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Given a closed, oriented, smooth surface Σ of negative Euler characteris-

tic, the relationships between three deformation spaces of geometric structures are

compared: the space of minimal hyperbolic germs H, the space of representations

R(π1(Σ),PSL2(C)), and the space M(X) of solutions to the self-duality equations

on a rank-2 complex vector bundle over a Riemann surface X ' Σ.

Inside both H and R(π1(Σ),PSL2(C)) lies the space AF of almost-Fuchsian

manifolds comprised of quasi-Fuchsian 3-manifolds M ' Σ×R which contain an im-

mersed closed minimal surface whose principal curvatures lie in the interval (−1, 1).

The structure of these manifolds is explored through a study of the domain of dis-

continuity of the associated almost-Fuchsian holonomy group. It is proved that

there are no doubly degenerate geometric limits of almost-Fuchsian manifolds.

Next, the space H is studied through an analysis of a smooth real valued

function which records the topological entropy of the geodesic flow arising from a

minimal hyperbolic germ. Estimates on this function are obtained which culminate



in a new lower bound on the Hausdorff dimension of the limit set of a quasi-Fuchsian

group. As a corollary we obtain a new proof of Bowen’s theorem on quasi-circles: a

quasi-Fuchsian group is Fuchsian if and only if the Hausdorff dimension of its limit

set is equal to 1.

Lastly, we recall a construction of Donaldson which shows how each minimal

hyperbolic germ gives rise to a solution of the self-duality equations. In this context,

we compare various deformations of a Fuchsian representation π1(Σ) → PSL2(R),

finally obtaining an explicit formula for a deformation arising from minimal sur-

faces in terms of Fuchsian and bending deformations. Interestingly, the hyperkähler

structure on the moduli space M of solutions to the self-duality equations makes

an appearance here.
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Notation

The following is a list of symbols used frequently throughout the text.

• Σ = closed, oriented, smooth surface of genus greater than 1.

• χ(Σ) = the Euler characteristic of Σ.

• π1(Σ) = the fundamental group of Σ.

• Σ̃ = the universal cover of Σ.

• f = an immersion from Σ into some 3-manifold.

• g = a Riemannian metric on Σ.

• Kg = the sectional curvature of g.

• [g] = the conformal class of g.

• B = the second fundamental form of an immersion f of Σ into some 3-
manifold.

• λi = the eigenvalues of B. Also called the principal curvatures.

• σ = a complex structure on Σ.

• X = (Σ, σ) = a Riemann surface diffeomorphic to Σ.

• α = a holomorphic quadratic differential on X.

• ‖α‖g = the L∞ norm of α with respect to a metric g.

• KX = the canonical line bundle on X.

• T = the Teichmüller space of isotopy classes of complex structures on Σ
compatible with the orientation.

• F = the Fuchsian space of isotopy classes of Riemannian metrics on Σ of
constant sectional curvature −1.

• H = the space of minimal hyperbolic germs.

• AF = the space of almost-Fuchsian germs, groups, or manifolds.

• QF = the space of quasi-Fuchsian representations, groups, or manifolds.

• R(π1, G) = the space of conjugacy classes of representations of π1(Σ) into a
Lie group G.

• ∇ = the covariant derivative of a connection on a vector bundle.

• ∇h = the Chern connection of a hermitian metric h on a holomorphic vector
bundle.
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• F (∇) = the curvature 2-form of a connection ∇.

• ∆g = the Laplace-Beltrami operator of a metric g.

• M(X) = the moduli space of solutions to the self-duality equations on a degree
zero, rank 2 complex vector bundle over X.

• φ = a Higgs field.

• End0(V ) = the bundle of traceless endomorphisms of a vector bundle V.

• V ∗ = the dual vector bundle of V. Written V −1 if V is a line bundle.

• H3 = hyperbolic 3-space.

• Isom(X) = the space of isometries of a metric space (X, d).

• ∂∞Y = the geometric/visual boundary of a CAT(−1) metric space Y.
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Chapter 1

Introduction

This thesis is concerned with the mutual interrelationships between three de-

formation spaces prominent in the study of geometric structures on a closed, smooth,

oriented surface Σ : the Taubes space [Tau04] of minimal hyperbolic germs H, the

space of representations R(π1(Σ),PSL2(C)), and the moduli spaceM(X) ( [Hit87])

of solutions to the self-duality equations on a rank 2, degree 0 complex vector bundle

over a Riemann surface X ' Σ. These three spaces provide different viewpoints and

have varying levels of intrinsic structure. For example, H is a smooth manifold, (the

smooth part of) R(π1(Σ),PSL2(C)) is a complex symplectic manifold (see [Gol04]),

and M(X) has a hyperkähler structure (see [Hit87]).

The space H of minimal hyperbolic germs is a deformation space whose typ-

ical element (g,B) consists of the induced metric and second fundamental form of

a minimal immersion of a closed surface Σ into a (potentially incomplete) hyper-

bolic 3-manifold. There is a special subset AF ⊂ H, the almost-Fuchsian germs,

which directly give rise to a distinguished subset of quasi-Fuchsian 3-manifolds. In

Chapter 3, we prove that an almost-Fuchsian 3-manifold, and more directly the

almost-Fuchsian holonomy group of such a manifold, has a very special structure

which is not enjoyed by an arbitrary quasi-Fuchsian group. Roughly speaking, the

domain of discontinuity of an almost-Fuchsian group shows some of the vestiges
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of the perfect symmetry exhibited by a Fuchsian group. As an application, we

prove that a sequence of almost-Fuchsian groups can never converge to a doubly-

degenerate Kleinian surface group. This is achieved via a careful study of the domain

of discontinuity.

In Chapter 4, a direct study of the space H is initiated through the study of

a dynamically defined function

E : H → R,

which records the topological entropy of the geodesic flow arising from the metric

g occurring in the pair (g,B) ∈ H. Every such g has sectional curvature bounded

above by −1, in this setting the topological entropy of the geodesic flow is a much

studied, smoothly varying function. Lower bounds are derived on E in terms of

the L1 norm of the quantity ‖B‖g. Furthermore, in the space AF ⊂ H of almost-

Fuchsian germs, the function E is shown to have no critical points and its growth

rate along certain paths is explicitly computed. The final result of chapter 4 shows

that the Hessian of E can be used to produce a metric on the Fuchsian space F of

metrics with constant sectional curvature −1 on the surface Σ. This metric is shown

to have norm bounded below by 2π times the norm induced by the Weil-Petersson

metric. It is possible that this metric is in fact equal to Weil-Petersson, though we

have not been able to prove this.

Chapter 5 concerns the interplay between H and the space of representations

R(π1(Σ),PSL2(C)). The high point here is a new lower bound on the Hausdorff

dimension of the limit set of a quasi-Fuchsian group in terms of the geometry of

2



π1-injective immersed minimal surfaces in the quotient quasi-Fuchsian manifold.

This relies in a key way on an estimate proved in chapter 4. As a corollary, we

obtain a new proof of Bowen’s theorem on quasi-circles [Bow79] stating that the

Hausdorff dimension of a quasi-Fuchsian group is equal to one if and only if the

group is Fuchsian. In fact, the previously mentioned estimate is a quantified version

of Bowen’s theorem. We close the chapter by comparing a natural involution on

the space AF with the involution on the space of quasi-Fuchsian representations

given by switching the conformal boundaries in Bers’ simultaneous uniformization

parameterization [Ber60]. There is a geometrically defined mapping (first given by

Uhlenbeck in [Uhl83]),

Φ : H → R(π1(Σ),PSL2(C))

whose restriction to AF intertwines these two involutions. The failure of this map

to intertwine the involutions on the whole of H arises from the failure of Φ to be an

immersion everywhere.

In the sixth Chapter, a construction of Donaldson [Don03] is recalled, which

begins with an element (g,B) ∈ H and produces an element Ψ(g,B) ∈ M([g]).

Precisely, Ψ(g,B) is a solution to the self-duality equations on a rank-2 complex

vector bundle over the Riemann surface with conformal structure induced by the

metric g. From the Fuchsian point (h, 0) ∈ F , there are a number of interesting

deformations to consider, those in the Fuchsian direction, those coming from the

bending construction of Thurston (see [Bon96]), and also those arising from rays

X(t) = (e2uth, tB) ⊂ H. All of these deformations can be viewed jointly once we
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are in the context of the self-duality equations. Even more interestingly, the com-

plex structure of the character variety, hence that of quasi-Fuchsian space, becomes

tractable at this special point since we have explicit formulas representing the ob-

jects in question. In particular, we show that the initial direction Ẋ(0) of the path

arising from minimal surfaces is not a pure bending direction, but an explicit for-

mula exhibits Ẋ(0) as a sum of a pure bending direction and a tangent vector to

the Fuchsian space. While such a sum must exist for formal reasons, the explicit

sum involves one of the mysterious hyperkähler structures (the one which Hitchin

calls K) onM([h]) and thus gives some geometric interpretation of the effect of the

complex structure K. Our final result in this chapter is an explicit computation of

the length of the U(1)-orbit of a Higgs bundle Ψ(g,B), which involves the area of

the minimal surface. In appendix A.1, conventions regarding the relation between

Riemmanian metrics and hermitian metrics are delineated. These conventions are

different, for example, than those taken by Hitchin in [Hit87].

Lastly, Chapter 2 contains preliminary information about hyperbolic geometry

and minimal surfaces which will be utilized throughout the text. Previous to this

introduction is a notation guide which records symbols which recur throughout the

text.
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Chapter 2

Preliminaries

Throughout this thesis, Σ always denotes a smooth, closed, oriented surface

of genus greater than 1. The universal cover of Σ is denoted Σ̃. Whenever Σ is

endowed with a Riemannian metric (or any tensor for that matter), we equip Σ̃

with the pull-back metric so that the covering projection is a local isometry.

2.1 Basics of hyperbolic space

The n-dimensional hyperbolic space Hn is the unique complete, 1-connected

Riemannian manifold with constant negative sectional curvature −1. We will utilize

two models of hyperbolic space: the upper half-space model consists of the smooth

manifold

Hn = {(x1, ..., xn) ∈ Rn|xn > 0}

together with the Riemannian metric

dh2
n =

δijdx
idxj

x2
n

.

The Poincaré ball model is the smooth manifold

Hn = {(x1, ..., xn) ∈ Rn| x2
1 + ...+ x2

n < 1}

with the Riemannian metric

dh2
n =

4δijdx
idxj

(1− |x|2)2
.
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For H3, we use coordinates (z, t) ∈ H3 with z = x + iy ∈ C and t > 0. A

Kleinian group is a discrete (torsion-free) subgroup Γ < Isom+(H3) ' PSL(2,C) of

orientation-preserving isometries of hyperbolic 3-space. Given a Kleinian group Γ,

the action on H3 extends to an action on the conformal boundary ∂∞(H3) ' C∪{∞}

by Möbius transformations. This action divides ∂∞(H3) into two disjoint subsets:

Λ(Γ) and Ω(Γ). The limit set Λ(Γ) is defined to be the smallest non-empty, Γ-

invariant closed subset of ∂∞(H3). The domain of discontinuity ∂∞(H3)\Λ(Γ) =

Ω(Γ) is the largest open set on which Γ acts properly discontinuously. The quotient

M = H3/Γ is a complete hyperbolic 3-manifold with holonomy group Γ.

Given a sequence of Kleinian groups Γn, we say that Γn converges geometrically

to the group Γ if,

1. For all γ ∈ Γ there exists γn ∈ Γn such that γn → γ in Isom(H3).

2. If γn ∈ Γn and γnj → γ, then γ ∈ Γ.

We denote geometric convergence by Γn → Γ. It is well known [CEG87] that the

geometric convergence of Kleinian groups is equivalent to the base-framed, Gromov-

Hausdorff convergence of the associated quotient manifolds.

Equipping ∂∞(H3) = C ∪ {∞} with the spherical metric dS2 = |dz|2
(1+|z|2)2 , a

sequence of closed subsets An ⊂ C∪{∞} converges to A ⊂ C∪{∞} in the Hausdorff

topology if An → A with respect to the distance

d(An, A) = inf

{
r : An ⊂

⋃
x∈A

BS2(x, r) and A ⊂
⋃
x∈An

BS2(x, r)

}
.

If a sequence of Kleinian groups Γn converges geometrically to Γ, it is a simple
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exercise to verify that the limit set of Γ satisfies Λ(Γ) ⊂ lim
n→∞

Λ(Γn) where the limit

is taken with respect to the Hausdorff topology.

2.1.1 Kleinian surfaces groups

Now we restrict to the case that there is an isomorphism ρ : π1(Σ)→ Γ. The

representation ρ is quasi-Fuchsian if and only if Ω(Γ) consists of precisely two invari-

ant, connected, simply-connected components. The quotient Ω(Γ)/Γ = X+ ∪ X−

is a disjoint union of two marked Riemann surfaces (X+, X−), each diffeomorphic

to Σ, where the bar over X− denotes the surface with the opposite orientation.

The marking, which is a choice of homotopy equivalence f± : Σ → X±, is deter-

mined by the requirement that f±∗ = ρ. Conversely, we have the Bers’ simultaneous

uniformization theorem [Ber60],

Theorem 2.1.1. Given an ordered pair of marked Riemann surfaces (X+, X−)

each diffeomorphic to Σ, there exists an isomorphism ρ : π1(Σ) → Γ onto a quasi-

Fuchsian group Γ, unique up to conjugation in PSL(2,C), such that Ω(Γ)/Γ = X+∪

X−.

The space of all conjugacy classes of representations of π1(Σ) into Isom+(H3)

is denoted

R(π1(Σ), Isom+(H3)).

For the details concerning the following discussion see [Gol04]. Via the identification

7



PSL2(C) ' Isom+(H3), the set of homomorphisms

Hom(π1(Σ), Isom+(H3))

has the structure of an affine algebraic set. The set of irreducible representations is

comprised of those ρ ∈ Hom(π1(Σ), Isom+(H3)) which do not fix a point in ∂∞(H3).

The set of irreducible representations

Homirr(π1(Σ), Isom+(H3))

is a complex manifold of complex dimension −3χ(Σ) + 3 upon which the action of

Isom+(H3) by conjugation is free and proper. The quotient,

Homirr(π1(Σ), Isom+(H3))/Isom+(H3) ⊂ R(π1(Σ), Isom+(H3))

is a complex manifold of complex dimension −3χ(Σ). Quasi-Fuchsian space QF ,

which consists of conjugacy classes of all quasi-Fuchsian representations, lies in the

subspace of irreducible representations as an open subset

QF ⊂ Homirr(π1(Σ), Isom+(H3))/Isom+(H3),

and thus inherits a complex structure. With respect to this complex structure, the

bijection provided by theorem 2.1.1 becomes a biholomorphism

QF ' T × T .

The complex structure on T is the one arising from Kodaira-Spencer deformation

theory (see [Kod05]).

It is a striking feature of the diversity of hyperbolic 3-manifolds that there exist

isomorphisms ρ : π1(Σ, p) → Γ onto Kleinian groups which are not quasi-Fuchsian.
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A Kleinian surface group Γ ' π1(Σ, p) is called doubly degenerate if the domain

of discontinuity for Γ is empty; Ω(Γ) = ∅. The first explicit examples of doubly-

degenerate groups were free groups of rank 2 discovered by Jorgenson [Jor77].

Due to the resolution of the ending lamination conjecture, the isometry classi-

fication of doubly-degenerate manifolds is now well understood. Nonetheless, their

fine scale geometry is extremely intricate and interesting. Bonahon showed [Bon86]

that they are diffeomorphic to Σ×R, then the ending lamination theorem (for sur-

face groups) [Min10], [BCM] in conjunction with Thurston’s double limit theorem

[Thu] can be applied to see that every doubly degenerate group is a geometric limit

of quasi-Fuchsian groups.

2.2 Minimal surfaces in 3-manifolds

Let (M,h) be a 3-dimensional Riemannian manifold. Given an immersion

f : Σ → M, the area of f is the area of the Riemannian manifold (Σ, g) where

g = f ∗(h). Suppose f(Σ) is two sided in M and let ν be a globally defined unit

normal vector field. Then given X and Y tangent vectors to f(Σ), the second

fundamental form B is defined as,

B(X, Y ) = h(∇Xν, Y )

where ∇ is the Levi-Civita connection of h. The second fundamental form B de-

fines a symmetric, contravariant 2-tensor on Σ. By the spectral theorem for self-

adjoint operators, B is diagonalizable with eigenvalues λ1, λ2 whose product λ1λ2 is
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a smooth function on Σ. They are called the principal curvatures of the immersion

and ‖B‖2
g = λ2

1 + λ2
2.

Contracting with the metric g yields the mean curvature of the immersion,

H = gijBij

where repeated upper and lower indices are to be summed over. The immersion

f : Σ→M is minimal if H = λ1 + λ2 = 0. Equivalently, f is a critical point for the

area functional defined on the space of immersions of Σ into M. A minimal surface

is said to be least area if f : Σ→M has least area among all maps homotopic to f ;

least area maps are minimal.

The following existence theorem combines the work of Meeks-Simon-Yau [MSY82]

and Gulliver [Gul77] (see also [SU82] and [FHS83]).

Theorem 2.2.1. Let (M, g) be a compact 3-dimensional Riemannian manifold with

π2(M) = 0. If M has boundary, then assume that ∂M is mean convex. Then

given f : Σ → M such that f∗ : π1(Σ) → π1(M) is injective, there exists an area

minimizing immersion g : Σ→M in the homotopy class of f.

Remark: The condition that ∂M is mean convex means that any deformation

of ∂M in the outward normal direction is area non-decreasing. The hypothesis also

allows that the boundary be non-smooth, provided it satisfies a natural convexity

condition (see [MY82] for details).

Now suppose M is a hyperbolic 3-manifold. If f : Σ→M is an immersion as

above, the Gauss equation of the immersion is

10



Kg = −1 + λ1λ2 (2.2.1)

where Kg is the sectional curvature of the metric g.

If f is a minimal immersion, it follows that Kg = −1 − λ2 where we have

packaged the principal curvatures into a single smooth function λ2 = λ2
1 = λ2

2 since

they satisfy λ1 = −λ2. Then 1
2
‖B‖2

g = λ2 and Kg = −1− 1
2
‖B‖2

g.

2.2.1 The space of minimal hyperbolic germs

Suppose f : Σ̃→ H3 is an immersion. If g denotes the pullback of the metric

on H3 via the immersion f, then the equations of Gauss and Codazzi relate g and

B via:

Kg = −1 + λ1λ2 (2.2.2)

(∇∂iB)jk − (∇∂jB)ik = 0. (2.2.3)

Here, Kg denotes the sectional curvature of the metric g and ∇ its Levi-Civita

covariant derivative.

Now we can introduce the space of minimal hyperbolic germs constructed by

Taubes in [Tau04].

Let (g,B) ∈ Γ(S2
>0T

∗Σ) ⊕ Γ(S2T ∗Σ) be a pair consisting of a Riemannian

metric and symmetric 2-tensor on Σ. Such a pair is called a minimal hyperbolic

germ if B is traceless with respect to g and the Gauss-Codazzi equations (2.2.2)

and (2.2.3) are satisfied. Letting Diff0(Σ) be the space of orientation preserving
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diffeomorphisms of Σ isotopic to the identity, the space H of minimal hyperbolic

germs is the quotient

H = {minimal hyperbolic germs}/Diff0(Σ),

with Diff0(Σ) acting by pullback on the pair of tensors (g,B). By abuse of notation,

we write (g,B) ∈ H to indicate that the orbit of the pair belongs toH. The following

fundamental theorem of surface theory [Uhl83] shows that every element (g,B) ∈

H can be integrated to an immersed minimal disk in H3 with first and second

fundamental form (g,B).

Theorem 2.2.2. Let (g,B) ∈ H. Then there exists an immersion f : Σ̃ → H3

whose induced metric and second fundamental form coincide with the lifts of g and

B to Σ̃. Furthermore, if O ∈ H3 is chosen along with a preferred orthonormal frame

{F1, F2, N} ⊂ TOH3, then the map f is uniquely determined by fixing p ∈ Σ̃ and an

orthonormal frame {E1, E2} ⊂ TpΣ̃ and requiring that

• f(p) = O,

• df(Ei) = Fi.

The following fundamental theorem is due to Taubes [Tau04],

Theorem 2.2.3. The space of minimal hyperbolic germs H is a smooth, oriented

manifold of dimension 12g − 12 where g is the genus of Σ.

The Teichmüller space T is the space of isotopy classes of complex structures

agreeing with the orientation of Σ, which by the Koebe-Poincaré uniformization
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theorem can also be described as the space of isotopy classes of Riemannian metrics

of constant sectional curvature −1. For the sake of context, the space of isotopy

classes of metrics of constant curvature −1 will be called the Fuchsian space denoted

by F . As such, the Fuchsian space embeds into H via the map

F −→ H

g 7→ (g, 0).

Given a complex structure σ ∈ T , Kodaira-Spencer deformation theory iden-

tifies the fiber of the holomorphic cotangent bundle T ∗T over σ as the space of

holomorphic quadratic differentials α = α(z)dz2 on the Riemann surface (Σ, σ).

The space H admits an important map to T ∗T : given (g,B) ∈ H, let [g] ∈ T

denote the conformal structure induced by the Riemannian metric g. If (x1, x2)

are local isothermal coordinates for the metric g, Hopf observed in [Hop54] that the

Codazzi equations along with the fact that B is trace-free imply that the expression:

α(g,B) = (B11 − iB12)(x1, x2)dz2

defines a holomorphic quadratic differential on (Σ, [g]) where z = x1 + ix2. This

assignment defines a smooth mapping

Ψ : H −→ T ∗T

(g,B) 7→ ([g], α).

Furthermore, R(α) = B. The obvious action of the circle U(1) on the fibers of T ∗T

induces an action of U(1) on H making the above mapping equivariant, under this

action the metric g is left completely unchanged. Hence, the U(1)-orbits of minimal
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surfaces are all mutually isometric. This collection is often called the associated

family corresponding to an element (g,B) ∈ H. Furthermore, the action is free if

and only if B 6= 0.

2.2.2 Almost-Fuchsian germs

The space H contains a very special subset, the almost-Fuchsian hyperbolic

germs, which were initially studied by Uhlenbeck [Uhl83] and give rise to bona fide

complete hyperbolic 3-manifolds.

Definition 2.2.4. A minimal hyperbolic germ (g,B) ∈ H is almost-Fuchsian if

‖B‖2
g(x) < 2

for all x ∈ Σ.

An application of the implicit function theorem shows (see [Uhl83]) that the

space of almost-Fuchsian germs is actually an open subset of H which we record in

the following fashion.

Theorem 2.2.5. Let h be a hyperbolic metric on Σ and α a holomorphic quadratic

differential on the Riemann surface X = (Σ, [h]). Then there exists ε(α) > 0 and

ut ∈ C∞(Σ) smooth functions such that for all |t| < ε,

(e2uth, tB) ∈ H

where the real part of α is equal to B.

The following classification theorem is due to Uhlenbeck [Uhl83].
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Theorem 2.2.6. Suppose (g,B) ∈ H is almost-Fuchsian. Then,

• The metric on M = Σ× R expressed as

dt2 + g(cosh (t) I(·) + sinh (t) S(·), cosh (t) I(·) + sinh (t) S(·))

is a complete metric of constant sectional curvature −1. The corresponding

holonomy representation ρ : π1(Σ)→ Isom+(H3) is quasi-Fuchsian. Here I is

the identity operator and Sji = gjkBik is the shape operator associated to the

second fundamental form B.

• The inclusion f : Σ→ Σ×{0} is a minimal surface in M with induced metric

g and second fundamental from B. It is the only closed minimal surface of any

kind in M.

• f : Σ→M is incompressible, i.e. it is a π1−injective, smooth embedding.

We will denote the space (of isotopy classes) of almost-Fuchsian germs by

AF ⊂ H. By theorem 2.2.6 every (g,B) ∈ AF gives rise to a quasi-Fuchsian

representation which we will call the holonomy representations of (g,B) ∈ AF , the

image of which will be called an almost-Fuchsian group.

Given (g,B) ∈ AF with holonomy group Γ, we call the unique embedded

Γ-invariant minimal disk Σ̃ ⊂ H3 an almost-Fuchsian disk with data (g,B). An

almost-Fuchsian disk Σ̃ is normalized if

1. The point p = (0, 0, 1) ∈ Σ̃ and the oriented unit normal to Σ̃ at p is − ∂
∂t
∈

TpH3
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2. The principal curvatures vanish at p : B(p) = 0.

Note that since B is the real part of a holomorphic quadratic differential on Σ, there

always exists p ∈ Σ such that B(p) = 0.

If (g,B) ∈ AF with holonomy group Γ, we can always select I ∈ Isom(H3)

such that the IΓI−1-invariant almost-Fuchsian disk is normalized. Such a choice of

I is unique up to the action of the circle group U(1) < Isom(H3) of rotations about

the t-axis in the upper half-space model of hyperbolic space.
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Chapter 3

Domains of Discontinuity of Almost-Fuchsian Groups

The systematic study of closed minimal surfaces in hyperbolic 3-manifolds

began with the work of Uhlenbeck in the early 1980’s [Uhl83]. There, she identified

a class of quasi-Fuchsian hyperbolic 3-manifolds, the almost-Fuchsian manifolds,

which contain a unique closed, incompressible minimal surface which has principal

curvatures in (−1, 1). The structure of almost-Fuchsian manifolds has been studied

considerably by a number of authors [GHW10], [HW]. In particular, the invariants

arising from quasi-conformal Kleinian group theory (e.g. Hausdorff dimension of

limit sets, distance between conformal boundary components) are controlled by the

principal curvatures of the unique minimal surface.

Given an almost-Fuchsian manifold M, this chapter further explores the re-

lationship between the geometry of the unique minimal surface and the conformal

structure at infinity. As a result we will show that there are no doubly-degenerate

geometric limits of almost-Fuchsian groups. This will be achieved through a care-

ful study of the hyperbolic Gauss map from the minimal surface, which serves to

communicate information from the minimal surface to the conformal structure at

infinity.

We briefly summarize the strategy: if Γ is the holonomy group of an almost-

Fuchsian manifold M = H3/Γ, consider the Γ-invariant minimal disk Σ̃ ⊂ H3 which
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projects to the unique closed, minimal surface in M. We locate disks Di ⊂ Σ̃ which

are very close to being totally geodesic; the hyperbolic Gauss map from these disks is

nicely behaved and in particular satisfies a Koebe-type theorem [AG85], namely its

image contains disks of bounded radius. Epstein [Eps86] has studied the hyperbolic

Gauss map extensively. In particular we apply his work to show that the images of

the Di under the hyperbolic Gauss map are contained in the domain of discontinuity

for Γ. These images form barriers for the limit set of Γ. Since the limit set of a

doubly-degenerate group is equal to ∂∞(H3), there are no doubly-degenerate limits.

If Σ is immersed in some hyperbolic manifold M, the immersion induces a con-

formal structure σ on Σ which underlies the induced Riemannian metric g. Provided

the immersion is minimal, Hopf [Hop54] showed that the second fundamental form

B = B11dx
2 + 2B12dxdy +B22dy

2

appears as the real part of

α = (B11 − iB12) dz2,

which is a holomorphic quadratic differential on (Σ, σ). The norm ‖α‖g measures

how much Σ bends inside of M. In § 3.3.1, we prove a Harnack inequality for ‖α‖g

satisfying some bound ‖α‖g ≤ K. First we show that the norm of a bounded holo-

morphic quadratic differential on the hyperbolic plane satisfies a Harnack inequality.

Then, we prove the induced metric g is uniformly comparable to the hyperbolic met-

ric in that conformal class. Therefore, the growth of the principal curvatures of a

minimal immersion is bounded; the surface cannot bend too much, too quickly. The
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disks Di mentioned in the previous paragraph are obtained by taking balls around

the zeros of α; the Harnack inequality ensures we may pick balls of a uniform radius.

In § 3.3.2, we begin the study of the hyperbolic Gauss map: given an oriented

surface Σ̃ ⊂ H3 in hyperbolic 3-space with oriented unit normal field N, the pair of

hyperbolic Gauss maps G± : Σ̃→ ∂∞(H3) are defined by recording the endpoint of

the geodesic ray in the direction of ±N. We show that the images of the disks Di ⊂ Σ̃

under the hyperbolic Gauss map contain disks of a bounded radius in ∂∞(H3). To

achieve this, we utilize the generalization of the Köebe 1
4
-theorem to quasiconformal

maps due to Gehring and Astala [AG85].

Finally, in § 3.4 we prove the main result that the domain of discontinuity of

an almost-Fuchsian group Γ contains a disk (in fact many) of fixed radius in C. As

we mentioned above, this is an application of work of Epstein who showed [Eps86]

that the hyperbolic Gauss map from the minimal Γ-invariant disk Σ̃ is a (quasi-

conformal) diffeomorphism onto the domain of discontinuity for Γ. In particular, we

obtain definite regions Ri of ∂∞(H3) into which the limit set of Γ can not penetrate.

This leads to the following theorem.

Theorem 3.0.7. There are no doubly-degenerate geometric limits of almost-Fuchsian

groups.

There is a technical issue in the proof of the above theorem; in order to esti-

mate the size of the regions Ri into which the limit set cannot penetrate, we must

conjugate the group Γ by some element of Isom(H3) to put the surface Σ̃ into a

normalized position. It is possible that given a sequence of almost-Fuchsian groups
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Γn, the elements In by which we conjugate leave every compact set of Isom(H3).

Since the action of Isom(H3) on ∂∞(H3) is not isometric, this could destroy any

control we had gained on the size of the Ri. Proving that we may always conjugate

the group into a normalized position by an isometry with some bounded translation

distance relies strongly on the geometry of the minimal surface.

3.1 Historical context

In [Uhl83], Uhlenbeck conjectured1 that any doubly-degenerate hyperbolic

3-manifold M contains infinitely many distinct incompressible (stable) minimal sur-

faces which are homotopy equivalent to M. Examples of this phenomenon are pro-

vided by the doubly-degenerate manifolds M which arise as cyclic covers of closed

hyperbolic 3-manifolds fibering over the circle. In this case, there is an infinite

cyclic group of isometries of M. The general existence theory ( [FHS83], [SU82] and

[SY79]) yields an incompressible minimal surface Σ in the closed manifold which M

covers. Σ lifts to an incompressible minimal surface in M. The translates of Σ by the

infinite cyclic group of deck transformations yields infinitely many distinct incom-

pressible minimal surfaces in M. Theorem 1.1 supports a general philosophy that

the number of closed incompressible (stable) minimal surfaces in a quasi-Fuchsian

1It is more appropriate to say that this conjecture is implicit in the work of Uhlenbeck. The

exact quote in [Uhl83] is, ”If the area minimizing surfaces in M are isolated, we expect a large

number of minimal surfaces in quasi-Fuchsian manifolds near M.” The M she refers to is the

doubly-degenerate manifold which arises as a cyclic cover of a closed manifold fibering over the

circle.
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manifold should serve as a measure of how far that manifold is from being Fuchsian.

In [HW], the authors show that if M = H3/Γ is an almost-Fuchsian manifold

and λ is the maximum positive principal curvature of the unique closed minimal

surface in M, then the Hausdorff dimension of the limit set of Γ is at most 1 + λ2.

The question remains whether there exists a sequence of almost-Fuchsian groups

Γn such that the Hausdorff dimension of the limit set approaches 2. Theorem 3.0.7

rules out the most naive way in which this might occur.

3.2 The hyperbolic Gauss map

Details on the material in this section may be found in the paper of Epstein

[Eps86]. Let S ⊂ H3 be an oriented, embedded surface. Let N be a global unit

normal vector field on S such that if {X, Y } ⊂ TS is an oriented basis of the tangent

space of S, then {X, Y,N} extends to an oriented basis of TH3. Given p ∈ S, let

γp(t) be the unit speed geodesic ray with initial point γp(0) = p and initial velocity

dγp(t)

dt
|t=0 = N.

Definition 3.2.1. The forward hyperbolic Gauss map associated to S is the map

G+
S : S → ∂∞(H3) defined by

G+
S (p) = lim

t→+∞
γp(t).

If we use −N in the definition we shall call the associated map G−S the back-

wards hyperbolic Gauss map.

We quickly recall the results we shall utilize from [Eps84], [Eps86]. Let

f : D → H3 be an immersion of the unit disk D such that the principal curvatures
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are always contained in (−1, 1). Then we have,

Theorem 3.2.2 ( [Eps84], [Eps86]). Let S = f(D). The immersion f : D → H3

satisfies:

1. f is a proper embedding.

2. f extends continuously to an embedding f : D → H3 ∪ ∂∞(H3). In particular

∂∞(S) = f(∂D \ D) is a Jordan curve.

3. Each hyperbolic Gauss map G±S : S → ∂∞(H3) is a quasi-conformal homeo-

morphism onto a component of ∂∞(H3) \ ∂∞(S). Furthermore, if the principal

curvatures lie in (−β, β) for some 0 < β < 1, then G±S is a diffeomorphism.

Note that the Jordan curve theorem implies ∂∞(H3) \ ∂∞(S) consists of two

components.

Recall that given a homeomorphism f : D1 → D2 between domains D1, D2 ⊂

C, we say that f is a quasiconformal homeomorphism if:

• f ∈ H1
loc(D1), that is both f and its distributional derivatives fz, fz are locally

square-integrable on D1.

• There exists µ ∈ L∞(D1) with ‖µ‖L∞ < 1 such that fz = µfz in the sense of

distributions.

Defining the dilatation K = 1+‖µ‖L∞
1−‖µ‖L∞

, f is said to be K-quasiconformal.

From Theorem 3.2.2 it immediately follows that if Σ̃ ⊂ H3 is an almost-

Fuchsian disk invariant under an almost-Fuchsian group Γ, each hyperbolic Gauss
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map

G±
Σ̃

: Σ̃→ ∂∞(H3)

is a (quasiconformal) diffeomorphism onto one component of the domain of discon-

tinuity Ω of Γ. Furthermore, π1(Σ, p0) ' Γ implies ∂∞(Σ̃) = Λ(Γ).

3.3 Technical estimates

3.3.1 Growth of bounded holomorphic quadratic differentials

In this section we prove some technical results which give us control on the

growth of the principal curvature function for a minimal surface immersed in a

hyperbolic 3-manifold.

We begin with a basic result establishing a bound on the growth of the L∞-

norm of a bounded, holomorphic quadratic differential α = f(z) dz2 on H2. We

denote the canonical bundle of holomorphic 1-forms on H2 by KH2 . In this section

we will utilize the Poincaré disk model of the hyperbolic plane consisting of the unit

disk D ⊂ C with the metric

4|dz|2

(1− |z|2)2
.

Proposition 3.3.1. Let α ∈ H0(H2, K2
H2) be a holomorphic quadratic differential on

the hyperbolic plane and assume there exists a C > 0 such that sup
z∈H2

‖α‖H2(z) ≤ C.

Assume there is z0 ∈ H2 such that α(z0) = 0. Then for all ε > 0, there exists

r(ε, C) > 0 such that

‖α‖H2(x) < ε
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for all x ∈ BH2(z0, r) where BH2(z0, r) is the ball of hyperbolic radius r centered at

z0.

Proof. Without loss of generality, assume z0 = 0 ∈ D. Writing α(z) = f(z) dz2, the

condition

sup
z∈H2

‖α‖H2(z) ≤ C

becomes

(1− |z|2)2

4
|f(z)| ≤ C (3.3.1)

for all z ∈ D. Define an auxiliary holomorphic function defined on D by

g(z) = C ′f

(
1

2
z

)

with

C ′ =

(
1− 1

4

)2

4C
.

Utilizing (3.3.1),

|g(z)| =
(
1− 1

4

)2

4C

∣∣∣∣f (1

2
z

)∣∣∣∣ ≤
(
1− 1

4

)2(
1− |z|2

4

)2 < 1

for all |z| < 1. Thus,

|g(z)| < 1

for all |z|z < 1. By construction g(0) = 0, hence the Schwarz lemma implies

|g(z)| ≤ |z|.
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Thus,

‖α‖H2

(
1

2
z

)
=

(1− 1
4
|z|2)2

4

∣∣∣∣f (1

2
z

)∣∣∣∣ ≤ (1− 1
4
|z|2)2

4C ′
|z| < ε

provided |z| < 4C ′ε. Thus, if

r′ = 2C ′ε,

select r so that

BH2(0, r) = BC(0, r′).

Then ‖α‖H2(z) < ε for all z ∈ BH2(0, r). This completes the proof.

Our next task is to port the bounds achieved in Proposition 3.3.1 to the case

of the norm of a quadratic differential arising from a minimal surface in an almost-

Fuchsian manifold. Fortunately, the next lemma shows that the induced metric on

the surface is uniformly comparable to the hyperbolic metric. Recall that given a

Riemannian metric g on Σ, the uniformization theorem provides a unique hyperbolic

metric in the conformal class of g.

Lemma 3.3.2. Let (g, α) ∈ AF and suppose h is the unique hyperbolic metric in

the conformal class of g. If we write g = e2uh, then

− ln(2)

2
< u ≤ 0.

Proof. Since g = e2uh and the sectional curvature of h is equal to −1,

Kg = e−2u(−∆hu− 1)
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whereKg is the sectional curvature of g. Further applying the Gauss equation (2.2.1),

−1− ‖α‖2
g = e−2u(−∆hu− 1). (3.3.2)

Since (g, α) ∈ AF , −1− ‖α‖2
g > −2. Let p ∈ Σ be a local minimum for u. Then,

−2 < e−2u(−∆hu− 1) ≤ −e−2u

since −∆hu(p) ≤ 0. Thus, − ln(2)
2

< u.

Now apply the maximum principle directly to the equation (3.3.2),

∆hu+ 1− e2u − e−2u‖α‖2
h = 0.

If p ∈ Σ is a local maximum of u, then ∆hu(p) ≤ 0 which implies −e2u(p) + 1 ≥ 0,

so u ≤ 0 and the proof is complete.

In lieu of the previous lemma, the following is a direct consequence of Propo-

sition 3.3.1.

Proposition 3.3.3. Let (g, α) ∈ AF and p ∈ Σ such that α(p) = 0. Then for all

ε > 0, there exists r = r(ε) > 0 such that

‖α‖g(x) < ε

for all x ∈ Bg(p, r), where Bg(p, r) is the ball of radius r centered at p as measured

in the metric g.

Remark: Note that α is a holomorphic quadratic differential on a closed

Riemann surface of genus g > 1. Thus α is a holomorphic section of the square of
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the canonical bundle K2 which has degree 4g − 4. By standard Riemann surface

theory, α has 4g − 4 zeros counting multiplicity.

Remark: The above proposition is equally true if we work in the metric

universal cover Σ̃ of Σ. This will be important in our applications.

Proof. Let g = e2uh where h is the unique hyperbolic metric in the conformal class of

g. Then ‖α‖g = e−2u‖α‖h. Combined with Lemma 3.3.2 this implies ‖α‖g ≤ 2‖α‖h.

Let p ∈ Σ be such that α(p) = 0. Since ‖α‖g < 1, Proposition 3.3.1 implies that

for all ε > 0 we can find r′ > 0 such that ‖α‖h(x) < ε
2

for all x ∈ Bh(p, r
′). Now,

u > − ln(2)
2

implies Bg(p, r) ⊂ Bh(p, r
′) where r = r′√

2
. Therefore

‖α‖g(x) ≤ 2‖α‖h(x) ≤ ε

for all x ∈ Bg(p, r) ⊂ Bh(p, r
′).

By the Gauss equation, on Bg(p, r) the sectional curvature Kg of g satisfies

−1−ε2 ≤ Kg ≤ −1. Thus the disks Bg(p, r) are very close to being totally geodesic.

These are the nearly geodesic regions referred to in the introduction.

3.3.2 Thick regions in the domain of discontinuity

In this section we show that the nearly geodesic regions obtained in the pre-

vious section are mapped, via the hyperbolic Gauss map, to regions in ∂∞H3 which

have a uniformly bounded diameter. This will rely on the generalization of the

Köebe 1
4
-theorem due to Gehring and Astala [AG85].

Let (g, α) be the data for a normalized almost-Fuchsian disk Σ̃ ⊂ H3. By the
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uniformization theorem, there exists a conformal isomorphism

φ : D→ (Σ̃, g)

satisfying f(0) = p. Since φ is conformal,

φ∗g = e2uh

where h is the hyperbolic metric on D. If dVg is the volume element arising from the

metric g, then

φ∗dVg = e2udVh. (3.3.3)

Convention: The following notation is in place for the rest of this section:

Σ̃ ⊂ H3 is a normalized almost-Fuchsian disk with data (g, α). Recall, this means

(0, 0, 1) = p ∈ Σ̃ is such that α(p) = 0. Choose an ε > 0, then Proposition 3.3.3

yields r > 0 such that the norm of α is less than ε on Bg(p, r).

Proposition 3.3.4. Let Σ̃ be a normalized almost-Fuchsian disk with data (g, α).

Let

φ : D→ (Σ̃, g)

be a uniformization such that φ(0) = p. Then there exists r1 = r1(r) > 0 such that

BC(0, r1) ⊂ φ−1(Bg(p, r)).

Furthermore,

Jφ(z) > 2

for all z ∈ D. Here Jφ(z) is the Jacobian of φ at z calculated with respect to the

Euclidean metric on D.
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Proof. All of the conclusions are direct consequences of Lemma 3.3.2. On a fixed

compact subset of D, the metric g is uniformly comparable to the hyperbolic metric

and the hyperbolic metric is uniformly comparable to the Euclidean metric, thus

there exists r1 > 0 such that

BC(0, r1) ⊂ φ−1(Bg(p, r)).

Writing φ∗(g) = e2uh, then by (3.3.3), the Jacobian of φ (with respect to the Eu-

clidean metric on D) is given by

Jφ(z) =
4e2u(z)

(1− |z|2)2
.

Applying the estimate in Lemma 3.3.2 reveals

Jφ(z) > 2

for all z ∈ D = H2. This completes the proof.

The following proposition which controls the distortion of the hyperbolic Gauss

map is due to Epstein [Eps86].

Proposition 3.3.5. Let Σ̃ be a normalized almost-Fuchsian disk with data (g, α).

Then:

1. The hyperbolic Gauss map

G+

Σ̃
: Bg(p, r)→ C

is quasiconformal with dilatation K ≤
(

1+ε
1−ε

) 1
2 .

29



2. There exists a universal constant C > 0 such that

JG+

Σ̃

(x) > C(1− ε2) (3.3.4)

for all x ∈ Bg(p, r) where the Jacobian of G+ is computed with respect to the

Euclidean metric on C.

Proof. These facts can be found on pages 120 − 121 of [Eps86]. Epstein uses the

spherical metric on C, but in a bounded neighborhood of zero the spherical metric

and Euclidean metric are uniformly comparable. Thus, the C we obtain in (3.3.4)

is some multiple of that obtained by Epstein.

Next, we introduce the generalization of Köebe’s 1
4
-theorem due to Gehring

and Astala [AG85]. Let U, V ⊂ C be open domains and

f : U → V

a K-quasiconformal mapping with Jacobian Jf . Then log Jf is locally integrable and

the quantity

(log Jf )B =
1

|B|

∫
B

log Jf dx,

with B ⊂ U a ball, is well defined. For each x ∈ U, define

B(x) = BC(x, dC(x, ∂U))

to be the largest ball centered at x which remains in U. Lastly, define

af (x) = exp

(
1

2
(log Jf )B(x)

)
.

The promised generalization follows.
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Theorem 3.3.6 ( [AG85]). Suppose U and V are open domains in C and f : U → V

is K-quasiconformal. Then there exists a constant C = C(K) such that

1

C

dC(f(x), ∂V )

dC(x, ∂U)
≤ af (x) ≤ C

dC(f(x), ∂V )

dC(x, ∂U)
.

Given Σ̃ ⊂ H3 a normalized almost-Fuchsian disk with data (g, α), fix a uni-

formization

φ : D→ (Σ̃, g)

such that φ(0) = p as in Proposition 3.3.4. Consider the composition

Φ := G+

Σ̃
◦ φ : D→ C

where we have identified ∂∞(H3) with C ∪ {∞}. Our strategy is to apply Theorem

3.3.6 to the function Φ. We collect the necessary properties of Φ below.

Proposition 3.3.7. The map Φ : D→ C above satisfies:

1. Φ(0) = 0

2. The restriction of Φ to the sub-disk BC(0, r1) from Proposition 3.3.4 is K-

quasiconformal with K independent of (g, α).

3. There exists β(r1) = β > 0 such that JΦ(z) > β for all z ∈ BC(0, r1) with β

independent of (g, α).

Proof. First,

Φ(0) = 0
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is a direct consequence of the fact that Σ̃ is normalized. Next, Φ is a composition of

a conformal map φ with the hyperbolic Gauss map G+

Σ̃
. Thus, the restriction of Φ to

BC(0, r1) is K-quasiconformal if G+

Σ̃
is K-quasiconformal on Bg(p, r). This is proved

in Proposition 3.3.5 which verifies (2). Lastly, the Jacobian is multiplicative:

JΦ(z) = JG+

Σ̃

(φ(z)) Jφ(z).

Combining Propositions 3.3.4 and 3.3.5, the product on the right is bounded below

by β = 2C(1− ε2). This proves (3) and the proof is complete.

Proposition 3.3.7 and Theorem 3.3.6 combine to show that the image of the

Gauss map contains disks of a definite size.

Proposition 3.3.8. Let Σ̃ be a normalized almost-Fuchsian disk. Then there exists

R > 0 such that BC(0, R) ⊂ G+

Σ̃
(Σ̃) where BC(0, R) is the Euclidean disc of radius

R centered at 0 ∈ C.

Proof. Consider the map

Φ := G+

Σ̃
◦ φ : BC(0, r1)→ C.

By Proposition 3.3.7(3), there exists β > 0 such that

aΦ(0) ≥ exp

(
1

2
log β

)
.

Noting that Φ is K-quasiconformal by Proposition 3.3.7(2), Theorem 3.3.6 yields

√
β ≤ C

r1

dC

(
0, ∂
(

Φ
(
BC(0, R1)

)))
.

Taking R = r1
√
β

C
completes the proof.
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3.4 Main results

In this section, we present the main results concerning the domain of discon-

tinuity of an almost-Fuchsian group. An almost-Fuchsian group Γ is normalized if

the Γ-invariant almost-Fuchsian disk is normalized.

Theorem 3.4.1. Let Γ be a normalized almost-Fuchsian group. Then the domain

of discontinuity Ω of Γ contains BC(0, R) ∈ C for some R > 0.

Proof. Let Σ̃ be the normalized Γ-invariant almost-Fuchsian disk. By Theorem

3.2.2, the forward hyperbolic Gauss map G+

Σ̃
: Σ̃ → ∂∞(H3) is a (quasi-conformal)

diffeomorphism onto one connected component Ω+ of the domain of discontinuity.

By Proposition 3.3.8, BC(0, R) ⊂ G+

Σ̃
(Σ̃) = Ω+ for some R > 0.

Note that given an almost-Fuchsian group Γ, conjugating Γ by a rotation so

that 0 ∈ Ω followed by a translation with arbitrarily large translation distance in the

direction of the positive t-axis, we obtain an almost-Fuchsian group whose domain

of discontinuity contains a disk around zero of arbitrarily large radius. Of course,

the resulting almost-Fuchsian group is not normalized. This is the essential point

of the above theorem.

We can actually do better than the previous theorem. Because the almost-

Fuchsian disk Σ̃ is the universal cover of a closed minimal surface whose non-negative

principal curvature equals the norm of a holomorphic quadratic differential, the

principal curvatures of Σ̃ are zero at a countably infinite set of points. Thus, the

arguments given above can be applied one by one to each such point. Furthermore,

we may use the opposite pointing normal to obtain the same results for the opposing
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domain of discontinuity. With this in mind, we can refine the above theorem in the

following way.

Theorem 3.4.2. Let Γ be a normalized almost-Fuchsian group and Σ̃ the almost-

Fuchsian Γ-invariant disk with data (g, α) ∈ AF . For a fixed compact set E ⊂ H3

containing p = (0, 0, 1), consider any set of points {pi} ⊂ Σ̃ contained in E ∩

Σ̃ such that ‖α‖g(pi) = 0 for each i. Then there exists an R′(E) > 0 such that⋃
i

BS2

(
G±

Σ̃
(pi), R

′
)
⊂ Ω where Ω is the domain of discontinuity of Γ.

Remark: By Theorem 3.2.2, Σ̃ is properly embedded so that E∩Σ̃ is compact.

As any set of zeros {pi} is necessarily discrete (they are zeros of a holomorphic

quadratic differential), any compact set of zeros is finite.

Proof. Firstly, we claim there exists a positive integerK(E) such that the cardinality

of the set of zeros of α contained in Σ̃ ∩ E is always less than K. As observed in

the remark above, Σ̃ ∩ E is compact. Because the metric on the minimal surface

is uniformly comparable to the hyperbolic metric, there exists a uniform constant

C > 0 such that the area of Σ̃ ∩ E is bounded above by C. By the Gauss equation

the area of the closed minimal surface which Σ̃ covers is at least π(2g−2) where g is

the genus, thus a fundamental domain for the action of the almost-Fuchsian group

has area at least π(2g − 2). Then there are at most C
π(2g−2)

fundamental domains

which lie in Σ̃∩E. Since each fundamental domain contains at most 4g− 4 zeros of

α, we take K(E) equal to the nearest integer greater than (4g − 4) C
π(2g−2)

= 2C
π
.

For any set of zeros {pi}ni=1 ⊂ Σ̃∩E, each member of a collection of normaliz-

ing elements {Ii}ni=1 ⊂ Isom(H3) (i.e. Ii satisfies Ii(pi) = p = (0, 0, 1)
)

lies in a fixed
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compact set in Isom(H3). This follows from the fact that each Ii will be a composi-

tion of a hyperbolic element of uniformly bounded translation distance (specifically

bounded by the distance from p to ∂E) and a rotation. Fixing the R > 0 of Theorem

3.4.1, we set R′ equal to the minimum of the spherical radii of the disks I (BC(0, R))

where I ∈ Isom(H3) ranges over the finite set of all words of length at most n in

the Ii and their inverses. Remember that we first established that there exists a

universal constant such that n < K(E) and so this is a bounded list over all almost-

Fuchsian disks. Each Ii is a conformal transformation so indeed I(BC(0, R)) is a

disk. Then, the argument in Theorem 3.4.1 implies that
⋃
i

BS2

(
G+

Σ̃
(pi), R

′
)
⊂ Ω.

Repeating the same argument after initially conjugating the group by a reflec-

tion which reverses the orientation of Σ̃ proves that there exists R′′ > 0 such that⋃
i

BS2

(
G−

Σ̃
(pi), R

′′
)
⊂ Ω. Letting R′ = min{R′, R′′} completes the proof.

Finally, we arrive at the result that no sequence of almost-Fuchsian groups

converges geometrically to a doubly-degenerate group.

Theorem 3.4.3. Suppose Γn is a sequence of almost-Fuchsian groups and Γn → Γ.

Then Γ is not doubly-degenerate.

Proof. Recall that the limit set of a doubly-degenerate group Γ equals ∂∞(H3).

Suppose Γn is a sequence of almost-Fuchsian groups converging geometrically to

Γ. By Theorem 3.4.1 there exists an R > 0 and a sequence of transformations

In ∈ Isom(H3) such that

Λ(InΓnI
−1
n ) ∩BC(0, R) = ∅. (3.4.1)
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We shall refer to any such sequence In as a normalizing sequence.

First suppose that the In remain in a compact subset of Isom(H3). Choose a

subsequence such that In → I where we have relabeled the indices. Then InΓnI
−1
n →

IΓI−1 geometrically. Since Λ(IΓI−1) = IΛ(Γ), the limit set of IΓI−1 is also equal

to ∂∞(H3). We conclude that

∂∞(H3) = Λ(IΓI−1) ⊂ lim
n→∞

Λ(InΓnI
−1
n )

and so

lim
n→∞

Λ(InΓnI
−1
n ) = ∂∞(H3)

in the Hausdorff topology on closed subsets of ∂∞(H3). In particular, since the

spherical and Euclidean metrics are comparable on compact subsets in the Euclidean

topology (they nearly agree around 0 ∈ C), given any R > 0 there exists an N ∈ N

such that

Λ(InΓnI
−1
n ) ∩BC(0, R) 6= ∅

for every n ≥ N. This contradicts equation (3.4.1).

Now suppose that no normalizing sequence In remains in a compact subset

of Isom(H3). We work towards a contradiction. Let Σ̃n be the unique Γn-invariant

almost-Fuchsian disk. We select a sequence of points pn ∈ Σ̃n satisfying the following

properties,

1. Each pn ∈ Σ̃n is such that the principal curvatures of Σ̃n vanish at pn.

2. There exists x ∈ C ⊂ ∂∞(H3) such that pn → x where the convergence is in

the Euclidean topology on the closed upper half-space H3 ∪ ∂∞(H3).
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A sequence can be found satisfying both conditions since we have assumed every

sequence pn of vanishing principal curvature leaves every compact subset of H3.

Next, conjugate each group Γn by a parabolic isometry, represented by a Möbius

transformation

Jn = z + an,

which maps pn to some point (0, 0, pn) ∈ H3 where we have abused notation in calling

the z-coordinate by the same name. Note that assumption (2) on the sequence pn

implies |an| ≤ K for some K > 0. As the next step, conjugate each group further

by an elliptic isometry to make the downward pointing unit normal vector to Jn(pn)

directed at 0 ∈ ∂∞(H3). Further abusing notation, we label the new sequence of

groups as Γn and denote the unique Γn-invariant almost-Fuchsian disks by Σ̃n.

It remains true that Λ(Γn) → ∂∞(H3) since the parabolic elements were cho-

sen from a compact set of isometries and elliptic elements act as isometries of the

spherical metric from which the Hausdorff topology was induced.

Given the above prerequisites, a Σ̃n-normalizing sequence In takes the form

In =

λn 0

0 λ−1
n

 ∈ PSL(2,R) ⊂ Isom+(H3)

for some λn →∞.

Since In(Σ̃n) is a sequence of normalized almost-Fuchsian disks, by Theorem

3.4.2 there exists an R′ > 0 such that

Λ(InΓnI
−1
n ) ∩BS2(∞, R′) = ∅. (3.4.2)
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Since λn →∞, there exists an N ∈ N such that

∂∞(H3) \ I−1
n (BS2(∞, R′)) = (C ∪ {∞}) \ I−1

n (BS2(∞, R′)) (3.4.3)

⊂ BS2(0, R′).

for all n > N. Applying I−1
n to equation (3.4.2),

Λ(Γn) ∩ I−1
n BS2(∞, R′) = ∅.

By (3.4.3) this implies that for all n > N

Λ(Γn) ⊂ BS2(0, R′),

but this is impossible since Λ(Γn)→ ∂∞(H3). This contradiction implies that we may

always find a normalizing sequence which remains in a compact subset of Isom(H3).

Since this case is handled by the initial arguments in the proof, the proof is complete.
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Chapter 4

Entropy of Minimal Hyperbolic Germs

In this chapter, we begin a direct study of the space of minimal hyperbolic

germs H through the analysis of a smooth function

E : H → R

which assigns to a pair (g,B) ∈ H the topological entropy of the geodesic flow

arising from the metric g. We derive a lower bound on E in terms of the L1 norm of

‖B‖g which will be crucial for applications in the subsequent chapter. In addition,

we show that the restriction of E to the subset of almost-Fuchsian germs AF has

critical points exactly at the Fuchsian germs F by explicitly calculating its growth

rate along certain paths. Since E is critical at the Fuchsian locus, its Hessian is a

well defined bilinear form on the tangent space to F ; this form is non-degenerate

inducing a norm which is bounded below by 2π times the norm induced by the

Weil-Petersson metric.

In § 4.1 we introduce the necessary formal background from the theory of

limit sets of discrete groups acting on negatively curved metric spaces which will be

utilized in this chapter and Chapter 5.

In § 4.2 we define the function E and prove the aforementioned properties.
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4.1 Limit sets of discrete groups acting on CAT(-1) spaces

In this section we introduce the necessary ingredients from the theory of dis-

crete groups acting on negatively curved spaces developed by Patterson [Pat76],

Sullivan [Sul84], Bourdon [Bou95] and Coornaert [Coo93]. Details concerning gener-

alities of CAT(−1) spaces can be found in the book by Bridson and Haefliger [BH99].

Let (X, d) be a proper CAT(−1) metric space (for our needs we may assume

this to be a simply connected Riemannian manifold of sectional curvature ≤ −1).

Given p ∈ X, the geometric (or visual) boundary ∂p,∞(X) of X is the space of equiva-

lence classes of geodesic rays based atX. Two geodesic rays γ, η : [0,∞)→ X param-

eterized by arc length are equivalent if there exists K > 0 such that d(γ(t), η(t)) < K

for all t. The Gromov product at p is defined by

(x, y)p =
1

2
(d(x, p) + d(y, p)− d(x, y)).

In a proper CAT(−1) space, this product extends to the geometric boundary via

(η, γ)p = lim
t→∞

(η(t), γ(t))p

for η, γ ∈ ∂p,∞(X). Using the Gromov product, we define the visual metric on the

geometric boundary by

dp(η, γ) =


e−(η,γ)p : η 6= γ

0 : else

As p ∈ X varies, the visual metrics are all bi-Lipschitz equivalent.

Suppose Γ < Isom(X) is a discrete, convex-cocompact subgroup; this means

there is a geodesically convex, Γ-invariant subset of X upon which Γ acts cocom-
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pactly. Define the orbit counting function associated to Γ by

NΓ(x,R) = |{γ ∈ Γ | d(x, γ(x)) < R}|.

Then the volume entropy of Γ is

δ(Γ) = lim sup
R→∞

log(NΓ(R, x))

R
.

This number is independent of x ∈ X and measures the complexity of the action of

the group Γ. The limit set ΛΓ of Γ is the set of accumulation points in ∂∞(X) of

the Γ-orbit of a selected point x ∈ X. The limit set is a closed, Γ-invariant subset

of ∂∞(X). We use the following theorem (see [Coo93]).

Theorem 4.1.1. Let Γ < Isom(X) be a discrete, convex-cocompact subgroup of

isometries of a proper CAT (−1) metric space X. Then

δ(Γ) = H.dim(ΛΓ).

Here the Hausdorff dimension is computed using any of the Gromov products on

∂∞(X).

4.2 The entropy function

In this section, we define the entropy function on the space of minimal hyper-

bolic germs and discuss some interesting properties.

Given (g,B) ∈ H, the Gauss equation reads:

Kg = −1− 1

2
‖B‖2

g.
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Thus, every minimal hyperbolic germ refines the structure of a closed Riemannian

surface with sectional curvature bounded above by −1. Such Riemannian surfaces

are proper CAT(−1) metric spaces and the theory described in section 4.1 applies.

Definition 4.2.1. Given (g,B) ∈ H, let Bg(p,R) be the metric ball in the universal

cover Σ̃ of radius R centered at a basepoint p ∈ Σ̃. Define the volume entropy as the

quantity

E(g,B) = lim sup
R→∞

log|Bg(p, r)|
R

,

where |Bg(p,R)| is the Riemannian volume of the ball centered at p of radius R.

Manning introduced this quantity in [Man79] and showed the limit exists and

is independent of basepoint. Furthermore, in the case where the manifold in question

has negative curvature, Manning showed that this quantity equals the topological

entropy of the geodesic flow defined on the unit tangent bundle of Σ. Katok, Kneiper

and Weiss [KKW91] show that given a C∞-perturbation of a metric of negative

curvature, the topological entropy of the geodesic flow also varies smoothly. Hence:

Proposition 4.2.2. The volume entropy

E : H → R

is a smooth, non-negative function on the space of minimal hyperbolic germs. This

function equals the topological entropy htop of the geodesic flow on the unit tangent

bundle.

We will simply refer to this function as the entropy of the minimal hyperbolic

germ.
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We begin with an important lower bound on the entropy.

Theorem 4.2.3. The entropy function satisfies

E(g,B) ≥ 1

Vol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg

and E(g,B) = 1 if and only if B = 0. Furthermore, equality is achieved if and only

if E(g,B) = 1.

Before beginning the proof, we introduce an estimate of Manning which eas-

ily yields the theorem. Let (Σ, g) be a Riemannian surface with strictly negative

sectional curvature. On the unit tangent bundle of Σ, the (normalized) Liouville

measure mL is a probability measure invariant under the geodesic flow. In a local

trivialization, mL is a constant multiple of the product of Riemannian volume on Σ

with the standard angle measure on the circle giving it total measure 2π. The mea-

sure theoretic entropy of a metric of constant sectional curvature −1 with respect

to Liouville measure equals
√
−2πχ(Σ).

Theorem 4.2.4 (Manning, [Man81]). Let (Σ, g) be a Riemannian surface of nega-

tive curvature. Then

1√
Vol(g)

∫
Σ

√
−Kg dVg ≤ h(mL)

where h(mL) is the measure theoretic entropy of the geodesic flow with respect to

Liouville measure.

Remark: Note that if K = −1 in the above formula, the inequality becomes

equality: h(mL) =
√

Vol(g) =
√
−2πχ(Σ).

We now give the proof of Theorem 4.2.3.
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Proof. Let (g,B) be a minimal hyperbolic germ. By the Gauss equation

Kg = −1− 1

2
‖B‖2

g.

Applying theorem 4.2.4 and inserting the above expression for Kg, we obtain the

inequality,

1√
Vol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg ≤ h(mL) (4.2.1)

where h(mL) is the measure theoretic entropy of the geodesic flow with respect to

Liouville measure for the metric g. By the variational principle (see [KH95]),

h(mL) ≤ htop

(
1

Vol(g)
g

)

where htop

(
1

Vol(g)
g
)

is the topological entropy of the geodesic flow for the normalized

Riemannian metric 1
Vol(g)

g. But, since g has negative curvature

E

(
1

Vol(g)
g,B

)
= htop

(
1

Vol(g)
g

)

by [Man79]. Furthermore, the entropy scales via

E

(
1

Vol(g)
g,B

)
=
√

Vol(g)E(g,B).

Returning to line (4.2.1) the previous lines imply,

1√
Vol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg ≤ h(mL)

≤ htop

(
1

Vol(g)
g

)
= E

(
1

Vol(g)
g,B

)
=
√

Vol(g)E(g,B).
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Dividing by
√

Vol(g) proves the inequality asserted in theorem 4.2.3.

If E(g,B) = 1, then

1

Vol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg ≤ 1.

This implies ‖B‖2
g = 0.

For the other direction, if ‖B‖2
g = 0, then the surface has constant sectional

curvature −1 and one may compute directly that E(g,B) = 1. In this case the

volume of a ball of radius R in the universal cover is asymptotically eR.

For the final statement, we invoke a deep theorem of Katok [Kat82]. For a

closed surface of genus greater than 1, equality holds in

h(mL) ≤ htop

(
1

V ol(g)
g

)

if and only if the metric is constant negative curvature. This completes the proof.

Next we show that critical points of the restriction of entropy to the space of

almost-Fuchsian germs occur precisely at the Fuchsian germs.

Theorem 4.2.5. Consider the restriction of the entropy to the space of almost-

Fuchsian hyperbolic germs,

E : AF → R.

This function is critical at (g,B) if and only if B = 0, hence if and only if the germ

is Fuchsian. Furthermore, the entropy increases monotonically to first order along

rays (e2uth, tB) provided ‖tB‖2
gt < 2. Here h is the hyperbolic metric corresponding

to the germ (h, 0), so u0 = 0.
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Before we prove the theorem, we need to introduce a very useful formula due

to Katok, Knieper and Weiss [KKW91] for the first variation of the topological

entropy of the geodesic flow on a manifold with negative curvature. Throughout the

rest of this section, dots over a function dependent on a single real parameter t ∈ R

represent successive derivatives with respect to t.

Theorem 4.2.6. Let gt be a smooth path of negatively curved Riemannian metrics

on a closed manifold M. If htop(gt) is the topological entropy of the geodesic flow on

T 1(M) for the metric gt then,

d

dt
htop(gt)

∣∣
t=0

= −htop(g0)

2

∫
T 1(M)

d

dt
gt(v, v)

∣∣
t=0
dµ0.

Here, µ0 is the Bowen-Margulis measure of maximal entropy for the geodesic flow

arising from the metric g0.

Remark: Since we will use none of its properties, we will not define the

Bowen-Margulis measure. Details about its properties and construction can be

found in [Mar04], although a considerably easier construction mirroring [Pat76] can

be used for negatively curved Riemannian manifolds.

Proof of theorem 4.2.5. We already know from Theorem 4.2.3 that the entropy func-

tion is critical at Fuchsian hyperbolic germs. We have two expressions for the sec-

tional curvature of gt = e2uth,

−1− t2e−4ut‖B‖2
h = Kgt = e−2ut(−∆hut − 1)

where ∆h is the Laplace-Beltrami operator associated to the metric h. Taking the
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time derivative and evaluating at t0 reveals,

−∆hu̇t = e2ut0 u̇t(‖t0B‖2
gt0
− 2)− t0e−2ut0‖B‖2

h. (4.2.2)

At a maximum −∆hu̇t ≥ 0 which implies that the right hand side of (4.2.2) is non-

negative. The hypothesis ‖t0B‖2
gt0

< 2 implies that u̇t ≤ 0. Futhermore, if u̇t = 0

everywhere then equation (4.2.2) implies that B = 0. We have shown that

d

dt
gt = 2u̇tgt

is negative definite. Applying Theorem 4.2.6,

d

dt
E(gt, tB)|t=t0 =

d

dt
htop(gt)

∣∣
t=t0

= −htop(gt0)

2

∫
T 1(M)

2u̇tdµt0 ≥ 0

with equality if and only if t0 = 0. This completes the proof.

Now we show that the entropy function yields a metric on Teichmüller space T

whose norm is bounded below by the Weil-Petersson norm. Recall that given a point

σ ∈ T , the cotangent space to T at σ is identified, via Kodaira-Spencer deformation

theory (see [Kod05]), with the space of holomorphic quadratic differentials on the

Riemann surface (Σ, σ). The uniformization theorem furnishes a unique hyperbolic

metric hσ in the conformal class of metrics defined by σ. Given two holomorphic

quadratic differentials α and β, the Weil-Petersson Hermitian pairing is defined by,

〈α, β〉WP =

∫
Σ

αβ

hσ
.

This defines a Kähler metric on the Teichmüller space whose geometry has been

intensely studied (for a nice survey see [Wol10]). A number of geometrically defined

potential functions for the Weil-Petersson metric have been found, it seems probable,
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although we have not found a proof, that the entropy function defined here is yet

another potential. Before we prove this theorem, we need to describe a key formula

due to Pollicott [Pol94] from which the theorem will follow easily.

Theorem 4.2.7. Let gt be a smooth path of Riemannian metrics of negative curva-

ture on a closed manifold M. Then,

d2

dt2
htop(gt)|t=0 ≥ h(g0)

(
V ar

(
ġ(v, v)

2

)
+ 2

(∫
T 1(M)

ġ(v, v)

2
dµ0

)2
)

+

+

(
−
∫
T 1(M)

g̈(v, v)

2
dµ0 +

1

4

∫
T 1(M)

(ġ(v, v))2dµ0

)
.

Here µ0 is the Bowen-Margulis measure of maximal entropy for the geodesic flow

associated to the metric g0. Further, dots refer to t derivatives evaluated at t = 0.

In the above, formula, we have not defined the term
(
V ar

(
ġ(v,v)

2

))
. The

reader should see [Pol94] for details and definitions, for us the only thing we will

need is that V ar(0) = 0.

Theorem 4.2.8. The Hessian of the entropy function defines a metric on the Fuch-

sian space F ⊂ H. Furthermore, the norm of this metric is bounded below by 2π

times the norm defined by the Weil-Petersson metric.

Proof. By Theorem 4.2.5, the entropy function is critical along the Fuchsian locus

F , thus its Hessian is a well-defined non-negative quadratic form on the tangent

space. Given a holomorphic quadratic differential α on a Riemann surface (Σ, σ),

for small enough t > 0 we have the almost-Fuchsian germ (e2uth, tα) ∈ AF where h

is the hyperbolic metric uniformizing (Σ, σ). Recalling (4.2.2),

−∆hu̇t = e2ut0 u̇t(2‖t0α‖2
gt0
− 2)− 2t0e

−2ut0‖α‖2
h, (4.2.3)
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the maximum principle implies that u̇t = 0 at t = 0. Hence, all terms in Theorem

4.2.7 vanish except for the third containing a second derivative. Differentiating

(4.2.3) again with respect to t and evaluating at t = 0 yields

−∆hü0 = −2ü0 − 2‖α‖2
h.

Integrating with respect to the Riemannian volume form of h shows

∫
Σ

ü0 dVh = −
∫

Σ

‖α‖2
h dVh.

Now, letting gt = e2uth, the fact that u̇0 = 0 implies that

g̈0 = 2ü0h.

Moreover, the Bowen-Margulis measure for the hyperbolic metric h is simply the

Liouville measure on the unit tangent bundle T 1Σ. Thus

∫
T 1Σ

g̈0(v, v)

2
dµ0 =

∫
T 1Σ

ü0h(v, v) dµ0

= −
∫
T 1Σ

‖α‖2
h dµ0

= −2π

∫
Σ

‖α‖2
h dVh

= −2π‖α‖2
WP .

Thus, Theorem 4.2.7 reveals

d2

dt2
E(gt, tB)|t=0 =

d2

dt2
htop(gt)|t=0 ≥ 2π‖α‖2

WP

which completes the proof.
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Chapter 5

From Minimal Germs to Hyperbolic 3-Manifolds

This chapter studies the interplay between the geometry of minimal surfaces

and the geometry of hyperbolic 3-manifolds. In § 5.2, we prove a new lower bound

on the Hausdorff dimension of the limit set of a quasi-Fuchsian group in terms of

the data of π1-injective minimal surfaces in the quotient 3-manifold. The key is an

application of the estimate proved in Theorem 4.2.3. In § 5.3 we compare the action

of multiplication by−1 onH with the anti-holomorphic involution on quasi-Fuchsian

space: a map

Φ : H → R(π1(Σ), Isom+(H3))

which we will introduce shortly is shown to intertwine these actions when restricted

to the space of almost-Fuchsian germs. The failure of Φ to be globally equivariant

is explained. Lastly, we show that the set of quasi-Fuchsian representations which

contain a π1-injective minimal surface which minimizes area to second order has

measure zero in QF .

5.1 Mapping germs to representations

As recorded in Theorem 2.2.2, every (g,B) ∈ H can be integrated to an

immersed minimal surface in H3 with induced metric and second fundamental form

(g,B). Furthermore, this immersion is unique up to an isometry of H3. Since the
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data arises from tensors on a closed surface Σ, this minimal immersion is equivariant

for a representation ρ : π1(Σ)→ Isom+(H3).

Given (g,B) ∈ H we first describe how to obtain a representation ρ : π1(Σ)→

Isom+(H3). Let

f(g,B) : Σ̃→ H3

be an immersion described above and select p̃ ∈ Σ̃ such that

f(p̃) = O ∈ H3

df(p̃)(Ei) = Fi ∈ TOH3

where {Ei} constitute an orthonormal frame at p̃ ∈ Σ̃ and {Fi} are an orthonormal

frame at O ∈ H3. Now let γ ∈ π1(Σ). Then f ◦ γ defines a new immersion also with

induced metric and second fundamental form (g,B). Thus, by Theorem 2.2.2 there

exists a unique ρ(γ) ∈ Isom+(H3) such that

f(γ(p̃)) = ρ(γ)f(p̃)

df ◦ dγ(X) = d(ρ(γ)) ◦ df(X)

for all X ∈ Tp̃Σ̃. This assignment defines a map

Φ : H −→ R(π1(Σ), Isom+(H3)) (5.1.1)

where R(π1(Σ), Isom+(H3)) is the space of conjugacy classes of representations of

π1(Σ) into Isom+(H3). Note that Φ is well defined since changing a pair (g,B) by a

diffeomorphism isotopic to the identity produces a conjugate representation. Taubes

proved [Tau04]:
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Theorem 5.1.1. The image of Φ consists solely of irreducible representations.

As a result of the discussion in subsection 2.1.1, the above theorem shows that

the map Φ takes values in a smooth manifold.

5.2 Limit sets of quasi-Fuchsian groups

If ρ ∈ QF is a quasi-Fuchsian representation, the fiber Φ−1(ρ) of the map Φ

from (5.1.1) consists of π1(Σ)-injective minimal immersions Σ→ ρ(π1(Σ))\H3. The

general existence theorem 2.2.1 guarantees that this set is always non-empty.

We first show the dynamics of a quasi-Fuchsian representation ρ is at least as

complicated as the induced dynamics on an invariant minimal surface in Φ−1(ρ).

Theorem 5.2.1. Let ρ ∈ QF be a quasi-Fuchsian representation and (g,B) ∈

Φ−1(ρ). Then

1

V ol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg ≤ H.dim(ΛΓ)

with equality if and only if B is identically zero.

Proof. Given (g,B) ∈ Φ−1(ρ), let Σ̃ ⊂ H3 be the ρ(π1(Σ)) = Γ-invariant minimal

disk with induced metric and second fundamental form (g,B) and fix x ∈ Σ̃. Given

R > 0, let ÑΓ(R) denote the number of Γ-orbits within distance R from x with the

distance computed in the induced metric g. Every point distance R from x in the

metric g is distance less than or equal to R in the hyperbolic metric. Thus

ÑΓ(R) ≤ NΓ(R)
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where NΓ(R) is the number of Γ orbits in a ball of hyperbolic radius R centered at

x ∈ H3. Taking logarithms of each side, dividing by R, and then letting R → ∞,

the left hand side converges to the entropy E(g,B). Since quasi-Fuchsian groups are

convex-cocompact, Theorem 4.1.1 implies that the right hand side converges to the

Hausdorff dimension of the limit set of Γ. This proves:

E(g,B) ≤ H.dim(ΛΓ).

Applying Theorem 4.2.3,

1

V ol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg ≤ E(g,B) ≤ H.dim(ΛΓ).

Furthermore, another appeal to Theorem 4.2.3 shows that the first inequality is an

equality if and only if B = 0. This completes the proof.

As a corollary we obtain a new proof of Bowen’s theorem on the Hausdorff

dimension of quasi-circles proved in [Bow79].

Corollary 5.2.2. A quasi-Fuchsian representation ρ ∈ QF is Fuchsian if and only

if H.dim(ΛΓ) = 1.

Proof. If ρ is Fuchsian the result is immediate. Meanwhile, if H.dim(ΛΓ) = 1 then

Theorem 5.2.1 forces B = 0 for any (g,B) ∈ Φ−1(ρ). Since there must exist some

(g,B) ∈ Φ−1(ρ), this implies that ρ leaves invariant a totally geodesic surface; thus

ρ is Fuchsian.

A final corollary is the following L1 bound on the norm of the second funda-

mental form of a π1-injective minimal surface in a quasi-Fuchsian manifold.
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Corollary 5.2.3. If ρ ∈ QF is a quasi-Fuchsian representation and (g,B) ∈

Φ−1(ρ), then

1

Vol(g)

∫
Σ

√
1 +

1

2
‖B‖2

g dVg < 2.

Proof. This follows from Theorem 5.2.1 since H.dim(ΛΓ) < 2.

This is a necessary condition for a minimal hyperbolic germ to arise as a

closed minimal surface in a quasi-Fuchsian manifold; it is unknown to what extent

this condition is sufficient.

5.3 Comparing actions on QF and H.

The spaceQF of quasi-Fuchsian representations possesses an anti-holomorphic

involution ι which acts by,

ι(X, Y ) = (Y,X)

where (X, Y ) ∈ T × T ' QF . Meanwhile, the space of minimal germs H also

carries an involution given by the restriction of the U(1)-action to multiplication

by −1 sending a germ (g,B) to (g,−B). The following theorem shows that these

actions are actually intertwined, at least on the almost-Fuchsian germs.

Theorem 5.3.1. For all (g,B) ∈ AF ,

Φ((g,−B)) = ι ◦ Φ((g,B)).

where Φ is the map defined in 5.1.1
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Proof. Theorem 2.2.6 explicitly expresses the almost-Fuchsian metric on Σ×R cor-

responding to the germ (g,B) ∈ AF . Fock [Foc07] discovered a complex analytic

way to express this metric. Namely, write g = e2u|dz|2 in conformal coordinates and

let α = Ψ((g,B)) be the quadratic differential whose real part is B. Then

G((g,B)) = dt2 + e2u|cosh(t)dz + sinh(t)e−2uαdz|2

expresses the almost-Fuchsian metric (expanding out this expression, it is equal to

the one appearing in Theorem 2.2.6). The Beltrami differential

µ = e−2uα

has the property that the metrics

|dz ± µdz|2

furnish conformal metrics on the two components of the domain of discontinuity for

the almost-Fuchsian group corresponding to (g,B). Now, sending (g,B) to (g,−B)

sends α to −α which changes µ to −µ. Hence, the mapping ι interchanges the

conformal structures on the domain of discontinuity. This completes the proof.

If the mapping Φ were an immersion everywhere, then an analytic continuation

argument would show that these actions intertwine on the whole quasi-Fuchsian

space. However, as we now explain this is not the case and is responsible for some

very complicated bifurcation behavior.

A minimal hyperbolic germ is non-degenerate if the second variation of area has

zero nullity. More precisely, given the minimal immersion f : Σ̃→ H3 corresponding
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to a minimal hyperbolic germ (g,B) ∈ H, let ν be a unit normal vector field to the

image of f and let u ∈ C∞(Σ). Then lifting u periodically to the universal cover Σ̃,

take a normal variation ft of f such that

d

dt
ft|t=0 = uν.

Then the well known formula for the second variation of area (see [CM11]) gives

d2

dt2
Area(f ∗t GH3)|t=0 =

∫
Σ

−u∆gu− (‖B‖2
g − 2)u2dVg.

Here GH3 is the Riemannain metric on H3. A minimal hyperbolic germ is non-

degenerate if and only if the Jacobi operator

L(g,B) = −∆g − (‖B‖2
g − 2)

has no non-zero eigenfunctions with eigenvalue 0, that is there are no non-zero

solutions to L(g,B)u = 0. Solutions to L(g,B)u = 0 are called Jacobi fields.

The following theorem of Taubes [Tau04] shows the special significance of

degenerate minimal germs.

Theorem 5.3.2. The vector space of Jacobi fields for the operator L(g,B) is in bi-

jection with the kernel of the differential of the map

Φ : H → R(π1(Σ),PSL(2,C))

at the germ (g,B).

An argument using the continuity method in [Uhl83] shows that there do

exist minimal germs for which the associated Jacobi operator admits nontrivial zero
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eigenfunctions. Using the above theorem, an application of Sard’s theorem shows

that in terms of representations, this phenomena is non-generic.

Theorem 5.3.3. The set of quasi-Fuchsian representations ρ : π1(Σ)→ Isom+(H3)

which contain a degenerate closed minimal surface of genus g is measure zero.

Proof. By Theorem 5.3.2, a quasi-Fuchsian representation is a critical value of the

map Φ if and only if it contains a degenerate closed minimal surface of genus g.

Since Φ is a map between the smooth manifolds (this is a consequence of Theorem

5.1.1), Sard’s theorem applies and the set of critical values of the smooth map Φ

has measure zero.
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Chapter 6

Higgs Bundles and Deformations of Quasi-Fuchsian Groups

This chapter is somewhat different in flavor than the preceding ones. Here

we discuss the interaction between the theory of minimal surfaces and the complex

analytic theory of Higgs bundles. We begin by reviewing a construction of Donald-

son which produces out of a minimal hyperbolic germ (g,B) ∈ H a solution to the

self-duality equations. Via the non-abelian Hodge correspondence, these correspond

to representations of the fundamental group π1(Σ) into SL(2,C). We show that this

mapping coincides with the more synthetic mapping Φ constructed in the previous

chapter. Then, we use this setting to compare deformations of a Fuchsian group aris-

ing from hyperbolic geometry, namely bending and shearing along totally geodesic

planes, with those arising from a ray (gt, tB) ∈ H of minimal hyperbolic germs. An

explicit formula is obtained for the initial tangent vector in the direction of the ray

(gt, tB) in terms of tangent vectors to the Fuchsian group. Lastly, we compute the

length of the U(1)-orbit of a Higgs bundle arising from a minimal hyperbolic germ

in the hyperkähler metric on the space of solutions to the self-duality equations.

6.1 From minimal germs to Higgs bundles

We begin this chapter with a description of another map

Φ : H → R(Σ,PSL2(C)).
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Our description is due to Donaldson [Don03] and uses Hitchin’s theory of Higgs

bundles [Hit87]. Given a minimal hyperbolic germ (g,B) ∈ H, consider its image

([g], α) under the map Ψ : H → T ∗T where [g] denotes the conformal class of

the metric g; as usual let X = (Σ, [g]) denote the Riemann surface. Given the

canonical bundle of holomorphic 1-forms KX , a choice of spin structure on X is

equivalent to the choice of a square root K
1
2
X of the canonical bundle. We will

consider a holomorphic structure ∂E on a rank-2 complex vector bundle E over X.

The holomorphic bundle arises as an extension of K
1
2
X by K

− 1
2

X ,

1→ K
− 1

2
X → (E, ∂E)→ K

1
2
X → 1.

The metric g induces a Hermitian metric h on K−1
X and hence on the bundles

K
− 1

2
X and K

1
2
X . Let a and a− denote the Chern connections for these metrics (see

appendix A.1 for the definition of h and important related conventions). This pair

of metrics equips E with a Hermitian metric H and induces a smooth orthogonal

splitting of the smooth bundle E ' K
− 1

2
X ⊕K

1
2
X . With respect to this splitting, the

unitary connection A given by

A =

 a 1
4
α∗

−1
4
α a−


induces a holomorphic structure on E. This holomorphic structure is classified by

the extension class 1
4
α∗ ∈ H1(X,Hom(K

1
2
X , K

− 1
2

X )) ' H0(X,K2
X)∗ with the isomor-

phism given by Serre duality. Writing the metric g = e2u|dz|2 in local conformal

coordinates, the form α∗ is defined by

α∗ = 4e−2uα.
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Finally, consider the holomorphic section φ ∈ H0(X,KX ⊗End0(E)) given by

the matrix

φ =

0 1

0 0


where 1 represents the canonical section of the bundle KX ⊗ End(K

1
2
X , K

− 1
2

X ) =

OX which is the trivial line bundle. Donaldson recognized (see [Don03]) that the

Gauss equation (2.2.2) is equivalent to the pair (A, φ) satisfying Hitchin’s self-duality

equations,

F (A) = −[φ, φ∗H ] (6.1.1)

∂Aφ = 0

where the endomorphism φ∗H is the adjoint of φ relative to the Hermitian metric

H. The holomorphicity of φ is immediate. The first equation (6.1.1) reads,F (a)− 1
16
α∗ ∧ α 0

0 F (a−)− 1
16
α ∧ α∗

 =

−hdz ∧ dz 0

0 hdz ∧ dz

 . (6.1.2)

In the Appendix we recall that F (a) = 1
2
F (∇h) where ∇h is the Chern connection

of h. Furthermore, iF (∇h) = KgdVg. Expanding out the formula in (6.1.2) using

the previous identities shows that the left and right hand side of (6.1.2) are equal if

and only if the Gauss equation

Kg = −1− 1

2
‖B‖2

g

holds.

Let X ' Σ be a Riemann surface and E a rank 2, degree 0 complex vector

bundle over X. Given a unitary connection A on E preserving a Hermitian metric
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H, the holomorphic bundle (V, ∂A) is said to have trivial determinant if the induced

connection on the determinant line bundle is just the exterior differential d acting on

complex valued functions on X. The rank 2, degree 0 moduli space of solutions to the

self-duality equations with trivial determinant M(X) is defined to be the space of

unitary gauge equivalence classes of pairs (A, φ) where A is a unitary connection on

E, (E, ∂A) has trivial determinant, and φ ∈ H0(X,KX⊗End0(E)) is a holomorphic

endomorphism-valued 1-form such that

F (A) = −[φ, φ∗H ].

The bundle End0(E) consists of traceless endomorphisms of E. The field φ is called

the Higgs field. A pair (A, φ) ∈ M(X) is called a Higgs bundle. For details about

this space and relations with complex geometry the initial sections of [DWW10] give

a nice introduction. The original paper of Hitchin [Hit87] is still a premier resource.

That the pair (A, φ) satisfies the self-duality equations is equivalent to the

flatness of the linear connection

B = A+ φ+ φ∗H .

The holonomy of this flat connection defines a homomorphism,

ρ : π1(Σ)→ SL2(C).

The association (A, φ) 7→ B defines a mapping

M(X)→ R(Σ, SL2(C))

which is commonly called the non-abelian Hodge correspondence (see [DW07] or

[DWW10] for a definitive statement).

61



Gauge equivalent connections define conjugate representations so the above

mapping is well defined. Thus the previous construction yields a map

Φ : H → R(Σ,PSL2(C))

where we compose the representation with the projection

SL(2,C)→ PSL(2,C).

Different choices of spin structure yield different representations in SL(2,C), but

they all project to the same representation into PSL(2,C). The space M(X) is

equipped with a circle action which sends (A, φ)→ (A, eiθφ). Define the map

Ξ : H →
∐
X∈T

M(X)

by the above recipe.

Proposition 6.1.1. The map Ξ is U(1)-equivariant.

Proof. The image of ([g], eiθα) under the map Ξ consists of the pair

Aθ =

 a e−iθ

4
α∗

− eiθ

4
α a−


and

φ =

0 1

0 0

 .

Consider the unitary gauge transformation

Uθ =

e
iθ
2 0

0 e−
iθ
2

 .
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Conjugating we see that

A0 = UθAθU
−1
θ

and

eiθφ = UθφU
−1
θ .

Hence (Aθ, φ) is equivalent to (A0, e
iθφ) which proves that the map is U(1)-equivariant.

In the previous chapter we constructed a map Φ from H to the space of repre-

sentations R(Σ, Isom+(H3)). It is well-known that orientation-preserving isometries

of H3 identify with the group PSL(2,C). After this identification, the maps Φ and

Φ agree.

Theorem 6.1.2. The pair of maps Φ : H → R(Σ, Isom+(H3)) and Φ : H →

R(Σ,PSL(2,C)) are equal.

Proof. By definition, Φ(g,B) = ρ is a representation for which a minimal embedding

of a disk f : Σ̃ → H3 with induced metric and second fundamental form (g,B) is

equivariant.

Given the same (g,B) ∈ H, we need to show that Φ(g,B) is also equal to

the representation ρ. This is explained in [Don03] but we produce a sketch of the

argument here. Given the pair (A, φ) constructed in this chapter, the connection

A+ φ+ φ∗

is flat and the holonomy of this flat connection projects to the representation ρ′ =
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Φ(g,B). By [Don87], there exists a unique ρ′-equivariant harmonic map

f : (Σ̃, [g])→ SL(2,C)/SU(2)

where we identify

H3 = SL(2,C)/SU(2).

The pair (A, φ) is constructed out of this map f. The special form of (A, φ) implies

that f is a conformal harmonic immersion with second fundamental form B. Hence,

the mapping f is equivariant for both ρ and ρ′. The proof is finished by the following

simple lemma.

Lemma 6.1.3. Let f : Σ̃ → H3 be an immersion. If f is equivariant for two

representations ρ and ρ
′

from π1(Σ) into Isom+(H3), then ρ = ρ
′
.

Proof. Let f : Σ̃→ H3 be such a mapping. Then,

ρ(γ)f̃(p) = f̃(γ(p)) = ρ′(γ)f̃(p)

for all p ∈ Σ̃. Thus, for all p ∈ Σ̃,

ρ′(γ)−1ρ(γ)f̃(p) = f̃(p).

Since f is an immersion, its image is a 2-dimensional submanifold. A hyper-

bolic isometry which stabilizes a two dimensional submanifold is the identity, thus

ρ′(γ)−1ρ(γ) = Id. Hence ρ = ρ′ and ρ is in the image of Φ.

6.1.1 Relation to bending deformations

Because we can faithfully represent an open neighborhood of Fuchsian repre-

sentations in QF via minimal surfaces, it is reasonable to try to compare deforma-
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tions arising from the minimal surface theory with the more hands-on deformations

built by bending and shearing Fuchsian representations along geodesic laminations.

We begin by reviewing the latter construction.

Given a Fuchsian representation ρ : π1(Σ)→ PSL(2,R) and the corresponding

equivariant totally geodesic plane H2 → H3, we wish to build a path of quasi-

Fuchsian representations called a bending deformation of ρ. Equipping Σ with the

hyperbolic structure induced by ρ, let c be a homotopically non-trivial oriented

simple closed geodesic on Σ. Taking the complete set of lifts of c to the metric

universal cover of Σ one obtains a ρ-equivariant discrete set of geodesics on H2.

Standing along one of the lifts c̃ of c, the orientation of c plus the orientation of the

surface gives a well defined notion of the region to the left and to the right of c̃.

Given a small real number t > 0, one builds a piecewise geodesic plane in H3 by the

following recipe: every time you are standing facing along a lift of c, bend the part

of the plane to the right counter-clockwise through an angle t. Doing this iteratively

for each lift of c, the resulting object is a convex, piecewise geodesic surface, an

example of a pleated surface, which is bent along the discrete geodesic lamination

given by the closed curve c. The bending gives a measure on arcs transverse to the

lamination which assigns mass t every time an arc crosses the curve c. For t small

enough, there is a unique path of quasi-Fuchsian representations ρt for which this

new piecewise geodesic surface is equivariant. That is, there is a path-isometric

continuous (not smooth) mapping

ft : H2 → H3
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such that ft is ρt equivariant.

More generally, a measured geodesic lamination on a hyperbolic surface is a

closed subset which is a disjoint union of complete simple geodesics (the leaves of

the lamination) equipped with a positive Borel measure on (isotopy classes of) arcs

transverse to the leaves of the lamination. It is well known (see [Sig74]) that every

geodesic lamination can be approximated (in the weak∗ topology) by a sequence of

discrete measured geodesic laminations. Bending deformations can be defined for

an arbitrary measured lamination via an approximation procedure.

Complementary to bending is the notion of twisting and, more generally, that

of an earthquake deformation. Again, let c be a essential simple closed geodesic on

a hyperbolic surface Σ and let t > 0 be a real number. Cutting Σ open along c,

rotating the component to the right of c to the right by distance t and then regluing

yields a new hyperbolic surface said to be obtained from the original surface by a

right twist along c. As with bending, these twisting deformations can be extended

via approximation to define a right earthquake along a general measured lamination.

An infinitesimal form of the earthquake theorem due to Thurston (unpublished) and

Kerckhoff [Ker83] is recorded in the following theorem.

Theorem 6.1.4. Every tangent vector to the space of Fuchsian representations is

tangent to a unique right earthquake path.

There is a beautiful relationship between bending deformations and earthquake

deformations which involves the complex structure of quasi-Fuchsian space, denoted

by J : TQF → TQF .
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Theorem 6.1.5 (see [Bon96]). Let X ∈ TQF be a tangent vector to Fuchsian space

and λ the measured geodesic lamination such that X is obtained by the infinitesimal

right earthquake along λ. Then J(X) ∈ TQF is the tangent vector corresponding to

infinitesimal bending along λ.

The setting of minimal germs provides another interesting method of obtaining

deformations of Fuchsian groups. Namely, let (e2uth, tB) ∈ H be a path of minimal

hyperbolic germs where at t = 0 we have the Fuchsian germ (h, 0) with h a hyperbolic

metric on Σ. This path is guaranteed to exist by Theorem 2.2.5. In certain ways, this

deformation has similarities to bending deformations, we will explore some of these

connections here. We begin by noting that both deformations are curve-shortening.

Proposition 6.1.6. Let ρ be a Fuchsian representation and let X ∈ T[ρ]QF be

either tangent to a bending path or to a path of the form (e2uth, tB). Let ρt be the

representations corresponding to these paths and let γ ∈ π1(Σ). If `t(γ) is the length

of the unique closed geodesic homotopic to γ, then

d

dt
`t(γ)|t=0 ≤ 0.

Proof. If ρt is a bending path, then each of the quasi-Fuchsian manifolds Mρt con-

tains a closed surface which is path isometric to a single hyperbolic surface, namely

that one which is uniformized by ρ0. This is because the bent piecewise-geodesic

plane which ρt leaves invariant does not change intrinsically. Hence,

`t(γ) ≤ `0(γ)
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which implies that

d

dt
`t(γ)|t=0 ≤ 0.

If instead ρt is a path given by the almost-Fuchsian germs (e2uth, tB), then (the

proof of) Theorem 4.2.6 implies ut ≤ 0 and u̇t ≤ 0. Just as above,

`t(γ) ≤ `0(γ)

completing the proof.

Despite some similarity in the qualitative features of these deformations, we

now show that the initial tangent vector we get from the almost-Fuchsian deforma-

tion is not a pure bending vector; nonetheless there is an interesting relationship.

In order to express the result we need to delve more deeply into the properties

of the moduli space of solutions to the self duality equations. Let (h, 0) ∈ F be a

Fuchsian germ, we consider the rank 2, degree 0 moduli spaceM([h]) of solutions to

the self-duality equations with trivial determinant over the Riemann surface (Σ, [h]).

The space of unitary connections with trivial determinant on a complex vector

bundle E is an affine space modelled on the vector space Ω0,1(X,End0(E)) since

the (0, 1)-part determines the full connection form. Thus the tangent space to the

moduli spaceM([h]) at a pair (A, φ) is a certain subspace of the infinite dimensional

complex vector space

Ω0,1(X,End0(E))⊕ Ω1,0(X,End0(E)) (6.1.3)

with the complex structure just given by componentwise multiplication by the imag-
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inary unit i. This space carries a Hermitian pairing

G((Φ,Ψ), (Φ,Ψ)) = 2i

∫
Σ

Tr(Φ∗Φ + ΨΨ∗).

The tangent space is given by those pairs (Ȧ, φ̇) ∈ Ω1(X,End(V ))⊕Ω(1,0)(X,End(V ))

which satisfy the trio of equations,

dAȦ+ [φ̇, φ∗] + [φ, φ̇∗] = 0,

∂Aφ̇+ [Ȧ(0,1), φ] = 0,

d∗AȦ+ Re[φ∗, φ̇] = 0,

for a representative pair (A, φ) ∈ M([h]). The first two equations above linearize

the self-duality equations, while the third equation expresses the G-orthogonality of

(Ȧ, φ̇) to the gauge orbit.

This vector space actually admits an action of the quaternions with respect to

which the moduli space (at least its smooth part) becomes a hyperkähler manifold.

For us, the important other complex structure will be denoted J, and its action

relative to the splitting (6.1.3) is given by

J(Ȧ, φ̇) = (iφ̇∗,−iȦ∗). (6.1.4)

The import of this lies in the following theorem of Hitchin [Hit87].

Theorem 6.1.7. The restriction of the non-abelian Hodge correspondence to the

quasi-Fuchsian space is a holomorphic embedding

(QF , J)→ (M([h]), J)

where M([h]) is equipped with the complex structure J from 6.1.4.
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Remark: In fact, M([h]) is homeomorphic to the space of conjugacy classes

of all reductive representations from π1(Σ) into SL2(C). We word the above theorem

in this way since we are only interested in studying quasi-Fuchsian representations.

We must be careful here because we have been forced to fix a conformal struc-

ture on the surface Σ. That provided, we now have a formula for examining the effect

of the complex structure of quasi-Fuchsian space. We also must utilize Hitchin’s de-

scription of the Fuchsian space in terms of solutions to the self-duality equations;

let H0(X,K2
X) be the space of holomorphic quadratic differentials on X.

Theorem 6.1.8 (Hitchin, [Hit87]). Every solution of the self-duality equations which

corresponds to a Fuchsian representation consists of a U(1)-connection on K
− 1

2
X ⊕K

1
2
X

with a Higgs field of the form

φ =

0 1

α 0

 .

for some α ∈ H0(X,K2
X).

Now consider the path of Fuchsian Higgs bundles (B(t), φ(t)) with

φ(t) =

 0 1

tα 0

 ,

and B(t) the requisite U(1)-connection provided by Theorem 6.1.8. We need the

following lemma.

Lemma 6.1.9. The connection B(t) above satisfies:

d

dt
B(t)|t=0 = 0.
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Proof. As B(t) is a U(1) connection, it has the form

B(t) =

b(t) 0

0 b−(t)

 .

Let h(t) be the Hermitian metric on K−1
X preserved by 2b(t). If F (t) denotes the

curvature of the Chern connection of h(t), then the self-duality equations become

iF (t) = −2i

(
1− t2 αα

h(t)2

)
h(t)dz ∧ dz. (6.1.5)

Now, iF (t) = KtdV (t) where Kt is the Gauss curvature of the Riemannian metric

g(t) defined by h(t) and V (t) its volume form. Let h0 be the unique hyperbolic

metric in the conformal class defined by the Riemann surface X, then g(t) = e2uth0.

Then,

Kt = −e2ut(∆h0ut + 1).

The self-duality equations (6.1.5) become

−e2ut(∆h0ut + 1) = −(1− t2e−4ut‖α‖2
h0

). (6.1.6)

Since g(0) = h0 we have u0 = 0. Differentiating (6.1.6) and evaluating at t = 0

yields

2u̇0 −∆h0u̇0 = 0.

The maximum principle implies that u̇0 = 0 which implies that ḣ(0) = ġ(0)
4

= 0.

Since the Chern connection of h depends on h and its first derivatives, and since h

vanishes to first order, so does the connection B(t). This completes the proof.
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As a result of the above lemma, the path (B(t), φ(t)) has initial tangent vector

at t = 0,

X =

0,

0 0

α 0


 . (6.1.7)

Applying the complex structure J from (6.1.4) to this tangent vector yields

J

0,

0 0

α 0


 =

i
0 α∗

0 0

 , 0

 . (6.1.8)

By Theorem 6.1.4 the initial tangent vector X is the infinitesimal right earthquake

along a unique measured lamination, so Theorem 6.1.5 implies that JX is given by

infinitesimal bending along the same lamination.

Now consider the path of almost-Fuchsian Higgs bundles given byA(t) =

 a(t) t
4
α∗

− t
4
α a−(t)

 ,

0 1

0 0


 (6.1.9)

which we constructed at the beginning of the chapter. The following lemma allows

us to compute the initial tangent vector to this path as well.

Lemma 6.1.10. Let A(t) be as above. Then,

d

dt
A(t)|t=0 =

 0 1
4
α∗

−1
4
α 0


Proof. Remember that in this context a(t) is one half the Chern connection corre-

sponding to the metric g(t) = e2uth where g(t) is the induced metric coming from the

minimal immersion with induced metric g(t) and second fundamental form corre-

sponding to the holomorphic quadratic differential tα. The proof of Theorem 4.2.5
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implies u̇0 = 0 whereby ġ(0) = 0. Since a(t) is a constant multiple of the Chern

connection associated to g(t), as before the vanishing to first order of g(t) at t = 0

implies that ȧ(0) = 0. Since a−(t) = −a(t), we conclude that the full variation of

connection is

d

dt
A(t)|t=0 =

 0 1
4
α∗

−1
4
α 0

 ,

completing the proof.

By the previous lemma, the initial tangent vector to the almost-Fuchsian path

from (6.1.9) is given by,

Y =


0 1

4
α∗

0 0

 ,

 0 0

−1
4
α 0


 (6.1.10)

with respect to the splitting in (6.1.3). Finally, the following proposition compares

the directions of these deformations.

Proposition 6.1.11. The ray of almost-Fuchsian representations corresponding to

the data γ(t) = (gt, tα) ∈ AF is not initially tangent to a pure bending direction.

Moreover, if X is the tangent vector to the Fuchsian space from (6.1.7)) and Y =

γ̇(0) (from (6.1.10)), then they are related by the formula,

−4Y = X + IJX = X +KX

where I, J and K are the complex structures yielding the hyperkähler structure on

the Higgs bundle moduli space.

Remark: The complex structure K on the Higgs bundle moduli space is quite

mysterious and geometric incarnations of it rather elusive. The above proposition
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shows it indeed has geometric significance, namely, twisting minusK(twisting) yields

a deformation along a ray of almost-Fuchsian representations. Unfortunately, in this

case there seems to be no simple relationship between the lamination giving rise to

the vector X and any properties of the deformation Y.

Proof. The value of JX from line (6.1.8) shows that

−IJX = −KX =


0 α∗

0 0

 , 0

 .

Comparing the value of X from line (6.1.7) and the value of Y from line (6.1.10)

shows that

−4Y = X +KX

which completes the proof.

6.1.2 Geometry of moduli of Higgs bundles via minimal germs

The explicit formula for the almost-Fuchsian Higgs bundles lets us compute

some geometric quantities coming from the hyperkähler metric. Specifically, given

a tangent vector (Φ,Ψ) ∈ TM([h]) recall the Hermitian pairing,

G((Φ,Ψ), (Φ,Ψ)) = 2i

∫
Σ

Tr(Φ∗Φ + ΨΨ∗).

This defines a Riemannian metric onM([h]) which together with the complex struc-

tures I, J and K defines the hyperkähler structure. Consider the loops of Higgs

bundles defined by,

γ(θ) =


 a e−iθ

4
α∗

− eiθ

4
α a−

 ,

0 1

0 0


 .
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Recall that by 6.1.1 this path is tangent to the U(1)-orbit of the Higgs bundle

corresponding to γ(0). We can compute the length of γ and find that,

Proposition 6.1.12. The length of the U(1)-orbit of the Higgs bundle

γ(0) =


 a 1

4
α∗

−1
4
α a−

 ,

0 1

0 0




is 2π
√

2 (−2πχ(Σ)− Area(g))
1
2 . Here, −χ(Σ) = 2× (genus)− 2 is the Euler char-

acteristic of Σ.

Proof. The U(1)-action is isometric so we may compute just the initial tangent

vector. Recalling that the circle action leaves the induced metric invariant (hence

the Chern connections a and a− are constant) yields

γ̇(0) =


0 −i

4
α∗

0 0

 ,

 0 0

i
4
α 0


 .

Direct computation shows that the length of γ̇(0) is,(
2i

∫
Σ

1

8
α ∧ α∗

) 1
2

=

(
2

∫
Σ

‖α‖2
gdVg

) 1
2

. (6.1.11)

Denoting the Riemannian metric on Σ by g, the Gauss equation reads

‖α‖2
g = −Kg − 1.

Thus an application of the Gauss-Bonnet theorem combined with (6.1.11) reveals

the length of γ̇(0) is,(
2

∫
Σ

−Kg − 1dVg

) 1
2

=
√

2 (−2πχ(Σ)− Area(g))
1
2 .

Thus, the full orbit length is the above quantity multiplied by 2π which completes

the proof.
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It is interesting to remark that the inequality Area(g) ≤ −2πχ(Σ), which is a

direct consequence of the Gauss equation, is a corollary of the above theorem since

the length must be positive.
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A.1 Conventions for Hermitian metrics

Due to the large number of conventions concerning various normalizations of

Hermitian metrics derived from Riemannian metrics, in this appendix we will quickly

make explicit the choices made in the present paper. Ours differ, for example, from

those taken by Hitchin in [Hit87].

If J is an (almost) complex structure on a closed, oriented surface Σ, let

X = (Σ, J) be the compact Riemann surface which J defines and pick a metric

g = g|dz|2 compatible with J. The complexification of the real tangent bundle to Σ

splits as a direct sum of eigenspaces of J ;

TΣ⊗R C ' T(1,0)Σ⊕ T(0,1)Σ

Now, T(1,0)Σ is a complex line bundle holomorphically equivalent to the holomorphic

tangent bundle K−1
X (usually called the anti-canonical bundle). Taking the real part

defines a bundle isomorphism,

R : T(1,0)Σ→ TΣ. (A.1.1)

For example,

R

(
∂

∂z

)
=

1

2

∂

∂x

where

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
.

The map R is equivariant for the action of the imaginary unit on the fibers of T(1,0)Σ

and the action of J on the fibers of TΣ. That is to say, the mapping R identifies

T(1,0)Σ and TΣ as holomorphic vector bundles over X.
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On TΣ, define the Hermitian pairing

h(x, y) = g(X, Y )− ig(J(X), Y )

whose imaginary part is the Kähler form of the Kähler manifold (Σ, J, g). The map-

ping R from (A.1.1) is made fiberwise unitary by defining a Hermitian pairing q on

T(1,0)Σ via the recipe

q(U, V ) = h(R(U),R(V )).

Observe that with these conventions, the metrics q and g are related via,

q

(
∂

∂z
,
∂

∂z

)
=

1

4
g

(
∂

∂x
,
∂

∂x

)
.

As an example of how this arises, consider a holomorphic quadratic differential α

considered as a holomorphic 1-form with values in the holomorphic cotangent bundle

KX = T ∗(1,0)Σ (i.e. the canonical bundle). Then the associated dual form to α is

α∗ = q−1α = 4g−1α

where

q = q

(
∂

∂z
,
∂

∂z

)
=

1

4
g

(
∂

∂x
,
∂

∂x

)
=
g

4
.

Lastly, we note the relation between the Chern connection of the Hermitian metric

q and the Levi-Civita connection of the Riemannian metric g. Let Kg denote the

sectional curvature of g and ∇q the Chern connection of q. Recall this is the unique

connection such that ∇qq = 0 and the (0, 1) part of ∇q defines the holomorphic

structure on K−1
X . The curvature of the Chern connection satisfies:

iF (∇q) = i∂∂(log (q)) = i∂∂(log (g)) = Kg dVg
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where dVg is the volume form of g.
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