there has been recent progress on quantum algorithms for convex optimization

[32, 79], so it is natural to study the closely related task of estimating volumes of convex bodies.

1Throughout the paper, Õ omits factors in poly(logR/r, log 1/ε, log n) where R and r are defined in (3.2).
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Formulation Given a convex set K ⊂ Rn, we consider the problem of estimating its volume

Vol(K) :=

∫
x∈K

dx. (3.1)

To get a basic sense about the location of K, we assume that it contains the origin. Furthermore,

we assume that we are given inner and outer bounds on K, namely

Bn
2 (0, r) ⊆ K ⊆ Bn

2 (0, R), (3.2)

where Bn
2 (x, l) is the ball of radius l in `2-norm centered at x ∈ Rn. Denote D := R/r.

We consider the very general setting where the convex body K is only specified by an

oracle. In particular, we have a membership oracle2 for K that determines whether a given x ∈ Rn

belongs to K. The efficiency of volume estimation is then measured by the number of queries

to the membership oracle (i.e., the query complexity) and the total number of other arithmetic

operations.

In the quantum setting, the membership oracle is a unitary operator OK. Specifically, we

have

OK|x, 0〉 = |x, δ[x ∈ K]〉 ∀x ∈ Rn, (3.3)

where δ[P ] is 1 if P is true and 0 if P is false.3 In other words, we allow coherent superpositions

2The membership oracle is commonly used in convex optimization research (see for example [34]). This model
is not only general but also of practical interest. For instance, when K is a bounded convex polytope, the membership
oracle can be efficiently implemented by checking if all its linear constraints are satisfied; see also [80].

3Here x can be approximated just as in the classical algorithms, such as with fixed-point numbers. Our
algorithmic approach is robust under discretization (see Section 3.5), and our quantum lower bound holds even
when x is stored with arbitrary precision (Section 3.6). We mostly assume for convenience that OK operates on
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of queries to the membership oracle. If the classical membership oracle can be implemented by an

explicit classical circuit, then the corresponding quantum membership oracle can be implemented

by a quantum circuit of about the same size. Therefore, the quantum query model provides a

useful framework for understanding the quantum complexity of volume estimation.

3.1.1 Contributions

Our main result is a quantum algorithm for estimating volumes of convex bodies:

Theorem 3.1.1 (Main Theorem). Let K ⊂ Rn be a convex set with Bn
2 (0, r) ⊆ K ⊆ Bn

2 (0, R).

Assume 0 < ε < 1/2. Then there is a quantum algorithm that returns a value Ṽol(K) satisfying

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε)Vol(K) (3.4)

with probability at least 2/3 using Õ(n3 +n2.5/ε) quantum queries to the membership oracle OK

(defined in (4.8)) and Õ(n5 + n4.5/ε) additional arithmetic operations.4

To the best of our knowledge, this is the first quantum algorithm that achieves quantum

speedup for this fundamental problem, compared to the classical state-of-the-art algorithm [73,

82] that uses Õ(n4+n3/ε2) classical queries and Õ(n6+n5/ε2) additional arithmetic operations.5

Furthermore, our quantum algorithm not only achieves a quantum speedup in query complexity,

but also in the number of arithmetic operations for executing the algorithm. This differs from

x ∈ Rn, since this neither presents a serious obstacle nor conveys significant power.
4Arithmetic operations (e.g., addition, subtraction, multiplication, and division) can be in principle implemented

by a universal set of quantum gates using the Solovay-Kitaev Theorem [81] up to a small overhead. In our quantum
algorithm, the number of arithmetic operations is dominated by n-dimensional matrix-vector products computed in
superposition for rounding the convex body (see Section 3.4.4).

5This is achieved by applying [73] to preprocess the convex body to be well-rounded (i.e. R/r = O(
√
n)) using

Õ(n4) queries and then applying [82] using Õ(n3/ε2) queries to estimate the volume of the (well-rounded) convex
body. The number of additional arithmetic operations has an overhead of O(n2) due to the affine transformation.
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previous quantum algorithms for convex optimization [32, 79] where only the query complexity is

improved, but the gate complexity is the same as that of the classical state-of-the-art algorithm [42,

83].

On the other hand, we prove in Section 3.6.1 that volume estimation with ε = Θ(1)

requires Ω(
√
n) quantum queries to the membership oracle, ruling out the possibility of achieving

superpolynomial quantum speedup for volume estimation. Classically, the best-known lower

bound on the query complexity of volume estimation is Ω̃(n2) due to Rademacher and Vempala [84],

but there are technical difficulties to lift it to a quantum lower bound (see Section 3.1.2.3). For the

dependence on 1/ε, we establish a quantum query lower bound of Ω(1/ε), and the same argument

shows a classical query lower bound of Ω(1/ε2) (see Section 3.6.2). As a result, our quantum

algorithm in Theorem 4.1.1 achieves a provable quadratic quantum speedup in 1/ε and is optimal

in 1/ε up to poly-logarithmic factors.

Technically, we refine a framework for achieving quantum speedups of simulated annealing

algorithms, which might be of independent interest. Our framework applies to MCMC algorithms

with cooling schedules that ensure each ratio in a telescoping product has bounded variance,

an approach known as Chebyshev cooling. Furthermore, we propose several novel techniques

when implementing this framework, including a theory of continuous-space quantum walks with

rigorous bounds on discretization error, a quantum algorithm for nondestructive mean estimation,

and a quantum algorithm with interlaced rounding and volume estimation of convex bodies (as

described further in Section 4.3.1 below). In principle, our techniques apply not only to the

integral of the identity function (as in Theorem 4.1.1), but could also be applied to any log-

concave function defined on a convex body, following the approach in [40].

We summarize our main results in Table 3.1.

90



Classical bounds Quantum bounds (this paper)

Query complexity Õ(n4 + n3/ε2) [73, 82], Ω̃(n2) [84] Õ(n3 + n2.5/ε), Ω(
√
n+ 1/ε)

Total complexity Õ
(
(n2 + CMEM) · (n4 + n3/ε2)

)
[73, 82] Õ

(
(n2 + CMEM) · (n3 + n2.5/ε)

)
Table 3.1: Summary of complexities of volume estimation, where n is the dimension of the
convex body, ε is the multiplicative precision of volume estimation, and CMEM is the cost of
applying the membership oracle once. Total complexity refers to the cost of the of queries plus
the number of additional arithmetic operations.

3.1.2 Techniques

We now summarize the key technical aspects of our work.

3.1.2.1 Classical volume estimation framework

Volume estimation by simulated annealing The volume of a convex body K can be estimated

using simulated annealing. Consider the value

Z(a) :=

∫
K

e−a‖x‖2 dx, (3.5)

where ‖x‖2 :=
√
x2

1 + · · ·+ x2
n is the `2-norm of x. On the one hand, Z(0) = Vol(K); on

the other hand, because e−‖x‖2 decays exponentially fast with ‖x‖2, taking a large enough a

ensures that the vast majority of Z(a) concentrates near 0, so it can be well approximated by

integrating on a small ball centered at 0. Therefore, a natural strategy is to consider a sequence

a0 > a1 > · · · > am with a0 sufficiently large and am close to 0. We consider a simulated

annealing algorithm that iteratively changes ai to ai+1 and estimates Vol(K) by the telescoping
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product

Vol(K) ≈ Z(am) = Z(a0)
m−1∏
i=0

Z(ai+1)

Z(ai)
. (3.6)

In the ith step, a random walk is used to sample the distribution over K with density proportional

to e−ai‖x‖2 . Denote one such sample by Xi, and let Vi := e(ai−ai+1)‖Xi‖2 . Then we have

E[Vi] =

∫
K

e(ai−ai+1)‖x‖2 e
−ai‖x‖2

Z(ai)
dx =

∫
K

e−ai+1‖x‖2

Z(ai)
dx =

Z(ai+1)

Z(ai)
. (3.7)

Therefore, each ratio Z(ai+1)
Z(ai)

can be estimated by taking i.i.d. samplesXi, computing the correspo-

nding Vis, and taking their average.

We can analyze this volume estimation algorithm by considering its behavior at three levels:

1) High level: The algorithm follows the simulated annealing framework described above, where

the volume is estimated by a telescoping product as in (3.6).

2) Middle level: The number of i.i.d. samples used to estimate E[Vi] (a ratio in the telescoping

product given by (3.7)) is small. Intuitively, the annealing schedule should be slow enough that

Vi has small variance.

3) Low level: The random walk converges fast so that we can take each i.i.d. sample of Vi

efficiently.

Classical volume estimation algorithm Our approach follows the classical volume estimation

algorithm in [73] (see also Section 3.4.1). At the high level, it is a simulated annealing algorithm
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that estimates the volume of an alternative convex body K′ produced by the pencil construction,

which intersects a cylinder [0, 2R/r] × K and a cone C := {x ∈ Rn+1 : x0 ≥ 0, ‖x‖2 ≤ x0}.

This construction shares the same intuition as above, but replaces the integral (3.5) by Z(a) =∫
K′
e−ax0 dx because it is easier to calculate while can be directly used to estimate Vol(K) when

a ≈ 0 by a standard Monte Carlo approach (see Lemma 3.4.1).

Without loss of generality, assume that r = 1. Lovász and Vempala [73] proved that if we

take the sequence a0 > · · · > am where a0 = 2n, ai+1 = (1 − 1√
n
)ai, and m = Õ(

√
n), then

Z(a0) ≈
∫

C
e−a0x0 dx and

Var[V 2
i ] = O(1) · E[Vi]

2, ∀ i ∈ [m], (3.8)

i.e., the variance of Vi is bounded by a constant multiple of the square of its expectation. Such

a simulated annealing schedule is known as Chebyshev cooling (see also Section 3.4.3.3). This

establishes the middle-level requirement of the simulated annealing framework. Furthermore,

[73] proves that the product of the average of Õ(
√
n/ε2) i.i.d. samples of Vi for all i ∈ [m] gives

an estimate of Vol(K′) within multiplicative error ε with high success probability.

At the low level, Ref. [73] uses a hit-and-run walk to sample Xi. In this walk, starting

from a point p, we uniformly sample a line ` through p and move to a random point along the

chord ` ∩ K with density proportional to e−ax0 (see Section 3.2.4 for details). Reference [72]

analyzes the convergence of the hit-and-run walk, proving that it converges to the distribution

over K with density proportional to e−ax0 within Õ(n3) steps, assuming that K is well-rounded

(i.e., R/r = O(
√
n)).

Finally, Ref. [73] constructs an affine transformation that transforms a general K to be well-
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rounded with Õ(n4) classical queries to its membership oracle, hence removing the constraint of

the previous steps that K be well-rounded. Because the affine transformation is an n-dimensional

matrix-vector product, this introduces an overhead ofO(n2) in the number of arithmetic operations.

Overall, the algorithm has Õ(
√
n) iterations, where each iteration takes Õ(

√
n/ε2) i.i.d.

samples, and each sample takes Õ(n3) steps of the hit-and-run walk. In total, the query complexity

is

Õ(
√
n) · Õ(

√
n/ε2) · Õ(n3) = Õ(n4/ε2). (3.9)

The number of additional arithmetic operations is Õ(n4/ε2) ·O(n2) = Õ(n6/ε2) due to the affine

transformation for rounding the convex body.

3.1.2.2 Quantum algorithm for volume estimation

It is natural to consider a quantum algorithm for volume estimation following the classical

framework in Section 3.1.2.1. A naive attempt might be to develop a quantum walk that achieves

a generic quadratic speedup of the mixing time. However, this is unfortunately difficult to achieve

in general. Quantum walks are unitary processes that do not converge to stationary distributions

in the classical sense. As a result, alternative and indirect quantum analogues of mixing properties

of Markov chains have been proposed and studied (see Section 3.1.3.2 for more detail). None

of these methods provide a direct replacement for classical mixing, and we cannot directly apply

them in our context.

Instead, we adapt one of the frameworks proposed in [78]. To give a quantum speedup for

volume estimation by this method, we address the following additional technical challenges:
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• Quantum walks in continuous space: Quantum walks have mainly been studied in discrete

spaces [85, 86], and we need to understand how to define a quantum counterpart of the hit-and-

run walk.

• Quantum mean estimation: Quantum counting [76] is a general tool for estimating a probability

p ∈ [0, 1] with quadratic quantum speedup compared to classical sampling. However, estimating

the mean of an unbounded random variable with a quantum version of Chebyshev concentration

requires more advanced tools.

• Rounding: Classically, rounding a general convex body takes Õ(n4) queries [73], more expensive

than volume estimation of a well-rounded body using Õ(n3/ε2) queries [82]. To achieve an

overall quantum speedup, we also need to give a fast quantum algorithm for rounding convex

bodies.

• Error analysis of the quantum hit-and-run walk: We must bound the error incurred when

implementing the quantum walk on a digital quantum computer with finite precision. Existing

classical error analyses (e.g., [87]) do not automatically cover the quantum case.

We develop several novel techniques to resolve these issues:

Theory of continuous-space quantum walks (Section 3.3) Our first technical contribution is

to develop a quantum implementation of the low-level framework, i.e., to replace the classical

hit-and-run walk by a quantum hit-and-run walk. However, although quantum walks in discrete

spaces have been well studied (see for example [85, 86]), we are not aware of comparable

results that can be used to analyze spectral properties and mixing times of quantum walks in

continuous space. Here we describe a framework for continuous-space quantum walks that can
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be instantiated to give a quantum version of the hit-and-run walk. In particular, we formally

define such walks and analyze their spectral properties, generalizing Szegedy’s theory [85] to

continuous spaces (Section 3.3.1). We also show a direct correspondence between the stationary

distribution of a classical walk and a certain eigenvector of the corresponding quantum walk

(Section 3.3.2).

Quantum volume estimation algorithm via simulated annealing (Section 3.4.2) Having

described a quantum hit-and-run walk, the next step is to understand the high-level simulated

annealing framework. As mentioned above, it is nontrivial to directly prepare stationary states

of quantum walks. In this paper, we follow a quantum MCMC framework proposed by [78] that

can prepare stationary states of quantum walks by simulated annealing (see Section 3.2.2). In this

framework, we have a sequence of slowly-varying Markov chains, and the stationary state of the

initial Markov chain can be efficiently prepared. In each iteration, we apply fixed-point amplitude

amplification of the quantum walk operator [1] due to Grover to transform the current stationary

state to the next one; compared to classical slowly-varying Markov chains, the convergence rate

of such quantum procedure is quadratically better in spectral gap.

Our main technical contribution is to show how to adapt the Chebyshev cooling schedule

in [73] to the quantum MCMC framework in [78] using our quantum hit-and-run walk. The

conductance lower bound together with the classical Õ(n3) mixing time imply that we can

perform one step of fixed-point amplitude amplification using Õ(n1.5) queries toOK. Furthermore,

the inner product between consecutive stationary states is a constant. These two facts ensure that

the stationary state in each iteration can be prepared with Õ(n1.5) queries to the membership

oracle OK. The total number of iterations is still Õ(
√
n), as in the classical case.
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Quantum algorithm for nondestructive mean estimation (Section 3.4.3.3) In the next step,

we consider how to estimate each ratio in the telescoping product at the middle level. The basic

tool is quantum counting [76], which estimates a probability p ∈ [0, 1] with error ε and high

success probability using O(1/ε) quantum queries, a quadratic speedup compared to the classical

complexity O(1/ε2). However, in our case we need to estimate the expectation of a random

variable with bounded variance. We use the “quantum Chebyshev inequality” developed in [88]

which truncates the random variable with reasonable upper and lower bounds and then reduces

to quantum counting; see Section 3.2.3.6 Compared to the classical counterpart, it achieves

quadratic speedup in the dependences on both variance and multiplicative error.

There is an additional technical difficulty in quantum simulated annealing: classically, it

is implicitly assumed that in the (i + 1)st iteration we have samples to the stationary distribution

in the ith iteration. Applying existing quantum mean estimation techniques to the quantum

stationary state in the ith iteration would ruin that state and make it hard to use in the subsequent

(i + 1)st iteration. To resolve this issue, we estimate the mean nondestructively in the quantum

Chebyshev inequality while keeping its quadratic speedup in the error dependence using a nondestructive

amplitude estimation technique developed in [89]. Nondestructive mean estimation relies on the

following observation: applying amplitude estimation on a state |ψ〉 results with high probability

in the measurement collapsing to one of two states |ψ+〉, |ψ−〉 with constant overlap with ψ. The

algorithm repeatedly projects these states onto |ψ〉: if the projection is successful then the state

is restored, otherwise amplitude estimation can be performed again to obtain |ψ+〉, |ψ−〉 and the

projection can be repeated. Due to the constant overlap, poly(log(δ−1)) repititions suffice to

6A related technique is the quantum Monte Carlo method of Montanaro [11]. Here we use [88] for two reasons:
first, it has the advantage of handling multiplicative instead of additive errors, which is appropriate for estimating the
telescoping ratios. Second, its quantum algorithm is based on amplitude estimation and hence can readily be made
nondestructive, as discussed below.
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ensure that at least one of the projections succeeds with probability δ. It remains to implement

the required projection efficiently: we show how this can be accomplished using quantum walk

operators corresponding to the Markov Chains in the MCMC framework; see Section 3.4.3.4.

In our quantum volume estimation algorithm, we apply the quantum Chebyshev inequality

under the same compute-uncompute procedure. This gives a quadratic speedup in ε−1 when

estimating the E[Vi] in (3.7), so that Õ(
√
n/ε) copies of the stationary state suffice7 (see Lemma 3.4.3).

Quantum algorithm for volume estimation with interlaced rounding (Section 3.4.4) The

stationary states of the quantum hit-and-run walk can be prepared with Õ(n1.5) queries toOK only

when the corresponding density functions are well-rounded, i.e., every level set with probability

µ contains a ball of radius µr and the variance of the density is bounded by R2, where R/r =

O(
√
n).8 It remains to show how to ensure that the convex body is well-rounded.

Classically, Ref. [73] gave a rounding algorithm that transforms a convex body to ensure

that all the densities sampled in the volume estimation algorithm are well-rounded. This algorithm

uses Õ(n4) queries, via Õ(n) iterations of simulated annealing. A quantization of this algorithm

along the same lines as detailed above gives an algorithm with Õ(n3.5) quantum queries.

To improve over that approach, we instead follow a classical framework for directly rounding

logconcave densities [40]. The rounding is interlaced with the volume estimation algorithm, so

that in each iteration of the simulated annealing framework, we use some of the samples to

calculate an affine transformation that makes the next stationary state well-rounded. This ensures

that the quantum hit-and-run walk continues to take only Õ(n1.5) queries for each sample. Our

7It is possible to use fewer copies of the stationary state. See Footnote 14.
8When the density function is uniform in K, this definition of well-roundedness reduces to that in Footnote 5.

The definition of level sets is the same as in [73].
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algorithm maintains Õ(n) extra quantum states for rounding, and the quantum hit-and-run walk

is used to transform them from one stationary distribution to the next. In each iteration, we use a

nondestructive measurement to sample the required affine transformation. With Õ(
√
n) iterations

this results in an additional Õ(
√
n) · Õ(n) · Õ(n1.5) = Õ(n3) cost for rounding.

We also show that this framework can be used as a preprocessing step that puts the convex

body itself in well-rounded position (i.e., B2(0, r) ⊆ K ⊆ B2(0, R) with R/r = O(
√
n)) using

Õ(n3) quantum queries. Putting a convex body in well-rounded position implies that several

random walks used in simulated annealing algorithms (including the hit-and-run walk) mix fast

without the need for further rounding. Therefore, as an alternative, we could preprocess the

convex body to be well-rounded and then apply the simulated annealing algorithm to obtain a

volume estimation algorithm that uses Õ(n3 + n2.5/ε) quantum queries.

Error analysis of discretized hit-and-run walks (Section 3.5) Although we defined quantum

hit-and-run walks abstractly in Section 3.3, implementing a continuous-space quantum walk on

a digital quantum computers will lead to discretization error, and the error analysis of classical

walks in a discrete space approximating Rn (such as [87]) does not automatically apply to the

quantum counterpart. To ensure that discretization errors do not affect a realistic implementation

of our algorithm, in Section 3.5 we propose a discretized hit-and-run walk and provide rigorous

bounds on the discretization error.

Summary Our quantum volume estimation algorithm can be summarized as follows.

1) High level: The quantum algorithm follows a simulated annealing framework using a quantum

MCMC method [78], where the volume is estimated by a telescoping product (as in (3.6)); the
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number of iterations is Õ(
√
n).

2) Middle level: We estimate the E[Vi] in (3.7), a ratio in the telescoping product, using the

nondestructive version of the quantum Chebyshev inequality [88]. This takes Õ(
√
n/ε) implem-

entations of the quantum hit-and-run walk operators.

3) Low level: If the convex body K is well-rounded (i.e., R/r = O(
√
n)), each quantum hit-and-

run walk operator can be implemented using Õ(n1.5) queries to the membership oracle OK in

(4.8).

Finally, we give a quantum algorithm that interlaces rounding and volume estimation of

the convex body, using an additional Õ(n2.5) quantum queries to OK in each iteration. Because

the affine transformation is an n-dimensional matrix-vector product, it introduces an overhead of

O(n2) in the number of arithmetic operations (just as in the classical rounding algorithm).

Overall, our quantum volume estimation algorithm has Õ(
√
n) iterations. Each iteration

implements Õ(
√
n/ε) quantum hit-and-run walks, and each quantum hit-and-run walk uses Õ(n1.5)

queries; there is also a cost of Õ(n2.5) for rounding. Thus the quantum query complexity is

Õ(
√
n) ·

(
Õ(
√
n/ε) · Õ(n1.5) + Õ(n2.5)

)
= Õ(n3 + n2.5/ε). (3.10)

The number of additional arithmetic operations is Õ(n3 + n2.5/ε) ·O(n2) = Õ(n5 + n4.5/ε) due

to the affine transformations for interlaced rounding of the convex body.

Figure 3.1 summarizes our techniques. The volume estimation and interlaced rounding

algorithms are given as Algorithm 8 and Algorithm 9, respectively, in Section 3.4.
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Quantum volume estimation
algorithm (Section 3.4.2)

Continuous-space
quantum walk (Section 3.3)

Discretized quantum
hit-and-run walk (Section 3.5)

Quantum convex body
rounding algorithm (Section 3.4.4)

Chebyshev cooling via nondestructive
mean estimation (Section 3.4.3.3)

Fixed-point amplitude
amplification (Section 3.2.2)

implement

implement

Step 1 Step 2 (simulated annealing)

Figure 3.1: The structure of our quantum volume estimation algorithm. The four purple frames
represent the four novel techniques that we propose, the yellow frame represents the known
technique from [1], and the green frame at the center represents our quantum algorithm.

3.1.2.3 Quantum lower bounds (Section 3.6)

The classical state-of-the-art query lower bound for volume estimation is a Ω̃(n2) bound

for n-dimensional parallelopipeds [84]. The argument uses Yao’s principle [90] to reduce the

problem of estimating the volume of parallelopipeds to a corresponding average-case lower

bound for deterministic algorithms. However, in the quantum setting, it is unclear how to apply

a similar argument since such a reduction to the deterministic case does not work in general.

Nevertheless, we prove that volume estimation requires Ω(
√
n) quantum queries to the

membership oracle, ruling out the possibility of exponential quantum speedup (see Theorem 3.6.1).

We establish this by a reduction to search: for a hyper-rectangle K =×n

i=1
[0, 2si ] specified by a

binary string s = (s1, . . . , sn) ∈ {0, 1}n with |s| = 0 or 1, we prove that a membership query to

K can be simulated by a query to s. Thus, since Vol(K) = 2 if and only if |s| = 1, the Ω(
√
n)

quantum lower bound on search [91] applies to volume estimation.

In addition, we prove that volume estimation requires Ω(1/ε) quantum queries (see

Theorem 3.6.2), which means that our quantum algorithm is optimal in 1/ε up to poly-logarithmic

factors. The idea is to construct a convex body whose volume estimation reduces to the Hamming
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distance problem with known tight quantum query complexity [92]. To be more specific, we

consider the n-dimensional unit hypercube and attach “hyperpyramids” to its faces, such that

its central axis passes through the center of the hypercube. We show that adding or deleting

any hyperpyramid of volume 1/2n does not influence the convexity of the convex body, and

calculating the volume of the body reveals the Hamming weight of a binary string that encodes

the presence or absence of the hyperpyramids.

3.1.3 Related work

While our paper gives the first quantum algorithm for volume estimation, classical volume

estimation algorithms have been well-studied, as we review in Section 3.1.3.1. Our quantum

algorithm builds upon quantum analogs of Markov chain Monte Carlo methods that we review in

Section 3.1.3.2.

3.1.3.1 Classical volume estimation algorithms

There is a rich literature on classical algorithms for estimating volumes of convex bodies

(e.g., see the surveys [59, 93]). The general approach is to consider a sequence of random

walks inside the convex body K whose stationary distributions converge quickly to the uniform

distribution on K. Applying simulated annealing to this sequence of walks (as in Section 4.3.1),

the volume of K can be approximated by a telescoping product.

The first polynomial-time algorithm for volume estimation was given by [65]. It uses a

grid walk in which the convex body K is approximated by a grid mesh Kgrid of spacing δ (i.e.,

Kgrid contains the points in K whose coordinates are integer multiples of δ). The walk proceeds
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as follows:

1. Pick a grid point y uniformly at random from the neighbors of the current point x.

2. If y ∈ Kgrid, go to y; else stay at x.

Dyer, Frieze, and Vempala [65] proved that for a properly chosen δ, the grid walk converges

to the uniform distribution on Kgrid in Õ(n23) steps, and that δn|Kgrid| is a good approximation of

Vol(K) (in the sense of (3.4)). Subsequently, more refined analysis of the grid walk improved its

cost to Õ(n8) [66, 67, 68]. However, this is still inefficient in practice.

Intuitively, the grid walk converges slowly because each step only moves locally in K.

Subsequent work improved the complexity by considering other types of random walk. These

improvements mainly use two types of walk: the hit-and-run walk and the ball walk. In this

paper, we use the hit-and-run walk (see also Section 3.2.4), which behaves as follows:

1. Pick a uniformly distributed random line ` through the current point p.

2. Move to a uniformly random point along the chord ` ∩K.

Smith [94] proved that the stationary distribution of the hit-and-run walk is the uniform

distribution on K. Regarding the convergence of the hit-and-run walk, [71] showed that it mixes

in Õ(n3) steps from a warm start after appropriate preprocessing, and [72] subsequently proved

that the hit-and-run walk mixes rapidly from any interior starting point (see also Theorem 3.2.4).

Under the simulated annealing framework, the hit-and-run walk gives the state-of-the-art volume

estimation algorithm with query complexity Õ(n4) [40, 73]. Our quantum volume estimation

algorithm can be viewed as a quantization of this classical hit-and-run algorithm.

Given a radius parameter δ, the ball walk is defined as follows:
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1. Pick a uniformly random point y from the ball of radius δ centered at the current point x.

2. If y ∈ K, go to y; else stay at x.

Lovász and Simonovits [69] proved that the ball walk mixes in Õ(n6) steps. Kannan et al. [70]

subsequently improved the mixing time to Õ(n3) starting from a warm start, giving a total query

complexity of Õ(n5) for the volume estimation problem.

The analysis of the ball walk relies on a central conjecture in convex geometry, the Kannan-

Lovász-Simonovits (KLS) conjecture (see [93]). The KLS conjecture states that the Cheeger

constant of any log-concave density is achieved to within a universal, dimension-independent

constant factor by a hyperplane-induced subset, where the Cheeger constant is the minimum ratio

between the measure of the boundary of a subset to the measure of the subset or its complement,

whichever is smaller. Although this quantity is conjectured to be a constant, the best known

upper bound is only O(n1/4) [95]. However, in the special case when the convex body is well-

rounded (i.e.,R/r = O(
√
n)), a recent breakthrough by Cousins and Vempala [82, 96] proved the

KLS conjecture for Gaussian distributions. In other words, they established a volume estimation

algorithm with query complexity Õ(n3) in the well-rounded case.

Table 3.2 summarizes classical algorithms for volume estimation.

Method
State-of-the-art

query complexity
Restriction on the convex body

Grid walk Õ(n8) [68] General (R/r = poly(n))

Hit-and-run walk Õ(n4) [40, 73] General (R/r = poly(n))

Ball walk Õ(n3) [82, 96] Well-rounded (R/r = O(
√
n))

Table 3.2: Summary of classical methods for estimating the volume of a convex body K ⊂ Rn

when ε = Θ(1), where R, r are the radii of the balls centered at the origin that contain and are
contained by the convex body, respectively.
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3.1.3.2 Quantum Markov chain Monte Carlo methods

The performance of Markov chain Monte Carlo (MCMC) methods is determined by the

rate of convergence to their stationary distributions (i.e., the mixing time). Suppose we have

a reversible, ergodic Markov chain with unique stationary distribution π. Let πk denote the

distribution obtained by applying the Markov chain for k steps from some arbitrary initial state.

It is well-known (see for example [97]) that O( 1
∆

log(1/(εminx π(x)))) steps suffice to ensure

‖πk − π‖1 ≤ ε, where ∆ is the spectral gap of the Markov chain.

Many authors have studied quantum analogs of Markov chains (in both continuous [98]

and discrete [85, 99, 100] time) and their mixing properties. While a quantum walk is a unitary

process and hence does not converge to a stationary distribution, one can define notions of

quantum mixing time by choosing the number of steps at random or by adding decoherence

[77, 99, 100, 101, 102, 103, 104], and compare them to the classical mixing time. Note that

distribution sampled by such a process may or may not be the same as the stationary distribution

π of the corresponding classical Markov process, depending on the structure of the process and

the notion of mixing. It is also natural to ask how efficiently we can prepare a quantum state

close to |π〉 :=
∑

x

√
πx|x〉, which can be viewed as a “quantum sample” from π. However,

it is unclear how to do this efficiently in general, even in cases where a corresponding classical

Markov process mixes quickly; in particular, a generic quantum algorithm for this task could be

used to solve graph isomorphism [105, Section 8.4].

It is also possible to achieve quantum speedup of MCMC methods by not demanding

speedup of the mixing time of each separate Markov chain, but only for the procedure as a

whole. In particular, MCMC methods are often implemented by simulated annealing algorithms

105



where the final output is a telescoping product of values at different temperatures. From this

perspective, Somma et al. [106, 107, 108] used quantum walks to accelerate classical simulated

annealing processes by exploiting the quantum Zeno effect, using measurements implemented by

phase estimation of the quantum walk operators of these Markov chains. References [109, 110]

also introduced how to implement Metropolis sampling on quantum computers.

Our quantum volume estimation algorithm is most closely related to work of Wocjan

and Abeyesinghe [78], which achieves complexity Õ(1/
√

∆) for preparing the final stationary

distribution of a sequence of slowly varying Markov chains, where ∆ is the minimum of their

spectral gaps. Their quantum algorithm transits between the stationary states of consecutive

Markov chains by fixed-point amplitude amplification [1], which is implemented by amplitude

estimation with Õ(1/
√

∆) implementations of the quantum walk operators of these Markov

chains (see Section 3.2.2 for more details).

Our simulated annealing procedure preserves the slowly-varying property, so we adopt the

framework of [78] in our algorithm for volume estimation (see Section 3.4.3.2). We develop

several novel techniques (described in Section 4.3.1) that allow us to implement the steps of this

framework efficiently. Note that the slowly-varying property also facilitates other frameworks

that give efficient adiabatic [105] or circuit-based [111] quantum algorithms for generating quantum

samples of the stationary state.

Previous work has mainly applied these quantum simulated annealing algorithms to estimating

partition functions of discrete systems. Given an inverse temperature β > 0 and a classical
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Hamiltonian H : Ω→ R where Ω is a finite space, the goal is to estimate the partition function

Z(β) :=
∑
x∈Ω

e−βH(x) (3.11)

within multiplicative error ε > 0. Wocjan et al. [74] gave a quantum algorithm that achieves

quadratic quantum speedup with respect to both mixing time and accuracy.

The classical algorithm that [74] quantizes uses Õ(log |Ω|) annealing steps to ensure that

each ratio Z(βi+1)/Z(βi) is bounded. In fact, it is possible to relax this requirement and use a

cooling schedule with only Õ(
√

log |Ω|) steps such that the variance of each ratio is bounded,

so its mean can be well-approximated by Chebyshev’s inequality; this is exactly the Chebyshev

cooling technique [112] introduced in Section 4.3.1 (see also Section 3.4.3.3). Montanaro [11]

improves upon [74] using Chebyshev cooling; more recently, Harrow and Wei [89] further quadr-

atically improved the spectral gap dependence of the estimation of the partition function.

Organization We review necessary background in Section 4.2. We describe the theory of

continuous-space quantum walks in Section 3.3. In Section 3.4, we first review the classical state-

of-the-art volume estimation algorithm in Section 3.4.1, and then give our quantum algorithm for

estimating volumes of well-rounded convex bodies in Section 3.4.2. The proofs of our quantum

algorithms are given in Section 3.4.3, and the quantum algorithm for rounding convex bodies is

given in Section 3.4.4. The details of our discretized hit-and-run walk are given in Section 3.5,

and we conclude with our quantum lower bound on volume estimation in Section 3.6.

107



3.2 Preliminaries

We summarize necessary tools used in this paper as follows.

3.2.1 Classical and quantum walks

A Markov chain over a finite state space Ω is a sequence of random variables X0, X1, . . .

such that for each i ∈ N, the probability of transition to the next state y ∈ Ω,

Pr[Xi+1 = y | Xi = x,Xi−1 = xi−1, . . . , X0 = x0] = Pr[Xi+1 = y | Xi = x] =: px→y

only depends on the present state x ∈ Ω. The Markov chain can be represented by the transition

probabilities px→y satisfying
∑

y px→y = 1. For each i ∈ N, we denote by πi the distribution

over Ω with density πi(x) = Pr[Xi = x]. A stationary distribution π satisfies
∑

x∈Ω px→yπ(x) =

π(y). A Markov chain is reversible if it has a stationary distribution π such that π(x)px→y =

π(y)py→x for all x, y ∈ Ω. The conductance of a reversible Markov chain is defined as

Φ := inf
S⊆Ω

∑
x∈S
∑

y∈Ω/S π(x)px→y

min{
∑

x∈S π(x),
∑

x∈Ω/S π(x)}
. (3.12)

The theory of discrete-time quantum walks has also been well developed. Given a classical

reversible Markov chain on Ω with transition probability p, we define a unitary operator Up on

C|Ω| ⊗ C|Ω| such that

Up|x〉|0〉 = |x〉|px〉, where |px〉 :=
∑
y∈Ω

√
px→y|y〉. (3.13)
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The quantum walk is then defined as [85]

Wp := S
(
2Up(IΩ ⊗ |0〉〈0|)U †p − IΩ ⊗ IΩ

)
, (3.14)

where IΩ is the identity map on C|Ω| and S :=
∑

x,y∈Ω |x, y〉〈y, x| = S† is the swap gate on

C|Ω| ⊗ C|Ω|.

To understand the quantum walk, it is essential to analyze the spectrum of Wp. First,

observing that Wp = S(2Π − I) where Π = Up(IΩ ⊗ |0〉〈0|)U †p =
∑

x∈Ω |x〉〈x| ⊗ |px〉〈px|

projects onto the span of the states |x〉 ⊗ |px〉, we consider the eigenvector |λ〉 of ΠSΠ with

eigenvalue λ. We have ΠSΠ =
∑

x∈ΩDxy|x〉〈y| ⊗ |px〉〈py| where Dxy :=
√
px→ypy→x. Since

Wp|λ〉 = S|λ〉 and WpS|λ〉 = 2λS|λ〉− |λ〉, the subspace span{|λ〉, S|λ〉} is invariant under Wp.

The eigenvalues of Wp within this subspace are λ ± i
√

1− λ2 = e±i arccosλ. For more details,

see [85].

The phase gap arccosλ ≥
√

2(1− λ) ≥
√

2δ, where δ is the spectral gap of D. Therefore,

applying phase estimation usingO(1/
√
δ) calls toWp suffices to distinguish the state corresponding

to the stationary distribution of the classical Markov chain from the other eigenvectors.

3.2.2 Quantum speedup of MCMC sampling via simulated annealing

Consider a Markov chain with spectral gap ∆ and stationary distribution π. Classically, it

takes Θ( 1
∆

log(1/επmin))) steps to sample from a distribution π̃ such that ‖π̃ − π‖ ≤ ε, where

πmin := mini πi. Quantumly, [78] proved the following result about a sequence of slowly varying

Markov chains:

Theorem 3.2.1 ([78, Theorem 2]). Let p1, . . . , pr be the transition probabilities of r Markov
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chains with stationary distributions π1, . . . , πr, spectral gaps δ1, . . . , δr, and quantum walk operators

W1, . . . ,Wr, respectively; let ∆ := min{δ1, . . . , δr}. Assume that |〈πi|πi+1〉|2 ≥ p for some

0 < p < 1 and all i ∈ [r − 1], and assume that we can efficiently prepare the state |π1〉

(where each |πi〉 is a quantum sample defined as in Section 3.1.3.2). Then, for any 0 < ε < 1,

there is a quantum algorithm that produces a quantum state |π̃r〉 such that ‖|π̃r〉 − |πr〉‖ ≤ ε,

using Õ(r/(p
√

∆)) steps of the quantum walk operators W1, . . . ,Wr, where the Õ omits poly-

logarithmic terms in r, 1/ε, and 1/p
√

∆.9

Their quantum algorithm produces the states |π1〉, . . . , |πr〉 sequentially, and can do so

rapidly if consecutive states have significant overlap and the walks mix rapidly. Intuitively, this is

achieved by amplitude amplification. However, to avoid overshooting, the paper uses a variant of

standard amplitude amplification, known as π/3-amplitude amplification [1], that we now review.

Given two states |ψ〉 and |φ〉, we let Πψ := |ψ〉〈ψ|, Π⊥ψ := I − Πψ, Πφ := |φ〉〈φ|, and

Π⊥φ := I − Πφ. Define the unitaries

Rψ := ωΠψ + Π⊥ψ , Rφ := ωΠφ + Π⊥φ where ω = ei
π
3 . (3.15)

Given |〈ψ|φ〉|2 ≥ p, it can be shown that |〈φ|RψRφ|ψ〉|2 ≥ 1 − (1 − p)3. Recursively, one can

establish the following:

Lemma 3.2.1 ([78, Lemma 1]). Let |ψ〉 and |φ〉 be two quantum states with |〈ψ|φ〉|2 ≥ p for

some 0 < p ≤ 1. Define the unitaries Rψ, Rφ as in (3.15) and the unitaries Um recursively as

9Note that this is quadratically worse in 1/p than the Grover’s algorithm [113] with complexity O(1/
√
p). This

is because we use a simple fixed-point quantum search algorithm [1] that does not require knowing p in advance.
Notice that there exist fixed-point quantum search algorithms that preserve the O(1/

√
p) speedup (e.g., [114], [115,

Chapter 6]), but in our quantum algorithm, the simpler algorithm suffices as p = Θ(1) (see Lemma 3.4.2).
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follows:

U0 = I, Um+1 = UmRψ U
†
mRφ Um. (3.16)

Then we have

|〈φ|Um|ψ〉|2 ≥ 1− (1− p)3m , (3.17)

and the unitaries in {Rψ, R
†
ψ, Rφ, R

†
φ} are used at most 3m times in Um.

Taking m = dlog3(ln(1/ε)/p)e, the inner product between |φ〉 and Um|ψ〉 in (3.17) is at

least 1− ε, and we use 3m = O(log(1/ε)/p) unitaries from the set {Rψ, R
†
ψ, Rφ, R

†
φ}.

To establish Theorem 3.2.1 by Lemma 3.2.1, it remains to construct the unitaries Ri :=

ω|πi〉〈πi| + (I − |πi〉〈πi|). In [78], this is achieved by phase estimation of the quantum walk

operator Wi with precision
√

∆/2. Recall that if a classical Markov chain has spectral gap δ,

then the corresponding quantum walk operator has phase gap of at least 2
√
δ (see Section 3.2.1).

Therefore, phase estimation with precision
√

∆/2 suffices to distinguish between |πi〉 and other

eigenvectors of Wi. As a result, we can take

Ri = PhaseEst(Wi)
†(I ⊗ (ω|0〉〈0|+ (I − |0〉〈0|)

))
PhaseEst(Wi). (3.18)
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3.2.3 Quantum Chebyshev inequality

Assume we are given a unitary U such that

U |0〉|0〉 =
√
p|0〉|φ〉+ |0⊥〉, (3.19)

where |φ〉 is a normalized pure state and (〈0| ⊗ I)|0⊥〉 = 0. If we measure the output state, we

get 0 in the first register with probability p; by the Chernoff bound, it takes Θ(1/ε2) samples to

estimate p within ε with high success probability. However, there is a more efficient quantum

algorithm, called amplitude estimation [76], that estimates the value of p using only O(1/ε) calls

to U :

Theorem 3.2.2 ([76, Theorem 12]). GivenU satisfying (3.19), the amplitude estimation algorithm

in Figure 3.2 outputs an angle θ̃p ∈ [−π, π] such that p̃ := sin2(θ̃p) satisfies

|p̃− p| ≤
2π
√
p(1− p)
M

+
π2

M2
(3.20)

with success probability at least 8/π2, using M calls to U and U †.

|0〉

QFT

•

QFT†
...

... |θ̃p〉
|0〉 •

QU |0〉 ...
...

Figure 3.2: The quantum circuit for amplitude estimation.
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Here QFT denotes the quantum Fourier transform over ZM and Q := −US0U
†S1 where S0

and S1 are reflections about |0〉 and the target state, respectively, following the pattern of Grover

search. The controlled-Q gate denotes the operation
∑M−1

j=0 |j〉〈j| ⊗ Qj . In fact, it was shown in

the proof of [76, Theorem 12] that the state after applying the circuit in Figure 3.2 is

eiθp√
2
|θ̃p〉|Ψ+〉 −

e−iθp√
2
| − θ̃p〉|Ψ−〉 (3.21)

where θp ∈ [0, π] such that p = sin2(θp), and θ̃p ∈ [0, π] is a random variable such that p̃ =

sin2(θ̃p), and |Ψ±〉 are two eigenvectors of Q. Measuring the first register either gives θ̃p or −θ̃p

with probability 1/2, but since sin2(θ̃p) = sin2(−θ̃p) = p̃, this does not influence the success of

Theorem 3.2.2.

In (3.20), if we take M =
⌈
2π
(2
√
p

ε
+ 1√

ε

)⌉
= O(1/ε), we get

|p̃− p| ≤
2π
√
p(1− p)
2π

ε+
π2

4π2
ε2 ≤ ε

2
+
ε

4
≤ ε. (3.22)

Furthermore, the success probability 8/π2 can be boosted to 1 − ν by executing the algorithm

Θ(log 1/ν) times and taking the median of the estimates.

Amplitude estimation can be generalized from estimating a single probability p ∈ [0, 1] to

estimating the expectation of a random variable. Assume that U is a unitary acting on CS ⊗ C|Ω|

such that

U |0〉|0〉 =
∑
x∈Ω

√
px|ψx〉|x〉 (3.23)
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where S ∈ N and {|ψx〉 : x ∈ Ω} are unit vectors in CS . Let

µU :=
∑
x∈Ω

pxx, σ2
U :=

∑
x∈Ω

px(x− µU)2 (3.24)

denote the expectation and variance of the random variable, respectively. Several quantum

algorithms have given speedups for estimating µU . Specifically, Ref. [11] showed how to estimate

µU within additive error ε by Õ(σU/ε) calls to U and U †. Given an upper bound H and a lower

bound L > 0 on the random variable, Ref. [116] showed how to estimate µU with multiplicative

error ε using Õ(σU/εµU ·H/L) calls to U and U †. More recently, Ref. [88] mutually generalized

these results and proposed a significantly better quantum algorithm:

Theorem 3.2.3 ([88, Theorem 3.5]). There is a quantum algorithm that, given a quantum sampler

U as in (3.23), an integer ∆U , a value H > 0, and two reals ε, δ ∈ (0, 1), outputs an estimate

µ̃U . If ∆U ≥
√
σ2
U + µ2

U/µU and H > µU , then |µ̃U −µU | ≤ εµU with probability at least 1− δ,

and the algorithm uses Õ(∆U/ε · log3(H/µU) log(1/δ)) calls to U and U †.

The quantum algorithm works as follows. First, assume Ω ⊆ [L,H] for given real numbers

L,H ≥ 0, there is a basic estimation algorithm (denoted BasicEst) that estimates H−1µU up to

ε-multiplicative error:

However, usually the bounds L and H are not explicitly given. In this case, Ref. [88]

considered the truncated mean µ<b defined by replacing the outcomes larger than b with 0. The

paper then runs Algorithm 6 (BasicEst) to estimate µ<b/b. A crucial observation is that
√
b/µ<b

is smaller than ∆U for large values of b, and it becomes larger than ∆U when b ≈ µU∆2
U . As a

result, by repeatedly running BasicEst with ∆U quantum samples, and applying O(log(H/L))

steps of a binary search on the values of b, the first non-zero value is obtained when b/∆2
U ≈ µU .
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Algorithm 6: BasicEst: the basic estimation algorithm.
Input: A quantum sampler U acting on CS ⊗ C|Ω|, interval [L,H], precision

parameter ε ∈ (0, 1), failure parameter δ ∈ (0, 1).
Output: ε-multiplicative approximation of H−1µU .

1 Use controlled rotation to implement a unitary RL,H acting on C|Ω| ⊗ C2 such that for

all x ∈ Ω, RL,H |x〉|0〉 =

{
|x〉(

√
1− x

H
|0〉+

√
x
H
|1〉) if L ≤ x < H

|x〉|0〉 otherwise
;

2 Let V = (IS ⊗RL,H)(U ⊗ I2) and Π = IS ⊗ IΩ ⊗ |1〉〈1|;
3 for i = 1, . . . ,Θ(log(1/δ)) do
4 Compute p̃i by Theorem 3.2.2 with U ← V , S1 ← 2Π− I , and

M ← Θ(1/(ε
√
H−1µU));

5 Return p̃ = median{p̃1, . . . , p̃Θ(log(1/δ))}.

In [88], more precise truncation means are used to improve the precision of the result to Õ(1/ε)

and remove the dependence on L.

Note that the quantum algorithm for Theorem 3.2.3 only relies on BasicEst. This is

crucial when we estimate the mean of our simulated annealing algorithm in different iterations

nondestructively (see Section 3.4.2 for more details).

3.2.4 Hit-and-run walk

As introduced in Section 3.1.3.1, there are various random walks that mix fast in a convex

body K, such as the grid walk [65] and the ball walk [69, 82]. In this paper, we mainly use the

hit-and-run walk [71, 72, 94]. It is defined as follows:

1. Pick a uniformly distributed random line ` through the current point p.

2. Move to a uniform random point along the chord ` ∩K.

For any two points p, q ∈ K, we let `(p, q) denote the length of the chord in K through p and q.

Then the transition probability of the hit-and-run walk is determined by the following lemma:
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Lemma 3.2.2 ([71, Lemma 3]). If the current point of the hit-and-run walk is u, then the density

function of the distribution of the next point x ∈ K is

pu(x) =
2

nvn
· 1

`(u, x)|x− u|n−1
, (3.25)

where vn := π
n
2 /Γ(1 + n

2
) is the volume of the n-dimensional unit ball. In other words, the

probability that the next point is in a (measurable) set A ⊆ K is

Pu(A) =

∫
A

2

nvn
· 1

`(u, x)|x− u|n−1
dx. (3.26)

In general, we can also define a hit-and-run walk with a given density. Let f be a density

function in Rn. For any points u, v ∈ Rn, we let

µf (u, v) :=

∫ 1

0

f((1− t)u+ tv) dt. (3.27)

For any line `, let `+ and `− be the endpoints of the chord ` ∩ K (with + and − assigned

arbitrarily). The density f specifies the following hit-and-run walk:

1. Pick a uniformly distributed random line ` through the current point p.

2. Move to a random point x along the chord ` ∩K with density f(x)
µf (`−,`+)

.

Let πK denote the uniform distribution over K. Smith [94] proved that the stationary

distribution of the hit-and-run walk with uniform density is πK. Furthermore, Lovász and Vempala

[72] proved that the hit-and-run walk mixes rapidly from any initial distribution:
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Theorem 3.2.4 ([72, Theorem 1.1]). Let K be a convex body that satisfies (3.2): B2(0, r) ⊆ K ⊆

B2(0, R). Let σ be a starting distribution and let σ(m) be the distribution of the current point after

m steps of the hit-and-run walk in K. Let ε > 0, and suppose that the density function dσ/dπK is

upper bounded by M except on a set S with σ(S) ≤ ε/2. Then for any

m > 1010n
2R2

r2
ln
M

ε
, (3.28)

the total variation distance between σ(m) and πK is less than ε.

Theorem 3.2.4 can also be generalized to exponential distributions on K:

Theorem 3.2.5 ([72, Theorem 1.3]). Let K ⊂ Rn be a convex body and let f be a density

supported on K that is proportional to e−a
T x for some vector a ∈ Rn. Assume that the level set of

f of probability 1/8 contains a ball of radius r, and Ef (|x− zf |2) ≤ R2, where zf is the centroid

of f . Let σ be a starting distribution and let σm be the distribution for the current point after m

steps of the hit-and-run walk applied to f . Let ε > 0, and suppose that the density function dσ
dπf

is upper bounded by M except on a set S with σ(S) ≤ ε
2
. Then for

m > 1030n
2R2

r2
ln5 MnR

rε
,

the total variation distance between σm and πf is less than ε.

Roughly speaking, the proofs of Theorem 3.2.4 and Theorem 3.2.5 have two steps. First,

for any random walk on a continuous domain Ω with transition probability p and stationary
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distribution π, we define its conductance (which generalizes the discrete case in Eq. (3.12)) as

Φ := inf
S⊆Ω

∫
S

∫
Ω/S dx dy πxpx→y

min{
∫
S dx πx,

∫
Ω/S dx πx}

. (3.29)

It is well-known that the mixing time of this random walk is proportional to 1/Φ2 up to logarithmic

factors. This is captured by the following proposition:

Proposition 3.2.1 ([69, Corollary 1.5]). LetM := supS⊆Ω
σ(S)
π(S)

where σ is the initial distribution.

Then for every S ⊆ Ω,

∣∣σ(k)(S)− π(S)
∣∣ ≤ √M(1− 1

2
Φ2
)k
. (3.30)

Furthermore, the conductance in Proposition 3.2.1 can be relaxed to that of sets with a fixed small

probability p:

Proposition 3.2.2 ([69, Corollary 1.6]). 10 Let M := supS⊆Ω
σ(S)
π(S)

. If the conductance for all

connected, measurable set A ⊆ Ω such that π(A) = p ≤ 1/2 is at least Φp, then for all S ⊆ Ω,

we have

∣∣σ(k)(S)− π(S)
∣∣ ≤ 2Mp+ 2M

(
1− 1

2
Φ2
p

)k
. (3.31)

Second, Ref. [72] proved a lower bound on the conductance of the hit-and-run walk with

exponential density:

10Note that in the original statement ([69, Corollary 1.6]), the conditions are given in a slightly different
formulation, but it is not hard to obtain the conditions in the original formulation from the conditions of this
proposition.
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Proposition 3.2.3 ([72, Theorem 6.9]). Let f be a density in Rn proportional to e−a
T x whose

support is a convex body K of diameter d. Assume that B2(0, r) ⊆ K. Then for any subset S with

πf (S) = p ≤ 1/2, the conductance of the hit-and-run walk satisfies

φ(S) ≥ r

1013nd ln(nd/rp)
. (3.32)

Proposition 3.2.1 and Proposition 3.2.3 imply Theorem 3.2.4 and Theorem 3.2.5; complete

proofs are given in [72].

For the conductance of the hit-and-run walk with a uniform distribution, Ref. [72] established

a stronger lower bound that is independent of p:

Proposition 3.2.4 ([72, Theorem 4.2]). Assume that K has diameter d and contains a unit ball.

Then the conductance of the hit-and-run in K with uniform distribution is at least 1
224nd

.

3.3 Theory of continuous-space quantum walks

In this section, we develop the theory of continuous-space, discrete-time quantum walks.

Specifically, we generalize the discrete-time quantum walk of Szegedy [85] to continuous

space. Let n ∈ N and suppose Ω is a continuous11 subset of Rn. A probability transition density

p on Ω is a continuous function p : Ω× Ω→ [0,+∞) such that

∫
Ω

dy p(x, y) = 1 ∀x ∈ Ω. (3.33)

We also write px→y := p(x, y) for the transition density from x to y. Together, Ω and p specify a

11We say that Ω is continuous if for any x, y ∈ Ω there is a continuous function fx,y : [0, 1] → Ω such that
fx,y(0) = x and fx,y(1) = y.
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continuous-space Markov chain that we denote (Ω, p) throughout the paper.

For background on the mathematical foundations of quantum mechanics over continuous

state spaces, see [117, Chapter 1]. In this section, we treat quantum states as square integrable

functions f : Ω→ R in L2(Ω) if
∫

Ω
dx |f(x)|2 <∞. The inner product 〈·, ·〉 on L2(Ω) is defined

by

〈f, g〉 :=

∫
Ω

dx f(x)g(x) ∀ f, g ∈ L2(Ω). (3.34)

Note that by the Cauchy-Schwarz inequality, we have

|〈f, g〉|2 ≤
(∫

Ω

dx |f(x)|2
)(∫

Ω

dx |g(x)|2
)
<∞; (3.35)

the norm of an f ∈ L2(Ω) is subsequently defined as ‖f‖ :=
√
〈f, f〉. The pure states in Ω

correspond to functions in the set

St(Ω) :=
{
f : Ω→ R

∣∣∣ ∫
Ω

dx |f(x)|2 = 1
}
. (3.36)

The computational basis elements |y〉 for all y ∈ Ω correspond to Dirac delta functions

δ(x − y) centered at y, where δ(x) = 0 for all x 6= 0, and
∫
Rn δ(x) dx = 1. Delta functions are

not members of the Hilbert space L2(Ω), however we interpret them in the following sense:

for any y ∈ intε(Ω) we consider a normalized Gaussian with width ε, given by δy,ε(x) ∝

1
(2πε2)n/2

e−‖x−y‖
2/2ε2 for x ∈ Ω and 0 for x 6∈ Ω. It is clear that δy,ε ∈ L2(Ω) and its behavior

approaches that of the delta function. In the remainder of the section statements such as A = B

are to be interpreted as limε→0 |Aε − Bε| = 0 where Aε, Bε are obtained from A,B by replacing
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every occurence of a computational basis vector |y〉 by δy,ε.12 Integrals over L2(Ω) are computed

pointwise. It can be verified that

∫
Ω

dx |x〉〈x| = I (3.37)

and

〈x|x′〉 = δ(x− x′), ∀x, x′ ∈ Ω. (3.38)

3.3.1 Continuous-space quantum walk

Given a transition density function p, the quantum walk is characterized by the following

states:

|φx〉 := |x〉 ⊗
∫

Ω

dy
√
px→y|y〉 ∀x ∈ Rn. (3.39)

Since px→y is a normalized probability density function, |φx〉 ∈ L2(Ω). Now, denote

U :=

∫
Ω

dx |φx〉(〈x| ⊗ 〈0|), Π :=

∫
Ω

dx |φx〉〈φx|, S :=

∫
Ω

∫
Ω

dx dy |x, y〉〈y, x|. (3.40)

12As in most treatments of continous quantum mechanics, we shall not be fully rigorous with respect to operations
such as interchanging orders of limits. We have two reasons to believe that pathological cases do not occur: (1) The
states that occur during the algorithm are mostly well-behaved and correspond to probability distributions that are
obtained during classical geometric random walks. (2) We later show Section 3.5.1 that our algorithm can also be
executed discretely, and we work in the continuous setting for ease of analysis.
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Notice that Π is the projection onto span{|φx〉}x∈Rn because

Π2 =

∫
Ω

∫
Ω

dx dx′ |φx〉〈φx|φx′〉〈φx′| =
∫

Ω

∫
Ω

dx dx′ δ(x− x′)|φx〉〈φx′| = Π, (3.41)

and S is the swap operator for the two registers. A single step of the quantum walk is defined as

the unitary operator

W := S(2Π− I). (3.42)

The first main result of this subsection is the following theorem:

Theorem 3.3.1. Let

D :=

∫
Ω

∫
Ω

dx dy
√
px→ypy→x|x〉〈y| (3.43)

denote the discriminant operator of p. Let Λ be the set of eigenvalues of D, so that D =∫
Λ

dλλ|λ〉〈λ|. Then the eigenvalues of the quantum walk operator W in (3.42) are ±1 and

λ± i
√

1− λ2 for all λ ∈ Λ.

To prove Theorem 3.3.1, we first prove the following lemma:

Lemma 3.3.1. For any λ ∈ Λ, we have |λ| ≤ 1.
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Proof. Since λ is an eigenvalue of D, we have D|λ〉 = λ|λ〉. As a result, we have

|λ|δ(0) = |λ|〈λ|λ〉 (3.44)

= |〈λ|D|λ〉| (3.45)

=
∣∣∣ ∫

Ω

∫
Ω

dx dy
√
py→xpx→y〈λ|x〉〈y|λ〉

∣∣∣ (3.46)

(by Cauchy-Schwarz) ≤

√(∫
Ω

∫
Ω

dx dy py→x|〈y|λ〉|2
)(∫

Ω

∫
Ω

dx dy px→y|〈λ|x〉|2
)

=

√(∫
Ω

dy |〈y|λ〉|2
)(∫

Ω

dx |〈λ|x〉|2
)

(by
∫

Ω

dy px→y = 1)

(3.47)

=

∫
Ω

dx 〈λ|x〉〈x|λ〉 (3.48)

= 〈λ|
(∫

Ω

dx |x〉〈x|
)
|λ〉 (by (3.37)) (3.49)

= δ(0). (3.50)

Hence the result follows.

Proof of Theorem 3.3.1. Define an isometry

T :=

∫
Ω

dx |φx〉〈x| =
∫

Ω

∫
Ω

dx dy
√
px→y|x, y〉〈x|. (3.51)

Then

TT † =

∫
Ω

∫
Ω

dx dy |φx〉〈x|y〉〈φy| =
∫

Ω

dx |φx〉〈φx| = Π, (3.52)
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and

T †T =

∫
Ω

∫
Ω

dx dy |x〉〈φx|φy〉〈y| (3.53)

=

∫
Ω

∫
Ω

∫
Ω

∫
Ω

dx dy da db 〈x|y〉〈a|b〉√px→apy→b|x〉〈y| (3.54)

=

∫
Ω

∫
Ω

dx da px→a|x〉〈x| (3.55)

=

∫
Ω

dx |x〉〈x| (3.56)

= I. (3.57)

Furthermore,

T †ST =

∫
Ω

∫
Ω

dx dy |x〉〈φx|S|φy〉〈y| (3.58)

=

∫
Ω

∫
Ω

∫
Ω

∫
Ω

dx dy da db 〈x, a|S|y, b〉√px→apy→b|x〉〈y| (3.59)

=

∫
Ω

∫
Ω

dx da
√
px→apa→x|x〉〈a| (3.60)

= D. (3.61)

As a result, for any λ ∈ Λ we have

WT |λ〉 = S(2Π− I)T |λ〉 = (2STT †T − ST )|λ〉 = (2ST − ST )|λ〉 = ST |λ〉. (3.62)
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Similarly, we have

WST |λ〉 = S(2Π− I)ST |λ〉 (3.63)

= (2STT †ST − S2T )|λ〉 = (2STD − T )|λ〉 = (2λS − I)T |λ〉.

By Lemma 3.3.1, |λ| ≤ 1. As a result, we have

W
(
I − (λ+ i

√
1− λ2)S

)
T |λ〉 = WT |λ〉 − (λ+ i

√
1− λ2)WST |λ〉 (3.64)

= ST |λ〉 − (λ+ i
√

1− λ2)(2λS − I)T |λ〉 (3.65)

=
(
S − (λ+ i

√
1− λ2)(2λS − I)

)
T |λ〉 (3.66)

= (λ+ i
√

1− λ2)
(
I − (λ+ i

√
1− λ2)S

)
T |λ〉; (3.67)

in other words, λ+i
√

1− λ2 is an eigenvalue ofW with eigenvector
(
I−(λ+i

√
1− λ2)S

)
T |λ〉.

Similarly, we have

W
(
I − (λ− i

√
1− λ2)S

)
T |λ〉 = (λ− i

√
1− λ2)

(
I − (λ− i

√
1− λ2)S

)
T |λ〉, (3.68)

i.e., λ− i
√

1− λ2 is an eigenvalue of W with eigenvector
(
I − (λ− i

√
1− λ2)S

)
T |λ〉.

Finally, note that for any vector |u〉 in the orthogonal complement of the space spanλ∈Λ{T |λ〉,

ST |λ〉}, W simply acts as −S since

Π = TT † =

∫
Λ

dλT |λ〉〈λ|T †, (3.69)
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which projects onto spanλ∈Λ{T |λ〉}. In this orthogonal complement subspace, the eigenvalues

are ±1 because S2 = I .

3.3.2 Stationary distribution

Classically, the density π = (πx)x∈Ω corresponding to the stationary distribution of a

Markov chain (Ω, p) satisfies

∫
Ω

dx πx = 1;

∫
Ω

dy py→xπy = πx ∀x ∈ Ω. (3.70)

In other words, we can naturally define a transition operator as

P :=

∫
Ω

∫
Ω

dx dy py→x|x〉〈y|, (3.71)

and the stationary density π satisfies Pπ = π. The Markov chain (Ω, p) is reversible if there

exists a classical density σ = (σx)x∈Ω such that

py→xσy = px→yσx ∀x, y ∈ Ω. (3.72)

(This is called the detailed balance condition.) Notice that for all x ∈ Ω,

∫
Ω

dy py→xσy =

∫
Ω

dy px→yσx = σx

∫
Ω

dy px→y = σx; (3.73)

therefore, we must have Pσ = σ, i.e., σ is a stationary density of P . In this paper, we focus on

Markov chains (Ω, p) that are reversible and have a unique stationary distribution (i.e., σ = π).
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Such assumptions are natural for Markov chains in practice, including the Metropolis-Hastings

algorithm, simple random walks on graphs, etc.

We point out that if π is the classical stationary density of a reversible Markov chain (Ω, p),

then

|πW 〉 :=

∫
Ω

dx
√
πx|φx〉 (3.74)

is the unique eigenvalue-1 eigenstate of the quantum walk operator W restricted to the subspace

spanλ∈Λ{T |λ〉, ST |λ〉}. First, a simple calculation shows that

W |πW 〉 = S(2Π− I)|πW 〉 (3.75)

= S|πW 〉 (3.76)

=
(∫

Ω

∫
Ω

dx dy |x, y〉〈y, x|
)(∫

Ω

∫
Ω

dx dy
√
πypy→x|y, x〉

)
(3.77)

=

∫
Ω

∫
Ω

dx dy
√
πypy→x|x, y〉 (3.78)

=

∫
Ω

∫
Ω

dx dy
√
πxpx→y|x〉|y〉 (3.79)

=

∫
Ω

dx
√
πx|x〉

(∫
Ω

dy
√
px→y|y〉

)
(3.80)

=

∫
Ω

dx
√
πx|φx〉 (3.81)

= |πW 〉, (3.82)

where (3.76) follows from |πW 〉 ∈ spanx∈Ω{|φx〉}, (3.77) follows from the definition of S in

(3.40), (3.79) follows from (3.72), and (3.79) follows from the definition of |φx〉 in (3.39). Thus

|πW 〉 is an eigenvector of W with eigenvalue 1. On the other hand, since (Ω, p) is reversible, P
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is similar to D: if we denote Dπ :=
∫

Ω
dx
√
πx|x〉〈x|, then

DπDD
−1
π =

(∫
Ω

dx
√
πx|x〉〈x|

)(∫
Ω

∫
Ω

dx dy
√
px→ypy→x|x〉〈y|

)(∫
Ω

dy
√
π−1
y |y〉〈y|

)
=

∫
Ω

∫
Ω

dx dy
√
πxπ−1

y px→ypy→x|x〉〈y| (3.83)

=

∫
Ω

∫
Ω

dx dy py→x|x〉〈y| (by (3.72)) (3.84)

= P. (3.85)

As a result, D and P have the same set of eigenvalues. Furthermore, Lemma 3.3.1 implies that

all eigenvalues of P have norm at most 1, and the proof of Theorem 3.3.1 shows that |πW 〉 is the

unique eigenvector with this eigenvalue within spanλ∈Λ{T |λ〉, ST |λ〉}.

The state

|π〉 :=

∫
Ω

dx
√
πx|x〉 (3.86)

represents a quantum sample from the density π; in particular, measuring |π〉 in the computational

basis gives a classical sample from π. Furthermore, the unitary operator in (3.40) satisfies

U †|πW 〉 =
(∫

Ω

dx |x〉|0〉〈φx|
)(∫

Ω

dx
√
πx|φx〉

)
=

∫
Ω

dx
√
πx|x〉|0〉 = |π〉|0〉, (3.87)

so we have U |π〉|0〉 = |πW 〉.
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3.4 Quantum speedup for volume estimation

In this section, we present and analyze our quantum algorithm for volume estimation. First,

we review the classical state-of-the-art volume estimation algorithm in Section 3.4.1. We then

describe our quantum algorithm for estimating the volume of well-rounded convex bodies (i.e.,

R/r = O(
√
n)) with query complexity Õ(n2.5/ε) in Section 3.4.2, with detailed proofs given

in Section 3.4.3. Finally, we remove the well-rounded condition by giving a quantum algorithm

with interlaced rounding and volume estimation with additional cost Õ(n2.5) in each iteration in

Section 3.4.4.

3.4.1 Review of classical algorithms for volume estimation

The state-of-the-art classical algorithm for volume estimation uses Õ(n4 +n3/ε2) classical

queries, where Õ(n4) queries are used to construct the affine transformation that makes convex

body well-rounded [73] and Õ(n3/ε2) queries are used to estimate the volume of the well-rounded

convex body (after the affine transformation) [82].

We now review the algorithm of [73] for estimating volumes of well-rounded convex

bodies. This algorithm estimates the volume of a convex body obtained by the following pencil

construction. Define the cone

C :=
{
x ∈ Rn+1 : x0 ≥ 0,

n∑
i=1

x2
i ≤ x2

0

}
. (3.88)
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Let K′ be the intersection of the cone C and a cylinder [0, 2D]×K, i.e.,

K′ := ([0, 2D]×K) ∩ C (3.89)

(recall D = R/r). Without loss of generality we renormalize to r = 1, so that B2(0, 1) ⊆

K ⊆ B2(0, D). Since DVol(K) ≤ Vol(K′) ≤ 2DVol(K), with the knowledge of Vol(K′) we

can estimate Vol(K) with multiplicative error ε by generating O(1/ε2) sample points from the

uniform distribution on [0, 2D] × K and then counting how many of them fall into K′. Such an

approximation succeeds with high probability by a Chernoff-type argument (see Section 3.4.3.1

for a formal proof).

Lovász and Vempala [73] considers simulated annealing under the pencil construction. For

any a > 0, define

Z(a) :=

∫
K′
e−ax0 dx. (3.90)

It can be shown that for any a ≤ ε/D,

(1− ε)Vol(K′) ≤ Z(a) ≤ Vol(K′). (3.91)

On the other hand, it is shown in [73, Section 2.3] that for any a ≥ 2n and ε > (3/4)n,

(1− ε)
∫

C

e−ax0 dx ≤ Z(a) ≤
∫

C

e−ax0 dx. (3.92)

This suggests using a simulated annealing procedure for estimating Vol(K′). Specifically, if we
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select a sequence a0 > a1 > · · · > am for which a0 = 2n and am ≤ ε/D, then we can estimate

Vol(K′) by

Z(am) = Z(a0)
m−1∏
i=0

Z(ai+1)

Z(ai)
. (3.93)

(Note that this procedure uses an increasing sequence of temperatures 1/ai, unlike standard

simulated annealing in which temperature is decreased.)

Let πi be the probability distribution over K′ with density proportional to e−aix0 , i.e.,

dπi(x) = e−aix0

Z(ai)
dx. Let Xi be a random sample from πi, and let (Xi)0 be its first coordinate;

define Vi := e(ai−ai+1)(Xi)0 . We have

Eπi [Vi] =

∫
K′
e(ai−ai+1)x0 dπi(x) =

∫
K′
e(ai−ai+1)x0

e−aix0

Z(ai)
dx =

Z(ai+1)

Z(ai)
. (3.94)

Furthermore, if the simulated annealing schedule satisfies ai+1 ≥ (1 − 1√
n
)ai, then Vi satisfies

(see [73, Lemma 4.1])

Eπi [V 2
i ]

Eπi [Vi]2
≤
( a2

i+1

ai(2ai+1 − ai)

)n+1

< 8 ∀ i ∈ [m], (3.95)

i.e., the variance of Vi is bounded by a constant multiple of the square of its expectation. Thus, this

simulated annealing procedure constitutes Chebyshev cooling (see also Section 3.4.3.3), ensuring

its correctness (see Proposition 3.4.1).

Algorithm 7 presents this approach in detail. Note that sampling from π0 in Line 2 is

straightforward: select a random positive real number x0 from the distribution with density e−2nx

and choose a uniformly random point (v1, . . . , vn) from the unit ball. IfX = (x0, x0v1, . . . , x0vn) /∈
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K′, try again; else return X . Equation (3.92) ensures that we succeed with probability at least

1− ε for each sample.

Algorithm 7: Volume estimation of well-rounded K with Õ(n4/ε2) classical
queries [73].

Input: Membership oracle OK of K; R such that B2(0, 1) ⊆ K ⊆ B2(0, R);
R = O(

√
n), i.e., K is well-rounded.

Output: ε-multiplicative approximation of Vol(K).
1 Set m = 2d

√
n ln(n/ε)e, k = 512

ε2

√
n ln(n/ε), δ = ε2n−10, and ai = 2n(1− 1√

n
)i for

i ∈ [m];
2 Take k samples X(1)

0 , . . . , X
(k)
0 from π0;

3 for i ∈ [m] do
4 Take k samples from πi with error parameter δ and starting points X(1)

i−1, . . . , X
(k)
i−1,

giving points X(1)
i , . . . , X

(k)
i ;

5 Compute Vi = 1
k

∑k
j=1 e

(ai−ai+1)(X
(j)
i )0;

6 Return n!vn(2n)−(n+1)V1 · · ·Vm as the estimate of the volume of K′, where
vn := π

n
2 /Γ(1 + n

2
) is the volume of the n-dimensional unit ball;

3.4.2 Quantum algorithm for volume estimation

As introduced in Section 4.3.1, our quantum algorithm has four main improvements that

contribute to the quantum speedup of Algorithm 7:

1. We replace the classical hit-and-run walk in Section 3.2.4 by a quantum hit-and-run walk,

defined using the framework of Section 3.3. Classically, the hit-and-run walk mixes in Õ(n3)

steps in a well-rounded convex body given a warm start (see Theorem 3.2.4). Quantumly, we

can use the quantum hit-and-run walk operator to prepare its stationary state given a warm

start state using only Õ(n1.5) queries to the membership oracle for the well-rounded convex

body.

2. We replace the simulated annealing framework in Algorithm 7 by the quantum MCMC frame-
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work described in Section 3.2.2. Classically, we sample from πi in the ith iteration by running

the classical hit-and-run walk starting from the samples taken in the (i−1)st iteration. Quantumly,

we prepare the quantum sample |πi〉 in the ith iteration by applying π/3-amplitude amplification

to a quantum sample produced in the (i − 1)st iteration, where the unitaries in the π/3-

amplitude amplification are implemented by phase estimation of the quantum hit-and-run walk

operators as in (3.18).

3. We use the quantum Chebyshev inequality (see Section 3.2.3) to give a quadratic quantum

speedup in ε−1 when taking the average e(ai−ai+1)(X̄i)0 in Line 5 of Algorithm 7. However, we

must be cautious because the resulting points X(1)
i , . . . , X

(k)
i in Line 4 follow the distribution

πi, which varies in different iterations of simulated annealing. Instead, our quantum algorithm

must be nondestructive: it must retain a copy of |πi〉 after estimating the average e(ai−ai+1)(X̄i)0 ,

so that we can map this state to |πi+1〉 by π/3-amplitude amplification for the next iteration.

This is achieved in Section 3.4.3.3.

4. In Section 3.4.4, we show how the densities can be transformed to be well-rounded by an affine

transformation at each stage of the algorithm. This is to ensure that the hit-and-run walk mixes

fast assuming the densities πi to be sampled from are well-rounded (see Theorem 3.2.5). The

high-level idea is to sample points from density πi and compute an affine transformation Si+1

that rounds πi and the next density πi+1 (see Lemma 3.4.11). To sample these points, we use

π/3-amplitude amplification to map the states corresponding to the uniform distributions for

one stage to those for the next. The affine transformation can be computed coherently using

nondestructive mean estimation, with Õ(n2.5) quantum queries in each iteration.

Algorithm 8 is our quantum volume estimation algorithm that satisfies our main theorem:
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Theorem 3.1.1 (Main Theorem). Let K ⊂ Rn be a convex set with Bn
2 (0, r) ⊆ K ⊆ Bn

2 (0, R).

Assume 0 < ε < 1/2. Then there is a quantum algorithm that returns a value Ṽol(K) satisfying

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε)Vol(K) (3.4)

with probability at least 2/3 using Õ(n3 +n2.5/ε) quantum queries to the membership oracle OK

(defined in (4.8)) and Õ(n5 + n4.5/ε) additional arithmetic operations.13

· · · Umedian
...

......

...
Umedian · · ·

Umedian · · ·

|0〉

UCB,1

•

U †CB,1
UCB,2

•

U †CB,2

· · ·
...

...
...

|0〉 • • · · ·

|π1〉
U1,l

· · ·
...
|π1〉 · · ·

......
|0〉

UCB,1

•

U †CB,1
UCB,2

•

U †CB,2

· · ·
...

...
...

|0〉 • • · · ·

|π1〉
U1,l

· · ·
...
|π1〉 · · ·

Figure 3.3: The quantum circuit for Algorithm 8 (assuming well-roundedness). Here UCB,i is
the circuit of the quantum Chebyshev inequality (Theorem 3.2.3) in the ith iteration and Ui,l is
π/3-amplitude amplification from |πi〉 to |πi+1〉.

13Arithmetic operations (e.g., addition, subtraction, multiplication, and division) can be in principle implemented
by a universal set of quantum gates using the Solovay-Kitaev Theorem [81] up to a small overhead. In our quantum
algorithm, the number of arithmetic operations is dominated by n-dimensional matrix-vector products computed in
superposition for rounding the convex body (see Section 3.4.4).
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Algorithm 8: Volume estimation of convex K with Õ(n3 +n2.5/ε) quantum queries.
Input: Membership oracle OK for K; R = O(

√
n) such that

B2(0, 1) ⊆ K ⊆ B2(0, R).
Output: ε-multiplicative approximation of Vol(K).

1 Set m = Θ(
√
n log(n/ε)) to be the number of iterations of simulated annealing and

ai = 2n(1− 1√
n
)i for i ∈ [m]. Let πi be the probability distribution over K′ with

density proportional to e−aix0;
Set error parameters δ, ε′ = Θ(ε/m2), ε1 = ε/2m; let k = Θ̃(

√
n/ε) be the number of

copies of stationary states for applying the quantum Chebyshev inequality; let
l = Θ̃(n) be the number of copies of stationary states needed to obtain the affine
transformation Si;

Prepare k+ l (approximate) copies of |π0〉, denoted |π̃(1)
0 〉, . . . , |π̃

(k+l)
0 〉 (Lemma 3.4.4);

2 for i ∈ [m] do
3 Use the quantum Chebyshev inequality on the k copies of the state |π̃i−1〉 with

parameters ε1, δ to estimate the expectation Eπi [Vi] (in Eq. (3.94)) as Ṽi
(Lemma 3.4.9 and Figure 3.4). The post-measurement states are denoted
|π̂(1)
i−1〉, . . . , |π̂

(k)
i−1〉;

4 Use the l copies of the state |πi−1〉 to nondestructively obtain the affine
transformation Si that rounds πi−1 and πi (Section 3.4.4). The post-measurement
states are denoted |π̂(k+1)

i−1 〉, . . . , |π̂
(k+l)
i−1 〉;

5 Apply π/3-amplitude amplification with error ε′ (Section 3.2.2 and Lemma 3.4.8)
and affine transformation Si to map |Siπ̂(1)

i−1〉, . . . , |Siπ̂
(k+l)
i−1 〉 to

|Siπ̃(1)
i 〉, . . . , |Siπ̃

(k+l)
i 〉, using the quantum hit-and-run walk;

6 Invert Si to get k + l (approximate) copies of the stationary distribution |πi〉 for
use in the next iteration;

7 Compute an estimate Ṽol(K′) = n!vn(2n)−(n+1)Ṽ1 · · · Ṽm of the volume of K′, where
vn is the volume of the n-dimensional unit ball;

8 Use Ṽol(K′) to estimate the volume of K as Ṽol(K) (Section 3.4.3.1).

More generally, our framework paves the way of combining several different ingredients

in quantum computing, and it could be used to provide quantum speedup for classical simulated

annealing algorithms based on Chebyshev cooling, i.e., those with the property that the random

variable in each iteration has bounded ratio between its variance and the square of its expectation.

This might be of independent interest.

The proof of Theorem 4.1.1 is organized as follows. We first assume that in each iteration,
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Si+1 puts πi+1 in isotropic position, i.e., the densities are promised to be well-rounded. The

rest of this subsection presents an overview of the proof of Theorem 4.1.1 (including a quantum

circuit in Figure 3.3), and proofs details are given in Section 3.4.3. In Section 3.4.4, we show

how the well-roundedness be maintained at an additional cost of Õ(n2.5) quantum queries in each

iteration.

Following the discussion in Section 4.3.1, our proof can be described at three levels:

High level (the simulated annealing framework) In Section 3.4.3.1, we show how to estimate

Vol(K) given an estimate of the volume of the pencil construction, Vol(K′):

Lemma 3.4.1. If we have access to Ṽol(K′) such that

1

1 + ε/2
Vol(K′) ≤ Ṽol(K′) ≤ (1 + ε/2)Vol(K′) (3.96)

with probability at least 0.7, then we can return a value Ṽol(K) such that

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε)Vol(K) (3.97)

holds with probability at least 2/3, using Õ(n2.5/ε) quantum queries to the membership oracle

OK.

In Section 3.4.3.2, we prove that the inner product between stationary states of consecutive

simulated annealing steps is at least a constant:

Lemma 3.4.2. Let |πi〉 be the stationary distribution state of the quantum walk Wi for i ∈ [m]

defined in (3.86). For n ≥ 2, we have 〈πi|πi+1〉 > 1/3 for i ∈ [m− 1].
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This allows π/3-amplitude amplification to transform the stationary state of one Markov

chain to that of the next. The total number of iterations of π/3-amplitude amplification is thus

Õ(
√
n), which equals to the number of iterations of the classical volume estimation algorithm

by [73].

Middle level (each telescoping ratio) In Section 3.4.3.3, we describe how we apply the

quantum Chebyshev inequality (Theorem 3.2.3) to the Chebyshev cooling schedule.

Lemma 3.4.3. Given Õ(log(1/δ)/ε) copies of the quantum states |πi−1〉, there exists a quantum

algorithm that outputs an estimate of Eπi [Vi] (in Eq. (3.94)) with relative error less than ε with

probability at least 1−O(δ) using Õ(C log(1/δ)/ε) oracle calls, where C oracle calls are required

to implement a sampler for |πi〉. Moreover, this quantum algorithm is nondestructive, i.e., the

initial copies of quantum states |πi−1〉 are restored after the computation with probability at least

1−O(δ).

Because the relative error in each iteration for estimating the volume via Chebyshev cooling

is Θ(ε/m) = Θ̃(ε/
√
n), Lemma 3.4.3 implies that O(log(1/δ)/(ε/

√
n)) = Õ(

√
n/ε) copies of

the stationary state suffice for the simulated annealing framework.14

Low level (the quantum hit-and-run walk) In Section 3.4.3.4, we give a careful analysis

of the errors coming from the quantum Chebyshev inequality as well as the π/3-amplitude

amplification:

14Notice that in the quantum Chebyshev inequality by Hamoudi and Magniez, they did not distinguish the number
of copies of the initial state from the number of quantum samples [88, Theorem 5.3]. In fact, their proof uses only
O(log(1/δ)) copies of the initial state |πi−1〉 in Lemma 3.4.3, which reduces the total number of copies of the
stationary states in the simulated annealing framework to O(log(1/δ)). Nevertheless, this does not change the total
query and time complexities of our quantum algorithms because the total number of calls to the quantum sampler
remains the same.
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Lemma 3.4.4. For ε1 < 1, given Õ(log(1/δ)/ε1) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 −

|πi−1〉‖ ≤ ε1, there exists a quantum procedure (using π/3-amplitude amplification and the

quantum Chebyshev inequality) that outputs a Ṽi such that |Ṽi − Eπi [Vi]| ≤ ε1Eπi [Vi] (where

Eπi [Vi] is defined in Eq. (3.94)) with success probability 1 − δ4 using Õ(n3/2 log(1/δ)/ε1 +

n3/2 log(1/ε′)) calls to the membership oracle and returns Õ(log(1/δ)/ε1) copies of final states

|π̃i〉 such that ‖|π̃i〉 − |πi〉‖ = O(ε1 + δ + ε′).

Having the four lemmas above from all the three levels, we establish Theorem 4.1.1 as

follows.

Proof of Theorem 4.1.1. We prove the correctness and analyze the cost separately.

Correctness By Lemma 3.4.1, it suffices to compute the volume of the pencil construction K′ to

relative error ε/2 with probability at least 0.7 in order to compute the volume of the well-rounded

convex body K. This is computed as a telescoping sum of m = O(
√
n log n/ε) products of

the form Z(ai+1)/Z(ai). The random variable Vi is an unbiased estimator for Z(ai+1)/Z(ai),

i.e., Eπi [Vi] = Z(ai+1)/Z(ai). Consider applying Lemma 3.4.4 m times with sufficiently small

δ, ε′ ≤ ε/12m2 and ε1 = ε/3m. This will promise that ε1 + δ+ ε′ ≤ ε/2m. At each iteration i we

have a state |π̃i−1〉 such that ‖|π̃i−1〉 − |πi−1〉‖ ≤ O(ε/4m). Thus each telescoping sum can be

computed with a relative error of ε/2m, resulting in a relative error of less than ε/2 for the final

volume. The probability of success for each iteration is at least 1 − δ4 = 1 − Θ(ε4/4m8). Thus

the probability of success for the whole algorithm is at least 1− Θ(ε4/4m7) = 1− Õ(ε11/n3.5),

which is greater than 0.7 for a large enough n.

Cost Ignoring the cost of obtaining the affine transformation to round the logconcave densities to
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be sampled (assuming that all the relevant densities are well rounded), we have from Lemma 3.4.4,

the number of calls to the membership oracle in each iteration of Algorithm 8 is Õ(n3/2 log(1/δ)/ε1+

n3/2 log(1/ε′)) = Õ(n2/ε). The total number of oracle calls is thus Õ(n2.5/ε). The argument for

correctness above applies for well-rounded logconcave densities. This is ensured by maintaining

Θ̃(n) states that are used to round the densities in each iteration (Algorithm 9). By Proposition 3.4.4,

this procedure uses Õ(n2.5) calls to the membership oracle in each iteration, resulting in a final

query complexity of Õ(n3 + n2.5/ε). Since the affine transformation is an n-dimensional matrix-

vector product, the number of additional arithmetic operations is hence O(n2) · Õ(n3 +n2.5/ε) =

Õ(n5 + n4.5/ε).

3.4.3 Proofs of lemmas in Section 3.4.2

We now prove the lemmas in Section 3.4.2 that establish Theorem 4.1.1.

3.4.3.1 From the pencil construction to the original convex body

Here we prove

Lemma 3.4.1. If we have access to Ṽol(K′) such that

1

1 + ε/2
Vol(K′) ≤ Ṽol(K′) ≤ (1 + ε/2)Vol(K′) (3.96)

with probability at least 0.7, then we can return a value Ṽol(K) such that

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε)Vol(K) (3.97)
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holds with probability at least 2/3, using Õ(n2.5/ε) quantum queries to the membership oracle

OK.

Proof. We follow the same notation in Section 3.4.1, i.e., without loss of generality we assume

that r = 1 and denote D = R/r = R. Since R and r are both given, D is a known value. The

pencil construction is

K′ := ([0, 2D]×K) ∩
{
x ∈ Rn+1 : x0 ≥ 0,

n∑
i=1

x2
i ≤ x2

0

}
. (3.98)

By the definition of D, for any (x1, . . . , xn) ∈ K we have
∑n

i=1 x
2
i ≤ D2, so [D, 2D]×K ⊆ K′.

This implies that DVol(K) ≤ Vol(K′) ≤ 2DVol(K). In other words, letting ξK := Vol(K′)
2DVol(K)

, we

have 0.5 ≤ ξK ≤ 1.

Classically, we consider a Monte Carlo approach to approximating Vol(K): we take k

(approximately) uniform samples x1, . . . , xk from [0, 2D] × K, and if k′ of them are in K′, we

return k′

k
· Ṽol(K′). For each i ∈ [k], δ[xi ∈ K′] is a boolean random variable with expectation

ξK = Θ(1). Any boolean random variable has variance O(1). Therefore, by Chebyshev’s

inequality, taking k = O(1/ε2) suffices to ensure that

Pr
[∣∣∣k′
k
− ξK

∣∣∣ ≤ εξK

2

]
≥ 0.99. (3.99)

Quantumly, we adopt the same Monte Carlo approach but we implement two steps using

quantum techniques:

• We take an approximately uniform sample from K ′ = [0, 2D] × K via the quantum hit-

and-run walk. To obtain a quantum stationary state, we use a similar idea as in [65] to
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construct a sequence of m = dn log2(2D)e convex bodies. Let K̂0 := Bn+1
2 (0, 1) and K̂i :=

2i/nBn+1
2 (0, 1) ∩ K′ for i ∈ [m]. As the length of the pencil is 2D, K̂m = K′. The state

|π0〉 corresponding to K̂0 is easy to prepare. It is straightforward to verify that 〈πi|πi+1〉 ≥ c

for some constant c, as Vol(K̂i+1) ≤ 2Vol(K̂i). To utilize the quantum speedup for MCMC

framework (Theorem 3.2.1), it remains to lower bound the phase gap of the quantum walk

operator for K̂i. It can be shown that the mixing property of the hit-and-run walk in Theorem 3.2.5

implies that the phase gap of the quantum walk operator is Ω̃(n−1.5); see the proof of Lemma 3.4.8.

Thus, by Theorem 3.2.1, |πm〉 can be prepared using Õ(n)·Õ(n1.5) = Õ(n2.5) quantum queries

to OK.

• We estimate ξK with multiplicative error ε/2 using the quantum Chebyshev inequality (see

Theorem 3.2.3) instead of its classical counterpart. This means that O(1/ε) executions of

quantum sampling in the first step suffice.

Overall, Õ(n2.5/ε) quantum queries to OK suffice to ensure that we obtain an estimate of

ξK within multiplicative error ε/2 with success probability at least 0.99. Since (3.96) ensures

that Ṽol(K′) estimates Vol(K′) up to multiplicative error ε/2 with probability at least 0.7, Ṽol(K′)
2DξK

estimates Vol(K) up to multiplicative error ε/2 + ε/2 = ε with success probability 0.99 · 0.7 >

2/3.

3.4.3.2 Inner product between stationary states of consecutive steps

We now show that the inner product between stationary states of consecutive steps is at

least a constant. More precisely, we have the following:
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Lemma 3.4.2. Let |πi〉 be the stationary distribution state of the quantum walk Wi for i ∈ [m]

defined in (3.86). For n ≥ 2, we have 〈πi|πi+1〉 > 1/3 for i ∈ [m− 1].

Proof. Recall that the stationary distribution πi of step i has density proportional to e−aix0 as

discussed in Section 3.4.1. The corresponding stationary distribution state is |πi〉 =
∫

K′
dx
√

e−aix0

Z(ai)
|x〉.

Lovász and Vempala [73, Lemma 3.2] proved that an+1Z(a) is log-concave (noting that the

dimension of K′ is n+ 1). This implies that

√
an+1
i Z(ai)

√
an+1
i+1 Z(ai+1) ≤

(
ai + ai+1

2

)n+1

Z

(
ai + ai+1

2

)
. (3.100)

Now, we have

〈πi|πi+1〉 =

∫
K′

dx
exp(−ai+ai+1

2
x0)√

Z(ai)
√
Z(ai+1)

(3.101)

≥
(

2
√
ai
√
ai+1

ai + ai+1

)n+1
∫

K′
dx exp(−ai+ai+1

2
x0)

Z
(ai+ai+1

2

) (3.102)

=

(
2
√
ai
√
ai+1

ai + ai+1

)n+1

(3.103)

=

2
√
ai
√
ai(1− 1√

n
)

ai + ai(1− 1√
n
)

n+1

=

2
√

1− 1√
n

2− 1√
n

n+1

, (3.104)

where the inequality follows from (3.100). When n = 2 or n = 3, the above inequality holds.

When n ≥ 4, to lower bound the above quantity, we use the fact that
√

1− 1/
√
n ≥ 1− 1

2
√
n
− 1

2n
.

Hence, for n ≥ 2 we have

〈πi|πi+1〉 ≥

(
2− 1√

n
− 1

n

2− 1√
n

)n+1

=

(
1−

1
n

2− 1√
n

)n+1

≥

(
1− 1

(2− 1√
2
)n

)n+1

>
1

3
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as claimed.

3.4.3.3 Chebyshev cooling and nondestructive mean estimation

Now we briefly review the classical framework for Chebyshev cooling and discuss how to

adapt it to quantum algorithms. Suppose we want to compute the expectation of a product

V =
m∏
i=1

Vi (3.105)

of independent random variables. The following theorem of Dyer and Frieze [68] upper bounds

the number of samples from the Vi that suffices to estimate E[V ] with bounded relative error.

Proposition 3.4.1 ([68, Section 4.1]). Let V1, . . . , Vm be independent random variables such that

E[V 2
i ]

E[Vi]2
≤ B for all i ∈ [m]. Let X(1)

j , . . . , X
(k)
j be k samples of Vj for j ∈ [m], and define

Xj = 1
k

∑k
`=1X

(`)
j . Let V =

∏m
j=1 Vj and X =

∏m
j=1Xj . Then, taking k = 16Bm/ε2 ensures

that

Pr
[
(1− ε)E[V ] ≤ X ≤ (1 + ε)E[V ]

]
≥ 3

4
. (3.106)

With standard techniques, the probability can be boosted to 1−δ with a log(1/δ) overhead.

In applications such as volume estimation [72] and estimating partition functions [112],

the samples are produced by a random walk. Let the mixing time for each random walk be

at most T . Then the total complexity for estimating E[V ] with success probability 1 − δ is

Õ(TBm log(1/δ)/ε2). Replacing the random walk with a quantum walk can potentially improve

the mixing time; see Section 3.1.3.2 for relevant literature. In particular, Montanaro [11] proposed
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a quantum algorithm for the simulated annealing framework with complexity Õ(TBm log(1/δ)/ε),

which has a quadratic improvement in precision. Note that the dependence on T was not improved,

as multiple copies of quantum states were prepared for the mean estimation (which uses measure-

ments). In this paper, we use the quantum Chebyshev inequality (see Theorem 3.2.3) to estimate

the expectation of Vi in a nondestructive manner which, together with Theorem 3.2.1, achieves

complexity Õ(
√
TBm log(1/δ)/ε).

Recall that the random variables Vi (determined by the cooling schedule) satisfy Eq. (3.95).

The following lemma uses this property of the simulated annealing procedure to show that the

quantum Chebyshev inequality can be used to estimate the mean of Vi on the distribution πi,

which gives an estimate of the ratio Z(ai+1)
Z(ai)

in the volume estimation algorithm. We first show

that our random variables can be made to satisfy the conditions of Theorem 3.2.3, and then we

outline how the corresponding circuit can be implemented. A detailed error analysis is deferred

to Section 3.4.3.4. To make the mean estimation nondestructive, we use the following theorem

of Harrow and Wei.

Theorem 3.4.1 ([89, Theorem 6]). Given state |ψ〉 and reflections Rψ = 2|ψ〉〈ψ| − I and R =

2P − I , and any η > 0, there exists a quantum algorithm that outputs ã, an approximation to

a = 〈ψ|P |ψ〉, so that

|ã− a| ≤ 2π
a(1− a)

M
+

π2

M2
(3.107)

with probability at least 1 − η and O(log(1/η)M) uses of Rψ and R. Morover the algorithm

restores the state ψ with probability at least 1− η.

Lemma 3.4.3. Given Õ(log(1/δ)/ε) copies of the quantum states |πi−1〉, there exists a quantum
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algorithm that outputs an estimate of Eπi [Vi] (in Eq. (3.94)) with relative error less than ε with

probability at least 1−O(δ) using Õ(C log(1/δ)/ε) oracle calls, where C oracle calls are required

to implement a sampler for |πi〉. Moreover, this quantum algorithm is nondestructive, i.e., the

initial copies of quantum states |πi−1〉 are restored after the computation with probability at least

1−O(δ).

Proof. We apply the quantum Chebyshev inequality (Theorem 3.2.3). For the random variables

Vi, we let µi denote their mean and σ2
i their variance. From (3.95),

√
σ2
i + µ2

i /µi ≤
√

8 < 3.

For a small constant c, we use log(1/δ)/c2 copies of |πi−1〉 to create copies of |πi〉 using π/3-

amplitude amplification. We now use a quantum circuit that given |x〉|0〉 computes |x〉|eaix0−ai−1x0〉,

and then apply a circuit Umedian that computes the median of all the ancilla registers:

Umedian|0〉|a1〉 · · · |as〉 = |median{a1, . . . , as}〉|a1〉 · · · |as〉. (3.108)

By the classical Chebyshev inequality, we measure µ̂i such that |µ̂i − µi| ≤ cµi with probability

at least 1 − δ. Thus the probability that µ̂i/(1 − c) < µ is less than δ. Taking H = µ̂i/(1 − c),

our variables satisfy the conditions of the quantum Chebyshev inequality. In order to output an

estimate of the mean with relative error at most ε, the quantum Chebyshev inequality now requires

Õ(log(1/δ)/ε) calls to a sampler for the state |πi〉, which we construct using π/3-amplitude

amplification on copies of |πi−1〉. By the union bound, the probability of failure of the whole

procedure is O(δ).

To be more specific, we replace U |0〉 in BasicEst (Algorithm 6) by Ui−1,l|πi−1〉 (where

Ui−1,l is the circuit transforming the lth copy of |πi−1〉 to |πi〉), and replaceQ by −Ui−1,l(Πi−1 −

Π⊥i−1)U †i−1,l(Πi − Π⊥i ) (where Πi = |πi〉〈πi| and Π⊥i = I − Πi for all i ∈ [m]). The quantum

145



circuit for nondestructive BasicEst is shown in Figure 3.4. Here, we run Θ(log(1/δ)) executions

of amplitude estimation (Figure 3.2) in parallel. Note that by (3.21), each amplitude estimation

returns a state eiθp√
2
|θ̃p〉 − e−iθp√

2
| − θ̃p〉. We use an ancilla register and apply the unitary

Usin2 |θ〉|0〉 := |θ〉| sin2 θ〉; (3.109)

because sin2(θ̃p) = sin2(−θ̃p) = p̃, the ancilla register becomes |p̃〉, where p̃ estimates p well

as claimed in Theorem 3.2.2. We then take the median of such Θ(log(1/δ)) executions using

(3.108), and finally run the inverse of Usin2 gates and amplitude estimations. The correctness

follows from the proof of Theorem 3.2.3 in [88].

To assure non-destructiveness, we replace every application of Quantum Amplitude Estimation

with the Nondestructive Mean Estimation as in Theorem 3.4.1. The resulting guarantees on the

error are the same as with the original amplitude estimation algorithm. To ensure an overall

success probability of 1−O(δ), it suffices to perform each instance of Nondestructive Amplitude

Estimation with success probability 1− Õ(δ). Note that since we estimate an unweighted mean,

2P − I with P = H|0〉〈0|H can be implemented as HR0H where R0 is a reflection around

the |0〉 state. Finally, we show in Corollary 3.4.1 that Rπi (the reflection around |πi〉) can be

implemented using the same number of oracle calls and gates as that required to sample πi (up to

polylogarithmic factors).

A detailed error analysis is given in the next subsection (see Lemma 3.4.9).
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Umedian

|0〉 Usin2 • U †
sin2 |0〉

|0〉
QFT

•
QFT†

• •
QFT†

•
QFT

|0〉
...

...
...

...
...

|0〉 • • • • |0〉

|πi〉
Q Q†

|πi〉
...

...
|πi〉 |πi〉

...
......
...

|0〉 Usin2 • U †
sin2 |0〉

|0〉
QFT

•
QFT†

• •
QFT†

•
QFT

|0〉
...

...
...

...
...

|0〉 • • • • |0〉

|πi〉
Q Q†

|πi〉
...

...
|πi〉 |πi〉

Figure 3.4: The quantum circuit for nondestructive BasicEst.

3.4.3.4 Error analysis

In this section, we analyze the error incurred by both the quantum Chebyshev inequality

(Line 3) and π/3-amplitude amplification (Line 5) in Algorithm 8.

Lemma 3.4.4. For ε1 < 1, given Õ(log(1/δ)/ε1) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 −

|πi−1〉‖ ≤ ε1, there exists a quantum procedure (using π/3-amplitude amplification and the

quantum Chebyshev inequality) that outputs a Ṽi such that |Ṽi − Eπi [Vi]| ≤ ε1Eπi [Vi] (where

Eπi [Vi] is defined in Eq. (3.94)) with success probability 1 − δ4 using Õ(n3/2 log(1/δ)/ε1 +

n3/2 log(1/ε′)) calls to the membership oracle and returns Õ(log(1/δ)/ε1) copies of final states

|π̃i〉 such that ‖|π̃i〉 − |πi〉‖ = O(ε1 + δ + ε′).
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We first show that π/3-amplitude amplification can be used to rotate |πi〉 into |πi−1〉 with

error ε′ using Õ(log(1/ε)) oracle calls. This procedure is used as a subroutine in a mean estimation

circuit that estimates the mean of the random variable Vi using multiple approximate copies of

|πi−1〉. We ensure that the measurement probabilities are highly peaked so that the state is not

disturbed very much. Finally π/3-amplitude estimation is used again to rotate the approximate

copies of the state |πi−1〉 to approximate copies of the state |πi〉.

Large effective spectral gap Consider an ergodic, reversible Markov chain (Ω, p) with transition

matrix P and a unique stationary distribution with density π. Let a(x) be a probability measure

over Ω such that the Markov chain mixes to its stationary distribution with a corresponding

probability density π(x) within a total variation distance of ε within t steps. Further let a(x)

be a warm start for π(x). From the definition of the transition matrix P (x, y) = 〈x|P |y〉 = py→x.

The discriminant matrix D defined in (3.43) is related to the transition matrix as P =

DπDD
−1
π , as shown in (3.85). For a hit-and-run walk, the transition matrix P represents a

convolution with an L2 normalized function (corresponding to the square root of the density

px→y). Bounded subsets of L2(Ω) are therefore mapped by P to other bounded subsets, and hence

P is compact. Since D is connected to P by a similarity relation, D is a compact Hermitian

operator over L2(Ω) and thus has a countable set of real eigenvalues λi and corresponding

orthonormal eigenvectors (eigenfunctions) vi ∈ L2(Ω). Orthonormality implies that
∫

Ω
vi(x)vj(x) dx =

δi,j . Notice that

PDπvi = DπD(vi) = λjDπvi; (3.110)
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thus fi = Dπvi is an eigenvector of P ′ with eigenvalue λi. The eigenvectors fi may not be

orthogonal under the standard inner product on L2(Ω). However, we can define an inner product

〈f, g〉π := 〈D−1
π f,D−1

π g〉 =

∫
Ω

f(x)g(x)

π(x)
dx (3.111)

over the space L2(Ω). It is easy to see that 〈fi, fj〉π = 〈vi, vj〉 = δi,j . A corresponding norm can

be defined as ‖f‖π = 〈f, f〉π.

It can be verified that
√
π(x) is an eigenfunction ofD with eigenvalue 1. Thus the stationary

state π(x) is an eigenfunction of the transition operator P with eigenvalue 1. Since P is stochastic,

this is the leading eigenvalue. The eigenvalues of P are thus 1, λ1, λ2, . . . with corresponding

eigenfunctions π(x), f2(x), f3(x), . . . . From the orthonormality of the f under 〈·, ·〉π, for any

function g in L2(Ω) we have

g =
∞∑
i=1

〈g, fi〉πfi = 〈g, π〉π +
∞∑
i=2

〈g, fi〉πfi (3.112)

=

(∫
Ω

g(x)π(x)

π(x)
dx

)
π +

∞∑
i=2

〈g, fi〉πfi (3.113)

=

(∫
Ω

g(x) dx

)
π +

∞∑
i=2

〈g, fi〉πfi. (3.114)

Since a is a probability density, a = π +
∑∞

i=2〈a, fi〉πfi. After t steps of the Markov chain M

on a we obtain the state P ta = π +
∑∞

i=2 λ
t
i〈a, fi〉πfi. Since the walk mixes to total variation

distance εwe have ‖P ta−π‖1 ≤ ε, and further since a is a warm start ‖P ta−π‖π. Consequently,

‖
∑∞

i=2 λ
t
i〈a, fi〉πfi‖π ≤ ε and from the orthonormality of f , 〈a, fi〉πλti ≤ ε. If 1 > λi ≥ 1− 1

Ω(t)

then λti = Ω(1) and 〈a, fi〉π = Ø(ε).
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The above analysis indicates that if a probability density a (that is a warm start) mixes in t

steps under a Markov chain (Ω, p), then it has small overlap with each of the “bad” eigenfunctions

(with spectral gap less than 1
Ω(t)

). Thus P effectively has a large spectral gap when it acts on a.

Corresponding to a, consider the quantum states

|a〉 :=

∫
Ω

√
a(x)|x〉 dx, |φa〉 :=

∫
Ω

∫
Ω

√
axpx→y|x〉|y〉 dx dy. (3.115)

For an eigenvector vi ofD (with eigenvalue λi), define the state |vi〉 :=
∫

Ω
vi(x) dx =

∫
Ω

fi(x)√
π(x)

dx.

Then the walk operatorW has the corresponding eigenvector |ui〉 =
(
I−(λi−i

√
1− λ2

i )S
)
T |vi〉

following the proof of Theorem 3.3.1. Let Ci := λi − i
√

1− λ2
i ; then 〈φa|ui〉 = 〈φa|T |vi〉 −

Ci〈φa|ST |ui〉. Furthermore,

〈φa|T |vi〉 = 〈a|vi〉 =

∫
Ω

√
a(x)fi(x)√
π(x)

dx, (3.116)

and

〈φa|ST |vi〉 =

(∫
Ω

√
axpx→y〈y|〈x|

)(∫
Ω

√
vx′px′→y′ |x′〉|y′〉

)
(3.117)

=

∫
Ω

√
ax

(∫
Ω

√
px→ypy→xvi(y) dy

)
dx (3.118)

=

∫
Ω

√
ax(Dvi)(x) dx (3.119)

= λi

∫
Ω

√
axvi(x) dx (3.120)

= λi〈a|vi〉. (3.121)
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We have 〈φa|ui〉 = (1− λiCi)〈a|vi〉 and therefore

|〈φa|ui〉| = (1− λiCi)〈a|vi〉 =
√

(1− λ2
i )

2 + (1− λi)2〈a|vi〉 ≤ 2|〈a|vi〉|. (3.122)

In addition,

〈a|vi〉 =

∫
Ω

√
a(x)fi(x)√
π(x)

dx =

∫
Ω

√
π(x)

a(x)

a(x)fi(x)

π(x)
dx. (3.123)

The above discussion establishes the following proposition indicating that if a distribution

with density a(x) mixes fast and the stationary distribution with density π(x) has a bounded L2-

norm with respect to a(x), then the quantum walk operator W acting on the subspace spanned by

|π〉 and |a〉 has a large effective spectral gap.

Proposition 3.4.2. Let M = (Ω, p) be an ergodic reversible Markov chain with a transition

operator P and unique stationary state with a corresponding density π ∈ L2(Ω). Let {(λi, fi)} be

the set of eigenvalues and eigenfunctions of P , and |ui〉 be the eigenvectors of the corresponding

quantum walk operator W . Let a ∈ L2(Ω) be a probability density that is a warm start for π and

mixes up to total variation distance ε in t steps ofM . Furthermore, assume that
∫

Ω
π(x)
a(x)

π(x)dx ≤

c for some constant c. Define

|a〉 =

∫
Ω

√
a(x)|x〉 dx; (3.124)

|φa〉 =

∫
Ω

√
a(x)

∫
Ω

√
px→y|x〉|y〉 dx dy. (3.125)

Then 〈φa|ui〉 = O(ε1/2) for all i such that 1 > λi ≥ 1− 1
Ω(t)

.
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Proof. Define S = {x|π(x)
a(x)
≥
√

c
ε
}. Because

∫
Ω
π(x)2

a(x)2 a(x)dx =
∫

Ω
π(x)
a(x)

π(x)dx ≤ c, Markov’s

inequality implies that
∫
S
a(x)dx ≤ ε.

We now define the quantum state |a′〉 such that 〈x|a′〉 = 〈x|a〉 if x /∈ S and 〈a|x′〉 = 0

otherwise, and |φa′〉 = T |a′〉. Then

‖|φa〉 − |φa′〉‖ =
∥∥∥∫

S

√
a(x)T |x〉 dx

∥∥∥ =

√∫
Ω

a(x) dx =
√
ε. (3.126)

From (3.122) and (3.123), if 1 > λi ≥ 1− 1
O(t)

, then

|〈φa′|ui〉| ≤
∣∣∣2 ∫

Ω

√
π(x)

a(x)

a(x)fi(x)

π(x)
dx
∣∣∣ ≤ 2c1/4〈a, fi〉π

ε1/4
≤ 2c1/4ε3/4. (3.127)

Finally,

〈φa|ui〉 = 〈φa′ |ui〉+ 〈φa − φa′|ui〉 ≤ 2c1/4ε3/4 +
√
ε = Ø(

√
ε) (3.128)

if 1 > λi ≥ 1− 1
Ω(t)

. Hence the result follows.

Warmness of πi+1 with respect to πi We show that density πi mixes to πi+1 under the walk

Wi+1 and vice versa. To apply Theorem 3.2.5, we show that the two distributions are warm with

respect to each other.

The L2-norm of a distribution with density π1 ∈ L2(Ω) with respect to another with density

π2 ∈ L2(Ω) is defined as

‖π1/π2‖ = EX∼π1

[
π1(X)

π2(X)

]
=

∫
Ω

π1(x)

π2(x)
π1(x) dx. (3.129)

152



A density π1 ∈ L2(Ω) is said to be a warm start for π2 ∈ L2(Ω) if the L2-norm ‖π1/π2‖ is

bounded by a constant.

Lemma 3.4.5 ([73, Lemma 4.4]). The L2-norm of the probability distribution with density πi =

e−aix0

Z(ai)
with respect to that with density πi+1 = e−ai+1x0

Z(ai+1)
is at most 8.

Lemma 3.4.6. The L2-norm of the probability distribution with density πi+1 = e−ai+1x0

Z(ai+1)
with

respect to that with density πi = e−aix0

Z(ai)
is at most e.

Proof. Since anZ(a) is a log-concave function [73, Lemma 3.2], we have

EX∼πi+1

[
πi+1(X)

πi(X)

]
=

∫
K′
e(ai−ai+1)x0e−ai+1x0dx

∫
K′
e−aix0dx∫

K′
e−ai+1x0dx

∫
K′
e−ai+1x0dx

=
Z(2ai+1 − ai)Z(ai)

Z(ai+1)2
(definition of Z) (3.130)

≤
(

a2
i+1

ai(2ai+1 − ai)

)n
(logconcavity of anZ(a)) (3.131)

≤

((
1− 1√

n

)2

1− 2√
n

)n

(definition of ai) (3.132)

≤
(

1 +
2

n

)n
< e2, (3.133)

where (3.133) holds because 1 + 1
n
− 2√

n
≤ (1 + 2

n
)(1− 2√

n
) as long as n ≥ 16.

Error analysis of π/3-amplitude amplification Consider a simulated annealing procedure

that follows a sequence of Markov chainsM1,M2, . . . with stationary states µ1, µ2, . . . . Consider

an alternate walk operator (used in [78]) of the form

W ′
i = U †i SUiRAU

†
i SUiRA (3.134)

153



where RA denotes the reflection about the subspace A := span{|x〉|0〉 : x ∈ K} and S is the

swap operator. We have Ui|x〉|0〉 =
∫
y∈K

√
p

(i)
x→y|x〉|y〉 dy where p(i) is the transition probability

corresponding to the ith chain.

The W ′
i operator is related to the walk operator Wi = S(2Πi − I) via conjugation by Ui,

i.e., Wi = UiW
′
iU
†
i . Thus W ′

i has the same eigenvalues as Wi, and if |uj〉 is an eigenvector of Wi

with eigenvalue λj , then |v〉 = U †i |uj〉 is an eigenvector of W ′
i with the same eigenvalue λj . For

any classical distribution f , we define |f〉 =
∫

Ω

√
f(x)|x〉 dx and

|φ(i)
f 〉 =

∫
Ω

√
f(x)|x〉

∫
Ω

√
p

(i)
x→y|y〉 dy dx

. Since |φ(i)
πi 〉 is a stationary state of Wi with eigenvalue 1, it follows that |πi〉|0〉 is an eigenvalue

of Wi with eigenvalue 1.

In each stage of the volume estimation algorithm, we sample from a state with density

πi(x) = e−aix0

Z(ai)
. Each such distribution is the stationary state of a hit-and-run walk with the

corresponding target density. Thus the corresponding state |πi〉 is the stationary state of the

corresponding walk operators Wi and W ′
i . Both Wi and Wi′ can be implemented using a constant

number of Ui gates.

From Lemma 3.4.2, we know that the inner product 〈πi|πi+1〉 between the states at any

stage of the algorithm is at least 1
3
. This implies that the inner product between |πi〉|0〉 and

|πi+1〉|0〉 is also at least 1
3
. In the following we abuse notation by sometimes writing only |πi〉 to

denote |πi〉|0〉, as it is easy to tell from context whether the ancilla register should be present.

Lemma 3.2.1 in Section 3.2.2 indicates that π/3-amplitude amplification can be used to
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rotate the state |πi〉 to |πi+1〉 if we can implement the rotation unitaries

Ri = ω|πi〉〈πi|+ (I − |πi〉〈πi|) and Ri+1 = ω|π1+1〉〈πi+1|+ (I − |πi+1〉〈πi+1|) .

To implement these rotations we use the fact that πi and πi+1 are the eigenvectors of the operators

W ′
i and W ′

i+1 with eigenvalue 1, respectively. We show the following lemmas which are adapted

variants of Lemma 2 and Corollary 2 in [78]:

Lemma 3.4.7. LetW be a unitary operator with a unique leading eigenvector |ψ0〉with eigenvalue

1. Denote the remaining eigenvectors by |ψj〉 with corresponding eigenvalues e2πiξj . For any

∆ ∈ (0, 1] and ε2 < 1/2, define a := log(1/∆) and c := log(1/
√
ε2). There exists a quantum

circuit V that uses ac ancilla qubits and invokes the controlled-W gate 2ac times such that

V |ψ0〉|0〉⊗ac = |ψ0〉|0〉⊗ac (3.135)

and

V |ψj〉|0〉⊗ac =
√

1− ε2(j)|ψj〉|χj〉+
√
ε2(j)|ψj〉|0〉⊗ac (3.136)

where |χj〉 is orthogonal to |0〉⊗ac for all |ψj〉 such that ξj ≥ ∆, and ε2(j) ≤ ε2 for all j.

Proof. Consider a quantum phase estimation circuit U with a ancilla qubits that invokes the

controlled-W gate 2a times (see Figure 3.5). The phase estimation circuit first creates an equal

superposition over a ancilla qubits using Hadamard gates. For k = 0, . . . , a − 1 we apply a

controlled-W k operator to the input register, controlled by the (a − k)th register. Finally the
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inverse quantum Fourier transform is applied on the ancilla registers. Then

U |ψj〉|0〉⊗a = |ψj〉 ⊗QFT†
(

1√
2a

2a−1∑
m=0

e2πimξj |m〉

)
(3.137)

= |ψj〉 ⊗
1

2a

2a−1∑
m,m′=0

e2πim(ξj−m′/2a)|m′〉. (3.138)

The amplitude corresponding to |0〉 on the ancilla registers is

aj,0 :=
1

2a

2a−1∑
m=0

e2πimξj =
1− e2πi2aξj

2a(1− e2πiξj)
(3.139)

for j 6= 0, and a0,0 = 1. If j 6= 0 then

|aj,0| =
∣∣∣ 1− e2πi2aξj

2a(1− e2πiξj)

∣∣∣ ≤ ∣∣∣ 1

2a−1(1− e2πiξj)

∣∣∣ ≤ 1

2a+1|ξj|
. (3.140)

Thus |aj,0| ≤ 1
2

if ξj ≥ ∆. Using c copies of the circuit (resulting in ac ancilla registers and

2ac controlled-W gates), the amplitude for 0 in all the ancilla registers if ξj ≥ ∆ is at most

1
2c

=
√
ε.

|0〉 H . . . •

QFT−1
2a

. . .

|0〉 H • . . .
...
|0〉 H • . . .

|ψj〉 W 20
W 21 . . . W 2a−1

Figure 3.5: The quantum phase estimation circuit. Here W is a unitary operator with eigenvector
|ψj〉; in π/3-amplitude estimation it is the quantum walk operator W ′

i in (3.134).
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Corollary 3.4.1. Let W be a unitary operator with a unique leading eigenvector |ψ0〉 with

eigenvalue 1. Denote the remaining eigenvectors by |ψj〉 with corresponding eigenvalues e2πiξj .

For any ∆ ∈ (0, 1] and ε2 < 1/2, define a := log(1/∆) and c := log(1/
√
ε2). For any constant

α ∈ C, there exists a quantum circuit R̃ that uses ac ancilla qubits and invokes the controlled-W

gate 2a+1c times such that

R̃|ψ0〉|0〉⊗ac = (R|ψ0〉)|0〉⊗ac (3.141)

(where R = α|ψ0〉〈ψ0| − (I − |ψ0〉〈ψ0|)) and

‖R̃|ψj〉|0〉⊗ac − (R|ψj〉)|0〉⊗ac‖ ≤
√
ε2 (3.142)

for j 6= 0 such that ξj ≥ ∆.

Proof. Let R̃ := V †(I ⊗ Q)V where V is the quantum circuit in Lemma 3.4.7 and Q :=

α|0〉〈0|⊗ac + (I − |0〉〈0|⊗ac). Then we have

R̃|ψ0〉|0〉⊗ac = V †(I ⊗Q)|ψ0〉|0〉⊗ac = α|ψ0〉|0〉⊗ac = R|ψ0〉|0〉⊗ac. (3.143)
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For j 6= 0 such that ξj ≥ ∆,

R̃|ψj〉|0〉⊗ac = V †(I ⊗Q)(
√

1− ε2|ψj〉|χj〉+
√
ε2|ψj〉|0〉⊗ac) (3.144)

= V †(
√

1− ε2|ψj〉|χj〉+
√
ε2α|ψj〉|0〉⊗ac) (3.145)

= V †(|ψj〉 ⊗ (
√

1− ε2|χj〉+
√
ε2|0〉⊗ac) +

√
ε2(α− 1)|ψj〉|0〉⊗ac) (3.146)

= |ψj〉|0j〉+ V †
√
ε2(α− 1)|ψj〉|0〉⊗ac. (3.147)

Thus ‖R̃|ψj〉|0〉⊗ac − (R|ψj〉)|0〉⊗ac‖ ≤ ‖V †
√
ε2(α− 1)|ψj〉|0〉⊗ac‖ ≤

√
ε2.

Finally, we prove the following lemma for analyzing the error incurred by π/3-amplitude

amplification in our quantum volume estimation algorithm:

Lemma 3.4.8. Starting from |πi〉, we can obtain a state |π̃i+1〉 such that ‖|πi+1〉 − |π̃i+1〉‖ ≤ ε

using Õ(n3/2 log(1/ε)) calls to the controlled walk operatorsW ′
i ,W

′
i+1. This results in Õ(n3/2 log(1/ε))

calls to the membership oracle OK.

Proof. From Theorem 3.2.5, Lemma 3.4.5, and Lemma 3.4.6, we find that

• πi(x) mixes up to total variation distance ε1 in O
(
n3 log5 n

ε1

)
steps of the Markov chain

Mi+1, and

• πi+1(x) mixes up to total variation distance ε1 in O
(
n3 log5 n

ε1

)
steps of the Markov chain

Mi.

From Proposition 3.4.2, we find the following:

• |πi〉 = |π′i〉 + |e1〉 where |π′i〉 lies in the space of eigenvectors |v(i+1)
j 〉 of W ′

i+1 such that

λ
(i+1)
j = 1 or λ(i+1)

j ≤ 1− 1
O(n3 log5(n/ε1))

, and ‖|e1〉‖ ≤ ε1; and
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• |πi+1〉 = |π′i+1〉 + |e2〉 where |π′i+1〉 lies in the space of eigenvectors |v(i)
j 〉 of W ′

i such that

λ
(i)
j = 1 or λ(i)

j ≤ 1− 1
O(n3 log5(n/ε1))

, and ‖|e2〉‖ ≤ ε1.

Note that |πi〉 and |πi+1〉 are simply the leading eigenvectors of Wi and Wi+1, respectively.

Thus both |πi〉 and |πi+1〉 lie ε1 close to the “good” subspaces corresponding to W ′
i (respectively

W ′
i+1) which are spanned by eigenvectors |v(i)

j 〉 (respectively |v(i+1)
j 〉) with eigenvalues e2πiξ

(i)
j

(respectively e2πiξ
(i+1)
j ) such that ξ(i)

j = 0 or ξ(i)
j ≥ 1

O(n3/2 log5/2(n/ε1))
. Each state that occurs

during π/3-amplitude amplification to rotate |πi〉 to |πi+1〉 or vice versa is a linear combination

of |πi〉 and |πi+1〉 and is thus also close to the good subspaces of W ′
i and W ′

i+1.

Applying Corollary 3.4.1 with ∆ = 1

n3/2 ln5/2(n/ε1)
and ε2 = ε21, we can implement a

quantum operators R̃i, R̃i+1 such that ‖Ri − R̃i‖ ≤ 2ε1 and ‖Ri+1 − R̃i+1‖ ≤ 2ε1, using

O(n3/2 log5/2(n/ε1) log(1/ε1)) calls to the controlled-W ′
i and controlled-W ′

i+1 operators, respect-

ively.

The above shows how to approximately implement Ri and Ri+1. If these operators could

be implemented perfectly, Lemma 3.2.1 and Lemma 3.4.2 show that we can prepare a state

|π̃i+i〉 such that 〈πi+1|π̃i+1〉 ≤ 1 − (2/3)3m by applying m recursive levels of π/3-amplitude

amplification to |πi〉, using 3m calls to Ri, R
†
i , Ri+1, R

†
i+1. Since

‖πi+1 − π̃i+1‖ =
√

2(1− 〈πi+1|π̃i+1〉), after O(log(1/ε2)) calls to the rotation gates we obtain a

final state with error ε2. However, each rotation gate can cause an error of ε1 by itself. By making

O(n3/2 log5/2(n/ε1) log(1/ε1) log(1/ε2)) calls to controlled-W ′
i and controlled-W ′

i+1 operators,

we obtain a final error of O(ε1 log(1/ε2) + ε2). Choosing ε2 = ε/2 and ε1 = ε/(2 ln(2/ε)) gives

the result.
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Error analysis for the quantum Chebyshev inequality We also analyze the error from the

quantum Chebyshev inequality (Theorem 3.2.3), giving a robust version of Lemma 3.4.3.

Lemma 3.4.9. Suppose we have Õ(log(1/δ)/ε) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 −

|πi−1〉‖ ≤ ε. Then the quantum Chebyshev inequality can be used to output Ṽi such that |Ṽi −

Eπi [Vi]| ≤ O(ε)Eπi [Vi] with success probability 1 − δ4 using Õ(n3/2 log(1/δ)/ε) calls to the

membership oracle. The output state |π̂i−1〉 satisfies ‖|π̂i−1〉 − |πi−1〉‖ = O(ε+ δ).

Proof. The error-free version of this lemma was proven in Lemma 3.4.3. Here we focus on the

error analysis. The quantum Chebyshev inequality uses an implementation of US0U
†Si where

U is a unitary operator satisfying U |πi−1〉 = |πi〉. From Lemma 3.4.8, using log(1/ε2) iterations

of π/3-amplitude amplification (Ulog 1/ε2 in (3.16)) instead of U induces an error of ε2 and uses

O(n3/2 log(1/ε2)) oracle calls. Using approximate phase estimation as in Corollary 3.4.1 and

Lemma 3.4.8, Πi−1 and Πi can be implemented up to error ε3 usingO(n3/2 log(1/ε3)) oracle calls.

Thus each block corresponding to Theorem 3.2.2 induces an error ofO(ε2+ε3), and the final state

before the median is measured has an error of O(ε + ε2 + ε3). Therefore, using O(log(1/δ1)/ε)

copies of |π̃i−1〉 returns a sample Ṽi such that |Ṽi−Eπi [Vi]| ≤ O(ε2 + ε3 + ε)Eπi [Vi] with success

probability 1 − δ1. Performing a measurement with success probability 1 − δ1 implies that the

posterior state has an overlap
√

1− δ1 with the initial state. This induces an error of magnitude

at most
√

2(1−
√

1− δ1) = O(δ
1/4
1 ).

The measurement on the log(1/δ)/c copies of |π̃i−1〉 used to estimate µ̂ has relative error

at most c with probability 1 − δ. This causes an error O(δ
1/4
1 ) in addition to the error ε2 from

π/3-amplitude amplification.

Finally, note that the basic amplitude estimation circuit (analyzed in Theorem 3.2.2) is a
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subroutine of the quantum Chebyshev inequality (Theorem 3.2.3), and uncomputing the block

corresponding to Theorem 3.2.2 induces an error of O(ε2 + ε3), giving an overall error of O(ε2 +

ε3 + ε+ δ1/4). The result follows by taking ε2 = ε3 = ε and δ1 = δ4.

We finally prove Lemma 3.4.4 here.

Proof. Lemma 3.4.9 is used to estimate the mean with ε = ε1 and leaves a posterior state |π̂i−1〉

such that ‖|π̂i−1〉 − |πi−1〉‖ = O(ε1 + δ). We can then use π/3-amplitude amplification to

rotate this state into |π̃i〉, adding error O(ε′) at the cost of O(n3/2 log(1/ε′)). This completes the

proof.

3.4.4 Quantum algorithms for rounding logconcave densities

We first define roundedness of logconcave density functions as follows:

Definition 3.4.1. A logconcave density function f is said to be c-rounded if

1. The level set of f of probability 1/8 contains a ball of radius r;

2. Ef (|x− zf |) ≤ R2, where zf is the centroid of f , i.e., zf := Ef (x);

and R/r ≤ c
√
n.

In the previous section we assumed that the distributions πi sampled during the hit-and-run

walk are O(1)-rounded (i.e., well-rounded). From Theorem 3.2.5, this implies that the hit-and-

run walk for the distribution πi mixes from a warm start in time Õ(n3). In this subsection we

show how the distributions πi can be transformed to satisfy this condition.

Following the classical discussion in [40], we actually show a stronger condition: the

distributions are transformed to be in “near-isotropic” position. A density function f is said
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to be in isotropic position if

Ef [x] = 0 and Ef [xxT ] = I. (3.148)

The latter equation is equivalent to
∫
Rn(uTx)2f(x) dx = |u|2 for every vector u ∈ Rn. We say

that K is near-isotropic up to a factor of c if

1

c
≤
∫
Rn

(uT (x− zf ))2f(x) dx ≤ c (3.149)

for every unit vector u ∈ Rn.

The following lemma shows that logconcave density functions in isotropic position are also

O(1)-rounded:

Lemma 3.4.10 ([118, Lemma 5.13]). Every isotropic logconcave density is (1/e)-rounded.

The following lemma shows that any logconcave density function can be put into isotropic

position by applying an affine transformation, generalizing the same result for uniform distributions

by Rudelson [119]:

Lemma 3.4.11 ([40, Lemma 2.2]). Let f be a logconcave function in Rn such that there is no

linear subspace S ⊆ Rn such that
∫
S f(x) dx > 1/2, and letX1, . . . , Xk be independent random

points from the corresponding distribution. There is a constant C0 such that if k > C0t
3 lnn, then

the transformation g(x) = T−1/2x where

X̄ =
1

k

k∑
i=1

X i, T =
1

k

k∑
i=1

(X i − X̄)(X i − X̄)T (3.150)

162



puts f in 2-isotropic position with probability at least 1− 1/2t.

From Lemma 3.4.11, k = dC0n ln5 ne = Θ̃(n) samples from a logconcave density f suffice

to put it into near-isotropic position. However, efficiently obtaining samples from a density πi

requires it to be well-rounded to start with. To overcome this difficulty, we interlace the rounding

with the stages of the volume estimation algorithm where in each stage, we obtain an affine

transformation that puts the density to be sampled in the next stage into isotropic position. The

density π0 is very close to an exponential distribution (since it is concentrated inside the convex

body) and can hence be sampled without resorting to a random walk.

To show that samples from πi can be used to transform πi+1 into isotropic position, we use

the following lemma:

Lemma 3.4.12 ([39, Lemma 4.3]). Let f and g be logconcave densities over K with centroids

zf and zg respectively. Then for any u ∈ Rn,

Ef [(u · (x− zf ))2] ≤ 16Ef
[
f

g

]
Eg[(u · (x− zg))2]. (3.151)

We now have the following proposition:

Proposition 3.4.3. If affine transformation Si puts πi in near-isotropic position then it also puts

πi+1 in near-isotropic position.

Proof. Let Si put πi in 2-isotropic position. Applying Lemma 3.4.12 with f = πi+1, g = πi, we

have that for any unit vector u ∈ Rn,

Eπi+1
[(u · (x− zπi+1

))2] ≤ 16Eπi+1

[
πi+1

πi

]
Eπi [(u · (x− zπi))2] ≤ 32e2 (3.152)
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since Eπi+1

[
πi+1

πi

]
≤ e2 from Lemma 3.4.6. Again applying Lemma 3.4.12

1

2
≤ Eπi [(u · (x− zπi))2] ≤ Eπi

[
πi
πi+1

]
Eπi+1

[(u · (x− zπi+1
))2] (3.153)

Eπi
[

πi
πi+1

]
≤ 8 from Lemma 3.4.5. Therefore,

1

2
≤ 128e2Eπi+1

[(u · (x− zπi+1
))2] (3.154)

Thus Eπi+1
is also put in near-isotropic position.

We finally have the main result of this section:

Proposition 3.4.4. At each stage i of Algorithm 9, the affine transformation puts the distribution

πi+1 in near-isotropic position using an additional Õ(n2.5) quantum queries to OK .

Proof. Since π0 is nearly an exponential distribution, it can be sampled without using a random

walk and thus the proposition is true for i = 0. Assume that the proposition is true for 1, 2, . . . , k.

Then an affine transformation can be found to put πk in near-isotropic position. Thus a classical

hit-and-run walk starting from πk−1 converges to πk in Õ(n3) steps. By the analysis in

Section 3.4.3.4, a quantum sample |πk−1〉 can be rotated to |πk〉 using Õ(n1.5) quantum queries.

Õ(n) such samples suffice to compute the covariance matrix T in (3.150), which puts πk in

2-isotropic position. By Proposition 3.4.3, this also puts πk+1 in near-isotropic position. This

concludes the proof.

Rounding the convex body as a preprocessing step Consider applying only the rounding part

of Algorithm 9. By Proposition 3.4.4, the final affine transformation puts the density πm ∝

164



Algorithm 9: Volume estimation of convex K with interlaced rounding.
Input: Membership oracle OK for K.
Output: ε-multiplicative approximation of Vol(K).

1 Set m = Θ(
√
n log(n/ε)) to be the number of iterations of simulated annealing and

ai = 2n(1− 1√
n
)i for i ∈ [m]. Let πi be the probability distribution over K′ with

density proportional to e−aix0;
Set error parameters δ, ε′ = Θ(ε/m2), ε1 = ε/2m; let k = Θ̃(

√
n/ε) be the number of

copies of stationary states for applying the quantum Chebyshev inequality; let
l = Θ̃(n) be the number of copies of stationary states needed to obtain the affine
transformation Si; Prepare k + l (approximate) copies of |π0〉, denoted
|π̃(1)

0 〉, . . . , |π̃
(k+l)
0 〉;

for i ∈ [m] do
2 Use the quantum Chebyshev inequality on the k copies of the state |π̃i−1〉 with

parameters ε1, δ to estimate the expectation Eπi [Vi] (in Eq. (3.94)) as Ṽi
(Lemma 3.4.9 and Figure 3.4). The post-measurement states are denoted
|π̂(1)
i−1〉, . . . , |π̂

(k)
i−1〉;

3 Use the l copies of the state |πi−1〉 to nondestructively15 obtain the affine
transformation Si = T = 1

l

∑l
q=1(Xq − X̄)(Xq − X̄)T where the Xq are samples

from the density πi−1 and X̄ = 1
l

∑l
q=1X

q. The post-measurement states are

denoted |π̂(k+1)
i−1 〉, . . . , |π̂

(k+l)
i−1 〉;

4 Apply π/3-amplitude amplification with error ε′ (Section 3.2.2 and Lemma 3.4.8)
and affine transformation Si to map |Siπ̂(1)

i−1〉, . . . , |Siπ̂
(k+l)
i−1 〉 to

|Siπ̃(1)
i 〉, . . . , |Siπ̃

(k+l)
i 〉, using the quantum hit-and-run walk;

5 Invert Si to get k + l (approximate) copies of the stationary distribution |πi〉 for
use in the next iteration;

6 Compute an estimate Ṽol(K′) = n!vn(2n)−(n+1)Ṽ1 · · · Ṽm of the volume of K′, where
vn is the volume of the n-dimensional unit ball;

7 Use Ṽol(K′) to estimate the volume of K as Ṽol(K) (Section 3.4.3.1).

e−amx0 in near-isotropic position. Since am ≤ ε2/n, we have

(1− ε2)EK′ [|X − X̄|]2 ≤
∫

K′

e−amx0|x− x̄|2

Z(am)
dx ≤ 2n; (3.155)

thus EK′ [|X − X̄|]2 ≤ 2n/(1 − ε2). From [40, Lemma 3.3], all but an ε-fraction of the body is

contained inside a ball of radius O(
√
n). Combined with our assumption that B2(0, 1) ⊆ K′, this
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shows that Sm+1 puts the convex body K′ in well-rounded position.

3.5 Implementation of the quantum hit-and-run walk

Due to the precision of representing real numbers, the implementation of volume estimation

algorithms in practice requires to walk in a discrete domain that is a subset of Rn. It is known

that walks only taking local steps within a short distance (such as the grid walk and the ball

walk) can be discretized with good approximation by dividing Rn into small hypercubes and

walking on their centers (see e.g. [87]), but such error analysis does not automatically apply to

hit-and-run walks for which we did not find existing classical discretizations. We emphasize the

discretization in contrast to most classical treatments for two reasons: (1) Quantum algorithms are

typically presented in a circuit model, in contrast to the RAM model used by classical algorithms.

Continuous variables in the circuit model correspond to registers of infinite size, preventing a

clear analysis of the resources of the algorithm in terms of gate count. Specifically to obtain the

performance of the algorithm in reality, we must show that poly(log(1/ε)) bit registers suffice.

(2) Standard methods of preparing walk operators corresponding to classical Markov Chains (see

for eg. [85]) rely on the sparsity of the transition matrix. In the case of geometric random walks

sparsity is not well-defined in the continuous case and may not hold even for discretizations (for

example, the hit-and-run walk has a non-zero transition density to any point in the convex body.)

The efficient preparation of quantum states corresponding to classical distributions is not always

a trivial operation, and there has been research [120] about preparing common distributions

15Similar to Lemma 3.4.3, we do not directly measure the states; instead we use a quantum circuit to (classically)
compute the affine transformation Si and apply it to the convex body coherently for the next iteration. Note that the
quantum register holding the affine transformation will be in some superposition, but by using O(log n) copies and
taking the mean (as in Lemma 3.4.3), the amplitude of the correct affine transformation will be arbitrarily close to 1.

166



for quantum Monte-Carlo methods. Most existing general procedures come without provable

guarantees on the resources required for sufficiently accurate samples; we provide here a simple

analysis for the cost of implementing the hit-and-run walk via the Grover-Rudolph method [121].

In this section, we introduce a discretized quantum hit-and-run walk and give an explicit

analysis of its implementation. The basic idea of the discretization is to represent the coordinates

with rational numbers. We approximate K by a set of discretized points in K and define a Markov

chain on these points (see Section 3.5.1). We use a two-level discretization: the hit-and-run

process is performed with a coarser discretization and then a point in a finer discretization of

the coarse grid is chosen uniformly at random as the actual point to jump to. This ensures

that the starting and ending points (in the coarser discretization) of one jump are far from the

boundary so that a small perturbation does not change the length of the chord induced by the

two points significantly. Then in Section 3.5.2, the discrete conductance can be bounded by

bounding the distance between the discrete and continuous transition probabilities as well as the

distance between the discrete and continuous subset measures. In Section 3.5.3, we prove that

the quantum gate complexity of implementing the discretized quantum hit-and-run walk is Õ(n),

the same overhead as for implementing classical hit-and-run walks.

3.5.1 Discretization of the hit-and-run walk

For a convex body K ⊆ Rn, we let Kε denote the set of vectors in K whose coordinates can

be represented by some fixed-point representation using log(1/ε) bits16 We can use the . We call

Kε an ε-discretization of K. The finite set Kε provides an ε-net for K. We also define (Rn)ε as a

16Note that this ε is different from the multiplicative error in the problem definition. However, this ε is not the
dominating error and the overhead is only logarithmic.
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ε-discretization of Rn.

We consider a Markov chain whose states are the points in Kε. For any v ∈ Rn, we define

the ε-box bε(v) := {x ∈ Rn : x(i) ∈ [v(i)− ε/2, v(i) + ε/2], ∀i ∈ [n]}. Let Kε be the continuous

set formed by the ε-boxes of the points in Kε, i.e., Kε =
⋃
x∈Kε

bε(x). For two distinct points

u, v ∈ Rn, we denote by `uv the line through them. For a line ` ⊆ Rn, let `(Kε) be the segment

of ` contained in Kε, i.e., `(Kε) = {x ∈ ` : x ∈ Kε}. In addition, for u ∈ `, we define `(Kε, u, ε
′)

as the ε′-discretization of `(Kε) starting from u, i.e., `(Kε, u, ε
′) = {x ∈ `(Kε) : |x − u| =

kε′ for some k ∈ {0, 1, . . .}}. Analogous to the distribution πf for the continuous-space case, we

define its corresponding discrete distribution π̂f with π̂f (S) =
∑

x∈S f(x)/
∑

x∈(Rn)ε
f(x).

To implement the hit-and-run walk (see Section 3.2.4), we sample a uniformly random

direction from a point u. We achieve this by sampling n coordinates according to the standard

normal distribution from the corresponding coordinate of u and normalizing the new point to

have unit length; the uniformity of such sampling is well known (see for example [122, 123]).17

Let this normalized point be v, so that the sampled direction is `uv. Note that the coordinate we

sample from is discrete. The directions we can sample form a discrete set denoted L(u, ε′), where

ε′ is the precision for sampling directions.

Now we compute the probability that a specific direction is sampled. After normalization,

the point will “snap” to a point in (Rn)ε. Consider
⋃
v: bε′ (v)∩Bn 6=∅ bε(v), where Bn is the n-

dimensional unit sphere. We use the (n − 1)-dimensional volume (surface area) of this body to

approximate that of Bn, with up to a
√

2 enlargement factor due to the fact that ε-boxes have sharp

corners. Thus, the number of points that v can snap to is in the range [nVol(Bn)/εn−1,
√

2nVol(Bn)

17A one-line proof is that this distribution is invariant under orthogonal transformations, but the uniform
distribution on the n-dimensional unit sphere Bn is the unique distribution that satisfies this property. Although
the Gaussian distributions we sample from are discretized, the invariance under orthogonal transformations holds
approximately, so we have approximate uniformity.
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/εn−1], which is also the range of |L(u, ε′)|. To make the lines in L(u, ε′) cover every ε-box on

the boundary of
√
nBn (so that it is possible to sample all the points in Kε), we need ε′ ≤ ε/

√
n.

Let L := |L(u, ε′)|. We label the lines in L(u, ε′) as {`1, . . . , `L} (ordered arbitrarily).

For each i ∈ [L], let vi be the point after normalization. Intuitively, vi approximates a point on

the “surface” of the unit ball around u (see Figure 3.6). There are hyperfaces of bε′(vi) that are

out-facing and not adjacent to any ε′-box in
⋃
v: bε′ (v)∩Bn 6=∅ bε(v) (as an illustration, see dashed

edges in Figure 3.6). For all points v′′ in these hyperfaces, the line segments from u through v′′

of length
√
n form a set, which we refer to as a hyperpyramid, denoted by Pi. The apex of each

hyperpyramid is u, and the base of each hyperpyramid is a subset of the hyperspherical surface.

Intuitively, the bases of P1, . . . ,PL form a partition of the “surface” of the ball of radius
√
n

around u, and therefore {P1, . . . ,PL} forms a partition of the ball of radius
√
n around u.

3.5.2 Conductance lower bound on the discretized hit-and-run walk

The discretized hit-and-run walk on Kε described above can be summarized as Algorithm 10.

Algorithm 10: One step of the discretized hit-and-run walk.
Input: Current point u ∈ Kε.

1 Uniformly sample a line ` ∈ L(u, ε) by independently sampling n coordinates around
u according to the standard normal distribution and then normalizing to unit length;

2 Sample a point v′ in `(Kε, u, ε
′) according to f ;

3 Let v′′ ∈ K√εn1/4 that is closest to v′;
4 Output a uniform sample v in b√εn1/4(v′′) ∩ (Rn)ε;

Note that we have used a two-level discretization of K, as illustrated in Figure 3.7. The

first level is a coarser discretization K√εn1/4 and the second level is a finer discretization Kε. We

first choose a temporary point v′′ in K√εn1/4 . Then we choose a point v uniformly at random in

b√εn1/4(v′′) ∩ (Rn)ε to jump to. The purpose of this two-level discretization is to avoid having a
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Figure 3.6: Constructing a hyperpyramid. The inner circle represents the unit ball and the outer
circle represents the ball of radius

√
n. The grids represents the ε′-discretization of Rn; each grid

is an ε′-box. The shaded boxes are points where a direction “snaps” to after normalization, and
the dashed edges of bε′(vi) is its “outer face.” The hyperpyramid Pi is represented by a circular
sector.

small change of the original point u cause a huge difference in `uv(Kε) (when u is very close to

the boundary).

We first compute the transition probability of the discretized hit-and-run walk.

Lemma 3.5.1. The transition probabilities defined by Algorithm 10 satisfy

Puv ≥
∑

v′∈`(Kεu,ε′),`∈L(x,ε):

`(Kε,u,ε′)∩b√εn1/4 (v)6=∅

εn−1(
√
ε)nf(v′)√

2n1+n/4Vol(Bn)(
√
n)n−1µ̂f (`(Kε, u, ε′))

, (3.156)
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Figure 3.7: A demonstration of the 2-level discretization of K. The thicker grid represents the
coarser discretization K√εn1/4 and the thinner grid represents the finer discretization Kε. When v′′

is chosen from K√εn1/4 , an actual point v to jump is chosen uniformly at random in b√εn1/4(v′′)∩
(Rn)ε marked by the points in the shaded region.

where for any S ⊆ Rn, we define

µ̂f (S) :=
∑
x∈S

f(x). (3.157)

Proof. First note that the probability of a line ` ∈ L(u, ε) being sampled is at least εn−1
√

2nVol(Bn)(
√
n)n−1 .

Along `, the probability of sampling v′ is f(v′)/µ̂f (`(Kε, u, ε
′)), and the probability of choosing

v in b√εn1/4(v′′) ∩Kε is (
√
ε)n/nn/4.

According to the definition in (3.12), the conductance of any subset S ⊆ Kε is

φ(S) =

∑
u∈S

∑
v∈Kε\S Puvπ̂f (u)

min{π̂f (S), π̂f (Kε \ S)}
, (3.158)
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where π̂f is defined as π̂f (A) =
∑

x∈A f(x). The conductance of the Markov chain is then

φ = min
S⊆Kε

φ(S). (3.159)

Now we prove the main theorem of this section, which shows that the conductance of the discretized

hit-and-run walk does not differ significantly from that of the continuous hit-and-run walk.

Theorem 3.5.1. Let Kε be the discretization of convex body K that contains a unit ball and is

contained in a ball with radius R ≤
√
n. Let the density function be f(x) = e−a

T x having

support K where a = (1, 0, . . . , 0). Let ε′ ≤
√
εn−3/4. For S ⊆ Kε such that π̂f (S) ≤ 1/2, we

have

φ(S) ≥ 1

1016n
√
n ln(2n

√
n

π̂f (S)
)
− ε. (3.160)

Proof. This proof closely follows that of [72, Theorem 6.9]. We first consider the transition

probability for the continuous hit-and-run walk in K. For u, v ∈ K, recall that

P ′u(bε(v)) =
2

nVol(Bn)

∫
bε(v)

f(x) dx

µf (u, x)|x− u|n−1
, (3.161)

where µf (u, x) is a shorthand for µf (`ux(Kε)). We compare P ′u(b√εn1/4(v)) with Puv for u ∈ Kε

and v ∈ K√εn1/4 . To this end, we use µ̂f to approximate µf : for each `, we have

ε′µ̂f (`(Kε, u, ε
′)) ≤ eε

′
µf (`(Kε)). (3.162)

Consider each hyperpyramid Pi defined in Section 3.5.1 whose associated line through its apex
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is `i and `i(Kε, u, ε
′) ∩ b√εn1/4(v) 6= ∅. Note that the distance between each u ∈ Kε and the

boundary of Kε is at least ε/2. Inside each hyperpyramid, the length of the chords through u can

differ by a factor at most 2. For each ` ⊂ Pi, µ̂f (`i(Kε, u, ε
′)) ≤ 2eε

′
µ̂f (`(Kε, u, ε

′)). Together

with (3.162), it follows that

ε′µ̂f (`i(Kε, u, ε
′)) ≤ 2e2ε′µf (`(Kε)) (3.163)

for all ` ⊂ Pi. Define ci := |`i(Kε, u, ε
′) ∩ b√εn1/4(v)| (the number of points in this set) and

di := |`i(Kε) ∩ b√εn1/4(v)| (the length of this line). Note that ci ≤ di/ε
′. We further partition Pi

into ci sets Qi,1, . . . ,Qi,ci along the direction of `i so that the distance between the hyperplanes

that separate adjacent sets is at most ε′. For each j ∈ [ci], we have

εn−1f(v′)

nVol(Bn)(
√
n)n−1µ̂f (`i(Kε, u, ε′))

=
εn−1f(v′)ε′|v′ − u|n−1

ε′nVol(Bn)(
√
n)n−1µ̂f (`i(Kε, u, ε′))|v′ − u|n−1

≥
f(v′)Vol(Qi,j ∩ b√εn1/4(v))

2ε′nVol(Bn)µ̂f (`i(Kε, u, ε′))|v′ − u|n−1
, (3.164)

where we have used the fact that the distance between adjacent Qi,j and Qi,j+1 can be bounded

from below by |Qi,j ∩ `i|/(1 + ε′/2) ≥ |Qi,j ∩ `i|/2.

Now we consider the integration in Qi,j ∩ b√εn1/4(v). We use f(v) to approximate f(v′)

which causes a relative error at most e
√
εn1/4 , and use |v′ − u|n−1 to approximate |x − u|n−1 for

all x ∈ Qi,j ∩ b√εn1/4(v) which causes a relative error at most e provided ε′ ≤
√
εn−3/4 (noting
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that the distance between x and u is at most
√
εn1/4). We have

∫
Qi,j∩b√εn1/4 (v)

f(x) dx

nVol(Bn)µf (u, x)|x− u|n−1

≤ 2e
√
εn1/4+2ε′+1f(v′)

ε′nVol(Bn)µ̂f (`i(Kε, u, ε′))|v′ − u|n−1

∫
Qi,j∩b√εn1/4 (v)

dx (3.165)

=
2e
√
εn1/4+2ε′+1f(v′)Vol(Qi,j ∩ b√εn1/4(v))

ε′nVol(Bn)µ̂f (`i(Kε, u, ε′))|v′ − u|n−1
, (3.166)

where the inequality follows from (3.163). Let i1, . . . , it be the indices such that Pij∩b√εn1/4(v) 6=

∅ for j ∈ [t]. We use
⋃
j∈[t] Pij∩b√εn1/4(v) as a partition to approximate b√εn1/4(v), which causes

a relative error at most (1 + ε)n for Vol(b√εn1/4(v)). We have

∫
b√
εn1/4 (v)

f(x) dx

µf (u, x)|x− u|n−1
≤ (1 + ε)n

∑
j∈[t]

∫
b√
εn1/4 (v)∩Pij

f(x) dx

µf (u, x)|x− u|n−1
.
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Hence,

(
√
ε)n

nn/4
P ′u(b√εn1/4(v))

=
2(
√
ε)n

n1+n/4Vol(Bn)

∫
b√
εn1/4 (v)

f(x) dx

µf (u, x)|x− u|n−1
(3.167)

≤ 2(
√
ε)n(1 + ε)n

nVol(Bn)

∑
j∈[t]

∫
b√
εn1/4 (v)∩Pij

f(x) dx

µf (u, x)|x− u|n−1
(3.168)

=
2(
√
ε)n(1 + ε)n

nVol(Bn)

∑
j∈[t]

∑
k∈[cij ]

∫
b√
εn1/4 (v)∩Qij ,k

f(x) dx

µf (u, x)|x− u|n−1
(3.169)

≤
∑
j∈[t]

∑
k∈[cij ]

4(1 + ε)ne
√
εn1/4+2ε′+1(

√
ε)nf(v′)Vol(Qi,j ∩ b√εn1/4(v))

ε′nVol(Bn)µ̂f (`ij(Kε, u, ε′))|u− v′|n−1
(3.170)

≤ 4(1 + ε)ne
√
εn1/4+2ε′+1

∑
j∈[t]

∑
k∈[cij ]

2εn−1(
√
ε)nf(v′)

nVol(Bn)(
√
n)n−1µ̂(`ij(Kε, u, ε′))

(3.171)

= 4(1 + ε)ne
√
εn1/4+2ε′+1Puv ≤ e5+2ε′Puv, (3.172)

where the last inequality holds when ε ≤ 1/n.

For u ∈ Kε and v ∈ K√εn1/4 , we approximate
∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) by εnPuv.

Note that for all u′ ∈ bε(u), we have |u′ − v|n ≤ e|u− v|n. Also, the lengths of `uv and `u′v can

differ by at most a factor of 2. As a result, π̂f (`u′v(Kε, u, ε
′) ≤ 2π̂f (`uv(Kε, u

′, ε′). It follows that

Puv ≥ Pu′v/(2e). Therefore,

∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) ≤
∫
x∈bε(u)

2e5+2ε′nn/4

(
√
ε)n

Pxv dπf (x) (3.173)

≤ 2e5+2ε′+εnn/4

(
√
ε)n

Puvπ̂f (u)εn. (3.174)

Next, for the relationship between π̂f and πf , we consider the sets Kε ∩ K, Kε \ K, and
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K \ Kε separately. Without loss of generality, assume π̂f (S) ≤ π̂f (Kε \ S). We partition S as

S1 ∪ S2, where S1 = {x ∈ S : bε(x) ⊆ K} and S2 = S \ S1. We also define S1 :=
⋃
x∈S1

bε(x)

and S2 :=
⋃
x∈S2

bε(x). For S1, we use f(v) to approximate f(x) for all x ∈ bε(v); it follows that

π̂f (S1) ≤ e2επf (S1) and πf (S1) ≤ e2επ̂f (S1). (3.175)

For S2, we have

π̂f (S2) ≤ 2e2επf (S2 ∩K), (3.176)

so

π̂f (S) = π̂f (S1) + π̂f (S2) (3.177)

≤ e2επf (S1) + 2e2επf (S2 ∩K) ≤ 3πf (K ∩ S). (3.178)

Now we bound the numerator of the conductance:
∑

u∈S

∑
v∈Kε\S Puvπ̂f (u). For u ∈ S

and v ∈ K \ S, we consider four cases. First, when bε(u), bε(v) ⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b
√
εn1/4(v)) dπf (x). (3.179)
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Second, when bε(u) ⊆ K and bε(v) 6⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) (3.180)

≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b
√
εn1/4(v) ∩K) dπf (x). (3.181)

Third, when bε(u) 6⊆ K and bε(v) ⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b
√
εn1/4(v)) dπf (x) (3.182)

≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)∩K

P ′u(b
√
εn1/4(v)) dπf (x). (3.183)

Fourth, when bε(u) 6⊆ K and bε(v) 6⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b
√
εn1/4(v)) dπf (x) (3.184)

≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)∩K

P ′u(b√εn1/4(v) ∩K) dπf (x). (3.185)

We also need to consider the set K \ Kε. There exists a small subset E ⊆ K \ Kε such that

πf (E) ≤ επf (S). We need to consider the transition from E to⊆ K\Kε\E: we have
∫
x∈E

P ′x(K\

Kε \ E) dπf (x) ≤ πf (E) ≤ επf (S). Putting everything together, we have

∑
u∈S

∑
v∈Kε\S

Puvπ̂f (u) +

∫
x∈E∩K

P ′x(K \Kε \ E) dπf (x)

≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x), (3.186)
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which further implies that

∑
u∈S

∑
v∈Kε\S

Puvπ̂f (u) ≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x)− επf (S)

≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x)− εeεπ̂f (S). (3.187)

By Proposition 3.2.3, we have

φ(S) =

∑
u∈S

∑
v∈Kε\S Puvπ̂f (u)

π̂f (S)
(3.188)

≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x)

π̂f (S)
− ε

2e4+2ε′
(3.189)

≥ 1

6e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x)

πf (S ∩K) + πf (E)
− ε

2e5+2ε′
(3.190)

≥ 1

1014e5+2ε′+εn
√
n ln( n

√
n

πf (S∩K)
)
− ε

2e5+2ε′
(3.191)

≥ 1

1014e5+2ε′+εn
√
n ln( n

√
n

(1−e−ε/2)eεπ̂f (S)
)
− ε

2e5+2ε′
, (3.192)

where the third inequality follows from (3.178). The above inequality can then be simplified to

φ(S) ≥ 1

1016n
√
n ln(2n

√
n

π̂f (S)
)
− ε, (3.193)

which is exactly the claim in Theorem 3.5.1.

The mixing time for the discrete hit-and-run walk can be bounded by the following corollary.

Corollary 3.5.1. Let Kε be the discretization of convex body K that contains a unit ball and
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is contained in a ball with radius R ≤
√
n. Let the density function be f(x) = e−a

T x having

support K where a = (1, 0, . . . , 0). Let ε′ ≤
√
εn−3/4. Let the initial distribution be σ and the

distribution after m steps be σm. If
∑

x∈Kε

σ(x)
π̂f (x)

σ(x) ≤M then, after

m ≥ 1033n3 ln2 Mn
√
n

ε
ln
M

ε
(3.194)

steps, we have dTV(σm, π̂f ) ≤ ε.

Proof. First note that, since
∑

x∈Kε

σ(x)
π̂f (x)

σ(x) ≤ M , the set S = {x : σ(x)
π̂f (X)

> 2M
ε
} has measure

σ(S) ≤ ε/2. Then a random point in Kε can be thought of as being generated with probability 1−

ε/2 from a distribution σ′ satisfying σ′(S′)
π̂f (S′)

≤ 2M/ε for any subset S′ ⊆ Kε and with probability

ε/2 from some other distribution. As a consequence of Theorem 3.5.1, for any such subset S′

with π̂f (S′) = p, the conductance of S′ is at least

Φp =
1

1016n
√
n ln(2n

√
n/p)

− ε. (3.195)

For the purpose of analysis, we use p = ε2

8M
. When ε is reasonably small (say, ε ≤ 1

2·1016n
√
n ln(Mn

√
n/ε)

),

the ε term in the conductance bound can be ignored with an additional 1/2 factor. Then we have

Φp ≥ 1
2·1016n

√
n ln(2n

√
n/p)

. By the condition that σ′(S′) ≤ (2M/ε)π̂f (S
′), as well as the way a

random point in Kε is generated, Proposition 3.2.2 implies that

dTV(σ(m), π̂f ) ≤
ε

2
+
(

1− ε

2

)( ε
2

+
4M

ε

(
1−

Φ2
p

2

)m)
. (3.196)

Therefore, after the claimed number of steps, the total variation distance is at most ε.
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As the uniform distribution is a special case of a log-concave distribution, the proof of

Theorem 3.5.1 also applies to this case. More specifically, we use Proposition 3.2.4 in (3.191),

which yields the following stronger corollary.

Corollary 3.5.2. Let Kε be the discretization of a convex body K that contains a unit ball and is

contained in a ball with radius R ≤
√
n. Let ε′ ≤

√
εn−3/4. The conductance of the hit-and-run

walk in Kε with uniform distribution satisfies

φ ≥ 1

226n
√
n
− ε. (3.197)

Note that Corollary 3.5.2 is stronger than Theorem 3.5.1 because (3.197) is independent of S ⊆

Kε. This corollary is informative and is not used in this paper.

3.5.3 Implementing the quantum walk operators

We now describe how to implement the discretized quantum walk. Following (3.2), consider

a convex body K such that B2(0, r) ⊆ K ⊆ B2(0, R). Each stage of the volume estimation

algorithm involves a hit-and-run walk over the convex body with target density e−ax0 . In order

to use techniques from [78] to obtain a speedup in mixing time, we implement the quantum walk

operator W corresponding to an ε-discretized version of this walk Algorithm 10.

Let |x〉 be the register for the state of the walk, and U be a unitary that satisfies U |x〉|0〉 =

|x〉|px〉 for all |x〉 (recall that |px〉 =
∑

y∈Kε

√
px→y|y〉 where px→y is the probability of a

transition from x to y). Since the state of the hit-and-run walk is given by points on an ε-grid that

can be restricted to B2(0, R), there are
(

2R
ε

)n possible values of x and thus |x〉 can be represented

using n log
(

2R
ε

)
qubits. In the rest of the section, we abuse notation by letting x refer to both a
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point on the grid and its corresponding bit representation. Then the quantum walk operator [78]

can be realized as

W ′ = U †SURAU
†SURA (3.198)

where RA is the reflection around the subspace A = span{|x〉|0〉 | x ∈ Kε} and S is the swap

operator. It thus remains to implement the operator U .

Continuous case We first explain a continuous version of the implementation before explaining

how it can be discretized. Given an input |x〉, consider n real ancilla registers, each in the

state
∫ 1

0
|z〉 dz. Given a pair of uniformly distributed random variables ξ1, ξ2, the Box-Muller

transform

φ1 =
√
−2δ2 ln ξ1 cos 2πξ2 (3.199)

φ2 =
√
−2δ2 ln ξ1 sin 2πξ2 (3.200)

yields two variables φ1, φ2 that are distributed according to a univariate normal distribution with

mean 0 and variance δ2. Thus applying the unitary mapping

|ξ1〉|ξ2〉 7→
∣∣√−4 ln ξ1 cos 2πξ2

〉∣∣√−4 ln ξ1 sin 2πξ2

〉
(3.201)

to
∫ 1

0
|z〉 dz ⊗

∫ 1

0
|z〉 dz yields the state

∫
R

1√
4π
e−z

2/4|z〉 dz ⊗
∫
R

1√
4π
e−z

2/4|z〉 dz. With n such

registers, we have the state

∫
Rn

1√
4π
e−(

∑n
i=1 z

2
i /4)|z〉 dz. (3.202)
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We now compute the unit vector (direction) corresponding to each x in a different ancilla register,

and uncompute the Gaussian registers. Since 1√
4π
e−(

∑n
i=1 x

2
i /4) is independent of the direction of

the vector z, we obtain a uniform distribution over all the directions on the n-dimensional sphere

Sn given by

√
nπn/2

Γ
(
n+ 1

2

) ∫
Sn
|u〉 du. (3.203)

Corresponding to each direction u, the line {x+ tu : t ∈ R} intersects the convex body K at two

points with parameters t1, t2. These points as well as the length l(u) = |t1−t2| can be determined

within error ε using O(log 1
ε
) calls to the membership oracle. We must now map each direction

|u〉 to a superposition proportional to
∫ t2
t1
ea

T (x+tu)/2|x + tu〉 dt =
∫ t2
t1
ea0(x0+tu0)/2|x + tu〉 dt.

Since the exponential distribution is efficiently integrable, this can be easily effected by making

a variable change starting from the state
∫ 1

0
|z〉 dz. The normalization factor is

A :=

√
a0u0

e−a0x0(e−a0t1 − e−a0t2)
. (3.204)

Consider the variable change f : [0, 1] → [t1, t2] such that df−1(t)
dt

= Aea0(x0+tu0)/2, f(0) = t1,

f(1) = t2. Applying f to
∫ 1

0
|z〉 dz produces

∫ t2
t1
Aea0(x0+tu0)/2|t〉 dt, which can be transformed

to
∫ t2
t1
ea0(x0+tu0)/2|x+ tu〉 dt with an operation controlled on the input register x. This produces

the appropriate superposition over points corresponding to each direction.

Discrete case The operator U can be implemented in a discrete setting using a similar process

to the continuous case with two main changes:

• Instead of a continuous uniform variable
∫ 1

0
|z〉 dz we use a discrete uniform distribution.
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We can create a uniform distribution on a grid with spacing ε as follows. We take n sets of

ancilla registers, each consisting of log (1/ε) registers initialized to the state 0. We apply

Hadamard gates to each of these registers, giving the superposition
⊗n

i=1

√
ε
∑1/ε−1

zi=0 |zi〉.

Each |z〉 can be mapped to |zε〉, producing the required uniform distribution over the grid.

• Applying a bijective mapping to a discrete uniform distribution simply relabels the states,

so the change of variable methods used in the continuous setting cannot be used to construct

the Gaussian and exponential superpositions. We use instead the Grover-Rudolph method

[121] that prepares states with amplitudes corresponding to efficiently integrable probability

distributions. Exponential distributions can be analytically integrated, and an n-dimensional

Gaussian variable is a product of n univariate standard normal distributions, each of which

can be efficiently integrated by Monte Carlo methods.

Given a point u ∈ Kε and a line l(u, ε) to be approximately uniformly sampled, we determine

the range of points in l(Kε, u, ε
′) using binary search with the membership oracle and prepare an

exponential superposition as described above. We apply a unitary mapping to compute the closest

point v′′ ∈ K√εn1/4 . Finally, corresponding to each point v′′, we generate a uniform distribution

over an ε grid in b√εn1/4 ∩ (Rn)ε by applying the Hadamard transform to log(n1/4/
√
ε) qubits.

Overall, this implementation of the discretized quantum hit-and-run walk operator gives

the following.

Theorem 3.5.2. The gate complexity of implementing an operator Ũ such that ‖Ũ − U‖ =

O(ε) where U |x〉|0〉 = |x〉
∑

y∈Kε

√
px→y|y〉 is Õ

(
n log

(
1
ε

))
. The correspondsing quantum walk

operator W can be implemented using a constant number of calls to U .
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3.6 Quantum lower bounds for volume estimation

3.6.1 A quantum lower bound in n

In this subsection, we prove the following quantum query lower bound in n for volume

estimation:

Theorem 3.6.1. Suppose 0 < ε <
√

2 − 1. Estimating the volume of K with multiplicative

precision ε requires Ω(
√
n) quantum queries to the membership oracle OK defined in (4.8).

Proof. We prove Theorem 3.6.1 by reduction from the Hamming weight problem. In [92] by

Nayak and Wu, it is shown that if we are given an oracle Os : |i, b〉 7→ |i, b⊕ si〉 for an input n-bit

string s = (s1, . . . , sn) ∈ {0, 1}n, and given the promise that the Hamming weight of s is either

0 or 1, it takes Ω(
√
n) quantum queries to decide which is the case.

To establish an Ω(
√
n) lower bound for volume estimation, for an n-bit string s ∈ {0, 1}n

with Hamming weight |s|Ham ≤ 1, we consider the convex body K =×n

i=1
[0, 2si ]. The volume

of K is 2|s|Ham ∈ {1, 2}, and membership in K is determined by the function

MEMs(x) :=


1 if for each i ∈ [n], 0 ≤ xi ≤ 2si ,

0 otherwise.

(3.205)

The corresponding membership oracle OK (defined in (4.8)) can be simulated by querying Os

using Algorithm 11.

We now prove that for any positive integer k and s ∈ {0, 1}n with |s|Ham ≤ 1, if there is a k-

query algorithm that computes the volume with access to MEMs, then there is a k-query algorithm
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Algorithm 11: Simulating MEMs with one query to Os.
Input: A vector x = (x1, . . . , xn) ∈ Rn.
Output: MEMs(x).

1 for i = 1, . . . , n do
2 if xi > 2 or xi < 0 then
3 Return 0;

4 Set yi = 1 if xi > 1 and 0 otherwise;

5 if |y|Ham > 1 then
6 Return 0;
7 else
8 if |y|Ham = 1 then
9 Find i such that yi = 1. Return Os(i);

10 else
11 Return 1;

for deciding whether |s|Ham > 0 with access to Os. We first show that Algorithm 11 simulates

the oracle MEMs. In the for loop of Line 1, we know that yi = 1 if and only if 1 < xi ≤ 2, which

is inside the convex body if si = 1. The case |y|Ham > 1 implies that there exist two distinct

coordinates i, j such that xi, xj > 1, which implies that x lies outside the convex body. Now we

are left with the cases |y|Ham = 1 or 0. In Line 9, yi = 1 implies 1 < xi ≤ 2, which lies in the

convex body if and only if si = Os(i) = 1. Also, |y| = 0 implies that for every coordinate i,

0 ≤ xi ≤ 1, which lies in the body for all s.

Finally, if there is a k-query algorithm that computes an estimate Ṽol(K) of the volume of

K up to multiplicative precision 0 < ε <
√

2 − 1, then s = dlog2 Ṽol(K)c where d·c returns the

nearest integer. This immediately gives a k-query algorithm that decides whether |s|Ham = 0 or

1. Since there is an Ω(
√
n) quantum query lower bound for this task, the Ω(

√
n) lower bound on

volume estimation follows.

Remark 3.6.1. The proof of Theorem 3.6.1 has similarity to [79, Section 5].
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3.6.2 An optimal quantum lower bound in 1/ε

In this subsection, we prove:

Theorem 3.6.2. Suppose 1/n ≤ ε ≤ 1/3. Estimating the volume of K with multiplicative

precision ε requires Ω(1/ε) quantum queries to the membership oracle OK defined in (4.8).

Comparing with Theorem 4.1.1, this shows that our quantum algorithm for volume estimation

is optimal in 1/ε up to poly-logarithmic factors.

The proof constructs a convex body whose volume encodes the Hamming weight of a

string. A membership oracle for this convex body can be implemented by querying the bits

of the string. Then the tight lower bound of Nayak and Wu on the quantum query complextiy

of approximating the Hamming weight [92] implies a lower bound on the query complexity of

volume estimation.

We construct the convex body by attaching hyperpyramids to the faces of the n-dimensional

unit hypercube. The axis of each hyperpyramid is aligned with the axis of the face of the

hypercube it corresponds to, and the height of the hyperpyramid is 1/2. More concretely, if

the unit hypercube is Hn := [−1/2, 1/2]n, then the two hyperpyramids on the face perpendicular

to the ith axis are

Pi,+ :=
{
x : xi ≥ 1/2, |xk|+ |xi| ≤ 1 ∀ k ∈ [n]/{i}

}
; (3.206)

Pi,− :=
{
x : xi ≤ −1/2, |xk|+ |xi| ≤ 1 ∀ k ∈ [n]/{i}

}
. (3.207)
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Figure 3.8: The convex body C3.

We denote the convex body with all hyperpyramids attached by

Cn := Hn ∪
( n⋃
i=1

(Pi,+ ∪ Pi,−)
)
. (3.208)

For illustration, the 3-dimensional convex body C3 is shown in Figure 3.8.

We first prove:

Lemma 3.6.1. Cn is convex for all n ∈ N.

Proof. It suffices to show that if x, y ∈ Cn and α ∈ [0, 1], then αx+ (1−α)y ∈ Cn. We consider

three cases:

Case 1: x, y ∈ Hn This case is straightforward as Hn is convex, hence αx+ (1− α)y ∈ Hn ⊂

Cn.

Case 2: x ∈
⋃n
i=1(Pi,+ ∪ Pi,−), y ∈ Hn Let i∗ ∈ [n] such that x ∈ Pi∗,+ ∪ Pi∗,−. Then by

(3.206) and (3.207), |xi∗| ≥ 1/2 and |xi| + |xi∗| ≤ 1 ∀i ∈ [n] \ {i∗}, which implies |xi| ≤
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1/2 ∀i ∈ [n] \ {i∗}. Also note that y ∈ Hn implies |yi| ≤ 1/2 ∀i ∈ [n]. Therefore,

|αxi + (1− α)yi| ≤ α|xi|+ (1− α)|yi| ≤
α

2
+

1− α
2

=
1

2
∀ i ∈ [n]/{i∗}. (3.209)

If |αxi∗ + (1−α)yi∗| ≤ 1/2, then αx+ (1−α)y ∈ Hn ⊆ Cn. If |αxi∗ + (1−α)yi∗| > 1/2, then

|αxi∗ + (1− α)yi∗ |+ |αxi + (1− α)yi| ≤ α(|xi∗|+ |xi|) + (1− α)(|yi∗|+ |yi|) (3.210)

≤ α + (1− α) = 1 ∀ i ∈ [n] \ {i∗}. (3.211)

Therefore, by (3.206) and (3.207) we have αx+ (1− α)y ∈ Pi∗,+ ∪Pi∗,− ⊂ Cn. In any case, we

always have αx+ (1− α)y ∈ Cn.

Case 3: x, y ∈
⋃n
i=1(Pi,+ ∪ Pi,−) Let i∗, j∗ ∈ [n] such that x ∈ Pi∗,+ ∪ Pi∗,− and y ∈ Pj∗,+ ∪

Pj∗,−. If i∗ = j∗, the proof is identical to that of Case 2 and we omit the details here. It remains

to consider the case i∗ 6= j∗. Then we have |xi|, |yi| ≤ 1/2 ∀i ∈ [n] \ {i∗, j∗}. In addition,

|αxi∗ + (1− α)yi∗|+ |αxj∗ + (1− α)yj∗| ≤ α(|xi∗ |+ |xj∗ |) + (1− α)(|yj∗|+ |yi∗|)

≤ α + (1− α) = 1 (3.212)

by (3.206) and (3.207). This means that at most one of |αxi∗+(1−α)yi∗| and |αxj∗+(1−α)yj∗|

can be more than 1/2. If neither of them is more than 1/2, then αx + (1 − α)y ∈ Hn ⊂ Cn. If

exactly one of them is more than 1/2, say |αxi∗+(1−α)yi∗| > 1/2 and |αxj∗+(1−α)yj∗| ≤ 1/2,

then αx+ (1−α)y ∈ Pi∗,+∪Pi∗,− ⊂ Cn. In any case, we always have αx+ (1−α)y ∈ Cn.

We use the following lower bound on the quantum query complexity of approximating the
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Hamming weight:

Proposition 3.6.1 ([92]). Suppose we are given the quantum oracle Os|i〉|0〉 = |i〉|si〉 ∀i ∈ [n]

for some s ∈ {0, 1}n. Let 0 ≤ l < l′ ≤ n be two integers, ∆ = |l − l′|, and m ∈ {l, l′} such

that |n
2
− m| is maximized. Then the quantum query complexity of determining whether s has

Hamming weight at most l or at least l′ is Θ(
√
n/∆ +

√
m(n−m)/∆).

Now we can prove Theorem 3.6.2.

Proof. Given a binary string s ∈ {0, 1}n, we consider the convex body

Cs := Hn ∪
( ⋃
i : si=1

(Pi,+ ∪ Pi,−)
)
. (3.213)

By Lemma 3.6.1 and the fact that each hyperpyramid is the intersection of Cn and the convex

spaces {x : xi ≥ 1/2} or {x : xi ≥ 1/2}, Cs is also convex. Furthermore, a query to the

membership oracle in (4.8) for Cs can be implemented using one query to the binary string oracle

Os: queries to points outside Cn or inside Hn are trivially answered with 0 and 1, respectively,

whereas queries to points in Pi,+ ∪ Pi,− should return si. Also note that for each i ∈ [n], the

volume of the hyperpyramid Pi,+ is

Vol(Pi,+) =

∫ 1/2

0

(1− 2t)n−1dt =
1

2n
(3.214)

since the intersection of Pi,+ and {x : xi = 1/2 + t} is an (n − 1)-dimensional hypercube with

side-length 1 − 2t and hence volume (1 − 2t)n−1. By symmetry, we also have Vol(Pi,−) = 1
2n

.

189



Therefore

Vol(Cs) = Vol(Hn) +
∑
i:si=1

(
Vol(Pi,+) + Vol(Pi,−)

)
(3.215)

= 1 + |s|Ham ·
2

2n
= 1 +

|s|Ham

n
. (3.216)

In other words, estimating the volume of Cs with multiplicative error ε is equivalent to the

Hamming distance problem with ∆ = 4εn. Taking m = n
2

+ ∆ in Proposition 3.6.1, we find that

the quantum query complexity of estimating the volume of Cs is at least

Ω
(√ n

εn
+

√
n2/4− ε2n2

εn

)
= Ω

(1

ε

)
(3.217)

for any 1/n ≤ ε ≤ 1/3.

Remark 3.6.2. The same proof strategy implies a classical lower bound of Ω(1/ε2) for volume

estimation if we replace Proposition 3.6.1 by its folklore classical counterpart. In particular,

this shows that our quantum algorithm in Theorem 4.1.1 achieves a provable quadratic quantum

speedup in 1/ε.

Remark 3.6.3. Although the proofs of both theorems consider well-rounded convex bodies, this

assumption can be simply waived by assuming known multiplicative rescaling factors c1, . . . , cn

along all the n directions. The proofs follow from the same arguments.
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Chapter 4: Sublinear Quantum Algorithms for Linear Classification via Matrix

Games

In this section we first present a sublinear algorithm with quantum speedup for linear

classification and some associated problems. We then view this problem as a matrix game and

extend our algorithms to more general matrix games; with applications to problems such as the

well known caratheodory problem. The results discussed here were first established in [26] and

[27].

4.1 Introduction

Motivations. Classification is a fundamental problem of supervised learning, which takes a

training set of data points of known classes as inputs and aims to training a model for predicting

the classes of future data points. It is also ubiquitous due to its broad connections and applications

to computer vision, natural language processing, statistics, etc.

A fundamental case of classification is linear classification, where we are given n data

points X1, . . . , Xn in Rd and a label vector y ∈ {−1, 1}n. The goal is to find a separating

hyperplane, i.e., a unit vector w in Rd, such that

yi ·X>i w ≥ 0 ∀ i ∈ [n]. (4.1)
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By taking Xi ← (−1)yiXi, it reduces to a maximin problem, i.e., maxw miniX
>
i w ≥ 0. The

approximation version of linear classification is to find a unit vector w̄ ∈ Rd so that

X>i w̄ ≥ max
w∈Rd

min
i′∈[n]

X>i′ w − ε ∀ i ∈ [n], (4.2)

i.e., w̄ approximately solves the maximin problem. More generally, we can regard a (nonlinear)

classifier as a kernel-based classifier by replacing Xi by Ψ(Xi) (Ψ being a kernel function). We

will focus on algorithms finding approximate classifiers (in the sense of (4.2)) with provable

guarantees.

The Perceptron Algorithm for linear classification is one of the oldest algorithms studied in

machine learning [124, 125], which runs in timeO(nd/ε2) for finding an w̄ ∈ Rd satisfying (4.2).

The state-of-the-art classical result along this line [126] solves linear classification in time Õ((n+

d)/ε2). A careful reader might notice that the input to linear classification is n d-dimensional

vectors with total size O(nd). Hence, the result of [126] is sub-linear in its input size. To make

it possible, [126] assumes the following entry-wise input model:

Input model: given any i ∈ [n] and j ∈ [d], the j-th entry of Xi can be recovered in O(1) time.

The output of [126] is an efficient classical representation of w̄ in the sense that every entry

of w̄ can be recovered with Õ(1) cost. It is no surprise that w̄ per se gives such a representation.

However, there could be more succinct and efficient representations of w̄, which could be reasona-

ble alternatives of w̄ for sub-linear algorithms that run in time less the dimension of w̄ (as we will

see in the quantum case). The complexity of [126] is also optimal (up to poly-logarithmic factors)
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in the above input/output model as shown by the same paper.

Recent developments in quantum computation, especially in the emerging topic of “quantum

machine learning” (see the surveys [127, 128, 129]), suggest that quantum algorithms might

offer significant speed-ups for optimization and machine learning problems. In particular, a

quantum counterpart of the Perceptron algorithm has been proposed in [130] with improved

time complexity from O(nd/ε2) to Õ(
√
nd/ε2) (details in related works). Motivated both by the

significance of classification and the promise of quantum algorithms, we investigate the optimal

quantum algorithm for classification. Specifically, we aim to design a quantum counterpart of

[126].

It is natural to require that quantum algorithms make use of the classical input/output

model as much as possible to make the comparison fair. In particular, it is favorable to avoid

the use of too powerful input data structure which might render any finding of quantum speedup

inconclusive, especially in light of a recent development of quantum-inspired classical machine

learning algorithms (e.g., [131]). Our choice of input/output models for quantum algorithms is

hence almost the same as the classical one, except we allow coherent queries to the entries of Xi:

Quantum input model: given any i ∈ [n] and j ∈ [d], the j-th entry of Xi can be recovered in

O(1) time coherently.

Coherent queries allow the quantum algorithm to query many locations in super-position,

which is a standard assumption that accounts for many quantum speed-ups (e.g., Grover’s algorithm

[132]). A more precise definition is given in Section 4.2.

On the other side, our output is exactly the same as classical algorithms, which guarantees

no overhead when using our quantum algorithms as subroutines for any applications.
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Contributions. Our main contribution is a tight characterization (up to poly-log factors) of

quantum algorithms for various classification problems in the aforementioned input/output model.

Theorem 4.1.1 (Main theorem). Given ε = Θ(1), we have quantum algorithms that return an

efficient representation of w̄ ∈ Bd for the following problems1, respectively, with complexity

Õ(
√
n+
√
d) and high success probability:

• Linear classification (Section 4.3):

min
i∈[n]

X>i w̄ ≥ max
w∈Bd

min
i∈[n]

X>i w − ε. (4.3)

• Kernel-based classification (Section 4.4.1):

min
i∈[n]
〈Ψ(Xi), w̄〉 ≥ max

w∈Bd
min
i∈[n]
〈Ψ(Xi), w〉 − ε, (4.4)

where k(a, b) := 〈Ψ(a),Ψ(b)〉 can be the polynomial kernel kq(a, b) = (a>b)q or the Gaussian

kernel kGauss(a, b) = exp(−‖a− b‖2).

• Minimum enclosing ball (Section 4.4.2.1):

max
i∈[n]
‖w̄ −Xi‖2 ≤ min

w∈Rd
max
i∈[n]
‖w −Xi‖2 + ε. (4.5)

• `2-margin SVM (Section 4.4.2.2):

min
i∈[n]

(X>i w̄)2 ≥ max
w∈Rd

min
i∈[n]

2X>i w − ‖w‖2 − ε. (4.6)

1Here Bd is the unit ball in Rd, i.e.,Bd :=
{
a ∈ Rd |

∑
i∈[d] |ai|2 ≤ 1

}
.
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On the other hand, we show that it requires Ω(
√
n+
√
d) queries to the quantum input model to

prepare such w̄ for these classification problems (Section 4.5).

Our matching upper and lower bounds
√
n +
√
d give a quadratic improvement in both n

and d comparing to the classical state-of-the-art results in [126].

Technically, our result is also inspired by the recent development of quantum semidefinite

program (SDP) solvers (e.g., [18]) which provide quantum speed-ups for approximating zero-sum

games for the purpose of solving SDPs. Note that such a connection was leveraged classically in

another direction in a follow-up work of [126] for solving SDPs [133]. However, our algorithm

is even simpler because we only use simple quantum state preparation instead of complicated

quantum operations in quantum SDP solvers; this is because quantum state preparation is a direct

counterpart of the `2 sampling used in [126] (see Section 4.3.1 for details). In a nutshell, our

result is a demonstration of quantum speed-ups for sampling-based classical algorithms.

Moreover, our algorithms are hybrid classical-quantum algorithms where the quantum part

is isolated pieces of state preparation connected by classical processing. In addition, special

instances of these state preparation might be physically realizable as suggested by some work-

in-progress [134]. All of the above suggest the possibility of implementing these algorithms on

near-term quantum machines [135].

In general, we deem our result as a proposal of one end-to-end quantum application in

machine learning, with both provable guarantees and the perspective of implementation (at least

in prototype) on near-term quantum machines.

Application to matrix zero-sum games. As a side result, our techniques can be applied to

solve matrix zero-sum games. To be more specific, the input of the zero-sum game is a matrix
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X ∈ Rn1×n2 and an ε > 0, and the goal is to find a ∈ Rn1 and b ∈ Rn2 such that2

a†Xb ≥ max
p∈∆n1

min
q∈∆n2

p†Xq − ε. (4.7)

If we are given the quantum input model of A, we could output such a and b as classical vectors3

with complexity Õ(
√
n1 + n2/ε

4) (see Theorem 4.4.3). When ε = Θ(1), our quantum algorithm

is optimal as we prove an Ω(
√
n1 + n2) quantum lower bound (see Theorem 4.5.3).

Related works. We make the following comparisons with existing literatures in quantum machine

learning.

• The most relevant result is the quantum perceptron models in [130]. The classical perceptron

method [124, 125] is a pivotal linear classification algorithm. In each iteration, it checks

whether (4.1) holds; if not, then it searches for a violated constraint i0 (i.e., yi0X
>
i0
w̄ < 0) and

update w̄ ← w̄ + Xi0 (up to normalization). This classical perceptron method has complexity

Õ(nd/ε2); the quantum counterpart in [130] improved the complexity to Õ(
√
nd/ε2) by applying

Grover search [132] to find a violated constraint. In contrast, we quantize the sublinear algorithm

for linear classification in [126] with techniques inspired by quantum SDP solvers [18]. As a

result, we establish a better quantum complexity Õ(
√
n+
√
d).

In addition, [130] relies on an unusual input model where a data point in Rd is represented by

concatenating the the binary representations of the d floating point numbers; if we were only

given standard inputs with entry-wise queries to the coordinates of data points, we need a cost

of Ω(d) to transform the data into their input form, giving the total complexity Õ(
√
nd).

2Here ∆n is the set of probability distributions on [n], i.e., ∆n :=
{
a ∈ Rn | ai ≥ 0 ∀ i ∈ [n],

∑
i∈[n] ai = 1

}
.

3In fact, x and y are classical vectors with succinct representations; see more details at Remark 4.4.1.
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The same group of authors also gave a quantum algorithm for nearest-neighbor classification

with complexity Õ(
√
n) [136]. This complexity also depends on the sparsity of the input data;

in the worst case where every data point has Θ(d) nonzero entries, the complexity becomes

Õ(
√
nd2).

• There have been rich developments on quantum algorithms for linear algebraic problems. One

prominent example is the quantum algorithm for solving linear systems [10, 20]; in particular,

they run in time poly(log d) for any sparse d-dimensional linear systems. These linear system

solvers are subsequently applied to machine learning applications such as cluster assignment

[137], support vector machine (SVM) [138], etc.

However, these quantum algorithms have two drawbacks. First, they require the input matrix

to be sparse with efficient access to nonzero elements, i.e., every row/column of the matrix

has at most poly(log d) nonzero elements and their indexes can be queried in poly(log d) time.

Second, the outputs of these algorithms are quantum states instead of classical vectors, and it

takes Ω(d) copies of the quantum state to reveal one entry of the output in the worst case. More

caveats are listed in [139].

In contrast, our quantum algorithms do not have the sparsity constraint and work for arbitrary

input data, and the outputs of our quantum algorithms are succinct but efficient classical repres-

entations of vectors in Rd, which can be directly used for classical applications.

• There are two lines of quantum machine learning algorithms with different input requirements.

One of them is based on quantum principal component analysis [140] and requires purely

quantum inputs.

Another line is the recent development of quantum-inspired classical poly-logarithmic time
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algorithms for various machine learning tasks such as recommendation systems [131], principal

component analysis [141], solving linear systems [142, 143], SDPs [144], and so on. These

algorithms follow a Monte-Carlo approach for low-rank matrix approximation [145] and assume

the ability to take samples according to the spectral norms of all rows. In other words, these

results enforce additional requirements on their input: the input matrix should not only be

low-rank but also be preprocessed as the sampling data structure.

• There are also a few heuristic quantum machine learning approaches for classification [12, 146,

147] without theoretical guarantees. We, however, look forward to further experiments based

on their proposals.

4.2 Preliminaries

Quantum oracle. Quantum access to the input data (referred as quantum oracles) needs to be

reversible and allows access to different parts of the input data in superposition (the essence of

quantum speed-ups). Specifically, to access elements in an n× d matrix X , we exploit an oracle

OX (a unitary on Cn ⊗ Cd ⊗ Cdacc) such that

OX(|i〉 ⊗ |j〉 ⊗ |z〉) = |i〉 ⊗ |j〉 ⊗ |z ⊕Xij〉 (4.8)

for any i ∈ [n], j ∈ [d] and z ∈ Cdacc such that Xij can be represented in Cdacc . Intuitively,

OX reads the entry Xij and stores it in the third register. However, to make OX reversible (and

unitary), OX applies the XOR operation (⊕) on the third register. Note that OX is a natural

unitary generalization of classical random access to X , or in cases when any entry of X can be
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efficiently read. However, it is potentially stronger when queries become linear combinations of

basis vectors, e.g.,
∑

k αk|ik〉 ⊗ |jk〉. This is technically how to make superposition of different

queries in quantum.

We summarize the quantum notations as follows.

Classical Quantum

Ket and bra ~ei and ~e>i |i〉 and 〈i|
Basis {~e0, . . . , ~ed−1} {|0〉, . . . , |d− 1〉}
State ~v = (v0, . . . , vd−1)> |v〉 =

∑d−1
i=0 vi|i〉

Tensor ~u⊗ ~v |u〉 ⊗ |v〉 or |u〉|v〉
Oracle w = (Xij)

n
i,j=1 OX |i〉|j〉|z〉 = |i〉|j〉|z ⊕Xij〉

Table 4.1: Summary of quantum notations used in this paper.

Quantum complexity measure. We assume that a single query to the oracle OX has a unit

cost. Quantum query complexity is defined as the total counts of oracle queries, and quantum

gate complexity is defined as the total counts of oracle queries and two-qubit gates.

Notations. Throughout this paper, we denote 1n to be the n-dimensional all-one vector, and

X ∈ Rn×d to be the matrix whose entry in the intersection of its ith row and j th column is Xi(j)

for all i ∈ [n], j ∈ [d]. Without loss of generality, we assume X1, . . . , Xn ∈ Bd, i.e., all the n

data points (also the n rows of X) are normalized to have `2-norm at most 1.

4.3 Linear classification

4.3.1 Techniques

At a high level, our quantum algorithm leverages ideas from both classical and quantum

algorithm design. We use a primal-dual approach under the multiplicative weight framework
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[148], in particular its improved version in [126] by sampling the update of weight vectors. An

important observation of ours is that such classical algorithms can be accelerated significantly

in quantum computation, which relies on a seminal technique in quantum algorithm design:

amplitude amplification and estimation [57, 132].

Multiplicative weight under a primal-dual approach. Note that linear classification is essent-

ially a minimax problem (zero-sum game); by strong duality, we have

σ = max
w∈Rd

min
p∈∆n

p>Xw = min
p∈∆n

max
w∈Rd

p>Xw. (4.9)

To find its equilibrium point, we adopt an online primal-dual approach with T rounds; at round

t ∈ [T ], the primal computes pt ∈ ∆n and the dual computes wt ∈ Rd, both based on pτ and wτ

for all τ ∈ [t − 1]. After T rounds, the average solution w̄ = 1
T

∑T
t=1wt approximately solves

the zero-sum game with high probability, i.e., minp∈∆n p
>Xw̄ ≥ σ − ε.

For the primal problem, we pick pt by the multiplicative weight (MW) method. Given a

sequence of vectors r1, . . . , rT ∈ Rn, MW sets w1 := 1n and for all t ∈ [T ], pt := wt/‖wt‖1 and

wt+1(i) := wt(i)fw(−ηrt(i)) for all i ∈ [n], where fw is a weight function and η is the parameter

representing the step size. MW promises an upper bound on
∑T

t=1 p
>
t rt, whose precise form

depends on the choice of the weight function fw. The most common update is the exponential

weight update: fw(x) = e−x [148], but in this paper we use a quadratic weight update suggested

by [126], where wt+1(i) := wt(i)(1−ηrt(i)+η2rt(i)
2). In our primal problem, we set rt = Xwt

for all t ∈ [T ] to find pt.

For the dual problem, we pick wt by the online gradient descent method [149]. Given a

200



set of vectors q1, . . . , qT ∈ Rd such that ‖qi‖2 ≤ 1. Let w0 := 0d, and yt+1 := wt + 1√
T
qt,

wt+1 := yt+1

max{1,‖yt+1‖} . Then

max
w∈Bd

T∑
t=1

q>t w −
T∑
t=1

q>t wt ≤ 2
√
T . (4.10)

This can be regarded as a regret bound, i.e.,
∑T

t=1 q
>
t wt has at most a regret of 2

√
T compared to

the best possible choice of w. In our dual problem, we set qt as a sample of rows of X following

the distribution pt.

This primal-dual approach gives a correct algorithm with only T = Õ(1/ε2) iterations.

However, the primal step runs in Θ(nd) time to compute Xwt. To obtain an algorithm that is

sublinear in the size of X , a key observation by [126] is to replace the precise computation of

Xwt by an unbiased random variable. This is achieved via `2 sampling of w: we pick jt ∈ [d]

by jt = j with probability wt(j)2/‖wt‖2, and for all i ∈ [n] we take ṽt(i) = Xi(jt)‖wt‖2/wt(jt).

The expectation of the random variable ṽt(i) satisfies

E[ṽt(i)] =
d∑
j=1

wt(j)
2

‖wt‖2

Xi(j)‖wt‖2

wt(j)
= Xiwt. (4.11)

In a nutshell, the update of weight vectors in each iteration need not to be precisely computed

because an `2 sample from w suffices to promise the provable guarantee of the framework. This

trick improves the running time of MW to O(n) and online gradient descent to O(d); since there

are Õ(1/ε2) iterations, the total complexity is Õ(n+d
ε2

) as claimed in [126].

Amplitude amplification and estimation. Consider a search problem where we are given a

function fω : [n] → {−1, 1} such that fω(i) = 1 iff i 6= ω. To search for ω, classically we need
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Ω(n) queries to fω as checking all n positions is the only method.

Quantumly, given a unitary Uω such that Uω|i〉 = |i〉 for all i 6= ω and Uω|ω〉 = −|ω〉,

Grover’s algorithm [132] finds ω with complexity Õ(
√
n). Denote |s〉 = 1√

n

∑
i∈[n] |i〉 (the

uniform superposition), |s′〉 = 1√
n−1

∑
i∈[n]/{ω} |i〉, and Us = 2|s〉〈s| − I , the unitary Uω reflects

a state with respect to |s′〉 and the unitary Us reflects a state with respect to |s〉. If we start with

|s〉 and denote θ = 2 arcsin(1/
√
n) (the angle between Uω|s〉 and |s〉), then the angle between

Uω|s〉 and UsUω|s〉 is amplified to 2θ, and in general the angle between Uω|s〉 and (UsUω)k|s〉 is

2kθ. To find ω, it suffices to take k = Θ(
√
n) in this quantum algorithm. See Figure 4.1 for an

illustration.

Figure 4.1: Geometric interpretation of Grover’s algorithm. This figure is copied from Wikipedia.

This trick of alternatively applying these two unitaries is called amplitude amplification; in

general, this provides a quadratic speedup for search problems. For the quantitative version of

estimating θ (not only finding ω), quadratic quantum speedup also holds via an improved version

of amplitude amplification called amplitude estimation [57].

Our main technical contribution is the implementations of amplitude amplification and

estimation in the primal-dual approach for solving minimax problems. On the one hand, we

achieve quadratic quantum speedup for multiplicative weight update, i.e., we improve the complexity
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from Õ(n) to Õ(
√
n). This is because the `2 sampling of w is identical to measuring the

quantum state |w〉 in the computational basis; furthermore, we prepare the state |w〉 by amplitude

amplification (see Section 4.3.2.1).4

On the other hand, we also achieve quadratic quantum speedup for online gradient descent

(improving Õ(d) to Õ(
√
d)). This is because the main cost of online gradient descent comes from

estimating the norms ‖yt‖, which can be regarded as an amplitude estimation problem; details

are given in Section 4.3.3.

Comparison between classical and quantum results. Although our quantum algorithms enjoy

quadratic speedups in n and d, their executions incur a larger dependence in ε: we have worst

case Õ
(√

n
ε4

+
√
d
ε8

)
compared to the classical complexity Õ

(
n
ε2

+ d
ε2

)
in [126]. The main reason of

having a larger ε-dependence in quantum is because we cannot prepare the weight states in MW

via those in previous iterations (i.e., the quantum state |wt〉 cannot be prepared by |wt−1〉), and

we have to start over every time; this is an intrinsic difficulty due to quantum state preparation.

Therefore, there is a trade-off between [126] and our results for arbitrary ε: we provide

faster training of the classifiers if we allow a constant error, while the classical algorithms in

[126] might work better if we require high-accuracy classifiers.

4.3.2 Quantum speedup for multiplicative weights

First, we give a quantum algorithm for linear classification with complexity Õ(
√
n):

Theorem 4.3.1. With success probability at least 2/3, Algorithm 12 returns a succinct classical

4Another common method to prepare quantum states is via quantum random access memory (QRAM). This is
incomparable to our approach because preparing the data structure for QRAM takes Ω(n) cost (though after that one
read takes Õ(1) cost). Here we use amplitude amplification for giving sublinear algorithms. See also Section 4.3.2.1.
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representation of a vector w̄ ∈ Rd such that

Xiw̄ ≥ max
w∈Bd

min
i′∈[n]

Xi′w − ε ∀ i ∈ [n], (4.12)

using Õ
(√

n
ε4

+ d
ε2

)
quantum gates.

Algorithm 12: Quantum linear classification algorithm.
Input: ε > 0, a quantum oracle OX for X ∈ Rn×d.
Output: w̄ that satisfies (4.12).

1 Let T = 232ε−2 log n, y1 = 0d, η =
√

logn
T

, u1 = 1n, |p1〉 = 1√
n

∑
i∈[n] |i〉;

2 for t = 1 to T do
3 Define5 wt := yt

max{1,‖yt‖} ;
4 Measure the state |pt〉 in the computational basis and denote the output as it ∈ [n];
5 Define yt+1 := yt + 1√

2T
Xit;

6 Choose jt ∈ [d] by jt = j with probability wt(j)2

‖wt‖2 ;

7 For all i ∈ [n], denote ṽt(i) = Xi(jt)
‖wt‖2
wt(jt)

, vt(i) = min{1/η,max{−1/η, ṽt(i)}},
and ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)

2). Implement a quantum oracle Ot such
that for all i ∈ [n], Ot|i〉|0〉 = |i〉|ut+1(i)〉 by Algorithm 14 in Section 4.3.2.2;

8 Prepare |pt+1〉 = 1
‖ut+1‖2

∑
i∈[n] ut+1(i)|i〉 by applying Algorithm 13 to Ot;

9 Return w̄ = 1
T

∑T
t=1wt;

Note that Algorithm 12 is inspired by the classical sublinear algorithm [126] by using

online gradient descent in Line 5 and `2 sampling in Line 6 and Line 7. However, to achieve the

Õ(
√
n) quantum complexity we use two quantum building blocks: a state preparation procedure

in Line 7, and an oracle implementation procedure in Line 8; their details are covered in ,

respectively. The full proof of Theorem 4.3.1 is given in Section 4.3.2.3.

5By defining wt here, we do not write down the whole vector but we construct any query to its entries in O(1)

time. For example, the ith coordinate of wt is wt(i) = yt(i)
max{1,‖yt‖} , constructed by one query to yt(i). The yt+1 in

Line 5 is defined in the same sense.
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4.3.2.1 Quantum state preparation with oracles

We use the following result for quantum state preparation (see, e.g., [150]):

Proposition 4.3.1. Assume that a ∈ Cn, and we are given a unitary oracleOa such thatO|i〉|0〉 =

|i〉|ai〉 for all i ∈ [n]. Then Algorithm 13 takes O(
√
n) calls to Oa for preparing the quantum

state 1
‖a‖2

∑
i∈[n] ai|i〉 with success probability 1−O(1/n).

Algorithm 13: Prepare a pure state given an oracle to its coefficients.
1 Apply Dürr-Høyer’s algorithm [151] to find amax := maxi∈[n] |ai| in O(

√
n) time;

2 Prepare the uniform superposition 1√
n

∑
i∈[n] |i〉;

3 Perform the following unitary transformations:

1√
n

∑
i∈[n]

|i〉 Oa7−→ 1√
n

∑
i∈[n]

|i〉|ai〉 7→
1√
n

∑
i∈[n]

|i〉|ai〉
( ai
amax

|0〉+

√
1− |ai|

2

a2
max

|1〉
)

O−1
a7−−→ 1√

n

∑
i∈[n]

|i〉|0〉
( ai
amax

|0〉+

√
1− |ai|

2

a2
max

|1〉
)

;

(4.13)

4 Delete the second system in Eq. (4.13), and rewrite the state as

‖a‖2√
namax

·
( 1

‖a‖2

∑
i∈[n]

ai|i〉
)
|1〉+ |a⊥〉|0〉, (4.14)

where |a⊥〉 := 1√
n

∑
i∈[n]

√
1− |ai|2

a2
max
|i〉 is a garbage state;

5 Apply amplitude amplification [57] for the state in (4.14) conditioned on the second
system being 1. Return the output;

Note that the coefficient in (4.14) satisfies ‖a‖2√
namax

≥ 1√
n

; therefore, applying amplitude

amplification for O(
√
n) times indeed promises that we obtain |1〉 on the second system with

success probability 1−O(1/n), i.e., the state 1
‖a‖2

∑
i∈[n] ai|i〉 is prepared in the first system.

Remark 4.3.1. Algorithm 13 is incomparable to state preparation via quantum random access
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memory (QRAM). QRAM relies on the weak assumption that we start from zero, and every added

datum is processed in poly-logarithmic time. In total, this takes at least linear time in the size of

the data (see, for instance, [22]). For the task of Proposition 4.3.1, QRAM takes at least Ω(n)

cost.

In this paper, we use the standard model where the input is formulated as an oracle, also

widely assumed and used in existing quantum algorithm literatures (e.g., [10, 18, 20, 132]).

Under the standard model, Algorithm 13 prepares states with only O(
√
n) cost.

Nevertheless, it is an interesting question to ask whether there is a poly(log(nd))-time

quantum algorithm for linear classification given the existence of a pre-loaded QRAM of X . This

would require the ability to take summations of the vectors 1√
2T
Xit in Line 5 of Algorithm 12 in

poly(log(nd))-time as well as the ability to update the weight state ut+1 in Line 8 in poly(log(nd))-

time, both using QRAM. These two tasks are plausible as suggested by classical poly-log time

sample-based algorithms for matrix arithmetics under multiplicative weight frameworks [144],

which can potentially be combined with the analysis of QRAM data structures in [22]; we leave

this possibility as an open question.

4.3.2.2 Implementation of the quantum oracle for updating the weight vectors

The quantum oracle Ot in Line 7 of Algorithm 12 is implemented by Algorithm 14. For

convenience, we denote clip(v, 1/η) := min{1/η,max{−1/η, v}} for all v ∈ R.

Because we have stored ws and js, we could construct classical oracles Os,j(0) = js,

Os,w(js) = ‖ws‖2
ws(js)

with O(1) complexity. In the algorithm, we first call Os,j to compute js and

store it into the second register in (4.15). In (4.16), we call the quantum oracle OX for the value
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Algorithm 14: Quantum oracle for updating the weight state.
Input: w1, . . . , wt ∈ Rd, j1, . . . , jt ∈ [d].
Output: An oracle Ot such that Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all i ∈ [n].

1 Define three classical oracles: Os,j(0) = js, Os,w(js) = ‖ws‖2
ws(js)

, and
Oclip(a, b, c) = c ·

(
1− η clip(ab, 1/η) + η2 clip(ab, 1/η)2

)
;

2 for s = 1 to t do
3 Perform the following maps:

|i〉|0〉|0〉|0〉|us(i)〉
Os,j7−−→ |i〉|js〉|0〉|0〉|us(i)〉 (4.15)
OX7−−→ |i〉|js〉|Xi(js)〉|0〉|us(i)〉 (4.16)
Os,w7−−→ |i〉|js〉|Xi(js)〉

∣∣∣ ‖ws‖2

ws(js)

〉
|us(i)〉 (4.17)

Oclip7−−→ |i〉|js〉|Xi(js)〉
∣∣∣ ‖ws‖2

ws(js)

〉
|us+1(i)〉 (4.18)

O−1
s,w7−−→ |i〉|js〉|Xi(js)〉|0〉|us+1(i)〉 (4.19)

O−1
X7−−→ |i〉|js〉|0〉|0〉|us+1(i)〉 (4.20)

O−1
s,j7−−→ |i〉|0〉|0〉|0〉|us+1(i)〉. (4.21)
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Xi(js), which is stored into the third register. In (4.17), we call Os,w to compute ‖ws‖
2

ws(js)
and store

it into the fourth register. In (4.18), because we have Xi(js) and ‖ws‖2
ws(js)

at hand, we could use

Õ(1) arithmetic computations to compute ṽs(i) = Xi(js)‖ws‖2/wt(js) and

us+1(i) = us(i)
(
1− η clip(ṽs(i), 1/η) + η2 clip(ṽs(i), 1/η)2

)
. (4.22)

We then store us+1(i) into the fifth register. In (4.19), (4.20), and (4.21), we uncompute the

steps in (4.17), (4.16), and (4.15), respectively (we need these steps in Algorithm 14 to keep its

unitarity).

In total, between (4.15)-(4.21) we use 2 queries to OX and Õ(1) additional arithmetic

computations. Because s goes from 1 to t, in total we use 2t queries to OX and Õ(t) additional

arithmetic computations.

4.3.2.3 Proof of Theorem 4.3.1

To prove Theorem 4.3.1, we use the following five lemmas proved in [126] for analyzing

the online gradient gradient descent and `2 sampling outcomes:

Lemma 4.3.1 (Lemma A.2 of [126]). The updates of w in Line 3 and y in Line 5 satisfy

max
w∈Bn

∑
t∈[T ]

Xitw ≤
∑
t∈[T ]

Xitwt + 2
√

2T . (4.23)

Lemma 4.3.2 (Lemma 2.3 of [126]). For any t ∈ [T ], denote pt to be the unit vector in Rn such
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that (pt)i = |〈i|pt〉|2 for all i ∈ [n]. Then the update for pt+1 in Line 8 satisfies

∑
t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + η
∑
t∈[T ]

p>t v
2
t +

log n

η
, (4.24)

where v2
t is defined as (v2

t )i := (vt)
2
i for all i ∈ [n].

Lemma 4.3.3 (Lemma 2.4 of [126]). With probability at least 1−O(1/n),

max
i∈[n]

∑
t∈[T ]

[
vt(i)−Xiwt

]
≤ 4ηT. (4.25)

Lemma 4.3.4 (Lemma 2.5 of [126]). With probability at least 1−O(1/n),

∣∣∣∑
t∈[T ]

Xitwt −
∑
t∈[T ]

p>t vt

∣∣∣ ≤ 10ηT. (4.26)

Lemma 4.3.5 (Lemma 2.6 of [126]). With probability at least 3/4,

∑
t∈[T ]

p>t v
2
t ≤ 8T. (4.27)

Proof. We first prove the correctness of Algorithm 12. By Lemma 4.3.1, we have

∑
t∈[T ]

Xitwt ≥ max
w∈Bn

∑
t∈[T ]

Xitw − 2
√

2T ≥ Tσ − 2
√

2T . (4.28)

On the other hand, Lemma 4.3.3 implies that for any i ∈ [n],

∑
t∈[T ]

Xiwt ≥
∑
t∈[T ]

vt(i)− 4ηT. (4.29)

209



Together with Lemma 4.7.1, we have

∑
t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

Xiwt + η
∑
t∈[T ]

p>t v
2
t +

log n

η
+ 4ηT. (4.30)

Plugging Lemma 4.3.4, Lemma 4.3.5, and (4.28) into (4.30), with probability at least 3
4
− 2 ·

O( 1
n
) ≥ 2

3
,

min
i∈[n]

∑
t∈[T ]

Xiwt ≥ −
log n

η
− 8ηT − 4ηT + Tσ − 2

√
2T − 10ηT ≥ Tσ − 22ηT − log n

η
.

(4.31)

Since T = 232ε−2 log n and η =
√

logn
T

, we have

min
i∈[n]

Xiw̄ =
1

T
min
i∈[n]

T∑
t=1

Xiwt ≥ σ − 23

√
log n

T
≥ σ − ε (4.32)

with probability at least 2/3, which is exactly (4.12).

Now we analyze the gate complexity of Algorithm 12. To run Line 3 and Line 5, we need d

time and space to compute and store wt and yt+1; for all t ∈ [T ], this takes total complexity

O(dT ) = Õ( d
ε2

). It takes another O(dT ) = Õ( d
ε2

) cost to compute jt for all t ∈ [T ] in Line 6.

The quantum part of Algorithm 12 mainly happens at Line 7 and Line 8, where we prepare

the quantum state |pt+1〉 instead of computing the coefficients ut+1(i) one by one for all i ∈ [n].

To be more specific, we construct an oracle Ot such that Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all i ∈ [n].

This is achieved iteratively, i.e., at iteration swe map |i〉|us(i)〉 to |i〉|us+1(i)〉. The full details are
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given in Algorithm 14 in Section 4.3.2.2; in total, one query to Ot is implemented by 2t queries

to OX and Õ(t) additional arithmetic computations.

Finally, we prepare the state |pt+1〉 = 1
‖ut+1‖2 ·

∑
i∈[n] ut+1(i)|i〉 in Line 8 usingO(

√
n) calls

to Ot, which are equivalent to O(
√
nt) calls to OX by Line 7 and Õ(

√
nt) additional arithmetic

computations. Therefore, the total complexity of Line 8 for all t ∈ [T ] is

T∑
t=1

Õ(
√
nt) = Õ(

√
nT 2) = Õ

(√n
ε4

)
. (4.33)

In all, the total complexity of Algorithm 12 is Õ
(√

n
ε4

+ d
ε2

)
, establishing our statement.

Finally, the output w̄ has a succinct classical representation with space complexityO(log n/ε2).

To achieve this, we save 2T = O(log n/ε2) values in Algorithm 12: i1, . . . , iT and ‖y1‖, . . . , ‖yT‖;

it then only takes O(log n/ε2) cost to recover any coordinate of w̄ by Line 3 and Line 5.

Remark 4.3.2. Theorem 4.3.1 could also be applied to the PAC model. For the case where

there exists a hyperplane classifying all data points correctly with margin σ, and assume that the

margin is not small in the sense that 1
σ2 < d, PAC learning theory implies that the number of

examples needed for training a classifier of error δ is O(1/σ2δ). As a result, we have a quantum

algorithm that computes a σ/2-approximation to the best classifier with cost

Õ
(√1/σ2δ

σ4
+

d

σ2

)
= Õ

( 1

σ5
√
δ

+
d

σ2

)
. (4.34)

This is better than the classical complexity O( 1
σ4δ

+ d
σ2 ) in [126] as long as δ ≤ σ2, which is

plausible under the assumption that the margin σ is large.
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4.3.3 Quantum speedup for online gradient descent

Norm estimation by amplitude estimation. We further improve the dependence in d to Õ(
√
d).

To achieve this, we cannot update wt and yt in Line 3 and Line 5 by each coordinate because

storing wt or yt would already take cost at least d. We solve this issue by not updating wt and yt

explicitly and instead only computing ‖yt‖ for all i ∈ [T ]. This norm estimation is achieved by

the following lemma:

Lemma 4.3.6. Assume that F : [d] → [0, 1] with a quantum oracle OF |i〉|0〉 = |i〉|F (i)〉 for all

i ∈ [d]. Denote m = 1
d

∑d
i=1 F (i). Then for any δ > 0, there is a quantum algorithm that uses

O(
√
d/δ) queries to OF and returns an m̃ such that |m̃−m| ≤ δm with probability at least 2/3.

Our proof of Lemma 4.3.6 is based on amplitude estimation:

Theorem 4.3.2 (Theorem 15 of [57]). For any 0 < ε < 1 and Boolean function f : [d]→ {0, 1}

with quantum oracle Of |i〉|0〉 = |i〉|f(i)〉 for all i ∈ [d], there is a quantum algorithm that

outputs an estimate t̂ to t = |f−1(1)| such that

|t̂− t| ≤ εt (4.35)

with probability at least 8/π2, using O(1
ε

√
d
t
) evaluations of Of . If t = 0, the algorithm outputs

t̂ = 0 with certainty and Of is evaluated O(
√
d) times.

Proof. Assume that F (i) has l bits for precision for all i ∈ [d] (in our paper, we take l = O(1),

say l = 64 for double float precision), and for all k ∈ [l] denote Fk(i) as the kth bit of F (i);

denote nk =
∑

i∈[d] Fk(i).
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We apply Theorem 4.3.2 to all the l bits of nk using O(
√
d/δ) queries (taking ε = δ/2),

which gives an approximation n̂k of nk such that with probability at least 8/π2 we have |nk −

n̂k| ≤ δnk/2 if nk ≥ 1, and n̂k = 0 if nk = 0. Running this procedure for Θ(log l) times and take

the median of all returned n̂k, and do this for all k ∈ [l], Chernoff’s bound promises that with

probability 2/3 we have

|nk − n̂k| ≤ δnk ∀ k ∈ [l]. (4.36)

As a result, if we take m̃ = 1
d

∑
k∈[l]

n̂k
2k

, and observe that m = 1
d

∑
k∈[l]

nk
2k

, with probability at

least 2/3 we have

|m̃−m| ≤ 1

d

∑
k∈[l]

∣∣∣ n̂k
2k
− nk

2k

∣∣∣ ≤ 1

d

∑
k∈[l]

δnk
2k

= δm. (4.37)

The total quantum query complexity is O(l log l ·
√
d/δ) = O(

√
d/δ).

Quantum algorithm with Õ(
√
d) cost. Instead of updating yt explicitly in Line 5 of Algorithm 12,

we save the it for all t ∈ [T ] in Line 4, which only takes Õ(1/ε2) cost in total but we can

directly generate yt given i1, . . . , it. Furthermore, notice that the probabilities in the `2 sampling

in Line 6 do not change because wt(j)2/‖wt‖2 = yt(j)
2/‖yt‖2; it suffices to replace ṽt(i) =

Xi(jt)‖wt‖2/wt(jt) by ṽt(i) = Xi(jt)‖yt‖2/(yt(jt) max{1, ‖yt‖}) in Line 7. These observations

result in Algorithm 15 with the following result:

Theorem 4.3.3. With success probability at least 2/3, there is a quantum algorithm that returns
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a succinct classical representation of a vector w̄ ∈ Rd such that

Xiw̄ ≥ max
w∈Bd

min
i′∈[n]

Xi′w − ε ∀ i ∈ [n], (4.38)

using Õ
(√

n
ε4

+
√
d
ε8

)
quantum gates.

Algorithm 15: Quantum linear classification algorithm with Õ(
√
d) cost.

Input: ε > 0, a quantum oracle OX for X ∈ Rn×d.
Output: w̄ that satisfies (4.12).

1 Let T = 272ε−2 log n, y1 = 0d, η =
√

logn
T

, u1 = 1n, |p1〉 = 1√
n

∑
i∈[n] |i〉;

2 for t = 1 to T do
3 Measure the state |pt〉 in the computational basis and denote the output as it ∈ [n];
4 Define6 yt+1 := yt + 1√

2T
Xit;

5 Apply Lemma 4.3.6 for 2dlog T e times to estimate ‖yt‖2 with precision δ = η2,

and take the median of all the 2dlog T e outputs, denoted ‖̃yt‖
2
;

6 Choose jt ∈ [d] by jt = j with probability yt(j)2/‖yt‖2, which is achieved by
applying Algorithm 13 to prepare the quantum state |yt〉 and measure in the
computational basis;

7 For all i ∈ [n], denote ṽt(i) = Xi(jt)‖̃yt‖
2
/
(
yt(jt) max{1, ‖̃yt‖}

)
,

vt(i) = clip(ṽt(i), 1/η), and ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)
2). Apply

Algorithm 14 to prepare an oracle Ot such that Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all
i ∈ [n], using 2t queries to OX and Õ(t) additional arithmetic computations;

8 Prepare the state |pt+1〉 = 1
‖ut+1‖2

∑
i∈[n] ut+1(i)|i〉 using Algorithm 13 and Ot;

9 Return w̄ = 1
T

∑T
t=1

yt

max{1,‖̃yt‖}
;

Proof. For clarification, we denote

ṽt,approx(i) =
Xi(jt)‖̃yt‖

2

yt(jt) max{1, ‖̃yt‖}
, ṽt,true(i) =

Xi(jt)‖yt‖2

yt(jt) max{1, ‖yt‖}
∀ i ∈ [n]. (4.39)

6The meaning of the definition here is the same as Footnote 12 in Algorithm 12.
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In other words, the ṽt in Line 7 of Algorithm 15 is ṽt,approx, an approximation of ṽt,true. We prove:

|ṽt,approx(i)− ṽt,true(i)| ≤ η ∀ i ∈ [n]. (4.40)

Without loss generality, we can assume that ṽt,true(i), ṽt,approx(i) ≤ 1/η; otherwise, they are both

truncated to 1/η by the clip function in Line 7 and no error occurs. For convenience, we denote

m = ‖yt‖2 and m̃ = ‖̃yt‖
2
. Then

|ṽt,approx(i)− ṽt,true(i)| = ṽt,true(i) ·
∣∣∣ ṽt,approx(i)

ṽt,true(i)
− 1
∣∣∣ ≤ 1

η
·
∣∣∣ ṽt,approx(i)

ṽt,true(i)
− 1
∣∣∣. (4.41)

When ‖yt‖ ≥ 1 we have ṽt,approx(i)

ṽt,true(i)
= m̃

m
; when ‖yt‖ ≤ 1 we have ṽt,approx(i)

ṽt,true(i)
=
√

m̃
m

. Because in

Line 5 ‖̃yt‖
2

is the median of 2dlog T e executions of Lemma 4.3.6, with failure probability at

most 1 − (2/3)2 log T = O(1/T 2) we have | m̃
m
− 1| ≤ δ; given there are T iterations in total, the

probability that Line 5 always succeeds is at least 1− T ·O(1/T 2) = 1− o(1), and we have

∣∣∣m̃
m
− 1
∣∣∣, ∣∣∣√m̃

m
− 1
∣∣∣ ≤ δ. (4.42)

Plugging this into (4.41), we have

|ṽt,approx(i)− ṽt,true(i)| ≤
δ

η
= η, (4.43)

which proves (4.40).

Now we prove the correctness of Algorithm 15. By (4.40) and Lemma 4.3.3, with probability
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at least 1−O(1/n) we have

max
i∈[n]

∑
t∈[T ]

[
vt(i)−Xiwt

]
≤ 4ηT + ηT = 5ηT, (4.44)

where wt = yt

max{1,‖̃yt‖}
for all t ∈ [T ]. By (4.40) and Lemma 4.3.4, with probability at least

1−O(1/n) we have

∣∣∣∑
t∈[T ]

Xitwt −
∑
t∈[T ]

p>t vt

∣∣∣ ≤ 10ηT + ηT = 11ηT ; (4.45)

by (4.40) and Lemma 4.3.5, with probability at least 3/4 we have

∑
t∈[T ]

p>t v
2
t ≤ 8T + 2T = 10T. (4.46)

As a result, similar to the proof of Theorem 4.3.1, we have

min
i∈[n]

∑
t∈[T ]

Xiwt ≥ −
log n

η
− 10ηT − 5ηT + Tσ − 2

√
2T − 11ηT ≥ Tσ − 26ηT − log n

η
.

(4.47)

Since T = 272ε−2 log n and η =
√

logn
T

, we have

min
i∈[n]

Xiw̄ =
1

T
min
i∈[n]

T∑
t=1

Xiwt ≥ σ − 27

√
log n

T
≥ σ − ε (4.48)

with probability at least 2/3, which is exactly (4.38).

It remains to analyze the time complexity. Same as the proof of Theorem 4.3.1, the
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complexity in n is Õ(
√
n
ε4

). It remains to show that the complexity in d is Õ(
√
n
ε8

). The cost

in d in Algorithm 12 and Algorithm 15 differs at Line 5 and Line 6. We first look at Line 5;

because

yt =
1√
2T

T∑
τ=1

Xiτ , (4.49)

one query to a coefficient of yt takes t = Õ(1/ε2) queries to OX . Next, since Xi ∈ Bn for all

i ∈ [n], we know that Xij ∈ [−1, 1] for all i ∈ [n], j ∈ [d]; to apply Lemma 4.3.6 (F should have

image domain in [0, 1]) we need to renormalize yt by a factor of t = Õ(1/ε2). In addition, notice

that δ = η2 = Θ(ε2); as a result, the query complexity of executing Lemma 4.3.6 is Õ(
√
d/ε2).

Finally, there are in total T = Õ(1/ε2) iterations. Therefore, the total complexity in Line 5 is

Õ
( 1

ε2

)
· Õ
( 1

ε2

)
· Õ
(√d
ε2

)
· Õ
( 1

ε2

)
= Õ

(√d
ε8

)
. (4.50)

Regarding the complexity in d in Line 6, the cost is to prepare the pure state |yt〉 whose

coefficient is proportional to yt. To achieve this, we need t = Õ(1/ε2) queries to OX (for

summing up the rows Xi1 , . . . , Xit) such that we have an oracle Oyt satisfying Oyt |j〉|0〉 =

|j〉|yt(j)〉 for all j ∈ [d]. By Algorithm 13, the query complexity of preparing |yt〉 using Oyt

is O(
√
d). Because there are in total T = Õ(1/ε2) iterations, the total complexity in Line 6 is

Õ
( 1

ε2

)
·O(
√
d) · Õ

( 1

ε2

)
= Õ

(√d
ε4

)
. (4.51)

In all, the total complexity in d is Õ(
√
d/ε8) as dominated by (4.50). Finally, w̄ has a

succinct classical representation: using i1, . . . , iT obtained from Line 3 and ‖̃y1‖
2
, . . . , ‖̃yT‖

2
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obtained from Line 5, we could restore a coordinate of w̄ in time T = Õ(1/ε2).

Remark 4.3.3. For practical applications of linear classification, typically the number of data

points n is larger than the dimension d, so in practice Theorem 4.3.1 might perform better than

Theorem 4.3.3. Nevertheless, the Õ(
√
d) complexity in Theorem 4.3.3 matches our quantum

lower bound (see Theorem 4.5.1).

4.4 Applications

As introduced in Section 4.3.1, the `2 sampling of w picks jt ∈ [d] by jt = j with

probability w(j)2/‖w‖2, and the expectation of the random variable Xi(jt)‖w‖2/w(jt) is Xiw.

Here, if we consider some alternate random variables, we could give unbiased estimators of

nonlinear functions of X . We first look at the general case of applying kernel functions [152]

in Section 4.4.1. We then look at the special case of quadratic problems in Section 4.4.2 as they

enjoy simple forms that can be applied to finding minimum enclosing balls [153] and `2-margin

support vector machines [154]. Finally, we follow this methodology to give a sublinear quantum

algorithm for solving matrix zero-sum games in Section 4.4.3.

4.4.1 Kernel methods

Having quantum algorithms for solving linear classification at hand, it is natural to consider

linear classification under kernels. Let Ψ: Rd 7→ H be a mapping into a reproducing kernel

Hilbert space (RKHS), and the problem is to find the classifier h ∈ H that solves the maximin
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problem

σ = max
h∈H

min
i∈[n]
〈h,Ψ(Xi)〉, (4.52)

where the kernel is defined as k(a, b) := 〈Ψ(a),Ψ(b)〉 for all a, b ∈ Rd.

Classically, [126] gave the following result for classification under efficiently-computable

kernels, following the linear classification algorithm therein:

Theorem 4.4.1 (Lemma 5.3 of [126]). Denote Tk as the time cost for computing k(Xi, Xj) for

some i, j ∈ [n], and denote Lk as the time cost for computing a random variable k̃(Xi, Xj) for

some i, j ∈ [n] such that E[k̃(Xi, Xj)] = k(Xi, Xj) and Var[k(Xi, Xj)] ≤ 1. Then there is a

classical algorithm that runs in time

Õ
(Lkn+ d

ε2
+ min

{Tk
ε4
,
Lk
ε6

})
(4.53)

and returns a vector h̄ ∈ H such that with high success probability 〈h̄,Ψ(Xi)〉 ≥ σ − ε for all

i ∈ [n].

Quantumly, we give an algorithm for classification under kernels based on Algorithm 15:

Theorem 4.3.3 and Theorem 4.4.1 imply that our quantum kernel-based classifier has time

complexity

Õ
(Lk√n

ε4
+

√
d

ε8
+ min

{Tk
ε4
,
Lk
ε6

})
. (4.54)

For polynomial kernels of degree q, i.e., kq(x, y) = (x>y)q, we have Lkq = q by taking the
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Algorithm 16: Quantum algorithm for kernel-based classification.
Input: ε > 0, a quantum oracle OX for X ∈ Rn×d.
Output: w̄ that satisfies (4.12).

1 Let T = 272ε−2 log n, y1 = 0d, η =
√

logn
T

, u1 = 1n, |p1〉 = 1√
n

∑
i∈[n] |i〉;

2 for t = 1 to T do
3 Measure the state |pt〉 in the computational basis and denote the output as it ∈ [n];
4 Define yt+1 := yt + 1√

2T
Ψ(Xit);

5 Apply Lemma 4.3.6 for 2dlog T e times to estimate ‖yt‖2 with precision δ = η2,

and take the median of all the 2dlog T e outputs, denoted ‖̃yt‖
2
;

6 Choose jt ∈ [d] by jt = j with probability yt(j)2/‖yt‖2, which is achieved by
applying Algorithm 13 to prepare the quantum state |yt〉 and measure in the
computational basis;

7 For all i ∈ [n], denote ṽt(i) = Ψ(Xi)(jt)‖̃yt‖
2
/
(
yt(jt) max{1, ‖̃yt‖}

)
,

vt(i) = clip(ṽt(i), 1/η), and ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)
2). Apply

Algorithm 14 to prepare an oracle Ot such that Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all
i ∈ [n], using 2t queries to OX and Õ(t) additional arithmetic computations;

8 Prepare the state |pt+1〉 = 1
‖ut+1‖2

∑
i∈[n] ut+1(i)|i〉 using Algorithm 13 and Ot;

9 Return w̄ = 1
T

∑T
t=1

yt

max{1,‖̃yt‖}
;

product of q independent `2 samples (this is an unbiased estimator of (x>y)q and the variance of

each sample is at most 1). As a result of (4.54),

Corollary 4.4.1. For the polynomial kernel of degree q, there is a quantum algorithm that solves

the classification task within precision ε with gate complexity Õ
(
q
√
n

ε4
+ q

√
d

ε8

)
.

Compared to the classical complexity Õ
( q(n+d)

ε2
+ min

{
d log q
ε4

, q
ε6

})
in Corollary 5.4 of [126], our

quantum algorithm gives quadratic speedups in n and d.

For Gaussian kernels, i.e., kGauss(x, y) = exp(−‖x − y‖2), Corollary 5.5 of [126] proved

that LkGauss = 1/s4 if the Gaussian has standard deviation s. As a result,

Corollary 4.4.2. For the polynomial kernel of degree q, there is a quantum algorithm that solves

the classification task within precision ε with gate complexity Õ
( √

n
s4ε4

+
√
d

s4ε8

)
.

This still gives quadratic speedups in n and d compared to the classical complexity Õ
(
n+d
s4ε2

+
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min
{
d
ε4
, 1
s4ε6

})
in Corollary 5.5 of [126].

4.4.2 Quadratic machine learning problems

We consider the maximin problem of a quadratic function:

max
w∈Rd

min
p∈∆n

p>(b+ 2Xw − 1n‖w‖2) = max
w∈Rd

min
i∈[n]

bi + 2Xiw − ‖w‖2, (4.55)

where b ∈ Rn and X ∈ Rn×d. Note that the function bi + 2Xiw − ‖w‖2 in Eq. (4.55) is

2-strongly convex; as a result, the regret of the online gradient descent after T rounds can be

improved to O(log T ) by [155] instead of O(
√
T ) as in Eq. (4.10). In addition, `2 sampling

of the w in Algorithm 12 and Algorithm 15 still works: consider the random variable w =

bi + 2Xi(j)‖w‖2
w(j)

− ‖w‖2 where j = k with probability w(k)2

‖w‖2 . Then the expectation of w is

E[X] =
d∑
j=1

w(j)2

‖w‖2

(
bi +

2Xi(j)‖w‖2

w(j)
− ‖w‖2

)
= bi + 2Xiw − ‖w‖2, (4.56)

i.e., w is an unbiased estimator of the quadratic form in (4.55). As a result, given the quantum

oracle OX in (4.8), we could give sublinear quantum algorithms for such problems; these include

two important problems: minimum enclosing balls (MEB) and `2-margin supper vector machines

(SVM).

4.4.2.1 Minimum enclosing ball

In the minimum enclosing ball (MEB) problem we have bi = −‖Xi‖2 for all i ∈ [n]; Eq.

(4.55) then becomes maxw∈Rd mini∈[n]−‖Xi‖2+2Xiw−‖w‖2 = −minw∈Rd maxi∈[n] ‖w−Xi‖2,
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which is the smallest radius of the balls that contain all the n data points X1, . . . , Xn.

Denote σMEB = minw∈Rd maxi∈[n] ‖w −Xi‖2, we have:

Theorem 4.4.2. There is a quantum algorithm that returns a vector w̄ ∈ Rd such that with

probability at least 2/3,

max
i∈[n]
‖w̄ −Xi‖2 ≤ σMEB + ε, (4.57)

using Õ
(√

n
ε4

+ d
ε

)
quantum gates; the quantum gate complexity can also be improved to Õ

(√
n
ε4

+

√
d
ε7

)
.

We omit the proof of Theorem 4.4.2 because it directly follows from Theorem 4.3.1 (see

also Theorem 3.1 in [126]) and Theorem 4.3.3. For the Õ(
√
d) complexity result, the same idea of

Algorithm 15 is applied to estimate the norm ‖yt‖ by amplitude estimation; the error dependence

becomes 1/ε7 because with high probability, the number of iterations that we obtain a new yt in

Line 4 is O(αT ) = Õ(1/ε), and the other overheads in ε is still Õ(
√
d/ε6) (see Eq. (4.50)).

4.4.2.2 `2-margin SVM

To estimate the margin of a support vector machine (SVM) in `2-norm, we take bi = 0 for

all i ∈ [n]; Eq. (4.55) then becomes solving σSVM := max
w∈Rd

min
i∈[n]

2Xiw − ‖w‖2.

Notice that σSVM ≥ 0 because 2Xiw − ‖w‖2 = 0 for all i ∈ [n] when w = 0. For the case

σSVM > 0 and taking 0 < ε < σSVM, similar to Theorem 4.4.2 we have:

Corollary 4.4.3. There is a quantum algorithm that returns a vector w̄ ∈ Rd such that with
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probability at least 2/3,

min
i∈[n]

2Xiw̄ − ‖w̄‖2 ≥ σSVM − ε > 0, (4.58)

using Õ
(√

n
ε4

+ d
ε

)
quantum gates; the quantum gate complexity can also be improved to Õ

(√
n
ε4

+

√
d
ε7

)
.

Note that (4.135) implies that Xiw̄ > 0 for all i ∈ [n]; furthermore, by the AM-GM

inequality we have (Xiw̄)2

‖w̄‖2 + ‖w̄‖2 ≥ 2Xiw̄, and hence

min
i∈[n]

(Xiw̄

‖w̄‖

)2

≥ min
i∈[n]

2Xiw̄ − ‖w̄‖2 ≥ σSVM − ε. (4.59)

If we denote ŵ = w̄/‖w̄‖, then Xiŵ ≥
√
σSVM − ε > 0 for all i ∈ [n]. Consequently, if the data

X is from an SVM, we obtain a normalized direction ŵ (in `2-norm) such that all data points

have a margin of at least
√
σSVM − ε. Classically, this task takes time Õ(n+d) for constant σSVM

by [126], but our quantum algorithm only takes time Õ(
√
n+
√
d).

4.4.3 Matrix zero-sum games

Our `2-sampling technique can also be adapted to solve matrix zero-sum games as an

application. To be more specific, the input of a zero-sum game is a matrix X ∈ Rn1×n2 , and

the goal is to find a ∈ Rn1 and b ∈ Rn2 such that

a†Xb ≥ max
p∈∆n1

min
q∈∆n2

p†Xq − ε (4.60)
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for some ε > 0; such (a, b) is called an ε-optimal strategy. It is shown in [156, Proposition 1] that

for 0 < ε < 0.1, an ε-optimal strategy for the (n1 + n2 + 1)-dimensional anti-symmetric matrix

X ′ =



0 X −1n1

−X† 0 1n2

1n1 −1n2 0


(4.61)

implies an 18ε-optimal strategy for X . Therefore, without loss of generality, we could assume

that X is an n-dimensional anti-symmetric matrix (by taking n = n1 + n2 + 1). In this case,

the game value maxp∈∆n minq∈∆n p
†Xq in (4.60) equals to 0, and due to symmetry finding an

ε-optimal strategy reduces to find an w ∈ ∆n such that

Xw ≤ ε · 1n, (4.62)

where ≤ applies to each coordinate. As a normalization, we assume that maxi,j∈[n] |Xi,j| ≤ 1.

Classically, one query to X is to ask for one entry in the matrix, whereas quantumly we

assume the oracle in (4.8). Inspired by Ref. [156, Theorem 1], we give the following result for

solving the zero-sum game:

Theorem 4.4.3. With success probability at least 2/3, Algorithm 17 returns a vector w̄ ∈ Rn

such that Xw̄ ≤ ε · 1n, using Õ
(√

n
ε4

)
quantum gates.

Proof. We first prove the correctness of Algorithm 17. We denote Pi(t) := exp[ε
∑t

τ=1Xi,kτ/2]

and pi(t) = Pi(t)/
∑n

j=1 Pj(t) for all i ∈ [n] and t ∈ [T ]. Then |pt+1〉 =
∑n

i=1

√
pi(t)|i〉. We
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Algorithm 17: Sublinear quantum algorithm for solving zero-sum games.
Input: ε > 0, a quantum oracle OX for X ∈ Rn×n.
Output: w̄ ∈ ∆n that satisfies (4.62).

1 Let T ← 4ε−2 log n, A← 0n, |p1〉 ← 1√
n

∑
i∈[n] |i〉;

2 for t = 1 to T do
3 Measure the state |pt〉 in the computational basis and denote the output as kt ∈ [n];
4 Update the kt-th coordinate of A: Akt ← Akt + 1;
5 Prepare the state

|pt+1〉 =

∑
i∈[n] exp[ε

∑t
τ=1Xi,kτ/4]|i〉√∑

j∈[n] exp[ε
∑t

τ=1Xj,kτ/2]
(4.63)

using Algorithm 13;

6 Return w̄ = A/T ;

also denote the potential function Φ(t) =
∑n

i=1 Pi(t). It satisfies

Φ(t) =
n∑
i=1

Pi(t) =
n∑
i=1

Pi(t− 1) exp[εXi,kt/2] = Φ(t− 1)
n∑
i=1

pi(t− 1) exp[εXi,kt/2]. (4.64)

Since Line 3 selects kt with probability pkt(t− 1), Eq. (4.64) implies

E[Φ(t)] = Φ(t− 1)
n∑

i,k=1

pi(t− 1)pk(t− 1) exp[εXi,k/2]. (4.65)

Because |Xi,k| ≤ 1, we have

exp[εXi,k/2] ≤ 1− εXi,k

2
+
ε2

6
. (4.66)

Also because X is skew-symmetric, we have
∑n

i,k=1 pi(t − 1)pk(t − 1)Xi,k = 0. Plugging this
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and (4.66) into (4.65), we have E[Φ(t)] ≤ E[Φ(t− 1)]
(
1 + ε2

6

)
. As a result of induction,

E[Φ(T )] ≤ Φ(0)
(

1 +
ε2

6

)T
≤ n exp[Tε2/6] ≤ n5/3. (4.67)

By Markov’s inequality, we have Φ(T ) ≤ 3n5/3 ≤ n2 with probability at least 2/3. Notice that

Φ(T ) ≤ n2 implies Pi(T ) ≤ n2 for all i ∈ [n], i.e., ε
∑T

τ=1Xi,kτ/2 ≤ 2 lnn for all i ∈ [n]. The

i-th coordinate of Xw̄ satisfies

(Xw̄)i =
1

T
(XA)i =

1

T

T∑
τ=1

Xi,kτ ≤
ε2

4 lnn
· 4 lnn

ε
= ε; (4.68)

since this is true for all i ∈ [n], we have Xw̄ ≤ ε · 1n.

It remains to prove the complexity claim. The measurement in Line 3 takes O(log n)

gates, and the update in Line 4 also takes O(log n) gates because it only adds 1 to one of the

n coordinates. The complexity of the algorithm thus mainly comes from Line 5 for preparing

|pt+1〉. Notice that arg max exp[ε
∑t

τ=1Xi,kτ/4] = arg max
∑t

τ=1Xi,kτ , which can be computed

in O(t
√
n) queries to the oracle OX . Similarly, the amplitude amplification in Algorithm 13 can

also be done with cost O(t
√
n). In total, the time complexity of Algorithm 17 is

T∑
t=1

O(t
√
n) = O(T 2

√
n) = Õ

(√n
ε4

)
. (4.69)

Remark 4.4.1. The output of Algorithm 17 is a classical vector in ∆n; furthermore, it has a

succinct representation of O(log2 n/ε2) bits: Line 4 in each iteration add 1 to one of the n
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coordinates and hence can be stored in dlog2 ne bits, and there are in total O(log n/ε2) rounds.

Therefore, such output can be directly useful for classical applications, which distinguishes from

many quantum machine learning algorithms that output a quantum state (whose applications are

more subtle).

4.5 Quantum lower bounds

All quantum algorithms (upper bounds) above have matching lower bounds in n and d.

Assuming ε = Θ(1) and given the oracle OX in (4.8), we prove quantum lower bounds on linear

classification, minimum enclosing ball, and matrix zero-sum games in Section 4.5.1, Section 4.5.2,

and Section 4.5.3, respectively.

4.5.1 Linear classification

Recall that the input of the linear classification problem is a matrix X ∈ Rn×d such that

Xi ∈ Bd for all i ∈ [n] (Xi being the ith row of X), and the goal is to approximately solve

σ := max
w∈Bd

min
p∈∆n

p>Xw = max
w∈Bd

min
i∈[n]

Xiw. (4.70)

Given the quantum oracleOX such thatOX |i〉|j〉|0〉 = |i〉|j〉|Xij〉 ∀ i ∈ [n], j ∈ [d], Theorem 4.3.3

solves this task with high success probability with cost Õ
(√

n
ε4

+
√
d
ε8

)
. We prove a quantum lower

bound that matches this upper bound in n and d for constant ε:
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Theorem 4.5.1. Assume 0 < ε < 0.04. Then to return an w̄ ∈ Bd satisfying

Xjw̄ ≥ max
w∈Bd

min
i∈[n]

Xiw − ε ∀ j ∈ [n] (4.71)

with probability at least 2/3, we need Ω(
√
n+
√
d) quantum queries to OX .

Proof. Assume we are given the promise that X is from one of the two cases below:

1. There exists an l ∈ {2, . . . , d} such that X11 = − 1√
2
, X1l = 1√

2
; X21 = X2l = 1√

2
;

there exists a unique k ∈ {3, . . . , n} such that Xk1 = 1, Xkl = 0; Xij = 1√
2

for all

i ∈ {3, . . . , n}/{k}, j ∈ {1, l}, and Xij = 0 for all i ∈ [n], j /∈ {1, l}.

2. There exists an l ∈ {2, . . . , d} such that X11 = − 1√
2
, X1l = 1√

2
; X21 = X2l = 1√

2
;

Xij = 1√
2

for all i ∈ {3, . . . , n}, j ∈ {1, l}, and Xij = 0 for all i ∈ [n], j /∈ {1, l}.

Notice that the only difference between these two cases is a row where the first entry is 1 and the
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lth entry is 0; they have the following pictures, respectively:

Case 1: X =



− 1√
2

0 · · · 0 1√
2

0 · · · 0

1√
2

0 · · · 0 1√
2

0 · · · 0

...
... . . . ...

...
... . . . ...

1√
2

0 · · · 0 1√
2

0 · · · 0

1 0 · · · 0 0 0 · · · 0

1√
2

0 · · · 0 1√
2

0 · · · 0

...
... . . . ...

...
... . . . ...

1√
2

0 · · · 0 1√
2

0 · · · 0



; (4.72)

and

Case 2: X =



− 1√
2

0 · · · 0 1√
2

0 · · · 0

1√
2

0 · · · 0 1√
2

0 · · · 0

...
... . . . ...

...
... . . . ...

1√
2

0 · · · 0 1√
2

0 · · · 0

...
... . . . ...

...
... . . . ...

1√
2

0 · · · 0 1√
2

0 · · · 0



. (4.73)

We denote the maximin value in (4.70) of these cases as σ1 and σ2, respectively. We have:
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• σ2 = 1√
2
.

On the one hand, consider w̄ = ~el ∈ Bd (the vector in Rd with the lth coordinate being 1 and

all other coordinates being 0). Then Xiw̄ = 1√
2

for all i ∈ [n], and hence σ2 ≥ mini∈[n] Xiw̄ =

1√
2
. On the other hand, for any w = (w1, . . . , wd) ∈ Bd, we have

min
i∈[n]

Xiw = min
{
− 1√

2
w1 +

1√
2
wl,

1√
2
w1 +

1√
2
wl

}
≤ 1√

2
wl ≤

1√
2
, (4.74)

where the first inequality comes from the fact that min{a, b} ≤ a+b
2

for all X, b ∈ R and

the second inequality comes from the fact that w ∈ Bd and |wl| ≤ 1. As a result, σ2 =

maxw∈Bd mini∈[n] Xiw ≤ 1√
2
. In conclusion, we have σ2 = 1√

2
.

• σ1 = 1√
4+2
√

2
.

On the one hand, consider w̄ = 1√
4+2
√

2
~e1 +

√
2+1√

4+2
√

2
~el ∈ Bd. Then

X1w̄ = − 1√
2
· 1√

4 + 2
√

2
+

1√
2
·
√

2 + 1√
4 + 2

√
2

=
1√

4 + 2
√

2
; (4.75)

Xiw̄ =
1√
2
· 1√

4 + 2
√

2
+

1√
2
·
√

2 + 1√
4 + 2

√
2

=

√
2 + 1√

4 + 2
√

2
>

1√
4 + 2

√
2
∀ i ∈ [n]/{1, k};

(4.76)

Xkw̄ = 1 · 1√
4 + 2

√
2

+ 0 ·
√

2 + 1√
4 + 2

√
2

=
1√

4 + 2
√

2
. (4.77)

In all, σ1 ≥ mini∈[n] Xiw̄ = 1√
4+2
√

2
.

On the other hand, for any w = (w1, . . . , wd) ∈ Bd, we have

min
i∈[n]

Xiw = min
{
− 1√

2
w1 +

1√
2
wl,

1√
2
w1 +

1√
2
wl, w1

}
. (4.78)
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If w1 ≤ 1√
4+2
√

2
, then (4.78) implies that mini∈[n] Xiw ≤ 1√

4+2
√

2
; if w1 ≥ 1√

4+2
√

2
, then

wl ≤
√

1− w2
1 =

√
1− 1

4 + 2
√

2
=

√
2 + 1√

4 + 2
√

2
, (4.79)

and hence by (4.78) we have

min
i∈[n]

Xiw ≤ −
1√
2
w1 +

1√
2
wl ≤ −

1√
2
· 1√

4 + 2
√

2
+

1√
2
·
√

2 + 1√
4 + 2

√
2

=
1√

4 + 2
√

2
.

(4.80)

In all, we always have mini∈[n] Xiw ≤ 1√
4+2
√

2
. As a result, σ1 = maxw∈Bd mini∈[n] Xiw ≤

1√
4+2
√

2
. In conclusion, we have σ1 = 1√

4+2
√

2
.

Now, we prove that an w̄ ∈ Bd satisfying (4.71) would simultaneously reveal whether

X is from Case 1 or Case 2 as well as the value of l ∈ {2, . . . , d}, by the following algorithm:

1. Check if one of w̄2, . . . , w̄d is larger than 0.94; if there exists an l′ ∈ {2, . . . , d} such that

w̄l′ > 0.94, return ‘Case 2’ and l = l′;

2. Otherwise, return ‘Case 1’ and l = arg maxi∈{2,...,d} w̄i.

We first prove that the classification of X (between Case 1 and Case 2) is correct. On the

one hand, assume that X comes from Case 1. If we wrongly classified X as from Case 2, we

would have w̄l′ > 0.94 and w̄1 <
√

1− 0.942 < 0.342; this would imply

min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l, w̄1

}
≤ w̄1 <

1√
4 + 2

√
2
− 0.04 ≤ σ1 − ε

(4.81)
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by 0.342 < 1√
4+2
√

2
− 0.04, contradicts with (4.71). Therefore, for this case we must make

correct classification that X comes from Case 1.

On the other hand, assume that X comes from Case 2. If we wrongly classified X as from

Case 1, we would have w̄l ≤ maxi∈{2,...,d} w̄i ≤ 0.94; this would imply

min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l

}
≤ 1√

2
w̄l <

1√
2
− 0.04 ≤ σ2 − ε

(4.82)

by 0.94√
2
< 1√

2
− 0.04, contradicts with (4.71). Therefore, for this case we must make correct

classification that X comes from Case 2. In all, our classification is always correct.

It remains to prove that the value of l is correct. If X is from Case 1, we have

σ1 − ε ≤ min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l, w̄1

}
; (4.83)

as a result, w̄1 ≥ σ1 − ε > 0.38− 0.04 = 0.34, and

− 1√
2
w̄1 +

1√
2
w̄l > 0.34 =⇒ w̄l > 0.34

√
2 + w̄1 > 0.34(

√
2 + 1) > 0.82. (4.84)

Because 2·0.822 > 1, w̄l must be the largest among w̄2, . . . , w̄d (otherwise l′ = arg maxi∈{2,...,d} w̄i

and l 6= l′ would imply ‖w̄‖2 =
∑

i∈[d] |w̄i|2 ≥ w̄2
l + w̄2

l′ ≥ 2w̄2
l > 1, contradiction). Therefore,

Line 2 of our algorithm correctly returns the value of l.

If X is from Case 2, we have

σ2 − ε ≤ min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l

}
≤ 1√

2
w̄l, (4.85)
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and hence w̄l ≥
√

2(σ2−ε) ≥
√

2( 1√
2
−0.04) > 0.94. Because 2 ·0.942 > 1, only one coordinate

of w̄ could be at least 0.94 and we must have l = l′. Therefore, Line 1 of our algorithm correctly

returns the value of l.

In all, we have proved that an ε-approximate solution w̄ ∈ Bd for (4.71) would simultaneously

reveal whetherX is from Case 1 or Case 2 as well as the value of l ∈ {2, . . . , d}. On the one hand,

notice that distinguishing these two cases requires Ω(
√
n− 2) = Ω(

√
n) quantum queries to OX

for searching the position of k because of the quantum lower bound for search [91]; therefore, it

gives an Ω(
√
n) quantum lower bound on queries to OX for returning an w̄ that satisfies (4.71).

On the other hand, finding the value of l is also a search problem on the entries of X , which

requires Ω(
√
d− 1) = Ω(

√
d) quantum queries to OX also due to the quantum lower bound for

search [91]. These observations complete the proof of Theorem 4.5.1.

Because the kernel-based classifier in Section 4.4.1 contains the linear classification in

Section 4.3 as a special case, Theorem 4.5.1 implies an Ω(
√
n +
√
d) quantum lower bound on

the kernel method.

4.5.2 Minimum enclosing ball (MEB)

Similarly, the input of the MEB problem is a matrix X ∈ Rn×d such that Xi ∈ Bd for

all i ∈ [n], and we are given the quantum oracle OX such that OX |i〉|j〉|0〉 = |i〉|j〉|Xij〉 ∀ i ∈

[n], j ∈ [d]. The goal of MEB is to approximately solve

σMEB = min
w∈Rd

max
i∈[n]
‖w −Xi‖2. (4.86)
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Theorem 4.4.2 solves this task with high success probability with cost Õ
(√

n
ε4

+
√
d
ε7

)
. In this

subsection, we prove a quantum lower bound that matches this upper bound in n and d for

constant ε:

Theorem 4.5.2. Assume 0 < ε < 0.01. Then to return an w̄ ∈ Rd satisfying

max
i∈[n]
‖w̄ −Xi‖2 ≤ min

w∈Rd
max
i∈[n]
‖w −Xi‖2 + ε (4.87)

with probability at least 2/3, we need Ω(
√
n+
√
d) quantum queries to OX .

By Section 4.4.2.2, Theorem 4.5.2 also implies an Ω(
√
n +
√
d) quantum lower bound on

`2-margin SVMs.

Proof. We also assume that X is from one of the two cases in Theorem 4.5.1; see also (4.72) and

(4.73). We denote the maximin value in (4.86) of these cases as σMEB,1 and σMEB,2, respectively.

We have:

• σMEB,2 = 1
2
.

On the one hand, consider w̄ = 1√
2
~el. Then

‖w̄ −X1‖2 =
(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

( 1√
2

)2

=
1

2
; (4.88)

‖w̄ −Xi‖2 =
(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

( 1√
2

)2

=
1

2
∀ i ∈ {2, . . . , n}.

(4.89)

Therefore, ‖w̄ −Xi‖2 = 1
2

for all i ∈ [n], and hence σMEB,2 ≤ maxi∈[n] ‖w̄ −Xi‖2 = 1
2
.
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On the other hand, for any w = (w1, . . . , wd) ∈ Rd, we have

max
i∈[n]
‖w −Xi‖2

= max
{(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i ,
(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i

}
(4.90)

≥ 1

2

[(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2]
+

1

2

[(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2]
+
∑
i 6=1,l

w2
i (4.91)

= w2
1 +

(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i +

1

2
(4.92)

≥ 1

2
, (4.93)

where (4.91) comes from the fact that max{a, b} ≥ 1
2
(a + b) and

∑
i 6=1,l w

2
i ≥ 0. Therefore,

σMEB,2 ≥ 1
2
. In all, we must have σMEB,2 = 1

2
.

• σMEB,1 = 2+
√

2
4

.

On the one hand, consider w̄ =
(

1
2
−
√

2
4

)
~e1 +

√
2

4
~el. Then

‖w̄ −X1‖2 =
(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

(1

2
+

√
2

4

)2

+
(√2

4

)2

=
2 +
√

2

4
;

(4.94)

‖w̄ −Xk‖2 = (w1 − 1)2 + w2
l +

∑
i 6=1,l

w2
i =

(1

2
+

√
2

4

)2

+
(√2

4

)2

=
2 +
√

2

4
; (4.95)

‖w̄ −Xi‖2 =
(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

6− 3
√

2

4
<

2 +
√

2

4
∀ i ∈ [n]/{1, k}.

(4.96)
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In all, σMEB,1 ≤ maxi∈[n] ‖w̄ −Xi‖2 = 2+
√

2
4

.

On the other hand, for any w = (w1, . . . , wd) ∈ Rd, we have

max
i∈[n]
‖w −Xi‖2 ≥max

{(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i , (w1 − 1)2 + w2

l +
∑
i 6=1,l

w2
i

}
(4.97)

≥ 1

2

[(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2]
+

1

2

[
(w1 − 1)2 + w2

l

]
+
∑
i 6=1,l

w2
i (4.98)

=
[
w1 −

(1

2
−
√

2

4

)]2

+
(
wl −

√
2

4

)2

+
∑
i 6=1,l

w2
i +

2 +
√

2

4
(4.99)

≥ 2 +
√

2

4
. (4.100)

Therefore, σMEB,2 ≥ 2+
√

2
4

. In all, we must have σMEB,2 = 2+
√

2
4

.

Now, we prove that an w̄ ∈ Rd satisfying (4.87) would simultaneously reveal whether

X is from Case 1 or Case 2 as well as the value of l ∈ {2, . . . , d}, by the following algorithm:

1. Check if one of w̄2, . . . , w̄d is larger than 3
√

2
8

; if there exists an l′ ∈ {2, . . . , d} such that

w̄l′ >
3
√

2
8

, return ‘Case 1’ and l = l′;

2. Otherwise, return ‘Case 2’ and l = arg maxi∈{2,...,d} w̄i.

We first prove that the classification of X (between Case 1 and Case 2) is correct. On the

one hand, assume that X comes from Case 1. If we wrongly classified X as from Case 2, we

would have w̄l ≤ maxi∈{2,...,d} w̄i ≤ 3
√

2
8

. By (4.92), this would imply

max
i∈[n]
‖w̄ −Xi‖2 ≥

(
w̄l −

1√
2

)2

+
1

2
≥ 1

32
+

1

2
> σMEB,1 + ε, (4.101)
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contradicts with (4.87). Therefore, for this case we must make correct classification thatX comes

from Case 2.

On the other hand, assume that X comes from Case 2. If we wrongly classified X as from

Case 1, we would have w̄l′ > 3
√

2
8

. If l = l′, then (4.99) implies that

max
i∈[n]
‖w̄ −Xi‖2 ≥

(
w̄l −

√
2

4

)2

+
2 +
√

2

4
≥ 1

32
+

2 +
√

2

4
> σMEB,2 + ε, (4.102)

contradicts with (4.87). If l 6= l′, then (4.99) implies that

max
i∈[n]
‖w̄ −Xi‖2 ≥ w̄2

l′ +
2 +
√

2

4
≥ 9

32
+

2 +
√

2

4
> σMEB,2 + ε, (4.103)

also contradicts with (4.87). Therefore, for this case we must make correct classification that X

comes from Case 1.

In all, our classification is always correct. It remains to prove that the value of l is correct.

If X is from Case 1, by (4.92) we have

1

2
+ 0.01 ≥ max

i∈[n]
‖w̄ −Xi‖2 ≥ w̄2

1 +
(
w̄l −

1√
2

)2

+
∑
i 6=1,l

w̄2
i +

1

2
. (4.104)

As a result, w̄i ≤ 0.1 < 3
√

2
8

for all i ∈ [n]/{l} and w̄l ≥ 1√
2
− 0.1 > 3

√
2

8
. Therefore, we must

have l = l′, i.e., Line 1 of our algorithm correctly returns the value of l.
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If X is from Case 2, by (4.99) we have

2 +
√

2

4
+ 0.01 ≥ max

i∈[n]
‖w̄ −Xi‖2 (4.105)

≥
[
w̄1 −

(1

2
−
√

2

4

)]2

+
(
w̄l −

√
2

4

)2

+
∑
i 6=1,l

w̄2
i +

2 +
√

2

4
. (4.106)

As a result, w̄i ≤ 0.1 < 0.25 for all i ∈ [n]/{1, l}, w̄1 ≤ 1
2
−
√

2
4

+ 0.1 < 0.25, and w̄l ≥
√

2
4
− 0.1 > 0.25. Therefore, we must have w̄l = maxi∈{2,...,d} w̄i, i.e., Line 1 of our algorithm

correctly returns the value of l.

In all, we have proved that an ε-approximate solution w̄ ∈ Rd for (4.87) would simultaneously

reveal whetherX is from Case 1 or Case 2 as well as the value of l ∈ {2, . . . , d}. On the one hand,

notice that distinguishing these two cases requires Ω(
√
n− 2) = Ω(

√
n) quantum queries to OX

for searching the position of k because of the quantum lower bound for search [91]; therefore, it

gives an Ω(
√
n) quantum lower bound on queries to OX for returning an w̄ that satisfies (4.87).

On the other hand, finding the value of l is also a search problem on the entries of X , which

requires Ω(
√
d− 1) = Ω(

√
d) quantum queries to OX also due to the quantum lower bound for

search [91]. These observations complete the proof of Theorem 4.5.2.

4.5.3 Zero-sum games

Recall that for zero-sum games, we are given an n-dimensional anti-symmetric matrix X

normalized by maxi,j∈[n] |Xi,j| ≤ 1, and the goal is to return an w ∈ ∆n such that

Xw ≤ ε · 1n. (4.107)
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Given the quantum oracle OX in (4.8), i.e., OX |i〉|j〉|0〉 = |i〉|j〉|Xij〉 ∀ i, j ∈ [n], Theorem 4.3.1

solves this task with high success probability with cost Õ
(√

n
ε4

)
. We prove a matching quantum

lower bound in n:

Theorem 4.5.3. Assume 0 < ε < 1/3. Then to return an w ∈ ∆n satisfying (4.107) with

probability at least 2/3, we need Ω(
√
n) quantum queries to OX .

Proof. Assume that there exists an k ∈ [n] such that

Xki =


1 if i 6= k

0 if i = k

Xik =


−1 if i 6= k

0 if i = k

Xij = 0 if i, j 6= k. (4.108)

Denote w = (w1, . . . , wn)†. Then (4.108) implies that

∀ i 6= k, (Xw)i =
n∑
j=1

Xijwj = Xikwk = −wk; (4.109)

(Xw)k =
n∑
j=1

Xkjwj =
∑
j 6=k

wj. (4.110)

In order to have (4.107), we need to have −wk ≤ ε and
∑

j 6=k wj ≤ ε by (4.109) and (4.110),

respectively. Because wj ≥ 0 for all j ∈ [n] and
∑n

j=1wj = 1, they imply that 1 − ε ≤ wk ≤ 1

and 0 ≤ wj ≤ ε for all j ∈ [n]/{k}. Therefore, if we could return an w ∈ ∆n satisfying (4.107)

with probability at least 2/3, then we become aware of the value of k. On the other hand, this

is a search problem on the entries of X , which requires Ω(
√
n) quantum queries to OX by the

quantum lower bound for search [91]. In all, this implies that the cost of solving the zero-sum

game takes at least Ω(
√
n) quantum queries or gates.

239



4.6 Generalization to Matrix Games

Minimax games between two parties, i.e., minx maxy f(x, y), is a basic model in game

theory and has ubiquitous connections and applications to economics, optimization and machine

learning, theoretical computer science, etc. Among minimax games, one of the most fundamental

cases is the bilinear minimax game, also known as the matrix game, with the following form:

min
x∈X

max
y∈Y

y>Ax, where A ∈ Rn×d,X ⊂ Rd,Y ⊂ Rn. (4.111)

Matrix games are fundamental in algorithm design due to their equivalence to linear programs [157],

and also in machine learning because they contain classification [124, 158] as a special case, and

many other important problems.

For many common domains X and Y , matrix games can be solved efficiently within

approximation error ε, i.e., to output x′ ∈ X and y′ ∈ Y such that (y′)>Ax′ is ε-close to the

optimum in (4.114). For some specific choices of X and Y , the matrix game can even be solved

in sublinear time in the size nd of A. When X and Y are both `1-norm unit balls, [156] can solve

the matrix game in time O((n+ d) log(n+ d)/ε2). When X is the `2-norm unit ball in Rd and Y

is the `1-norm unit ball in Rn, [126] can solve the matrix game in time O((n+ d) log n/ε2).

As far as we know, the `1-`1 and `2-`1 matrix games are the only two cases where sublinear

algorithms are known. However, there is general interest of solving matrix games with general

norms. For instance, matrix games are closely related to the Carathéodory problem for finding a

sparse linear combination in the convex hull of given data points, where all the `p-metrics with

p ≥ 2 have been well-studied [159, 160, 161]. In addition, matrix games are common in machine
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learning especially support vector machines (SVMs), and general `p-margin SVMs have also

been considered by previous literature, see e.g. the book by [162]. In all, it is a natural question

to investigate sublinear algorithms for general matrix games. In addition, quantum computing

has been rapidly advancing and current technology has reached ”quantum supremacy” for some

specific tasks [163]; since previous works have given sublinear quantum algorithms for `1-`1

matrix games [164, 165] and `2-`1 matrix games [164] with running time (
√
n+
√
d) poly(1/ε),

it is also natural to explore sublinear quantum algorithms for general matrix games.

Contributions. We conduct a systematic study of `q-`1 matrix games for any q ∈ (1, 2] which

corresponds to `q-margin SVMs and the `p-Carathéodory problem for any p ≥ 2. We use the

following entry-wise input model, the standard assumption in the sublinear algorithms in [126,

156]:

Theorem 4.6.1 (Main Theorem). Given q ∈ (1, 2]. Define p ≥ 2 such that 1
p

+ 1
q

= 1. Consider

the `q-`1 matrix game7:

σ := max
x∈Bdq

min
p∈∆n

p>Ax, (4.112)

where Bd
q is the `q-unit ball in Rd and ∆n is the `1-simplex in Rn. Then we can find an x̄ ∈ Bd

q

s.t.8

min
i∈[n]

Aix̄ ≥ σ − ε (4.113)

7Throughout the paper, we use the bold font p to denote a vector and the math font p to denote a real number.
8x̄ ∈ Bdq is the standard objective quantity under the `q-norm. Also note that once we have the x̄ in (4.113), any

p ∈ ∆n satisfies p>Ax̄ ≥ σ − ε.
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with success probability at least 2/3, using

• O
( (n+d)(p+logn)

ε2

)
classical queries (Theorem 4.7.1); or

• Õ
(
p2√n
ε4

+ p3.5
√
d

ε7

)
quantum queries9 (Theorem 4.8.1).

When p = Ω(log d/ε), the above bounds can be improved (by Lemma 4.6.1) to respectively

• O
( (n+d)( log d

ε
+logn)

ε2

)
queries to the classical input model;

• Õ
(√

n
ε6

+
√
d

ε10.5

)
queries to the quantum input model.

Both results are optimal in n and d up to poly-log factors as we show Ω(n+ d) and Ω(
√
n+
√
d)

classical and quantum lower bounds respectively when ε = Θ(1).

Conceptually, our classical and quantum algorithms for general matrix games enjoy quite

a few nice properties. On the one hand, they can be directly applied to

• Convex geometry: We give the first sublinear classical and quantum algorithms for the

approximate Carathéodory problem (Corollary 4.9.1), improving the previous linear-time

algorithms of [160, 161];

• Supervised learning: We provide the first sublinear algorithms for general `q-margin

support vector machines (SVMs) (Corollary 4.9.2).

On the other hand, our quantum algorithm is friendly for near-term applications. It uses the

standard quantum input model and needs not to use any sophisticated quantum data structures.

It is classical-quantum hybrid where the quantum part is isolated by pieces of state preparations

connected by classical processing. Its output is completely classical.

9Here Õ omits poly-logarithmic factors.
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Technique-wise, we are deeply inspired by [126], which serves as the starting point of our

algorithm design. At a high level, Clarkson et al.’s algorithm follows a primal-dual framework

where the primal part applies (`2-norm) online gradient descent (OGD) by [149], and the dual

part applies multiplicative weight updates (MWU) by `2-sampling. The choice of the `2-norm

metric greatly facilitates the design and analysis of the algorithms for both parts. However, it is

conceivable that more sophisticated design and analysis will be required to handle general `q-`1

matrix games.

Our main technical contribution in this section is to expand the primal-dual approach

of [126] to work for more general metrics for the `q-`1 matrix game. Specifically, in the primal

we replace OGD by a generalized p-norm OGD due to [166], and in the dual we replace the

`2-sampling by `q-sampling. We conduct a careful algorithm design and analysis to ensure that

this strategy only incurs an O(p/ε2) overhead in the number of iterations, and the error of the

`q-`1 matrix game is still bounded by ε as in (4.113). In a nutshell, our algorithm can be viewed

as an interpolation between the `2-`1 matrix game [126] and the `1-`1 matrix game [156]: when

q is close to 2 the algorithm is more similar to [126], whereas when q is close to 1, p is large and

the p-norm GD becomes closer to the normalized exponentiated gradient [166], which is exactly

the update rule in (author?) [156].

Quantumly, we also provide a corresponding quantum speedup of our new classical algorit-

hm, inspired by the previous quantum speedup by [164]. They achieved a quantum speedup

of Õ(
√
n +
√
d) for solving `2-`1 matrix games by levering quantum amplitude amplification

and observing that `2-sampling can be readily accomplished by quantum state preparation as

quantum states refer to `2 unit vectors. For general `q-`1 matrix game (q ∈ (1, 2]), we likewise

upgrade both primal and dual parts as in our classical algorithm: specifically, in the primal, we
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apply the p-norm OGD in Õ(
√
d) time, whereas in the dual, we apply the multiplicative weight

update via an `q-sampling in Õ(
√
n) time. To that end, we contribute to the following technical

improvements:

• In our algorithm, we cannot directly leverage quantum state preparation in the `q metric

because it corresponds to `2-normalized vectors. Instead, we propose Algorithm 19 for

quantum `q-sampling withO(
√
n) oracle calls which works with states whose amplitudes

follow `q-norm proportion. Measuring such states is equivalent to performing `q-sampling.

• When p = q = 2, we improved the ε-dependence from the 1/ε8 in [164] to 1/ε7, which is

achieved by deriving a better upper bound on the entries of the vectors in the p-norm OGD.

These improvements together result in Theorem 4.6.1.

Related works on Matrix Games. Matrix games were probably first studied as zero-sum

games by [167]. The seminal work [43] proposed the mirror descent method and gave an

algorithm for solving matrix games in time Õ(nd/ε2). This was later improved to Õ(nd/ε) by

the prox-method due to [168] and the dual extrapolation method due to [169]. To further improve

the cost, there have been two main focuses:

• Sampling-based methods: They focus on achieving sublinear cost in nd, the size of the

matrix A. [126, 156] mentioned above are seminal examples; these sublinear algorithms

can also be used to solve semidefinite programs [170], SVMs [171], etc.

• Variance-reduced methods: They focus on the cost in 1/ε, in particular its decoupling

with nd. [172] showed how to apply the standard SVRG [173] technique for solving `2-`2

matrix games; this idea can also be extended to smooth functions using general Bregman
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divergences [174]. Variance-reduced methods for solving matrix games culminate in [175],

where they show how to solve `1-`1 and `2-`1 matrix games in time

Õ(nnz(A) +
√

nnz(A) · (n+ d)/ε), where nnz(A) is the number of nonzero elements in

A.

There have been relatively few quantum results for solving matrix games. [130] solved the `2-`1

matrix game with cost Õ(
√
nd/ε2) using an unusual input model where the representation of a

data point in Rd is the concatenation of d floating point numbers. More recently, [165] was able to

solve the `1-`1 matrix game with cost Õ(
√
n/ε3 +

√
d/ε3) using the standard input model above,

and [164] solved the `2-`1 matrix game with cost Õ(
√
n/ε4 +

√
d/ε8) also using the standard

input model.

Interpolation for large p. If p is large, we prove the following lemma showing that we can

restrict without loss of generality to cases where p such that 1
p

+ 1
q

= 1 is O(log d/ε), since in this

case the `q-`1 matrix game is ε-close to the `1-`1 matrix game in the following sense:

Lemma 4.6.1. An `q-`1 matrix game where p such that 1
p

+ 1
q

= 1 is greater than log d/ε can be

solved using an algorithm for solving `1-`1 games. This introduces an error O(ε) in the objective

value.

Proof. Assume without loss of generality that ε ≤ 1/2. Let p ≥ log d/ε ≥ log d/(− log(1− ε)).

It can be easily verified that Bd
1 ⊂ Bd

q ⊂ Bd
1 +

(
1− d−1/p

)
Bd
q . Thus Bd

q ⊂ Bd
1 + εBd

q .

Consider applying an algorithm to solve an `1-`1 matrix game instead of the `q-`1 matrix

game as required in (4.112). Let the optimal solution to (4.112) be x∗ ∈ Bd
q , p
∗ ∈ ∆n. By the

previous analysis, there is a point x ∈ Bd
1 such that ‖x − x∗‖q ≤ ε. Thus the solution x, p∗ has
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an error at most O(ε) from the true objective, and the algorithm for solving `1-`1 games finds a

solution at least as good as this.

Notations. Throughout the paper, we denote p, q > 1 to be two real numbers such that 1
p

+ 1
q

=

1; p ∈ [2,+∞) and q ∈ (1, 2]. For any s > 1, we use Bd
s to denote the d-dimensional unit ball in

`s-norm, i.e., Bd
s := {x :

∑
i∈[d] |xi|s ≤ 1}; we use ∆n to denote the n-dimensional unit simplex

{p ∈ Rn : pi ≥ 0,
∑

i pi = 1}, and use 1n to denote the n-dimensional all-one vector. We denote

A ∈ Rn×d to be the matrix whose ith row is A>i for all i ∈ [n]. We define sgn: R → {−1, 0, 1}

such that sgn(x) = −1 if x < 0, sgn(x) = 1 if x > 0, and sgn(0) = 0.

4.7 A sublinear classical algorithm for general matrix games

For any q ∈ (1, 2], we consider the `q-`1 matrix game:

σ := max
x∈Bdq

min
p∈∆n

p>Ax. (4.114)

The goal is to find a x̄ that approximates the equilibrium of the matrix game within additive error

ε:

min
i∈[n]

Aix̄ ≥ σ − ε. (4.115)

Throughout the paper, we assume A1, . . . , An ∈ Bd
p, i.e., all the n data points are normalized to

have `p-norm at most 1.

Theorem 4.7.1. The output of Algorithm 18 satisfies (4.115) with probability at least 2/3, and
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Algorithm 18: A sublinear algorithm for `q-`1 games.
Input: ε > 0; p ∈ [2,+∞), q ∈ (1, 2] such that 1

p
+ 1

q
= 1; A ∈ Rn×d with

Ai ∈ Bd
p ∀i ∈ [n].

Output: x̄ that satisfies (4.115).

1 Let T = d895 logn+4p
ε2

e, y1 = 0d, η =
√

11 logn
12T

, w1 = 1n;
2 for t = 1 to T do
3 pt ← wt

‖wt‖1 , xt ← yt
max{1,‖yt‖q} ;

4 Choose it ∈ [n] by it ← i with probability pt(i);

5 Define yt+1 where for any j ∈ [d], yt+1,j ← yt +
√

q−1
2T

sgn(Ait,j)|Ait,j |
p−1

‖Ait‖
p−2
p

;

6 Choose jt ∈ [d] by jt ← j with probability xt(j)q

‖xt‖qq
;

7 for i = 1 to n do
8 ṽt(i)← Ai(jt)‖xt‖qq/xt(jt)q−1 ;
9 vt(i)← clip(ṽt(i),

1
η
) where clip(v,M) := min{M,max{−M, v}} ∀v,M ∈ R;

10 wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)
2);

11 Return x̄ = 1
T

∑T
t=1 xt.

its total running time is O( (n+d)(p+logn)
ε2

) where p ≥ 2 such that 1
p

+ 1
q

= 1.

Our sublinear algorithm follows the primal-dual approach of Algorithm 1 of [126], which

solves `1-`2 matrix games. Here for `q-`1 matrix games, the solution vector x now lies in Bdq .

Hence, the most natural adaptations are to use `q-sampling instead of `2-sampling in the primal

updates, and to use a p-norm OGD by [166] which generalizes the online gradient descent

by [149] in `2-norm. In the following, we use various technical tools to show these natural

adaptations actually work.

Proposition 4.7.1 ((author?) 166, Corollary 2.18). Consider a set of vectors u1, . . . , uT ∈ Rd

such that ‖ui‖p ≤ 1. Set ι =
√

q−1
2T

. Let x0 ← 0d, x̃t+1,i ← xt,i + ι
sgn(ut,i)|ut,i|p−1

‖ut‖p−2
p

for all i ∈ [d],

and xt+1 ← x̃t+1

max{1,‖x̃t+1‖q} . Then

max
x∈Bdq

T∑
t=1

u>t x−
T∑
t=1

u>t xt ≤

√
2T

q − 1
. (4.116)
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The analysis of Algorithm 18 uses the following lemma, adapted from the variance multiplicative

weight lemma and martingale tail bounds in [126]10:

Lemma 4.7.1 (Section 2 of [126]). In Algorithm 18, the parameters pt in Line 3 and vt in Line 9

satisfy

∑
t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + η
∑
t∈[T ]

p>t v
2
t +

log n

η
(4.117)

where v2
t is defined as (v2

t )i := (vt)
2
i for all i ∈ [n], as long as the update rule of wt is as in

Line 10 and Var[vt(i)
2] ≤ 1 for all t ∈ [T ] and i ∈ [n]. Furthermore, with probability at least

1−O(1/n),

max
i∈[n]

∑
t∈[T ]

[
vt(i)− Aixt

]
≤ 4ηT ; (4.118)

∣∣∣∑
t∈[T ]

Aitxt −
∑
t∈[T ]

p>t vt

∣∣∣ ≤ 10ηT, (4.119)

with probability at least 5/7,
∑

t∈[T ] p
>
t v

2
t ≤ 7T .

We also need to prove the following inequality on different moments of random variables.

Lemma 4.7.2. Suppose that X is a random variable on R, and p ≥ 2. If E[|X|p] ≤ 1, then

E[X2] ≤ 1.

Proof. Denote the probability density ofX as µ. Then
∫ +∞
−∞ |x|

pdµx = E[|X|p] ≤ 1. By Hölder’s

10The proof follows from the proofs of Lemmas 2.3, 2.4, 2.5, and 2.6 in Section 2 and Appendix B of [126],
with only small modifications to fit our new parameter choices. For instance, the original statement requires that

η ≥
√

logn
T , but the proofs actually work for η ≥

√
11 logn

12T .

248



inequality, we have

1 ≥
(∫ +∞

−∞
|x|pdµx

)2/p(∫ +∞

−∞
1dµx

)1−2/p

≥
∫ +∞

−∞
|x|2 · 11−2/pdµx =

∫ +∞

−∞
x2dµx, (4.120)

hence the result follows.

Now we are ready to prove our main theorem.

Proof of Theorem 4.7.1. First, ṽt(i) is an unbiased estimator of Aixt as

E[ṽt(i)] =
d∑

jt=1

xt(jt)
q

‖xt‖qq
·
Ai(jt)‖xt‖qq
xt(jt)q−1

= Aixt. (4.121)

Furthermore,

E[|ṽt(i)|p] =
d∑

jt=1

xt(jt)
q

‖xt‖qq
·
|Ai(jt)|p‖xt‖pqq
xt(jt)p(q−1)

= ‖Ai‖pp‖xt‖pq ≤ 1, (4.122)

where the second equality follows from the identities q = p(q− 1) and p = q(p− 1), and the last

inequality follows from the assumption that Ai ∈ Bd
p ∀i ∈ [n]. By Lemma 4.7.2, E[ṽt(i)

2] ≤ 1.

Because the clip function in Line 9 only makes variance smaller, this means that the conditions

of Lemma 4.7.1 are satisfied and we hence have (4.117), rewritten below:

∑
t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + η
∑
t∈[T ]

p>t v
2
t +

log n

η
. (4.123)
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Furthermore, Lemma 4.7.1 implies that with probability 5/7−O(1/n) we have

∑
t∈[T ]

Aitxt ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + 17ηT +
log n

η
. (4.124)

Moreover, (4.118) gives
∑

t∈[T ]

[
vt(i)− Aixt

]
≤ 4ηT , and hence mini∈[n]

∑
t∈[T ] vt(i) ≤ 4ηT +

mini∈[n]

∑
t∈[T ]

Aixt. Plugging this into (4.124), we have

∑
t∈[T ]

Aitxt ≤
∑
t∈[T ]

p>t vt + 10ηT

≤ min
i∈[n]

∑
t∈[T ]

Aixt + 21ηT +
log n

η
(4.125)

with probability (5/7−O(1/n)) · (1−O(1/n)) ≥ 2/3.

On the other hand, by taking ut = Ait in Proposition 4.7.1,

Tσ ≤ max
x∈Bdq

T∑
t=1

Aitx ≤
T∑
t=1

Aitxt +
√

2Tp (4.126)

since 1
q−1

= p
q
≤ p. Combining (4.125) and (4.126), we have

min
i∈[n]

∑
t∈[T ]

Aixt ≥ Tσ −
√

2Tp− 21ηT − log n

η
. (4.127)

Consequently, the return x̄ = 1
T

∑T
t=1 xt of Algorithm 18 in Line 11 satisfies

min
i∈[n]

Aix̄ ≥ σ −
√

2p

T
− 21η − log n

ηT
. (4.128)
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To prove (4.115), it remains to show that
√

2p
T

+ 21η + logn
ηT
≤ ε, which is equivalent to

√
2p +

21
√

11 logn
12

+
√

12 logn
11
≤
√
Tε by the definition of η. This is true because the AM-GM inequality

implies that that LHS is at most 2(
√

2p)2 + 2
(
21
√

11 logn
12

+
√

12 logn
11

)2 ≤ 4p + 895 log n ≤

Tε2.

Lemma 4.6.1 combined with Theorem 4.7.1 yields the classical result in Theorem 4.6.1.

4.8 A sublinear quantum algorithm for general matrix games

In this section, we give a quantum algorithm for solving the general `q-`1 matrix game.

It closely follows our classical algorithm because they both use a primal-dual approach, where

the primal part is composed of p-norm online gradient descent and the dual part is composed of

multiplicative weight updates. However, we adopt quantum techniques to achieve speedup on

both.

The intuition behind the quantum algorithm and the quantum speedup is that we measure

quantum states to obtain random samples. These quantum states can be efficiently prepared

(with cost Õ(
√
n) and Õ(

√
d)). A quantum state can be mathematically represented by an `2-

normalized complex vector ψ in the sense that measuring this quantum states yields outcome i

with probability |ψi|2 (thus there is a quantum state corresponding to every probability distribution).

Let us denote the quantum state for sampling from w by |w〉 and the quantum state for sampling

from x by |x〉 (different from the notation in the paper). If we can maintain |w〉 and |x〉 in each

iteration, then there is no need for classical updates, and preparing |w〉 and |x〉 becomes the

bottleneck of the quantum algorithm. We design Algorithm 19 for such state preparation and we

showed (in Proposition 4.10.1) that preparing |w〉 costs Õ(
√
n) and preparing |x〉 costs Õ(

√
d).
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This is the source of our quantum speedup.

As an important subroutine, Algorithm 19 is used to prepare states for `q-sampling. It uses

standard Grover-based techniques to prepare states but we carefully keep track of the normalizing

factor to facilitate `q-sampling. This subroutine is summarized in Proposition 4.10.1 (in the

supplementary material). We give its high-level ideas as follows:

1. We first create a quantum state corresponding to the uniform distribution, which is easy.

2. For each entry, we create a state with the desired amplitude associated with 0, and an

undesired amplitude associated to 1 (the unitarity of quantum operations necessitates the

existence of this undesired term).

3. Finally we use a technique called amplitude amplification to amplify the portion of the state

corresponding to 0 for each entry, to get a state with only the desired amplitudes.

The details of our quantum algorithm is rather technical. To simplify the presentation, we

postpone its pseudocode (Algorithm 20) to the final section and highlight how it is different from

Algorithm 18 in the following.

• For the primal part, we prepare a quantum state |yt〉 for the q-norm OGD and measure it

(in Line 7) to obtain a sample jt ∈ [d]. The subtlety here is that we need to perform the

`q-sampling to the vector yt; this is different from the `2-sampling in [164] which uses the

fact that pure quantum states are `2-normalized. To this end, we design Algorithm 19 for

`q-quantum state sampling, which may be of independent interest; this algorithm is built

upon a clever use of quantum amplitude amplification, the technique behind the Grover

search [132]. Note that sampling according to yt is equivalent to sampling according to
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Algorithm 19: Prepare an `q-pure state given an oracle to its coefficients.

1 Apply the minimum finding algorithm [151] to find a‖q‖ := maxi∈[n] |ai|q/2 in O(
√
n)

time;
2 Prepare the uniform superposition 1√

n

∑
r∈[n] |i〉;

3 Perform the following unitary transformations:

1√
n

∑
i∈[n]

|i〉 Oa7−→ 1√
n

∑
i∈[n]

|i〉|ai〉

7→ 1√
n

∑
i∈[n]

|i〉|ai〉

(
a
q/2
i

a‖q‖
|0〉+

√
1− |ai|

q

a2
‖q‖
|1〉

)

O−1
a7−−→ 1√

n

∑
i∈[n]

|i〉|0〉

(
a
q/2
i

a‖q‖
|0〉+

√
1− |ai|

q

a2
‖q‖
|1〉

)
;

4 Discard the second register above and rewrite the state as

‖a‖q/2q√
na‖q‖

 1

‖a‖q/2q

∑
i∈[n]

a
q/2
i |i〉

 |0〉+ |a⊥〉|1〉 (4.129)

where |a⊥〉 := 1√
n

∑
i∈[n]

√
1− |ai|q

a2
‖q‖
|i〉;

5 Apply amplitude amplification [57] for the state in (4.129) conditioned on the second
register being 0. Return the output.
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xt in Algorithm 18, because xt(j)q/‖xt‖qq = yt(j)
q/‖yt‖qq. Moreover, it suffices to replace

‖xt‖qq/xt(jt)q−1 with ‖yt‖qq/(yt(jt)q−1 max{1, ‖yt‖q}) in Line 8 of Algorithm 20. Similar

to preparing |pt〉, we use Õ(
√
d) queries to OA to prepare yt, while classically we need to

compute all the entries of yt, which takes O(d) queries.

• For the dual part, we prepare the multiplicative weight vector as a quantum state |pt〉 and

measure it (in Line 3) to obtain a sample it ∈ [n]. This adaption enables us to achieve

the Õ(
√
n) dependence by using quantum amplitude amplification in the quantum state

preparation: in Line 8, we implement the oracle Ot and in Line 9 we use Õ(
√
n) queries

to Ot to prepare the state |pt+1〉 for the next iteration. In contrast, classically we need

to compute all the entries of wt+1 to obtain the probability distribution pt+1 for the next

iteration, which takes O(n) queries.

In general, Algorithm 20 can be viewed as a template for achieving quantum speedups for

online mirror descent methods: In this work, we focus on the general matrix games where the

primal and dual are in the special relationship of `p and `q norms, but in principle it may be

applicable to study other dualities in online learning.

We summarize the main quantum result as the following theorem, which states the correctness

and time complexity of Algorithm 20. The relevant technical proofs are deferred to the supplementary

material.

Theorem 4.8.1. Algorithm 20 returns a succinct classical representation11 of a vector w̄ ∈ Rd

11The algorithm stores T = Õ(p/ε2) real numbers classically: i1, . . . , iT obtained from Line 3 and
‖̃y1‖q, . . . , ‖̃yT ‖q obtained from Line 6. After that, each coordinate of x̄ can be computed in time Õ(p/ε2).
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such that

Aix̄ ≥ max
x∈Bdq

min
i′∈[n]

Ai′x− ε ∀i ∈ [n], (4.130)

with probability at least 2/3, and its total running time is Õ
(
p2√n
ε4

+ p3.5
√
d

ε7

)
. We can also assume

p = O(log d/ε) (Lemma 4.6.1) and result in running time Õ
(√

n
ε6

+
√
d

ε10.5

)
.

Moreover, Algorithm 20 enjoys the following features:

• Simple quantum input: Algorithm 20 uses the standard quantum input model and needs not

to use any sophisticated quantum data structures, such as quantum random access memory

(QRAM) in some other quantum machine learning applications, to achieve speedups.

• Hybrid classical-quantum feature: Algorithm 20 is also highly classical-quantum hybrid:

the quantum part is isolated by pieces of state preparations connected by classical processing.

In addition, it only has O( logn+p
ε2

) iterations, which implies that the corresponding quantum

circuit is shallow and can potentially be implemented even on near-term quantum machines [135].

• Classical output: The output of Theorem 4.8.1 is completely classical. Compared to quantum

algorithms whose output is a quantum state and may incur overheads [139], Algorithm 20

guarantees minimal overheads and can be directly used for classical applications.

4.9 Applications

We give two applications that generically follow from our classical and quantum `q-`1

matrix game solvers.
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4.9.1 Approximate Carathéodory problem

The exact Carathéodory problem is a fundamental result in linear algebra and convex

geometry: every point u ∈ Rd in the convex hull of a vertex set S ⊂ Rd can be expressed as

a convex combination of d+ 1 vertices in S. Recently, a breakthrough result by [159] shows that

if S ⊂ Bd
p, i.e., S is in the `p-norm unit ball, then there exists a point u′ s.t. ‖u−u′‖p ≤ ε and u′ is

a convex combination of O(p/ε2) vertices in S. The follow-up work by (author?) [160] proved

a matching lower bound Ω(p/ε2), and (author?) [161] can give better bounds under stronger

assumptions on S or u.

Currently, the best-known time complexity of solving the approximate Carathéodory problem

is O(ndp/ε2) by Theorem 3.5 of [160]. We give classical and quantum sublinear algorithms:

Corollary 4.9.1. Suppose that S ⊂ Bd
p, |S| = n, and u is in the convex full of S. Then we can

find a convex combination
∑k

i=1 xivi such that vi ∈ S for all i ∈ [k], k = O((p + log n)/ε2),

and ‖
∑k

i=1 xivi‖p ≤ ε, using a classical algorithm with running time O
( (n+d)(p+logn)

ε2

)
or a

quantum algorithm with running time Õ
(
p2√n
ε4

+ p3.5
√
d

ε7

)
. We can also assume p = O(log d/ε)

(Lemma 4.6.1) and result in running time O
(

(n+d)(log d/ε+logn)
ε2

)
and Õ

(√
n
ε6

+
√
d

ε10.5

)
, respectively.

Proof. We denote the matrix V := (v1; v2; · · · ; vn) where vi is the ith element in S. Note that

the approximate Carathéodory problem can be formed as minp∈∆n ‖V >p− u‖p. In addition, by

Hölder’s inequality ‖y‖p = maxx:‖x‖q≤1 y
>x; therefore, we obtain the following minimax matrix

game:

min
p∈∆n

max
x∈Bdq

(p>V − u>)x. (4.131)
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We denote U = (u;u; · · · ;u) ∈ Rn×d, i.e., all the n rows of U are u. Then we have (p>V −

u>)x = 2p> V−U
2
x. Furthermore, since u, vi ∈ Bd

p for all i ∈ [n], each row of V−U
2

is also in

u, vi ∈ Bd
p. Finally, by the Sion’s Theorem [176] we can switch the order of the min and max

in (4.131). In all, to solve the approximate Carathéodory problem with precision ε, it suffices to

solve the maximin game

max
x∈Bdq

min
p∈∆n

p>
V − U

2
x (4.132)

with precision ε
2
. This is exactly (4.114), thus the result follows from Theorem 4.1.1 and Theorem 4.8.1.

Compared to [160], we pay a log n overhead in the cardinality of the convex combination,

but in time complexity the dominating term nd is significantly improved to n + d. We also give

the first sublinear quantum algorithm. Note that as (author?) [160] pointed out, the approximate

Carathéodory problem has wide applications in machine learning and optimization, including

support vector machines (SVMs), rounding in polytopes, submodular function minimization, etc.

We elaborate the details of SVMs below, and leave out the details of other applications as the

reductions are direct.

4.9.2 `q-margin support vector machine (SVM)

When we solve the `q-`1 matrix game in Algorithm 18, we apply `q-sampling where jt = j

with probability w(j)q/‖w‖qq for any j ∈ [d]. The key reason of the success of Algorithm 18 is

because the expectation of the random variable Ai(jt)‖xt‖qq/xt(jt)q−1 in Line 8 is Xiw, which is

unbiased.
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If we consider some alternate random variables, we can potentially solve a maximin game

in `q-`1 norm with respect to some nonlinear functions of the matrix. A specific problem of

significant interest is the `q-margin support vector machine (SVM), where we are given n data

points X1, . . . , Xn in Rd and a label vector y ∈ {1,−1}n. The goal is to find a separating

hyperplane w ∈ Rd of these data points with the largest margin under the `q-norm loss, i.e.,

σSVM := max
w∈Rd

min
i∈[n]

2yi ·X>i w − ‖w‖qq. (4.133)

Without loss of generality, we assume yi = 1 for all i ∈ [n], otherwise we take Xi ← (−1)yi ·Xi.

In this case, the random variable 2Xi(j)‖w‖qq/w(j)q−1−‖w‖qq is unbiased under `q-sampling on

j:

E
[2Xi(j)‖w‖qq

w(j)q−1
− ‖w‖qq

]
= 2X>i w − ‖w‖qq. (4.134)

Note that σSVM ≥ 0 since 2X>i w−‖w‖qq = 0 for all i ∈ [n] when w = 0. For the case σSVM > 0

and taking 0 < ε < σSVM, similar to Theorem 4.1.1 and Theorem 4.8.1 we have:

Corollary 4.9.2. To return a vector w̄ ∈ Rd such that with probability at least 2/3,

min
i∈[n]

2Xiw̄ − ‖w̄‖qq ≥ σSVM − ε > 0, (4.135)

there is a classical algorithm that achieves this withO
( (n+d)(p+logn)

ε2

)
time and a quantum algorithm

that achieves this with Õ
(
p2√n
ε4

+ p3.5
√
d

ε7

)
time. We can also assume p = O(log d/ε) (Lemma 4.6.1)

and result in running time O
( (n+d)(log d/ε+logn)

ε2

)
and Õ

(√
n
ε6

+
√
d

ε10.5

)
, respectively.
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Notice that classical sublinear algorithms for `2-SVMs have been given [126, 171], and

there is also a sublinear quantum algorithm for `2-SVMs in [164]. We essentially generalize their

results to the lq-norm cases based on our new general matrix game solvers in Theorem 4.7.1 and

Theorem 4.8.1.

4.10 Deferred Technical Details

We first give the details of our quantum algorithm.

Algorithm 20: A sublinear quantum algorithm for `q-`1 matrix games.
Input: ε > 0; p ∈ [2,+∞), q ∈ (1, 2] such that 1

p
+ 1

q
= 1; A ∈ Rn×d with

Ai ∈ Bd
p ∀i ∈ [n].

Output: x̄ that satisfies (4.115).

1 Let T = d1346 logn+4p
ε2

e, y1 = 0d, η =
√

11 logn
12T

, w1 = 1n, |p1〉 = 1√
n

∑
i∈[n] |i〉;

2 for t = 1 to T do
3 Measure the state |pt〉 in the computational basis and denote the output as it ∈ [n];
4 For each i ∈ [t], estimate ‖Ait‖pp by Lemma 4.10.1 with precision δ = η2.

Output:= ‖̃Ait‖
p

p;

5 Define12yt+1 by yt+1,j ← yt +
√

q−1
2T

sgn(Ait,j)|Ait,j |
p−1

‖̃Ait‖
p−2

p

for all j ∈ [d];

6 Apply Lemma 4.10.1 2dlog T e times to estimate ‖yt‖qq with precision δ = η2, and

take the median of the 2dlog T e outputs, denoted by ‖̃yt‖
q

q;
7 Choose jt ∈ [d] by jt = j with probability yt(j)q/‖yt‖qq, which is achieved by

applying Algorithm 19 to prepare the quantum state |yt〉 and measure in the
computational basis;

8 For all i ∈ [n], denote ṽt(i) = Ai(jt)‖̃yt‖
q

q/
(
yt(jt)

q−1 max{1, ‖̃yt‖q}
)
,

vt(i) = clip(ṽt(i), 1/η), and ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)
2). Prepare an

oracle Ot such that Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all i ∈ [n], using 2t queries to OX and
Õ(t) additional arithmetic computations;

9 Prepare |pt+1〉 = 1
‖ut+1‖2

∑
i∈[n] ut+1(i)|i〉 using Algorithm 19 (with q = 2 therein)

and Ot;
10 Return w̄ = 1

T

∑T
t=1

yt

max{1,‖̃yt‖q}
.

We need the following lemma to estimate the norm of a vector:
12Here we do not write down the whole vector yt+1, but we construct any query to its entries in O(1) time.
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Lemma 4.10.1 ((author?) 164, Lemma 6). Given a function F : [d] → [0, 1] with a quantum

oracleOF : |i〉|0〉 7→ |i〉|F (i)〉 for all i ∈ [d], letm = 1
d

∑d
i=1 F (i). Then for any δ < 0, there is a

quantum algorithm that uses O(
√
d/δ) queries to OF and returns an m̃ such that |m− m̃| ≤ δm

with probability at least 2/3.

We use the procedure below for preparing a quantum state given an oracle to a power of its

coefficients:

Proposition 4.10.1. Assume that a ∈ Cn, and we are given a unitary oracle Oa such that

O|i〉|0〉 = |i〉|ai〉 for all i ∈ [n]. Then Algorithm 19 takes O(
√
n) calls to Oa for preparing

the quantum state 1

‖a‖q/2q

∑
i∈[n] a

q/2
i |i〉 with success probability 1−O(1/n).

Proof. Note that Algorithm 2 of [164] had given a quantum algorithm for preparing an `2-norm

pure state given an oracle to its coefficients, and Algorithm 19 essentially generalize this result

to the `q-norm case by replacing all ai by aq/2i as in Algorithm 19. Note that the coefficient in

(4.129) satisfies ‖a‖q/2q√
na‖q‖

≥ 1√
n

. As a result, applying amplitude amplification for O(
√
n) times

indeed promises that we obtain 0 in the second system with success probability 1−O(1/n), i.e.,

the state 1

‖a‖q/2q

∑
i∈[n] a

q/2
i |i〉 is prepared.

We need the following lemma.

Lemma 4.10.2. For all i ∈ [n], Define

ṽt,approx(i) :=
Ai(jt)‖̃yt‖

q

q

yt(jt)q−1 max{1, ‖̃yt‖q}
, ṽt,true(i) :=

Ai(jt)‖yt‖qq
yt(jt)q−1 max{1, ‖yt‖q}

. (4.136)
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where ‖̃yt‖
q

q and ‖yt‖qq satisfy

∣∣∣‖̃yt‖qq − ‖yt‖qq∣∣∣ ≤ δ‖yt‖qq (4.137)

with probability at least 1 − o(1). Also assume that ṽt,approx(i), ṽt,true(i) ≤ 1/η. Then, it holds

that for all i ∈ [n],

|ṽt,approx(i)− ṽt,true(i)| ≤
δ

η
∀i ∈ [n], (4.138)

with probability at least 1− o(1).

Proof. First note that

|ṽt,approx(i)− ṽt,true(i)| = ṽt,true(i)

∣∣∣∣ ṽt,approx(i)

ṽt,true(i)
− 1

∣∣∣∣ ≤ 1

η

∣∣∣∣ ṽt,approx(i)

ṽt,true(i)
− 1

∣∣∣∣. (4.139)

When ‖yt‖q ≥ 1, we have ṽt,approx(i)

ṽt,true(i)
=
‖̃yt‖

q−1

q

‖yt‖q−1
q

, and when ‖yt‖q ≤ 1, we have ṽt,approx(i)

ṽt,true(i)
=
‖̃yt‖

q

q

‖yt‖qq
.

By assumption, with probability at least 1 − o(1), it holds that
∣∣∣ ‖̃yt‖qq‖yt‖qq

− 1
∣∣∣ ≤ δ. Since 1 ≤

‖̃yt‖
q−1

q

‖yt‖q−1
q
≤ ‖̃yt‖

q

q

‖yt‖qq
when ‖̃yt‖q ≥ ‖yt‖q, and 1 ≥ ‖̃yt‖

q−1

q

‖yt‖q−1
q
≥ ‖̃yt‖

q

q

‖yt‖qq
when ‖̃yt‖q < ‖yt‖q, it also holds

that
∣∣∣ ‖̃yt‖q−1

q

‖yt‖q−1
q
− 1
∣∣∣ ≤ δ. Putting this into (4.139), we have the desired inequality.

Now, we are ready to prove the main quantum result.

Proof of Theorem 4.8.1. First note that in Line 4, we use an estimation ‖̃Ait‖
p

p of ‖Ait‖pp with

relative error at most δ. Then in Line 5, ‖̃Ait‖
p−2

p is an estimation of ‖Ait‖p−2
p with relative error

at most δ because p ≥ 2 and ‖̃Ait‖
p−2

p = (‖̃Ait‖
p

p)
(p−2)/p. Hence, yt+1 has a relative error of at
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most δ compared to its true value defined by

yt +

√
q − 1

2T

sgn(Ait,j)|Ait,j|p−1

‖Ait‖
p−2
p

. (4.140)

Consider Line 6. The estimate ‖̃yt‖
q

q is the median of 2dlog T e executions of Lemma 4.10.1.

It implies that, with failure probability is at most 1− (2/3)2 log T = 1− T 2, (4.137) holds. Since

there are T iterations in total, the probability that (4.137) holds is at least 1 − T · O(1/T 2) =

1 − o(1). Also consider (4.136). It is easy to see that ṽt,approx(i), ṽt,true(i) ≤ 1/η because of

Line 8. Therefore, the conditions of Lemma 4.10.2 hold and its result follows.

As δ = η2, by Lemma 4.10.2 and Lemma 4.7.1, we have that with probability at least

5/7−O(1/n),

∑
t∈[T ]

Aitxt ≤
∑
t∈[T ]

p>t vt + 11ηT ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + 21ηT +
log n

η
. (4.141)

Moreover, by Lemma 4.10.2 and Eq. (4.118), we have mini∈[n]

∑
t∈[T ] vt(i) ≤ 4ηT + ηT +

mini∈[n]

∑
t∈[T ]

Aixt. Plugging this into (4.141), we have

∑
t∈[T ]

Aitxt ≤
∑
t∈[T ]

p>t vt + 11ηT ≤ min
i∈[n]

∑
t∈[T ]

Aixt + 26ηT +
log n

η
(4.142)

with probability (5/7−O(1/n)) · (1−O(1/n)) ≥ 2/3.

Similar to the proof of Theorem 4.1.1, we have

min
i∈[n]

Aix̄ ≥ σ −
√

2p

T
− 26η − log n

ηT
. (4.143)
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By the choices of p and η in Algorithm 20, the desired error bound for (4.130) holds because

(√
2p

T
+ 26η +

log n

ηT

)2

≤ 2

(
2p

T

)
+ 2

(
26η +

log n

ηT

)2

≤ 4p+ 1346 log n

T
≤ ε2, (4.144)

where the first inequality follows from the AM-GM inequality and the last inequality follows

from the choice of T in Algorithm 20.

Now, we analyze the time complexity. In Line 4 of Algorithm 20, the number of queries to

OA for Lemma 4.10.1 is O(
√
d/δ) = Õ(p

√
d/ε2). In Line 5, we have

yt,j =

√
q − 1

2T

t∑
τ=1

sgn(Aiτ ,j)|Aiτ ,j|p−1

‖̃Aiτ‖p
p−2 . (4.145)

An oracle for yt can be implemented with Õ(p/ε2) queries to OA. To estimate ‖yt‖q, we first

need to normalize yt. The summand in (4.145) is in the range [−1, 1], to see this, note that

|Aiτ ,j|p−1

‖Aiτ‖
p−2
p

≤ |Aiτ ,j|p−1

(|Aiτ ,j|p)(p−2)/p
= |Aiτ ,j| ≤ 1. (4.146)

Therefore, yt,j = Õ(
√
pq/ε) = Õ(

√
p/ε). Since the precision is δ = η2 = Θ̃(ε2/p), the cost for

amplitude estimation is Õ(p
√
d/ε2). Finally, there are T = Õ(p/ε2) iterations in total. The total

complexity in Line 5 is

Õ
( p
ε2

)
· Õ
(√

p

ε

)
· Õ

(
p
√
d

ε2

)
· Õ
( p
ε2

)
= Õ

(
p3.5
√
d

ε7

)
. (4.147)

For Line 6, we need to prepare the state |yt〉. To simulate a query to an coefficient of yt,

we need Õ(p/ε2) queries to OA. The query complexity for Algorithm 19 is O(
√
d), and there are
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T = Õ(p/ε) iterations in total. The total complexity in Line 6 is

Õ
( p
ε2

)
·O(
√
d) · Õ

( p
ε2

)
= Õ

(
p2
√
d

ε4

)
, (4.148)

which is dominated by (4.147).

For Line 8, to implement one query to Ot, we need 2t queries to OA with Õ(t) additional

arithmetic computations. For Line 9, to prepare the state |pt+1〉, we need O(
√
n) queries to Ot,

which can be implemented byO(
√
nt) queries toOA by Line 8 and Õ(

√
nt) additional arithmetic

computations. Therefore, the total complexity for Line 9 is

T∑
t=1

Õ(
√
nt) = Õ(

√
nT 2) = Õ

(
p2
√
n

ε4

)
. (4.149)

The time complexity of this algorithm is established by (4.147) and (4.149).

Finally, x̄ has a succinct classical representation: using i1, . . . , iτ obtained from Line 3 and

‖̃y1‖q, . . . , ‖̃yT‖q obtained from Line 6, a coordinate of x̄ can be restored in time T = Õ(p/ε2).
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Chapter 5: Quantum Wasserstein GANs

This chapter presents a formulation of a variational algorithm for the stable and scalable

learning of quantum states. The results presented were first obtained in [31].

5.1 Introduction

Generative adversarial networks (GANs) [177] represent a power tool of training deep

generative models, which have a profound impact on machine learning. In GANs, a generator

tries to generate fake samples resembling the true data, while a discriminator tries to discriminate

between the true and the fake data. The learning process for generator and discriminator can

be deemed as an adversarial game that converges to some equilibrium point under reasonable

assumptions.

Inspired by the success of GANs and classical generative models, developing their quantum

counterparts is a natural and important topic in the emerging field of quantum machine learning [127,

129]. There are at least two appealing reasons for which quantum GANs are extremely interesting.

First, quantum GANs could provide potential quantum speedups due to the fact that quantum

generators and discriminators (i.e., parameterized quantum circuits) cannot be efficiently simulated

by classical generators/discriminators. In other words, there might exist distributions that can

be efficiently generated by quantum GANs, while otherwise impossible with classical GANs.
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Second, simple prototypes of quantum GANs (i.e., executing simple parameterized quantum

circuits), similar to those of the variational methods (e.g., [178, 179, 180]), are likely to be

implementable on near-term noisy-intermediate-scale-quantum (NISQ) machines [135]. Since

the seminal work of [13], there are quite a few proposals (e.g, [181, 182, 183, 184, 185, 186,

187]) of constructions of quantum GANs on how to encode quantum or classical data into this

framework. Furthermore, [185, 187] also demonstrated proof-of-principle implementations of

small-scale quantum GANs on actual quantum machines.

A lot of existing quantum GANs focus on using quantum generators to generate classical

distributions. For truly quantum applications such as investigation of quantum systems in condensed

matter physics or quantum chemistry, the ability to generate quantum data is also important. In

contrast to the case of classical distributions, where the loss function measuring the difference

between the real and the fake distributions can be borrowed directly from the classical GANs, the

design of the loss function between real and fake quantum data as well as the efficient training

of the corresponding GAN is much more challenging. The only existing results on quantum data

either have a unique design specific to the 1-qubit case [181, 185], or suffer from robust training

issues discussed below [182].

More importantly, classical GANs are well known for being delicate and somewhat unstable

in training. In particular, it is known [188] that the choice of the metric between real and fake

distributions will be critical for the stability of the performance in the training. A few widely used

ones such as the Kullback-Leibler (KL) divergence, the Jensen-Shannon (JS) divergence, and the

total variation (or statistical) distance are not sensible for learning distributions supported by low

dimensional generative models. The shortcoming of these metrics will likely carry through to

their quantum counterparts and hence quantum GANs based on these metrics will likely suffer
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from the same weaknesses in training. This training issue was not significant in the existing

numerical study of quantum GANs in the 1-qubit case [181, 185]. However, as observed by [182]

and us, the training issue becomes much more significant when the quantum system scales up,

even just in the case of a few qubits.

To tackle the training issue of classical GANs, a lot of research has been conducted on

the convergence of training GANs in classical machine learning. A seminal work [188] used

Wasserstein distance (or, optimal transport distance) [189] as a metric for measuring the distance

between real and fake distributions. Comparing to other measures (such as KL and JS), Wasserstein

distance is more appealing from optimization perspective because of its continuity and smoothness.

As a result, the corresponding Wasserstein GAN (WGAN) is promising for improving the training

stability of GANs. There are a lot of subsequent studies on various modifications of the WGAN,

such as GAN with regularized Wasserstein distance [190], WGAN with entropic regularizers [191,

192], WGAN with gradient penalty [193, 194], relaxed WGAN [195], etc. It is known [196] that

WGAN and its variants such as [193] have demonstrated improved training stability compared to

the original GAN formulation.

Contributions. Inspired by the success of classical Wasserstein GANs and the need of smooth,

robust, and scalable training methods for quantum GANs on quantum data, we propose the first

design of quantum Wasserstein GANs (qWGANs). To this end, our technical contributions are

multi-folded.

In Section 5.3, we propose a quantum counterpart of the Wasserstein distance, denoted

by qW(P,Q) between quantum data P and Q, inspired by [188, 189]. We prove that qW(·, ·)

is a semi-metric (i.e., a metric without the triangle inequality) over quantum data and inherits

nice properties such as continuity and smoothness of the classical Wasserstein distance. We
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will discuss a few other proposals of quantum Wasserstein distances such as [197, 198, 199,

200, 201, 202, 203, 204] and in particular why most of them are not suitable for the purpose

of generating quantum data in GANs. We will also discuss the limitation of our proposal of

quantum Wasserstein semi-metric and hope its successful application in quantum GANs could

provide another perspective and motivation to study this topic.

In Section 5.4, we show how to add the quantum entropic regularization to qW(·, ·) to

further smoothen the loss function in the spirit of the classical case (e.g., [190]). We then show the

construction of our regularized quantum Wasserstein GAN (qWGAN) in Figure 5.3 and describe

the configuration and the parameterization of both the generator and the discriminator. Most

importantly, we show that the evaluation of the loss function and the evaluation of the gradient

of the loss function can be in principle efficiently implemented on quantum machines. This

enables direct applications of classical training methods of GANs, such as alternating gradient-

based optimization, to the quantum setting. It is a wide belief that classical computation cannot

efficiently simulate quantum machines, in our case, the evaluation of the loss function and its

gradient. Hence, the ability of evaluating them efficiently on quantum machines is critical for its

scalability.

In Section 5.5, we supplement our theoretical results with experimental validations via

classical simulation of qWGAN. Specifically, we demonstrate numerical performance of our

qWGAN for quantum systems up to 8 qubits for pure states and up to 3 qubits for mixed states

(i.e., mixture of pure states). Comparing to existing results [181, 182, 185], our numerical

performance is more favorable in both the system size and its numerical stability. To give a

rough sense, a single step in the classical simulation of the 8-qubit system involves multiple

multiplications of 28 × 28 matrices. Learning a mixed state is much harder than learning pure
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states (a reasonable classical analogue of their difference is the one between learning a Gaussian

distribution and learning a mixture of Gaussian distributions [205]). We present the only result

for learning a true mixed state up to 3 qubits.

Furthermore, following a specific 4-qubit generator that is recently implemented on an

ion-trap quantum machine [2] and a reasonable noise model on the same machine [206], we

simulate the performance of our qWGAN with noisy quantum operations. Our result suggests

that qWGAN can tolerant a reasonable amount of noise in quantum systems and still converge.

This shows the possibility of implementing qWGAN on near-term (NISQ) machines [135].

Finally, we demonstrate a real-world application of qWGAN to approximate useful quantum

application with large circuits by small ones. qWGAN can be used to approximate a potentially

complicated unknown quantum state by a simple one when using a reasonably simple generator.

We leverage this property and the Choi-Jamiołkowski isomorphism [207] between quantum

operations and quantum states to generate a simple state that approximates another Choi-Jamiołko-

wski state corresponding to potentially complicated circuits in real quantum applications. The

closeness in two Choi-Jamiołkowski states of quantum circuits will translate to the average output

closeness between two quantum circuits over random input states. Specifically, we show that

the quantum Hamiltonian simulation circuit for 1-d 3-qubit Heisenberg model in [208] can be

approximated by a circuit of 52 gates with an average output fidelity over 0.9999 and a worst-

case error 0.15. The best-known circuit based on the product formula will need ∼11900 gates,

however, with a worst-case error 0.001.

Related results. All existing quantum GANs [13, 181, 182, 183, 184, 185, 186, 187], no

matter dealing with classical or quantum data, have not investigated the possibility of using the

Wasserstein distance. The most relevant works to ours are [181, 182, 185] with specific GANs
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dealing with quantum data. As we discussed above, [181, 185] only discussed the 1-qubit case

(both pure and mixed) and [182] discussed the pure state case (up to 6 qubits) but with the loss

function being the quantum counterpart of the total variation distance. Moreover, different from

ours, the mixed state case in [181] is a labeled one: in addition to observing their mixture, one

also gets a label of which pure state it is sampled from.

~e0 {(pi, Ui)} φ

L
Q ψ

~e0 {(pi, Ui)}
ξR

Q

Rσ1(θ1)

Rσ4(θ4)

Rσ2(θ2)

Rσ5(θ5)

Rσ3(θ3)

Figure 5.1: (1) {(pi, Ui)} refers to the
generator with initial state ~e0 and its
parameterization; (2) φ, ψ, ξR refers to
the discriminator; (3) the figure shows how
to evaluate the loss function L by measuring
φ, ψ, ξR on the generated state and the real
state Q with post-processing.

Figure 5.2: An example of a parameterized 3-
qubit quantum circuit for Ui in the generator.
Rσi(θi) = exp(1

2
θiσi) denotes a Pauli rotation

with angle θi. It could be a 1-qubit or 2-qubit
gate depending on the specific Pauli matrix σi.
The circuit consists of many such gates.

Figure 5.3: The Architecture of Quantum Wasserstein GAN.

5.2 Classical Wasserstein Distance & Wasserstein GANs

Let us first review the definition of Wasserstein distance and how it is used in classical

WGANs.

Wasserstein distance Consider two probability distributions p and q given by corresponding

density functions p : X → R, q : Y → R. Given a cost function c : X × Y → R, the optimal
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transport cost between p and q, known as the Kantorovich’s formulation [189], is defined as

dc(p, q) := min
π∈Π(p,q)

∫
X

∫
Y
π(x, y)c(x, y) dx dy (5.1)

where Π(p, q) is the set of joint distributions π having marginal distributions p and q, i.e.,∫
Y π(x, y) dy = p(x) and

∫
X π(x, y) dx = q(y).

Wasserstein GAN The Wasserstein distance dc(p, q) can be used as an objective for learning

a real distribution q by a parameterized function Gθ that acts on a base distribution p. Then the

objective becomes learning parameters θ such that dc(Gθ(p), q) is minimized as follows:

min
θ

min
π∈Π(P,Q)

∫
X

∫
Y
π(x, y)c(Gθ(x), y) dx dy. (5.2)

In [188], Arjovsky et al. propose using the dual of (5.2) to formulate the original min-min

problem into a min-max problem, i.e., a generative adversarial network, with the following form:

min
θ

max
α,β

Ex∼P [φα(x)]− Ey∼Q[ψβ(y)], (5.3)

s.t φα(Gθ(x))− ψβ(y) ≤ c(Gθ(x), y), ∀x, y, (5.4)

where φ, ψ are functions parameterized by α, β respectively. This is advantageous because it

is usually easier to parameterize functions rather than joint distributions. The constraint (5.4)

is usually enforced by a regularizer term for actual implementation. Out of many choices of

regularizers, the most relevant one to ours is the entropy regularizer in [190]. In the case that

c(x, y) = ‖x − y‖2 and φ = ψ in (5.3), the constraint is that φ must be a 1-Lipschitz function.
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This is often enforced by the gradient penalty method in a neural network used to parameterize

φ.

5.3 Quantum Wasserstein Semimetric

Mathematical formulation of quantum data Any quantum data (or quantum states) over space

X (e.g., X = Cd) can be mathematically described by a density operator ρ that is a positive

semidefinite matrix (i.e., ρ � 0) with trace one (i.e., Tr(ρ) = 1), and the set of which is denoted

by D(X ).

A quantum state ρ is pure if rank(ρ) = 1; otherwise it is a mixed state. For a pure state ρ,

it can be represented by the outer-product of a unit vector ~v ∈ Cd, i.e., ρ = ~v~v†, where † refers

to conjugate transpose. We can also use ~v to directly represent pure states. Mixed states are a

classical mixture of pure states, e.g., ρ =
∑

i pi~vi~vi
† where pis form a classical distribution and

~vis are all unit vectors.

Quantum states in a composed system of X and Y are represented by density operators ρ

over the Kronecker-product space X ⊗Y with dimension dim(X ) dim(Y). 1-qubit systems refer

to X = C2. A 2-qubit system has dimension 4 (X⊗2) and an n-qubit system has dimension 2n.

The partial trace operation TrX (·) (resp. TrY(·)) is a linear mapping from ρ to its marginal state

on Y (resp. X ).

From classical to quantum data Classical distributions p, q in (5.1) can be viewed as special

mixed states P ∈ D(X ),Q ∈ D(Y) where P ,Q are diagonal and p, q (viewed as density

vectors) are the diagonals of P , Q respectively. Note that this is different from the conventional

meaning of samples from classical distributions, which are random variables with corresponding
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distributions.

This distinction is important to understand quantum data as the former (i.e., density operato-

rs) rather than the latter (i.e., samples) actually represents the entity of quantum data. This is

because there are multiple ways (different quantum measurements) to read out classical samples

out of quantum data for one fixed density operator. Mathematically, this is because density

operators in general can have off-diagonal terms and quantum measurements can happen along

arbitrary bases.

Consider X and Y from (5.1) being finite sets. We can express the classical Wasserstein

distance (5.1) as a special case of the matrix formulation of quantum data. Precisely, we can

replace the integral in (5.1) by summation, which can be then expressed by the trace of πC where

C is a diagonal matrix with c(x, y) in the diagonal. π is also a diagonal matrix expressing the

coupling distribution π(x, y) of p, q. Namely, π’s diagonal is π(x, y) and satisfies the coupling

marginal condition TrY(π) = P and TrX (π) = Q where P,Q are diagonal matrices with the

distribution of p, q in the diagonal, respectively. As a result, the Kantorovich’s optimal transport

in (5.1) can be reformulated as

dc(p, q) := min
π

Tr(πC) (5.5)

s.t. TrY(π) = diag{p(x)}, TrX (π) = diag{q(y)}, π ∈ D(X ⊗ Y),

where C = diag{c(x, y)}. Note that (5.5) is effectively a linear program.

Quantum Wasserstein semimetric Our matrix reformulation of the classical Wasserstein

distance (5.1) suggests a naive extension to the quantum setting as follows. Let qW(P ,Q) denote
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the quantum Wasserstein semimetric between P ∈ D(X ),Q ∈ D(Y), which is defined by

qW(P ,Q) := min
π

Tr(πC) (5.6)

s.t. TrY(π) = P , TrX (π) = Q, π ∈ D(X ⊗ Y),

where C is a matrix over X ⊗ Y that should refer to some cost-type function. The choice of

C is hence critical to make sense of the definition. First, matrix C needs to be Hermitian (i.e.,

C = C†) to make sure that qW(·, ·) is real. A natural attempt is to use C = diag{c(x, y)}

from (5.5), which turns out to be significantly wrong. This is because qW(~v~v†, ~v~v†) will be

strictly greater than zero for random choice of unit vector ~v in that case. This demonstrates

a crucial difference between classical and quantum data: while classical information is always

stored in the diagonal (or computational basis) of the space, quantum information can be stored

off-diagonally (or in an arbitrary basis of the space). Thus, choosing a diagonal C fails to detect

the off-diagonal information in quantum data.

Our proposal is to leverage the concept of symmetric subspace in quantum information [209]

to make sure that qW(P, P ) = 0 for any P . The projection onto the symmetric subspace is

defined by

Πsym :=
1

2
(IX⊗Y + SWAP), (5.7)

where IX⊗Y is the identity operator over X ⊗Y and SWAP is the operator such that SWAP(~x⊗

~y) = (~y ⊗ ~x),∀~x ∈ X , ~y ∈ Y .1 It is well known that Πsym(~u⊗ ~u) = ~u⊗ ~u for all unit vectors u.

1One needs that X is isometric to Y to well define Πsym. However, this is without loss of generality by choosing
appropriate and potentially larger spaces X and Y to describe quantum data.
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With this property and by choosing C to be the complement of Πsym, i.e.,

C := IX⊗Y − Πsym =
1

2
(IX⊗Y − SWAP), (5.8)

we can show qW(P, P ) = 0 for any P . This is achieved by choosing π =
∑

i λi(~vi~vi
† ⊗ ~vi~vi

†)

given P ’s spectral decomposition P =
∑

i λi~vi~vi
†. Moreover, we can show

Theorem 5.3.1 (Proof in Appendix 5.7.2). qW(·, ·) forms a semimetric over D(X ) over any

space X , i.e., for any P ,Q ∈ D(X ),

1. qW(P ,Q) ≥ 0,

2. qW(P ,Q) = qW(Q,P),

3. qW(P ,Q) = 0 iff P = Q.

Even though our definition of qW(·, ·), especially the choice of C, does not directly come

from a cost function c(x, y) over X and Y , it however still encodes some geometry of the space

of quantum states. For example, let P = ~v~v† and Q = ~u~u†, qW(P,Q) becomes 0.5 (1− |~u†~v|2)

where |~u†~v| depends on the angle between ~u and ~v which are unit vectors representing (pure)

quantum states.

The dual form of qW(·, ·) The formulation of qW(·, ·) in (5.6) is given by a semidefinite

program (SDP), opposed to the classical form in (5.5) given by a linear program. Its dual form is
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as follows.

max
φ,ψ

Tr(Qψ)− Tr(Pφ) (5.9)

s.t. IX ⊗ ψ − φ⊗ IY � C, φ ∈ H(X ), ψ ∈ H(Y),

where H(X ),H(Y) denote the set of Hermitian matrices over space X and Y . We further show

the strong duality for this SDP in Appendix 5.7.2. Thus, both the primal (5.6) and the dual (5.9)

can be used as the definition of qW(·, ·).

Comparison with other quantum Wasserstein metrics There have been a few different

proposals that introduce matrices into the original definition of classical Wasserstein distance.

We will compare these definitions with ours and discuss whether they are appropriate in our

context of quantum GANs.

A few of these proposals (e.g., [201, 202, 210]) extend the dynamical formulation of

Benamou and Brenier [211] in optimal transport to the matrix/quantum setting. In this formulation,

couplings are defined not in terms of joint density measures, but in terms of smooth paths

t → ρ(x, t) in the space of densities that satisfy some continuity equation with some time

dependent vector field v(x, t) inspired by physics. A pair {ρ(·, ·), v(·, ·)} is said to couple P

and Q, the set of which is denoted C(P,Q), if ρ(x, t) is a smooth path with ρ(·, 0) = P and

ρ(·, 1) = Q. The 2-Wasserstein distance is

W2(P,Q) = inf
{ρ(·,·),v(·,·)}∈C(P,Q)

1

2

∫ 1

0

∫
Rn
|v(x, t)|2ρ(x, t) dx dt. (5.10)

The above formulation seems difficult to manipulate in the context of GAN. It is unclear (a)
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whether the above definition has a favorable duality to admit the adversarial training and (b)

whether the physics-inspired quantities like v(x, t) are suitable for the purpose of generating fake

quantum data.

A few other proposals (e.g., [197, 199]) introduce the matrix-valued mass defined by a

function µ : X → Cn×n over domain X , where µ(x) is positive semidefinite and satisfies

Tr(
∫
X
µ(x)dx) = 1. Instead of considering transport probability masses from X to Y , one

considers transporting a matrix-valued mass µ0(x) on X to another matrix-valued mass µ1(y)

on Y . One can similarly define the Kantorovich’s coupling π(x, y) of µ0(x) and µ1(y), and

define the Wasserstein distance based on a slight different combination of π(x, y) and c(x, y)

comparing to (5.1). This definition, however, fails to derive a new metric between two matrices.

This is because the defined Wasserstein distance still measures the distance between X and Y

based on some induced measure (‖ · ‖F ) on the dimension-n matrix space. This is more evident

when X = {P} and Y = {Q}. The Wasserstein distance reduces to c(x, y) + ‖P −Q‖2
F where

the Frobenius norm (‖ · ‖F ) is directly used in the definition.

The proposals in [198, 204] are very similar to us in the sense they define the same coupling

in the Kantorovich’s formulation as ours. However, their definition of the Wasserstein distance

motivated by physics is induced by unbounded operator applied on continuous space, e.g., ∇x,

divx. This makes their definition only applicable to continuous space, rather than qubits in our

setting.

The closest result to ours is [203], although the authors haven’t proposed one concrete

quantum Wasserstein metric. Instead, they formulate a general form of reasonable quantum

Wasserstein metrics between finite-dimensional quantum states and prove that Kantorovich-Rubi-

nstein theorem does not hold under this general form. Namely, they show the trace distance
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between quantum states cannot be determined by any quantum Wasserstein metric out of their

general form.

Limitation of our qW(·, ·) Although we have successfully implemented qWGAN based on

our qW(·, ·) and observed improved numerical performance, there are a few perspectives about

qW(·, ·) worth further investigation. First, numerical study reveals that qW(·, ·) does not satisfy

the triangle inequality. Second, our qW(·, ·) does not come from an explicit cost function, even

though it encodes some geometry of the quantum state space. We conjecture that there could be

a concrete underlying cost function and our qW(·, ·) (or a related form) could be emerged as the

2-Wasserstein metric of that cost function. We hope our work provides an important motivation

to further study this topic.

5.4 Quantum Wasserstein GAN

We describe the specific architecture of our qWGAN (Figure 5.3) and its training. Similar

to (5.2) with the fake state P from a parameterized quantum generator G, consider

min
G

min
π

Tr(πC) (5.11)

s.t. TrY(π) = P,TrX (π) = Q, π ∈ D(X ⊗ Y),

or similar to (5.3) by taking the dual from (5.9),

min
G

max
φ,ψ

Tr(Qψ)− Tr(Pφ) = EQ[ψ]− EP [φ] (5.12)

s.t. IX ⊗ ψ − φ⊗ IY � C, φ ∈ H(X ), ψ ∈ H(Y),
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where we abuse the notation of EQ[ψ] := Tr(Qψ), which refers to the expectation of the outcome

of measuring Hermitian ψ on quantum state Q. We hence refer φ, ψ as the discriminator.

Regularized Quantum Wasserstein GAN

The dual form (5.12) is inconvenient for optimizing directly due to the constraint IX ⊗ψ−

φ ⊗ IY � C. Inspired by the entropy regularizer in the classical setting (e.g., [190]), we add a

quantum-relative-entropy-based regularizer between π and P ⊗Q with a tunable parameter λ to

(5.11) to obtain

min
G

min
π

Tr(πC) + λTr(π log(π)− π log(P ⊗Q)) (5.13)

s.t. TrY(π) = P,TrX (π) = Q, π ∈ D(X ⊗ Y).

Using duality and the Golden-Thomposon inequality [212, 213], we can approximate (5.13) by

min
G

max
φ,ψ

EQ[ψ]− EP [φ]− EP⊗Q[ξR] s.t. φ ∈ H(X ), ψ ∈ H(Y), (5.14)

where ξR refers to the regularizing Hermitian

ξR =
λ

e
exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

)
. (5.15)

Similar to [190], we prove that this entropic regularization ensures that the objective for the outer

minimization problem (5.14) is differentiable in P . (Proofs are given in Section 5.7.3.)
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Parameterization of the Generator and the Discriminator

Generator G is a quantum operation that generates P from a fixed initial state ρ0 (e.g., the

classical all-zero state ~e0). Specifically, generatorG can be described by an ensemble {(p1, U1), . . .

, (pr, Ur)} that means applying the unitary Ui with probability pi. The distribution {p1, . . . , pr}

can be parameterized directly or through some classical generative network. The rank of the

generated state is r (r = 1 for pure states and r > 1 for mixed states). Our experiments include

the cases r = 1, 2.

Each unitary Ui refers to a quantum circuit consisting of simple parameterized 1-qubit and

2-qubit Pauli-rotation quantum gates (see the right of Figure 5.3). These Pauli gates can be

implemented on near-term machines (e.g., [2]) and also form a universal gate set for quantum

computation. Hence, this generator construction is widely used in existing quantum GANs. The

jth gate in Ui contains an angle θi,j as the parameter. All variables pi, θi,j constitute the set of

parameters for the generator.

Discriminator φ, ψ can be parameterized at least in two ways. The first approach is to represent

φ, ψ as linear combinations of tensor products of Pauli matrices, which form a basis of the

matrix space. Let φ =
∑

k αkAk and ψ =
∑

l βlBl, where Ak, Bl are tensor products of

Pauli matrices. To evaluate EP [φ] (similarly for EQ[ψ]), by linearity it suffices to collect the

information of EP [Ak]s, which are simply Pauli measurements on the quantum state P and

amenable to experiments. Hence, αk and βl can be used as the parameters of the discriminator.

The second approach is to represent φ, ψ as parameterized quantum circuits (similar to the G)

with a measurement in the computational basis. The set of parameters of φ (respectively ψ)

could be the parameters of the circuit and values associated with each measurement outcome.
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Our implementation mostly uses the first parameterization.

Training the Regularized Quantum Wasserstein GAN

For the scalability of the training of the Regularized Quantum Wasserstein GAN, one must

be able to evaluate the loss function L = EQ[ψ] − EP [φ] − EP⊗Q[ξR] or its gradient efficiently

on a quantum computer. Ideally, one would hope to directly approximate gradients by quantum

computers to facilitate the training of qWGAN, e.g., by using the alternating gradient descent

method. We show that it is indeed possible and outline the key steps. More details are in

Section 5.8.

Computing the loss function: Each unitary operation Ui that refers to an actual quantum circuit

can be efficiently evaluated on quantum machines in terms of the circuit size. It can be shown that

L is a linear function of P and can be computed by evaluating each Li = EQ[ψ]− EUiρ0U
†
i
[φ]−

EUiρ0U
†
i ⊗Q

[ξR] where Uiρ0U
†
i refers to the state after applying Ui on ρ0. Similarly, one can show

that L is a linear function of the Hermitian matrices φ, ψ, ξR. Our parameterization of φ and ψ

readily allows the use of efficient Pauli measurements to evaluate EP [φ] and EQ[ψ]. To handle

the tricky part EP⊗Q[ξR], we relax ξR and use a Taylor series to approximate EP⊗Q[ξR]; the result

form can again be evaluated by Pauli measurements composed with simple SWAP operations. As

the major computation (e.g., circuit evaluation and Pauli measurements) is efficient on quantum

machines, the overall implementation is efficient with possible overhead of sampling trials.

Computing the gradients: The parameters of the qWGAN are {pi} ∪ {θi,j} ∪ {αk} ∪ {βl}. L

is a linear function of pi, αk, βl. Thus it can be shown that the partial derivatives w.r.t. pi can be

computed by evaluating the loss function on a generated state Uiρ0U
†
i and the partial derivatives

w.r.t. αk, βl can be computed by evaluating the loss function with φ, ψ replaced with Ak, Bl
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respectively. The partial derivatives w.r.t. θi,j can be evaluated using techniques due to [214]

via a simple yet elegant modification of the quantum circuits used to evaluate the loss function.

The complexity analysis is similar to above. The only new ingredient is the quantum circuits

to evaluate the partial derivatives w.r.t. θi,j due to [214], which are again efficient on quantum

machines.

Summary of the training complexity: A rough complexity analysis above suggests that one

step of the evaluation of the loss function (or the gradients) of our qWGAN can be efficiently

implemented on quantum machines. (A careful analysis is in Appendix 5.8.5.) Given this

ability, the rest of the training of qWGAN is similar to the classical case and will share the same

complexity. It is worthwhile mentioning that quantum circuit evaluation and Pauli measurements

are not known to be efficiently computable by classical machines; the best known approach will

cost exponential time.

5.5 Experimental Results

We supplement our theoretical findings with numerical results by classical simulation of

quantum WGANs of learning pure states (up to 8 qubits) and mixed states (up to 3 qubits) as well

as its performance on noisy quantum machines. We use quantum fidelity between the generated

and target states to track the progress of our quantum WGAN. If the training is successful, the

fidelity will approach 1. Our quantum WGAN is trained using the alternating gradient descent

method.

In most of the cases, the target state is generated by a circuit sharing the same structure

with the generator but with randomly chosen parameters. We also demonstrate a special target
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Figure 5.4: Fidelity vs Training Epochs Figure 5.5: Training Loss

Figure 5.6: A typical performance of learning pure states (1,2,4, and 8 qubits).

state corresponding to useful quantum unitaries via the Choi-Jamiołkowski isomorphism. More

details of the following experiments (e.g., parameter choices) can be found in Appendix 5.9.

Most of the simulations were run on a dual core Intel I5 processor with 8G memory.

The 8-qubit pure state case was run on a Dual Intel Xeon E5-2697 v2 @ 2.70GHz processor

with 128G memory. All source codes are publicly available at https://github.com/

yiminghwang/qWGAN.

Pure states We demonstrate a typical performance of quantum WGAN of learning 1, 2, 4, and

8 qubit pure states in Figure 5.6. We also plot the average fidelity for 10 runs with random

initializations in Figure 5.11 which shows the numerical stability of qWGAN.

Figure 5.7: 1 qubit Figure 5.8: 2 qubits Figure 5.9: 4 qubits Figure 5.10: 8 qubits

Figure 5.11: Average performance of learning pure states (1, 2, 4, 8 qubits) where the black line
is the average fidelity over multi-runs with random initializations and the shaded area refers to
the range of the fidelity.

Mixed states We also demonstrate a typical learning of mixed quantum states of rank 2 with

1, 2, and 3 qubits in Figure 5.15. The generator now consists of 2 unitary operators and 2 real
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Figure 5.12: 1 qubit Figure 5.13: 2 qubits Figure 5.14: 3 qubits

Figure 5.15: Average performance of learning mixed states (1, 2, 3 qubits) where the black line
is the average fidelity over multi-runs with random initializations and the shaded area refers to
the range of the fidelity.

Figure 5.16: Learning 4-qubit pure
states with noisy quantum operations.

Figure 5.17: Learning to approximate the 3-qubit
Hamiltonian simulation circuit of the 1-d Heisenberg
model.

probability parameters p1, p2 which are normalized to form a probability distribution using a

softmax layer.

Learning pure states with noise To investigate the possibility of implementing our quantum

WGAN on near-term machines, we perform a numerical test on a practically implementable 4-

qubit generator on the ion-trap machine [2] with an approximate noise model [206]. We deem this

as the closest example that we can simulate to an actual physical experiment. In particular, we add

a Gaussian sampling noise with standard deviation σ = 0.2, 0.15, 0.1, 0.05 to the measurement

outcome of the quantum system. Our results (in Figure 5.16) show that the quantum WGAN can

still learn a 4-qubit pure state in the presence of this kind of noise. As expected, noise of higher

degrees (higher σ) increases the number of epochs before the state is learned successfully.

Comparison with existing experimental results We will compare to quantum GANs with
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quantum data [181, 182, 185]. It is unfortunate that there is neither precise figure nor public

data in their papers which makes a precise comparison infeasible. However, we manage to give

a rough comparison as follows. Ref. [181] studies the pure state and the labeled mixed state

case for 1 qubit. It can be inferred from the plots of their results (Figure 8.b in [181]) that the

relative entropy for both labels converges to 10−10 after ∼ 5000 iterations, and it takes more

than 1000 iterations for the relative entropy to significantly decrease from 1. Ref. [185] performs

experiments to learn 1-qubit pure and mixed states using a quantum GAN on a superconducting

quantum circuit. However, the specific design of their GAN is very unique to the 1-qubit case.

They observe that the fidelity between the fake state and the real state approaches 1 after 220

iterations for the pure state, and 120 iterations for the mixed state. From our figures, qWGAN

can quickly converge for 1-qubit pure states after 150 − 160 iterations and for a 1-qubit mixed

state after ∼ 120 iterations.

Ref. [182] studies only pure states but with numerical results up to 6 qubits. In particular,

they demonstrate (in Figure 6 from [182]) in the case of 6-qubit that the normal gradient descent

approach, like the one we use here, won’t make much progress at all after 600 iterations. Hence

they introduce a new training method. This is in sharp contrast to our Figure 5.6 where we

demonstrate smooth convergence to fidelity 1 with the simple gradient descent for 8-qubit pure

states within 900 iterations.

Application: approximating quantum circuits To approximate any quantum circuit U0 over

n-qubit space X , consider Choi-Jamiołkowski state Ψ0 over X ⊗X defined as (U0⊗ IX )Φ where

Φ is the maximally entangled state 1√
2n

∑2n−1
i=0 ~ei⊗ ~ei and {~ei}2n−1

i=0 forms an orthonormal basis of

X . The generator is the normal generator circuit U1 on the first X and identity on the second X ,

i.e., U1⊗ I. In order to learn for the 1-d 3-qubit Heisenberg model circuit (treated as U0) in [208],
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we simply run our qWGAN to learn the 6-qubit Choi-Jamiołkowski state Ψ0 in Figure 5.17 and

obtain the generator (i.e., U1). We use the gate set of single or 2-qubit Pauli rotation gates. Then

U1 only has 52 gates, while using the best product-formula (2nd order) U0 has∼11900 gates. It is

worth noting that U1 achieves an average output fidelity over 0.9999 and a worst-case error 0.15,

whereas U0 has a worst-case error 0.001. However, the worst-case input of U1 is not realistic in

current experiments and hence the high average fidelity implies very reasonable approximation

in practice.

5.6 Conclusion & Open Questions

We provide the first design of quantum Wasserstein GANs, its performance analysis on

realistic quantum hardware through classical simulation, and a real-world application in this

paper. At the technical level, we propose a counterpart of Wasserstein metric between quantum

data. We believe that our result opens the possibility of quite a few future directions, for example:

• Can we implement our quantum WGAN on an actual quantum computer? Our noisy simulation

suggests the possibility at least on an ion-trap machine.

• Can we apply our quantum WGAN to even larger and noisy quantum systems? In particular,

can we approximate more useful quantum circuits using small ones by quantum WGAN? It

seems very likely but requires more careful numerical analysis.

• Can we better understand and build a rich theory of quantum Wasserstein metrics in light

of [189]?
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5.7 Deferred Techinical Details

5.7.1 Matrix Arithmetics

Unless otherwise mentioned, the matrices we consider are Hermitian, defined as all matrices

A such that A† = A. For any two Hermitian matrices A,B ∈ Cn×n, we say A � B iff A − B

is a positive semidefinite matrix (i.e., A − B only has nonnegative eigenvalues), and A � B iff

A−B is a positive definite matrix (i.e., A−B only has positive eigenvalues).

A function of a Hermitian matrix is computed by taking summations of matrix powers

under its Taylor expansion; for instance, for any Hermitian A we have

exp(A) :=
∞∑
k=0

Ak

k!
, (5.16)

and for any 0 ≺ B ≺ 2I we have

log(B) :=
∞∑
k=1

(−1)k+1

k
(B − I)k. (5.17)

Furthermore, we introduce two tools for matrix arithmetics that we frequently use throughout the

paper. The first is a rule for taking gradients of matrix functions:

Lemma 5.7.1 ([215]). Given a Hermitian matrixW ∈ Cn×n and a function f : R→ R, we define

the gradient ∇Wf(W ) as the entry-wise derivatives, i.e., ∇Wf(W ) := (
∂f(W )ij
∂Wij

)ni,j=1. Then we

have

∇W Tr(W log(W )) = [log(W ) + (W )]† = log(W ) +W. (5.18)
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For exponentiations of Hermitian matrices, we use the Golden-Thompson inequality stated

as follows:

Lemma 5.7.2 ([212, 213]). For any Hermitian matrices A,B ∈ Cn×n,

Tr(exp(A+B)) ≤ Tr(exp(A) exp(B)). (5.19)

5.7.2 Properties of the Quantum Wasserstein Semimetric

5.7.2.1 Proofs

Lemma 5.7.3. Strong Duality holds for the semidefinite program (5.6).

Proof. Note that π = P ⊗Q is a feasible solution to the primal program (5.6).

Consider the solution ψ = −IY , φ = IX for the dual program (5.6). Then IX⊗ψ−φ⊗IY−

C = −2IX ⊗ IY −C. For any vector v ∈ X ⊗Y , v†(−2IX ⊗ IY −C)v = −2− v†Cv ≤ −2 < 0.

Therefore IX ⊗ ψ − φ ⊗ IY ≺ C and the solution is strictly feasible. Since a strictly feasible

solution exists to the dual program and the primal feasible set is non-empty, Slater’s conditions

are satisfied and the lemma holds [216, Theorem 1 (1)].

Lemma 5.7.3 shows that the primal and dual SDPs have the same optimal value and thus

(5.9) can be taken as an alternate definition of the Quantum Wasserstein distance.

The following theorem establishes some properties of the Quantum Wasserstein distance.

Theorem 5.7.1. qW(·, ·) forms a semimetric over the set of density matrices D(X ) over any

space X , i.e., for any P ,Q ∈ D(X ),

1. qW(P ,Q) ≥ 0,
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2. qW(P ,Q) = qW(Q,P),

3. qW(P ,Q) = 0 iff P = Q.

Proof. We will use the definition of qW(·, ·) from (5.6) with Y being an isometric copy of X .

1. Consider the matrixC = I−SWAP
2

. Let ~u =
∑

i,j∈Γ uij~ei~ej be any vector inX⊗Y = C|Γ|⊗C|Γ|.

By simple calculation,

~u†C~u =
∑
i,j

u∗ij(uij − uji) =
∑
i≤j

(u∗ij − u∗ji)(uij − uji) =
∑
i≤j

|uij − uji|2 ≥ 0; (5.20)

thus C is positive semidefinite. As a result, Tr(πC) ≥ 0 for all π � 0, and qW(P ,Q) ≥ 0 for

all density matrices P ,Q ∈ D(X ).

2. This property trivially holds because of the definition in (5.6) is symmetric in P and Q.

3. Suppose that P = Q have spectral decomposition
∑

i λi~vi~v
†
i . Consider π0 =

∑
i λi(~vi~v

†
i ⊗

~vi~v
†
i ). Then, Tr(π0C) = Tr(

∑
i λi(~vi~v

†
i ⊗ ~vi~v

†
i )C) = Tr(

∑
i λi(~v

†
i ⊗ ~v

†
i )C(~vi ⊗ ~vi)). Since

C = I−SWAP
2

, C(~vi ⊗ ~vi) = 0 . Thus Tr(π0C) = 0 and since C is positive semidefinite, this

must be the minimum. Thus qW(P ,P) = 0.

5.7.3 Regularized Quantum Wasserstein Distance

The regularized primal version of the Quantum Wasserstein GAN is constructed from

(5.11) by adding the relative entropy between the optimization variable π and the joint distribution
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of the real and fake states P ⊗Q, given by S(π‖P ⊗Q) = Tr(π log(π)− π log(P ⊗Q)):

min
π

Tr(πC) + λTr(π log(π)− π log(P ⊗Q)) (5.21)

s.t. TrY(π) = P,TrX (π) = Q, π ∈ D(X ⊗ Y).

Here λ is a parameter that is chosen during training, and determines the weight given to the

regularizer.

To formulate the dual, we use Hermitian Lagrange multipliers φ and ψ to construct a saddle

point problem:

min
π

max
ψ,φ

Tr(πC) + λTr(π log(π)− π log(P ⊗Q))

+ Tr(φ(TrY(π)− P ))− Tr(ψ(TrX (π)−Q))

= min
π

max
ψ,φ

Tr(π(C + φ⊗ IY − IX ⊗ ψ))− Tr(Pφ)

+ Tr(Qψ) + λTr(π log(π)− π log(P ⊗Q)). (5.22)

Switching the order of the optimizations:

max
ψ,φ

min
π

Tr(π(C + φ⊗ IY − IX ⊗ ψ))− Tr(Pφ)

+ Tr(Qψ) + λTr(π log(π)− π log(P ⊗Q)). (5.23)

Solving the inner optimization problem for π and using Lemma 5.7.1, we have that for the optimal
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π,

(C + φ⊗ IY − IX ⊗ ψ) + λ log(π) + λI− log(P ⊗Q) = 0. (5.24)

Thus the dual optimization problem reduces to

max
φ,ψ

Tr(Qψ)− Tr(Pφ)− λ

e
Tr

(
exp

(
log(P ⊗Q)− C − φ⊗ IY + IX ⊗ ψ

λ

))
(5.25)

s.t. φ ∈ H(X ), ψ ∈ H(Y).

Note that the additional term in the objective of the dual cannot be directly written as the expected

value of measuring a Hermitian operator. However, we can use the Golden-Thompson inequality

(Lemma 5.7.2) to upper bound on the objective, which can be written in terms of the expectation

as

max
φ,ψ

Tr(Qψ)− Tr(Pφ)− λ

e
Tr

(
(P ⊗Q) exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

))
= max

φ,ψ
EQ[ψ]− EP [φ]− λ

e
· EP⊗Q

[
exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

)]
(5.26)

s.t. φ ∈ H(X ), ψ ∈ H(Y).

The regularized optimization problem has the following property:
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Lemma 5.7.4. Let f : D(X )→ R be defined as

EQ[ψ]− EP [φ]− λ

e
· EP⊗Q

[
exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

)]
(5.27)

s.t. φ ∈ H(X ), ψ ∈ H(Y).

Then f(P ) is a differentiable function of P .

Proof. The optimization objective (5.27) is clearly convex with respect to its parameters. Furthe-

rmore, the second derivatives are non-zero for all φ, ψ, and the optimum hence is reached at a

unique point. The objective function can be rewritten as

EP⊗Q
(
−φ⊗ IY + IX ⊗ ψ −

λ

e
· exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

))
. (5.28)

Since P and Q are density matrices and are constrained to lie within a compact set, there exists

a compact region S that is independent of P (but may depend on λ) such that the maximum lies

inside S. f(P ) can therefore be written as f(P ) = max g(P, φ, ψ), where φ, ψ ∈ S, g is convex,

and attains its maximum at a unique point. By Danskin’s theorem [217], the result follows.

5.8 More Details on Quantum Wasserstein GAN

5.8.1 Parameterization of the Generator

The generator G is a quantum operation that maps a fixed distribution ρ0 to a quantum state

P . Two pure distributions (states with rank 1) are mapped to each other by unitary matrices. ρ0

is fixed to be the pure state
⊗n

i=1 e0. If the target state is of rank r, G can be parameterized
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by an ensemble {(p1, U1), . . . , (pr, Ur)} of unitary operations Ui, each of which is applied with

probability pi. Applying a unitary Ui to ρ0 produces the state Uiρ0U
†
i . Applying G to ρ0 thus

produces the fake state piUiρ0U
†
i .

Each Unitary Ui is parameterized as a quantum circuit consisting of simple parameterized

1- or 2- qubit Pauli-rotation quantum gates. An n-qubit Pauli-rotation gate Rσ(θ) is given by

exp
(
iθσ
2

)
where θ is a real parameter, and σ is a tensor product of 1 or 2 Pauli matrices. Pauli-

rotation gates can be efficiently implemented on quantum computers. Thus each unitary Ui can

be expressed as Ui =
∏

j e
iθi,jσi,j

2 .

5.8.2 Parameterization of the Discriminator

The optimization variables in the discriminator are Hermitian operators, φ and ψ. There

are two common parameterizations for a Hermitian matrix H:

1. As U †H0U , where U is a parameterized unitary operator, and H0 is a simpler fixed Hermitian

matrix that is easy to measure. Measuring H then corresponds to applying the operator U and

then measuring H0.

2. As a linear combination
∑dim(H)

i=0 αiHi, where His are fixed Hermitian matrices that are easy

to measure. Measuring H corresponds to measuring each Hi to obtain the expectation value

mi, and then returning
∑dim(H)

i=0 αimi as the expected value of measuring H .

We choose the latter option because it allows ξR to be conveniently approximated by a linear

combination of simple Hermitian matrices. Thus φ and ψ are represented by
∑

k αkAk and∑
l βlBl whereAk, Bl are tensor products of Pauli matrices. The αks, βls constitute the parameters

of the discriminator.
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The overall structure of the Quantum Wasserstein GAN is given in Figure 5.19.

e
iσ1θi,1

2

e
i(σ4⊗σ5)θi,4

2

e
iσ2θi,2

2

e
i(σ6⊗σ7)θi,5

2

e
iσ3θi,3

2

1-qubit gates 2-qubit gates
Figure 5.18: Example parameterization of a unitary Ui acting on 3 qubits. There are 12 possible
1-qubit gates and 48 possible 2-qubit gates.

⊗d
i=1 ~e0 {(pi, Ui)} φ

L
Q ψ⊗d

i=1 ~e0 {(pi, Ui)}
λ
e

Tr
(

exp
(

log(P⊗Q)−C−φ⊗IY+IX⊗ψ
λ

))
Q

Figure 5.19: The structure of the quantum WGAN. Here Q is the input state and ~e0 is the 0th

computational basis vector, meaning that the corresponding system is empty at the beginning.
The final gate L combines the outputs of the measurements of φ, ψ, ξR to produce the final loss
function.

5.8.3 Estimating the Loss Function

The loss function is given by Tr(Qψ) − Tr(Pφ) − Tr((P ⊗ Q)ξR) = EQ[ψ] − EP [φ] −

EP⊗Q[ξR] where ξR is the Hermitian corresponding to the regularizer term λ
e

exp
(
−C−φ⊗IY+IX⊗ψ

λ

)
.

The fake state P is generated by applying a quantum operation G to a fixed quantum state

ρ0. The quantum operation is represented by applying a set of unitary operations {U1, U2, . . . , Uk}

with corresponding probabilities {p1, p2, . . . , pk} where k is the rank of the final state that would
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be generated:

P =
∑
i∈[k]

piUiρ0U
†
i . (5.29)

Lemma 5.8.1. Given a quantum state ρ =
∑k

i=1 αiρi and a Hermitian matrix H then Eρ(H) can

be estimated given only the ability to generate each ρi and to measure H .

Proof. Since ρ is a quantum state {α1, . . . , αk} must form a probability distribution. Thus,

Eρ[H] = Tr[ρH] = Tr
[∑

i

αiρiH
]

=
∑
i

αi Tr[ρiH] =
∑
i

αiEρi [H] = EαEρi [H]. (5.30)

Thus we can measure the expected value of H measured on ρ, by sampling an i with probability

αi, measuring the expected value of H on ρi, and then computing the expectation over i sampled

from the distribution α. We can also simply measure the expectation value mi corresponding to

each ρi and return
∑

i αimi as the estimate.

The unitaries Ui are parameterized by a network of gates of the form eiθi,jσi,j where σi,j is

a tensor product of the matrices σx, σy, σz, I acting on some/all of the registers. With a sufficient

number of such gates, any unitary can be represented by an appropriate choice of θi,j . Since each

Ui is expressed as a composition of simple parameterized gates each of them can be implemented

on a quantum computer and thus each Uiρ0U
†
i can be generated.

Note that P =
∑

i∈[k] piUiρ0U
†
i and P ⊗Q =

∑
i∈[k] pi(Uiρ0U

†
i ⊗Q). From Lemma 5.8.1,

if φ and ξR can be measured, we can estimate the terms EP [φ] and EP⊗Q[ξR]. Next we show how

to measure φ, ψ, ξR where φ, ψ are parameterized as a linear combination of tensor products of

the Pauli matrices σX , σY , σZ , σI .
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Lemma 5.8.2. Any Hermitian that is expressed as a linear combination
∑

i αiHi of Hermitian

matrices Hi that can be measured on a quantum computer, can also be measured on a quantum

computer.

Proof. For any fixed state ρ,

Eρ[H] = Tr[ρH] = Tr
[
ρ
∑
i

αiHi

]
=
∑
i

αi Tr[ρHi] =
∑
i

αiEρ[Hi]. (5.31)

Thus each of the Hermitians Hi can be separately measured and the final result is the weighted

average of the corresponding expectation values with coefficients αi.

If the αi form a probability distribution, the expectation can be estimated by sampling

a batch of indices from the distribution of αi, measuring Hi, and estimating the expectation

averaging over the sampled indices. This procedure can be more efficient if some of the αi are

of very small magnitude in comparison to the others. Note that any Hermitian that can be written

by as a linear combination
∑

i βiHi where each Hi is easy to measure can be transformed such

that the coefficients form a probability distribution as (
∑

i |βi|)
∑

i
|βi|∑
i |βi|

sgn(βi)Hi. If Hi can

be measured on a quantum computer, −Hi can also be measured by measuring Hi and negating

the result.

Tensor products of Pauli matrices can be measured on quantum computers using elementary

techniques [207]. As a result, Lemma 5.8.2 implies that φ, ψ can be measured on a quantum

computer.

Now, we prove the following lemma for expressing the regularizer term ξR:

Lemma 5.8.3. The Hermitian corresponding to the regularizer term ξR can be approximated
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via a linear combination of Hermitians from {Σ, SWAP · Σ} where Σ is a tensor product of

2-dimensional Hermitian matrices.

Proof. Since C = I−SWAP
2

,

exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

)
= exp

(
SWAP− I− 2φ⊗ IY + 2IX ⊗ ψ

2λ

)
. (5.32)

Observe the following two facts:

• if Σ1 and Σ2 are both tensor products of 2-dimensional Hermitian matrices, then Σ1 ·Σ2 is also

a tensor product of 2-dimensional Hermitian matrices;

• if Σ is a tensor product of 2-dimensional Hermitian matrices, then SWAP ·Σ · SWAP is also a

tensor product of 2-dimensional Hermitian matrices.

As a result, any integral power of SWAP − I − 2φ ⊗ IY + 2IX ⊗ ψ can be written as a linear

combination of the matrices {Σ, SWAP · Σ} where Σ is a tensor product of 2-dimensional

Hermitian matrices. Thus any Taylor approximation of exp(SWAP − I − 2φ ⊗ IY + 2IX ⊗ ψ)

is a linear combination of the same Hermitian matrices, each of which can be easily measured

on a quantum computer. Thus the Taylor series for the exponential can be used to approximately

measure the regularizer term.

A representation as a linear combination of the Hermitians {Σ, SWAP · Σ}, where Σ is a

tensor product of Pauli matrices, can be obtained more easily for a relaxed regularizer term

ξ′R = exp

(
−C
2λ

)
exp

(
−φ⊗ IY + IX ⊗ ψ

λ

)
exp

(
−C
2λ

)
; (5.33)
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this is motivated by the Trotter formula [218] of matrix exponentiation: for any Hermitian

matricesA,B such that ‖A‖, ‖B‖ ≤ δ ≤ 1, ‖eA+B−eAeB‖ = O(δ2) but ‖eA+B−eA/2eBeA/2‖ =

O(δ3). Using this regularizer gives us a concrete closed form for ξ′R as a linear combination of

simpler Hermitian matrices. It is less computationally intensive to compute than the original

regularizer, since the only operation acting on 2n qubits at the same time is SWAP. This

relaxation also yields good numerical results in practice.

Since (−φ⊗ IY)(IX ⊗ψ) = (IX ⊗ψ)(−φ⊗ IY) = (−φ⊗ψ), the central term in the RHS

of (5.33) is an exponential of commuting terms. If A and B are commuting matrices, we have

exp(A+B) = exp(A) exp(B), and hence

ξ′R = exp
(−C

2λ

)
exp

(−φ
λ

)
⊗ exp

(ψ
λ

)
exp

(−C
2λ

)
. (5.34)

We choose φ and ψ to be tensor products of terms of the form aσx+bσy+cσz+dI. It can be

verified that σiσi = I and σiσj +σjσi = 2δi,jI and therefore (aσx+bσy+cσz)
2 = (a2 +b2 +c2)I.

Given r =
⊗n

i=1(aiσx + biσy + ciσz + diI), we therefore have

r2 =
n⊗
i=1

(
di(aiσx + biσy + ciσz + diI) + Πn

i=1(a2
i + b2

i + c2
i + d2

i )I
)

(5.35)

and by induction,

rk =
n⊗
i=1

(
dk−1
i (aiσx + biσy + ciσz + diI) +

(
k−2∑
j=0

dji

)
(a2
i + b2

i + c2
i + d2

i )I

)
. (5.36)

Eq. (5.36) can be used to expand exp(−φ/λ) ⊗ exp(ψ/λ) using the truncated Taylor series for

the exponential. Thus exp(−φ/λ) ⊗ exp(ψ/λ) can be approximated by a linear combination of
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gates in Σ up to any desired accuracy.

In addition, C = I−SWAP
2

implies that C is a projector, i.e., Ck = C for all k ∈ N∗ and

C0 = I. This can be used to express exp(C) in terms of only I and C:

exp
(−C

2

)
= I +

∞∑
j=1

C

(−2)jj!
= I +

[
exp

(−1

2

)
− 1
]
C. (5.37)

Using (5.36) and (5.37) we can compute an approximate expression (with any desired accuracy)

for the relaxed regularizer ξ′R as a linear combination of the Hermitian {Σ, SWAP · Σ} where Σ

is a tensor product of Hermitian matrices.

Finally from Lemma 5.8.1,Lemma 5.8.2,Lemma 5.8.3, each of the terms EQ[ψ],EP [φ], and

EP⊗Q[ξR] can be computed on a quantum computer.

5.8.4 Direct Estimation of Gradients

In this subsection, we show how the gradients with respect to the parameters of the qWGAN

can be directly estimated using quantum circuits. Suppose we have the following parameterization

for the optimization variables:

ρ0 =
d⊗
i=1

~e0~e
†
0, P =

r∑
i=1

piUiρ0U
†
i , Ui =

∏
j

e
iθi,jHi,j

2 (5.38)

and

φ =
∑
k

αkAk, ψ =
∑
l

βlBl, (5.39)
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whereHj, Ak, Bl are tensor products of Pauli matrices. The parameters of the generator are given

by the variables pi, θi,j and the parameters of the discriminator are given by αk, βl. As shown in

Lemma 5.8.3, the regularizer term R can be written as
∑

q rqRq where each Rq is either a tensor

product of Pauli matrices or a product of SWAP with a tensor product of Pauli matrices. Thus

the loss function is given by

L = Tr[Qψ]− Tr[Pφ]− Tr [(P ⊗Q)R] , (5.40)

and hence

∂L

∂pi
= −Tr[Ui~e0~e

†
0U
†
i φ]− Tr

[
(Ui~e0~e

†
0U
†
i ⊗Q)R

]
. (5.41)

To compute the partial derivative with respect to the parameters pi, we create a fake state using

only the unitary Ui, and compute the regularizer term as shown before:

∂L

∂αk
= −Tr[PAk]− Tr

[
(P ⊗Q)

(Ak ⊗ IY)R

λ

]
; (5.42)

∂L

∂βl
= Tr[QBl]− Tr

[
(P ⊗Q)

(IX ⊗Bl)R

λ

]
. (5.43)

Clearly (Ak ⊗ IY)R and (IX ⊗ Bl)R can be written as linear combinations of products of

SWAP and tensor products of Pauli matrices, because such form exists for Ak, Bl, R. Thus these

gradients can be measured as shown in Lemma 5.8.2.
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Regarding the gradients with respect to θi,j , we have

∂L

∂θi,j
=
∂ Tr[φ(Uiρ0U

†
i )]

∂θi,j
− ∂ Tr[ξR(Uiρ0U

†
i ⊗Q)]

∂θi,j
. (5.44)

The terms ∂ Tr[φ(Uiρ0U
†
i )]

∂θi,j
,
∂ Tr[ξR(Uiρ0U

†
i ⊗Q)]

∂θi,j
can be evaluated by modifying the quantum circuits for

Ui using with an ancillary control register, using previously known techniques [214, Section III.

B]. This allows us to evaluate the partial derivatives of the loss function w.r.t. the θi,j parameters.

5.8.5 Computational Cost of Evaluating the Loss Function

Consider a quantum WGAN designed to learn an n-qubit target state with rank r; the

generator hence consists of r unitary matrices. Suppose that each unitary Ui is a composition of

at most N fixed unitary gates. Furthermore, assume that φ and ψ are parameterized as a linear

combination of at mostM tensor products of Pauli matrices. The size of the network (the number

of parameters) is thus O(rNM).

The loss function consists of 3 terms:

• The expectation value of φ measured on the state P .

• The expectation value of ψ measured on the state Q.

• The expectation value of ξR measured on the state P ⊗Q.

The complexity of a quantum operation is quantified by the number of elementary gates

required to be performed on a quantum computer. We show that a single measurement of φ on

Uiρ0U
†
i , ψ onQ, and ξR on Uiρ0U

†
i ⊗Q can be carried out using poly

(
n, k,N,M, log

(
1
ε

))
gates.
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The expectation values can then be estimated by computing the empirical expectation on a

batch of measurements. These expectation values are combined as shown earlier in Appendix 5.8.3

to obtain the expected values measured on P and P ⊗Q.

First, ξR can be approximated to precision ε via truncation of a Taylor series consisting of

log
(

1
ε

)
terms. Thus ξR is approximated by a linear combination of poly

(
M, 1

ε

)
fixed Hermitian

matrices of the form Σ or SWAP ·Σ where each Σ is a tensor product of 2-dimensional Hermitian

matrices.

Second, by the Solovay-Kitaev theorem [219], any n-qubit unitary operator can be implemen-

ted to precision ε using poly
(
log
(
n, 1

ε

))
gates. Similarly, any fixed n-qubit Hermitian matrix

can be measured using a circuit with poly
(
n, log

(
1
ε

))
gates. Consequently:

• ψ can be measured on Q using M measurements of fixed tensor products of Pauli matrices,

therefore using poly
(
n,M, log

(
1
ε

))
gates.

• φ can be measured on Uiρ0U
†
i for any i using M measurements of fixed tensor products of

Pauli matrices, therefore using poly
(
n,M, log

(
1
ε

))
gates.

• ξR can be measured on Uiρ0U
†
i ⊗Q for any i using poly

(
M, 1

ε

)
measurements of fixed tensor

products of Pauli matrices, using poly
(
n,M, log

(
1
ε

))
gates.

• Each unitary Ui can be applied by a composition of N fixed unitaries, therefore using poly(
n,N, log

(
1
ε

))
gates.

From Appendix 5.8.4, it can be seen that the partial derivatives with respect to the parameters

p, α, β are each computed by the same procedure as the loss function with some of the variables
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restricted. Furthermore, the partial derivatives with respect to θi,j can be evaluated using the

circuit for Ui with an ancillary register and a constant number of extra gates [214]. Each partial

derivative therefore has the same complexity as the loss function. Since there are O(rNM)

parameters, the total gradient can be evaluated with a multiplicative overhead ofO(rNM) compared

to evaluating the loss function.

5.9 More Details on Experimental Results

Pure states We used the quantum WGAN to learn pure states consisting of 1, 2, 4, and 8 qubits.

In this case, the generator is fixed to be a single unitary. The parameters to be chosen in the

training are λ (the weight of the regularizer) and ηg, ηd (the learning rates for the discriminator

and generator parameters, respectively). The training parameters for our experiments for learning

pure states are listed in Table 5.1.

Parameters 1 qubit 2 qubits 4 qubits 8 qubits

λ 2 2 10 10

η = ηg = ηd 10−1 10−1 10−1 10−2

Table 5.1: Parameters for learning pure states.

For 1,2, and 4 qubits, in addition to Figure 5.11, we also plot the average loss function for

a number of runs with random initializations in Figure 5.24 which shows the numerical stability

of our quantum WGAN.

Mixed states We also demonstrate the learning of mixed quantum states of rank 2 with 1, 2, and

3 qubits in Figure 5.15. The generator now consists of 2 unitary operators, and 2 real probability

parameters p1, p2 which are normalized to form a probability distribution using a softmax layer.
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Figure 5.20: 1 qubit Figure 5.21: 2 qubits

Figure 5.22: 4 qubits Figure 5.23: 8 qubits

Figure 5.24: Average performance of learning pure states (1, 2, 4 qubits) where the black line
is the average loss over multi-runs with random initializations and the shaded area refers to the
range of the loss.

The learning rate for the probability parameters is denoted by ηp. The training parameters are

listed in Table 5.2.

Parameters 1 qubits 2 qubits 3 qubits

λ 10 10 10

ηd, ηg, ηp (10−1, 10−1, 10−1) (10−1, 10−1, 10−1) (10−1, 10−1, 10−1)

Table 5.2: Parameters for learning mixed states.

Learning pure states with noise In a recent experiment result [2], a quantum-classical hybrid

training algorithm using the KL divergence between classical measurement outcomes as the

loss function on the canonical Bars-and-Stripes data set was performed on an ion-trap quantum

computer. Specifically, they use the generator in Figure 5.25. Even though the goal of [2] is to

generate a classical distribution, we still deem it as a good example of practically implementable

quantum generator to testify our quantum WGAN.
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Z X Z XX XX XX

Z X Z XX XX XX

Z X Z XX XX XX

Z X Z XX XX XX

Figure 5.25: The generator circuit used in Ref. [2] where Z stands for the eiθσz gate, X stands
for the eiθσx gate, and XX stands for the eiθσx⊗σx gate.

We use the same training parameters as in the noiseless case (Table 5.1). Furthermore, we

add the sampling noise (modeled as a Gaussian distribution with standard deviation σ) which is a

reasonable approximation of the noise for the ion-trap machine [206]. Our results show that the

quantum WGAN can still learn a 4-qubit mixed state in the presence of this kind of noise. As is

to be expected, noise with higher degrees (i.e., higher σ) increases the number of epochs required

before the state is learned successfully. The corresponding results are plotted in Figure 5.16.

Our finding also demonstrates the different outcomes between choosing different metrics

as the loss function. In particular, some of the training results reported in [2] demonstrate a

KL distance < 10−4 but the actual quantum fidelity is only about 0.16. On the other side, our

quantum WGAN is guaranteed to achieve close-to-1 fidelity all the time.

Application: Approximating Quantum Circuits The quantum Wasserstein GAN can be used

to approximate the behavior of quantum circuits with many gates using fewer quantum gates.

Consider a quantum circuitU0 over n qubits. It is well known [207] that there exists an isomorphism

between n qubit quantum circuits U and quantum states ΨU such that

ΨU =
1√
2n

2n−1∑
i=0

(U ⊗ I)(~ei ⊗ ~ei) =
1√
2n

2n−1∑
i=0

(U(~ei)⊗ ~ei). (5.45)
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The quantum Wasserstein GAN can be used to learn a smaller quantum circuit U1 such that ΨU1

is close to ΨU0 . This can be done by setting the real state to ΨU0 , and using the GAN to learn

to generate it using a circuit of the form (U1 ⊗ I) applied to 1√
2n

∑2n−1
i=0 (~ei ⊗ ~ei). The fidelity

between ΨU1 and ΨU0 is given by the average output fidelity for uniformly chosen inputs to U1

and U0.

We apply these techniques to the quantum circuit that simulates the evolution of a quantum

system in the 1-dimensional nearest-neighbor Heisenberg model with a random magnetic field in

the z-direction (considered in [208]). The time evolution for time t is described by the unitary

operator eiĤt with the Hamiltonian Ĥ given by

Ĥ =
n∑
j=1

(
σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y + σ(j)
z σ(j+1)

z + h(j)σ(j)
z

)
(5.46)

where σ(j)
i denotes the Pauli gate σi applied at the jth qubit, and the h(j) ∈ [−h, h] are uniformly

chosen at random.

We study the specific case with t = n = 3 and h = 1, with a fixed target error of ε = 10−3

in the spectral norm. Quantum circuits for simulating Hamiltonians that are represented as the

sum of local parts, eiHt = eit
∑L
i=1 αjHj , are obtained using kth order Suzuki product formulas S2k

defined by

S2(λ) =
L∏
j=1

exp(αjHjλ/2)
1∏

j=L

exp(αjHjλ/2) (5.47)

S2k(λ) = [S2k−2 (pkλ)]2 S2k−2 ((1− 4pk)λ)2 [S2k−2 (pkλ)]2 (5.48)

where pk = 1/
(
4− 41/(2k−1)

)
for k ≥ 1.
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We then approximate eiHt by
[
S2k

(
it
r

)]r. Obtaining error ε in the spectral norm requires

r = (Lt)1+1/2k

ε1/2k
. From (5.47), each evaluation of S2k requires (2L)5k−1 gates of the form eiHjθ

where θ is a real parameter. In the case of the Hamiltonian (5.46), it is the sum of 12 terms each

of which is the product of up to 2 Pauli matrices. Thus the kth order formula S2k yields a circuit

for simulating (5.46) requiring (24)5k−1 (36)1+1/2k

0.0011/2k gates of the form eiθσ where σ is a product of up

to 2 Pauli matrices. These are the gates used in the parameterization of our quantum Wasserstein

GAN, and can be implemented easily on ion trap quantum computers. The smallest circuit is

obtained using S2 and requires ∼ 11900 gates.

Using the quantum Wasserstein GAN for 6-qubit pure states, we discovered a circuit for

the above task with 52 gates, an average output fidelity of 0.9999, and a worst case error 0.15.

The worst case input is not realistic, and thus the 52 gate circuit provides a very reasonable

approximation in practice.
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Chapter 6: Separations in Expressivity between Quantum Neural Networks and

Feed-Forward ReLU Networks

6.1 Introduction

The recent establishment of quantum supremacy ([220, 221]) has spurred a new era of

interest in the practical applications of quantum computers. Variational quantum algorithms

based on Quantum Neural Networks [12, 29] have emerged as a candidate for demonstrating

quantum advantage for machine learning, on modern Noisy Intermediate-Scale Quantum (NISQ

[135]) quantum computers.

Quantum Neural Networks (QNNs) consist of a series of parameterized quantum operations,

applied on a quantum state that encodes the input. Any classical input encoded by an n-qubit state

corresponds to a 2n dimensional vector in the Hilbert space, which has the potential to represent

functions on high-dimensional features, and at the same time hard for classical computers to

simulate [222]. Indeed, it has been conjectured that the power of QNNs could come from their

expressive power to kernel methods in high dimensions [223, 224, 225].

A learning model can be advantageous in three main ways: the model can be more expressive

than others of equivalent complexity, it can be easier to optimize, or can generalize better given

fewer training examples. Despite the common belief in the quantum machine learning community,
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there is not yet any rigorous evidence that either shows a concrete advantage of QNNs over

classical learning models [139] or separates the expressive power between quantum and classical.

Any progress on such a fundamental question about QNNs could provide principled guideline on

the seek of useful applications of QNNs.

The major conjectured advantage of QNNs lies in their ability in efficient computing of

certain functions, in particular those functions involving high-dimensional spaces (e.g., quantities

from quantum physics). As a result, it is conjectured that QNNs would be more expressive than

classical models. Establishing such separations is however subtle: classical neural networks

(even those with just one hidden layer) have been proven to be universal approximators [226]

and the same is conjectured to be true for sufficiently general QNNs [227]. A valid comparison

must therefore consider models of the same complexity. Furthermore, the scale of empirical

comparison between quantum and classical models is also limited by the relatively small size of

existing quantum machines as well as the exponential cost associated with simulating quantum

models via classical means. As a result, theoretical analysis is likely the only approach to a

scalable comparison between quantum and classical models. On the other side, such a theoretical

separation between even classical models of different depths has proven notoriously difficult

[228]. Establishing such a separation between quantum and classical would be conceivably more

difficult.

Contributions. We provide a rigorous comparison between the expressivity of QNNs to feedforward

ReLU networks (ReNNs), which have been a very successful model for classical problems in

machine learning. Specifically, we compare the minimum complexity of QNNs that approximate

various classes of functions to that of an ReNN for an equally good approximation. Our findings

lead to a 2-way separations between quantum and classical , i.e. each model may be superior
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for certain function classes. Such separations already indicate that simply replacing ReNNs

with QNNs for achieving quantum advantages is unlikely successful, as there are specific cases

that favor the use of ReNNs. The particular cases where advantages are obtained for QNNs

can be used to identify potential quantum advantages in classical learning problems such as

classification.

We have two major findings: Firstly, we surprisingly discover that there are classes of

highly oscillatory functions that ReNNs approximate exponentially more efficiently than QNNs.

It has been conjectured that the inherent periodicity of functions represented by QNNs results

in an expressive advantage for periodic, oscillatory functions [227]. Our theoretical results

indicate that this is false when restricted to a finite domain and may in fact be exponentially

disadvantageous. Thus the choice of learning tasks for which to deploy QNNs may be subtler

than previously imagined. This result relies on the representation of QNNs as truncated Fourier

Series [227, 229].

Conversely, we show that univariate sinusoidal functions are more efficiently expressed by

QNNs than ReNNs with only one hidden layer. This result leverages the fact that ReNNs with

width−w and depth−t approximate t-wise compositions of functions with w-linear regions [230,

231]. We show that there exist complexity theoretic barriers to proving an exponential advantage

(in terms of the input dimension) for QNNs against ReNNs with depth≥ 4. Theoretically, the

situation for ReNNs with lower depth is less clear and is left as an open question. However, a

naive construction of an ReNN with depth≤ 4 to approximate a general QNN with complexity

linear in the input dimension (based on ReNNs for multivariate polynomials [232]) requires

exponential width. We conjecture that such an exponential dependence is necessary, and perform

an empirical evaluation to verify this hypothesis. To this end we introduce a notion of empirical
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separation, where instead of analytically determining the complexities necessary for approximation,

we compare the minimum complexities of QNNs and ReNNs that can be trained to represent a

function accurately. Due to the non-convexity of the optimization problems, and the infeasibility

of training (or testing) a function over a continuous data set, the empirical expressivity of a QNN

does not necessarily capture its theoretical expressive power. Nevertheless, since models need

to be trained to be deployed, the empirical expressivity is a good proxy for a models effective

expressivity in practice. Our empirical results are obtained for functions represented by random

QNNs. This indicates that QNNs may have exponential advantages over ReNNs for the majority

of functions represented by quantum circuits. Specifically for cases where the task is to learn an

unknown quantum circuit or process [31, 233], the experiments are in line with the hypothesis

of a practical advantage for QNNs. We therefore anticipate that the advantage of QNNs will be

primarily for functions originating in quantum phenomena, while our first result proves that they

are not universally advantageous for general functions.

ReNN depth 2 ω(1) 2 ω(1)

Input dimension d = 1 d = 1 d > 1 d > 1

Classical Advantage
Analytical Analytical Analytical Analytical

O(2poly(log(1/ε))) O(2poly(log(1/ε))) O(2poly(log(1/ε))) O(2poly(log(1/ε),d))

(Corollary 6.3.1) (Corollary 6.3.1) (Corollary 6.3.1) (Corollary 6.3.1)

Quantum Advantage
Analytical Analytical Empirical Empirical

O(2poly(log(1/ε))) O(poly(log(1/ε)) O(2poly(log(1/ε),d)) O(2poly(d))

(Corollary 6.3.2) (Corollary 6.3.2) (Figures 6.4,6.5) (Figure 6.6)

Table 6.1: Expressive power separations between QNNs and depth t ReNNs on d-dimension
inputs. For each type of separation we indicate the ratio of minimum complexity required to
ε-approximate a certain class of function

Related Works. The memory capacity (related to the VC-dimension) of QNNs has been
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found to have limited advantages over classical networks [234]. As we show in this paper, QNNs

and classical NNs each have expressive advantages over the other, so separations are likely

to be found for specific classes of functions rather than in the total capacity. The functional

form of QNNs has been investigated in [227, 229] and shown to be expressed by truncated

Fourier series. These works do not establish explicit separations from classical networks based

on this observation. Finally, [235] investigates the ”effective dimension” (based on the Fisher

information) and provides evidence that QNNs may have a larger effective capacity than classical

networks when taking into account trainability and generalization.

Explicit separations between classes of neural networks have been a hot topic of study

in classical machine learning. There have been demonstrations of exponential separations (in

d) between ReLU networks with depth-2 and depth-3 [236, 237]. The advantages of depth

have also been investigated in the dimension-free univariate setting, with exponential separations

shown in [230, 238]. A width-based phase transition in expressivity was shown in [239]. Related

work [231] studies the functional form of ReLU networks based on their width and depth, and

characterizes affine regions in the landscape.

6.2 Background

6.2.1 Expressive Power of Parameterized Models.

A parameterized function model (including classical and quantum neural networks) is a

mapping from a set of real parameters to a function from the input domain to the output range.

Specifically, a model with p parameters, domain D, and range R can be described by a function

F : Θ→ DR where Θ ⊆ Rp is the parameter space. A parameterized model is often identified by
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the set of functions that can be represented by using some setting of the parameters. A modelM

approximates a function f if some setting of its parameters results in a function fε such that the

L∞-distance supx∈D |f(x)−fε(x)| is less than some predetermined error parameter ε, referred to

as an ε-approximation. The ε-expressive power of a class of a modelsM is the set of functions

that it can ε-approximate and is denoted exprε(M).

6.2.2 ReLU Neural Networks (ReNNs).

Classical neural networks have been an extremely succesful parameterized function model

in machine learning. Typical feedforward networks are parameterized by a sequence of matrices

{Wi}ti=1 and bias vectors {bi}ti=1, where Wi ∈ Rwi×wi−1 , bi ∈ Rwi , with w0, wt set to the

dimension of the domain and co-domain respectively (for a real valued network wt = 1). Each

Wi, bi defines an affine transformation Wi : Rwi−1 → Rwi such that Wi(x) = Wix + bi. For

input vector x, the output y of the neural network is

y = Wtσ(Wt−1σ(. . . σ(W1x) . . . )), (6.1)

where σ(·) denotes an element-wise activation on the output of each layer. Different choices of

activation functions have been studied in the literature including identity maps (σ(x) = x) [240],

quadratic maps (σ(x) = x2) [241] and sigmoid functions σ(x) = (1 + e−x)−1. In this paper

we focus on real valued ReLU networks (ReNNs) that use the ReLU activation function σ(x) =

max(0, x).

Definition 6.2.1. A feedforward ReLU network (ReNN) is a neural network that uses the activation

function σ(x) = max(0, x) on each layer. The width(w) of an ReNN is the maximum of the layer
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sizes ie. maxw1, . . . , wt and the depth is the number of layers t. We use ReNNw,t,d to denote

the family of ReLU neural networks with width w and depth t, acting on an input space with

dimension d.

6.2.3 Quantum Neural Networks (QNNs)

Figure 6.1: An example layer of
a 1-parallel QNN. Such blocks are
repeated r times in parallel, and L
times in succession for a general QNN.

Figure 6.2: An r-parallel QNN with L layers, with a
pre-processing function φ and final measurement M

Figure 6.3: Architecture of a Quantum Neural Network

Quantum Neural Networks are parameterized models where the input and the parameterized

computations are replaced by networks of unitary operations (quantum gates) operating on a set

of n registers initialized to e0n . They share the layered structure of a classical neural network

where operations are sequentially applied to the output of the previous layer, with the following

differences:

Input. The inputs to ReNNs are simply feature vectors. For QNNs however, the input must be

encoded into quantum states that are then fed to quantum circuits. There are a variety of encoding

schemes used for quantum neural networks [2, 13, 233] that have been used in quantum neural

networks. A common scheme that has been applied in many experiments based on QNNs is

the rotation-encoding scheme. Here a vector x = (xi, . . . , xd) is represented by Pauli-rotation

gates with the individual components of the input encoded in their parameters. Specifically, r of
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the n registers of the circuit are chosen to correspond to each component of the d-dimensional

input (rd total). An r-parallel encoding block then corresponds to applying the gate Rσ(2πxj)

(where σ ∈ {X, Y, Z}) on every register that corresponds to component j (a common choice is

Rσ(2πxj) on any register q such that q ∼= j( mod d)).

Classical Parameterization of Quantum Operations. The parameterized transformations applied

in ReNNs are affine transforms {Wi}ti=1 acting on vectors. In a QNN the parameterized transform-

ations must be unitary operators acting on quantum states. For generality, the gates chosen

must allow for the approximation of any unitary operation using arbitrarily many gates. The

parameterized single qubit gates chosen are of the form Rσ(θ/2) (where σ ∈ {X, Y, Z}) where

θ is a real parameter. The two qubit entangling gates are chosen from eiθσa⊗σb (where a, b ∈

{X, Y, Z}) with real parameter θ, or the unparameterized CNOT. These parameterized gates are

structured into unitary blocks, with single qubit gates applied to every register and double qubit

gates to every adjacent pair of registers.

Output. In contrast to ReNNs, where we can simply read out the output after the appropriate

transformations, in QNNs the output must be obtained by measuring the state obtained by applying

the encoding and parameterized operations. This measurement is represented by a Hermitian

matrix M and is applied on some subset of the registers. There is no direct analog of the non-

linear activation functions used in classical NNs.

Preprocessing Input. The input to a QNN can be pre-processed by applying a bijective processing

function φ : Rd → Rd whose output is subsequently fed to the encoding gates.

There have been several different architectures proposed for QNNs. The version we define below

is general enough to accommodate most proposals in the literature, while leading to an at most

polynomial increase in complexity. A Quantum Neural Network interleaves blocks of encoding
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blocks and unitary blocks as follows (Figure 6.3):

Definition 6.2.2 (Quantum Neural Network (QNNs)). Given an input x ∈ [0, 1]d a d-dimensional,

L-layer, r-parallel Quantum Neural Network is defined by a sequence of L layers of quantum

gates acting on n = rd + O(1) registers. Each layer consists of (1) (Optionally) An encoding

block that encodes each component xj of x on each register m such that m mod d ≡ (j − 1)

(2) A unitary block of parameterized gates. The output is measured as the expectation value of

an observable M applied to the set of registers (can be taken to be applied to the first register

wlog). The input redundancy R of a QNN is the total number of encoding gates corresponding

to each component of the input (R ≤ rL), and the total number of gates is called the size of the

network. The corresponding parameterized model is denoted QNNr,L,d.

The model with a pre-processing function φ is denoted PQNNr,L,d,φ and represents QNNr,L,d with

input φ(x).

Truncated Fourier Representation of QNNs. Recent works have shown that the functions

represented by QNNs where the input encoding is via gates of the form eixjHj (for Hermitian

matrices Hj) have representations as truncated Fourier series [227]. Furthermore, the maximal

frequencies of this encoding are closely connected to the input redundancy R of the QNN. We

state this observation in a proposition tailored to our model of QNNs with proof deferred to the

supplementary material.

Proposition 6.2.1. Given a L-layer, r-parallel PQNNQ with measurementM and preprocessing

function φ, the corresponding function FQ : Rd → R can be expressed as a truncated Fourier

Series
∑

ω aωe
i2πω·φ(x), where ω ∈ Rd such that ωj ∈ {−2R,−2R + 1, . . . , 2R − 1, 2R},∀j ∈

[1, d] where R = Lr is the redundancy of the circuit Q. Equivalently, FQ =
∑

ω aω cos(2πω ·
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φ(x)) + bω sin(2πω · φ(x)).

6.3 Analytical Separations in Expressive Power

Cost of parameterized models The computational complexity associated with a parameterized

model comes from the cost to evaluate the function for a particular input and parameters, and the

cost to optimize the parameters for a specific learning task. Due to the heuristic nature of non-

convex optimization, the number of parameters can be used as a proxy for the optimization cost.

ReNNs with width-w, depth-t have w2t parameters, and are evaluated using t w-dimensional

matrix-vector products resulting in a cost of Θ(w2t). The evaluation cost and number of parameters

of a QNN are both equal to the number of quantum gates Θ(rdL). We define cost as measure of

model complexity.

cost(ReNNw,t,d) = w2t, cost(QNNr,L,d) = rdL (6.2)

PQNNr,L,d,φ additionally incurs the classical cost of evaluating φ. We therefore restrict φ to

functions that can be computed by an ReNN with cost O(rLd) so as to not simply replace

the quantum computation by a more expensive classical processing step. PQNNr,L,d,φ with φ

satisfying this condition is simply denoted PQNNr,L,d

Defining expressive advantage. A class of models C1 has an analytical advantage over C2 if

there provably exists a class of functions F such thatM1 ∈ C1 ε-approximates every function

F , while any equally good approximation M2 ∈ C2 satisfies cost(M1) = o(cost(M2)) ie.

exprε(M1) ⊆ exprε(M2) only if cost(M1) = o(cost(M2)). When C1 = ReNN, C2 =
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QNN (and vice versa), we denote the corresponding results as classical and quantum advantage

respectively.

We compare several sub-classes of ReNNs to QNNs and summarize our results in Table 6.1.

The worst case error of approximation can be constantly increased by simply multiplying all

functions by a constant. To eliminate such trivial scaling considerations, we only consider

functions with bounded range ([0, 1] w.l.o.g.). The functions approximated by QNNs are inherently

periodic in contrast to ReNNs, and so these classes trivially cannot approximate each other

over Rd. We therefore consider approximation only on the bounded domain [0, 1]d. We also

consider preprocessed networks from PQNNr,L,d where the pre-processing does not change the

asymptotics of the model complexity.

Classical Advantage Functions encoded by QNNs as truncated Fourier series with frequencies

bounded by the input redundancy R. This representation places two main restrictions on the

properties of the function represented by a QNN: (1) A Truncated Fourier Series approximation

must retain all frequencies with large coefficients (Lemma 6.3.1). (2) The number of oscillations

(or times crossing a fixed value) of a truncated Fourier series is bounded by the largest frequency

(Lemma 6.3.2).

Lemma 6.3.1 (Proof in appendix Lemma 6.5.1). Let f : [0, 1] → [0, 1] be a continuous function

represented by a Fourier series given as
∑∞

k=−∞ c(k)ei2πkx. If f̂ : [0, 1] → [0, 1] is a continuous

function that ε-approximates f and has a truncated Fourier series
∑K

k=−K ĉ(k)ei2πkx, then c(k) ≤

ε for all |k| > K.

Lemma 6.3.2 ([242]). Let f : [0, 1]→ [0, 1] be a continuous function represented by a truncated

Fourier Series f(x) =
∑K

k=−K c(k)ei2πkx. The equation f(x) = c for any c ∈ [0, 1] has a
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maximum of 2K roots in [0, 1] unless f(x) is identically c for x ∈ [0, 1].

To obtain a classical advantage we show that ReNNs can efficiently approximate several

functions with slowly decaying Fourier coefficients. Furthermore, based on the observations of

[230] the number of oscillations in the output of an ReNN can increase exponentially with its

depth.

Our results employ the following result based on the work of [232] on the approximation

of univariate piecewise-polynomial functions by ReNNs.

Lemma 6.3.3 (Lemma 6.5.2). Let ε > 0. Let f : [0, 1] → [0, 1] be a continuous function such

that [0, 1] can be divided into p intervals on each of which f is some polynomial with degree at

most D. Then f can be ε-approximated on [0, 1] by a ReNN with width and depth bounded by

O(pD log(D/ε)2).

We define the following class of functions to demonstrate our results on classical advantage.

Definition 6.3.1. Let Fp,G,D be the class of G-Lipschitz continuous functions f : [0, 1] → [0, 1]

such that [0, 1] can be divided into p intervals on each of which f is given by a polynomial with

degree at most D, and f(0) = f(1) = 0. Fp,G,D,k is the class of functions f : [0, 1]d → [0, 1]

such that f = f1 ◦ f2 ◦ · · · ◦ fk−1 ◦ fk where each fj ∈ Fp,G,d. Fp,G,D,d,k is the class of functions

f : [0, 1]d → [0, 1] such that f(x = (x1, . . . , xd)) = 1
d

∑d
j=1 fj(xj) where each fj ∈ Fp,G,D,k.

We next show that Fp,L,d is highly oscillatory

Lemma 6.3.4 (Lemma 6.5.3). Let f ∈ Fp,L,D such that f(x) = 1 for some x ∈ [0, 1]. Then the

value of fk oscillates between 0 and 1 at least 2k times on [0, 1], and f(x) = 1/2 at ≥ 2k points.

319



Our main result is expressed in the following theorem and corollary.

Theorem 6.3.1. Define the class of functions Fd,k = Fp,G,D,d,k with p,G,D = O(1) and

Fp,G,D,d,k as in Definition 6.3.1. Every function in Fd,k can be ε-approximated by a ReNN with

width O(dk2 log(d/ε)2) and depth O(k2 log(d/ε)2). However, QNNr,L,d can ε-approximate every

function in Fd,k only if rL = Ω(max(2k−2, 1/ε1/2)).

Proof. We first upper bound the complexity of approximation by ReNNs. By Lemma 6.3.3, any

function in F1,1 can be δ-approximated using at most O(log(1/δ)2) width and depth. To compute

functions f ∈ Fd,1 to error δ, we must make d parallel computations of functions in F1,1 to error

δ/d, each using width and depth bounded by O(log(d/δ)2). The final computation of f uses a

total width of O(d log(d/δ)2) and a depth of O(log(d/δ)2). Finally the composition f1 ◦ f2 can

be computed by appending the ReNN computing f1 to that computing f2. Functions in Fd,k are

computed using k layers of ReNNs corresponding to functions in Fd,1. If each of these layers has

error δ, the error at the next layer will be at most (G + 1)δ (δ from the new layer, Gδ due to the

input error). The final error in f = f1 ◦ · · · ◦ fk is guaranteed to be ≤ ε, if the error for each fj is

≤ ε/(G+ 1)k. Since each fj ∈ F1,k, any function f ∈ Fd,k can be ε-approximated by a function

in ReNNO(dk2 log(d/ε)2),O(k2 log(d/ε)2),d.

Next, we lower bound the complexity of approximation by QNNs. Consider first the case

with d = 1. There is an infinitude of functions f ∈ F1,1 such that f(0) = f(1) = 0 and f(p) = 1

for some p ∈ [0, 1] (eg. f(x) = 1 − 4(x − 1/2)2). Consider any such function f and let fk

be approximated by some Q ∈ QNNr,L,d. By Proposition 6.2.1, the corresponding function fQ

is a truncated Fourier series with integer frequencies ranging from −2R to 2R, where the input

redundancy R ≤ rL. Therefore by Lemma 6.3.2, fQ = 1/2 at ≤ 2R points in [0, 1]. On the
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other hand by Lemma 6.3.4, fk = 1/2 at ≥ 2k points. If 2(2R) ≤ 2k, there must exist an interval

where fQ − 1/2 has constant sign, but fk ranges from 0 to 1, therefore |fQ − fk| > 1/2 at some

point in the interval. Therefore, for any ε ≥ 1/2, a QNN Q that ε-approximates fk must satisfy

rL ≥ R ≥ 2k−2.

Now consider the piecewise affine triangle function g(x) = min(2x, 2− 2x). By definition

g ∈ F1,1. Let fQ be the function corresponding to any QNN Q with redundancy R that ε-

approximates g(x) (on R, fQ will approximate a 1-periodic function that matches f on [0, 1]). By

Proposition 6.2.1 fQ is a truncated Fourier series with frequencies in [−2R, 2R]. Let c(n) be the

Fourier co-efficients of f . By Lemma 6.3.1, c(n) ≤ ε for all n ≥ 2R. It can be verified by direct

computation that c(n) = Θ(1/n2). Therefore, rL ≥ R = Ω(1/ε1/2).

Now let d > 1. Let f ∈ F1,k be such that any QNN approximating Q must have R ≥

Ω(max(2k−2, 1/ε1/2)). Consider fd : [0, 1]d → [0, 1], fd(x) = (1/d)
∑d

j=1 f(xj). Let Rj be the

redundancy of component xj . If Rj = o(max(2k−2, 1/ε1/2)), then setting xi = 0,∀i 6= j yields

Q ∈ QNNr,L,1 with rL = o(max(2k−2, 1/ε1/2)) that ε-approximates fj , contradicting the already

established case for d = 1. Thus the total redundancy R =
∑d

j=1 Rj = Ω(max(d2k−2, d/ε1/2)).

Corollary 6.3.1 (Corollary 6.5.1). 1. exprε(ReNN2,2,1) ⊆ exprε(PQNNr,L,1) =⇒ Lr = Ω(

1/ε1/2)

2. exprε(ReNNO(log(1/ε)),O(k log(1/ε)),1) ⊆ exprε(PQNNr,L,1) =⇒ Lr = Ω(max(2k−2, 1/ε1/2))

3. exprε(ReNN2d,2,d) 6⊆ exprε(PQNNr,L,d) =⇒ Lr = Ω(d/ε1/2)

4. exprε(ReNNO(d3 log(d/ε)2),O(d2 log(d/ε)2),d) 6⊆ exprε(PQNNr,L,d) =⇒ Lr = Ω(d2d−2) and Lr =

Ω(d/ε1/2).
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Corollary 6.3.1 shows that the cost of QNNs that can ε-approximate every function that is

exactly represented by a ReNN of depth 2d must be exponential in d and polynomial in 1/ε1/2

indicating exponential classical advantage.

Quantum Advantage for univariate functions Our second main result shows a quantum

advantage for approximating univariate sinusoidal functions. We employ the following results

(folklore, but shown in supplementary material for completeness).

Lemma 6.3.5 (Lemma 6.5.4). Any f : [0, 1]→ R in ReNNw,t,1 hasO((2w+2)t−1) affine regions.

Lemma 6.3.6 (Lemma 6.5.5). Any quadratic function of (cos(2πkx), sin(2πkx)) can be exactly

represented by a function in QNN1,k+3,1.

Theorem 6.3.2 is the main result, demonstrating that simple sinusoidal functions require

poly(1/ε)-piecewise affine functions for an ε-approximation.

Theorem 6.3.2. For any integer k, the class of quadratic functions of (cos(2πkx), sin(2πkx))

cannot be ε-approximated by any class of piecewise affine functions with o(k/ε1/3) affine regions.

Proof. Consider fk(x) = (1 + cos(4πkx))/2 = cos2(2πkx). Let fk(x) be ε-approximated by

some piecewise-affine function. We now determine the maximum possible size of each affine

region of the approximating function. The affine regions will be largest at the points x = n/4k

for odd n where the second derivatives are 0, thereby minimizing the deviation from linearity.

Consider any such point x = a, and let it be approximated in some interval [a − δ1, a + δ2]

with δ1, δ2 > 0. Since the number of affine regions required is independent of a function shift

or scaling, we can equivalently consider the problem of approximating the function sin(4πkx)

in the region [−δ1, δ2]. Let δ = min(δ1, δ2) and the affine ε-approximation in the region be
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gx + h. We have −ε ≤ h ≤ ε. For sufficiently small ε, it must hold that 4πkδ < 1. For

x < 1, x3/12 < | sin(x)− x| < x3/6. For ε-approximation to hold g(δ/2) + h ≥ sin(4πkδ)− ε

and gδ + h ≤ sin(4πkδ) + ε. Via simple algebra, we obtain (4πkδ)3 ≤ 24(4ε) Therefore,

δ = O(ε1/3/k) and the total number of affine windows covering [0, 1] must be Ω(k/ε1/3)

Theorem 6.3.2 and Lemma 6.3.5 directly yield the claimed advantage of QNNs over ReNNs

for univariate functions.

Corollary 6.3.2. For constant k, exprε(QNN1,k+3,1) 6⊆ exprε(ReNNw,t,1) unless (2w + 2)t−1 =

Ω(k/ε1/3) (eg. w constant and t = Ω(log(1/ε)), or t constant and w = Ω(1/ε1/3)).

Barriers to Analytical Super-polynomial Quantum Advantage in d. Following the work of

[228], we observe that there exist complexity theoretic barriers to proving a superpolynomial

quantum advantage for Lp-approximation over ReNNs with depth ≥ 4 for any p <∞.

Theorem 6.3.3 ([228]). Let f : [0, 1]d → [0, 1] be a poly(d)-Lipschitz continuous that is computable

using poly(d) space. If f cannot be Lp-approximated to error 1/ poly(d) (for p <∞) by a ReLU

network of size poly(d) and constant depth k ≥ 4, then PSPACE 6⊆ TC0
k−2.

The function fQ corresponding to an efficient QNN satisfies the conditions of Theorem 6.3.3

Lemma 6.3.7 (Lemma 6.5.6). Let Q be a QNN with input redundancy R ≤ cost(Q) = poly(d).

The corresponding function fQ is poly(d)-Lipschitz continuous and computable in poly(d) space.

Therefore, if an ReNN with depth≥ 4 requires superpolynomial width to approximate fQ,

then PSPACE 6⊆ TC0
2. Since PSPACE ⊆ EXP, proving a super-polynomial quantum advantage

323



also shows EXP 6⊆ TC0
2 thereby proving a decades-long open conjecture in complexity theory

[243, 244].

6.4 Empirical Separations in Expressive Power

The empirical expressive power of a model is the minimum complexity of the model that

can be trained to ε-approximate a class of functions. Due to the heuristic nature of non-convex

optimization, and the limitations imposed by a finite data-set, the expressivity cannot be exactly

determined in this manner. However, several well known gradient based optimization methods

have proven quite successful for ReNNs and QNNs and thus the empirical expressivity serves as

a good proxy in the absence of theoretical proof, or as a tool to verify theoretical results. Learning

models need to be trained to be deployed, so empirical expressivity may be the more important

measure in practical settings.

6.4.1 Empirical quantum advantage for multi-variate functions

Figure 6.4: mw(d, ε)/2d vs d for ReNNs with depth 2 (ε = 0.01) and 3, 4 (ε = 0.005)

Based on a naive construction similar to those used classically for approximating multivari-

ate polynomials by ReNNs, a general QNNQwith poly(d) redundancy can be ε approximated by

a ReNN with widthO(2poly(d)/ε) and constant depth=4, or with total size bounded byO(d2poly(d)

log(d/ε)4) respectively (Lemma 6.5.7). We hypothesize that these exponential dependences are
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Figure 6.5: mw(4, ε)ε1/2 vs 1/ε for ReNNs with depth 3, 4,
d = 4

Figure 6.6: mw(d, 0.001)/2d for
ReNNs with depth-d

Figure 6.7: Worst case error
for different redundancies

Figure 6.8: mR(ε)ε1/2 vs 1/ε Figure 6.9: mw(ε)ε1/3 vs 1/ε

necessary: ie. QNNs have an exponential advantage in d, log(1/ε) over ReNNs with depth ≤ 4,

and an exponential advantage in d over variable depth ReNNs. To verify our hypothesis we

perform experiments with the following setup: a target function with d-dimensional input is

fixed, and ReNNs with a particular chosen depth are trained to ε-approximate the function. The

width of the ReNN is varied and binary search is used to determine the minimum width at which

the ReNN achieves the desired approximation. By varying d, ε we extrapolate the dependence of

the minimum width on these quantities. If this dependence is exponential, we can establish an

exponential empirical separation.

Experimental Details We fix a QNN architecture consisting of two 1-parallel RX encoding

layers, and two unitary blocks. Each parameterized unitary block consists of two sub-blocks,

each with a layer of RZ gates followed by a layer of RY gates followed by a CNOT entangling

layer. Corresponding to any setting of d, we select a target QNN Qd by randomly fixing the

gates of this architecture, with corresponding function fQd . Any instance Qd of this architecture

has cost(Qd) = O(d). Given d, ε we search for lower bounds on the minimum width mw(d, ε)
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of an ReNN that ε-approximates fQd at a fixed depth t. A subset P ∈ [0, 1]d of random points

(usually 4d) are selected. We fix an interval [0, B] for our search. For any width w ∈ [0, B] an

ReNN is trained to minimize the mean-squared error on the set P for 10000-15000 epochs or

until convergence. The training is successful if the worst-case loss is ever ≤ ε, and corresponds

to finding a good approximation. We perform binary search in [0, B] to find the minimum width

mw(d, ε) for successful training. If none of the widths allow for successful training, we report

mw(d, ε) = B. Each ReNN is trained using the Adam optimizer [245] with hyper-parameters

manually tuned for effective training, and 3 different restarts with random initializations. (In the

graphs below, we plot mw(d, ε)/g(d, ε) where g(d, ε) is a function representing the separation

we are trying to demonstrate. If the separation is valid, the obtained ratio should be greater

than 1 and monotonically increasing.) Due to the limitations of simulating quantum circuits on

classical hardware, we are only able to vary d up to 6. While our experiments show a clear trend,

improvements in simulation capacity may eventually allow us to improve our results.

Implementation Details The experiments are implemented using the Pytorch library [246] and

offered under the MIT license. The experiments were run on an AWS cluster with an 8-core Intel

Xeon E5-2686 v4 (Broadwell) processor, and a single NVIDIA Tesla V100 GPU.

Exponential quantum advantage in d over ReNNs with depth ≤ 4. The minimum cost for

approximation at dimension d is empirically greater than 2d : Fixing ε = 0.01 for ReNNs of

depth 2 and ε = 0.005 for depth 3, 4 we observe (Figure 6.4) that mw(d, ε)/2d ≥ 1 and increases

in d.

Exponential quantum advantage in log(1/ε) over ReNNs with depth ≤ 4. The minimum

approximation cost is empirically greater than 1/ε1/2 = O(2poly(log(1/ε))) : Fixing d = 4, we

observe (Figure 6.5) for ReNNs of depth 3, 4 that mw(4, ε)ε1/2 is an increasing function of 1/ε.
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Exponential quantum advantage in d over variable depth ReNNs. For dimension d we

train ReNNs of depth d to ε-approximate fQd on a random set of 2d
√
d points 1 for fixed ε =

0.001. mw(d, 0.001)/2d is observed (Figure 6.6) to be greater than 1 indicating a large empirical

advantage for small d, but is not clearly monotonically increasing as in the constant depth cases.

There is hence weaker evidence for an overall exponential separation.

6.4.2 Empirical Verification of Analytical Separations

Classical Advantage (Corollary 6.3.1). We train truncated Fourier Series (corresponding

to QNNs with redundancyR) to ε-approximate gd for g(x) = 1+2 max(x−1/2, 0)−2 max(1/2−

x, 0) (gd ∈ ReNN2,2d,1). The models are trained to convergence, from 3 random initializations.

1. With R = 2d−3 the minimum worst-case error observed on the training set {i/2k | i ∈ N, 0 ≤

i ≤ 2k} is strictly greater than 1/2 for 3 ≤ d ≤ 10. (Figure 6.7). Models with R = 2d−2 are

able to attain a worst-case error less than 1/2.

2. Fixing d = 1, we search for the minimum redundancy mR(ε) required for ε-approximation

of g on integer multiples of ε, as in Section 6.4.1. We observe (Figure 6.8) that mR(ε)ε1/2 is

greater than 1 and increasing in 1/ε, indicating R = Ω(1/ε1/2)

Quantum Advantage (Corollary 6.3.2). We train ReNNs with depth=2 to ε-approximate cos(4πx)

on integer multiples of ε, and determine a lower bound on the minimum required width mw(ε)

(as in Section 6.4.1). The minimum width is empirically O(1/ε1/3) since we observe (Figure 6.9)

that mw(ε)ε1/3 is greater than 1 and increasing in 1/ε.

1A network with constant width and linear depth can approximate functions with kd affine regions thereby exactly
fitting kd points for any constant d, therefore 2ω(d) training points must be used to observe an advantage.
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6.5 Deferred technical details

Proposition 6.5.1. Given a L-layer, r-parallel PQNN Q with final measurement M and pre-

processing function φ, the corresponding function FQ has the following property:

FQ(x) can be expressed as a truncated Fourier Series
∑

ω aωe
i2πω·φ(x), where ω ∈ Rd such

that ωj ∈ {−2R,−2R+ 1, . . . , 2R− 1, 2R}, ∀j ∈ [1, d] where R = Lr is the redundancy of the

circuit Q. Equivalently, FQ =
∑

ω aω cos(2πω · φ(x)) + bω sin(2πω · φ(x)).

Proof. Let U be the parameterized unitary operator represented by the quantum circuit. The

output of the circuit is then given by FQ = e†
0d
U †MUe0d , where eb = ⊗di=1ebi for all b ∈ {0, 1}d.

Notice that in each layer l of the circuit, we apply at most one encoding unitary of the form

El =
d⊗
j=r

(
d⊗

k=1

exp(i2πσkφ(xk))

)
(6.3)

where σk is a Pauli matrix. Since each Pauli matrix has eigenvalues {1,−1}, we have

El =
d⊗
j=r

(
d⊗

k=1

( exp(i2πφ(xk))uku
†
k+

exp(−i2πφ(xk))vkv
†
k

)
(6.4)

where uk,vk are the eigenvectors of σk. Denoting the remaining gates in each layer (that

are independent of the input) as Ul, we have U =
∏l

j=iEjUj . Making the corresponding

substitutions, we have that FQ =
∑

ω aωe
i2πω·φ(x) where each component of ω is the sum of

2R terms in [1,−1]. A complex exponential exp(iy) can be written as the linear combination of

sin(|y|), cos(|y|). Since FQ is real by construction, FQ =
∑

ω aω cos(2πω · φ(x)) + bω sin(2πω ·
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φ(x)) with real coefficients aω, bω

Lemma 6.5.1. Let f : [0, 1] → [0, 1] be a continuous function represented by a Fourier series

given as
∑∞

k=−∞ c(k)ei2πkx. If f̂ : [0, 1] → [0, 1] is a continuous function that ε-approximates f

and has a truncated Fourier series representation
∑K

k=−K ĉ(k)ei2πkx, then c(k) ≤ for all |k| >

K.

Proof. We can extend the Fourier series of f̂ by

f̂(x) =
∞∑

k=−K

ĉ(k)ei2πkx, s.t. ĉ(k) = 0,∀|k| > K (6.5)

Consider the integral I(k) =
∫ 1

0
f̂(k)e−i2πkx dx that is well defined because f̂ is continuous by

definition. Then, from (6.5) I(k) = ĉ(k). Therefore,

|c(k)− ĉ(k)| = |
∫ 1

0

f(x)e−i2πkx dx− I(k)| (6.6)

= |
∫ 1

0

(f(x)− f̂(x))e−i2πkx dx| (6.7)

≤
∫ 1

0

|(f(x)− f̂(x))e−i2πkx| dx (6.8)

≤
∫ 1

0

(
|f(x)− f̂(x)|

)
|e−i2πkx| dx (6.9)

≤ ε (6.10)

From (6.5), ĉ(k) = 0 for k > K, and therefore c(k) ≤ ε.

Lemma 6.5.2 (based on [232]). Let ε > 0. Let f : [0, 1] → [0, 1] be a continuous function such

that [0, 1] can be divided into p intervals on each of which, f is given by a polynomial with degree

at most D. Then f can be ε-approximated on [0, 1] by a ReNN with width and depth bounded by
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O(pD log(D/ε)2).

Proof. We proceed by induction on p. For p = 1, f is simply a polynomial of degree D. By

[232][Lemma 3.3], the function xy can be ε-approximated by an ReNN with width and depth

bounded by O(log(y/ε)2). A polynomial of degree D is the linear combination of D such

terms with y ≤ D, and can be approximated by an ReNN with width and depth bounded by

O(D log(D/ε)2).

Now suppose the lemma is true for all p − 1. Let a be the leftmost point of separation

between two intervals on which f is polynomial. Specifically,

f(x) =


f1(x), x < a

f2(x), x ≥ a

(6.11)

where f1 is a polynomial and f2 is p− 1 piecewise polynomial. By the continuity of f , f1(a) =

f2(a) = f(a). Consider the function,

f̃(x) = f̃1(a−max(a− x, 0))+

f̃2(max(x− a, 0) + a)− f(a) (6.12)

where f̃1, f̃2 are ε/2-approximations of f1, f2 respectively. By inspection,

f̃(x)


f̃1(x) + f̃2(a)− f(a), x < a,

f̃1(a) + f̃2(x)− f(a), x ≥ a

(6.13)
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f̃ is therefore an ε-approximation of f , that can be approximated by a ReNN with width/depth

bounded by O(pD log(D/ε)2).

Lemma 6.5.3. Let f ∈ Fp,L,D such that f(0) = f(1) = 0 and f(x) = 1 for some x ∈ [0, 1]. Then

the value of fk oscillates between 0 to 1 at least 2k times on the domain [0, 1], and fk(x) = 1/2

at ≥ 2k points.

Proof. We proceed by induction. Clearly the lemma is true for k = 1. Now let fk−1 oscillate

from 0 to 1 at least 2k−1 times. On each interval [a, b] where fk−1 ranges from 0 to 1 or vice versa,

fk = f ◦ fk−1 oscillates from 0 to 1 and back again, by the defining property of f . Furthermore

by the continuity of f , fk attains the value 1/2 at at least 2 points in this interval. Since, there are

2k−1 intervals [a, b], the result follows by induction.

Corollary 6.5.1. 1. exprε(ReNN2,2,1) ⊆ exprε(PQNNr,L,1) =⇒ Lr = Ω(1/ε1/2)

2. exprε(ReNNO(log(1/ε)),O(k log(1/ε)),1) ⊆ exprε(PQNNr,L,1) =⇒ Lr = Ω(max(2k−2, 1/ε1/2))

3. exprε(ReNN2d,2,d) 6⊆ exprε(PQNNr,L,d) =⇒ Lr = Ω(d/ε1/2)

4. exprε(ReNNO(d3 log(d/ε)2),O(d2 log(d/ε)2),d) 6⊆ exprε(PQNNr,L,d) =⇒ Lr = Ω(d2d−2) and Lr =

Ω(d/ε1/2).

Proof. Observe that if a function f can be approximated only by QNNs Q with cost(Q) =

Ω(q(d, ε)), the function f ◦φ can be approximated only by PQNNs Q with cost(Q) = Ω(q(d, ε))

ifQ uses φ as the pre-processing function. Let the classical cost of approximating f be Ω(c(d, ε)),

by our condition on pre-processing functions the classical cost of approximating f◦φ is Ω(c(d, ε)+

q(d, ε)). Therefore, any exponential classical advantages over QNNs also hold over PQNNs.

1. The triangle function g(x) = min(2x, 2− 2x) = 1 + 2 max(x− 1/2, 0)− 2 max(1/2− x, 0)

and can thus be exactly represented by a ReNN with width−2 and depth−2. By the proof of
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Theorem 6.3.1, g can only be expressed by QNNs with redundancy Ω(1/ε1/2).

2. Follows by setting d = 1 in Theorem 6.3.1.

3. Follows by the proof on Theorem 6.3.1, specifically for (1/d)
∑d

j=1 g(xj) where g is the

triangle function.

4. Follows by setting k = d in Theorem 6.3.1.

Lemma 6.5.4. A function f : [0, 1]→ R in ReNNw,t,1 has O((2w + 2)t−1) affine regions.

Proof. We proceed by induction. A univariate ReNN with depth-2 can be written as γ+
∑w

i=1 max

(xαi − βi), which is clearly affine everywhere except the w points αi/βi resulting in w + 1

affine regions. We now observe the following: the linear combination of two piecewise affine

functions with p1 and p2 affine regions has ≤ p1 + p2 affine regions. Furthermore, the function

max(0, a + bf(x)) where f(x) is piecewise affine with p affine regions, has 2p affine regions

(possible points of non-differentiability arise where f(x) is non-differentiable, or when f(x) =

−a/b which occurs at ≤ p points).

Consider a ReNN with depth-t and width-w. The output is the sum of w functions, each of

which is of the form max(0, f(x)) where f(x) is the output of a ReNN with depth-t−1 and width

w. By the inductive hypothesis, each such f(x) has at most O(2t−2(w + 1)t−2) affine regions.

Therefore each max(0, f(x)) has at mostO(2t−1(w+1)t−1) affine regions and the whole network

has O(w2t−1(w + 1)t−2) ≤ O(2t−1(w + 1)t−1) affine regions.

Lemma 6.5.5. Any quadratic function of (cos(2πkx), sin(2πkx)) is exactly represented by a

function in QNN1,k+3,1.

Proof. It can be verified that RX(θ)e0 = cos(θ)e0 + sin(θ)e1. Consider a univariate QNN
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with input x, where the first k gates are encoding gates given by RX(2πx). By definition,

RX(θ)k = RX(kθ). Therefore, the state of the system after applying these encoding gates is

ψ = cos(2πkθ)e0+sin(2πkθ)e1. Let the following three gates beRX(α1), RY (α2), RX(α3) with

parameters α1, α2, α3. An appropriate setting of the parameters allows this sequence of gates to

represent an arbitrary unitary operator U . Given some fixed final measurement M , U †MU can

represent any Hermitian operator with the same eigenvalues as M . The circuit can therefore

effectively compute the expectation value of an arbitrary measurement operator on ψ. Thus a

1-parallel circuit with k + 3 layers can compute a function

fQ(x) =

(
cos(2πkx) −i sin(2πkx)

)
a c+ id

c− id b




cos(2πkx)

i sin(2πkx)

 (6.14)

= a cos2(2πkx) + 2d sin(2πkx) cos(2πkx)

+ b sin2(2πkx) (6.15)

Since a, b, d are arbitrary real numbers, any quadratic function can be realized.

Lemma 6.5.6. LetQ be a QNN with input redundancyR ≤ cost(Q) = poly(d). The corresponding

function fQ is poly(d)-Lipschitz continuous and computable in poly(d) space.

Proof. 1. From definition ∂jRX(xj) = 2πiσXRX(xj). Consider the function fQ(x = (x1, . . . , xd))

corresponding to a quantum neural network Q and consider its partial derivative with respect
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to each component xj . As a function of xj , fQ is expressed as

fQ(xj) =

((
d∏
i=1

UiRX(xj)

)
e0

)†
M((

d∏
i=1

UiRX(xj)

)
e0

)
(6.16)

Applying the chain rule ∂jfQ is the sum of 2R terms of the form

2πi

( d∏
i=j+1

UiRX(xj)

UjσXRX(xj)

(
j−1∏
i=1

UiRX(xj)

)
e0

)†
M

((
d∏
i=1

UiRX(xj)

)
e0

)
(6.17)

Since fQ ∈ [0, 1], ∂jfQ = O(R). The function is thereby R
√
d = poly(d)-Lipschitz.

2. The output of a QNN Q with cost(Q) = poly(d) is the result of simulating a quantum circuit

with poly(d) gates. It is well known that such a simulation can be carried out using polynomial

space [247] to any poly(d) number of bits.

Lemma 6.5.7. Any QNN with poly(d) redundancy can be ε-approximated by a ReNN with width

O(2poly(d)/ε) and constant depth-4, or width O(2poly(d)) and depth O(d log(d/ε)2).

Proof. By Proposition 6.2.1, the function fQ corresponding to any QNN Q is represented as the

linear combination of at most 2(4R + 1)d terms of the form cos(2πω · x), sin(2πω · x) with

ω ∈ {−2R,−2R + 1, . . . , 2R − 1, 2R}. Clearly each term ω · x can be exactly computed using

a ReNN of depth=2, width=d with R = poly(d) bounded weights. All the terms ω · x can be

exactly computed by a hidden layer with (4R + 1)d nodes.
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The linear combination corresponding to fQ can be computed to accuracy ε if every sin(·),

cos(·) term is computed to accuracy ε/2(4R + 1)d. By [236][Lemma 6] each term can be

computed using a depth=2 ReNN with width 2(4R+ 1)d/ε. fQ can therefore be computed using

an ReNN of depth=4 and width O(4(4R + 1)2d/ε) = O(2poly(d)/ε).

Since x ∈ [0, 1]d, |2πω · x| ≤ 4πRd. By [248][Theorem 4.1], cos(2πω · x), sin(2πω · x)

can be computed to error δ using constant width and depth O(log(1/δ) + log(4πRd)). Thus fQ

can be computed using depth O(d log(d/ε)2) and width O(2poly(d)).
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Chapter 7: A convergence theory for over-parameterized variational quantum

algorithms

7.1 Introduction

Quantum Variational Methods (QVMs) (see for eg. [12, 28, 29] have become a leading

candidate for quantum applications on Near-Term Intermediate Scale Quantum Computers. The

last chapter covered Quantum Neural Networks (QNNs) compared to common classical counterparts

such as feed-forward ReLU networks (ReNNs). In this chapter, we focus on a different popular

quantum variational method, the so called Variational Quantum Eigensolver or VQE. VQE

bear a similarity to QNNs in that they both involve the optimization of quantum circuits that

are parameterized by classical real parameters that are optimized using classical optimization

routines. This moves the bulk of the control operations, that may be hard to implement on near-

term quantum machines to the classical controller, leaving the quantum computer to repeatedly

implement the corresponding parameterized circuit. The parameterization of these circuits is

often chosen so as to be efficiently implementable on a quantum computer.

In contrast to QNNs however, VQEs are a form of quantum generative learning, where

the goal is to learn a circuit that generates a quantum state satisfying certain properties. In

[31], the goal is to learn a circuit that exactly reproduces some unknown quantum state. For
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a VQE, the goal is to generate a quantum state that is the ground state; or eigenvector with the

smallest eigenvalue of a given Hermitian matrix. Due to the role played by Hermitian operators

as observables in quantum mechanics; the learning loop of a VQE measures the expectation value

of the target observable on the output of the parameterized circuit; and this value is then treated

as a loss function to optimize the parameters. Despite the apparent inflexibility of this approach,

choosing the Hermitian and ansatz carefully can lead to a great number of interesting problems

being expressed this way: VQE has been employed in physical problems where obtaining properties

of ground states can be of central importance, and several physically inspired ansatz have been

designed for such problems including the Transverse Field Ising model, XXZ Heisenberg model,

and the Kitaev Honeycomb model. On the other hand, there are approaches to embedding

combinatorial optimization problems in the target Hamiltonians in the search for quantum speedups

through VQE like systems, the primary example here is the Quantum Approximate Optimization

Algorithm (QAOA) [29].

VQEs suffer from some of the same problems as QNNs in that their expressive advantages

over classical systems have not been theoretically established. However, another central problem

arises from the non-convexity of the associated optimization problems: therefore even if it could

be shown that expressive advantages exist, there is no guarantee that the parameters can be

optimized to have small training loss. There have been empirical observations of difficulties in

optimizing VQEs due to the presence of suboptimal local minima; the presence of exponentially

many local minima has been theoretically confirmed in the case of under-parameterized QNNs [249].

The problem of non-convexity is further excacerbated by the observation that randomly initialized

deep VQEs are likely to suffer from the barren plateau problem [250], wherein it is likely that

for any given setting of the parameters the measured gradients will be vanishingly small. This
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leads to two further problems: small gradients are more difficult to measure accurately on noisy

systems, and even in a noiseless setting small gradients can lead to optimization algorithms

stalling at objective values far from the minimum. Several empirical studies [251, 252, 253,

254, 255] have empirically explored the impact of architecture and initialization choices on the

convergence of these systems.

A very similar issue occurs in the case of classical deep neural networks. The associated

optimization problems in deep learning are manifestly non-convex, and the empirical observation

that deep neural networks tend to converge to very small training error, has been the basis of a long

time puzzle in classical machine learning. In recent years there have been explanations of this

phenomenon [256, 257, 258, 259] based on over-parameterization. Deep Neural Networks often

have a very large number of parameters, compared to the input dimension as well as the size of the

data set. It has been shown that coupled with suitably chosen random initializations, this leads

to a regularizing effect where the dynamics of training concentrates around some convergent

dynamics. This is often referred to as lazy training because some important quantity connected

to the dynamics is shown to vary very slowly through the training process. In the specific case of

deep neural networks, this quantity is the Neural Tangent Kernel [258].

Contributions. In this chapter, we attempt to construct a theory based on over-parameterization

to give the first known sufficient conditions for a particular VQE ansatz to converge. The theoretical

results are obtained for a specially formulated ansatz which we call the Partially Trainable

Ansatz; we argue empirically and theoretically that this ansatz is a good stand in for more common

architectures of VQEs. Our specific contributions are as follows:

1. We provide the first rigorous proof of convergence for over-parameterized VQEs for the
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partially trainable ansatz, and establish sufficient conditions on the degree of over-parameterization

required to ensure this convergence.

2. We show that certain restrictions made in the choice of ansatz can reduce the degree of

over-parameterization required for convergence.

3. We perform an empirical analysis based on our results: first we confirm our theoretical

hypothesis in the practical setting. Importantly we show that the conditions on convergence

established hold also for commonly used practical ansatz as well as the partially trainable

ansatz.

4. We use the notion of reduced over-parameterization requirements to study and evaluate

the design of commonly used physical ansatz choices. We investigate whether the design

choices are justified according to our theory. This may establish a framework for future

heuristic ansatz designs to be studied and evaluated in a principled manner.

Related Work

Existing Studies of VQA dynamics Exploring the role of overparameterization in the convergence

of large classical variational systems such as deep neural networks has been a very active area

of research in theoretical machine learning in recent years. Jacot et. al [258] introduced the

notion of a neural tangent kernel, identifying the dynamics of training highly overparameterized

neural networks with kernel training with a fixed kernel. Arora et. al [257] and Allen-Zhu et.

al [259] make this notion exact by showing sufficient overparameter ization conditions for the

convergence of various architectures of deep neural networks based on this observation.
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The theoretical study of training variational quantum algorithms is even more recent, leading

to a number of papers over the previous couple of years. Anschuetz [260] studies the role of

overparameterization in the optimization landscape of quantum generative models, and show that

there exists a critical point in the number of parameters above which all local minima are close to

the global minimum in function value, and below which local minima are far from the global

minimum in general. This provides strong evidence that overparameterized neural networks

are more likely to converge, but [260] does not rigorously show convergence to the desired

quantum state since non-convex optimization problems may not converge to local minima due to

getting stuck in saddle points or barren plateaus. Larocca et. al [261] study overparameterization

from an information theoretic perspective, defining the overparameterization threshold as the

point beyond which adding new parameters does not increase the rank of a Quantum Fischer

Information Matrix. To the best of our knowledge our work is the first to show that sufficient

overparameterization guarantees the successful convergence of a VQE system.

There has also been some work on the study of tangent kernels in the quantum setting.

Liu et. al [262] and Shirai et. al [263] hypothesize that the the training of Quantum Neural

Networks (QNNs) can be identified with kernel training with the corresponding tangent kernel,

and empirically study the training of such kernels as a stand in for directly training QNNs. Abadi

et. al [264] show that the tangent kernel can indeed be shown to be slow varying when the system

dimension is arbitrarily large. There has not yet been a rigorous analysis of Quantum Neural

Networks in the overparameterized setting, and this remains an interesting problem for future

study.

A final paper that may be of interest to our setting is [265], where the authors explore

Riemannian Gradient Flow directly over the unitary group. We instead analyze the optimization
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of VQEs using Riemannian Gradient Flow over the sphere, the convergence of which has already

been established classically [266], allowing us to establish convergence results in the quantum

setting.

Connection to the Barren Plateau phenomenon A phenomenon that is anticipated to present

difficulties in the training of varaitonal quantum algorithms is the so-called barren plateau pheno-

menon (first observed by McClean et. al [250]). The phenomenon shows that the gradients of

sufficiently large randomly initialized parameterized quantum systems are likely to be exponentially

decaying (with the number of qubits in the system). Specifically, [250] considers a n-qubit

parameterized quantum circuit with an ansatz U : Rp → SU(2n). When the parameters are

randomly initialized to θ ∈ Rp, the loss function L(θ) = 〈0|U(θ)MU(θ)|0〉 and its partial

derivatives are random variables. If U is deep enough that U(θ) is approximately Haar distributed

on SU(d),

E[L] = 0 and Variance[∂kL] = O

(
1

22n

)
, ∀k ∈ [p] (7.1)

With probability at least 1 − δ therefore, |∂kL|2 ≤ O
(

1
22n log

(
1
δ

))
and for systems with a large

number of qubits n, the gradient components can be vanishingly small, leading to the eponymous

barren plateaus in the landscape. The main possible difficulties arising from this phenomenon are

two-fold

• Firstly, the components of the gradient of variational quantum sytems are measured in

practice by estimating the expectation value of some Hermitian operator through repeated

measurements of shots. If the components are exponentially decaying in n, the estimates
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of the expectations need to be correspondingly precise, leading to the number of shots

necessary growing exponentially with n. This represents an exponential overhead in the

training cost of the circuit.

• Secondly, the existence of vanishingly small gradients may indicate that the training landscape

is infeasible to optimization by gradient based methods. Even if the landscape is free

of spurious local minima, an optimization algorithm can in principle require a long time

to find any minimum at all. Alongside the existence of saddle points that trap gradient

based algorithms, barren plateaus constitute one of the main difficulties in non-convex

optimization.

Our results show that, for variational quantum eigensolvers with sufficient over-parameterization,

the latter issues does not arise and the deviation of the output from the target space decays

exponentially over time as exp (∆t/n) where the target Hamiltonian has spectral gap ∆ (see

Theorem 7.3.1). This convergence can exist even with vanishing gradients because the gradients

along the trajectory are spatially correlated along the training trajectory leading to significant

progress towards the global minimum despite the small gradient components. Intuitively, this

situation is similar to that in unstable equilibria in dynamical systems, where small forces can

combine to cause significant deviations from equilibrium positions. We also show that the

convergence is robust to a certain threshold of noise in the gradients (Corollary 7.4.1). The

tolerable noise threshold is however O(1/22n) in n-qubit systems and therefore cannot resolve

the first issue observed above. We note however, that the degree of parameterization required

to ensure convergence is already exponentially large in n, and we have the noise tolerance

improves along with the parameterization requirements. This is because the noise tolerance as

342



well as the parameterization threshold are dictated by a quantity called the effective dimension

(Corollary 7.5.1) which is equal to 2n in general but may be significantly smaller for certain

structured ansatz (see Section 7.5). Finally, we mention that the vanishing gradient problem

occurs also in classical neural networks where the gradients decay exponentially with the network

depth. Over-parameterization has been shown to still enable convergence in such systems ([259]),

our results effectively establish the same phenomenon for VQEs.

Organization We first give an introduction to the framework used to obtain convergence results

for overparameterized classical systems in Section 7.2.2. In Section 7.2.1 we introduce the

background behind VQEs and formally introduce and motivate the Partially Trainable Ansatz.

The main theory of converge- nce for VQE is introduced in Section 7.3. We then present a noise

robustness threshold for convergence in Section 7.4. Finally, we present a more specific form

of the theory that depends on the properties of the specific ansatze used, and discuss how this

can be used to understand the properties of these ansatze. We empirically confirm our theory

in Section 7.6 and use the results of Section 7.4 to predict the empirical performance of various

ansatz in Section 7.7.

7.2 Preliminaries

7.2.1 Variational Quantum Algorithms

Variational Quantum Algorithms (VQA) is a paradigm of quantum algorithms for search

over a family of functions modeled as quantum ansatze. A quantum ansatz is a parameterized

model that maps real parameters to unitary operators. A p-parameter ansatz on a d-dimensional
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Hilbert spaceH can be denoted U : Rp → Cd×d and maps real parameters θ to an operator U(θ).

A prominent example of VQA is the Variational Quantum Eigensolvers (VQE). A VQE intance

is specified by a triplet (M, |Φ〉,U), and the goal is to approximate the ground state of a d × d

problem Hamiltonian M as U(θ)|Φ〉 using the p-parameter ansatz U : Rp → Cd×d and the input

state |Φ〉 ∈ Cd, by solving the following optimization problem

min
θ
L(θ) := 〈Φ|U†(θ)MU(θ)|Φ〉 (7.2)

The search for optimal parameter θ? are usually performed by gradient descent θ ← θ −

η∇θL(θ). For sufficiently small learning rate η, the dynamics of gradient descent reduces to

that of gradient flow

dθ/dt = −η∇θL(θ) (7.3)

Popular choices of parameterizations include the Hardware-Efficient Ansatz (HEA) and

Hamiltonian Variational Ansatz (HVA). Hardware-efficient ansatz (e.g. [267]) is a family of

parameterized circuits that makes use of native gates of quantum computers and is mostly composed

of interleaving single-/two-qubit Pauli rotations and entanglement unitaries implemented with CZ

/ CNOT gates. The main motivation behind the design is to facilitate the implementation on real

quantum machines. Hamiltonian variational ansatz (e.g. [3, 268]) is a family of problem-specific

ansatz design that utilize the structure of the problem Hamiltonian.

Fully- and partially-trainable Ansatz. In this work, we consider a general family of ansatze

that includes HEA and HVA as special cases, specified by the number of layers L and a set of K
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d× d Hermitians {H1,H2, · · · ,HK}:

Definition 7.2.1 (Fully-trainable ansatz). A fully-trainableL-layer ansatz with a set of Hermitians

A = {H1,H2, · · · ,HK} has K · L trainable parameters and is defined as

U(L)(θ) =
L∏
l=1

K∏
k=1

exp(−iθl,kHk) (7.4)

The superscript L will be omitted when there is no ambiguity.

For a fixed set A = {H1, · · · ,HK} and the parameter domain Θ ⊆ RK , the set of all

achievable matrices ∪∞L=0{U(L)(θ) : θ ∈ ΘL ⊆ RK·L} forms a subgroup of SU(d) which we

will refer to asGA,Θ. For many choices of ansatz with a limited set ofA,GA,Θ is a strict subgroup

of SU(d). The subscript Θ will be dropped when Θ = RK for a more concise notation.

Using the group GA, we define the partially-trainable ansatze associated with A as:

Definition 7.2.2 (Partially-Trainable Anastz forA). Let the subgroupGA be a subgroup of SU(d)

associated with fully-trainable ansatze with a set of Hermitians A = {H1,H2, · · ·HK}. The

corresponding p-parameter partially-trainable ansatz is defined as:

U(θ) =
( p∏
l=1

Ul exp(−iθlHk)
)
U0 (7.5)

where k is arbitrarily chosen in [K] and Ul are i.i.d. sampled from the Haar measure over GA.

(Due to the Haar distribution of the matrices Ul the distribution of U(θ) is independent of the

choice of k.)

The partially-trainable ansatz can be viewed as a fully-trainable ansatz trained on a subset

of the parameters starting from a random initialization by identically and independently sample
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(θl,1, · · · , θl,k) from distribution D over Θ ⊆ RK for all l ∈ [L], hence the name “partially-

trainable”: Let S be a subset of SU(d) defined as S := {
∏K

k=1 exp(−iθkHk) : θ ∈ Θ ⊆ RK},

the distribution of the fully-trainable unitary U(L) is equivalent to a random walk over the group

GA,Θ with each step sampled from S according to D. Under mild regularity conditions, the

random walk converges to the Haar measure over GA,Θ (See [269, Section 3]). In the case where

the ansatz has a set of parameters spanning the entire group SU(d) it has been shown ([270])

O(t10(log d)2) random nearest-neighbor 2-qubit gates suffice to realize an approximate t-design,

ie. a distribution that matches the first t-moments of the Haar distribution. Therefore training a

fully-trainable ansatz in Eq (7.4) on {θl,k} for l’s that are multiples of a large constant and k =

O(t10(log d)2) is approximately equivalent to optimizing the partially-trainable ansatz defined in

Eq (7.5) upto the first t-moments.

The Haar measure constitutes the most natural distribution over unitary matrices, and

integration over these measures is well studied [271]. In this work, we theoretically analyze

the convergence of gradient flow in VQE instances with partially-trainable ansatze for analytic

convenience. We argue above that the behavior of partially-trainable ansatze may closely mimic

that of fully-trainable ansatze that are only logarithmically larger in the Hilbert dimension (d).

Furthermore, we will see in our empirical study (Section 7.6.1), our theory for partially-trainable

ansatze makes precise predictions also for fully-trainable ansatze.

7.2.2 Convergence in overparameterized classical systems

Overparameterization has been proposed as an explanation for the convergence of the

highly nonconvex training of parameterized classical models such as artificial neural networks [256,
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257, 258]. The convergence of the models arises from two main phenomenon:

1. Convergence of expected dynamics: When the parameters are randomly initialized, the

expected dynamics of the training are shown to exhibit convergence to a global minima.

The expected dynamics is therefore a smoothed version of the actual dynamics that removes

some of the irregularities that can lead to a failure in convergence.

2. Convergence under perturbation: Despite the convergence of the training dynamics in

expectation, the actual training corresponds to a particular setting of initial parameters. This

leads to the actual training being a perturbed version of the expected dynamics, it is thus

necessary to show that the convergence of this dynamics is robust to small perturbations.

3. Concentration at initialization: Due to the law of large numbers, with high probability,

deviations from the expected dynamics decrease as the number of random parameters

increases. Overparameterization thus plays the crucial role of leading to the concentration

of the dynamics around the expected value, allowing the magnitude of random perturbations

to be bounded with high probability.

4. Lazy training: It must be shown that the actual training concentrates throughout the

training given the convergence at initialization. This phenomenon has been characterized

as lazy training [256], where the dynamics of a system at initialization remain a good

approximation throughout its training. Once again, overparameterization plays an important

role in ensuring this phenomenon; as the number of parameters increases the changes in

each parameter become smaller with high probability over the course of training.

This method can be illustrated by the example of the Neural Tangent Kernel [258], which has been
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used to show convergence while training several overparameterized classical neural networks

including wide feedforward networks [257].

Consider a classical classification problem where the input data is drawn from a distribution

pin over Rn0 and an output in RnL , the space of valid functions is given byF = {f : Rn0 → RnL}.

The model is specified as a realization function mapping p parameters to candidate functions

F(L) : Rp → F . Denoting the parameters at time t by θ(t) = (θ1(t), . . . , θp(t)), the function

at time t is given by F(L)(θ(t)). The data distribtution induces an inner product over F given

by 〈f ,g〉pin = Ex∼pin [f(x)Tg(x)]. Given a cost function C, the gradient flow dynamics of the

system correspond to kernel training with respect to the neural tangent kernel (NTK) given by

K̃ =
∑p

l=1 ∂θlF
(l)(θ)⊗ ∂θlF

(l)(θ).

Let y ∈ F be the true function mapping inputs to ouputs resulting in the residual function

∇(θ(t)) = y − F(L)(θ(t)). If C is the squared loss function, the dynamics of the system is

simply given by ṙ = −ηK̃r where η is the chosen step size. It is known that if K̃ is a constant

positive definite matrix, the system exhibits linear convergence. Following the above recipe,

this leads to a framework for showing the convergence of classical neural networks, it is shown

that K = E(K̃(θ(0))) is a positive definite constant matrix. It is also shown that the dynamics

ṙ = −ηK̃r converges whenever ‖K̃−K‖ ≤ ε0. Further define an overparameterization threshold

P (L)(n0, nL)Convergence can then be established via the following propositions:

1. Concentration at initialization: If p > PL, ‖K̃(θ(0)) − K‖ ≤ ε0 with probability at

least 9/10.

2. Small perturbations imply convergence: ‖K̃(θ(t)) − K‖ ≤ ε0 for all t < t′, we have

‖r(t) − r̃(t)‖ ≤ ε1 for all t ≤ t1, where r̃ denotes the residuals when the kernel is frozen
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at initialization (in which case the system is known to converge).

3. Convergence implies small perturbations: If p > PL, and ‖r(t) − r̃(t)‖ ≤ ε1 for all

t < t′, we have ‖K̃(θ(t))−K‖ ≤ ε0 for all t ≤ t′ with probability at least 9/10

These propositions are sufficient to inductively prove the convergence of the training dynamics

to a global minimum. Consider the earliest time t0 where the perturbation in the kernel is too

large; by the final proposition this can only occur if the convergence of the system is violated at

some time t′0 < to. However, by the second proposition, this would imply that for an earlier time

t′′0 the kernel perturbation must have been too large, contradicting our initial assumption that t0

was the earliest such time. This shows that both the small perturbation condition as well as the

convergence of the system are maintained throughout the training.

7.3 A convergence theory for VQE

In this section we use ideas from the classical theory of overparameterized variational

systems to give sufficient conditions for the convergence of a VQE to zero loss. We also establish

the main factors influencing the (linear) rate of convergence. As discussed in Section 7.2.2, the

random initialization of the parameters plays an important role in the convergence. For the results

of this section, we rely on the Partially Trainable Ansatz. To demonstrate the main techniques

we restrict ourselves to the case where the set of Hermitians defining the ansatz form a complete

basis of the Lie Algebra of SU(d). The corresponding induced subgroup is therefore the entire

unitary group SU(d). Under this setting, we recall the definition as follows

Definition 7.3.1 (Partially Trainable Ansatzover SU(d)). Consider a quantum system over n-

qubits with a corresponding Hilbert space of dimension d = 2n. We define a (p-parameter)
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random ansatz parameterized by θ ∈ Rp:

U(θ) = Up exp(−iθpH) · · · · ·U1 exp(−iθ1H)U0 (7.6)

where Ul are sampled i.i.d. with respect to the Haar measure over SU(d), and H is a trace-0

Hermitian.

The Partially Trainable Ansatz has several appealing analytical properties for the analysis

of convergence. Firstly, the random initialization of the ansatz is restricted to the unitaries Ul

which are never updated during the training. There is thus a clear separation between the random

initialization and dynamic evaluation of the system. Furthermore, since Ul are sampled from the

right-invariant Haar measure over SU(d), the distribution of U(θ) is independent of the scheme

used to initialize the trainable parameters θ. Finally, the distribution of the ansatz is also invariant

under arbitrarily changes to the parameters, therefore the distribution of the ansatz does not

change as the system evolves. This intuitively indicates that important quantities connected to

the ansatz may be slow-varying as their expectation value remains the same. The remainder of

the section will formalize this notion.

Recall that a VQE instance is specified by a specified by a problem Hamiltonian M ∈ Cd×d,

an input state |Φ〉 ∈ Cd and an p-parameter variational ansatz U : Rp → Cd×d, and seeks to solve

the following optimization problem

min
θ
L(θ) := 〈Φ|U†(θ)MU(θ)|Φ〉 (7.7)

We investigate the dynamics of training the system using gradient flow, ie. the parameters are
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updated according to the differential equation dθ/dt = −η∇θL(θ), where η is some previously

chosen learning rate.

Notation and Definitions . We define here some notations, quantities, and conventions that

will play an important role in the forthcoming analysis.

• Wd2×d2 denotes the swap operator
∑

a,b∈[d] Eab ⊗ Eba.

• Id2×d2 denotes the identity matrix in Cd2×d2

• Without loss of generality we assume Tr(M) = Tr(H) = 0.

• We use the short hand Ul+1:p(θ) to represent

Ul+1:p(θ) := Up(θp) · · ·Ul+1(θl+1) (7.8)

where θ may be omitted when not ambiguous

• A common normalizing factor appears due to Haar integral: for any d × d-Hermitian A,

define Z(A, d) := Tr(A2)
d2−1

.

• The matrix

Vl(θ) := Up(θp) · · ·Ul(θl) = Up exp(−iθpH) · · · · ·Ul exp(−iθlH) (7.9)

is defined as the composition of all the layers of the ansatz from p to l. Using this notation,

the ansatz U(θ) can be written as V1(θ)U0.

• We define the matrix Hl(θ) := Vl(θ)HVl(θ)†.
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• The central quantity dictating the dynamics of VQE (see Lemma 7.3.1) is given by the

matrix

Y(θ) :=
1

pZ(H, d)

p∑
l=1

H⊗2
l . (7.10)

• We note finally that |Ψ〉, {Ul}, {Vl}, {Hl},Y are also functions of time t through the

evolution of the parameters θ(t).

Main Elements of Theory. Following the structure in Section 7.2.2 we outline the main compon-

ents of our analysis:

1. Identifying (idealized) gradient flow dynamics of VQE with classical dynamics that

is known to converge. We show that the dynamics of VQE is equivalent to Riemannian

Gradient Flow (RGF) over the unit sphere in d-dimensions, by tracking the evolution of the

output state. Specifically, we have the following lemma

Lemma 7.3.1 (VQE output-state dynamics under gradient flow). For a VQE instance

(M, |Ψ〉,U), with U being the ansatz defined in Definition 7.3.1, when optimized with

gradient flow with learning rate η, the output state |Ψ〉 follow the dynamics

d

dt
|Ψ〉 = −(η · p · Z(H, d)) Tr1(Y · ([M, |Ψ〉〈Ψ|]⊗ Id×d))|Ψ〉 (7.11)

Here the Hermitian Y ∈ Cd2×d2
is a time-dependent matrix defined as

Y(θ) :=
1

pZ(H, d)

p∑
l=1

(
Ul:p(θ(t))HU†l:p(θ(t))

)⊗2 (7.12)
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Over the randomness of ansatz initialization, for all θ ∈ Rp, the expected value of matrix

Y is Y? = Wd2×d2 − 1
d
Id2×d2 . If we choose η = 1

pZ(H)
, the VQE dynamics allows the

following decomposition:

d

dt
|Ψ〉 = −[M, |Ψ〉〈Ψ|]|Ψ〉 − Tr1

(
(Y −Y?) · [M, |Ψ〉〈Ψ| ⊗ Id×d]

)
|Ψ〉 (7.13)

The first term is exactly the Riemannian gradient descent over the unit sphere with loss

function 〈Ψ|M|Ψ〉, which is known to converge linearly to the ground state [266]. Lemma 7.3.1

shows that the main quantity that controls the deviation of the VQE gradient flow from RGF

over the sphere is Y −Y?, ie. the deviation of Y from it’s expectation.

2. Convergence of idealized dynamics under small perturbations. The deviation of Y

from its expectation cannot be zero in general, so we must establish that a small perturbation

to RGF on the sphere maintains the property of linear convergence. The following lemma

(analogous to Lemma F.1 in [257]) states that, if Y(t) is close to Y? through out the

optimization, then the gradient flow is guaranteed to find the ground state efficiently

Lemma 7.3.2 (VQE Perturbation Lemma). Conditioned on the event that the output state

at initialization |Ψ(0)〉 has non-negligible overlap with the target ground state

|Ψ?〉 : |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), if for all t ≥ 0, ‖Y(t) − (W − 1

d
Id2×d2)‖op ≤ λ2−λ1

λd−λ1
· 1

2
√

2d
,

then under the dynamics d
dt
|Ψ〉 = −Tr1(Y([M, |Ψ〉〈Ψ|] ⊗ Id×d))|Ψ〉, the output states

converges to the ground state:

1− |〈Ψ(t)|Ψ?〉|2 ≤ exp(−λ2 − λ1

2 log d
t). (7.14)
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3. Concentration to idealized dynamics throughout training. In order to show that the

perturbations from RGF over the sphere are small, we leverage the concentration properties

of Y arising from the large number of parameters used in order to bound the deviation

from expectation by a quantity decreasing in p. We first show that concentration holds at

initialization

Lemma 7.3.3 (Concentration at initialization for VQE). Over the randomness of ansatz

initialization (i.e. for {Ul}pl=1 sampled i.i.d. with respect to the Haar measure), for any

initial θ(0), with probability 1− δ:

‖Y(θ(0))−Y?‖op ≤
1
√
p
·

2‖H‖2
op

Z

√
log

d2

δ
(7.15)

We further show that the concentration is maintained throughout the evolution of the dynamics

as long as exponential convergence holds

Lemma 7.3.4 (Concentration during training (time dependent)). Suppose that under learning

rate η = 1
pZ(H,d)

, for all 0 ≤ t ≤ T , 1−|〈Ψ|Ψ?||〉2 ≤ exp(− (λ2−λ1)
2 log d

t), then with probability

≥ 1− δ, for all t ≥ 0:

‖Y(t)−Y(0)‖op ≤ C3

(
T
√
p
·
√

2(λd − λ1) ·

√
d2 − 1

Z(H, d)3

(
1 +

√
log

(
2d

δ

)))

(7.16)

where C3 is a constant.

4. (Main Result) Sufficient conditions for convergence. The previously established conditions

on concentration and convergence under perturbations are combined to yield a sufficient
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condition on the degree of overparameterization required to ensure that a VQE converges

to its ground state under gradient flow.

Theorem 7.3.1 (Exponential convergence for VQE). Consider a VQE system in a d-dimen-

sional Hilbert space (with architecture as described in Definition 7.3.1) with a target

Hamiltonian M with eigenvalues λ1 ≤ λ2 . . . λd, generating Hamiltonian H and number

of parameters p be greater than Ω

((
λd−λ1

λ2−λ1

)4

, d4

Z(H,d)3 , log
(

2d
δ

))
. Denote the ground state

of the system by |ψ∗〉. Conditioned on the event that the output state at initialization |Ψ(0)〉

has non-negligible overlap with the target ground state |Ψ?〉: |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), and

with a learning rate of η = 1
pZ(H,d)

, the system converges to the ground state with error

ε = 1− 〈ψ|ψ∗〉2 in time Tε = 2 log d
λ2−λ1

log
(

1
ε

)
with failure probability at most δ.

Technical details and proofs. In the following sections we describe the main technical ideas

behind the results outlined previously. The proof of convergence under perturbation, and concentration

of initialization follow relatively well known techniques and are postponed to Section 7.8.1 in the

appendix. The identification of VQE gradient flow (Lemma 7.3.1) is proved in Section 7.3.1. The

proof of concent- ration during training (Lemma 7.3.4) is in Section 7.3.2, and the main theorem

is proved in Section 7.3.3.

7.3.1 Identify VQE with Reimannian Gradient Flow (RGF) over unit sphere

Lemma 7.3.1 (VQE output-state dynamics under gradient flow). For a VQE instance (M, |Ψ〉,U),

with U being the ansatz defined in Definition 7.3.1, when optimized with gradient flow with
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learning rate η, the output state |Ψ〉 follow the dynamics

d

dt
|Ψ〉 = −(η · p · Z(H, d)) Tr1(Y · ([M, |Ψ〉〈Ψ|]⊗ Id×d))|Ψ〉 (7.11)

Here the Hermitian Y ∈ Cd2×d2
is a time-dependent matrix defined as

Y(θ) :=
1

pZ(H, d)

p∑
l=1

(
Ul:p(θ(t))HU†l:p(θ(t))

)⊗2 (7.12)

Proof. We start by calculating the gradient of Ur:p(θ) with respect to θl: For r > l, Ur:p is

independent of θl ; For r ≤ l,

∂Ur:p

∂θl
= Ul:p(θ) · (−iH) ·Ur:l−1(θ) = −iUl:pHU†l:pUr:p (7.17)

Therefore

∂L(θ)

∂θl
= 〈Φ|U†0∂lU

†
1:pMU1:pU0|Φ〉+ 〈Φ|U†0U

†
1:pM∂lU1:pU0|Φ〉 (7.18)

= 〈Φ|U†0U
†
1:pi[Ul:pHU†l:p,M]U1:pU0|Φ〉 (7.19)

= iTr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p) (7.20)

Following gradient descent with learning rate η:

dθl
dt

= −η∂l
1

pZ
∂lL(θ) == −iηTr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p) (7.21)
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The dynamics for Ul:p and |Ψ〉 are therefore:

d

dt
Ul:p(t) =

p∑
r=l

dθr
dt
∂rUl:p = −η

p∑
r=l

Tr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p)Ul:pHU†l:pUl:p (7.22)

d

dt
|Ψ〉 =

d

dt
U1:pU0|Φ〉 = −(η · pZ)

1

pZ

( p∑
l=1

Tr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p)Ul:pHU†l:p
)
U1:pU0|Φ〉

(7.23)

= −(η · pZ) Tr1(Y · [M, |Ψ〉〈Ψ|]]⊗ I)|Ψ〉 (7.24)

7.3.2 Concentration of dynamics from overparameterization

In this section we wish to prove that Y concentrates to its expected value throughout

training upto any point in time until which the linear convergence condition holds on the gradient

flow dynamics. The proof will be based on two main ideas:

1. The linear convergence of the gradient flow dynamics allows the deviation of the parameters

θ from their initial values to be bounded in terms of the evolution time (See Lemma 7.3.5).

2. The random variables Y(θ(t)) for different times t form a random field, whose deviations

Y(θ(t1)) −Y(θ(t1)) we show to be bounded by a quantity proportional to |t1 − t2|/
√
p.

We then use Dudley’s lemma on the concentration of random fields to bound the supremum

of the deviation from initialization over time.
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We first show a result connecting the evolution time to the corresponding deviation in θ.

Lemma 7.3.5 (Slow-varying θ). Suppose that under learning rate η = 1
pZ(H,d)

, for all 0 ≤ t ≤ T ,

1− |〈Ψ|Ψ?||〉2 ≤ exp(− (λ2−λ1)
2 log d

t), then for all 0 ≤ t1, t2 ≤ T :

‖θ(t2)− θ(t1)‖∞ ≤
1

p
· 4
√

2
λd − λ1

λ2 − λ1

·

√
d2 − 1

Z(H, d)
log d

(
e−

λ2−λ1
4 log d

t1 − e−
λ2−λ1
4 log d

t2
)

≤ 1

p
·
√

2(λd − λ1) ·

√
d2 − 1

Z(H, d)
· |t2 − t1| (7.25)

‖θ(t2)− θ(t1)‖2 ≤
1
√
p
· 4
√

2
λd − λ1

λ2 − λ1

·

√
d2 − 1

Z(H, d)
log d

(
e−

λ2−λ1
4 log d

t1 − e−
λ2−λ1
4 log d

t2
)

≤ 1
√
p
·
√

2(λd − λ1) ·

√
d2 − 1

Z(H, d)
· |t2 − t1| (7.26)

Proof. Let K(t) := [M, |Ψ〉〈Ψ|] and Hl := Ul:pHU†l:p. Recall that

dθl
dt

= − 1

pZ(H, d)
Tr(iK(t),Hl(t)), (7.27)

|θl(T )− θl(0)| = |
∫ t2

t1

dθl(t)

dt
dt| = 1

pZ
|
∫ t2

t1

Tr(Hl(t)K(t)dt| (7.28)

≤ 1

pZ
‖H(t)‖F

∫ t2

t1

‖K(t)‖Fdt (7.29)

≤ 1

pZ

√
Tr(H2)

∫ t2

t1

√
2(λd − λ1)e−

λ2−λ1
4 log d

tdt (7.30)

= 4
√

2
λd − λ1

λ2 − λ1

√
d2 − 1

p2Z
log d

(
e−

λ2−λ1
4 log d

t1 − e−
λ2−λ1
4 log d

t2
)

(7.31)

Here we use the fact that ‖K‖F ≤
√

2(λd−λ1)
√

1− |〈Ψ(t)|Ψ?||〉2 (from technical Lemma 7.8.3)
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We next consider the random variables Y(θ(t)) for t in some interval [0, T ]. These variables

form a random field and we show a concentration inequality on the expected deviation in Y(θ(t))

over different intervals. A random variable X is said to be sub-gaussian [272, Proposition 2.5.2]

if its tails satisfy Pr[X ≥ t] ≤ 2 exp (−t2/K2
1), here the quantity K1 is defined to be the second

Orlicz norm, or ψ2 norm of X.

Lemma 7.3.6 (Expectation of deviations in Y(θ(t))).

Pr[‖Y(θ(t2))−Y(θ(t1))‖op > t] ≤ 2 exp

(
− −t2Z(H, d)2

2C1‖θ(t2)− θ(t1)‖2
2

)
(7.32)

for some constant C1

Proof. We first observe that due to the Haar distribution of the unitaries Ul, Y(θ(t2))−Y(θ(t1))

is distributed identically to Y(θ(t2)− θ(t1))−Y(0). For convenience we define δθ = θ(t2)−

θ(t1) in the remainder of the proof.

Define Yl(θ) = H⊗2
l ; then Y(θ) = 1

pZ(H,d)

∑p
l=1 Yl. We consider a re-parameterization

of the random variables Hl(θ) by constructing random variables that are identically distributed,

but are functions on a different latent probability space. Defining Hl as Up · · ·UlHU†l · · ·U
†
p, Y

can be rewritten as:

Y(θ) =
1

pZ

p∑
l=1

(
e−iθpHp · · · e−iθl+1Hl+1Hle

iθl+1Hl+1 · · · eiθpHp
)⊗2 (7.33)

By the Haar randomness of {Ul}pl=1, we can view {Hl}pl=1 as random Hermitians generated by

{VlHV†l} for i.i.d. Haar random {Vl}pl=1. This variable is identically distributed to Y and Yl

can be defined as each term in the sum.
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We will apply the well-known McDiarmid inequality that can be stated as follows: Consider

independent random variablesX1, . . . , Xk ∈ X . Suppose a random variable φ : X k → R satisfies

the condition that for all 1 ≤ j ≤ k and for all x1, . . . , xj, . . . , xk, x
′
j ∈ X ,

|φ(x1, . . . , xj, . . . , xk)− φ(x1, . . . , x
′
j, . . . , xk)| ≤ cj (7.34)

then the tails of the distribution satisfy

Pr[|φ(X1, . . . , Xk)− Eφ| ≥ t] ≤ exp

(
−2t2∑k
i=1 c

2
i

)
(7.35)

With our earlier re-parameterization we can consider Y and consequently Yl as functions

of the randomly sampled Hermitian operators Hl. Define the variable Y(k) as that obtained by

resampling Hk independently, and Y
(k)
l correspondingly. Finally we define ∆(k)Y = ‖(Y(δθ)−

Y(0)) − (Y(k)(δθ) − Y(k)(0))‖op = ‖Y(δθ) − Y(k)(δθ)‖op. Via a helper technical lemma

(Lemma 7.8.4 proved in the appendix) we have that for any unitaryW be generated by Hermitian

H (W = exp(−iθH)), we have

(WKW †)⊗2 −K⊗2 � 4|θ|‖H‖op‖K‖2
opI (7.36)
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Via the triangle inequality,

∆(k)Y = ‖Y(δθ)−Y(k)(δθ)‖ (7.37)

=
1

pZ
‖

k∑
l=1

Yl(δθ)−Y
(k)
l (δθ)‖ (7.38)

≤ 1

pZ

k∑
l=1

‖Yl(δθ)−Y
(k)
l (δθ)‖ (7.39)

Then by definition,

‖Yl(δθ)−Y
(k)
l (δθ)‖ (7.40)

=(e−iδθpHp · · · e−iδθk+1Hk+1)⊗2
(
(e−iδθkHkKeiδθkHk)⊗2 − (e−iδθkH

′
kKeiδθkH

′
k)⊗2

)
(eiδθl+1Hl+1 · · · eiδθpHp)⊗2 (7.41)

where K := e−iδθk−1Hk−1 · · · e−iδθl+1Hl+1Hle
iδθl+1Hl+1 · · · eiδθk−1Hk−1 . By Lemma 7.8.4,

‖
(
Yl(δθ)−Yl(0)

)
−
(
Y

(k)
l (δθ)−Y

(k)
l (0)

)
‖ ≤ 8|δθk|‖H‖op‖K‖2

op = 8|δθk|‖H‖3
op (7.42)

We finally have ∆(k)(y) ≤ 8|δθk|‖H‖3op

Z
. By the McDiarmid inequality, the result follows.

To bound the supremum of the deviation over an entire time interval, we employ Dudley’s

integral inequality (stated below in it’s matrix form)

Lemma 7.3.7 (Dudley’s integral inequality: subgaussian matrix version (Adapted from Theorem

8.1.6 in [272]). Let R be a metric space equipped with a metric d(·, ·), and X : R 7→ RD×D
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with subgaussian increments ie. it satisfies

Pr[‖X(r1)−X(r2)‖op > t] ≤ 2D exp

(
− t2

C2
σd(r1, r2)2

)
(7.43)

Then with probability at least 1− 2D exp(−u2) for any subset S ⊆R:

sup
(r1,r2)∈S

‖X(r1)−X(r2)‖op ≤ C · Cσ

[∫ diam(S)

0

√
N (S,d, ε) dε+ u · diam(S)

]
(7.44)

for some constant C, where N (S,d, ε) is the metric entropy defined as the logarithm of the

ε-covering number of S using metric d.

We then have the following main result:

Lemma 7.3.4 (Concentration during training (time dependent)). Suppose that under learning

rate η = 1
pZ(H,d)

, for all 0 ≤ t ≤ T , 1 − |〈Ψ|Ψ?||〉2 ≤ exp(− (λ2−λ1)
2 log d

t), then with probability

≥ 1− δ, for all t ≥ 0:

‖Y(t)−Y(0)‖op ≤ C3

(
T
√
p
·
√

2(λd − λ1) ·

√
d2 − 1

Z(H, d)3

(
1 +

√
log

(
2d

δ

)))
(7.16)

where C3 is a constant.

Proof. Via Lemma 7.3.6,

Pr[‖Y′(θ(t2))−Y′(θ(t1))‖op > t] ≤ 2 exp

(
− −t2Z(H, d)2

2C1‖θ(t2)− θ(t1)‖2

)
(7.45)

By Lemma 7.3.5 ‖θ(t2) − θ(t1)‖2 ≤ 1√
p
·
√

2(λd − λ1) ·
√

d2−1
Z(H,d)

· |t2 − t1|. Thus, Y′ has sub-
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gaussian increments if we define the metric d(t2, t1) = 1√
p
·
√

2(λd − λ1) ·
√

d2−1
Z(H,d)3 · |t2 − t1|,

thereby satisfying the conditions for Lemma 7.3.7. Under this metric, the diameter of the interval

[0, T ] is T√
p
·
√

2(λd − λ1) ·
√

d2−1
Z(H,d)3 . Applying Lemma 7.3.7, with failure probability at most δ

we have

sup
t∈[0,T ]

‖Y(θ(t))−Y(θ(0))‖op ≤ C2

(
diam([0, T ])

(
1 +

√
log

(
2d

δ

)))
(7.46)

By the previous consideration,

sup
t∈[0,T ]

‖Y(θ(t))−Y(θ(0))‖op ≤ C3

(
T
√
p
·
√

2(λd − λ1) ·

√
d2 − 1

Z(H, d)3

(
1 +

√
log

(
2d

δ

)))

(7.47)

where C2, C3 are constants.

7.3.3 Linear convergence to the ground state

Finally, we can combine our previous results to show that with sufficient overparameteriz-

ation, the VQE dynamics can be made to exponentially converge to the ground state

Theorem 7.3.1 (Exponential convergence for VQE). Consider a VQE system in a d-dimen-

sional Hilbert space (with architecture as described in Definition 7.3.1) with a target Hamiltonian

M with eigenvalues λ1 ≤ λ2 . . . λd, generating Hamiltonian H and number of parameters p be

greater than Ω

((
λd−λ1

λ2−λ1

)4

, d4

Z(H,d)3 , log
(

2d
δ

))
. Denote the ground state of the system by |ψ∗〉.

Conditioned on the event that the output state at initialization |Ψ(0)〉 has non-negligible overlap

with the target ground state |Ψ?〉: |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), and with a learning rate of η = 1

pZ(H,d)
,
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the system converges to the ground state with error ε = 1 − 〈ψ|ψ∗〉2 in time Tε = 2 log d
λ2−λ1

log
(

1
ε

)
with failure probability at most δ.

Proof. By Lemma 7.3.2, if the closeness condition on Y is maintained for time Tε = 2 log d
λ2−λ1

log
(

1
ε

)
the obtained error is less than or equal to ε. Therefore by Lemma 7.3.4 and Lemma 7.3.3,

in order to ensure ‖Y(t) − Y(0)‖ ≤ λd−λ1

λ2−λ1
· 1

2
√

2d
upto any time 0 < t ≤ Tε such that

1 − |〈Ψ|Ψ?||〉2 ≤ exp(− (λ2−λ1)
2 log d

t) for all times less than t, it suffices to choose p such that

C3

(
T√
p
·
√

2(λd − λ1) ·
√

d2−1
Z(H,d)3

(
1 +

√
log
(

2d
δ

)))
≤ λ2−λ1

λd−λ1
· 1

2
√

2d
. By simple algebra, it can

be verified that choosing p ≥ Ω

((
λd−λ1

λ2−λ1

)4

, d4

Z(H,d)3 , log
(

2d
δ

))
is sufficient.

Let t0 be the minimum time such that either 1 − |〈Ψt0 |Ψ?||〉2 > exp(− (λ2−λ1)
2 log d

t0) or

‖Y(t0)−Y(0)‖ > λd−λ1

λ2−λ1
· 1

2
√

2d
. If 1− |〈Ψ|Ψ?||〉2 > exp(− (λ2−λ1)

2 log d
t0), we must have ‖Y(t′0)−

Y(0)‖ > λd−λ1

λ2−λ1
· 1

2
√

2d
at some earlier time t′0 (Lemma 7.3.2). Similarly, if ‖Y(t0) − Y(0)‖ >

λd−λ1

λ2−λ1
· 1
2
√

2d
, we must have 1−|〈Ψt′0

|Ψ?||〉2 > exp(− (λ2−λ1)
2 log d

t′0) at some earlier time t′0 (Lemma 7.3.4).

Therefore by contradiction, both conditions must be realized for all times t ≤ Tε, yielding the

result.

7.4 Robust convergence under noisy gradient

So far we have assumed perfect access to the exact gradient ∇L. In the practical NISQ

setting, the estimation of gradients are usually noise either due to the finite number of measurements,

or the noisy implementation of circuits. In this section, we show that our convergence theorem

is noise-tolerant. In the continuous time setting we consider the following definitin for noisy

gradient descent:
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Definition 7.4.1. Noisy gradient flow. For loss function L : Rp → R, the noisy gradient flow on

the parameters θ ∈ Rp with learning rate η is defined as

dθ

dt
= −η∇̂L = −η(∇L+ ε) or

dθl
dt

= −η(
∂L

∂θl
+ εl(t)) ∀l ∈ [p] (7.48)

where ε(t) := (ε1(t), · · · , εp(t)) is the noise to the gradient estimation.

The robust version of our theorem states that when ε(t) is bounded in `∞-norm, the converg-

ence result still holds:

Corollary 7.4.1 (Robust convergence for VQE with noisy gradient). Consider a VQE system in

a d-dimensional Hilbert space (with architecture as described in Definition 7.3.1) with a target

Hamiltonian M with eigenvalues λ1 < λ2 ≤ · · · ≤ λd, generating Hamiltonian H and number

of parameters p be greater than Ω

((
λd−λ1

λ2−λ1

)4

, d4

Z(H,d)
, log

(
δ
2d

))
. Denote the ground state of the

system by |Ψ?〉. Conditioned on the event that the output state at initialization |Ψ(0)〉 has non-

negligible overlap with the target ground state |Ψ?〉: |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), and with a learning

rate of η = 1
pZ(H,d)3 , the system converges under noisy gradient to the ground state with error

ε = 1− |〈Ψ(t)|Ψ?〉|2 in time Tε = 4 log d
λ2−λ1

log
(

1
ε

)
with failure probability at most δ, if the gradient

estimation error ‖ε(t)‖∞ ≤ Z
2‖H‖(λ2 − λ1)

√
1− |〈Ψ(t)|Ψ?〉|2|〈Ψ(t)|Ψ?〉|.

To interpret the upper bound on ‖ε‖∞, notice that

√
1− |〈Ψ(t)|Ψ?〉|2|〈Ψ(t)|Ψ?〉| ≤ max{|〈Ψ(t)|Ψ?〉|2, 1− |〈Ψ(t)|Ψ?〉|2}. (7.49)

At the initial stage of training, ‖ε‖∞ need to beO(|〈Ψ(t)|Ψ?〉|2) so that the worst-case perturbation

in the gradient does not eliminate the overlap between |Ψ(t)〉 and |Ψ?〉; at the final stage of
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training ‖ε‖∞ need to be O(1 − |〈Ψ(t)|Ψ?〉|2) to obtain solutions with high quality. We also

highlight that the analysis considers the worst-case (or adversarial) gradient noise ε. It is possible

for the more practical scenario, the structure of ε can relax the requirement on ‖ε‖∞ (for example

when the noise is purely due the finite measurements and therefore stochastic).

The following Lemma 7.4.1 calculates the dynamics at the presence of gradient noise.

Corollary 7.4.1 then follows directly from Lemma 7.4.2, which states the convergence of the

noisy dynamics. The proof for the lemmas are modified based on Lemma 7.3.1 and 7.3.2 and

are postponed to Section 7.8.2.

Lemma 7.4.1 (Output-state dynamics with noisy gradient estimation). Consider VQE instance

(M, |Φ〉,U), with U being the ansatz defined in Definition 7.3.1. Under gradient flow with

learning rate η and noisy gradient estimation ∇̂L := ∇L + ε(t) =
(
∂L
∂θl

+ εl(t)
)
l∈[p]

, the output

state |Ψ〉 follow the dynamics

d

dt
|Ψ〉 = −(η · p · Z(H, d)) Tr1(Y([M, |Ψ〉〈Ψ|]⊗ Id×d))|Ψ〉+ η

p∑
l=1

iεlHl|Ψ〉 (7.50)

Here the Hermitian Y ∈ Cd2×d2
is the time-dependent matrix defined as

Y(θ) :=
1

pZ(H, d)

p∑
l=1

(
Ul:p(θ(t))HU†l:p(θ(t))

)⊗2 (7.51)

and Hl are defined as Ul:p(θ(t))HU†l:p(θ(t)).

The following modified version of Lemma 7.3.2 implies that the main theorem holds with

noisy gradient estimation:

Lemma 7.4.2 (VQE Perturbation Lemma under noisy gradients). Conditioned on the event that
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the output state at initialization |Ψ(0)〉 has non-negligible overlap with the target ground state

|Ψ?〉: |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), if for all t ≥ 0, ‖Y(t) −Y?(t)‖op ≤ λ2−λ1

λd−λ1
· 1

4
√

2d
and ‖ε(t)‖∞ ≤

Z
2‖H‖(λ2 − λ1)

√
1− |〈Ψ(t)|Ψ?〉|2|〈Ψ(t)|Ψ?〉|, Then under the dynamics

d

dt
|Ψ〉 = −Tr1(Y([M, |Ψ〉〈Ψ|]⊗ Id×d))|Ψ〉+

1

pZ

p∑
l=1

iεlHl|Ψ〉 (7.52)

the output states converges to the ground state:

1− |〈Ψ(t)|Ψ?〉|2 ≤ exp(−λ2 − λ1

4 log d
t). (7.53)

7.5 Ansatz-dependent results

7.5.1 Ansatz-dependent upperbound

The bounds obtained in Theorem 7.3.1 provide sufficient conditions on the number of

classical parameters required to ensure that an instance of the Partially Trainable Ansatz over

SU(d) (Definition 7.3.1) converges to its ground state with a linear rate of convergence. These

bounds are primarily influenced by the dimension d of the Hilbert Space, and a quantity λd−λ1

λ2−λ1

influenced by the conditioning of the spectrum (which we will call the spectral ratio in the

following) of the problem Hamiltonian M. In this section, we provide ansatz-dependent upperbo-

unds on over-parameterization. We show that the choice of parameterized ansatz can result in the

sufficient overparameterization threshold being governed by quantities the effective dimension

deff and spectral ratio κeff which can be significantly smaller than d and κ. In the later section 7.7,

we evaluate these two quantities for popular Hamiltonian variational ansatz (HVA) and use them
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to explain the success of HVA over general ansatz designs such as HEA.

Group Representations To present our result for specifc ansatze, we first state some elementary

results from group representation theory (for a full introduction to representations of Lie Groups

see [273, Chapter 4]). A finite-dimensional representation (V,Π) of a group G is specified by a

vector space V and a group homomorphism Π: G → GL(V ), such that Π(g1)Π(g2) = Π(g1g2)

for all g1, g2 ∈ G. The representation is unitary if Π(g) is unitary for all g ∈ G. An important

concept in the group representation theory is irreducibility. Given a representation (V,Π) of

G, a subspace W ⊆ V is said to be invariant if Π(g)w ∈ W for all w ∈ W and g ∈ G.

A representation is further said to be irreducible if it has no invariant subspaces other than the

trivial subspaces consisting of the empty set ∅ and the whole space V .

For a unitary matrix Lie group G defined on V , the simple identity map furnishes a unitary

representation of G on the Hilbert space G. We will refer to this representation as the natural

representation. In this case we will not distinguish the group element from its representation.

The following proposition indicates that a unitary matrix group G induces a decomposition of

the ambient space V .

Proposition 7.5.1 (Adapted from [273, Proposition 4.27]). LetG be a group with unitary representation

Π acting on a vector space V . Then this representation is completely reducible ie. V is isomorphic

to a direct sum V1⊕· · ·⊕Vm where each Vi is an invariant subspace which itself has no non-trivial

invariant subspaces.

For ansatz designA, let GA be the associated subgroup of SU(d) as defined in Section 4.2.

GA is a unitary matrix subgroup defined on the state space H. By Proposition 7.5.1, the natural

representation of GA induces a decomposition of the state space H = V1 ⊕ · · · ⊕ Vm. We now

368



define the ansatz compatibility and the key quantities deff and κeff for a VQE instance (M, |Φ〉,U)

using this decomposition.

Definition 7.5.1 (Compatible Ansatz). Consider an VQE instance (M, |Φ〉,U) with ansatz design

A. Let H = V1 ⊕ · · · ⊕ Vm be the completely-reduced decomposition induced by the ansatz

design A through the natural representation of GA and Let |Ψ?〉 denote the ground state of M.

The ansatz design A is said to be compatible with the VQE problem if there exists j ∈ [m] such

that both |Φ〉 and |Ψ?〉 lie within an invariant subspace Vj .

The effective quantities for compatible ansatz can be defined using the invariant subspace:

Definition 7.5.2 (Effective dimension deff and Effective ratio κeff). Consider an VQE instance

(M, |Φ〉,U) with compatible ansatz design A. And let W denote the invariant subspace where

the input and the ground state lies with projection Π = QQ†. The effective dimension deff is

defined as the dimension of W . The effective spectrum is defined as the ordered eigenvalues

(λ′1, · · · , λ′deff
) of the Hermitian Q†MQ. The effective spectral ratio κeff is defined as

λ′deff
−λ′1

λ′2−λ′1
.

The effective generating Hamiltonian Heff is defined as Q†HQ

Given the projection Π onto W , the decompostion Q is not unique but allow a deff × deff

unitary transformation. This does not introduce any ambiguity in the definition of the effective

spectrum as unitary transformations does not change the eigenvalues of Q†MQ.

The Killing-Cartan classification indicates that the subgroup GA restricted on the invariant

subspaceWj must be one of the simple lie groups. Here we focus on the case where the subgroup

GA restricted on the invariant subspace Wj is a special unitary group SU(deff). Similar results

can be proved for special orthogonal, symplectic group by replacing the integral forumla (e.g.

See [271]).
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By definition W is invariant under the action of any operator represented by ansatz A,

indicating the dynamics of the output state is restricted to the subspace Vj spanned by the column

space of Q. By transforming all the Hamiltonians and the input state by Q in the proof of

Theorem 7.3.1, we have the following corollary:

Corollary 7.5.1. Let (M, |Φ〉,U) be a VQE instance using compatible ansatz design A with

deff , κeff , Heff and (λ′1, · · · , λ′deff
) as defined in Definition 7.5.1. Let |Ψ?〉 denote the ground state

of M and |Ψ(t)〉 the output state at time t, then conditioned on the event that the output state at

initialization |Ψ(0)〉 has non-negligible overlap with the target ground state |Ψ?〉: |〈Ψ(0)|Ψ?〉|2 ≥

O( 1
deff

), and with a learning rate of η = 1
pZ(Heff ,deff)

, the system converges to the ground state with

error ε = 1 − 〈Ψ(t)|Ψ?〉2 in time Tε = 2 log deff

λ′2−λ′1
log
(

1
ε

)
with failure probability at most δ, if the

number of parameters p is greater than Ω
((
κ4

eff ,
d4

eff

Z(Heff ,deff)3 , log
(

2deff

δ

)))
.

For general ansatz design A including HEA with GA = SU(d), the effective dimension

deff (resp. effective ratio κeff is the same as the system dimension d (resp. the ratio κ = λd−λ1

λ2−λ1
). In

fact this holds for fully-trainable ansatze that contain universal gate sets and satisfy the premise

of [270]. On the other hand, a problem-specific compatible ansatz design can have much smaller

deff and κeff and achieve reasonable performance with much fewer number of parameters. As

we see in Section 7.7 For physical problems like Transverse field ising model and Heinsenberg

model, certain HVA designs can achieved deff and κeff orders of magnitudes smaller than d and

κ.
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7.5.2 Estimating deff and κeff

Given VQE problem (M, |Φ〉,U) with a compatible ansatz design A, we can estimate the

column space of Q of the invariant subspace by estimating the support of the matrix

Π̂ =
1

R

∑
r=1

Ur|Φ〉〈Φ|U†r (7.54)

with Ur sampled i.i.d. from the Haar measure over GA. Empirically we approximate the Haar

measure over GA by calculating

U(φ) =

Lsample∏
l′=1

K∏
k=1

exp(−iφl′,kHk) (7.55)

for sufficiently large Lsample and randomly initialized {φl′,k}k∈[K],l′∈[Lsample]. Any orthonormal

basis of the support of Π can be used as Q to estimate deff and κeff using Definition 7.5.2.

Example: Kitaev Model For a concrete example, consider the HVA for the Kitaev model on

square-octagon lattice with external field introduced in [3]. We will see that the proper ansatz

design leads to an effective dimension much smaller than the system dimension (deff = 76

v.s. d = 256) and that the effective ratio κeff can be orders of magnitudes smaller than λd−λ1

λ2−λ1

(Figure 7.3).
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The problem Hamiltonian for Kitaev models with external field is defined as

MKitaev(Jxy, h) =
∑

(u,v)∈SZ

ZuZv +
Jxy√

2
· (

∑
(u,v)∈SX

XuXv +
∑

(u,v)∈SY

YuYv) + h ·
7∑
i=0

Xi + Yi + Zi

(7.56)

with Xi denoting the Pauli-X matrix acting on the i-th qubit. This system has coupling in the X,

Y, Z directions on edge sets SX , SY and SZ respectively. The parameter Jxy controls the coupling

in the X/Y -direction and h controls the strength of the external field. For 8-qubit Kitaev models

on square-octagon lattice, by labeling each qubit with indexes 0 through 7, the edge sets are

defined as SX = {(0, 1), (2, 3)}, SY = {(1, 2), (0, 3)}, and SZ = {(4, 0), (1, 5), (3, 7), (2, 6)}

(See Figure 7.1 or Figure 1(c) in [3]).

We use the ansatz proposed in [3]: the ansatz design A = {H1, · · · ,H6} with

H1 ∝
∑

(u,v)∈SX

XuXv,H2 ∝
∑

(u,v)∈SY

YuYv,H3 ∝
∑

(u,v)∈SZ

ZuZv,

H4 ∝
7∑
i=0

Xi,H5 ∝
7∑
i=0

Yi,H6 ∝
7∑
i=0

Zi (7.57)

In Figure 7.2, we plot the eigenvalues of Π̂ for the Kitaev models for input state |Φ〉 = |0〉⊗8

and the ansatz specified in Eq (7.57) using R = 100 and Lsample = 20. As the number of samples

R increases from 0 to 100, Π̂ converges to a matrix with uniform eigenvalues. Figure 7.2 indicates

that the |Φ〉 lies within the 76-dimensional invariant subspace W embedded in a 256-dimensional

state space H. It is also verified that the ground state of MKitaev lies within the subspace W as

well. We also compare the effective ratio κeff with κ = λd−λ1

λ2−λ1
(i.e. the effective ratio for generic

ansatz designs) for a wide range of parameters (Jxy, h) in Figure 7.3. We observe that the HVA
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Y

Figure 7.1: Configuration of the 8-qubit
Kitaev model on square-octagon lattice
defined in [3]. Qubits are labeled by
0, 1, · · · , 7, and each edge corresponds to
an interation term. The types of interactions
XX, Y Y and ZZ are as specified in texts.

Figure 7.2: Specturm of Π̂ for 8-qubit
Kitaev model with 8 qubits for number
of samples R = 1, 2, · · · , 100. As the
number of samples increases, Π̂ converges
to Hermitians with uniform spectrum,
and can thus be good approximation of
the normalized projection to the invariant
subspace V .

(a) Kitaev Model: N=8, varying Jxy (b) Kitaev Model: N=8, varying h

Figure 7.3: The spectral ratio κeff for 8-qubit Kitaev models by varying Jxy while fixing the
external field h = 1 and varying h while fixing Jxy = 1. The effective ratio is significantly
smaller than the actual ratio for a wide range of (Jxy, h).

proposed in [3] decreases κeff by orders of magnitudes.

7.6 Empirical Study: Verifying the Convergence Theory

In this section we present two sets of numerical simulations to corroborate our theoretical

results.

1. In Section 7.6.1 we first calculate the deviation of Y and θ for HVAs and HEAs. We show

that Lemma 7.3.4 and 7.3.5 correctly predict the maximal deviation of Y and θ for both
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the partially-trainable and the fully-trainable settings.

2. In Section 7.6.2, we confirm that the over-parameterization threshold is positively correlated

to the proposed quantities κeff and deff as predicted in Theorem 7.3.1 and Corollary 7.5.1

using synthetic toy VQE examples.

7.6.1 Experiment 1: Deviation of key quantities during training

In this section we optimize Hamiltonian variational ansatz (HVA) and Hardware-efficient

ansatz (HEA) in both the partially- and fully-trainable settings and evaluate Y and θ during

training. Recall that Y is a function of time step t through its dependency on the parameters θ(t).

Lemma 7.3.5 and 7.3.4 predict that θ remains in a `∞-ball centered at θ(0) with radius O(1/p)

throughout training, and that ‖Y(t) − Y(0)‖op = O( 1√
p
). Our experiments show it is true for

both partially- and fully-trainable HVAs and HEAs.

Definition of Y for fully-trainable ansatz For partially-trainable ansatz defined in Definition 7.2.2,

Y can be equivalently expressed as

Y(θ) :=
1

p

p∑
l=1

(
Ul,+(θ)HU†l,+(θ)

)⊗2 (7.58)

using Ul,+(θ) =
(∏p

l′=l+1 Ul′ exp(−iθl′H)
)
·Ul, the matrix applied to the input state after the

rotation exp(−iθlH). Similarly for fully-trainable ansatz, define U(l,k),+(θ) as
∏L

l′=l+1

∏K
k=1 exp(−iθl′,kHk)·∏K

k′=k+1 exp(−iθl,k′Hk′) as the matrix applied to the input state after the rotation exp(−iθl,kHk),
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Y can be defined as:

Y(θ) :=
1

p

L∑
l=1

K∑
k=1

(
U(l,k),+(θ)HkU

†
(l,k),+(θ)

)⊗2 (7.59)

Here p = K · L is the total number of trainable parameters.

HVA for Transverse Field Ising Models For HVA, we considerN -site one-dimensional transverse

field Ising models (TFI1d). The problem Hamiltonian is defined as

MTFI1d(g) =
N−1∑
i=0

XiXi+1 + g
N−1∑
i=0

Zi (7.60)

with periodic boundary (i.e the N -th site is identified with the 0-th site). The parameter g is the

strength of the transverse field. In this experiment we choose the input state 1√
2N

(1, 1, · · · , 1)T

and the compact HVA for TFI1d model proposed in [268] with K = 2 and

H1 ∝
N−1∑
i=0

XiXi+1, H2 ∝
N−1∑
i=0

Zi (7.61)

For all the experiments, {Hk}Kk=1 are normalized such that Z(H, d) = Tr(H2
k)/(d

2 − 1) = 1.

For both partially- and fully-trainable settings, we solve 4-qubit TFI1d model with external

field g = 0.3 using gradient descent with learning rate 1 × 10−4/p, where the numbers of

trainable parameters are varied from 30 to 150. For each p the trainings are repeat over 20 random

initializations.

During training The deviations as a function of time t are plotted We calculate the deviation

of Y and θ during trraining for solving 4-qubit TFI1d model with transverse field g = 0.3 for both
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(a) Partially-trainable HVA (b) Fully-trainable HVA

Figure 7.4: Maximal deviation of Y from initial value as a function of number of trainable
parameters during the training of HVA for 4-qubit TFI1d model with transverse field g = 0.3.
The mean values and the standard deviations are calculated over 20 random initializations for
each number of trainable parameters p = 30, 40, · · · , 150. In both figures, the reference lines
50/
√
p are plotted in green, showing that our theory correctly predicts the O(1/

√
p)-dependency

of maxt≥0‖Y(t)−Y(0)‖op for both settings.

partially- and fully-trainable HVAs. For the number of trainable parameters p = 30, 40, · · · , 150,

the partially- (fully-)trainable ansatze are optimized using gradient descent with learning rate

1× 10−4/p.

For both settings, the deviations of Y in operator norm (‖Y(t)−Y(0)‖op) saturate after a

few iterations (Figure 7.16 in the appendix), and maxt≥0‖Y(t)−Y(0)‖op displays an O(1/
√
p)

dependency on p 7.4. Moreover, note that in both Figure 7.4(a) and (b) the reference lines plotted

in green are 50/
√
p. This indicate that the max deviation of Y in the two settings not only match

in the dependency on p but also on constants.

Similarly, theO(1/p) dependencies of maxt≥0 ‖θ(t)−θ(0)‖∞ are demonstrated in Figure 7.5.

HEA with CZ entanglement Similar observations occur in hardware-efficient ansatz (HEA)

with layers of single-qubit X/Y -rotations and CZ entanglements. For an N -qubit instance, let

CZij denote the CZ gate acting on the i-th and j-th qubits, we define the CZ entanglement layer
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(a) Partially-trainable HVA (b) Fully-trainable HVA

Figure 7.5: Maximal deviation of θ from initial value as a function of number of trainable
parameters during the training of HVA for 4-qubit TFI1d model with transverse field g = 0.3.
The mean values and the standard deviations are calculated over 20 random initializations for
each number of trainable parameters p = 30, 40, · · · , 150. In both figures, the reference lines
1/p are plotted in green, showing that our theory correctly predicts the O(1/p)-dependency of
maxt≥0 ‖θ(t)− θ(0)‖∞ for both settings.

UCZ as:

UCZ =
∏

eveni∈[N ]

CZi,i+1

∏
oddi∈[N ]

CZi,i+1 (7.62)

Using that fact that CZ2
ij is identity for any pair of (i, j), the HEA can be fit into the ansatz

defined in Def 7.2.1 with K = 4N and

H4i+1 ∝ Xi, H4i+2 ∝ Yi, H4i+3 ∝ UCZXiUCZ, H4i+4 ∝ UCZYiUCZ ∀i ∈ [N ] (7.63)

We use the ansatz defined in Eqn (7.63) to solve problem Hamiltonian

MHEA = diag(0, 0.5, 1, · · · , 1) (7.64)

with input state |Φ〉 = |0〉⊗N = (1.0, 0, · · · , 0)† and learning rate 1 × 10−2/p. The empirical

results are summarized in Figure 7.6 and 7.7.
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(a) Partially-trainable HEA (b) Fully-trainable HEA

Figure 7.6: Maximal deviation of Y in 4-qubit hardware-efficient ansatz (HEA) with CZ
entanglement. The mean values and the standard deviations are calculated over 10 random
initializations for each number of trainable parameters p = 32, 64, · · · , 320. In both figures,
the reference lines are 45/

√
p.

(a) Partially-trainable HEA (b) Fully-trainable HEA

Figure 7.7: Maximal deviation of θ in 4-qubit HEA with CZ entanglement. The mean values
and standard deviations are calculated over 10 random initialization for each p varying from 32
to 320. The references lines in both figures are 6/p.
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(a) Deviation of Y with noisy gradient (b) Deviation of θ with noisy gradient

Figure 7.8: Maximal deviation of Y and θ in HVA for 4-qubit TFI1d model with transverse field
g = 0.3. The references lines for Y in both figures are 50/

√
p. The references lines for θ in both

figures are 1/p.

We also extend our experiments to the setting when the gradient estimation is noisy. In

Figure 7.8, we consider εl(t) sampled i.i.d. from N (0, 1 × 10−5) for all t and l ∈ [p], and have

similar observation on the dependency of the maximal deviation of Y and θ on p.

7.6.2 Experiment 2: Over-parameterization for toy models

In this section, we simulate gradient descent in toy VQE problems with varying d, deff and

κeff using ansatze with different number of parameters. we show that the over-parameterization

thresholds are positively correlated to the effective dimensions deff and spectral ratios κeff as

predicted in Corollary 7.5.1.

Estimating Over-parameterization Threshold For a concrete criterion of over-parameterizat-

ion, we estimate the success rate for the training to converge to an output state |Ψ(t)〉 such that

the error 1 − |〈Ψ(t)|Ψ?||〉2 is less than 0.01, where |Ψ?〉 is the ground state. We define the over-

parameterization threshold as the smallest p such that 1− |〈Ψ(t)|Ψ?||〉2 > 0.01 with probability

≥ 98% over random initialization.

For physical problems like TFI1d, the system dimension d, effective dimension deff and
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κeff are jointly defined by the number of qubits and the system parameters, be it external fields or

the strengths of coupling. We decouple these parameters by starting with toy problems. For a toy

problem with (d, deff , κeff), we embed a deff × deff Hermitian with eigenvalues (0, 1
κeff
, 1, · · · , 1)

into a d-dimensional space and consider ansatze with rotations restricted to the deff-dimensional

space (see Section 7.9 for the concrete definition for the toy problems). For each set of (d, deff , κeff)

and each number of trainable parameters p, the training is repeated over 100 random initializations

with learning rate 1× 10−2/p.

In Figure 7.9 we examine how the convergence of HVAs depends on the number of parameters

p for toy instances with varying (d, deff , κeff): In Figure 7.9(a) we change the system dimension

d with deff and κeff fixed. For all d = 8, 16, 32, the over-parameterization threshold is around

8, showing that the convergence is almost independent of the system dimension for fixed deff

and κeff . In Figure 7.9(b), we fix the system dimension d = 16, κeff = 4.0 and vary the

effective dimension deff : the over-parameterization threshold increases as the effective dimension

increases; For a more quantitative evaluation, we define the over-parameterization threshold as

the smallest p to achieve a success rate of at least 98%, and plot the threshold for different deff in

Figure 7.10(a). The dependency of the over-parameterization thresholds on κeff are displayed in

a similar way in Figure 7.9(c) and Figure 7.10(b). It is clearly reflected in Figure 7.10 (a) and (b)

that the over-parameterization threshold is positively correlated to deff and κeff .

Remark 7.6.1. Readers may notice that the dependency on deff is almost linear, seemingly

contradicting previous empirical observation in [274]. There are several factors that may have

contributed to this discrepancy. (1) The most prominent factor is the statistical error due to the

finite number of random initializations. (2) Another plausible reason is that the ratio κeff is a
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(a) Varying system dimension d (b) Varying effective dimension deff (c) Varying condition number κeff

Figure 7.9: Dependency of the over-parameterization threshold on system dimension d, effective
dimension deff and the condition number κeff in toy problems: the x-axes are the numbers of
trainable parameters p, and the y-axes are the success rates for finding solutions with error less
than 0.01. For each data point, the success rate is estimated over 100 random initializations.
(a) Fixing deff = 4, κeff = 4.0, the over-parameterization threshold does not depend on the
system dimension for d = 8, 16, 32. (b) Fixing d = 16, κeff = 4.0 for deff = 2, 4, 6, 8. The
threshold increases as the system dimension increases. (c) Fixing d = 16, deff = 4 for κeff =
2.0, 4.0, 8.0, 16.0. The threshold is positively correlated to the condition number of the system.

concise but inexact descriptor of all the eigenvalues of the problem Hamiltonian. As the effective

dimension varies, the eigenvalues also vary in spite of the controlled κeff . (3) The third reason is

that the over-parameterization threshold are defined differently in [274].

7.7 Empirical Study: Predicting Ansatz Performance

In this section, we use Corollary 7.5.1 to explain the performances of different ansatze

for Ising models and Heisenberg models by (1) calculating κeff and deff using the procedure

described in Subsection 7.5.2 and (2) estimating the over-parameterization thresholds. The results

are summarized as follows:

• For Transverse field Ising (TFI) model, we compare ansatze TFI2 and TFI3 (defined

later). TFI2 and TFI3 have identical κeff , but TFI2 has smaller deff . Empirically, we

observe TFI2 reaches over-parameterization with fewer number of parameters.

• For the Heisenberg XXZ model, we compare ansatze XXZ4 and XXZ6 (defined later).
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(a) Varying effective dimension deff (b) Varying condition number κeff

Figure 7.10: Dependency of the over-parameterization threshold on effective dimension deff and
the condition number κeff in toy problems: the over-parameterization thresholds in the plots are
defined as the smallest p achieving a success rate ≥ 98% to find a solution with error less than
0.01. Success rates are estimated over 100 random initializations. (a) Fixing d = 16, κeff = 4.0
for deff = 2, 4, 6, · · · , 16. The threshold increases as the system dimension increases. (b) Fixing
d = 16, deff = 4 for κeff = 2.0, 4.0, 6.0, · · · , 26.0. The threshold is positively correlated to the
condition number of the system.

XXZ4 and XXZ6 have deff of same order of magnitude, but the κeff of XXZ6 diverges

at the critical point while κeff of XXZ4 remain bounded. Empirically we observe as the

system approaches the level-crossing point, XXZ6 requires significantly more number of

parameters to obtain a reasonable solution.

• For both TFI and XXZ models and all HVA considered, deff is much smaller than the system

dimension d. Also for TFI2, TFI3, XXZ4, the effective ratio κeff remain bounded near

level-crossings where κ = λd−λ1

λ2−λ1
approaches infinity. This explains why problem-specifc

HVA can be used to solve VQEs that can not be efficiently solved by generic ansatz like

HEA ([268]) (Recall that for typical HEA design, deff is the system dimension d and κeff is

simply κ).

These observations demonstrate the predicting power of the quantities deff and κeff and highlight

that good, problem-specific ansatz designs are crucial to the efficient training of VQE in practice.
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1-d TFI problems For 1d TFI models, in addition to HVA with 2-alternating Hermitian mentioned

in Section 7.6.1 Eq 7.61 (which we will now refer to as TFI2), we consider variaitonal ansatz

TFI3 containing 3 Hermitians A = {H1,H2,H3} with

Hxx1 ∝
∑
eveni

XiXi+1, Hxx2 ∝
∑
oddi

XiXi+1, Hz ∝
N−1∑
i=0

Zi (7.65)

Compared with TFI2, TFI3 decouples the odd and even coupling in the X direcion. The

effective dimension deff of TFI2 and TFI3 for N = 4, 6, 8, 10 are summarized in Table 7.1:

both ansatz design achieves small effective dimension compared with the system dimension d,

and the effective dimension deff for TFI2 is consistently smaller than that of TFI3 for different

N ’s.

N 4 6 8 10

d 16 64 256 1024

TFI2 4 8 16 32

TFI3 5 10 25 50

Table 7.1: System dimension d for N -qubit TFI1d models with N = 4, 6, 8, 10 and effective
dimension deff for variational ansatze TFI2 and TFI3.

Despite the difference in deff , TFI2 and TFI3 has similar κeff : in Figure 7.11, we visualize

the eigenvalues and κeff of TFI2, TFI3 and the original problem Hamiltonian MTFI1d(g) with

varying transverse field g for 6-qubit 1d TFI models. In Figure 7.11 (a) and (b), we plot the 4

smallest eigenvalues of the effective Hamiltonian M′ associated with TFI2 and TFI3: while

TFI2 and TFI3 have different effective dimensions, they have similar eigenvalues.

This allows us to demonstrate the dependency of the threshold on the deff with controlled

κeff . In Figure 7.12 we plot the success rate against the number of parameters p for both ansatze
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with number of qubits N = 4, 6, 8, 10: it is observed that TFI2 (H) consistently achieve lower

over-parameterization threshold p than TFI3 (�) due to smaller deff .

Ground states of TFI1d models are degenerated for |g| ≤ 1 in the thermodynamic limit

N → ∞. Although there are no degeneracy for finite N , the first excitation energy (i.e. the

smallest eigen-gaps) decrease quickly as g drops below 1.0. In Figure 7.11(c), we visualize the

smallest 4 eigenvalues for N = 6. The vanishing eigen-gap for small g leads to drastic increase

of κeff as plotted in blue in Figure 7.11. On the contrary, the effective ratio κeff for both TFI2

and TFI3 remain small as g approaches 0. As a result, the over-parameterization threshold

remains almost the same for TFI2 as the transverse field g decreases from 0.5 to 0.1 (as shown in

Figure 7.13). This shows that the usage of HVA instead of general purpose ansatz design allows

solving VQE problems efficiently near critical points.

1-d XXZ model XXZ1d model is a special case of Heisenberg model with problem Hamiltonian

defined as

MXXZ1d(Jzz) =
N−1∑
i=0

XiXi+1 + YiYi+1 + Jzz

N−1∑
i=0

ZiZi+1 (7.66)

The parameter Jzz controls the coupling in the Z-direction. XXZ1d model is essentially different

from the TFI1d model in that actual level-crossing happens for finite N at Jzz = −1.
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(a) TFI2 (b) TFI3

(c) Original (d) Comparison of κeff

Figure 7.11: Energy of the ground state and the first 3 excitation states. The smallest
4 eigenvalues for the effective Hamiltonian with TFI2 (a), TFI3 (b) and for the original
Hamiltonian HTFI1d(g) (c) for N = 6 with transverse field g varying from 0.1 to 1.5. As plotted
in (d) κeff for the original Hamiltonian increases quickly for g close to 0 while κeff for both TFI2

and TFI3 remain small.

(a) (b)

Figure 7.12: Comparison of the over-parameterization threshold for TFI2 and TFI3 ansatze
for N = 4, 6, 8, 10. (a) The success rates for finding a solution with error less than 0.01 versus
the number of parameters for instances with different ansatz and different sizes. The number
of qubits is encoded by different colors and the ansatz design is encoded by H for TFI2 and �
for TFI3. For each data point, the success rate is estimated over 20 random initializations. (b)
Plot of the over-parameterization threshold versus number of qubits for different ansatze. The
threshold is defined as the the smallest number of parameters to achieve success rate over 98%.
For each N , the threshold for TFI2 is lower than that of TFI3.
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(a) N=6 (b) N=8 (c) N=10

Figure 7.13: Comparison of the over-parameterization threshold for TFI2 with transverse field
g = 0.1, 0.3, 0.5 for (a) N = 6 (b)N = 8 (c) N = 10. The x-axis is the number of trainable
parameters p, and the y-axis is the success rate for finding a solution with error less than 0.01.
For N = 6, 8, 10, despite the vanishing eigen-gap of HTFI1d(g) for small g, the ground state can
be found with reasonable p with ansatz TFI2. For each data point, the success rate is estimated
over 20 random initializations.

We examine the HVA proposed in [268] (denoted as XXZ4):

H1 ∝
∑
eveni

XiXi+1 +
∑
eveni

YiYi+1, (7.67)

H2 ∝
∑
oddi

XiXi+1 +
∑
oddi

YiYi+1, (7.68)

H3 ∝
∑
eveni

ZiZi+1, H4 ∝
∑
oddi

ZiZi+1 (7.69)

as well as a similar HVA (denoted as XXZ6)

H1 ∝
∑
eveni

XiXi+1, H2 ∝
∑
oddi

XiXi+1, H3 ∝
∑
eveni

YiYi+1, (7.70)

H4 ∝
∑
oddi

YiYi+1, H5 ∝
∑
eveni

ZiZi+1, H6 ∝
∑
oddi

ZiZi+1 (7.71)

The effective dimensions forXXZ4 andXXZ6 are summarized in Table 7.2. While bothXXZ4

and XXZ6 significantly reduce the effective dimension deff , XXZ4 further removes the level-

crossing: in Figure 7.14, we see that both XXZ4 and XXZ6 reduces the ratio κeff by orders

386



of magnitude, and the ratio κeff for XXZ4 (in orange) remains small as Jzz → −1 while the

ratio for both XXZ6 (in green) and the original Hamiltonian (in blue) increases to infinity. In

Figure 7.15, we present side by side the success rate of XXZ4 and XXZ6 for N = 4 with

Jzz = −0.9,−0.5,−0.3, 0.1. It is observed that the over-parameterization threshold XXZ4

remain similar across different values of Jzz and the over-parameterization threshold for XXZ6

increases significantly as Jzz decreases to −0.9 due to the vanishing eigen-gaps.

N 4 6 8 10

d 16 64 256 1024

XXZ4 3 4 12 21

XXZ6 4 5 19 34

Table 7.2: System dimension d and effective dimension deff for XXZ1d model with N =
4, 6, 8, 10 for XXZ4 and XXZ6 ansatze

7.8 Deferred Technical Details

7.8.1 Details of Convergence Proof

Proof of Lemma 7.3.2.

Lemma 7.3.2 (VQE Perturbation Lemma). Conditioned on the event that the output state at

initialization |Ψ(0)〉 has non-negligible overlap with the target ground state

|Ψ?〉 : |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), if for all t ≥ 0, ‖Y(t) − (W − 1

d
Id2×d2)‖op ≤ λ2−λ1

λd−λ1
· 1

2
√

2d
, then

under the dynamics d
dt
|Ψ〉 = −Tr1(Y([M, |Ψ〉〈Ψ|] ⊗ Id×d))|Ψ〉, the output states converges to

the ground state:

1− |〈Ψ(t)|Ψ?〉|2 ≤ exp(−λ2 − λ1

2 log d
t). (7.14)
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(a) XXZ1d Model: N=4 (b) XXZ1d Model: N=6

(c) XXZ1d Model: N=8 (d) XXZ1d Model: N=10

Figure 7.14: κ and κeff for XXZ4 and XXZ6 for N = 4, 6, 8, 10. We plot the κ for 1d XXZ
model and κeff forXXZ4 andXXZ6 for different values of Jzz. For bothXXZ6 and the original
problem Hamiltonian, level crossing happens at Jzz = −1, making it impossible to solve for the
ground state when Jzz is close to −1. Note that the level crossing breaks down under XXZ4.

(a) XXZ4 (b) XXZ6

Figure 7.15: Comparison of the over-parameterization threshold for (a) XXZ4 and (b) XXZ6

with Z-coupling Jzz = 0.1,−0.3,−0.5,−0.9. The x-axis is the number of trainable parameters
p, and the y-axis is the success rate for finding a solution with error less than 0.01. For XXZ4

the over-parameterization threshold remain similar for various Jzz, while forXXZ6 the threshold
drastically increase as Jzz approaches −1 as a result of level-crossing. For each data point, the
success rate is estimated over 100 random initializations.
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Proof for Lemma 7.3.2. Let E(t) denote the deviation of Y(t) from its expected value:

E(t) := Y(t)− (W − 1

d
Id2×d2) (7.72)

The matrix that governs the dynamics can be expressed as

Tr1(Y(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ Id×d)) = [M, |Ψ(t)〉〈Ψ(t)|] + E(t) (7.73)

where

E(t) := Tr1

(
E(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ Id×d)

)
(7.74)

Define h as |〈Ψ?|Ψ(t)||〉2

d

dt
h = (

d

dt
|Ψ(t)〉)†|Ψ?〉〈Ψ?|Ψ(t)|+〉〈Ψ(t)|Ψ?|〈〉|Ψ? d

dt
|Ψ(t)〉 (7.75)

= 2(〈Ψ(t)|M|Ψ(t)〉 − λ1)|〈Ψ?|Ψ(t)||〉2 + Tr(E(t)[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]) (7.76)

The first term in Line (7.76) corresponds to the actual Riemannian gradient flow on the sphere:

2(〈Ψ(t)|M|Ψ(t)〉 − λ1)|〈Ψ?|Ψ(t)||〉2 = 2(〈Ψ(t)|M|Ψ(t)〉 − λ1)h (7.77)

≥ 2((1− h)λ2 + hλ1 − λ1)h (7.78)

= 2(λ2 − λ1)(1− h)h (7.79)

389



The second term in Line (7.76) stems from the deviation of Y from its expectation:

Tr(E(t)[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]) (7.80)

= Tr
(

Tr1

(
E(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ Id×d)

)
[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]

)
(7.81)

= Tr
(
E(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ [|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|])

)
(7.82)

≥− ‖E(t)‖‖[M, |Ψ(t)〉〈Ψ(t)|]⊗ [|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]‖tr (7.83)

=− 2
√
h(1− h)‖E(t)‖‖[M, |Ψ(t)〉〈Ψ(t)|]‖tr (7.84)

=− 2
√
d
√
h(1− h)‖E(t)‖‖[M, |Ψ(t)〉〈Ψ(t)|]‖F (7.85)

=− 2
√

2
√
d
√
h(1− h)(λd − λ1)‖E(t)‖ (7.86)

Line (7.84) follows from Lemma 7.8.2; Line (7.86) follows from Lemma 7.8.3

Hence

d

dt
h ≥ 2(λ2 − λ1)(1− h)h(1−

√
2d
λd − λ1

λ2 − λ1

‖E(t)‖ 1√
h

)) (7.87)

Following the technical Lemma 4 in [266]

d

dt
log(− log(h)) ≤ −2(λ2 − λ1)

1−
√

2dλd−λ1

λ2−λ1
‖E(t)‖ 1√

h

1− log h
(7.88)

Apparently for ‖E(t)‖:
√

2dλd−λ1

λ2−λ1

1√
h(0)
‖E(t)‖ < 1, h(t) is non-decreasing. Conditioned

on h(0) ≥ 1
d
, if
√

2dλd−λ1

λ2−λ1
‖E(t)‖ 1√

1/d
≤ 1

2
, the absolute value of the right-hand side is lower

bounded by λ2−λ1

2 log d
.

Therefore if ‖E(t)‖ ≤ 1
2
√

2d
λ2−λ1

λd−λ1
, 1− h(t) ≤ − log h(t) ≤ exp(−λ2−λ1

2 log d
t).
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Proof of Lemma 7.3.3.

Lemma 7.3.3 (Concentration at initialization for VQE). Over the randomness of ansatz initialization

(i.e. for {Ul}pl=1 sampled i.i.d. with respect to the Haar measure), for any initial θ(0), with

probability 1− δ:

‖Y(θ(0))−Y?‖op ≤
1
√
p
·

2‖H‖2
op

Z

√
log

d2

δ
(7.15)

Proof. Define Xl as the centered random matrix

Xl :=
1

Z(H, d)

(
Ul:pHU†l:p

)⊗2 −Y? (7.89)

{Xl} can be viewed as independent random matrices as the haar random unitary removes all the

correlation. The square of Xl is bounded in operator norm:

‖X2
l ‖ = ‖Xl‖2 ≤ (

‖H‖2

Z
+
d+ 1

d
)2 ≤ (

2‖H‖2

Z(H, d)
)2 (7.90)

The ratio g1 = ‖H‖2/Tr(H2) satisfies that 1 ≥ g1 ≥ 1/d. By Hoeffding’s inequality([275],

Thm 1.3), with probability ≥ 1− δ,

‖Y −Y?‖ ≤ 1
√
p
· 2‖H‖2

Z

√
log

d2

δ
(7.91)

For comparison, consider the following matrix Berstein inequality (adapted from [276],

Thm 6.1.1):
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Lemma 7.8.1. Consider a finite sequence {Xl} of identically distributed, independent, random

Hermitian with dimension d′. Assume E[X2] = σ2 and ‖X‖ ≤ R. Then with probability ≥ 1− δ

‖1

p

p∑
l=1

Xl‖ ≤
σ
√

2 log(2d′/δ)
√
p

+
2R log(2d′/δ)

3p
(7.92)

In our case, ‖X‖ ≤ (d2 − 1)g1 + 2, and
√
E[X2] ≤

√
2d:

E[X2
l ] = E[

1

Z2
(VlH

2V†l )
⊗2]− (Y?)2 (7.93)

=
1

(d2 − 1)Z2

[
(Tr2(H2)− 1

d
Tr(H4))I + (Tr(H4)− 1

d
Tr2(H2))W

]
− (

d2 + 1

d2
I− 2

d
W)

(7.94)

=
Tr2(H2)

(d2 − 1)Z2

[
(1− 1

d
g2(H))I + (g2(H)− 1

d
)W
]
− d2 + 1

d2
I +

2

d
W (7.95)

=(d2 − 1)
[
(1− 1

d
g2(H))I + (g2(H)− 1

d
)W
]
− d2 + 1

d2
I +

2

d
W (7.96)

=(d2 − 2− 1

d2
− g2(d− 1/d))I + (g2(d2 − 1)− d+ 3/d)W (7.97)

where g2(H) := Tr(H4)/Tr2(H2), and 1 ≥ g2(H) ≥ 1/d.

Helper Lemmas.

Lemma 7.8.2. Let x,v be two vectors in Cd, the commutator i[xx†,vv†] has eigenvalues

±|〈x,v〉|
√

1− |〈x,v〉|2.

Proof. Express x as αv + βw with w orthogonal to v.

i[xx†,vv†] = iα∗βwv† − iαβ∗vw† (7.98)
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This rank-2 Hermitian has two real eigenvalues λ+ and λ− such that λ+ + λ− = 0 and λ+λ− =

−|α|2|β|2.

Lemma 7.8.3 (Bounding commutator norms). Let M :=
∑d

j=1 λjvjv
†
j be a d × d-Hermitian

matrix with eigenvalues λ1 ≤ · · · ≤ λd. The frobenius norm of the commutator [M,xx†] can be

bounded in terms of |〈x,v〉| as:

‖[M,xx†]‖F ≤
√

2(λd − λ1)
√

1− |〈x,v〉|2 (7.99)

Proof. Expand x as αv1+βw, where v1 is the ground state of M and unit vector w is orthogonal

to v1:

‖[M,xx†]‖2
F = ‖[M− λ1I,xx†]‖2

F (7.100)

= 2
(
x†M2x− (x†Mx)2

)
(7.101)

= 2
(
|β|2w†M2w − (|β|2x†Mx)2

)
(7.102)

≤ 2|β|2w†M2w (7.103)

≤ 2|β|2(λd − λ1)2 (7.104)

Lemma 7.8.4 (Estimation with taylor expansion). Let W be a unitary generated by Hermitian

H: W = exp(−iθH), we have

(WKW †)⊗2 −K⊗2 � 4|θ|‖H‖‖K‖2I (7.105)
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For symmetrically distributed random H (i.e. H ∼ −H)

EH [(WKW †)⊗2 −K⊗2] � 8θ2‖H‖2‖K‖2I (7.106)

More generally, consider Hermitian-preserving linear maps Φ1,Φ2 ∈ L(Cd2×d2
) such that

‖Φ1(X)‖ ≤ L1‖X‖, ‖Φ2(X)‖ ≤ L2‖X‖:

EH [Φ1

(
(WK1W

†)⊗2
)
Φ2

(
(WK2W

†)⊗2
)
− Φ1

(
K⊗2

1

)
Φ2

(
K⊗2

2

)
] � 64L1L2‖H‖2‖K1‖2‖K2‖2I

(7.107)

Proof. The first- and second-order derivatives of (WKW †)⊗2 are:

d

dθ
(WKW †)⊗2 = W⊗2([−iH,K]⊗K +K ⊗ [−iH,K])(W †)⊗2 (7.108)

d2

dθ2
(WKW †)⊗2 = −W⊗2(2[H,K]⊗ [H,K] + [H, [H,K]]⊗K +K ⊗ [H, [H,K]])(W †)⊗2

(7.109)

Hence

(WKW †)⊗2 −K⊗2 (7.110)

=

∫ θ

0

dθ′(e−i(θ−θ
′)H)⊗2([−iH,K]⊗K +K ⊗ [−iH,K])(ei(θ−θ

′)H)⊗2 (7.111)

�4|θ|‖H‖‖K‖2I (7.112)
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For symmetrically distributed random H

E(WKW †)⊗2 −K⊗2 (7.113)

=Eθ([−iH,K]⊗K +K ⊗ [−iH,K]) (7.114)

− E
∫ θ

0

θ′dθ′ (7.115)

(e−i(θ−θ
′)H)⊗2(2[H,K]⊗ [H,K] + [H, [H,K]]⊗K +K ⊗ [H, [H,K]])(ei(θ−θ

′)H)⊗2

(7.116)

�8θ2‖H‖2‖K‖2I (7.117)

For the more general case:

d

dθ
Φ1

(
(WKW †)⊗2

)
Φ2

(
(WKW †)⊗2

)
(7.118)

=Φ1

( d
dθ

(WKW †)⊗2
)
Φ2

(
(WKW †)⊗2

)
+ Φ1

(
(WKW †)⊗2

)
Φ2

( d
dθ

(WKW †)⊗2
)

(7.119)

=Φ1

(
W⊗2([−iH,K]⊗K +K ⊗ [−iH,K])(W †)⊗2

)
Φ2

(
(WKW †)⊗2

)
(7.120)

+Φ1

(
(WKW †)⊗2

)
Φ2

(
W⊗2([−iH,K]⊗K +K ⊗ [−iH,K])(W †)⊗2

)
(7.121)

When evalutated at θ = 0,

d

dθ
Φ1

(
(WKW †)⊗2

)
Φ2

(
(WKW †)⊗2

)
|θ=0 (7.122)

=Φ1

(
([−iH,K]⊗K +K ⊗ [−iH,K])

)
Φ2

(
K⊗2

)
(7.123)

+Φ1

(
K⊗2

)
Φ2

(
([−iH,K]⊗K +K ⊗ [−iH,K])

)
(7.124)
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The second order derivative

d2

dθ2
Φ1

(
(WKW †)⊗2

)
Φ2

(
(WKW †)⊗2

)
(7.125)

=
d

dθ
{Φ1

( d
dθ

(WKW †)⊗2
)
Φ2

(
(WKW †)⊗2

)
+ Φ1

(
(WKW †)⊗2

)
Φ2

( d
dθ

(WKW †)⊗2
)
}

(7.126)

=2Φ1

(
W⊗2([−iH,K]⊗K +K ⊗ [−iH,K])(W †)⊗2

)
Φ2

(
[−iH,K]⊗K +K ⊗ [−iH,K])(W †)⊗2

)
(7.127)

+Φ1

(
(WKW †)⊗2

)
Φ2

(
−W⊗2(2[H,K]⊗ [H,K] + [H, [H,K]]⊗K

+K ⊗ [H, [H,K]])(W †)⊗2
)

(7.128)

+Φ1

(
−W⊗2(2[H,K]⊗ [H,K] + [H, [H,K]]⊗K +K ⊗ [H, [H,K]])(W †)⊗2

)
Φ2

(
(WKW †)⊗2

)
(7.129)

For any θ, the second derivative is upperbounded in operator norm by 64L1L2‖H‖2‖K‖4. By the

Taylor expansion the operator norm of EH [Φ1

(
(WKW †)⊗2

)
Φ2

(
(WKW †)⊗2

)
−Φ1

(
K⊗2

)
Φ2

(
K⊗2

)
]

is bounded by 32L1L2‖H‖2‖K‖4.

7.8.2 Proof of Corollary 7.4.1

Lemma 7.4.1 (Output-state dynamics with noisy gradient estimation). Consider VQE instance

(M, |Φ〉,U), with U being the ansatz defined in Definition 7.3.1. Under gradient flow with

learning rate η and noisy gradient estimation ∇̂L := ∇L + ε(t) =
(
∂L
∂θl

+ εl(t)
)
l∈[p]

, the output
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state |Ψ〉 follow the dynamics

d

dt
|Ψ〉 = −(η · p · Z(H, d)) Tr1(Y([M, |Ψ〉〈Ψ|]⊗ Id×d))|Ψ〉+ η

p∑
l=1

iεlHl|Ψ〉 (7.50)

Here the Hermitian Y ∈ Cd2×d2
is the time-dependent matrix defined as

Y(θ) :=
1

pZ(H, d)

p∑
l=1

(
Ul:p(θ(t))HU†l:p(θ(t))

)⊗2 (7.51)

and Hl are defined as Ul:p(θ(t))HU†l:p(θ(t)).

Proof. We start by calculating the gradient of Ur:p(θ) with respect to θl: For r > l, Ur:p is

independent of θl ; For r ≤ l,

∂Ur:p

∂θl
= Ul:p(θ) · (−iH) ·Ur:l−1(θ) = −iUl:pHU†l:pUr:p (7.130)

Therefore

∂L(θ)

∂θl
= 〈Φ|U†0∂lU

†
1:pMU1:pU0|Φ〉+ 〈Φ|U†0U

†
1:pM∂lU1:pU0|Φ〉 (7.131)

= 〈Φ|U†0U
†
1:pi[Ul:pHU†l:p,M]U1:pU0|Φ〉 (7.132)

= iTr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p) (7.133)

Following gradient descent with learning rate η:

dθl
dt

= −η
(
∂lL(θ) + εl

)
= −iηTr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p)− ηεl (7.134)

397



The dynamics for Ul:p and |Ψ〉 are therefore:

d

dt
Ul:p(t) (7.135)

=

p∑
r=l

dθr
dt
∂rUl:p (7.136)

=− η
p∑
r=l

Tr([M, |Ψ〉〈Ψ|]Ur:pHU†r:p)Ur:pHU†r:pUl:p + iη

p∑
r=1

εrUr:pHU†r:pUl:p (7.137)

d

dt
|Ψ〉 =

d

dt
U1:pU0|Φ〉 (7.138)

= −(η · pZ)
1

pZ

( p∑
l=1

Tr([M, |Ψ〉〈Ψ|]Ul:pHU†l:p)Ul:pHU†l:p
)
U1:pU0|Φ〉 (7.139)

+ iη

p∑
l=1

εlUl:pHU†l:pU1:pU0|Φ〉 (7.140)

= −(η · pZ) Tr1(Y · [M, |Ψ〉〈Ψ|]⊗ I)|Ψ〉+ η

p∑
l=1

iεlHl|Ψ〉 (7.141)

Lemma 7.4.2 (VQE Perturbation Lemma under noisy gradients). Conditioned on the event that

the output state at initialization |Ψ(0)〉 has non-negligible overlap with the target ground state

|Ψ?〉: |〈Ψ(0)|Ψ?〉|2 ≥ O(1
d
), if for all t ≥ 0, ‖Y(t) −Y?(t)‖op ≤ λ2−λ1

λd−λ1
· 1

4
√

2d
and ‖ε(t)‖∞ ≤

Z
2‖H‖(λ2 − λ1)

√
1− |〈Ψ(t)|Ψ?〉|2|〈Ψ(t)|Ψ?〉|, Then under the dynamics

d

dt
|Ψ〉 = −Tr1(Y([M, |Ψ〉〈Ψ|]⊗ Id×d))|Ψ〉+

1

pZ

p∑
l=1

iεlHl|Ψ〉 (7.52)
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the output states converges to the ground state:

1− |〈Ψ(t)|Ψ?〉|2 ≤ exp(−λ2 − λ1

4 log d
t). (7.53)

Proof for Lemma 7.4.2. Let E(t) := Y(t) − (W − 1
d
Id2×d2) denote the deviation of Y(t) from

its expected value. The matrix that governs the dynamics can be expressed as

Tr1(Y(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ Id×d)) = [M, |Ψ(t)〉〈Ψ(t)|] + E(t) (7.142)

where

E(t) := Tr1

(
E(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ Id×d)

)
(7.143)

Define h as |〈Ψ?|Ψ(t)||〉2, the time derivative of h

d

dt
h = (

d

dt
|Ψ(t)〉)†|Ψ?〉〈Ψ?|Ψ(t)|+〉〈Ψ(t)|Ψ?|〈〉|Ψ? d

dt
|Ψ(t)〉 (7.144)

= 2(〈Ψ(t)|M|Ψ(t)〉 − λ1)|〈Ψ?|Ψ(t)||〉2 (7.145)

+ Tr(E(t)[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]) (7.146)

+ Tr(N(t)[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]) (7.147)

withN(t) defined as− 1
pZ

∑
iεltHl. The first term corresponds to the actual Riemannian gradient
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flow on the sphere:

2(〈Ψ(t)|M|Ψ(t)〉 − λ1)|〈Ψ?|Ψ(t)||〉2 = 2(〈Ψ(t)|M|Ψ(t)〉 − λ1)h (7.148)

≥ 2((1− h)λ2 + hλ1 − λ1)h (7.149)

= 2(λ2 − λ1)(1− h)h (7.150)

The second term stems from the deviation of Y from its expectation:

Tr(E(t)[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]) (7.151)

= Tr
(

Tr1

(
E(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ Id×d)

)
[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]

)
(7.152)

= Tr
(
E(t)([M, |Ψ(t)〉〈Ψ(t)|]⊗ [|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|])

)
(7.153)

≥− ‖E(t)‖‖[M, |Ψ(t)〉〈Ψ(t)|]⊗ [|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]‖tr (7.154)

=− 2
√
h(1− h)‖E(t)‖‖[M, |Ψ(t)〉〈Ψ(t)|]‖tr (7.155)

=− 2
√
d
√
h(1− h)‖E(t)‖‖[M, |Ψ(t)〉〈Ψ(t)|]‖F (7.156)

=− 2
√

2
√
d
√
h(1− h)(λd − λ1)‖E(t)‖ (7.157)

=− 0.5h(1− h)(λ2 − λ1)
1√
hd

(7.158)

Here we use technical Lemma 7.8.2 and 7.8.3.

The third term is a result of inaccurate estimation of gradients:

Tr(N(t)[|Ψ?〉〈Ψ?|, |Ψ(t)〉〈Ψ(t)|]) ≥ −2‖N(t)‖
√
h(1− h) ≥ −(λ2 − λ1)h(1− h) (7.159)

Here we use the fact that ‖N(t)‖ ≤ 1
2
(λ2−λ1)

√
h(1− h) if ‖ε‖∞ ≤ Z

2‖H‖(λ2−λ1)
√
h(1− h).
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Combining all three terms, we have

d

dt
h ≥ (λ2 − λ1)(1− h)h(1− 1

2
√
hd

) (7.160)

Following the technical Lemma 4 in [266]

d

dt
log(− log(h)) ≤ −(λ2 − λ1)

1− 1
2
√
hd

1− log h
(7.161)

Conditioned on h(0) ≥ 1
d
, the absolute value of the right-hand side is lower bounded by λ2−λ1

4 log d
.

7.8.3 Proof of Corollary 7.5.1

The proof of Corollary 7.5.1 involves replacing the integration formula in the proof to

the main theorem with integration over subgroups. We start by presenting a basic fact about

block-diagonal matrices (Lemma 7.8.5) and the integration formula for subgroups of SU(d)

(Lemma 7.8.6).

Lemma 7.8.5 (Basic Fact). Let G be a matrix subgroup of SU(d) inducing a decomposition of

invariant subspace V = ⊕mj=1Vj with projections {Πj}mj=1. Without loss of generality, assume V1

to be the subspace of interest: for any Hermitian A and unitary matrix U in group G:

Π1UAU†Π1 = Π1UΠ1 ·Π1AΠ1 ·Π1U
†Π1 (7.162)

Proof. The decomposition of invariant subspaces dictates that any U ∈ G is block-diagonal
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under {Πj}mj=1, namely forallU ∈ G,∀j 6= j′, Πj′UΠj = 0.

Π1UAU†Π1 (7.163)

=Π1U
m∑
j=1

ΠjA
m∑
j′=1

Πj′U
†Π1 (7.164)

=
∑

j,j′∈[m]

(Π1UΠj)A(Πj′U
†Π1) (7.165)

=Π1UΠ1AΠ1U
†Π1 (7.166)

=Π1UΠ1Π1AΠ1Π1U
†Π1 (7.167)

The last equation uses the property of projections Π2
j = Πj .

As a direct result, we have the following generic integral formula for U sampled from any

D supported on the subgroup G:

Lemma 7.8.6 (Integration Formula on subgroup restricted to an invariant subspace). Let G be

a matrix subgroup of SU(d) inducing a decomposition of invariant subspace V = ⊕mj=1Vj with

projections {Πj}mj=1. Without loss of generality, assume V1 to be the subspace of interest. For

any Hermitians {Ar}Rr=1 and measure D over G:

(Q†)⊗REU∼D[⊗Rr=1UArU
†]Q⊗R = EU(1)∼D(1) [⊗Rr=1U

(1)A(1)
r (U(1))†] (7.168)

where D(1) is the distribution of Q†UQ for U sampled with respect to D, and A(1)
r := Q†ArQ

is the Hermitian Ar restricted to the subspace V1.

Lemma 7.8.6 allows using the integration formula in [271] when D(1) is the Haar measure

over a special unitary, special orthogonal or symplectic group. We are now ready to present the
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proof of Corollary 7.5.1.

Proof of Corollary 7.5.1 Without loss of generality, we assume V1 to be the relevant subspace

with projection Π1 = QQ†. For concise notations, define U(1) = Q†UQ, A(1) = Q†AQ and

|Ψ(1)〉 = Q†|Ψ〉 for any unitary U, Hermitian A and vector |Ψ〉.

Note that the potential function we track in the proof of Theorem 7.3.1 |〈Ψ?|Ψ(t)〉|2 =

|〈Ψ(1),?|Ψ(1)(t)〉|2 if both |Ψ〉? and |Ψ(t)〉 ∈ V1. Therefore for the purpose of the proof it suffices

to track the dynamics of |Ψ(1)(t)〉. Below we (1) establish that |Ψ(t)〉 ∈ V1 through out the

training and (2) show that the dynamics of |Ψ(1)(t)〉 takes the same form as stated in Lemma 7.3.1

by replacing M and H with M(1) = Q†MQ and H(1) = Q†HQ.

By Lemma 7.3.1, the dynamics of |Ψ〉 takes the form

d

dt
|Ψ〉 ∝ −1

p

p∑
l=1

Tr([M, |Ψ(t)〉〈Ψ(t)|]Ul:pHU†l:p)Ul:pHU†l:p|Ψ(t)〉 (7.169)

We first show that |Ψ(t)〉 remains in V1 for all t (i.e. |Ψ(t)〉 = Π1|Ψ(t)〉). It suffices to

show the time derivate d|Ψ〉
dt

stays in V1 for |Ψ〉 ∈ V1:

Π1Ul:pHU†l:p|Ψ〉 (7.170)

=Ul:pΠ1HU†l:p|Ψ〉 (7.171)

=Ul:pHΠ1U
†
l:p|Ψ〉 (7.172)

=Ul:pHU†l:pΠ1|Ψ〉 (7.173)

=Ul:pHU†l:p|Ψ〉 (7.174)
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The first and the third equality is because Ul:p ∈ GA for all l and therefore block-diagoanl

under {Πj}mj=1; The second equality is because and H is block-diagoanl under {Πj}mj=1; The

last equality follows from |Ψ〉 ∈ Vj .

We now calculate the dynamics of |Ψ(1)(t)〉. For the trace operation in each term,

Tr([M, |Ψ(t)〉〈Ψ(t)|]Ul:pHU†l:p) (7.175)

= Tr([|Ψ(t)〉〈Ψ(t)|,Ul:pHU†l:p]M) (7.176)

= Tr([Π1|Ψ(t)〉〈Ψ(t)|Π1,Ul:pHU†l:p]M) (7.177)

= Tr([Π1|Ψ(t)〉〈Ψ(t)|Π1,Π1Ul:pΠ1HΠ1U
†
l:pΠ1]M) (7.178)

= Tr([Π1|Ψ(t)〉〈Ψ(t)|Π1,Π1Ul:pΠ1HΠ1U
†
l:pΠ1]Π1MΠ1) (7.179)

= Tr([Q†|Ψ(t)〉〈Ψ(t)|Q,Q†MQ]Q†Ul:pQQ†HQQ†U†l:pQ) (7.180)

The first, fourth and the fifth equation follows from basic properties of trace operators; the second

equality uses the fact that |Ψ(t)〉 remains in Vj; the third equality uses the fact that Ul:p and H

are block-diagonal. Therefore we can rewrite Eq (7.169) as

d

dt
|Ψ(1)(t)〉 ∝ −1

p

p∑
l=1

Tr([M(1), |Ψ(1)(t)〉〈Ψ(1)(t)|]U(1)
l:pH(1)(U

(1)
l:p )†)U

(1)
l:pH(1)(U

(1)
l:p )†|Ψ(1)(t)〉

(7.181)

The dynamics of |Ψ(1)(t)〉 depends on Q†MQ, Q†HQ and Q†UQ. The corollary follows

trivially by using the integration formula specified in Lemma 7.8.6.
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7.9 More on the empirical Study

Implementation of partially-trainable ansatz We implement the partially-trainable ansatz

(Definition 7.2.2) by approximate the Haar measure over GA by calculating

U(φ) =

Lsample∏
l′=1

K∏
k=1

exp(−iφl′,kHk) (7.182)

for Lsample = 20 and randomly initialized {φl′,k}k∈[K],l′∈[Lsample].

Deviation of Y and θ as functions of time t In Figure 7.16 and Figure 7.17, we plot the

deviation of Y and θ as functions of time steps t for both the partially- and fully-trainable settings.

The mean values are plotted in solid lines and the shaded areas represent the standard deviation

over random initializations.

The maximum time steps is set to be 10, 000. As observed in Figure 7.16 and 7.17, the

deviation ofY and θ saturates quickly after a few time steps.

Definition of Toy problems For the toy problem with system dimension d, effective dimension

deff and the effective spectral ratio κeff , we embed a deff × deff problem Hamiltonian M(1) =

Q†MQ with eigenvalues (0, 1
κeff
, 1, · · · , 1), generators H(1) = Q†HQ and unitaries {U(1)

l =

Q†UlQ}pl=1 into a d-dimensional space using arbitrary d × d unitary Uembed =

[
Q Q⊥

]
with
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(a) Partially-trainable HVA (b) Fully-trainable HVA

(c) Partially-trainable HEA (d) Fully-trainable HEA

Figure 7.16: Deviation of Y during training for HVA and HEA

(a) Partially-trainable HVA (b) Fully-trainable HVA

(c) Partially-trainable HEA (d) Fully-trainable HEA

Figure 7.17: Deviation of θ during training for HVA and HEA
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Q⊥ being arbitrary complementary columns of Q:

M = Uembed


M(1) 0

0 Id−deff×d−deff

U†embed (7.183)

H = Uembed


H(1) 0

0 Id−deff×d−deff

U†embed (7.184)

Ul = Uembed


U

(1)
l 0

0 Id−deff×d−deff

U†embed, ∀l ∈ [p] (7.185)

And the ansatz takes the form

U(θ) =
( p∏
l=1

Ul exp(−iθlH)
)
·U0 (7.186)

where deff × deff unitaries {U(1)
l } are sampled i.i.d from the Haar measure over SU(deff).

In Figure 7.18, we plot the success rate versus the number of parameters for various deff

and κeff that are used to generate Figure 7.10.

Estimating the invariant subspace for TFI and XXZ models Similar to the Kitaev model in

Section 7.5.2, we numerically confirm that the TFI and XXZ models involved are all compatible.

The convergences of the empirical estimatino of projection Π̂ are summarized in Figure 7.19,

Figure 7.20, Figure 7.21 and Figure 7.22
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(a) Varying effective dimension deff

(b) Varying effective ratio κeff

Figure 7.18: The success rate for achieving a 99%-approximation for the ground state as a
function of number of parameters. Each curve corresponds to a toy instance with dimension 16
and with varying (deff , κeff). Success rates are estimated over 100 random initializations. Top:
Fixing d = 16, κeff = 4.0 for deff = 2, 4, 6, · · · , 16. The threshold increases as the system
dimension increases. Bottom: Fixing d = 16, deff = 4 for κeff = 2.0, 4.0, 6.0, · · · , 24.0. The
threshold is positively correlated to the condition number of the system.

(a) N=4 (b) N=6 (c) N=8 (d) N=10

Figure 7.19: Specturm of Π̂ for TFI2 model with 4, 6, 8, 10 qubits
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(a) N=4 (b) N=6 (c) N=8 (d) N=10

Figure 7.20: Specturm of Π̂ for TFI3 model with 4, 6, 8, 10 qubits

(a) N=4 (b) N=6 (c) N=8 (d) N=10

Figure 7.21: Specturm of Π̂ for XXZ4 model with 4, 6, 8, 10 qubits

(a) N=4 (b) N=6 (c) N=8 (d) N=10

Figure 7.22: Specturm of Π̂ for XXZ6 model with 4, 6, 8, 10 qubits
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Chapter 8: Conclusions

This dissertation analyzes the applications of quantum computing in several areas of machine

learning and optimization.

• Chapters 2, 3, and 4 present quantum algorithms with provable speedups for some important

tasks including general convex optimization (Chapter 2), the estimation of the volume

of convex bodies (Chapter 3), and for matrix games with applications including linear

classification and SVMs (Chapter 4).

• Chapters 5, 6, and 7 consider the applications of quantum machine learning methods

whose parameters are then optimized by classical methods. We explore the design of

generative models (Chapter 5), expressivity of Quantum Neural Networks (Chapter 6),

and the optimization of Variational Quantum Eigensolvers (Chapter 7).

These results motivate a search for further applications of quantum computing in machine learning

and associated large optimization tasks. The following summarizes some general directions that

may be worth exploring in the future as extensions of this work:

Structured Convex Optimization Problems. Our results on convex optimization provide a

quantum speedup for the problem in its most general form where the only constraint placed

on the objective function and feasible set is convexity. In most important convex optimization
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problems however, the form of the objective function is explicit which allows for more efficient

algorithms than those for general convex optimization (see for instance the situation for linear

classification or SVMs [26, 126]). This raises the natural question of whether quantum speedups

can be obtained for such structured problems. In the common situation where the optimization

problem has an efficiently computable gradient, there have recently been some negative results

in this direction: [277, 278] have shown that classical accelerated gradient descent algorithms

are optimal in such settings. The setting where second order or higher derivative information

is available remains open. Such settings are interesting both for regression problems [279], and

non convex optimization [280]. It is also interesting to study such problems in the non-oracular

setting where we seek only a runtime improvement: [281, 282] present some algorithms that

may have runtime advantages over classical interior point methods. Making these advantages

rigorous or finding a clearer characterization of problems where they may occur can also be very

advantageous in the implementation of quantum optimization solvers.

Non-convex Optimization Problems. Non-convex optimization optimizations have become

more significant in machine learning as they model the loss functions of deep neural networks.

Despite the success of gradient methods in many cases, optimizing networks often presents a

fundamental challenge for their deployment and indeed has influenced the design of popular

architectures. This raises the natural question of whether quantum algorithms can provide speedups

for convex optimization. While the general problem is NP-Hard, several algorithms focus on

finding local optima, since there exist landscape results in many settings that indicate their

closeness to the global optima [283, 284]. [285] have recently given a quantum speedup for

the problem of escaping saddle points. It would be of interest to obtain quantum speedups for
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some problems where the complete runtime is known (consider for example the case with over-

parameterized neural networks.) Such an algorithm could in principle yield a quantum speedup

for training classical neural networks.

Quantum Sampling Algorithms. Sampling from log-concave densities is a computational

challenge in statistics, optimization and machine learning. It finds applications in estimation,

inference, and optimization algorithm. Several problems rely on sampling over bodies specified

by explicit constraints. In the setting of sampling from the uniform density over an n-dimensional

polytope specified by m constraints, the volume estimation algorithm would simply require

O(mn5) queries to the entries of the constraint matrix (O(n4) membership queries each costing

O(mn)). The best known classical algorithm for this task [80] instead achieves an oracle cost of

O(m2nω−1/3) where ω is the exponent of matrix multiplication. This is more efficient than the

general algorithm whenever m ≤ n. This raises the question of whether quantum speedups can

be obtained in this case, with costs dependent on m. [80] replaces the MCMC algorithm based

on the hit-and-run walk algorithm with Hamiltonian Monte-Carlo algorithms where the trajectory

of the random walk is given by the stochasticized trajectory of a partial differential equation. A

recent classical paper [286] has characterized the spectral gap of Hamiltonian Monte-Carlo for κ-

conditioned log-concave functions to be Ω(1/κ). This suggests the investigation of whether
√
κ

quantum speedup over the best classical algorithm can be obtained using a quantum analogue of

Hamiltonian Monte-Carlo.

Further understanding of Variational Quantum Algorithms. Our results on variational qu-

antum algorithms provide some promising early results towards the ultimate goal of demonstrating
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quantum advantage on near-term quantum algorithms. Further progress is possible along the lines

of each of the projects presented in the dissertation. Our work on generative quantum learning

in Chapter 5 [58] demonstrates the utility of variational quantum circuits in approximate circuit

compression. The scale of circuits treated is currently limited by simulation constraints, and a

careful analysis and engineering of the resource requirements of the system could allow for the

system to be run on a real quantum system. This could allow for the pre-computed approximate

compression of larger circuits.

A better understanding of the expressivity of Quantum Neural Networks is also essential

to choosing proper avenues for their application. Our work indicates that large advantages may

exist for the majority of functions expressed by QNNs of a fixed size, but that such advantages

may be difficult to establish rigorously. There are two directions that could be pursued for

further progress: 1) We search for exponential advantages over neural networks of depth ≤ 3.

Our complexity theoretic barriers do not apply to this case. If a rigorous separation could be

found, then the particular functions that yield the separation could yield a characterization of

hard quantum functions. 2) We increase the scale of our empirical study to obtain a larger

sample size for interpolation. This may be through running experiments on real quantum systems,

improving the simulation performance, or through finding easily simulable QNNs that also yield

an empirical expressive advantage.

It may be also valuable to further investiagate the convergence of quantum systems. Our

results show that sufficient overparameterization is sufficient for the convergence of VQEs, but

for a general quantum ansatz the degree of overparameterization required is large enough to

remove any possible quantum advantage. We do show that carefully chosen ansatz can reduce this

requirement, but all the cases we investigated still have exponential dependence on the number
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of qubits in the system. Finer analyses of the parameterization threshold is required to give

even an exponential algorithm that is faster than a classical optimization algorithm for the same

problem. It is also important to study the convergence of other variational algorithms like QNNs

and variants such as Convolutional QNNs that have valuable properties such as not suffering from

the barren plateau phenomenon.

Finally, one may consider the extension of all the above ideas to other forms of parameteriz-

ation of quantum systems. Analog quantum systems based on direct manipulation of control

pulses have gained interest for near term applications due to the possibility of more resource

efficient optimizations [287, 288], and these interfaces are starting to become available on comme-

rcial systems (see for eg. [289]). These systems offer the potential of new parameterizations

which have different optimization and generalization properties while sharing the potential for

large speedups over classical simulation. These properties can be studied by forming hypotheses

from the lens of our results on the circuit model, as well as via new theoretical and empirical

analyses.
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32, pages 6781–6792. Curran Associates, Inc.,
2019.

[32] Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu. Quantum
algorithms and lower bounds for convex optimization. In Contributed talk at the 22nd
Annual Conference on Quantum Information Processing, 2019.

[33] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.
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universal approximation power of finite-width deep ReLU networks. arXiv e-prints, page
arXiv:1806.01528, June 2018.

[249] Xuchen You and Xiaodi Wu. Exponentially many local minima in quantum neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 12144–12155. PMLR, 18–24 Jul 2021.

[250] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut
Neven. Barren plateaus in quantum neural network training landscapes. Nature
communications, 9(1):1–6, 2018.

[251] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An
initialization strategy for addressing barren plateaus in parametrized quantum circuits.
Quantum, 3:214, 2019.

[252] Taylor L Patti, Khadijeh Najafi, Xun Gao, and Susanne F Yelin. Entanglement Devised
Barren Plateau Mitigation. 2020.

[253] Leo Zhou, Sheng Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D
Lukin. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and
Implementation on Near-Term Devices, 2018.

[254] Tyler Volkoff and Patrick J Coles. Large gradients via correlation in random parameterized
quantum circuits. Technical report, 2021.

[255] M Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke
Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J Coles.
Variational Quantum Algorithms. 2020.

[256] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[257] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. arXiv preprint
arXiv:1904.11955, 2019.

[258] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

433



[259] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization, 2019.

[260] Eric R. Anschuetz. Critical points in quantum generative models, 2022.

[261] Martin Larocca, Nathan Ju, Diego Garcı́a-Martı́n, Patrick J. Coles, and M. Cerezo. Theory
of overparametrization in quantum neural networks, 2021.

[262] Junyu Liu, Francesco Tacchino, Jennifer R. Glick, Liang Jiang, and Antonio Mezzacapo.
Representation learning via quantum neural tangent kernels, 2021.

[263] Norihito Shirai, Kenji Kubo, Kosuke Mitarai, and Keisuke Fujii. Quantum tangent kernel,
2021.

[264] Erfan Abedi, Salman Beigi, and Leila Taghavi. Quantum lazy training, 2022.

[265] Roeland Wiersema and Nathan Killoran. Optimizing quantum circuits with riemannian
gradient-flow, 2022.

[266] Zhiqiang Xu, Xin Cao, and Xin Gao. Convergence analysis of gradient descent for
eigenvector computation. International Joint Conferences on Artificial Intelligence, 2018.

[267] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,
Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets. Nature, 549(7671):242, 2017.

[268] Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla, Yong Baek
Kim, and Henry Yuen. Exploring entanglement and optimization within the Hamiltonian
variational Ansatz, aug 2020.
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