
ABSTRACT

Title of dissertation: CROSS-LAYER CUSTOMIZATION PLATFORM
FOR LOW-POWER AND REAL-TIME
EMBEDDED APPLICATIONS

Xiangrong Zhou, Doctor of Philosophy, 2008

Dissertation directed by: Professor Peter Petrov
Department of Electrical and Computer Engineering

Modern embedded applications have become increasingly complex and diverse

in their functionalities and requirements. Data processing, communication and mul-

timedia signal processing, real-time control and various other functionalities can

often need to be implemented on the same System-on-Chip(SOC) platform. The

significant power constraints and real-time guarantee requirements of these applica-

tions have become significant obstacles for the traditional embedded system design

methodologies. The general-purpose computing microarchitectures of these plat-

forms are designed to achieve good performance on average, which is far from optimal

for any particular application. The system must always assume worst-case scenarios,

which results in significant power inefficiencies and resource under-utilization.

This dissertation introduces a cross-layer application-customizable embedded

platform, which dynamically exploits application information and fine-tunes sys-

tem components at system software and hardware layers. This is achieved with the

close cooperation and seamless integration of the compiler, the operating system,

and the hardware architecture. The compiler is responsible for extracting applica-

tion regularities through static and profile-based analysis. The relevant application

knowledge is propagated and utilized at run-time across the system layers through

the judiciously introduced reconfigurability at both OS and hardware layers. The in-

troduced framework comprehensively covers the fundamental subsystems of memory

management and multi-tasking execution control.

CROSS-LAYER CUSTOMIZATION PLATFORM

FOR LOW-POWER AND REAL-TIME EMBEDDED
APPLICATIONS

by

Xiangrong Zhou

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Peter Petrov, Chair/Advisor
Professor Rajeev Barua
Professor Shuvra S. Bhattacharyya
Professor Bruce Jacob
Professor Chau-Wen Tseng

c© Copyright by

Xiangrong Zhou
2008

Acknowledgments

During the years of my Ph.D. study, so many dramatic changes have happened

in the school, in the outside world and in myself. I owe my gratitude to all the people

who have made it possible for me to complete this journey.

First and foremost I’d like to thank my advisor, Professor Peter Petrov for

giving me an invaluable opportunity to work with him on such interesting projects.

I really appreciate all his time, financial support and the advises he has given me. It

has been my great pleasure to work with and learn from Professor Petrov through

the years of study and research.

I would also like to thank Professor Jacob and Professor Barua for giving

me suggestions on my proposal. Professor Jacob’s advises on academic career and

Professor Barua’s suggestions on presentations are all helpful to me. I also own

great gratitude to Professor Bhattacharyya, Professor Qu, and Professor Jacob for

agreeing to serve on my dissertation committee and writing reference letters for

my academic job applications. I also owe my great thanks to Professor Tseng for

spending his valuable time to serve on my committee as dean’s representative.

I would also like to thank the ECE department for supporting me with the

Teaching Assistantship in the first two years, and the graduate school for supporting

me with the dissertation fellowship. Thank Professor Leandros Tassiulas, Professor

John Baras and Dr. Michael Hadjitheodosiou for giving me financial support in the

first two summers and leading me into the early research activities. I specially thank

Dr. Dan Balon, Dr. Tracy Chung, Maria Hoo and Vivian Lu at graduate office for

ii

helping me handle all the departmental rules and forms.

I would also like to acknowledge help and supports from my fellow graduate

student colleagues. The collaboration with Mr. Chenjie Yu and Ms. Alokika Dash is

really helpful to me on the multi-processor project I participated. I also appreciate

the helps and advises from many former ECE graduates: Mr. Chang Wang, Dr.

Hongjun Li, Dr. Zhu Han, Dr. Xiaojiang Du, Dr. Hong Zhao and Dr. Zhanfeng

Yue, Dr. Hui Li, Dr Yupeng Cui and Mr. Qigong Zheng. Their help had made

my early days of graduate study much easier. I also thank my soccer buddies at

Maryland for bringing me so much fun of playing pickup games and tournaments

together. I will definitely miss this part of my life the most after I leave Maryland.

I owe my deepest thanks to my family - my mother and father who have always

stood by me and guided me through my career, and have pulled me through against

impossible odds at times. Words cannot express the gratitude I owe them. Thanks

go to my brothers who had encouraged me and given their best support through all

the years.

It is impossible to list all, and I apologize to those I have inadvertently left

out.

iii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Motivation . 3
1.2 Hardware/Software Co-design . 6
1.3 Cross-Layer System Customizations 9
1.4 Contribution of the Dissertation . 13

2 Related Work 17
2.1 Low Power Design Techniques . 17
2.2 Memory Management . 20
2.3 Multitasking Management . 24

3 Cross-Layer Customization for Memory Management 30
3.1 Direct Address Translation . 30

3.1.1 Introduction . 30
3.1.2 Tagless Direct Address Translation 33
3.1.3 Compiler and OS Support for DTT Management 39

3.1.3.1 VPN-Partition Formation Algorithm 41
3.1.3.2 Stack and Heap Memory 49
3.1.3.3 DTT Management and Multi-Tasking Environments 52

3.1.4 Hardware Support . 55
3.1.5 Analysis and Discussion . 59

3.1.5.1 Real-Time Performance Improvements 59
3.1.5.2 Leakage Power . 61

3.1.6 Experimental Results . 62
3.2 Heterogeneously Tagged Cache . 75

3.2.1 Introduction . 75
3.2.2 Heterogeneous Cache Tagging - A Functional Overview 78
3.2.3 Write-Back and Write-Through Caches 84
3.2.4 Identifying the References to Shared Memory 87
3.2.5 Low-Power Synonym Alignment 91
3.2.6 Hardware Support . 94
3.2.7 Experimental Results . 98

3.3 Address Translation through Arithmetic Operations 110
3.3.1 Introduction . 110
3.3.2 Arithmetic Address Translation 112
3.3.3 Compiler and OS Support . 116
3.3.4 Hardware Support . 120
3.3.5 System Analysis and Discussion 122

3.3.5.1 Multitasking Support 122
3.3.5.2 Dynamic Memory 124
3.3.5.3 Real-Time Performance 124

iv

3.3.6 Experimental Results . 125
3.4 Interval Page Table . 131

3.4.1 Introduction . 131
3.4.2 Motivation . 133
3.4.3 Page Tables Overview . 137
3.4.4 The Interval Page Table . 140

3.4.4.1 IPT Organization . 141
3.4.4.2 IPT Manipulation 143
3.4.4.3 IPT Lookup . 146

3.4.5 Experimental Results . 151

4 Cross-Layer Customization for Multitasking Management 159
4.1 Introduction . 159
4.2 Motivation . 164
4.3 State Liveness and Preemption Deferral 168

4.3.1 Register Liveness Analysis . 169
4.3.2 Switch-Points and Blocks . 172
4.3.3 Live State Preservation . 175

4.4 Compiler-driven Context Switch (CCS) 177
4.4.1 Compiler and OS Support . 178
4.4.2 Hardware Support . 182

4.5 Register Mapped Context Switch (RMCS) 185
4.5.1 Compiler and OS support . 186
4.5.2 Hardware Support . 189

4.6 Experimental results . 192

5 Compiler-driven Register Re-Assignment for Temperature Control 205
5.1 Introduction . 205
5.2 Related Work . 209
5.3 Motivation for Temperature-Aware Register Re-Allocation 211
5.4 Temperature-Aware Register Re-Allocation Fundamentals 215

5.4.1 Register Name Reassignment (RNR) 218
5.4.2 Live Range Reassignment (LRR) 220

5.5 Register Re-Allocation Algorithms . 224
5.5.1 Set-Partition Heuristic for RNR 224
5.5.2 Live Range Reassignment Algorithm 226

5.6 Experimental results . 229

6 Conclusion 241

Bibliography 243

v

List of Figures

1.1 Moore’s law . 2

1.2 Feed-Back and Customization Design 12

3.1 TLB-based hardware address translation 33

3.2 DTT: Software-controlled address translation 33

3.3 Set of consecutive VPNs . 35

3.4 Indexing SRAM table with LSBs . 35

3.5 Two VPN partitions, each indexed by 2 LSBs 36

3.6 Mapping VPN partitions to DTT segments 39

3.7 VPN partition merging . 43

3.8 Pseudo-code of the VPN-partition formation algorithm 46

3.9 DTT index computation and DTT access 57

3.10 Hardware architecture . 58

3.11 Energy comparison (normalized) for set-associative organizations . . . 73

3.12 Energy comparison (normalized) for fully associative organizations . . 74

3.13 Using PID to eliminate aliasing with virtually tagged caches 79

3.14 Superset bits - overlap between virtual index and VPN 81

3.15 Conflicting cache indices for the case of synonym groups exhibiting
identical physical tags and virtual superset bits 81

3.16 Two processes sharing one data block; aligned virtual addresses . . . 83

3.17 Linear mapping from VPNs to PPNs 90

3.18 Two processes sharing one data block; non-aligned shared virtual
addresses . 92

3.19 The Synonym Offset Table (SOT) and the adders for converting su-
perset bits and VPNs . 93

vi

3.20 Overall hardware organization . 97

3.21 A data object forming a VPN-segment 113

3.22 Multiple objects forming a VPN-segment 113

3.23 Multiple VPN-segments within a task 114

3.24 Compiler support and setup code insertion 117

3.25 Mapping load/store instructions to VPN-segments 119

3.26 SAT table with offsets for PPN computation 121

3.27 Address translation architecture . 121

3.28 Energy reduction comparison . 130

3.29 Virtual memory architecture . 134

3.30 Traditional hierarchical page table organizations 137

3.31 Traditional inverted page table organizations 139

3.32 Page interval example . 141

3.33 IPT: An entry per page interval . 141

3.34 Adding an IPT mapping . 144

3.35 Removing an IPT mapping . 145

3.36 Hardware for IPT traversal . 146

4.1 Context-switch mechanism for preemptive multitasking. 164

4.2 Hardware register renaming . 166

4.3 Register live ranges and live state . 170

4.4 Application “hotspot” with two switch points and blocks. 172

4.5 Register liveness for EJ . 174

4.6 Register liveness for TRI . 174

4.7 Switch-points/blocks placement . 175

vii

4.8 Structure of the CCS live state preservation. 180

4.9 CCS Hardware Support . 183

4.10 RMCS methodology functional overview 186

4.11 Mapped register file organization . 188

4.12 Mapped register file architecture . 190

5.1 Thermal RC model . 206

5.2 Histogram of register accesses; Scalar compiler optimizations 211

5.3 Histogram of register accesses; Aggressive compiler optimizations . . . 212

5.4 A loop Control Flow Graph (CFG) and Register live ranges 215

5.5 Register name reassignment . 218

5.6 Live range reassignment (LRR) procedure 221

5.7 Overall algorithms for temperature-aware register reallocation 223

5.8 Pseudo-code for RNR set-partition heuristic 224

5.9 Pseudo-code for live range reassignment (LRR) procedure 226

5.10 Achieved register access distribution; Aggressive compiler optimizations239

5.11 Achieved register access distribution; Scalar compiler optimizations . 239

viii

Chapter 1

Introduction

Embedded systems have been extensively used in various markets. These

systems can be found in household electronics, office equipments, handhold and

mobile devices, and industry control systems. It is estimated that the embedded

processors occupy more than 90% of entire processor market, far more than their

general-purpose counterparts.

Moore’s law, which states that the number of transistors integrated on a single

chip doubles about every two years, has been holding true for the past forty years.

As shown in Figure 1.1. Chips with billions of transistors are becoming into reality

in the past two years. The previous board-level systems now are shrinking into

chip-level systems, which are called System-On-a-Chip (SOC). The proliferation of

nanometer technologies with ever decreasing geometry sizes has led to proportionally

unprecedented levels of SOC integration. The large number of transistors and the

high-speed clock frequency have provided powerful computation capability to the

SOC platform.

As the direct result, more and more application tasks can be mapped into one

SOC, which brings the system complexity to an unprecedented high level. The tasks

include data computation, communication and signal processing, real-time control

and various other types of applications, which show large diversity in terms of appli-

1

Figure 1.1: Moore’s law

cation property and system requirements. The underlying hardware platforms are

very difficult to be optimized for such diverse system requirements. In order to meet

all the system performance specifications and efficiently utilize system resources, as

well as fast time-to-market, lower design cost, and easier product maintenance, in-

tegration of multitude of embedded processor cores and other hardware accelerator

blocks with hardware and software co-development have been adopted.

However, many embedded platforms still contain a large number of general-

purpose mechanisms in the microarchitecture, system software and their interac-

tions. Such generalities typically result in excessive power consumption, low per-

formance, and pool real-time guarantee compared to a full-customized design. A

2

cross-layer system customization platform could dynamically integrate application

information into system software and hardware platform, thus could fine tune the

system to improve the performance and and resource utilization.

1.1 Motivation

Due to the large diversity of embedded system applications, the embedded

system designers have to trade off the advantages and disadvantages between hard-

ware and software design approaches. Many of the board-level system designs are

combinations of an microprocessor with memory and several hardware logic circuits

or peripherals.

The reconfigurable hardware logics dated back to PAL (Programmable Array

Logic), where a number of OR gates and AND planes are used to implemented

different combinational logic circuit [1, 2]. With the advances of the VLSI tech-

nology advances, CPLD(Complex Programmable Logic Device) and FPGA (Field

Programmable Gate Array) are used to implement more complex functions in the

hardware. Application Specific IC (ASIC) are fully customized with optimal per-

formance, low cost and small hardware area. In the past forty years, the academic

research and industry development on electronic design automation (EDA) have

revolutionized the design process and significantly increased the hardware design

productivity. The rich set of EDA tools basically cover almost every step of the

hardware design flow including circuit analysis and simulation, synthesis, place and

routing, testing and verification, packaging, etc. The development of hardware

3

description languages such as Verilog and VHDL makes todays digital hardware

development somehow similar to software programming although the knowledge re-

garding the underlying hardware platform is still necessary.

However, even with such abundant tools, hardware implementation processes

are still very expensive with the large initial development cost. The rigorous verifica-

tion and testing step makes the development cycle rather long compare to software

programming. The pure ASIC designs are not flexible for future design modifications

and upgrades. On the other side, a hardware design has tremendous advantages of

better performance due to parallelism, and lower power overhead and unit cost,

compared to pure software design. Thus it is usually used in large volume and

commodity or relatively mature applications.

In pure software design approaches, applications are implemented by means

of software programs running on microprocessor cores. This processor-based design

model is adopted from general-purpose processor system design. The overall sys-

tem includes several layers: the hardware layer includes processor microarchitecture,

memory and I/O devices; the operating system layer includes system functions such

as process scheduling and memory management. It also transparently supports all

the hardware resource sharing and provides a virtual machine interface to the appli-

cations; the application layer includes application programs and libraries, and the

corresponding compiler’s support. The academic research and industry development

on design of microprocessor architecture and embedded operating systems have been

very success. Today, the embedded processor commercial products range from very

low cost processors like Atmel’s 8051, AVR[3], to low-power ARM processor[4], to

4

relatively high-end PowerPC processor[5]. Special purpose processors such as Digital

Signal Processor (DSP) and graphic processor (GPU) have very high performance

for certain applications. For embedded operating systems, several products such

as VxWorks[6], embedded Linux[7], ThreadX[8], WinCE[9] and etc. have different

advantages and are being adopted by the application developers.

The advantages of processor-based software implementation is obvious because

of this vertical layered system design and software implementation of user applica-

tion: application software could be reused across platform, system integration and

test are easier than hardware approach, future upgrade and maintenance are more

flexible. However, even though most embedded operating systems are designed and

implemented with consideration of real-time performance and memory constraints,

the application performance and system power consumptions are still less optimized

than ASIC implementation.

In todays highly competitive market, embedded applications need to be de-

signed with multi-dimensional requirements in mind. On the business side, the

design cost and final product cost are the most influential issues in the market with

very low profit margins. Rapid time to market is also very important for the product

to lead the trend on both the business and the technical sides. The flexibility of the

selected implementation platform could enable new features to be added and thus

bring extra profits. It also reduces the design reuse cost. On the engineering side,

system performance and throughput are the most important design criteria since

many modern embedded applications such as wireless communication and multime-

dia processing require large computing performance. Power and energy efficiency are

5

also becoming extremely important, if not more than performance, not only to mo-

bile and hand-held device where battery life directly affects the product acceptance,

but also to office and household electronics because of today’s high cost of energy.

Real-time performance as well as system reliability and security are also very im-

portant system requirements, especially for critical applications such as automobile

control systems. The SOC (System-On-a-Chip) platform, which integrates multi-

ple processor cores and hardware function blocks, has been tremendously advanta-

geous due to the highly reduced cost, fast time-to-market, low energy consumption,

stronger performance, higher reliability, and easier product maintenance. On the

SOC platform, the microprocessor cores are either integrated with ASIC blocks or

FPGA blocks. The processor cores can be standard processor core such as ARM or

PowerPC, or customized such as Application Specific Instruction Processor (ASIP).

They can come in the form of either a hard-core or a soft-core implemented with

FPGA logic or synthesized beforehand for the specific process technology.

1.2 Hardware/Software Co-design

The embedded system design complexity combined with a very tight time-to-

market requirements has revolutionized the embedded system design process. The

concurrent design of hardware and software has displaced traditional sequential de-

sign. Furthermore, hardware and software design now begins before the system ar-

chitecture (or even the specification) is finalized. System architects, customers, and

marketing departments develop requirement definitions and system specifications

6

together. System architects define a system architecture consisting of cooperating

system functions that form the basis of concurrent hardware and software design.

Interface design requires the participation of both hardware and software developers.

The system integration and testing step consists of many individual steps.

Reusing components taken from previous designs or acquired from outside the design

group (Intellectual Property, or IP) is a main design goal to improve productivity

and reduce design risk. A concurrent design starting with a partially incomplete

specification requires close cooperation of all participants in the design process.

Hardware and software designers and system architects must synchronize their work

progress to optimize and debug a system in a joint effort.

Hardware/software co-design methodologies are critical in the design of such

complex SOCs. The first challenge is modeling and partitioning system functionality

between hardware and software. A major problem in the system partitioning process

is synchronization and integration of hardware and software design. This requires

permanent control of consistency and correctness. Hardware/software co-simulation

is required to have different level of granularity since register-transfer-level (RTL)

level hardware simulations are too slow for practical software simulation. The pro-

cessor, memory and hardware modules must have different abstract execution mod-

els for the co-simulation.

The next challenge is hardware/software co-synthesis. Specialized architec-

tures, such as DSP or micro-controllers, dominate the embedded processor market

because of their cost and power efficiency. However, automatically generated soft-

ware code is still not optimal compared to hardware solutions because of the large

7

overhead in the software implementation due to the microarchitecture complexity

and the memory wall. Porting functions between hardware and software implemen-

tation is also very difficult. Many high level synthesize tools such as MATLAB or

SystemC are developed and suitable for simple architectures and low performance

requirements.

Hardware/software co-verification is even more cumbersome as the test space

grows exponentially. The software and hardware modules impose different testing

granularity and requirements. Automatic and reliable system level testing, espe-

cially testing the communication interface between hardware/software boundaries

and processor/processor boundaries are still not mature enough for complex appli-

cation cases.

In overall, hardware/software co-design has made considerable progress in the

past few years. Co-simulation, co-synthesis, and co-verification for the SOC devel-

opment have large advantages in terms of cost, performance, power consumption

and reliability, compared the the board-level system design with multiple discrete

chips.

However, due to the heterogeneous application task and heterogeneous hard-

ware component that are mapped to the SOC, the system level management of

the software tasks and hardware component in the complex and dynamic run-time

environment are even becoming challenging. The existing system resource manage-

ment techniques are mostly inherited from general-purpose systems. Many of the

system resource management schemes such as memory management, multitasking

management are not optimized for these complex SOC platforms, and there exist

8

large system level performance overhead and power over-consumption.

In the next generation of SOC platform, there is strong need to new system

resource management techniques that could efficiently handle such complex and dy-

namic embedded systems. One way to achieve such intelligent management schemes

is to dynamically fine-tune the system components to the application property and

system requirement in the runtime, so that the overall system performance is im-

proved and power consumption reduced with little system overhead, which motivate

my research topic of the cross-layer system customization for low-power and real-

time embedded applications.

1.3 Cross-Layer System Customizations

Fundamentally, a general-purpose processor architecture is a universal compu-

tation engine with a micro-architectural design targeted to achieve good performance

and power characteristics on average across a large range of possible programs.

While good on average, these micro-architectural components are far from the op-

timal performance and power points for any particular application. Furthermore,

system softwares must always assume worst-case scenarios in terms of system-level

information. For instance, to meet the real-time requirement, all tasks are scheduled

assuming worst time execution time(WCET). For specific application, this over de-

sign under worst-case assumption would result in many waste utilization of system

resources.

In embedded processors which adopt super-scalar micro-architecture, program

9

properties such as branches, data reuse are typically dynamically predicted by run-

time traces. Due to limit hardware resource availability and program intrinsic com-

plex logic, this prediction could result in poor estimation of the the real program

parameters while adding substantial power consumption.

Certain domain specific processors in which the micro-architecture are de-

signed to focus on certain domains of applications such as digital signal process-

ing, networking switching. Such processors support many general-purpose type of

instruction set with enhance of dedicated instruction and micro-architecture sup-

port optimized for the representative applications from this domain. For exam-

ple, as audio/video compression standard typically utilized various DSP algorithm

such as FIR/IIF filtering or FFT transformation, a DSP micro-architecture typi-

cally includes bit-reverse register addressing and circular buffer addressing mode to

speedup the memory access. In high end DSP and graphic processor which utilize

VLIW(Very Long Instruction Word) architecture, many Single Instruction Multiple

Data (SIMD) instructions are included in the ISA and very complex complier tech-

niques are designed to explicitly perform Instruction Set Parallel (ILP) to speed up

the performance.

To further improve the performance for specific application, a type of Applica-

tion Specific Processor (ASP) has been developed in the past few years. In typical

implementation of an Application Specific Instruction Processors (ASIP), a baseline

processor micro-architecture is used that can be automatically enhanced with cus-

tomized instructions to significantly improve performance. Some FPGA-based ASPs

have been proposed in [10], where the whole processor core can be reprogrammed

10

at any time for the target application requirements, including the instantiations of

customized pipelines.

The lack of deterministic application knowledge within the pre-designed sys-

tems is the fundamental difficulty in such types of system optimizations. If such

application specific information can been extracted and provided to the run-time sys-

tem, the overall system performance and efficiency can be significantly improved.

The compiler could utilize the application information to generate optimal code,

the operating system can optimally schedule the tasks for execution and perform

context switches efficiently. The micro-architecture can be designed and fine-tuned

so that power efficiently is significantly improved. As shown in Figure 1.2, this

customization includes the feed-back steps and the customization through all the

systems layers including application, operating systems and hardware architecture.

To fine-tune the system in the run-time, the feed-back path will extract specific

application information either through profiling or run-time monitoring of system

properties. The application information is analyzed and partitioned into customiza-

tion module and distributed into each layer depending the targeting optimization

objectives. This could be inserting certain probe code in the binary, or parameter

tables to reconfigure the hardware blocks.

With the cooperation of complier, operation system, and hardware architec-

ture, the proposed cross-layer application customizable platform dynamically ex-

ploits application information and fine tunes the system software and hardware

platform. The compiler is responsible for extracting application regularities through

static and dynamic analysis, especially within hot-spot regions which are the most

11

Figure 1.2: Feed-Back and Customization Design

frequently accessed parts of the application program and where computation is most

intensive. A well known rule-of-thumb in computer architecture is that a program

typically spend 90% of its execution cycles only in 10% of its code. Such hot-spots

usually consist of frequent executed loops or functions, such as various algorithmic

(numerical and signal processing) kernels. Because such hot-spot regions of code also

potentially contain more regularity, an efficient customization of these hot-spots can

significantly improve the performance and energy efficiency.

The system functions within the OS not only can be dynamically adjusted to

application requirements, but also in their interaction with both the application and

the hardware layers. At hardware architecture level, the right kind of reconfigura-

bility has to be incorporated, since allowing complete FPGA-like reconfigurability

would lead to a significant power and performance overheads. The right level of

programmability must be identified so that all the relevant application properties

12

and regularities can be efficiently captured with minimal power, performance, and

area impact. This can be efficiently achieved since most of the relevant application

information regarding architectural components like caches and TLBs can be easily

represented in a very regular way.

1.4 Contribution of the Dissertation

The objective of my Ph.D. research is to investigate application customization

techniques and incorporate them into a system-level customization platform. The

targeted sub-systems that we focused are mainly complex system management ser-

vices, such as memory management and multitasking management, which typically

require system-level information and could not be optimized by software or hard-

ware alone. The substantial customization method will discussed and implemented

in simulation tools. Then the overall experiment will by collected and evaluated in

terms of performance improvement and power reduction.

Virtual memory has been adopted in general-purpose system for abstraction

of memory management, which transparently provides services such as memory

reallocation, data sharing and memory protection to application programs. The

general-purpose design of virtual memory support requires the cooperation of sys-

tem software which maintains page tables that hold all the translations mappings

between each virtual address and its corresponding physical address, and a hard-

ware cache(TLB, Translation Lookaside Buffer) which caches the most frequently

used translation entry. However virtual memory would be beneficial to embedded

13

system, the non-deterministic TLB access time due to the frequent TLB misses or

even page table lookup misses, as well as the excessive energy consumption overhead

of TLB hardware accessed in every memory access, have been major obstacles for

many embedded processors to support virtual memory in multitasking systems.

I have investigated several customization techniques to facilitate the adop-

tion of virtual memory in low-power embedded systems. Similarly to scratch-

pad memory(SPM,on-chip SRAM) to replace cache for low-power processor, Direct

Translation Table (DTT, a small on-chip SRAM) was proposed to replace TLB to

provide deterministic and low-power translation access [11, 12]. Application address

mapping information are collect and merged into compact partitions to share the

DTT with high utilization. The application and OS work together on prefeteching

and sharing partitions on the DTT. When the partitions of consecutive memory

block such as large data array or task stacks are mapped consecutively in physical

space, the physical page translation procedure is logically adding an offset to its cor-

responding virtual page number. For such special case, the table lookup can then be

reduced to an simple parallel adder hardware to reduce power consumption [13, 14].

In general-purpose processor with cache, physical address translation is necessary

for every memory access as virtual addressing could possible result in cache aliasing

problem when same virtual address in different applications are mapped to different

physical location, and cache synonym problem when different virtual addresses are

mapped to the same physical address (caused by data sharing). Extending virtual

address with process ID could resolve the former, we investigated the technique that

embeds application sharing information in instructions and only translate physical

14

address only for possible shared data with the help of hardware differentiating cache

accesses [15, 16]. A special structured page table that compresses multiple trans-

lation entries of the same consecutive mapped segment into one wider entry was

investigated for embedded systems where memory remapping are very rare cases

[17].

To respond to frequently-triggered asynchronous events, preemption based

multitasking systems are adopted in many real-time embedded systems. Each switch

involves large number of memory accesses, as operating system will first save the

context of current task(preempted task) and load the context of next highest-priority

ready task(preempted task). The high frequency of context switches not only af-

fect the throughput of system effective instruction, but also increase each task’s

response time. By analyzing the live register utilization through CFG(Control Flow

Graph)’s paths and enabling switches at the point with minimal live sets, we ef-

fectively reduce necessary live context size. Deferring switches to nearest minimal

point by customized hardware and preserving the minimal live set by customized

OS callback functions enhance promptness of preemption, and increase the effective

instruction throughput as useful application instruction are still being executed dur-

ing deferral [18, 19]. To further reduce memory accesses of preserving contexts, a

small pool of spare register pages are introduced to immediately remap live context

[20]. The page level remapping is done through simple hardware structure, while

the live registers are packed into small regular pages after the compiler’s register

allocation phase.

Temperature hot-spots have been known to cause severe reliability problems

15

and to significantly increase leakage power. Due to frequent access and relatively

small area, the register file has been previously shown to exhibit the highest temper-

ature in many modern high-end embedded processor, which makes it particularly

susceptible to faults and elevated leakage power. We show that this is mostly due

to the highly clustered register file accesses where a set of few registers physically

placed close to each other are accessed with very high frequency. A compiler-based

register assignment methodology, which purpose is to break such groups of registers

and to uniformly distribute the accesses to the register file is investigated [22].

16

Chapter 2

Related Work

2.1 Low Power Design Techniques

The overall chip power consumption as the sum of dynamic and static power

can be expressed by the Equation 2.1 [23]:

P = A · C · V 2 · f + V · Ileak (2.1)

The first term is the dynamic power lost from charging and discharging the

processors capacitive loads: A is the fraction of gates actively switching and C is

the total capacitance load of all gates. The second term models the static power

lost due to leakage current, Ileak. The power lost to the momentary short circuit

at a gates output is ignored here since the loss is relatively small; it contributes to

dynamic power loss, and the equations first term can absorb it, if necessary.

When dynamic power is the dominate the leakage power as it has been and as

it remains today in many less aggressive fabrication technologies, Equation 2.1 can

be approximated by the first term. Reducing the supply voltage with the factor of

V2 is the most effective way to decrease power consumption. Scaling down the clock

frequency, using low power transistors, and reducing switching activity will reduce

f, C and V respectively so that the dynamic power can be reduced proportionally.

Leakage current, the source of static power consumption, is a combination of

17

sub-threshold and gate-oxide leakage: Ileak = Isub +Iox, where sub-threshold current

and gate-oxide current can be expressed by Equation 2.2 and Equation 2.3:

Isub = K1 · W · e−Vth/nVθ · (1 − e−V/Vθ) (2.2)

where K1 and n are experimentally derived, W is the gate width, and Vθ in

the exponents is the thermal voltage. At room temperature, Vθ is about 25 mV; it

increases linearly as temperature increases. If Isub grows enough to build up heat, Vθ

will also start to rise, further increasing Isub and possibly causing thermal runaway.

Turning off the supply voltage could sets V to zero so that the factor in parentheses

also becomes zero. Increasing the threshold voltage can have a dramatic effect of

reducing the sub-threshold current in even small increments.

Iox = K2 · W · (V/Tox)
2 · e−αTox/N (2.3)

where K2 and α are experimentally derived. Tox is oxide thickness. The

research and development of community high-k dielectric gate insulators is to reduce

this leakage current.

The direct method to reduce the power consumption is to target parameters

at circuit level. In DVFS(Dynamic Voltage and Frequency Scaling) design, the

supply voltage and the clock frequency are reduced to at minimum level when there

is no critical task running. Various DVFS techniques have been both proposed in

academia[24, 25] and developed in industry [26, 27]. Find appropriate transistor

size [28] or redesign complex gate[29] will change the load capacity or reduce the

18

total number of transistor count, thus reduce the power consumption. Clock gating

technique which pauses the clock input to the synchronous transistors when the

function units and register files in the system are not active in the near future could

significant reduce the power consumption [30].

Architecture level power reduction focus on larger granularity of power man-

agement. The power overheads of each part are analytical profiled to accurately

estimated the power distribution in the system. Various power analysis and esti-

mation techniques has been discuss in [31, 32]. The next step is to either replace

that unit with alternative low power architecture design [33], [34]. Low power cache

architectures have been proposed in [35], [36] as well.

Interconnect power reduction techniques focus on the reducing redundant

power consumption in inter module communication activities in the SOC. Code

compression techniques which compress the code before transit to bus and decom-

press after received from bus could significant reduce interconnect activity although

there is some compression power overhead[37]. Bus encoding techniques in which

the context of the data and frequency of each data is analyzed, the data transmitted

on the bus is encoded to a power efficiently format and decoded at the other end of

bus. Thus per activity cost is saved[38].

The software level or system-level power management techniques focusing the

efficiency of utilizing the hardware components. For example, the compiler could

analyzed the memory ambiguity and save the memory load/store activity[39]. The

power-aware scheduling approach in [40] combined the DVS technique and OS

scheduling algorithm to reduce the overall run-time power consumption. In [41],

19

the author applied the application memory access information to the compiler and

the cache architecture to reduce the total cache access energy.

2.2 Memory Management

The memory subsystem has been known to be one of the major bottlenecks

in terms of power and performance not only for general-purpose computing systems

but also, and even more so, for the typically resource constrained embedded systems

[42, 43].

Virtual memory [44, 45] has been well known as an elegant approach to ab-

stract from the application the complexity of memory allocation, and code/data

relocation and sharing, while efficiently providing memory protection between user

applications and system software; all these being completely transparent to the ap-

plication and controlled by the operating system (OS). Such features would tremen-

dously benefit many embedded systems, if virtual memory is to be supported for

them. In recent years many high-end embedded processors have started to employ

a Memory Management Unit (MMU), such as Intel XScale [46], ARM720 [47], and

ARM9 [48]. The MMU is a hardware structure responsible for translating addresses

generated by the processor to physical memory addresses. General-purpose virtual

memory, however, requires unacceptably high amounts of power and introduces ex-

ecution time nondeterminism, thus rendering itself unusable for a large number of

embedded applications with stringent power constraints and real-time requirements.

When virtual memory support is present, the program accesses a virtual ad-

20

dress space partitioned into pages, which are referred to as virtual pages and are

identified by their Virtual Page Number (VPN) which constitutes a large fraction of

the virtual address most significant bits. During each memory access a translation is

needed to map the virtual address into a physical one. The translation is performed

at a page granularity in order to control the complexity of the translating mecha-

nism. The Translation Lookaside Buffer (TLB) is a hardware cache responsible for

capturing the most recently used Page Table Entries (PTE) for dynamic virtual ad-

dress translation with no intervention of the system software. The mapping between

virtual and physical addresses is typically maintained by the OS and established by

the OS loader, dynamic linker and memory manager. TLB misses typically result

in trapping into the OS where the missing PTE is retrieved from the page table

maintained by the kernel. As this process is complex and time consuming, the TLB

is usually implemented as a highly associative cache structure so that misses are

minimized, which, in turn, results in significant amount of power consumption. In

[49] it has been demonstrated that the TLB power constitutes 20%-25% of the total

cache power consumption, which in turn has been shown to comprise in some cases

around 50% of the total chip power [50]. It has been shown through direct measure-

ments [51, 52] that around 17% of the total on-chip power for the StrongARM and

the Hitachi SH-3 is contributed by the TLB.

The need for energy costly address translation on each memory reference, as

well as the introduced execution time uncertainty caused by the cache-like TLB

lookups, have been the two major factors preventing the introduction of virtual

memory and its benefits to low-power and real-time processors.

21

The importance of the TLB in terms of performance and power has been rec-

ognized in the microarchitecture industry and research communities. Consequently,

techniques for minimizing the power and performance overhead of TLBs have con-

stituted the focus of a number of research activities in the recent years. A low-power

TLB organization for chip-multiprocessors has been proposed in [49]. By incorpo-

rating a special Page Sharing Table to the TLB and using virtual caches, the authors

reduce the amount of TLB activities, at the same time eliminating a large number

of snoop accesses. A similar work in the direction of employing virtual caches with

specialized TLB support is presented in [53]. The authors propose replacing the

TLB with the more scalable and power efficient Synonym Lookaside Buffer, as it

stores only the current synonym instances. In [51], the authors evaluate the power

consumption of a number of TLB organizations and propose a new cell implemen-

tation for low-power set-associative TLBs. A low-power and high-performance TLB

architecture has been proposed in [54]. The result of each TLB lookup is latched and

prior to accessing the TLB the previously latched address translation is first looked-

up, thus eliminating the TLB access if that same virtual page has been accessed in

the previous memory reference. The concept of synonymous translations has been

introduced in [55]. Superscalar processors can execute multiple memory references

per cycle, out of which many refer to identical virtual pages; such synonymous TLB

accesses within a cycle and across cycles are identified and the TLB lookups are

compacted to the minimum needed. In [56] the TLB and cache accesses are par-

titioned according to their semantic such as static, global, stack, and heap data.

The unique behavior and locality of each reference partition is exploited and each

22

stream redirected to its micro-TLB. A recent approach [57] proposes reconfigurable

decoder structures for generating cache indices for direct-mapped cache structures.

Cache line utilization is balanced and large number of conflicts eliminated thus ap-

proximating the functionality of highly associative caches yet at much lower power

consumption. Another recently proposed approach for minimizing cache indexing

conflicts was described in [58]. The cache index in this approach is computed by

selecting a certain number of bit positions from the address. Which bits positions to

select is determined during compile-time and a special hardware structure is config-

ured prior to executing the program so that the cache index is formed by selecting

the identified bit cluster. A TLB organization is proposed [59] that dynamically

supports up to two pages per entry with a banked fully-associative structure. Such

an organization benefits applications where larger pages can be used to minimize

the translation overhead. In [60], the TLB accesses are redirected to a register file

which holds a few recent TLB entries. Due to the small size of the register file

compared to the VPN footprint, the compiler needs to reconstruct the code in or-

der to minimize the overhead of replacing register entries at run time. Aspects of

virtual memory have been modeled in software through a compiler inserted code in

the application. Such an approach, where memory protection is implemented by the

compiler is proposed in [61].

When virtual memory and caches coexist, techniques for power reduction and

performance improvements for caches and TLBs together needed to considering the

overall optimization. Cache conscious memory layouts have been explored for both

code [62, 63] and data [64, 65]. In [66], the authors have proposed the U-cache archi-

23

tecture which maintains a reverse translation information of the cache blocks that

belong to unaligned virtual pages only in order to handle the synonyms efficiently.

A low-power physically-tagged cache has been proposed in [67]. A minimal set of

tag bits is dynamically identified per hot-spot and used to access the cache instead

of complete tags. In [52] the authors have proposed an instruction address trans-

lation architecture, which places the most recent I-TLB translation in a register,

which is subsequently being reused until the instruction memory page is changed.

For periods of time when instructions are fetched from the same memory page, the

translation register is used to obtain the physical address instead of the I-TLB thus

achieving faster and less power consuming instruction address translation. Compiler

techniques have been presented in [68], which maximize the reuse of the software-

controlled translation registers. Methodologies which emulate the address transla-

tion process in software have been recently proposed in [69]. In these approaches

the compiler introduces code for run-time checks in order to enable applications to

share physical memory for their stacks and to prevent any out-of-boundary memory

accesses.

2.3 Multitasking Management

Many modern embedded applications, such as personal organizers, cell phones,

and various hand-held devices, constitute complex computing systems where mul-

tiple execution tasks cooperate in implementing the product specification. Due

to market demands, a large number of capabilities need to be supported, such as

24

aggregated multimedia data processing (speech, audio, video), communication pro-

tocols (GSM/CDMA, VoIP, Bluetooth, CAN), security functions, user interfaces,

and many others. The utilization of embedded processors for real-time and time-

critical control applications have been growing rapidly. The modern automotive

industry, for instance, has adopted the approach where tens to hundreds of such

processors are used throughout a single automobile [70]. They are used for trac-

tion control, anti-lock brake systems, engine control, and many other control and

time-critical tasks. Many real-time data acquisition and processing systems such as

sensor nodes and networks, impose strict real-time constraints and response time

in order to capture, process, and identify rapidly appearing objects and physical

phenomena. At the same time, all this processing power needs to be achieved with

extremely energy-efficient and low-cost embedded processors.

The inherent multi-tasking nature of these applications has led to implementa-

tions where multiple software tasks are mapped for execution on a high-performance

embedded processor such as the Intel XScale [46] and the ARM9 [48], which offer

multi-tasking support in the form of MMUs and hardware timers, and readily avail-

able operating systems (OS) which utilize this hardware to implement various forms

of multi-tasking.

The two widely adopted schemes for task switch control are the cooperative

and the preemptive multi-tasking. In cooperative multi-tasking, the task voluntarily

releases the control of the CPU to the OS at certain points of its execution. This

release typically occurs when the task finishes execution or when the task compu-

tation load is low and is waiting for a lengthy I/O operation. Such an approach is

25

followed in TinyOS [71] where tasks are executed in a manner of run-to-completion.

In this approach, longer tasks need to be partitioned into shorter ones. As pointed

out in [72], such run-to-completion scheme can cause problems with meeting real-

time constraints, as it is not possible to partition many tasks, which can result into

a situation where a single task occupies the CPU for a long time. The cooperative

multitasking paradigm is further explored in [73], where the authors have proposed

to integrate multiple threads into a single thread statically during compile time. The

benefits of cooperative multitasking for networking applications have been analyzed

in [74]. Even though these approaches have the advantage of avoiding nondeter-

ministic context switch overheads, an extra limitation on the dynamic behavior is

created as they require that all preemption points are known during compile time.

The degraded responsiveness to asynchronous events has been the major disadvan-

tage of cooperating multitasking.

In preemptive multi-tasking the OS can pause a low-priority task and assign

the CPU to a higher priority task - an OS controlled event referred to as preemption.

Preemptive multi-tasking relies on a timer to generate interrupts at regular time in-

tervals. When such an interrupt occurs, the execution control is transferred to a

kernel routine that determines whether a task switch needs to be performed and,

subsequently, to perform the context-switch. As this approach has the distinctive

advantage of better responsiveness and stability, most of real-time scheduling algo-

rithms and OS multitasking support are based on it [75, 76]. However, the frequent

preemptions interrupt the normal task execution and bring extra performance and

power overheads in the form of cycles needed to preserve and then restore the task

26

context. The task context includes the entire register file and all the status registers

such as the Program Counter (PC) and the Stack Pointer (SP); its size is by far

dominated by the register file. As task preemption exhibits asynchronous behavior,

the OS kernel must be conservative and preserve/restore the entire state.

Due to cost and power constraints the majority of modern embedded proces-

sors follow the RISC and VLIW paradigms. In these architectures, and even more

so in VLIW, the register file is traditionally very large in order to enable aggressive

compiler optimizations targeting instruction parallelism and execution throughput.

A typical modern VLIW architecture [77] features a general-purpose register file of

size from 64 to 256. It has been shown [78] that for some short tasks responsible to

react and process data samples in sensor networks, the context switch overhead can

be up to 30% of the total execution cycle.

Instead of having a distinct physical register file for each task, another hard-

ware solution is to have a relatively small ISA-visible set of registers, while imple-

menting a significantly larger physical register file. This organization is illustrated

in Figure 4.2. At run-time, each virtual register is renamed to a free physical regis-

ter. This approach is very popular in superscalar processors, such as Intel Pentium

4 [79] and Alpha 21264 [80]. Such hardware register renaming is mostly used to

exploit the available ILP in the program. Context switches are fast as typically only

a small part of the physical register file needs to be preserved in memory. However,

due to its per-register granularity and the fact that the renaming hardware needs to

be activated at every cycle, the approach suffers from excessive power consumption

and as such is not applicable to embedded systems. With a similar objective, in [81]

27

the physical register file is implemented as a cache that captures a large number

of virtual registers. Fast access to subroutine and multithread contexts is achieved

with a non-trivial power overhead.

The notion of fast context switch point has been first introduced in [82]. Each

instruction is marked with a special bit to indicate whether a fast context switch is

possible at that point. A fast context switch point is defined as an instruction where

all scratch registers are dead. Scratch registers are a subset of all the registers which

are caller-saved across function call boundaries; the context switch mechanism saves

and restores all the remaining non-scratch registers. Consequently, this is a ”all-or-

nothing” approach targeting old architectures with rather small register files and no

register windowing. VxWorks [6], on the other hand, provides a special hardware

context for interrupt service code in order to avoid preserving the task context,

and thus improving responsiveness to various system generated events. In [83], the

authors have proposed a Simultaneous Multi-Threading platform with mini-thread

execution. This approach, however, introduces a non-trivial hardware overhead. In

[84], the authors have proposed to reduce the task context in the static OS by finding

the live set of each task and merge the set by using the preemption priority infor-

mation. The authors in [74] utilize and explore cooperative multi-threading instead

of asynchronous preemption. Other research has shown that for some applications

with known set of tasks and well known run-time characteristics and interactions,

an efficient cooperative multitasking system can be synthesized through software

thread integration [85, 86]. In a more dynamic system, however, with preemptive

multitasking, the active task may have to be suspended at arbitrary point so that

28

another task is placed for execution. Even though the task switch overhead is re-

duced, the system responsiveness is limited as the compiler must statically decide

on the way tasks are interleaved.

29

Chapter 3

Cross-Layer Customization for Memory Management

Virtual memory [44, 45] has been well known as an elegant approach to ab-

stract from the application the complexity of memory allocation, and code/data

relocation and sharing, while efficiently providing memory protection between user

applications and system software; all these being completely transparent to the ap-

plication and controlled by the operating system (OS). Such features would tremen-

dously benefit many embedded systems, if virtual memory is to be supported for

them. In recent years many high-end embedded processors have started to employ

a Memory Management Unit (MMU), such as Intel XScale [46], ARM720 [47], and

ARM9 [48]. The MMU is a hardware structure responsible for translating addresses

generated by the processor to physical memory addresses. General-purpose virtual

memory, however, requires unacceptably high amounts of power and introduces ex-

ecution time nondeterminism, thus rendering itself unusable for a large number of

embedded applications with stringent power constraints and real-time requirements.

3.1 Direct Address Translation

3.1.1 Introduction

In general-purpose architecture designs, the assumption is that a large va-

riety of programs are to be executed and that there is no program information

30

made available to the microarchitecture prior of its execution. It is also assumed

that the program to be executed could come in a binary only form. Embedded

processors and systems, however, have the distinctive advantage of complete ap-

plication knowledge, as the embedded software is usually developed concurrently

with the hardware design or is available in a source code format. The energy-

efficient and time-deterministic address translation schemes outlined in this section

are techniques that with the help of the compiler and the operating systems exploit

dynamically such application-specific knowledge.

Through the utilization of application-specific information regarding the vir-

tual memory footprint of the application, the set of VPNs accessed by the program

is partitioned into groups so that by using only a small number of least significant

VPN bits as an index into a special hardware translation table, a conflict-free, and

thus tag-less lookup can be achieved. This not only results in very low-power address

translation, but also to highly predictable execution times as the conflict free Di-

rect Translation Table (DTT) access guarantees fast and time-deterministic address

translation with no intervention of the OS for the majority of load/store instructions.

This property is of great importance for real-time applications, where a worst-case

execution time analysis of the program code is performed in order to guarantee the

completion of certain computation within the pre-specified time deadlines.

The proposed methodology relies on the combined efforts of compiler, operat-

ing system, and hardware architecture to achieve both significant power reduction

and deterministic address-translation times. It has been shown that any application

program spends most of its execution times in a few relatively small parts of its code,

31

typically corresponding to loops or functions. Such parts of the code are usually

referred to as phases of hot-spots [87, 88]. By targeting the application hotspots,

practically all the benefits from the proposed technique can be achieved with only a

low-cost hardware support needed to capture the information regarding the memory

utilization. Consequently, the proposed techniques are applied on the application

hot-spots, while for the rest of the infrequently executed part of the applications, the

generic address translation mechanism is used. Upon entering or exiting a hot-spot,

the compiler inserts a special setup code which stores certain information into spe-

cial registers and tables implemented as a part of the specialized hardware support

and, thus, informs the hardware that a hot-spot has just been entered.

The utilization of TLB for address translation is analogous to the cache utiliza-

tion in embedded processor, where the tag operations introduce significant power

consumption and non-deterministic access time due to possibility of conflicts. In

many real-time systems, embedded processors with scratch-pad memory are rather

used. Scratch-pad memories are SRAM memories mapped into the physical address

space of the processor. Compared to caches scratch-pad memories provide for deter-

ministic performance and energy efficiency. Various software controlled schemes for

scratch-pad memory have been proposed and proved effective for data caching func-

tionality [89, 90, 91, 92, 93], providing for fast and low-power data access. The large

or difficult to allocate in scratch-pad data arrays can still utilize the services of hard-

ware data cache. The mechanism replaces the majority of TLB cache-like accesses

with software-managed direct-indexed SRAM table, thus offering energy-efficient

TLB functionality with deterministic translation times. By effectively utilizing ap-

32

Physical
Addr.

TLB

Physical
Addr.

Virtual
Addr.

Page Table
Traversal

Processor

Miss

Hardware Software

Data Data Scratchpad

Access Cache Memory

Address TLB Proposed

Transl. DTT

Figure 3.1: TLB-based

hardware address transla-

tion

Figure 3.2: DTT: Software-

controlled address transla-

tion

plication information regarding the virtual pages used in the address translation

process, a direct table with no tag arrays is used to avoid the energy overheads

and nondeterministic times caused by conflicts in the TLB. In contrast with the

other approaches, the technique that we propose does not trade-off performance for

power. On the contrary, the proposes technique as it eliminated accessed to the

TLB for most of the VPN accesses, it drastically reduces the number of TLB misses

and thus slightly improves performance and significantly improves the execution

time predictability - a characteristic of great importance to any real-time embedded

system.

3.1.2 Tagless Direct Address Translation

The role of the TLB is to cache the most frequently requested virtual to phys-

ical address translation. After a virtual address is generated by the processor, the

33

TLB is looked up in order to determine the physical address as shown in Figure 3.1.

In the case of a TLB miss, a page table traversal procedure is activated in order

to find the correct translation. The page table traversal can be implemented in

either hardware or software. The TLB is a cache-like structure, which captures the

most frequently requested page table entries. Because of its cache-like organization

and possibility of conflicts, the TLB contains tag arrays which are read and com-

pared against the accessed VPN to determine whether the TLB look-up is a hit

or a miss. The possibility of conflicts and the existence of the tag arrays and tag

operations are the reasons for the excessive power consumption and the difficulty in

estimating prior to program execution whether a TLB access will hit or miss [94, 95].

Clearly, this situation is very similar to data caches and their high power consump-

tion and difficulty in statically analyzing their behavior. To resolve these issues

of data caches, scratchpad memories have been used when deterministic execution

times are needed together with low-power requirements. The proposed DTT-based

address translation scheme is somewhat analogous to scratchpad memories for data

caching as illustrated in Figure 3.2. The DTT is software-controlled and the trans-

lation entries are allocated into it in a way, which enables direct indexing, hence

provide for energy-efficient and time-deterministic address translation.

The set of virtual pages allocated to the application code and static data is

available after compiling and linking the program. The starting virtual address of

the stack data is available as well; if memory is dynamically allocated, the particular

VPNs are determined and known to the OS memory manager. The proposed address

translation scheme exploits this information available to the compiler/linker and to

34

01
10
11

00
PTE1
PTE2
PTE3

PTE0

SRAM indexed
with 2 LSBs

PTE1
PTE2
PTE3

PTE0
01
10
11

00

 VPNs PTEs PTEs

000110
000110

000110

VPN<−>PTE

000110

PTE1
PTE2
PTE3

PTE0

SRAM indexed
with 2 LSBs

000110
010010
011111

000110
01
10
11

00
PTE1
PTE2
PTE3

PTE0
01
10
11

00

 VPNs PTEs PTEs

VPN<−>PTE

Figure 3.3: Set of consecu-

tive VPNs

Figure 3.4: Indexing SRAM

table with LSBs

the operating system in order to judiciously allocate the translation entries into

the DTT. The DTT is subsequently accessed in a manner similar to a scratchpad

memory.

If the possibility of TLB conflicts can be avoided through a judicious analysis

of the VPN set, then a direct indexing for finding the PPN, free of any tag opera-

tions, can be achieved. Figure 3.21 shows an example where the compiler/linker has

identified that only four consecutive data virtual pages can be accessed through-

out the subsequent program execution. It can easily be seen that among all the

VPN bits, the two Least Significant Bits (LSBs) are enough to differentiate the four

VPNs. Consequently, these two LSBs can be used as an index into a translation

table, where the VPNs will be mapped into the table in a conflict-free manner. It

is evident that for any set of n consecutive VPNs, the dlog2 ne LSBs can be used

as an unique identifier for any of the VPNs and as such they can be used as index

to a table that stores information for any of the VPNs. A slightly more complex

example is illustrated in Figure 3.22, in which four distinctive and not consecutive

virtual pages are accessed. Although they are not consecutive, their two LSBs are

still enough to uniquely distinguish them. Consequently, only these two bits of the

35

00
01
00
01
10
11
10
11

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

00
01
10
11
00
01
10
11

SRAM with 2 partitions
each indexed by 2 LSBs

111011

011011

010110
010110

000110
000110

011011

111011

 VPNs PTEs PTEs

Partition 1

Partition 2

VPN<−>PTE

PTE0
PTE1

PTE6
PTE7

PTE4
PTE5
PTE2
PTE3

Figure 3.5: Two VPN partitions, each indexed by 2 LSBs

VPN can be used to form an index into a 4-entry memory block which holds the

physical page addresses of these virtual pages, as shown in the figure. By avoiding

the VPN tag look-up and using only these two bits as an index there would be no

performance implications, while the overall reduction on the TLB power consump-

tion is to be quite significant. All the power associated to the VPN tag arrays, the

corresponding sense amplifiers, and the comparator cells is eliminated.

In the above examples not only is the power reduced but also the address

translation timing for these VPNs becomes completely deterministic as by allocating

the translation information for each VPN at the appropriate location in the table it

can be guaranteed that the translation for these VPN will always complete within

a cycle. This timing determinism is extremely important for real-time application

where worst-case performance analysis need to be performed in order to guarantee

that a certain processing is completed within a pre-specified time deadline.

The fundamental idea of the proposed approach is to identify such a conflict-

free indexing scheme and to ensure a conflict-free allocation of the translation infor-

mation in order to avoid the power consuming VPN tag operations and to provide

36

for fast and deterministic address translation times. Given a set of n data VPNs,

there exists the minimal number m of VPN LSBs that could differentiate these

VPNs and thus be used as an index. Even more importantly, how efficiently will

the introduced translation table be utilized after storing the translation entries of

each VPN in such a 2m sized memory. The above examples show ideal situations

where a minimal number of index bits are used and since the number of VPNs is

a power of two, the entire index space is utilized. However, in many cases if no

additional measures are taken then the utilization of the translation table could be

quite low, or at worst it may even be impossible to capture all the translation entries

because of the table limited size. Such an example is depicted in Figure 3.5. For

these eight VPNs, seven LSBs are needed to differentiate them and use them as an

index. Therefore, if the outlined above translation technique is to be used in the

same manner, this set of VPNs would occupy a memory array with 27 entries, while

only eight of them will actually be used.

The example outlined in Figure 3.5 therefor shows that a low memory utiliza-

tion is possible with a large waste of memory and its associated power, if the set of

VPNs accessed by the application is targeted as a whole. However, it can be seen

that VPNs 0, 1, 4, 5 can be differentiated by two bits, while the VPNs 2, 3, 6, 7 can

be differentiated by two bits as well. Consequently, if the initial set of eight VPNs

is divided into two partitions, 0, 1, 4, 5 and 2, 3, 6, 7, then the two LSBs can still

be used to form an index into two non-overlapping segments within a translation

table as long as information regarding which partition is being used is known prior

to access the table. Additionally, the two partitions need to be allocated into two

37

different four-entry sections of the translation table, so that VPNs across different

partitions are guaranteed not to overlap. It can be observed that an alternative par-

titioning of the VPNs exists as well, which consists of two VPN partitions: 0, 1, 6, 7,

and 2, 3, 4, 5. This alternative partitioning has the same cost as the aforementioned

partition since both pair of partitions require two LSBs for VPN differentiation.

An important constraint for such a partitioning scheme to work properly is

that if a load/store instruction can potentially access across multiple VPNs, all these

VPNs must be allocated into the same partition. This constraint is needed since

because of hardware cost considerations a VPN partition would be identified on

a per load/store instruction basis, i.e. a load/store instruction would be mapped

to one and only one VPN partition. This restriction guarantees that there is no

ambiguity when accessing the DTT. As is shown later in the section, the algorithm

forming the partitions is based on this constraint and efficiently finds large partitions

with very high index space utilization. Any load/store instruction that cannot be

ascertained to access VPNs from the same partition will be handled by a “default”

traditional TLB.

The introduced approach involves the identification of partitions of VPNs

which result in optimal indexing scheme maximizing the utilization inside each par-

tition while reducing the overall number of partitions. Minimizing the number of

partitions, while maintaining high utilization of the translation table is important

to control the cost of hardware needed to identify partitions and to compute their

translation table index.

After identifying the partitions, each partition is mapped to its own segment

38

 VPN
partition1

 VPN
partition2 VPN

partition3

ld/st
group1

group2
ld/st

ld/st
group3

Remaining
ld/st

Partitions allocated
into the DTT

 VPN parition1

 VPN parition2

 VPN parition3

DTT

D−TLB

Figure 3.6: Mapping VPN partitions to DTT segments

in the introduced Direct Translation Table (DTT), as illustrated in Figure 3.6. In

a manner analogous to scratchpad memories, the DTT is implemented as a small

SRAM array, containing the translation entries for all VPNs, which have been de-

termined to be part of VPN partitions. As each partition of VPNs is mapped to a

distinct part of the DTT, a special indexing logic is need to form the final index. If

the partitions is aligned inside the DTT on address boundaries proportional to their

size, a very simple logic is needed to compute the DTT index; the DTT segment

offset needs to be simply concatenated to the few VPN LSBs selected as a partition

index.

3.1.3 Compiler and OS Support for DTT Management

The role of the compiler support is to determine an efficient VPN partitioning,

which maximizes the DTT utilization, and to associate the load/store instructions

to VPN partitions as explained in the previous section. The OS support required by

39

the proposed technique does not go beyond the traditional virtual memory support

in terms of maintaining a page table that contains all the address translation entries

for the application program. A small additional OS support is required to handle

the context switch between tasks, which utilize the DTT. This support is outlined

in subsection 3.1.3.3 the multitasking support for DTT management is discussed.

At the heart of the required compiler support is the VPN-partition formation

algorithm. This algorithm requires information regarding the statically allocated

memory objects of the program together with some profile information. Practically

any program spends most of its execution time in a few small parts of its code,

which is refered as hotspots. The proposed VPN-partitioning approach is applied

independently on each application hot-spot. The application hot-spots are identified

through profiling. The partitioning algorithm requires information regarding the

application static virtual memory layout for each application hotspot and the access

frequencies to the various virtual pages within each hotspot. The first piece of

information is available after the compiler/linker maps the data objects into the

virtual address space. Dynamically allocated heap memory is treated specially by

the DTT approach as outlined later in Subsection 3.1.3.2. The access frequency of

the various static memory objects are obtained by the program profile, which is also

used to identify the application hotspots.

40

3.1.3.1 VPN-Partition Formation Algorithm

For a given set of VPNs, there is a minimal number m of LSBs that differentiate

all the VPNs. Such a set of VPNs is refered to as an m-bit partition, while m is

referred to as a dimension of the partition. As we saw in the previous section, m

depends on the total number n of VPNs in the set, as well as on their particular

values. Clearly, dlog2 ne is a lower bound for m, as this is the minimal number

of bits needed to distinguish a set of n elements. If the partition dimension m is

equal to dlog2 ne, where n is the number of VPNs, such partition is referred to as

m-bit complete or just complete partition. Consequently, a complete partition is a

partition with minimal number of index bits and high utilization of the index space.

Such a partition requires a minimal segment of translation table to map its VPNs.

In order to achieve efficient hardware support, we need to identify the minimal

number of VPN partitions with the highest utilization of translation table space,

subject to the constraint that VPNs accesses by a load/store instruction are placed

in one partition. The proposed algorithm partitions the set of VPNs into a minimal

number of complete partitions, thus achieving very high utilization of the translation

table resources. Consequently, an algorithm is required to find the minimal number

of complete VPN partitions for a given set of VPNs. As discussed later, the case

of dynamic data allocation and stack memory can also be efficiently dealt with a

special partition that is reserved beforehand. For instance, the consecutive set of

VPNs where the program stack is allocated would form a complete VPN partition

and all the stack references will be associated with that partition.

41

A first step in the proposed algorithm is to separate the groups of consecutive

VPNs. Such groups of VPNs typically correspond to application arrays, buffers, or

any data structures, which are allocated into a compact set of consecutive VPNs.

All of the static data structures have this property. The program stack can also be

though of as exhibiting this property as the stack is always allocated in contiguous

region of the virtual address space. As observed in the experimental studies, in many

embedded applications these types of data structures constitute an overwhelmingly

large part of the application hotspots. Dynamically allocated data structures, which

change their memory map are very rare in embedded programs especially in the ap-

plication hotspots due to their cost in term of performance and power overheads.

Furthermore, these initial groups of consecutive VPNs have the very desirable prop-

erty to constitute complete VPN partitions. This can be easily observed from the

fact that a set of n consecutive numbers can always be differentiated through the

dlog2 ne LSBs.

Separating the set of VPNs into partitions of consecutive VPNs is only the first

step in achieving the desired final result. Very often, an m-bit complete partition

does not utilize the index range and can, thus, be merged with some smaller VPN

partition without increasing the number of least significant bits m to form an index.

Figure 3.7 illustrates such a case. In this example, the algorithm starts with three

partitions. All of them are complete, as they contain consecutive VPNs; the largest

partition, P1, is a 4-bit partition, the next one, P2, is a 3-bit, while the smallest one,

P3 is a 1-bit partition. It can be easily seen that the 4-bit partition can “absorb” the

3-bit partition, without increasing its initial dimension of 4. The resulting partition

42

VPNs
Consecutive

001
010
011
100
101

00101
00101
00101
00101
00101

0000
0001
0010
0011
0100
0101
0110
0111
1000

00101
00101

001
010

00101 101
1001
1001

0000
0001

1001
1001

0111
1000

 P1

P2 00101
00101

001
010

00101 101
1001
1001

0000
0001

1001
1001

0111
1000

0
1

1111111
1111111

0
1

1111111
1111111

{P1, P2}, and P3 merged
4−bit Partition

(2)

To be used as a
DTT index

 VPNs

3−bit partition

4−bit partition

1−bit partition

P1

P2

P3

1001
1001
1001
1001
1001
1001
1001
1001
1001

(1)
P2 merges P1
4−bit Partition

{P1,P2}

P3

Figure 3.7: VPN partition merging

consists of 14 VPNs and is still a complete partition of dimension 4, yet with much

higher utilization of the index space compared to the initial two partitions. In a

subsequent step, the 1-bit partition is merged with the new 4-bit partition, resulting

to a single complete partition of dimension 4, consisting of 16 VPNs, hence having

the maximal possible utilization for a 4-bit partition. The merging steps continue

until no such situations as presented in the example exist.

This step in the algorithm fundamentally tries to “pack” the initial set of VPN

partitions. At this step, the algorithm needs to follow a strategy for merging the

initial VPN partitions in such a way so that minimal number of complete partitions

remain at the end with the total partition utilization maximized as well. An impor-

tant requirement that needs to be imposed here is that at no step of the merging

process should the dimension of a partition be increased. That is, when merging

two partitions, the resulting partition must have the dimension of the larger parti-

43

tion from the initial pair of partitions. This constrains ensures that the partition

utilization is never decreased in the process of minimizing the number of complete

partitions.

In order to merge two partitions, the LSBs of the smaller partition when

extended to the dimension of the larger one must not conflict with the LSBs of the

larger partition; such conflicts can exist between some of the partitions which would

prevent their merging. Therefore, the algorithm to identify the optimal scheme of

merging is a multidimensional combinatorial optimization problem, very similar to

the well known Bin-Packing problem. An heuristic algorithm, similar to the First-

Fit Decreasing [96] heuristic used for Bin-Packing. is developed.

Fundamentally, the aforementioned merging step of the algorithm tries to uti-

lize the empty index space that is left in some partitions. As can be seen from the

example in Figure 3.7, partition P2 has 9 VPNs. Since it is a 4-bit partition, the

index space of the 4 LSBs is 16, which results in utilization of 9/16 of the available

index space and, thus, translation table resources. After the merging steps, though,

it can be seen that the utilization of the final partition is 100% as it is a 4-bit par-

tition with 16 VPNs. This final VPN partition can be mapped into a translation

table with 16 entries indexed by the 4 LSBs of the VPNs. Consequently, the driving

force behind the proposed algorithm is the goal of using the empty space in the

initial partitions by fitting there smaller partitions.

Consequently, the merging phase of the algorithm starts with the partition

having the largest dimension and then tries to merge as many smaller partitions

as possible; the step is repeated until no additional merges are possible. If there

44

are more than one partition of the same dimension, we use their empty index space

as a tie-breaker by picking the one with larger empty space as this increases the

likelihood of merging more smaller partitions into the selected one. This step is

repeated until all the partitions not merged yet are tried.

The pseudo-code shown in Figure 3.8 describes the proposed algorithm. Step

1 represents the initial formation of complete partitions which correspond to consec-

utive VPNs. Step 2 is a preparatory step executed prior to the merging phase of the

algorithm. Here the initial set of complete partitions is sorted in decreasing order

of their dimension. This is needed for the subsequent merging step as the partitions

with highest dimensions are first explored as candidates to merge other smaller par-

titions. Step 3 represents the merging phase of the algorithm. Starting from the

partition of highest dimension, all remaining partitions are tried to be merged into

the selected one, thus significantly increasing the utilization of that partition without

increasing its dimension. Additionally, priority is given to smaller partitions which

contain VPNs access by a load/store instruction, which also accesses VPNs from

the selected “absorbing” partition. This would improve the likelyhood that if there

are load/store instructions accessing VPNs from different initial partitions, these

partitions will be merged into a single partition this enabling the utilization of the

proposed DTT translation mechanism. Step 4 of the algorithm checks whether there

are load/store instructions which can access VPNs from more than one partition.

These load/store instructions, if any at all, will be directed to the default D-TLB for

address translation. The final step of the algorithm is to select the partitions that

can be allocated to the DTT, given the limited DTT size and other hardware limita-

45

Algorithm input: Set of VPNs

Step 1: Partition the set of VPNs={V1,. . . ,Vm},

into groups of consecutive VPNs

P={P1,. . . ,Pn}

Step 2: Order the partitioned set P in decreasing order of dimension,

(use number of VPNs and/or access frequency as a tie-breaker);

P={. . . ,Pi,Pj,. . . ,} where Pi > Pj

Step 3: For all Pi in P {

For all Pj <= Pi {

if(Pi,Pj are mergeable) {

merge Pj into Pi’s empty space

remove Pj

} } }

Step 4: Check every load/store instruction,

make sure it only accesses one partition,

otherwise mark it for the default D-TLB

Step 5: Select the most beneficial VPN partitions

for allocation into the DTT

Figure 3.8: Pseudo-code of the VPN-partition formation algorithm

46

tions. Because of hardware limitations of mapping load/store instructions to VPN

partitions, only a limited number of VPN partitions can be handled by the proposed

approach (up to 8, which for all the embedded benchmarks we have experimented

with covers all the available VPN partitions). Furthermore, the limited DTT size

imposes an additional constraint as well. At this final stage of the algorithm, the

VPN partitions which result in most energy benefits are mapped to the DTT. Each

partition is evaluated by the execution frequencies of the load/store instructions

mapped to them. Subsequently, the most frequently accesses VPN partitions are

selected until the DTT space is exhausted. It is noteworthy that this last step of

the algorithm is in essence the well-known knapsack problem [97] with each VPN

partition having its value in terms of frequency of utilization and also it has its

cost in terms of space needed in the DTT. However, for our problem it is the case

that the largest partitions are typically the ones that are most heavily accessed and

that in the majority of cases all the VPN partitions can be allocated into the DTT.

Consequently, a greedy solution at this step provides an optimal solution for any

practical purposes.

In terms of algorithmic complexity, it can be noted that the worst-case running

the time of the proposed algorithm is O(n2), where n is the number of partitions in

the initial set P of consecutive VPN groups. The worst-case of O(n2) corresponds

to the Step 3 of the algorithm, which is somewhat similar in its traverse pattern to

the insertion-sort algorithms. Steps 1, 4, and 5 exhibit linear time complexity in

terms of n, while Step 2 can be be implemented with O(n ∗ log(n)) time complexity

if sorting algorithm such as Heap-sort is used. Therefore, the worst-case running

47

time of the partition forming algorithm is O(n2), with n equal to the number of

initial partitions. As reported in our experimental results, this number is rather

small and for the selected embedded applications always less than 20. This implies

that the proposed algorithm imposes no run-time overheads in practice for any

embedded software developmen toolchain. As discussed later in the section, the run-

time software overhead, which is needed to handle to allocation of DTT is similarly

small; it only needs to load the DTT once per application hotspot execution.

At the end of this algorithm, a small set of VPN partitions is produced with

very high utilization of the index space. The high utilization implies that very few

entries in the DTT segments allocated for these partitions will remain unused. An

important requirement in the above algorithm is that in the process of merging,

the dimension of the large partition is left unchanged. This might leave a few very

small partitions each having several VPNs. However, SRAM arrays are typically

implemented as a set of smaller banks. Therefore, as an optional step to the proposed

algorithm, it may be beneficial to combine the small partitions into a larger partition

with a dimension identical to the memory bank size. This step is performed by

starting from the smallest partitions (sizes 1 or 2) and trying to merge them with

the next larger one by possibly increasing the partition dimension while keeping it

under the memory bank size.

As we mentioned in the previous section, using the DTT for a load/store

instruction is only possible if the load/store can generate virtual addresses that be-

long to the same VPN partition. It is typical that a load/store instruction generates

addresses within the same VPN or across adjacent VPNs, especially when it ac-

48

cesses data structures confined within a region of the address space. Because of the

nature of our partitioning algorithm, all such load/store instructions will generate

addresses within the same VPN partition. This property ensures that there is a

one-to-one mapping between a memory reference instruction and a VPN partition.

Consequently, it is at the level of load/store instructions where we identify the VPN

segment which is to be accessed. As shown in Section 5.6, the proposed algorithm

results in a very few VPN partitions within each application hotspot (fewer than

8), thus, enabling an efficient hardware scheme for mapping load/store instructions

to VPN partitions. One such possibility is to use 2 or 3 extra bits from the instruc-

tion encoding to mark which VPN partition should be accessed for the particular

load/store instructions. The memory reference instructions outside hotspots or the

very few load/store instructions which access virtual addresses from different VPN

partitions are handled by the default D-TLB.

3.1.3.2 Stack and Heap Memory

Stack memory is typically used to allocate local data of functions and also to

preserve various system-level pieces of information such as return address, content

of windowed register files, etc. Unless the program employs a deep recursion that

depends on the data set, it is relatively easy to statically identify the maximum

amount, or at least find a good upper boundary, of stack memory that the program

will require while executing. As stack usually grows in consecutive address in the

virtual address space, it becomes easy to accommodate stack memory. The set

49

of consecutive VPNs, which have been identified for stack usage, are entered as a

complete partition in the first phase of our VPN-partition forming algorithm. This

stack VPN-segment has the same properties as other segments of consecutive VPNs

and does not require any special attention from this point on.

Dynamic memory allocation, a software technique rarely used in memory con-

strained embedded applications, presents an issue that needs special consideration.

If an application requires dynamic memory allocation, such allocation can occur

inside or outside the application hotspots. It is the more frequent case that such an

allocation is typically performed outside the hotspots and only references to these

locations are performed inside the hotspots. This follows from the fact that the

hotspots are highly optimized parts of the program, where dynamic memory allo-

cation and deallocation is avoided due to its high performance cost. For instance,

in nine out of the ten benchmarks that we have considered in our experimental

study, no dynamic memory allocation or deallocation occurs inside the applications

hotspots. In these nine applications if dynamic memory is used at all, it is always

allocated prior to entering the computationally heavy parts of the code. In the

benchmark susan, a dynamic memory allocation occurs within the hotspot; how-

ever, that dynamic memory footprint is very small (a few pages) an can be easily

handled as a separate partition in the following way.

Although the virtual addresses for such memory references are not available at

compile time, the data heap is normally assigned by the OS and spans consecutive

virtual pages. Therefore, a separate VPN partition can be reserved in the DTT, and

all the references to dynamically allocated memory are directed to this partition. In

50

order to establish such a VPN-partition, it is important that an upper bound is found

for the dynamically allocated data which is to be accessed within the application

hotspot. For the cases where such dynamic memory is allocated outside the hotspots

and only accessed inside, it is easy to determine the size of this memory (or an

upper bound) either through static analysis or profiling in a way similar to the

stack memory. Since the heap region is always assigned to a continuous set of

virtual pages, i.e. it is mapped into a well-known and defined region from the

virtual address space, these pages can be easily treated as a partition comprising of

contiguous VPNs. As we have shown earlier in this section, such complete VPN-

partitions can be easily resolved through the dlog2 ne least significant bits. If the

span of the heap allocated objects to be accessed inside the hotspot is too large

and cannot be accommodated within the DTT, the references to the heap will be

handled by the default D-TLB.

As the physical memory is allocated by the OS at run time, the setup code

executed prior to entering a hotspot will acquire the correct physical addresses for

the heap VPNs and will store the correct address translation information into the

DTT. Inside the hotspot, load/stores to dynamically allocated data are therefore

treated as any other memory references and mapped to their own DTT partition,

which corresponds to the heap VPNs partition. For the rare cases where dynamic

memory allocation is performed inside the hotspot, it is the responsibility of the OS

memory manager to update the DTT translation entry in the case of VPNs being

mapped to new PPN - this situation is identical to the baseline case where the

memory manager updates the TLB in the case of page remappings due to allocation

51

and deallocation. Additionally, load/store instructions that correspond to pointer

accesses, which address can change dynamically while executing the hotspot and

thus is not possible to statically map them to any VPN partition, are marked for

address translation through the default D-TLB.

3.1.3.3 DTT Management and Multi-Tasking Environments

As this approach can be used in multitasking environments or in a program

with multiple hotspots, special care needs to be taken to efficiently utilize the DTT

space. If all the VPN partitions of the application can be accommodated within

the DTT, they are loaded during system setup. However, when this is not possible

due to large number of VPN partitions across all the hotspots, the PIT and DTT

have to be initialized with the appropriate data just prior to entering the hotspot,

thus sharing DTT space with other hotspots and processes. For this, the compiler is

responsible for inserting a special setup code prior to entering the application hot-

spot. During run-time when entering the hotspot, the special setup code is executed

and loads the DDT and the PIT entries with the address translation information

regarding the upcoming hotspot.

In order to avoid security shortfalls that arise when the application program

is allowed to write any values in the DTT, the setup code can be in the form of

invoking a function, which runs within the kernel and guarantees that the actual

PPN corresponding to the application VPN segments are loaded into the DTT.

Allowing an application code to directly enter its PPNs into the translation hardware

52

can create possibilities for control hijacking where a buffer overflow can be exploited

to map physical memory into the program address space (without OS intervention),

which contains malicious code. This can be easily resolved by allowing only the

OS kernel to modify the DTT. The setup code inserted by the compiler prior to

the hotspots would simply request from the OS that the PPNs corresponding to

the particular VPN-partitions used in the hotspot are loaded into the DTT. The

application setup code provides the the OS kernel the set of VPN-partitions that it

requires for the subsequent hotspot execution. The OS then appropriately loads the

corresponding PPNs into the DTT and also remembers this set of VPN-partitions.

This set of partitions may be needed by the OS task switch handler as explained

below in order to load the DTT for that task again in case it is preempted by another

task and later on resumed. In this way if the OS kernel is trusted, then the DTT

will be loaded only with valid PPN that corresponds to the application VPNs and

are known and established by the OS memory manager.

The performance overhead of this setup code is practically zero as it will take

tens or at worst a few hundred cycles, which are to be followed by executing the

subsequent application hotspot which usually takes millions of cycles. If a pre-

emptive context switch is needed during the hotspot execution, the DTT and the

PIT contents are to be treated as a part of the program’s state and need to preserved.

Since the DTT content depends on the set of active VPN-partitions, which the

application uses when it has been interrupted, there is no need to save the DTT

content on task switch. In this case, it is the responsibility of the OS context

switch mechanism to only load into the DTT the correct PPNs for the active VPN-

53

partitions of the preempting task by overwriting the DTT. When the preempted task

is resumed, the OS again loads the DTT with the set of VPN-partitions captured as

part of the interrupted task state. Fundamentally, the PIT, which is rather small,

and the list of active VPN-partitions become part of the process state (PC, status

registers, etc.) which is maintained and properly loaded by the OS. They can be

stored by the OS at memory locations dedicated by the OS kernel for preserving

tasks contexts. In order to speed up this process, the OS can easily use the services

provided by a hardware Direct Memory Access (DMA) controller to rapidly load the

PIT and the DTT content while in parallel preserving the other context, such as the

register file and control register by software. We have assumed this implementation

strategy when experimenting and analyzing the proposed methodology.

In situations where frequent and extremely fast task preemptions are required,

such as in reactive systems [98] where environmental events trigger various tasks,

an alternative DTT management could be implemented as well. For such situation

where the tasks are short and triggered by asynchronous events, reducing the time to

load the DTT may be required. For such cases, an on-demand DTT loading scheme

can be implemented. To achieve this, each DTT entry needs to be associated with a

task identifier. When a DTT entry is accessed, the task id stored in it is compared

against the id of the current task. A match would indicate that the DTT entry

contains a valid translation information. Otherwise, the default D-TLB is looked

up to perform a traditional, general-purpose address translation and the resulting

translation entry brought in its place in the DTT. Such a default D-TLB translation

is invoked only once per DTT entry while executing the task, since the translation

54

entry obtained through the default TLB mechanism is loaded into the DTT; any

subsequent access to that VPN would find the valid translation in the DTT. In

effect, this approach would allow multiple tasks to use the DTT without the need

to preserve its content on context switch. The DTT entry would be extended with

the task id, which purpose is to determine the validity of the DTT translation

entry in a way similar used in virtually addressed caches. When multiple tasks

have their VPN segments only partially overlapped in the DTT, some DTT entries

would be preserved in the DTT for the next execution of that task. In this way, the

DTT would not have to be stored/loaded during task switch - this increase in task

responsiveness is achieved, however, with the cost of task id comparison operations

each type the DTT is accessed.

3.1.4 Hardware Support

The proposed approach requires a specialized hardware support which purpose

is to map load/store instructions to their corresponding VPN partitions, to compute

the appropriate DTT index, and to access the DTT in order to obtain the physical

page number. The VPN partitions are identified by using two or three extra bits from

the instruction encoding of the memory reference instructions in a way similar to

that described in [60]. Our experimental results demonstrate that even for the most

complex applications such as the mpeg video encoder and the mp3 audio encoder,

the total number of partitions does not exceed 8. In cases, where there is more

than 8 partitions, only the 8 VPN partitions with highest access frequency, or the

55

maximum number of partitions allowed by the DTT size, will be mapped to the

DTT. Consequently, the three bits in the instruction encoding will be used to identify

a total of 7 partitions to be allocated to the DTT and the remaining eight value is

used for load/store instructions directed to the default D-TLB.

The partition information for each VPN partition is stored in a very small table

that is efficiently implemented as a register file with four or eight registers, referred

to as the Partition Identification Table (PIT). Each VPN partition is assigned a

PIT entry. The partition identifying bits, which we discussed above, are used to

access one of these registers, which in turn contain information regarding the VPN

partition. The number of VPN partitions which are to be supported by the hardware

determine the number of PIT entries. In our experimental results we have shown

that supporting 8 VPN partitions per hotspot is enough for all practical purposes.

Consequently, we model a PIT with 8 entries. In fact, only 7 entries are needed

because one of the eight 3-bit combinations used to identify the partition is used to

mark the load/store instructions which are to be treated with the default D-TLB.

Each VPN partition is completely defined by its partition dimension m and its offset

within the DTT. This pair of numbers is stored in the PIT entry for each VPN

partition as shown Figure 3.9. A default value of the VPN partition identification

bits is used for the load/store instructions that need to be translated through the

default D-TLB.

Each VPN partition must be mapped to an exclusive segment within the DTT.

As multiple VPN partitions are mapped, an efficient index computation logic is

needed. If VPN partitions are allocated in arbitrary positions within the DTT,

56

Offset Part. Mask
Offset Part. Mask

Offset Part. Mask

.....

Partition Identification Table (PIT)

Partition
Mask

DTT

Partition
Segment

m bits

Partition Offset

Partition Index
VPN

Partition Offset Partition Index

m bits

xxxxxxxxxxxxx
00...01111...111

VPN

DTT Index
xxxxxx00...000

m bits

Partition Offset

Figure 3.9: DTT index computation and DTT access

accessing such a segment would require the hardware to compute the DTT index

by adding the partition offset to the LSB index of that partition. While such an

addressing scheme is not difficult to implement, it would introduce a delay on the

address translation critical path, possibly increasing the L1 cache access time or

the on-chip memory access time. We propose, instead, an alternative hardware

scheme, which requires only a concatenation of the partition LSB index and the DTT

segment offset. This could be achieved by allocating the VPN partition at an address

boundary multiple to the partition size, i.e. align the VPN partition in the DTT by

the partition dimension. For instance, a partition of dimension 5 can be allocated at

DTT addresses, which are multiple of 32. When such an alignment is implemented,

in order to compute the final DTT index, the partition offset and the m LSBs of

the VPN are simply concatenated. This scheme and the required hardware logic

are illustrated in Figure 3.9. To facilitate the hardware implementation, instead of

storing directly the dimension m for each partition, a partition mask is used instead,

57

Partition Offset
 (from PIT)

Partition Mask
 (from PIT)

VPN tag

Default D−TLB

PTE

Virtual Address

PTE

Partition Select Bits

VPN

To cache index

To cache physical
tag comparator

DTT

Figure 3.10: Hardware architecture

containing m 1s on the least significant bits, extended with zeroes towards the most

significant bits. By using such a representation, the logic needed to compute the

final DTT index comprises of one OR and one AND gate per bit position. The pairs

of Partition Offset and Partition Mask defining each partition are stored in the PIT.

As demonstrated in Section 5.6, eight such entries are typically enough to target all

the VPN partitions for each hotspot.

Figure 3.10 shows the entire address translation architecture. The load/store

instructions mapped to VPN partitions are directed to the DTT and their addresses

translated rapidly, energy-efficiently, and in a time-deterministic manner. The re-

maining few load/store instruction, if any at all, are directed to the default D-TLB

for traditional address translation.

It is noteworthy that the lookup into the PIT is performed early in the pipeline

when the load/store instruction is decoded. Therefore, the PIT lookup is outside

the critical path of cache lookup or data memory access. Only the circuitry for

58

computing the DTT index, which consists of two logic gates per bit, is needed when

the virtual address is generated by the processor. In our experimental results we

show the access times for the DTT tables that we experiment with and compare

them with the access time of the baseline D-TLB. From these numbers it is evident

that the introduced DTT-based address translation does not increase the critical

path delay for memory accesses. The area overhead of the proposed approach is also

minimal. Even though we are introducing a new SRAM array for the DTT table,

the size of the default D-TLB is much smaller than the baseline D-TLB typically

used in such systems. This can be done without any sacrifice of performance since

very few load/store instructions will utilize the default D-TLB; in our experimental

study we report on this as well.

3.1.5 Analysis and Discussion

3.1.5.1 Real-Time Performance Improvements

The proposed address translation organization greatly improves on the worst-

case timing analysis for real-time applications. All the load/store instructions al-

located to the DTT are guaranteed a single cycle translation with performance

implications identical to a guaranteed TLB hit. This situation is very similar to

the application of scratchpad memories (SPM) where memory references to data

allocated in the SPM are guaranteed a single cycles memory access. As can be seen

from our experimental results, the great majority of load/store instructions for all

benchmark hotspots are guaranteed translation through the DTT. Such guarantees,

59

which are known at compile-time will greatly improve the upper bounds of the Worst

Case Execution Timing (WCET) analysis of the code as for most of the memory

reference a single cycle address translation is guaranteed. The static WCET analysis

[95, 99] is a traditional compile-time step for any real-time application, which ob-

tains guarantees for the worst-case scenario in executing a particular piece of code.

Traditionally, when it cannot be inferred by the WCET analysis that a memory

reference will always hit in the TLB, the worst case, i.e. TLB miss, must be as-

sumed. With the proposed DTT methodology, however, the majority of load/store

instructions (and in many cases all of them) can be guaranteed a single cycle address

translation by our VPN partitioning algorithm and DTT allocation methodology.

Consequently, the upper bounds of execution times produced by WCET analysis

can be greatly reduced. Only for the very few load/store instructions, which are left

for translation by the default D-TLB a worst case timing pertinent to the particular

processor architecture needs to be used.

It is noteworthy that the proposed DTT architecture does not guarantee single

cycle address translations for any program or program hot-spot. This is due to the

fact that for some applications with large memory footprint, it may be possible

that not all of the load/store instructions (and VPN partitions) can be allocated

to the DTT. Consequently, these few remaining load/store instructions need to be

handled by a traditional TLB with possibility for misses and multiple cycle page

table traversals. However, in our experimental study we have found out that for

many applications or applications hot-spots a reasonably sized DTT of 256 entries

covers all the VPN partitions and as such provides guaranteed single cycle address

60

translation for all memory references. Whether all of the VPN partitions for a given

application hot-spot can be covered by the DTT translation mechanism depends

both on the application memory footprint and the DTT size.

3.1.5.2 Leakage Power

As the approach we offer fundamentally targets dynamic power consumption,

in our experimental study we report only dynamic power reductions. Even though

our approach introduces an extra SRAM array to implement the DTT, it must be

noted that the default D-TLB is used for the very few references outside the hotspots

and the ones, which cannot be handled by the DTT. From our results it can be seen

that the majority of memory references (frequently even all the references) inside the

hotspots can be handled by the DTT. Consequently, the D-TLB that is needed for

the remaining few references can be significantly reduced in size as compared to the

baseline architecture with traditional TLB only. Without sacrificing performance

and without introducing new translation misses the default D-TLB can be left with

only a fraction of the usual number of translation entries, thus saving silicon ares

from both the reduced tag and data arrays. This reduction of the tad and data

arrays will offset the introduced SRAM array for the DTT and its leakage power.

As reported and discussed in the next section, our default D-TLB is limited to 16

entries only and the entire area of the proposed translation hardware is smaller or

comparable to a typical baseline TLB of 64 entries. Consequently, we estimate that

our approach does not have a practical impact on the leakage power. Furthermore,

61

as can be seen from our experimental results, for many of the application hotspots

the default D-TLB can be entirely turned-off or placed in drowsy mode [100, 101]

during the hotspot execution time since all of the memory references inside the

hotspots can be handled by the DTT. Consequently, for such hotspots, the D-TLB

will consume no leakage power. The small TLB needs to be kept operational only

for the very short periods of time (less than 5% of the entire execution time) when

the program executes code outside the hotspots.

3.1.6 Experimental Results

In evaluating the proposed techniques, we have performed a quantitative anal-

ysis and comparison of baseline D-TLB architectures and the proposed application-

driven address translation organization. The baseline D-TLB organizations contain

64 entries, with 4-way and 8-way set associativity (64-4SA, 64-8SA), as well as fully

associative (64-FA). The virtual page size is conventionally fixed to 4K. We have

evaluated two DTT organizations, one with a DTT size of 256 entries and another

one with 128 entries. The energy per access, time delay, and area of the baseline

D-TLB organizations as well as the DTT structures have been obtained by using

the CACTI-3 tool [102] for a 0.18µ process technology. As a default D-TLB in the

DTT configurations, we have utilized a 16-entry 2-way set associative (16-2SA) and

a fully associative (16-FA) TLB structures. Because of the significant difference in

terms of energy and area between set associative and fully associative TLBs, we

have evaluated a DTT configuration with fully associative default TLB to compare

62

Energy (nJ) Delay (ns) Area (cm2)

64-4SA 0.405366 1.037 0.001732

64-8SA 0.71175 1.08001 0.002108

64-FA 0.176706 1.80768 0.002270

16-2SA 0.238378 0.96902 0.000738

16-FA 0.105995 1.58034 0.000934

256 DTT 0.114782 0.795045 0.001904

128 DTT 0.103756 0.743074 0.000846

Table 3.1: TLB and DTT characteristics

it against the 64 entries fully-associative baseline configuration.

Table 3.1 shows the energy, time, and area characteristics of the evaluated TLB

and DTT structures. From this table it can be seen that the DTT configuration of

(128-DTT + 16-2SA D-TLB) occupies less area than any of the 64-entry baseline

TLBs, while the configuration of (128-DTT + 16-FA D-TLB) is comparable area-

wise to 64-4SA and is smaller than the 64-8SA and the 64-FA baseline TLBs. It can

also be seen from these data that the proposed DTT introduces no performance over-

head, as its delay is smaller than the delay of the baseline TLBs. The access to the

PIT is performed early in the pipeline, when the load/store instruction is decoded,

hence it does not contribute to the DTT delay. Another interesting observation

from the data in Table 3.1 is that the per access energy to the fully-associative TLB

63

is smaller than the per access energy to the same sized but set associative TLBs.

However, the delay and area characteristics of fully associative TLBs are worse than

the set associative organizations. For this reason, we have used as a default D-TLB

in the DTT configuration both set-associative and fully associative organization in

order to produce consistent comparisons with the baseline TLBs.

h-sp Freq(%) Enrg Misses Enrg Misses Enrg Misses

64-4SA 64-4SA 64-8SA 64-8SA 64-FA 64-FA

adpc 1 100 0.21 3 0.37 3 0.09 3

g721 1 100 14.3 2 25.1 2 6.22 2

gsm 1 100 20.9 3 36.6 3 9.09 3

epic 1 100 2.77 2295 4.86 2323 1.21 2354

jpeg 2 11,72 2.38 53 4.19 53 1.04 53

mpeg 3 81,1,11 138.5 3026 243.1 3046 60.4 3122

mp3 5 25,13,24 128 53316 224.8 60360 55.8 61969

16,18

susan 1 100 0.58 17 0.33 17 0.15 17

sha 1 100 2 8 1.14 8 0.5 8

aes 1 100 60.7 5 34.6 5 15.1 5

Table 3.2: Baseline D-TLB characteristics and energy (in mJ)

64

Table 3.2 shows the baseline characteristics. The first column in the table

contains the benchmark name. The first 6 applications are from the Mediabench

[103] set of benchmarks, while the seventh application is a widely used open source

mp3 encoder (http://www.mp3dev.org/). The last three benchmarks are from the

MiBench [104] collection. The 10 benchmarks we have used in our study cover the

important domains of speech, audio, image, and video processing, as well as two

important encryption tasks (sha, and aes). The subsequent column shows the num-

ber of hotspots identified for each benchmark with the execution frequency for each

hotspot in percentage presented in the next column. The application hotspots have

been identified through profiling and simulation. The next three pairs of columns

show the energy consumption (in µJ) and the number of TLB misses for the three

baselines TLB organizations.

A banking memory architecture is assumed with each bank having 32 DTT

entries. Consequently, partitions are merged to maximum dimension of 8 and min-

imum of 5. Furthermore, if the VPN partitions of the application do not occupy

the entire DTT, the unused DTT banks are turned off. The maximum number of

partitions per hotspot is set to 7, thus resulting to a total of 7 PIT entries, each

consisting of 8-bit partition offset and 8-bit partition mask (7-bit for the 128 entry

DTT). From the results reported in Table 3.3, it can be seen that the number of

VPN partitions per hotspot is always below eight even for the most complex bench-

marks. Table 3.3 reports all the information regarding the VPN partitions that is

independent from the DTT size. The first column (I.Part.) shows the number of

initial VPN partitions for all the benchmark hotspots. This number corresponds to

65

I. Part. Part. Dim. #VPN Util.(%) ld/st Freq.

adpc 2 1 2 3 75 11 100

g721 2 1 2 2 50 103 100

gsm 3 1 2 3 75 772 100

epic 4 3 1,7,7 2,74,87 100,58,70 951,547,34 9,32,59

jpeg 4 3 1,3,5 1,4,32 50,50,100 228,77,24 65,14,21

7 1 6 44 69 1709 100

mpeg 5 3 1,6,7 1,55,66 50,86,52 606,204,42 11,13,76

3 2 1,7 1,77 50,60 6,33 1,99

5 4 1,5,7,7 2,25,88,99 100,78,69,77 27,30,2,7 53,30,2,15

mp3 8 4 1,4,5,5 1,15,17,27 50,94,53,84 1,349,104,770 1,6,31,62

11 2 5,5 16,26 50,81 961,458 87,13

7 3 1,3,4 2,5,8 50,63,50 75,65,22 29,3,68

7 2 1,4 2,11 100,69 10,439 2,98

12 3 2,4,5 3,11,19 75,69,59 22,1149,156 3,82,15

susan 5 2 1,4 2,15 100,94 104,576 1,99

sha 4 2 2,3 3,5 75,63 204,142 86,14

aes 2 2 2,1 4,1 100,50 224,151 53,47

Table 3.3: VPN-Partition Information

66

the number of partitions produced by the first step of our partition forming algo-

rithm. The next column (Part.) presents the number of VPN partitions for each

hotspot after the termination of the proposed algorithm. It can be observed that

the algorithm merges a significant number of the initial groups of consecutive parti-

tions and thus produces a relatively small number of compact VPN partitions. For

instance, the jpeg benchmark has two hotspots, where the first one exhibits three

VPN partitions, while the second hotspot has only one partition. The next column,

labeled with Dim. shows the dimension for each partition. The three partitions of

the first hotspot of jpeg have dimensions of 1, 3, and 5 respectively, while the single

partitions of the second hotspot is of dimension 6. As described earlier in the sec-

tion, the partition dimension is equal to the number of least significant bits from the

VPN, which will be used to access the DTT. The next column, labeled with #VPN

reports the number of VPNs for each partition. The format for this information

is similar to the previous column. The next column shows the utilization of each

partition in percentage. Utilization is defined as the ratio between the number of

VPNs and 2Dim., i.e. how much of the index space has been used for actual VPNs.

It can be observed that our algorithm consistently achieves utilization ratios at and

above 50%. The subsequent column shows the number of load/store instructions,

which have been associated with each VPN partition. As explained earlier, each

load/store instruction is either mapped to a single VPN partition and translated

through the DTT or routed for address translation to the default D-TLB. The last

column in Table 3.3 shows the access frequency for each VPN partition. This data

is the ratio between the number of accesses to VPNs in the partition and the total

67

number of memory references for the hotspot. From the data in this table it can

be concluded that the proposed approach forms a relatively small number of VPN

partition with high utilization of the index space.

The simulation is performed with the SimpleScalar toolset [105]. Optimiza-

tion level -O2 has been used when compiling the benchmarks with the provided gcc

2.7.2 cross-compiler. Since the proposed approach exploits knowledge regarding the

virtual address space mapping of the program data objects and not the particular

order or pattern in which they are accessed, we don’t expect any major deviations

in the reported results if more aggressive compiler optimizations are used. Through

benchmark simulation and analysis, the hotspots and their virtual memory layout

are identified. For the proposed address translation technique, DTTs of 256 and 128

entries are evaluated, where each DTT entry consists of four bytes. The number of

the AND and the OR gates for computing the DTT index is set to 8 due to the DTT

size. Additionally, a default D-TLB with 64 entries is assumed for VPNs outside the

hotspots, and for VPNs inside hotspots but not included in directly translated VPN

partition. The DTT access energy is obtained by using CACTI; this is achieved by

subtracting the tag-related energy from the total energy of a direct mapped cache.

The access energy of the PIT register file is estimated by using the data presented

in [106]. The energy for 0.2µ and 2V Vdd process technology parameters has been

scaled down to 0.18µ, 1.7V Vdd process technology by applying the same estimation

methodology as the one utilized in CACTI. The power consumption of the few logic

gates needed in the computation of the final DTT index is accounted for as well, even

though their contribution is orders of magnitude less than the power consumption of

68

the DTT table. After applying the proposed VPN partition generating algorithm,

a setup code is inserted on the entrance to each hotspot; the so instrumented pro-

gram is subsequently simulated with a modified version of the SimpleScalar where

we model the impact of the proposed address translation architecture. This setup

code has no impact on the total power consumption for all practical purposes, as it

is executed only once on the entrance of the application hotspots, which typically

execute for tens of millions of cycles. The final power consumption is computed by

summing up the energy for all the VPN to PPN translations including the energy

needed for all the hardware we have introduced. The reported data accounts for

all the memory references, including the ones to dynamically allocated (heap) and

stack memory. During the short periods of time when the program executes out-

side the hotspots, we have accounted for the traditional TLB address translations.

Additionally, we show the total number of address translation misses for both the

baseline and the proposed architectures.

Table 3.4 shows the energy dissipation and reduction for the proposed address

translation methodology with a 256-entry DTT and a default D-TLB of 16 entries.

The first column shows the DTT utilization for each benchmark and each hotspot.

DTT utilization is defined as the ratio in percentage of the actively used DTT

entries and the total number (256) of DTT entries. For the adpcm, the g721, and

the gsm benchmarks it is rather low (0.78%) because of the very small number

of VPNs accessed by these applications. The next column shows the number of

VPN partitions allocated to the DTT. It is shown how many of all the available

partitions for each hotspots have been mapped to the DTT. The number of covered

69

DTT Part DTT Enrg. Red. Red. Misses Enrg. Red. Misses

util. Cover. Freq. 16-2 64-8 64-4 16-2 16-fa 64-fa 16-fa

adpc 1.56 1/1 100 0.06 83.9 71.7 0 0.06 35.0 0

g721 1.56 1/1 100 4 83.9 71.7 0 4 35.0 0

gsm 1.56 1/1 100 5.9 83.9 71.7 0 5.9 35.0 0

epic 100 2/3 90.9 0.86 82.3 68.9 2 0.78 35.1 2

jpeg 16,25 3/3,1/1 85.9 0.78 81.4 67.4 185 0.67 35.8 32

mpeg 76,51 3/3,2/2 92.9 42.2 82.6 69.5 408102 39 35.4 12270

63 3/4

mp3 32,25 4/4,2/2 97.3 37.3 83.4 70.9 10891 36.2 35.2 11436

10,7 3/3,2/2

20 3/3

susan 7 2/2 100 0.09 83.9 71.7 0 0.09 35.0 0

sha 4.69 2/2 100 0.32 83.9 71.7 0 0.32 35.0 0

aes 2.34 2/2 100 9.78 83.9 71.7 0 9.78 35.0 0

Table 3.4: Direct address translation with 256-DTT

70

DTT Part DTT Enrg. Red. Red. Misses Enrg. Red. Misses

util. Cover. Freq. 16-2 64-8 64-4 16-2 16-fa 64-fa 16-fa

adpc 3.13 1/1 100 0.05 85.4 74.4 0 0.05 41.3 0

g721 3.13 1/1 100 3.65 85.4 74.4 0 3.65 41.3 0

gsm 3.13 1/1 100 5.34 85.4 74.4 0 5.34 41.3 0

epic 100 1/3 59 1.09 77.7 60.8 8546 0.72 40.8 183

jpeg 33,50 3/3,1/1 85.9 0.72 82.8 69.7 185 0.61 41.1 32

mpeg 100 1/2 71.4 48.6 80 64.5 412858 35.7 40.9 12766

100,27 1/2,2/4

mp3 64,50 4/4,2/2 97.3 33.9 84.9 73.5 10891 32.9 41.3 11436

20,14 3/3,2/2

41 3/3

susan 14 2/2 100 0.08 85.4 74.4 0 0.08 41.3 0

sha 9.38 2/2 100 0.29 85.4 74.4 0 0.29 41.3 0

aes 4.69 2/2 100 8.85 85.4 74.4 0 8.85 41.3 0

Table 3.5: Direct address translation with 128-DTT

71

partitions depends on the DTT size, the total number, and size of VPN partitions;

each partition is allocated, if possible, at DTT offset aligned with the partition

dimension. It can be seen, for example, that for the epic benchmark, only two of

the 3 partitions are mapped to the DTT, while for the jpeg all the partitions have

been allocated to the DTT. The partition selection processes, which was described

in details in Section 3.1.3.1, takes into account the access frequency of each partition

and the DTT size. The third column, labeled with DTT Freq., shows the frequency

in percents of DTT utilization. This number is the ratio of the address translations

handled by the DTT and the total number of address translation including the ones

performed through the default D-TLB. The subsequent column shows the energy

dissipation (in mJ) for the 256-enrty DTT with a 2-way set associative 16-entry

default D-TLB (DTT/16-2). The next two columns show the energy reduction

of this DTT configuration compared to the 64-8SA and the 64-4SA baseline TLBs,

while the subsequent column displays the total number of the default D-TLB misses.

It can be observed that compared to the baseline configurations, a large number of

the TLB misses is eliminated. The column, labeled with Enrg (16-fa), shows the

energy dissipation (in mJ) for the same DTT but with a fully associative default

D-TLB and this energy is compared to the fully-associative baseline (64-fa) and the

reduction in percentage is presented in the subsequent column. This is followed by

number of misses of the default fully-associative (16-fa) D-TLB misses. Similarly,

the number of misses is greatly reduced compared to the baseline fully-associative

case.

Table 3.5 shows the same information but for a 128-entry DTT. Again, two

72

Figure 3.11: Energy comparison (normalized) for set-associative organizations

default D-TLB organizations are explored: 16-2SA and 16-FA. Due to the smaller

DTT for a few of the hotspots some partitions that were covered with a 256-entry

DTT will not be allocated to the smaller DTT. For instance, it can be seen that

for the epic benchmark, only one out of the three partitions can be covered, which,

of course, results in less energy reductions compared to the 256-entry DTT. This

is because even though the smaller DTT consumes less energy, more memory refer-

ences will be routed to the default D-TLB for address translation, which consumes

significantly more power than the DTT table.

Figure 3.11 shows a bar diagram of normalized total energy dissipation for

both the 128- and 256-entry DTT case with 16-2SA default D-TLB compared to

the set-associative baseline TLBs. The energy consumption for the 64-8SA baseline

is normalized to 100%, while the energy for the other baseline (64-4SA) as well

as the two DTT cases are scaled accordingly. It can be readily observed that the

73

Figure 3.12: Energy comparison (normalized) for fully associative organizations

proposed approach consistently reduces the energy needed for address translation

to a 15% - 25% fraction of the energy consumed by the 64-8SA baseline, and to a

20% - 35% fraction of the energy needed by the 64-4SA case. It can be also seen

that for the epic and the mpeg benchmarks, the 128-DTT consumes slightly more

energy than the 256-DTT case. This can be explained by the fact that for these two

benchmarks, the smaller 128-entry DTT cannot handle all of the VPN partittions

that the 256-DTT can translate, thus resulting in more default D-TLB lookups,

which are more energy consuming than the DTT. Figure 3.12 shows a similar com-

parison but for the fully-associative baseline (64-FA) compared to the 256- and to

the 128-entry DTTs with 16-FA default D-TLB. For this case, the energy reduc-

tions are smaller than the ones achieved for set-associative organizations, because

the relatively small fully-associative buffers consume slightly less energy compared

to a traditional set-associative implementation with multiple tag arrays. This data

74

was shown in Table 3.1 as obtained from the latest version of the Cacti tool. How-

ever, the small fully-associative buffers exhibit a worse timing delay as compared

to set-associative implementations. Consequently, if the default D-TLB is always

selected to be 16-FA, then the propagation delay of this organization would be worse

than a baseline 64-4SA or 64-8SA TLBs (but better than 64-FA). This is another

reason to introduce the two choices of 16-2SA and 16-FA as a default D-TLB, so

that depending on the baseline, the appropriate choice of default D-TLB is made

in order to stay within the timing of the baseline organization and thus not impact

the clock cycle time.

3.2 Heterogeneously Tagged Cache

3.2.1 Introduction

In the presence of virtual memory, caches can be accessed in several different

ways. Since there are both virtual and physical addresses present in the system,

either one can be used to access the cache. Furthermore, the cache access operation

can be split into two components: indexing and tagging. Consequently, four types

of cache access mechanisms can be constructed depending on the type of address

used for indexing and tagging. If virtual addresses only are used to access the cache,

the resulting cache is referred to as virtually-indexed and virtually-tagged. The ben-

efits of this cache architecture is that there is no need for address translation when

accessing the cache, which results in fast access time and, even more importantly

for embedded processors, low power consumption [53, 66, 107]. Virtually indexed

75

and tagged caches, however, exhibit severe drawbacks namely cache aliasing and

synonyms [108, 107]. Cache aliasing is a situation where the same virtual address

from different tasks is mapped to different physical addresses. Such a situation

necessitates flushing the cache on context switch, which can lead to significant per-

formance degradation. The aliasing problem is avoided if the tags are extended to

store a Process IDentifier (PID), a unique key associated with each process. Ad-

ditionally, since no TLB lookup is performed, each cache line must be extended to

capture the access control bits for the cache line address range. At the same time,

however, the cache synonym problem has been traditionally difficult to overcome.

Cache synonyms occur when different virtual addresses, usually from different vir-

tual address spaces, are mapped to the same physical address. This situation occurs

naturally when two processes share data. If virtual addresses are used to access the

cache, the different virtual synonyms of the shared physical location will end up in

different cache blocks. This, in turn, can easily lead to cache coherence problems

if one of the processes writes into the synonym location, leaving the other cached

copies of the shared data stale. Various solutions for avoiding cache synonyms have

been offered for general-purpose processors [66, 53] all of which introduce non-trivial

hardware structures with significant power overhead, thus making their adoption in

embedded processors infeasible. Because synonyms occur when sharing writeable

data, virtually indexed and tagged caches have been mostly used as I-caches where

such sharing usually does not exist.

Physically-tagged and physically-indexed caches are the exact opposite. In this

cache architecture, only physical addresses are used for indexing and tagging. Nat-

76

urally, aliasing and synonyms are no longer an issue. However, address translation

needs to be performed for each cache access and before forming the cache index,

which results in delayed cache access time and significant power overhead.

Physically-tagged and virtually-indexed caches are the most typical D-cache

architecture for processors with virtual memory support. By performing address

translation only for the tags, the cache indexing is overlapped with the tag trans-

lation, thus effectively hiding the address translation latency. By imposing cer-

tain restriction to the OS memory manager and by introducing additional hardware

support, the physically-tagged and virtually-indexed cache eliminates the cache syn-

onym problems with no performance implications. However, the power consumption

of such a cache architecture is quite high as address translation is performed each

time the cache is accessed in order to obtain the physical tag.

In this section, a novel cache architecture, which selectively uses either physical

or virtual tags with the objective of minimizing the number of address translations

is investigated. In this way the power benefits of virtual caches are combined with

the synonym elimination benefits of physically-tagged caches. Application-specific

information regarding the type of memory references is used to determine whether

to use a virtual or a physical tag. Tag translation is performed only for memory

references which can potentially refer to shared memory and as such result in cache

synonyms. The majority of cache accesses which refer to private data in the pro-

cess’ virtual address space, i.e. pages only mapped to that address space, are being

handled with virtual tags, thus necessitating no address translation on cache access.

Not only is the majority of tag related address translations eliminated, but also for

77

the shared-data memory references we introduce a new translation scheme, which

utilizes the knowledge of physical page locations in order to replace the power ex-

pensive TLB lookups with simple arithmetic operations. This novel cache tagging

approach coupled with specialized address translations for the shared physical pages

results in very energy efficient cache operations.

3.2.2 Heterogeneous Cache Tagging - A Functional Overview

The proposed cache tagging policy takes into account application information

regarding the page status of the memory location being accesses. A virtual page,

which is known to be mapped to a physical page, which in turn is mapped to at least

one other virtual page from another address space (belonging to another process)

is considered to be shared. Such mappings are established and controlled by the

OS on the request from the application or when there is a need to share code or

data between different address spaces. Physical tags are used with the purpose of

resolving the serious problems which such shared memory pages can cause when

stored in the data cache. The proposed heterogeneous cache tagging in its essence

is a hybrid approach which combines the low-power benefits of virtual tags, with

the cache synonym avoidance properties of physical tags.

Synonyms are multiple virtual addresses which are being mapped to the same

physical address. Synonyms can naturally appear when a shared data in physical

memory is being mapped to different virtual address in more than one tasks in order

to facilitate data communication between processes. With synonyms, only a single

78

Extended
virtual tag

Physical addresses

DataVTPID

Compare

Tag Array Data Array
Data CacheVirtual Address

Misc: Access and Status Bits
PID: Process ID
VT: Virtual Tag

PID

Misc

00000001

00100000

00000001

00000001

00100001

01000000

Virtual Addres Space

 PID:000
PID:001

Figure 3.13: Using PID to eliminate aliasing with virtually tagged caches

copy of the shared data is maintained in physical memory, which is very beneficial

for embedded systems which typically have limited memory resources. Not only is

memory usage minimized, but the performance overhead of copying the shared data

between the processes address spaces is eliminated.

In general-purpose processors, the application usually comes in binary-only

format. Consequently, no information regarding data sharing is available to the

microarchitecture which assumes that a large variety of programs will be executed.

Thus every memory access is assumed to be a potential synonym address. Embed-

ded processors and systems, however, have the distinctive advantage of complete

application knowledge, as the embedded software is usually developed concurrently

with the hardware design or is available in a source code format.

For example, if it is known in advance that there is no shared data mapped

to different address spaces or there is no shared data at all in the target embedded

system, then it is clear that no cache synonyms could exist. Figure 3.21 shows an

example of two processes sharing the cache and no shared physical pages. It can be

79

seen that the first virtual pages from both process have the same virtual address,

but they are mapped to different physical pages. In situations like this when no

synonyms are possible, the combination of process ID and virtual address can serve

as the single identifier to differentiate among all data addresses. Even though the

virtual address of the two first pages from both address space are identical, the

Process IDdentifier (PID) of each process which extends the tag would suffice to

distinguish the two identical virtual addresses. Thus no physical address is needed

to locate the data in the cache, and the TLB lookup step prior to access the cache

could be avoided completely. Consequently, the cache for such references can be

virtually-indexed and virtually-tagged with tags extended with process IDs. Only

when physical memory needs to be accessed in the cases of a cache miss or a cache

write-back, the virtual address is translated into physical address through the TLB.

Additionally, the Access Control (AC) bits and other status bits are associated with

each cache block and obtained from the TLB when the data block is placed in the

cache. For virtually-tagged caches it is inevitable that the cache line status bits

need to be extended to contain the access control for the cache line address. Since

no TLB lookup is performed on cache access (and hit) the AC bits (usually from 2

to 4) need to be present in the cache.

In general, however, it is common that multiple processes working under the

same application would need to share data in order to communicate with one an-

other. While the majority of the data accesses are typically non-shared data which

can use virtual tags with the traditional for virtually-tagged caches extension of PID

and AC, as shown in the example in Figure 3.21, special care needs to be taken for

80

Physical Page Number

Virtual Address

Virtual Page Number Page Offset

Virtual superset bits

Physical superset bits

Virt. IndexPhysical Tag Line Offset

Data Cache

Tag Data

Compare

One Synonym Address

tag Data

same Page Offset

Another synonym address from a different group

Data Cache

Page OffsetVPNi

PPNk

VPNj

Virtual superset bits

Line OffsetPTag−m

PTag−m

Virt. Ind.i

Virt. Ind.i Line Offset

Same virtual superset bits

Physical Address

Different PPN

Figure 3.14: Superset bits -

overlap between virtual index

and VPN

Figure 3.15: Conflicting cache

indices for the case of syn-

onym groups exhibiting identi-

cal physical tags and virtual su-

perset bits

the memory references mapped to shared physical pages.

A virtual address consists of a VPN and a page offset. When used to access

the cache, the same address is split into block offset, cache index field, and a tag. A

synonym group is the set of VPNs from the different processes, which are mapped to

the same physical page. In order for the cache to work properly it must be ensured

that all the synonyms from the group are mapped to the same cache location in

order to access the shared physical page. If the cache index part of the address is

completely contained within the page offset part, thus implying that the cache index

from the virtual address is identical to the physical index, then no synonyms can

occur if physical tags are used. When the virtual page size, however, is smaller than

the cache size divided by the associativity, then a fraction of the most significant bits

81

of the cache index field overlaps with the VPN. The intersection bits of cache index

and VPN are called superset bits, or color bits. The set of synonyms are aligned

if their superset bits are identical to the superset bits of the physical address, as

shown in Figure 3.14. In this case, the virtual cache index is the same as the

physical index, and consequently the physical tag is sufficient to differentiate among

synonyms in the cache. If the superset bits are not identical and do not match with

the corresponding bits from the physical address, which is often the case when no

special care is taken, it becomes possible that the same location in physical memory

is cached at two different cache locations. Furthermore, if the synonyms from the

same groups are only aligned in the virtual address space, i.e. the virtual superset

bits are identical but do not match the physical superset bits, then it is possible that

this synonym group may conflict in the cache with another memory location which

happens to have the same virtual index, virtual superset bits, and physical tags, but

different physical superset bits; such a conflict will not be resolved in the cache with

the physical tags as they are identical. This situation is illustrated in Figure 3.15.

Of course, this situation cannot happen if the synonym group is completely aligned

(both in virtual and physical address space) or larger physical tags are used that

overlap the superset bits.

Traditionally, general-purpose processors with virtual memory utilize virtually-

indexed and physically-tagged caches. To avoid the synonym problem, the OS mem-

ory manager is required to align the set of all synonyms to the physical page frames

to which they map, i.e. provide for a complete superset alignment in both virtual

and physical address spaces. Such a requirement imposes a significant constraint

82

D−TLB

00000001

00100000

10000000

01100001

PID:001

 PID:000

00100001

Virtual address space

Physical address space

DataVT

Compare

PID

PT Data

Misc

Tag Array Data Array

Data CachePID Virtual Address

V/P

V

P

V/P: 1 bit to label virtual tag or physical tag

Figure 3.16: Two processes sharing one data block; aligned virtual addresses

in terms of physical memory utilization, as physical frames can be placed only in

a subset of all possible page locations. This could impact the page fault rate in

general-purpose systems, while in the case of embedded system with limited physi-

cal memory it could result in cases where such alignment is simply not possible for

the given working set unless physical frames are moved to secondary flash memory.

Not only such requirement is prohibitive for energy-efficient embedded system, but

also such a cache organization requires tag address translations each time the cache

is accessed resulting in significant power consumption.

The technique offers a cache architecture where both virtual and physical tags

are utilized at the same time. Virtual tags are used for the majority of memory

references to non-shared data, while physical tags are used only for references to

shared memory. No restriction in terms of synonym alignment is imposed to the OS

memory manager. A special mode bit is associated to each cache line to indicate

whether a virtual or a physical tag is being used for that cache line. All the cache

lines are virtually indexed, with non-shared data tagged with virtual tags while

83

shared data references are tagged with physical tags. Figure 3.22 illustrates an

example where two processes share a data block, while each one of them having its

private data. The shared blocks are identified in advance, in a way described in a

subsequent section, and physically tagged when placed into the cache from physical

memory. The private data blocks are tagged with extended virtual tags. The

physical tag can be translated in parallel with the cache indexing. Thus significant

amount of power for address translation for non-shared data references is saved,

with practically no performance degradation.

As a virtually tagged cache line can overlap with a physically tagged cache

line, the mode bit is used to differentiate between them even if it happens that the

virtual tag is identical to the physical tag - for all practical purposes the mode bit

can be thought of as an extension to the tag. Consequently, when a sequence of

references to private data is being generated by the processor and all of the data is

in the cache, no address translations will be needed to access the cache. In the case

of a cache miss, the address for the missed reference need to be translated in order

to access the physical memory. Furthermore if the replaced cache line is virtually

tagged but dirty (in the case of a write-back cache), it needs to be translated into a

physical address before writeback to memory.

3.2.3 Write-Back and Write-Through Caches

Write-back and write-through organizations need to be treated differently by

the proposed methodology as they treat differently the write accesses to memory.

84

For write-back caches, the proposed methodology works as explained so far. Cache

lines containing data from shared memory regions utilize physical tags. For the rest

of the memory, virtual tags are used for both read and write lookups to the data

cache.

When a cache miss occurs, one or two address translations are needed. In the

case of read-only cache lines being replaced, only one translation is needed for the

reference which is being brought to the cache. However, in the case of replacing

a modified cache line, two address translations are needed. The first translation

is to obtain the physical address for the read data and the second for the physical

address of the modified cache line that needs to be stored back to main memory or

to the lower level of the memory hierarchy. The translation for the missed reference,

of course, has a higher priority and needs to be performed first as the processor

is waiting for that data in a way identical to traditional virtually-tagged caches.

The second address translation needs to be performed for the just replaced cache

line. As writing back to memory is typically not a time critical operation for the

processor, it is usually done on the backend of the processor by using a write-buffer

implemented as a queue; for instance, the XScale processor features an 8-entry write

buffer. The entries in the write buffer are written back to memory when the memory

bus is not occupied servicing processor reads. In the organization we propose, the

write operations will enter the write buffer immediately with its virtual address

and a single bit that specifies a virtual address (a write-buffer entry contains the

address and the data to be written). The needed address translation will typically

be performed during the next clock cycle; the only exception being that the TLB is

85

needed to translate another cache miss in the subsequent cycle. In such a case, the

write will remain in the write buffer until the TLB is available and its virtual address

is translated into a physical one. Having two cache misses in two consecutive clock

cycles is an extremely rare situation and even in such a case, the write to memory

will be delayed in the write buffer for a cycle, which will not impact the processor

performance. The only modification needed to the TLB controller is the simple

logic that checks whether there is a write buffer entry carrying a virtual address

that needs an address translation. The typical size of a write buffer is four entries

and the needed multiplexing for reading these entries already exists as on cache

miss the processor first checks the write-buffer entries before going to memory. For

the proposed organization checks in the write-buffer are performed in the same

way as in the cache by using either a virtual or a physical tag. Consequently, the

only hardware overhead to the TLB controller is the logic of utmost several gates

that checks the mode bit for the write-buffer entry and subsequently replacing the

write-buffer entry address with a physical one.

Write-through caches propagate each write to the lower level of the memory

hierarchy. Because of this, in the case of memory write the physical address is always

needed regardless of whether the memory location is shared or not. Read memory

references are handled in the same way as for the write-back cache organization.

Consequently, the proposed technique will not achieve as large energy reductions

as in the case of write-back caches. This effect is quantitatively evaluated in our

experimental results. Note that this situation is different from the case explained

above when two address translations are needed. In this case all the writes, which

86

hit in the cache, would need to be propagated to physical memory, thus requiring

physical addresses (and the corresponding single TLB lookup) regardless of whether

they are to private or shared memory regions. In order to alleviate the write effect

for write-through caches, we introduce a Physical Page Latch (PPL), which stores

the translated address for the most recent memory write. Together with this latch,

we also introduce a register, which holds the VPN for that most recently accessed

physical page frame. This VPN serves as a tag, which identifies whether the cur-

rently write-accessed memory page is the same as the most recently written to page.

Such a check is preformed by simply comparing the VPN of the write operation

with the VPN stored in the register. In the case of a match, no TLB lookup needs

to be performed as the physical page number for that VPN is present in the PPL.

In this way, a long series of writes to the same memory page will require only a

single TLB lookup for the first write, while all of the subsequent writes will reuse it

from the PPL. The only overhead associated with the PPL is the VPN comparator

activated on a write to memory. The power needed by such a comparator, which is

essentially a collection of XOR gates is extremely smaller, than the power taken by

a TLB lookup. In our experimental results we evaluate in details the utility of the

PPL to achieve significant power reduction for write-through caches.

3.2.4 Identifying the References to Shared Memory

One of the important aspects of the proposed low-power cache tagging orga-

nization is that it needs to be known in advance whether the address generated

87

by the processor refers to shared or private data for that program. The proposed

scheme performs address translations only for shared memory regions. It is impor-

tant to understand what these shared regions are with respect to the program’s

address space and when are the addresses of these locations known. In the con-

text of the traditional physically-tagged/virtually-indexed caches and the proposed

heterogeneously-tagged caches, a shared memory region is considered to be a phys-

ical memory page, which is mapped by the OS memory manager into the virtual

address spaces of at least two processes. Such shared physical memory pages exist

for the purpose of communicating data between two different processes running in

different virtual address spaces; it is controlled and provided by the OS in the from

of Inter-Process Communication (IPC) facilities, such as shared memory regions or

shared buffers for message passing. The shared memory pages, following a request

from the application program are mapped to the virtual address space by the OS.

Consequently, this inter-process sharing is always established and performed explic-

itly by the application process and controlled by the OS. The compiler can be easily

made aware through special #pragma directives as of whether a particular data

buffer from the application address space is to be treated as a shared or private.

It is noteworthy to mention that the inter-process memory sharing that re-

quires special attention in terms of caching is completely different from the data

sharing that exists in multi-threaded programs. Multi-threaded applications are

formed by running multiple lines of control (threads) that execute in the same ad-

dress space - the address space of the process within which the threads are created.

Consequently, the multiple threads belonging to that process share the address space

88

and any communication between them is to be handled by the programmer with

no intervention of the operating system. Such independence from the OS is the

major advantage of the light-weight threading as switching between them is usually

performed entirely in user space, thus incurring a minimal overhead. From the ad-

dress space and data caching perspectives, however, all the memory accessed by the

multiple threads for sharing or non-sharing purposes amongst them is private for

that address space and is completely indistinguishable from the private memory of

processes which do not carry multiple threads. No cache synonyms are possible for

the thread-level sharing because the threads use the same virtual addresses to access

the internally shared data. From the cache point of view, only memory pages, which

are mapped across multiple address spaces and can thus be referred to by different

virtual addresses can result in cache synonyms.

Since the shared data buffers are explicitly defined by the application process,

they can be easily identified by the compiler and the OS. A mechanism is needed,

however, to distinguish the virtual addresses referring to these inter-process shared

pages with the rest of the virtual pages. One possibility is to use an extra space from

the load/store instructions encoding in order to tag the memory instructions which

refer to shared pages. For shared data, which is explicitly declared by the program-

mer and accessed directly, it is a trivial job for the compiler to tag the corresponding

load/store instructions. However, if the program uses pointers to access such shared

memory pages it becomes significantly more difficult to determine which pointers

can access shared pages; in most of the cases a conservative assumptions need to be

made and the majority of pointers marked as potential references to shared memory

89

data
block

Shared

VPN2
VPN3 PPN1

PPN2

PPN3

VPN1

Virtual Address Space Physical Address Space

shared block

Identical offset
for the entire

Figure 3.17: Linear mapping from VPNs to PPNs

pages.

An alternative approach, which we have followed and recommend for our tech-

nique, is to distinguish the references to shared data through their virtual addresses.

The modern embedded processors, such as the Intel XScale and the ARM9, feature

a 32-bit virtual address space, which is very large for the demand of any embedded

application. In order to distinguish references to shared pages through the virtual

address, a portion of that address space may be easily reserved for such pages. For

example, a small set of the most significant bits from the virtual address may be used

to signify whether a shared page is being accessed. In this way, the inter-process

shared buffers will be mapped by the OS into the upper parts of the virtual address

space and as such will be trivial to identify at run-time when generated by the pro-

cessor. For instance, a value of “111” in the three most significant virtual address

bits may signal that this is a reference to a shared buffer. The hardware needed for

this check is a simple 3-input AND gate, which constitutes a zero overhead for all

practical purposes.

90

3.2.5 Low-Power Synonym Alignment

Preventing memory synonyms to be cached at different cache locations, even

in the case of physically tagged caches, requires a special alignment in physical

memory referred to as page coloring. The OS memory manager must ensure that

for each synonym group the virtual and the physical superset bits are identical. In

embedded systems when the physical memory resource is limited, such alignment

causes additional constraints to the memory management. In order to eliminate

this constraint, we introduce a rapid translation for the superset bits, thus leaving

the virtual and physical pages of shared memory regions unaligned. In such cases,

the superset bits of each virtual page address are not necessary identical to the

superset bits of the physical address. Subsequently, the virtual cache index is no

longer identical to the physical cache index, thus it can potentially conflict with

other virtual cache indices which do not belong to the same synonym group as was

shown in Figure 3.15.

In order to avoid such conflicts, the virtual superset bits need to be translated

to the physical superset bits with minimal costs. In embedded applications which are

intensive on DSP and numerical computations, the shared data buffers are typically

input/output buffers, coefficient tables, or just message passing buffers. For most

of the cases, the shared buffer fits within a single page, and in the cases where it

spans multiple pages it is common to allocate it in consecutive physical memory

addresses and also map it to consecutive virtual address pages. Such consecutive

property shows that their PPNs can be computed by adding an offset to their VPN.

91

Misc VPN offset

Compare

DataVTPID

PT Data

Misc

Data ArrayTag Array

Data Cache
PID Virtual Address

superset offset

+

+V/P

V

P

Figure 3.18: Two processes sharing one data block; non-aligned shared virtual ad-

dresses

Moreover, the physical superset bits of each physical address can also be converted

by adding an offset to the virtual superset bits as show in Figure 3.17. The offset can

be determined by the OS when it loads the shared data into the physical memory.

Since the width of superset bits is log2(cache size/(cache associativity∗page size)),

only a few bits need to be manipulated. A fast parallel adder can translate the

physical superset bits rapidly with little delay. Figure 3.23 shows an example of two

processes as in the previous example but with no alignment property. The physical

superset bits are translated with the introduced superset offset adder, and the TLB

for page translation is replaced with the page offset adder which is significantly more

power efficient. Multiple shared buffers could results in multiple offsets present. For

such cases, the multiple offsets can be stored in a very small table (or a small set of

registers/latches), the Synonyms Offset Table (SOT), and retrieved before the add

operation.

As we pointed out in the previous section, the inter-process shared memory

92

+

+

Physical
Superset

Shared
Memory

Superset
Alignment
TLB
OS aligned

VPN

AC VPN offs Superset offs

Superset
Virtual

PPN

Virtual Address (VA) 32−bit Address Space Map

1G

a) Superset Alignment Architecture b) Example Virtual Address Map

Figure 3.19: The Synonym Offset Table (SOT) and the adders for converting su-

perset bits and VPNs

regions are identified through their virtual addresses. Each such shared buffer is

allocated in a pre-specified region of the large virtual address space, which can be

uniquely identified by a small subset of the most significant virtual address bits. For

example, shared data buffers can be mapped only in the upper half of the virtual

address space each such buffer can be placed in a partition, which is uniquely identi-

fied by the three bits to the right of the most significant address bit. Consequently,

these identifying address bits can be easily used as a direct index into the synonyms

offset table to obtain the offsets needed to compute the aligned superset bits as well

the physical page number of the shared memory page. The most significant virtual

address bit in this example is used as an indication for whether the referenced data

belongs to a shared memory page or not.

93

3.2.6 Hardware Support

The proposed methodology requires a specialized hardware support, which

purpose is to perform the different cache access policies for synonym and private

references. Changes are needed in the cache line structure and the address transla-

tion path to the data cache.

Each data cache line is associated with an additional bit to indicate whether

a physical tag for a synonym or a virtual tag for non-synonym reference is being

used. To accommodate the virtual tags, the tag field is extended with a Process ID

(PID) and Access Controls (AC) bits. The AC bits are transferred from TLB when

the cache line is placed from physical memory. Extending the cache tags with PIDs

and also associating the AC bits with the cache line is not a requirement freshly

introduced by the proposed heterogeneously-tagged cache, but a general requirement

of the traditional virtually-tagged caches. Since the proposed technique effectively

makes the cache function as a virtually-tagged cache for many references to the

cache with no TLB looksups, the small PID and AC extensions to the cache line

are required. In our experimental results we take into account the power overhead

of these bits.

A very small table (or a small set of registers), the Synonyms Offset Table

(SOT), is introduced to capture the few offset constants needed for the superset

bit alignment and for address translation for the shared pages. As shown in Fig-

ure 3.26a, each SOT entry includes a VPN offset field, a superset offset field, and the

access control bits. Each SOT entry represents one shared data block. The SOT

94

is directly indexed by a few of the most significant virtual address bits. For our

experimental results we have assumed 8 entries/registers. As the number of SOT

entries bounds the number of shared regions that can be aligned and translated

through adders, it is important that there is enough SOT entries for this. However,

because of the nature of this inter-process sharing, which typically corresponds to

input/output data buffers and buffers for message passing, the number of shared

regions is very small and almost always within the range of 2-4. Even though our

benchmark did not require so many SOT entries, in order to be conservative in the

evaluation of our approach we have accounted for the power overhead of an 8-entry

SOT.

The number of SOT entries establishes an upper bound of the number of shared

regions per process that can be handled with the adder-based synonym alignment.

If the number of such regions exceed the number of SOT entries, the remaining

shared regions can be handled in the traditional way through the TLB and memory

alignment. An example virtual address space layout is shown in Figure 3.26b. The

upper quarter of the address space is reserved for shared buffers, which are always

mapped by the OS in this part of the address space. Depending on the number of

SOT entries, a corresponding number of shared buffers are mapped into the upper

half of the shared memory portions of the address space. The remaining shared

buffers are mapped in the lower half of that space, thus translated through the

TLB and aligned by the OS in physical memory. With such a layout it becomes

trivial to distinguish the address to the inter-process shared memory through a

single 2-input AND gate connected to the 2 most significant bits of the virtual

95

address. The 3rd most significant bits is used to determine whether the reference

will be aligned through the proposed superset alignment architecture or will use

the TLB. Even though the delay of the region identification logic and accessing the

very small SOT is trivial, it can be completely hidden as well. Practically all high-

end embedded processors support indexed addressing modes where the value of an

immediate field or index register is added to a base register in order to compute

the effective virtual address. The value of the base register typically contains an

address of a memory segment where the accessed data are allocated. The most

significant bits, which define the segment’s positions remain the same in this process

as the index register or the immediate field typically contain only an offset within

that segment. In this way the most significant bits of the virtual address, which

determine whether the reference is to a shared region are available earlier in the

pipeline before the actual effective address computation and as such can be used to

index the SOT and obtain the superset offset prior to entering the memory pipeline

stage. Consequently, determining the type of memory address and accessing the

SOT table do not introduce any performance overhead.

For all non-shared references, the virtual tag is extended with the PID and

send to access the data cache block. The access-control bits field is an aggregate of

the access control bits for each VPN in the shared memory block. This aggregation

relaxes the access right granularity from page level to multiple consecutive pages of

a shared memory block. However, it is very rare that different pages in the shared

block have different access rights.

The two adders are used to rapidly and energy-efficiently translate the VPN

96

D−TLB

DataVT

Data Cache

PID

Data

Misc

PT

PID Virtual Address

Compare

V/P

V

P
+

+

Extended
virtual tag

AC

AC

AC

VPN offs Superset offs
VPN offs
VPN offs

Superset offs
Superset offs

Figure 3.20: Overall hardware organization

and the virtual superset for synonym addresses. The virtual superset bits are added

to the superset offset to form an index to the data cache. The VPN tag is added

to the VPN offset and the translated physical tag is send to the tag comparator in

parallel to the cache indexing. The width of the VPN field is usually much larger

than that of superset bits. For 32 bit address and 4k page size with the 16k cache

column size, the VPN is 20 bits and the superset is 2 bits. Consequently, the delay

of the superset offset adder is much smaller than the delay of the VPN adder. As

only the small (typically 2-bit wide) superset adder is on the cache access path, the

introduced delay is extremely small. The longer VPN to PPN adder, which replaces

the traditional TLB lookup, is on a path parallel to the cache indexing, hence

introducing no performance overhead. In any case, the adder delay is significantly

smaller than the TLB delay, which it replaces. In our experimental results we

have taken into account the extra energy introduced by the superset and the VPN

adders. The entire hardware architecture of the proposed approach is presented in

97

Figure 3.27.

3.2.7 Experimental Results

In evaluating the proposed technique, we have performed a quantitative anal-

ysis and comparison between baseline data cache with default TLB structure and

the proposed architecture of heterogeneously tagged cache. We have evaluated both

the adder-based translation and a traditional TLB-based translation for the shared

memory regions. The baseline assumes aligned synonyms, thus the reported advan-

tages would be even larger in reality as handling non-aligned shared memory pages

requires extra hardware or software support in the baseline architecture.

In our experimental study we have explored two major configuration. The first

configuration is representative for the Intel XScale processors and consists of 32K

data cache and 32-entry fully associative TLB; both direct-mapped and 4-way set-

associative data cache organizations have been evaluated. The second configuration,

which corresponds to the ARM 920T processors, consists of 16K data cache and 64-

entry fully associative TLB. Similarly to the first configuration, both direct-mapped

and 4-way set-associative data cache organizations have been evaluated. The virtual

page size is kept conventionally to 4K size. The energy for each access to data cache

and D-TLB are estimated using the Cacti-4 [109] tool, with process technology of

0.18µm.

Table 3.6 shows the dynamic energy (per access) and the leakage power for

the baseline cache architectures, the TLBs, and the heterogeneously tagged cache

98

32-DM 32-4SA 16-DM 16-4SA TLB-32 TLB-64

Dynamic 0.06845/ 0.29496/ 0.06051/ 0.18089/ 0.08393 0.19222

(nJ) 0.07072 0.29825 0.06084 0.18516

Leakage 0.30440/ 0.30446/ 0.15280/ 0.15935/ 0.00933 0.01786

(mW) 0.31323 0.31207 0.16183 0.16338

Table 3.6: Energy for the baseline and the proposed D-Cache/TLB architectures

architecture. The baseline caches are physically tagged and no special tag extensions

beyond the standard ones, such as valid and dirty mode bits, are modeled. For this

configuration we have used the default Cacti-4 models. The proposed technique

relies on a support for virtual tags, thus requiring the tags to be extended with

process identifier (PID) and access control (AC) bits. For this we have added 4 extra

bits for PID and 2 bits for AC. The only extra bit that our methodology requires,

which is in addition to the typical support for virtual tags, is the V/P-bit that

specifies the type of the tag; we have included that bit as well to the total of 7 extra

mode bits compared to the baseline cache. To model these bits, we have used the

standard support for extending the tags in Cacti-4, which is implemented through a

special variable, which sole purpose is to define any tag extensions, if needed. Each

entry in Table 3.6 depicts a pair of numbers; the first number corresponds to the

baseline cache, while the second one for the heterogeneously tagged cache. The last

two columns show the energy numbers for the 32- and the 64-entry TLB that we

have used for our experiments. As the proposed technique requires no modifications

99

to the TLB, a single number is shown. The TLB energy numbers are similarly

obtained through Cacti-4. In order to model a TLB structure, we have modified

the number of address bits to match the VPN length of 20 bits (4K pages within

32-bit address space). Since the proposed technique reduces dynamic power only,

the numbers for the leakage power show the impact of the technique on the leakage.

As can be seen from the numbers, because of the slight increase in the tag size, the

leakage power is slightly increased. This increase, however, is extremely small; for

instance, for the 32K caches the increase is around 2%, while for the 16K caches it

is around 2.5%.

We have performed our experimental study on a set of widely used multimedia

benchmarks from the Mediabench [103] set. The SimpleScalar [105] toolset is used

as a simulation test-bed. All the input and output buffers used by these applica-

tions are considered shared memory. In a multitasking environment, these input and

output data buffers (speech/image/video frames) would be usually communicated

from one process to another. For simulation purposes we have captured the address

ranges of these shared memory buffers and have provided them to the simulation en-

vironment, which was appropriately modified to model the proposed heterogeneous

cache tagging. Through architectural simulations, the execution statistics, includ-

ing the total number of TLB/cache accesses and the number of accessed to the

shared memory regions are collected. The overall power consumption is computed

by summing the energy needed for all data cache accesses and address translations

accounting for the entire application program.

Table 3.12 shows the baseline D-TLB characteristics. The first row in the table

100

adpcm g721 gsm epic jpeg mpeg mp3

TLB-32 75 4051 4381 640 494 28666 26634

TLB-64 171 9279 10034 1465 1131 65654 60999

32K-DM/32 136 7356 7954 1161 897 52047 48357

32K-4SA/32 338 18290 19778 2887 2230 129410 120235

16K-DM/64 225 12200 13193 1926 1487 86322 80202

16K-4SA/64 332 18011 19476 2843 2196 127437 118401

Table 3.7: Baseline D-TLB and overall D-Cache+TLB energy (in µJ)

contains the benchmark name. The first 6 applications belong to the Mediabench

set of benchmarks, while the seventh application is a widely used open source mp3

encoder. The next two rows report the energy (in µJ) dissipated by the 32-entry and

the 64-entry fully associative TLBs only, respectively. The 32-entry TLB is used in

combination with a 32KB cache as in the Intel XScale, while the 64-entry is used

in combination with a 16KB cache as in the ARM9 architecture. The subsequent

two rows show the combined energy of a 32KB cache, direct-mapped and 4-way set-

associative, and a 32-entry TLB. The last two rows report the energy of the 16KB

cache, direct-mapped and 4-way set-associative, and a 64-entry TLB.

Table 3.8 shows some important execution statistics for each benchmark. All

the numbers reported in this table are in thousands. The total number of memory

accesses is reported in the first row, while the number of accesses to shared memory

101

adpcm g721 gsm epic jpeg mpeg mp3

Access 891 48272 52199 7621 5885 341549 317333

Shared 590 295 251 2018 134 93306 4335

Writes 373 11640 11784 841 1620 22924 82971

Private Writes 4 11640 11683 547 1588 21867 80960

Table 3.8: Benchmark cache access statistics (x1000)

regions is shown in the second row. The third row (Writes) show the number of

memory writes, while the last row reports the number of memory writes to the

shared memory buffers. It can be seen, for example, that for adpcm the shared

memory accesses are a large part of the total number of accesses, while for gsm

they are a relatively small part of all the accesses. This can be easily explained by

the fact that adpcm is not computationally intensive and most of its work processes

directly its input and output stream of speech frames. Gsm similarly works on a

stream of speech frames, however, it is significantly more computationally intensive

and for each frame it performs a large number of operations and accesses to the

private state of the computation.

We first evaluate the effect on the data cache of using the proposed heteroge-

neously tagged cache organization for write-back cache policy. The physical address

translation uses the default D-TLB. For the memory accesses to non-shared mem-

ory regions, the overhead is in extending the cache tag with access control bits and

102

adpcm g721 gsm epic jpeg mpeg mp3

Enrg(32kD) 113 3441 3713 721 512 34006 24731

Red.(32kD) 33.7/17.1 99.3/53.2 99.5/53.3 71.6/37.9 80.5/42.9 65.6/34.7 91.4/48.9

Enrg(32k4) 315 14422 15590 2450 1851 111203 96545

Red.(32k4) 33.7/6.61 99.4/21.2 99.5/21.2 72.3/15.1 80.6/16.7 67.4/14.1 92.9/19.7

Enrg(16kD) 168 2999 3226 887 582 44319 25680

Red.(16kD) 33.7/25.5 99.3/75.4 99.5/75.6 71.1/54.0 80.2/60.9 64.2/48.7 89.6/68.0

Enrg(16k4) 278 8995 9714 1818 1312 84627 63354

Red.(16k4) 33.7/16.2 99.4/50.1 99.5/50.1 72.2/36.1 80.4/40.3 67.4/33.6 92.5/46.5

Het.-Tag &

Adder Tr.:

Enrg(32kD) 66 3415 3693 551 501 26679 23586

Red.(32kD) 95.7/51.2 100.0/53.6 100.0/53.6 98.2/52.6 82.8/41.1 91.2/48.7 95.7/51.2

Enrg(32k4) 269 14399 15570 2285 1840 104361 95766

Red.(32k4) 95.7/20.3 100.0/21.3 100.0/21.3 98.2/20.9 82.8/17.5 91.3/19.4 95.8/20.4

Enrg(16kD) 57 2939 3177 476 551 25924 21859

Red.(16kD) 98.1/74.5 100.0/75.9 100.0/75.9 99.2/75.3 82.9/62.9 92.2/70.0 95.8/72.7

Enrg(16k4) 168 8939 9666 1423 1283 68322 61258

Red.(16k4) 98.1/49.4 100.0/50.4 100.0/50.4 99.2/50.0 82.9/41.6 92.3/46.4 95.9/48.3

Table 3.9: Energy consumption of proposed organization for write-back caches

103

process ID bits; no tag translation is performed for such memory accesses. When

there is a cache miss or a write-back of a cache line containing a virtual tag, the

D-TLB is used to obtain the physical memory address. Note that in the case of re-

placing a modified cache line associated with a virtual tag, two address translations

would be needed - one for the address of the new data which is being brought to

the cache and one for the dirty cache line that needs to be stored back to memory.

In our evaluation we have taken into account this situations and the correspond-

ing number of address translations have been performed. For potentially synonym

memory references, i.e. memory references to shared memory regions, the cache

access mechanism is identical to the traditional mechanism with the tag part of the

address translated through the D-TLB.

Subsequently, we include the effect of the tag and superset bits translation

trough the introduced adder-based physical address computation logic. For private

memory accesses, the energy per access is unchanged. However, for accesses to

shared memory regions, the translation overhead includes the read from the Syn-

onyms Offset Table (SOT) in order to obtain the superset bits offset and the VPN

offset. It also includes the two adders to compute the physical superset bits and

the PPN. In our experiments we have included the energy consumption of the SOT

tables and the two adders, the small (2-3 bit) superset bit translation adder and the

wider (20-bit) VPN translation adder. We have modeled the SOT energy through

Cacti-4 by specifying a small direct-mapped cache with a data array of 8 entries,

each 24-bits wide. This is achieved by modifying the address bits and the bit-

lines accordingly. The energy for this very small SRAM array have amounted to

104

adpcm g721 gsm epic jpeg mpeg mp3

Enrg(32kD) 113 4417 4693 764 622 35682 31092

Red.(32kD) 33.3/16.9 75.2/39.9 77.1/41.0 64.8/34.2 58.2/30.6 59.8/31.4 67.5/35.7

Enrg(32k4) 316 15399 16570 2494 1961 112903 102926

Red.(32k4) 33.3/6.5 75.3/15.8 77.1/16.2 65.5/13.6 58.3/12.0 61.5/12.8 68.9/14.4

Enrg(16kD) 168 5236 5472 985 834 48132 40055

Red.(16kD) 33.3/25.2 75.2/57.1 77.1/58.5 64.4/48.8 58.0/44.0 58.3/44.2 66.0/50.1

Enrg(16k4) 279 11232 11959 1918 1563 88519 77931

Red.(16k4) 33.3/16.0 75.3/37.6 77.1/38.6 65.4/32.6 58.1/28.8 61.5/30.5 68.6/34.2

Het.-Tag &

Adder Tr.:

Enrg(32kD) 66 3479 3757 554 508 26789 24000

Red.(32kD) 95.7/51.2 98.4/52.7 98.5/52.8 97.7/52.3 81.4/43.3 90.8/48.5 94.1/50.4

Enrg(32k4) 269 14462 15634 2288 1847 104472 96181

Red.(32k4) 95.7/20.3 98.4/20.9 98.5/21.0 97.8/20.8 81.4/17.2 91.0/19.3 94.2/20.0

Enrg(16kD) 58 3002 3241 479 558 26032 22267

Red.(16kD) 98.1/74.5 99.3/75.4 99.3/75.4 99.0/75.1 82.3/62.5 92.0/69.8 95.1/72.2

Enrg(16k4) 168 9003 9730 1426 1290 68433 61672

Red.(16k4) 98.1/49.4 99.3/50.0 99.4/50.0 99.0/49.9 82.3/41.3 92.1/46.3 95.2/47.9

Table 3.10: Energy consumption of proposed organization for write-through caches

105

0.00237nJ . An alternative implementation for the SOT is to simply use a set of reg-

isters, which would consume a similar amount of power. It is evident that the SOT

energy is orders of magnitude smaller than the energy of the caches or the TLBs.

We have accounted for the power consumption of the both adder circuits by using

the data presented in [110]. In that research project the authors have implemented

and evaluated in terms of power and performance a number of different parallel

adder architectures. They have used a 0.13µm process technology to implement the

adders. For our study we have used the Carry-Select Adder (CSA), which in terms

of speed is very close to the fastest adders (SCL and KS) while exhibiting an area

complexity close to the one of the traditional ripple-carry adder. The experimental

results show that a 32-bit CSA adder has been measured to dissipate 1.78pJ per

access. Using the Cacti formula for scaling process technologies (linear correlation

in gate-size and quadratic in voltage) we have estimated the CSA energy for the

0.18µm technology process of our cache, TLB, and SOT components, and subse-

quently scaled it down (linearly) to a 20-bit and 3-bit adders. The energy numbers

that we have computed thus for our 20-bit and 3-bit adders are 2.37pJ and 0.1pJ ,

respectively.

Table 3.9 shows energy dissipation for the proposed methodology for writeback

cache organization. The table is split into two halves. The upper half reports the

total energy for the four cache/TLB organizations enabled with heterogeneous tag-

ging and the energy reductions for these configurations compared to baseline cache

+ TLB organization. The energy reductions reported are in percentage and for each

benchmark we include a pair of numbers. The first number shows the energy reduc-

106

adpcm g721 gsm epic jpeg mpeg mp3

Enrg(32kD) 82 3527 3756 718 517 34036 25558

Red.(32kD) 75.1/39.9 97.2/52.1 98.5/52.8 72.0/38.2 79.6/42.4 65.5/34.6 88.3/47.1

Enrg(32k4) 284 14509 15633 2448 1855 111257 97392

Red.(32k4) 75.0/15.8 97.2/20.7 98.5/21.0 72.7/15.2 79.7/16.8 67.2/14.0 89.7/19.0

Enrg(16kD) 97 3197 3325 880 592 44363 27380

Red.(16kD) 75.0/56.9 97.2/73.8 98.5/74.8 71.6/54.3 79.3/60.2 64.1/48.6 86.8/65.9

Enrg(16k4) 208 9193 9813 1812 1321 84750 65256

Red.(16k4) 75.0/37.5 97.2/49.0 98.5/49.6 72.6/36.3 79.5/39.8 67.2/33.5 89.3/44.9

Het.-Tag &

Adder Tr.:

Enrg(32kD) 64 3421 3696 551 501 26681 23640

Red.(32kD) 98.4/52.7 99.8/53. 99.9/53.5 98.2/52.6 82.8/44.1 91.2/48.7 95.5/51.1

Enrg(32k4) 267 14404 15573 2284 1840 104364 95821

Red.(32k4) 98.4/20.9 99.8/21.2 99.9/21.3 98.2/20.9 82.8/17.5 91.3/19.4 95.6/20.3

Enrg(16kD) 55 2944 3180 476 552 25925 21907

Red.(16kD) 99.3/75.4 99.9/75.9 100.0/75.9 99.2/75.3 82.9/62.9 92.2/70.0 95.7/2.7

Enrg(16k4) 166 8945 9669 1423 1283 68326 61312

Red.(16k4) 99.3/50.0 99.9/50.3 100.0/50.4 99.2/50.0 82.9/41.6 92.3/46.4 95.8/48.2

Table 3.11: Energy consumption of proposed organization for write-through caches

with a latched most-recently written physical page

107

tion of the address translation logic only. This only include the energy dissipated by

the TLB. The second number reports the total energy reduction for the data cache

and the TLB. Clearly, the TLB reductions are directly proportional to the number

of shared memory accesses and how large of a fraction they are to the total number

of accesses. As can be seen from the table, the TLB energy reductions for adpcm

are around 33% only since this benchmarks features a large number of accesses to

shared memory. On the other extreme is gsm, which achieves 99% TLB energy

reduction as it is heavily dominated by local computations, which do not access the

shared input/output buffers. The other benchmarks span the range of 67%-92%

TLB energy reductions. The total (cache+TLB) energy reduction depends on both

the TLB reduction and also on the energy complexity of the particular cache or-

ganization. The reduction for 4-way set-associative cache tend to be smaller than

the reduction for direct-mapped caches, as the former cache organization is signif-

icantly more power consuming than the latter. It is noteworthy that the proposed

heterogeneously tagged organization does not reduce the energy dissipated by the

cache - it only eliminates the need for translating the tags for most of the accesses to

the cache, thus achieving its power reductions from the significantly reduced TLB

energy. We report the total (cache+TLB) energy reductions in order to evaluate

what is the energy impact of the proposed technique to the entire cache system.

The lower half of Table 3.9 reports the total energy and the energy reductions

for the same cache/TLB configurations but this time using the adder-based trans-

lation for the superset bits and tags of the accesses to shared memory regions. The

organization of the rows is identical to the upper half of the table. Since the TLB

108

lookups for the shared memory regions are replaced with the much less energy con-

suming adder operation, it can be seen from the table that the address translation

energy reductions are in the range of 82%-99%. This energy reduction include the

energy overhead of the SOT table and the both adder circuits.

Table 3.10 shows the energy dissipation and reductions for write-through

caches. For this cache organization there is a cache write-back operation for each

memory write operation. Consequently, address translation is required for each

memory write. Therefore, for the case of write-through cache organization, the pro-

posed methodology reduces the power on reads to private memory regions only; all

the write references and the references to shared memory regions would need to be

translated as they either utilize physical tag or need a physical address in order to

access the lower level of the memory hierarchy. The organization of Table 3.10 is

identical to the previous table. It is similarly split into two halves, where the upper

half reports on the basic heterogeneously-tagged architecture, while the lower half

shows the impact on the adder-based superset alignment and tag translation. Write-

through caches, as expected, result in less energy savings as compared to write-back

caches, due to the need to perform address translation for each write operation re-

gardless whether it is to a shared or private memory. The energy reductions for

most of the benchmarks are with 10%-25% less than the reductions for write-back

caches.

Table 3.11 shows the energy dissipation and reductions for write-through cache

with the introduction of the Physical Page Latch (PPL) caching of the last address

translation as described in Section 3.2.3. For this architecture, the physical address

109

for the last write memory operation is stored into a special output address latch,

accompanied by the VPN, which serves as a tag. Thus if two subsequent writes

access the same physical page frame, no address translation needs to be performed

for the writes after the first one. The translated physical address is latched and

reused for any subsequent writes to the same memory page. The organization of

this table is identical to the previous two tables. It is clear from the data in this table

that the PPL optimization helps significantly for write-through caches and brings

back the energy reductions close to the ones for write-back caches. Interestingly, for

the epic benchmark write-through caches with the PPL optimization achieve slightly

better energy reductions than the write-back cache, which can be attributed to a

series of write-backs to the same memory page that can benefit from the PPL and

avoid address translations.

3.3 Address Translation through Arithmetic Operations

3.3.1 Introduction

The TLB and page table organization assume no prior knowledge regarding the

application virtual access patterns and also no assumption is being made regarding

the physical addresses where the pages are placed. Such a general organization is

needed for general-purpose processors, but can be significantly refined for embedded

processors where the program or the set of programs to be executed is known in

advance.

By leveraging the unique embedded system characteristics, we introduce a

110

methodology for application-driven address translation where most of the TLB

lookups are replaced with fast and energy-efficient arithmetic add operations. As

mapping multiple tasks to the same processor becomes a common case for many

embedded systems, light-weight and real-time OS kernels are used. These systems

typically allocate and load the physical pages for all the applications during boot

time, and subsequently keep the memory map unchanged during the system run-

time, and especially within the application hotspots, where most of the execution

occurs. In such cases, the address translation scheme can be significantly improved

as not only are the application VPNs known but also the physical frames to which

these VPNs map are fixed and known after loading the system. Typically, the set

of VPNs accessed by the program constitute segments of consecutive VPNs. Such

VPN sequences correspond to the various data objects accessed by the application.

When the OS allocates the physical pages during system load, it has the freedom

to place them at various positions but typically they are allocated consecutively in

oder to maximize the utilization of physical memory. If the translation architecture

is to exploit this knowledge, the mapping between VPNs and their corresponding

physical pages can be easily established by the addition of fixed offset instead of

looking it up in a table.

In this section, we target the sequence of consecutive VPNs mapped to con-

secutive physical pages. With the help of the compiler and the OS such pairs are

identified and the adjustment constant enabling the arithmetic transformation from

VPN to PPN determined and captured by the proposed translation hardware. Sub-

sequently, during program execution this constant is added to the VPN in order to

111

compute the corresponding PPN. In this way, a significant amount of power is saved

as no accesses to the power-hungry TLB are performed. As an additional benefit of

avoiding TLB lookups, such a translation always succeeds as there is no possibility

of unpredictable conflicts which typically prevent the TLB from finding the trans-

lation entry. In this way, the execution time of the important program fragments

is not only improved but can also be statically estimated with higher precision as a

part of the Worst Case Execution Time (WCET) analysis [95, 111] - an extremely

important requirement for any real-time system.

As implementation flexibility is one of the major advantages of using embedded

processor cores, it is extremely important that the hardware support for the pro-

posed technique is reprogrammable. In this way, the proposed technique is applied

across multiple applications and even across multiple parts of the same program.

Consequently, the proposed hardware support includes a set of registers which cap-

ture the information regarding the VPN segments and the adjustment constant to

produce the corresponding physical pages. In this way, by changing the information

captured in these registers (usually controlled by the OS or the compiler) we are

able to efficiently reprogram the hardware support in order to apply the proposed

technique to another program or program phase within the same application.

3.3.2 Arithmetic Address Translation

Multitasking operating systems are extensively used in many embedded appli-

cations [6, 112]. To share the limited physical memory and provide protection of the

112

PPN−segment
offset

 Data
 Object

 VPN3
 VPN2
 VPN1

 PPN3
 PPN2
 PPN1

 Physical Memory Virtual Address Space

PPN−segment
offset

 PPN3
 PPN2
 PPN1

 Physical Memory

 PPN4
 PPN5

 VPN1
 VPN2
 VPN3
 VPN4
 VPN5

 Virtual Address Space

3 Data Objects

Figure 3.21: A data object forming a

VPN-segment

Figure 3.22: Multiple objects forming a

VPN-segment

kernel and user tasks, various virtual memory management schemes are utilized. In

practice, any real-time OS loads all the tasks to the physical memory at boot/load

time, and does not replace physical pages during runtime of the system. The reason

for this being that moving physical frames to slower memory might introduce signif-

icant delays when these frames are needed later and also introduce unpredictability

in the execution times of time-critical parts of the application.

Traditionally, TLB architectures assume no information regarding current

physical location (PPNs) of VPNs, i.e. an arbitrary PPN is assumed each time

that virtual page is accessed. Consequently, the VPN-to-PPN mapping is captured

in a tabular form; the TLB lookup mechanisms uses only the VPN as an input

parameter and retrieves the PPN, which can have an arbitrary value. Often times,

however, especially in the domain of resource constrained and real-time embedded

applications, there is a strong linear correlation between the VPNs and their re-

spective PPNs. For instance, a computationally intensive function or a loop would

require accesses to a number of data objects such as data buffers or coefficient ta-

113

 Physical Memory

 VPN1
 VPN2
 VPN3 PPN1

 PPN2
 PPN3

 VPN4
 PPN5 VPN5
 PPN4

SA1

SA2

PPN=VPN+SA1

PPN=VPN+SA2

 Virtual Address Space

Figure 3.23: Multiple VPN-segments within a task

bles. Each such data object occupies a consecutive address range in the virtual

address space of the program, i.e. the object is placed across a set of consecutive

VPNs. Even though in theory the corresponding physical frames are allowed to oc-

cupy arbitrary locations and migrate during run-time, for practical reasons the set

of PPNs is usually fixed during the execution of the critical program function/loop

and, furthermore occupies (or can be enforced to occupy) consecutive physical lo-

cations. Such sequences of VPNs and their PPNs are refered to as VPN-segments

and PPN-segments. Figures 3.21 and 3.22 illustrate two situations where VPN-

segments are mapped to PPN-segments. First, a single data object is shown to

form one VPN-segment, while in the second example, three distinct data objects

form a single VPN-segment, which is mapped to a single PPN-segment. The latter

situation is relevant to closely related data objects, such as coefficient tables and a

set of frames from a data stream, which are accessed by an application function or

a loop.

Clearly, in situations where data objects reside within VPN-segments, which

114

in turn are mapped to PPN-segments, the linear correlation between the VPNs and

the PPNs can be exploited to efficiently compute the PPNs for each VPN. This

computation can be effected by adding a predefined constant offset, which we refer

to as a Segment Adjustment (SA). The value of the SA constant depends on the

particular physical location at which the PPN-segment is placed. All the VPNs in

a VPN-segment can be transformed directly to their PPN by adding the same SA.

By avoiding the power consuming TLB lookups and replacing them with fast and

energy-efficient addition operations not only is power significantly reduced but also

performance is improved and made deterministic since for the majority of load/store

instructions a single-cycle address translation can be guaranteed. The net effect on

the address translation power is quite significant. For the majority of memory

accesses, the address translation would be performed through an energy-efficient

adder operation instead of a lookup into a highly associative TLB structure.

When executing a particular part of the program, such as a loop or a func-

tion, multiple VPN-segments can be expected to exist. Naturally, each such VPN-

segment requires a different SA constant to perform the computation between VPNs

and PPNs. Figure 3.23 shows such an example where two VPN-segments exist; the

proposed address translation for these two VPN-segments is achieved through the

corresponding SA as shown in the figure. The hardware architecture must be pre-

pared to determine to which VPN-segment does the memory reference belong to

and then to compute the PPN accordingly.

In order to efficiently implement the outlined address translation technique, a

cooperative support from the compiler, the operating system, and the hardware is

115

required. In general, the set of possible VPN-segments need to be identified during

compile-time so that during program load, the OS memory manager is informed

about this set of potential VPN-segments and is requested to allocate, if possible,

the corresponding PPNs in such a way so that they form PPN-segments as well. A

mechanism is also required to associate load/store instruction to VPN-segments, so

that the hardware architecture identifies the corresponding SA in order to compute

the correct PPNs. The hardware architecture is required to capture the set of SA

constants for each active VPN-segment and use them appropriately to compute the

PPN. The OS loader is responsible for identifying the correct SAs and to store them

into the specialized hardware architecture.

3.3.3 Compiler and OS Support

It has been known that practically any program spends most of its execution

times in a few relatively small parts of its code, typically corresponding to loops or

functions. Such parts of the code are usually referred to as phases of hotspots [87, 88].

By targeting the application hotspots, practically all the benefits from the proposed

technique can be achieved with minimal OS and hardware cost. Consequently, the

proposed technique is applied on the application hotspots, while for the rest of the

infrequently executed part of the applications, the general-purpose TLB address

translation mechanism is used. Upon entering or exiting a hotspot, the compiler

inserts a special setup code which stores certain information into special registers

and tables implemented as a part of the specialized hardware support and, thus,

116

used for address translation
HS1 Set of VPN−segments

used for address translation
HS2 Set of VPN−segments

Entering Hot−Spot;
Set HS1={VPN−segments for HotSpot−1};

Entering Hot−Spot;
Set HS2={VPN−segments for HotSpot−2};

HotSpot−1

HotSpot−2

Initial setup to inform OS
of all VPN−segments: HS1 HS2∪

Exit HotSpot; Switch to TLB;

Exit HotSpot; Switch to TLB;

Setup HotSpot−1:

Program Code

Setup HotSpot−2:

Traditional TLB used

Figure 3.24: Compiler support and setup code insertion

informs the OS and the hardware that a hotspot has just been entered.

The role of the compiler and the profiler in the proposed approach is very

important. Initially, the application is profiled in order to identify the hotspots.

Each hotspot is targeted by our approach in an independent manner. At that stage

after the linking is performed, the set of all VPN-segments is identified. This set

consists of groups of consecutive VPNs into which various data objects accessed by

the program are mapped. For each hotspots, it is also determined which subset of

these VPN-segments is required.

Figure 3.24 illustrates the compiler role in the proposed technique. After the

set of all VPN-segments is identified, the compiler inserts a special setup code,

which is executed in the very beginning of the program, before the application code

is run. The purpose of this setup code is to inform the OS memory manager that the

compile/link analysis has identified the provided set of VPN-segments and that the

117

OS loader must try to allocate the corresponding PPNs in physical memory in such a

way so that they form PPN-segments as well. Due to reasons of memory compaction

and that the set of distinct VPN-segments is usually small, the OS loader would be

able to map most (if not all of them) to PPN-segments. The compiler also inserts

a special setup code prior to entering each hotspot. The purpose of this setup code

is to inform the OS and the hardware support that an application hotspot is about

to be executed; it also informs the OS which VPN-segments are accessed by that

hotspot. This information is needed by the OS so that the appropriate SA constants

are loaded in the hardware tables for run-time utilization by the arithmetic address

translation hardware. The values of the SA constants are initialized at this time

with their appropriate values, given the current placement of the PPN-segments. In

most cases, these values will not change as the physical frame placement is usually

fixed. A similar setup code is inserted on the exit from the hotspot, in order to

notify the OS and the hardware that the hotspot has finished and that a default

D-TLB address translation must be used from this point.

In order to insert the proper hotspot setup code, the compiler needs to iden-

tify the VPN-segments accessed inside the hot-spot. Such a step is requires since

due to limited hardware resources only a certain number of VPN-segments would

be possible to target. These VPN-segments are selected by giving priority to the

ones with the highest frequency of access - an information easily collected from the

program profile. When the maximum VPN-segments supported by the hardware is

reached, the memory references to the remaining VPNs are assigned to use the de-

fault D-TLB. Figure 3.24 illustrates this by showing that the first hotspot is assigned

118

SA1
SA2
SA3

ld/st insts.

Rest ld/st

VPN−Segment1
VPN−Segment2
VPN−Segment3ld/st insts.

to TLB

ld/st insts.

Figure 3.25: Mapping load/store instructions to VPN-segments

the set of VPN-segments denoted as HS1, while the second hot-spot is assigned the

set HS2. A priority measure, as already mentioned, could be the total number of

accesses to a particular VPN-segment. Another measure could be the size of the

segment, since when cached in the default D-TLB, the smaller segment would have

fewer VPNs and thus be less susceptible to conflicts than a larger segment with more

VPNs. In Section 3.3.6 we see that for most of the benchmarks all of the VPNs

inside the application hotspots are a part of a VPN-segment and the total number

of VPN-segments per hot-spot is small.

After identifying the VPN-segments within the hot-spots, the compiler needs

to provide an identification as of to which VPN-segment does a particular load/store

instruction (memory reference) belong to. Figure 3.25 illustrates the structure of this

mapping. As the number of VPN-segments is very small per application hotspot,

this information can be easily encoded as a part of the load/store instruction en-

coding. Since the number of segments is limited to only a very few (up to 4 for

all practical purposes as our results demonstrate), the number of bits needed to

encode the VPN-segments is limited to two or three. Such an identification scheme

119

implies that each load/store instruction accesses VPNs which belong to the same

VPN-segment. This is true for almost any case, and particularly for embedded

DSP/multimedia applications, where the application hotspots access a number of

arrays or matrices in a regular way. If there is load/store instruction that represent

pointer accesses across various VPN-segments, it is assigned to the default D-TLB

as this types of memory references cannot take advantage of the proposed approach.

Our experimental results, however, demonstrate that such situations are limited

especially for embedded applications.

3.3.4 Hardware Support

The proposed methodology requires a specialized hardware support that per-

forms the arithmetic-based address translation and the actions needed for its proper

functionality. Special hardware support is needed in order to identify the VPN-

segments, to read the SA constant and perform the addition operation to compute

the PPN. Consequently, a small table is needed to capture the SA constants for all

the supported VPN-segments per application hot-spot. The Segment Adjustment

Table (SAT) is introduced for this purpose. An entry in the SAT contains an SA

constant for a particular VPN-segment. The SAT size is limited to 8 or 4 entries,

as for all of the applications on which we have applied to proposed technique, the

total number of VPN-segments is well below 8 and in many cases below 4. In our

experiments we have evaluated both 4 and 8- entries SAT tables.

Figure 3.26 shows the organization of the SAT table and how its content is

120

Segment
Identification
Bits

Parallel
Adder

......

PPNVPN

SA0

SA2
SA1

SA7

Segment Adjustment Table (SAT)

Adder

SAT VPN

PPN

Index
bits

SA

Virtual Address

Default D−TLB

Parallel

VPN PPN

Figure 3.26: SAT table with offsets for

PPN computation

Figure 3.27: Address translation ar-

chitecture

used to compute the PPN for a given VPN. The special bits identifying the VPN-

segment are encoded by the compiler within the load/store instruction code are

used to directly index into this small table. As mentioned earlier, in our study we

have limited the number of SAT entries to 8/4 as the number of VPN-segments per

hot-spots is typically well below these number; our experiments demonstrate that

a 4-entry SAT achieves almost all of the reductions that an 8-entry SAT achieves

for most of the benchmarks. This is also very beneficial in terms of minimizing

the overhead on the load/store instruction encoding. The SA constant read from

the SAT table is fed to an adder which adds it to the VPN in order to obtain the

physical page frame number. It is noteworthy that the access to the SAT table is

performed early in the pipeline right after decoding the load/store instruction. Only

the adder is utilized in the pipeline stage where the virtual address is computed and

its corresponding physical address determined.

When the PPN-segments are loaded by the OS to the physical memory, their

offsets are computed given the starting addresses of the corresponding VPN-segments.

121

After computing these values, the OS loader places them in a predefined location

known to the compiler, so that later on when a hot-spot is to be entered, the setup

code that the compiler has inserted loads the SA values into the SAT table.

Figure 3.27 illustrates the entire address translation architecture. The SAT

table and the adder are combined with a default D-TLB. The default D-TLB is

looked up very rarely and only in the cases where the load/store instruction has

been identified to be outside of the VPN-segments supported within the hot-spot.

Additionally, when executing outside hot-spots, the default TLB is used for VPN to

PPN translation. In Section 3.3.6 we present experimental data covering all these

cases while also taking into account the small overhead introduced by the SAT table

and the adder circuitry.

It is noteworthy that the lookup into the SAT table is performed early in the

pipeline when the load/store instruction is decoded. Therefore, the SAT lookup is

outside the critical path of cache lookup or data memory access. Only the adder

functionality is needed when the virtual address is generated by the processor to

compute the physical address. However, the delay of the adder is orders of magni-

tudes smaller than the delay exhibited by the D-TLB structure.

3.3.5 System Analysis and Discussion

3.3.5.1 Multitasking Support

Since the proposed approach targets multitasking environments special care

needs to be taken to preserve and restore the correct values within the SAT. When

122

a task switch is initiated by the OS scheduler, it is important that the information

regarding the VPN-segments of the currently executing task is preserved. This can

be achieved by treating the SAT table as part of the task state, such as the register

file and other status registers, which needs to be preserved and later restored when

the task is resumed. Since the content of the SAT table is rather small (only 8 or

4 entries), the impact on the context switch time would be negligible. It is also

possible that the OS memory manager decides to move some of the PPNs of the

suspended task in order to free up space for the physical pages of the new task. In

this case, it is important when the old task is resumed that its physical pages are

brought back into the main memory in the way so that they form a PPN-segment.

This does not impose any extra delay, as these pages would need to be brought back

to memory even in the case of traditional address translation architectures. The

OS has the degree of freedom to allocate the PPN-segment at different location -

in such a case it only needs to compute the new segment adjustment constant and

write it into the SAT table.

It is noteworthy that the proposed approach targets a single processor with a

virtual memory support, which can potentially execute multiple tasks. Chip mul-

tiprocessors and networks-on-chips (NOCs) have emerged as a new implementation

platform where multiple processors cores are integrated into a single chip. Nonethe-

less, in many cases some of these processors would still support virtual memory

since often times it is more cost-efficient to allocate a subset of the tasks on a single

processor core, especially when there is a significant communication between these

tasks and the processor provides sufficient computational power for all of them. The

123

proposed technique aims at reducing the address translation energy for such cases.

3.3.5.2 Dynamic Memory

Another issue that requires special consideration is dynamic memory alloca-

tion, which is rarely used in real-time embedded application. Even if an application

requires dynamic memory allocation, such allocation is typically performed outside

the hot-spots and only references to these locations are allowed inside the hot-spots.

Although virtual addresses for dynamically allocated data are not known at compile

time, such data objects are normally assigned by the OS to the heap memory region

which occupies a continuous region on the address space. Consequently, heap refer-

ences can be treated to belong to a separate VPN-segment and a SAT entry can be

dedicated for it; the OS determines the SA constant as it allocates the heap. This

constant is identical for all the data references to the heap. If the heap VPN-segment

grows large and its corresponding PPNs cannot be allocated as a PPN-segment, then

the heap references would be assigned to the default D-TLB for address translation.

3.3.5.3 Real-Time Performance

The proposed technique additionally improves on the worst-case timing anal-

ysis for real-time applications. All the load/store instructions mapped to VPN-

segments are guaranteed a single cycle translation with performance implications

identical to a guaranteed TLB hit. This situation is very similar to the application

of scratchpad memories (SPM) where memory references to data allocated in the

124

SPM are guaranteed a single cycles memory access. Our experimental results show

that the majority of memory references are guaranteed single-cycle arithmetic-based

translation. Such guarantees will greatly improve the upper bounds of the Worst

Case Execution Timing (WCET) analysis of the code as for most of the memory

reference a single cycle address translation is guaranteed. The static WCET analysis

[95, 111] is a traditional compile-time step for any real-time application, which ob-

tains guarantees for the worst-case scenario in executing a particular piece of code.

Traditionally, when it cannot be inferred by the WCET analysis that a memory ref-

erence will always hit in the TLB, the worst case, i.e. a TLB miss, is assumed. For

the proposed methodology, however, the majority of load/store instructions (and in

many cases all of them) can be guaranteed a single cycle address translation, hence

greatly improving on the upper bounds of execution times produced by WCET

analysis.

3.3.6 Experimental Results

In evaluating the proposed technique, we have performed a quantitative analy-

sis and comparison between baseline D-TLB structure and the proposed mechanism

for arithmetic-based address translation. The baseline D-TLB has 64 entries, with

either 4-way or 8-way associativity. The virtual page size is kept conventionally of

4K size. The energy needed to access the D-TLB are estimated using the CACTI

tool [113], with process technology of 0.18µ.

In our experimental study we have included the overhead introduced by the

125

SAT table and the adder circuitry. We have modeled the SAT table as a register file

with 8/4 entries. The energy needed to access such a register files is evaluated by

using data from [106]. We have accounted for the power consumption of the adder

circuitry by using data presented in [114]. We have also adjusted the size of the

adder to match the VPN and PPN lengths. For a 32 bit virtual address space with

pages of size 4K, the size of the VPN is 20 bits. Additionally, a default TLB with

64 entry is assumed, for VPNs outside the hot-spots or VPNs not covered by our

approach due to SAT limitations.

We have performed our experimental study on a set of widely used multime-

dia benchmarks from the Mediabench set [103] and the MiBench set [104]. The

SimpleScalar toolset [105] is used as a simulation environment. After profiling the

benchmarks, the hotspots and VPN access patterns are captured through special

code inserted to the program prior to simulating the benchmarks to collect run-time

statistics regarding the memory references. The final D-TLB power consumption is

computed by summing the energy needed for all the VPN to PPN translations.

Table 3.12 shows the baseline D-TLB characteristics. The first row in the table

contains the benchmark name. The first 6 applications belong to the Mediabench

set of benchmarks, while the seventh application is a widely used open source mp3

encoder. The last three benchmarks are from MiBench and include one automotive

and two security applications. The subsequent two rows show the number of hot-

spots identified for each benchmark along with the execution frequency for each

hot-spot in percentage. The next two pairs of rows report the energy dissipation in

mJ and the number of D-TLB misses for 4-way set associative and 8-way associative

126

adp g721 gsm epic jpeg mpeg mp3 susan sha rij

hotspots 1 1 1 1 2 3 5 1 1 1

freq(%) 58 73 99 75 11,72 81,1 25,13,24 97 100 66

,11 ,16,18

Energy 0.39 21 22.7 3.32 2.57 149 138 0.36 1.23 56.5

(4sa)

Misses 8 12 14 2295 2513 1118 46719 26 12 15

(4sa)

Energy 0.66 35.7 38.6 5.63 4.35 253 234 0.61 2.08 95.7

(8sa)

Misses 8 12 14 2323 2510 1126 53730 26 12 8

(8sa)

Table 3.12: Baseline D-TLB characteristics

TLB organizations, respectively.

Table 3.13 shows the energy dissipation after applying the proposed method-

ology and using a default D-TLB of size 64 entries. The first row shows the total

number of VPN-segments in each hot-spot. As can be seen, most of the hot-spots

have fewer than 8 VPN-segments, except in mp3 where some of the hot-spots have

more than 8 VPN-segments. We use the VPN access frequency to prioritize which

VPN-segments to be covered by the proposed approach; the remaining VPNs are

translated through the default D-TLB. The last two pairs of rows correspond to

127

adp g721 gsm epic jpeg mpeg mp3 susan sha rij avg

VPN 2 2 3 4 5,7 5,3 8,11,7 5 4 2

Seg. ,5 ,7,12

Energy 0.23 9.99 6.58 1.53 0.98 49 41.7 0.11 0.34 29.7

(4sa)

Red.(%) 42 53 71 54 62 67 70 70 72 47 61

Energy 0.34 13.9 6.8 2.1 1.23 56.2 44.8 0.11 0.35 43.1

(8sa)

Red.(%) 49 61 82 63 72 78 81 81 83 55 71

Table 3.13: Arithmetic-based address translation with an 8-entry SAT

4-way set associative and 8-way set associative default D-TLB. The first row for

each pair reports the energy dissipation in mJ after utilizing the proposed technol-

ogy, while the second rows shows the improvement comparing the reduced energy

dissipation against the baseline case. The reported results account for the entire

application run including execution outside the hot-spots; the power overhead of

the introduced hardware support is accounted for as well. The last column shows

the average energy reduction across all the benchmarks; our technique achieves on

average 60.8% energy reduction compared to a 4-way set-associative baseline D-TLB

and 70.5% compared to a 8-way set-associative D-TLB.

Table 3.14 shows the energy dissipation after applying the proposed method-

ology with 4 entry SAT. The table rows contain the same information as in the

128

adp g721 gsm epic jpeg mpeg mp3 susan sha rij avg

VPN 2 2 3 4 5,7 5,3 8,11,7 5 4 2

Seg. ,5 ,7,12

Energy 0.23 9.99 6.58 1.53 1.10 49.3 52.0 0.11 0.34 29.7

(4sa)

Red.(%) 42 53 71 54 57 67 62 70 72 47 60

Energy 0.34 13.4 6.8 2.1 1.47 56.8 65.0 0.11 0.35 43.1

(8sa)

Red.(%) 49 61 82 63 66 78 72 81 83 55 69

Table 3.14: Arithmetic-based address translation with a 4-entry SAT

table for the 8-entry SAT. The first row shows the total number of VPN-segments

for each hot-spot. As can be readily observed this time, since some of the hot-spots

have more than 3 VPN-segments, not all the VPN-segments will be covered by the

arithmetic translation logic. The set of VPN-segments to be translated through

the proposed approach is determined based on their access frequency. The VPN-

segments with the highest VPN access frequency are to be covered by the proposed

approach; the remaining VPNs are translated through the default D-TLB. Conse-

quently, the default D-TLB will be accessed more often as compared to the case of

an 8-entry SAT; thus resulting in smaller energy reduction. Similarly to the previous

table, the last column reports the average energy reduction for all the benchmarks.

By comparing the average reductions to the previous table, it is evident that the

129

Figure 3.28: Energy reduction comparison

smaller 4-entry SAT table insignificantly lowers the average energy reduction by less

than 2%. For most of the benchmarks the reductions are identical and only for jpeg

and mp3 a more sizable difference of 9% exists. Consequently, adopting a 4-entry

SAT table proves to be practical as the overhead in identifying the VPN-segments is

2 bits only and the achieved energy reductions are extremely close to the reductions

achieved by an 8-entry SAT.

Figure 3.28 shows a direct comparison between the energy reductions (in per-

centage) for the proposed methodology between the 4-way set-associative and an

8-way set-associative baseline configurations. The first two bars in each group rep-

resent the energy reductions of an 8-entry SAT case compared to both baselines.

The second pair of bars represents the energy reductions of a 4-entry SAT cases

130

compared to both baselines. It can be noted that the 4-entry SAT case exhibits less

energy reductions for the mp3 benchmark, as this benchmarks has 5 VPN-segments.

In the case of a 4-entry SAT one of these segments (the least frequently accessed)

is assigned for translation through the default D-TLB.

3.4 Interval Page Table

3.4.1 Introduction

The hardware support for address translation is only one of the system com-

ponents needed for virtual memory. The system software must maintain a data

structure, which purpose is to capture the mapping between virtual pages in the

application address space and frames in physical memory. This data structure, re-

ferred to as a page table, is typically implemented in a table format which occupies

a significant amount of memory and is traversed when the hardware MMU cannot

provide the physical address due to a miss. The need to perform such page table

lookups is the major obstacle for providing real-time guarantees.

The traditional page table organizations, as surveyed in [45], have been de-

veloped for general-purpose computing systems and servers where it is typical for

a very large number of tasks to be simultaneously active. Each task has its own

address space and competes for the physical memory with the other tasks, resulting

in changes of the memory map. These changes need to be reflected in the page table.

Moreover, the tasks compete for entries in the TLB as well. In the case of TLB miss,

which as pointed out in [115] can be a very frequent event in many general-purpose

131

workloads, the page table needs to be traversed to find the requested translation

entry.

Two major page table organizations have been established and used in the

majority of modern general-purpose processors and operating systems: the Hier-

archical Page Table and the Inverted Page Table. However, the former requires a

significant amount of memory, while the latter exhibits highly unpredictable traver-

sal times. Many embedded systems, however, are often memory constrained because

of low-cost and low-power requirements and at the same time require strong real-

time guarantees. Consequently, none of the traditional page table organizations are

well suited for such real-time and memory-constrained systems.

In this section, a novel page table organization targeting real-time and memory-

constrained embedded systems is investigated. The proposed organization not only

significantly reduces the memory needed to store and manipulate the table but also

provides for fast and predictable page table lookups. In many embedded applica-

tions, however, the application memory footprint is much less dynamic as dynamic

memory allocation and deallocation are extremely expensive operations in terms of

performance and power. This property of embedded systems can be exploited, so

that the translation information in the page table is stored in a much more com-

pacted form. As page table changes are very infrequent and occur during program

load and setup time only, more time-consuming page table insertion/deletion oper-

ations can be easily tolerated. The introduced Interval Page Table (IPT) represents

the mapping between virtual and physical pages in a much more compact way by

exploiting the fact that many consecutive virtual addresses are mapped to consec-

132

utive physical ones and that this mapping changes very infrequently when dealing

with real-time and memory-constrained embedded systems. Its compact represen-

tation together with application information is exploited to design a very fast and

predictable hardware traversal, which completes within a few cycles and requires no

system software intervention.

3.4.2 Motivation

In general purpose computer and server systems, various workloads exhibit

large variation of memory requirements. Not only the number of active tasks could

change rapidly, but also the memory demands of each task could be very dynamic

and unpredictable. These properties result in frequent dynamic memory allocations

and deallocations. Such activities cause memory pages to be frequently moved to

secondary storage and thus later remapped; in addition it also causes the creation

and removal of memory mappings from the page table. Consequently, page table

lookups and maintenance operations could be very frequent, which results into an

optimization goal of speeding up the page table traversal and maintenance opera-

tions on average, with page table sizes being not a major concern as large parts of

them can be swapped to a secondary storage. Thus fast average lookups and efficient

entry manipulation have been the major considerations in page table designs.

In many embedded systems, however, the aforementioned conditions are typi-

cally not present. Dynamic memory allocations and deallocations are very expensive

in terms of not only performance, but even more importantly energy and real-time

133

Frame
Physical

MMU/
TLB

 Page Table
Manipulation

 Page Table
Lookup

Page
Table

 Miss,
HW Interrupt

Process
Address Space

From CPU

System
Software

Hardware or
System SW

 Virtual Page

 Physical Memory

Figure 3.29: Virtual memory architecture

responsiveness and guarantees. The code and data footprints are, thus, quite static

and usually no or very limited page re-mapping occurs. Energy-efficiency and real-

time guarantees are primary requirements for many embedded systems together

with their limited memory resources. Meeting these requirements in the presence

of virtual memory has been the major challenge for employing the virtual memory

concept in real-time and energy-efficient embedded systems.

Figure 3.29 shows the general organization of virtual memory support. In the

case of a MMU miss, a procedure for traversing the page table is executed. This

traversal procedure can be implemented either in hardware or executed as a system

software routine. The highly-associative MMU translation cache is to be blamed

for the excessive power consumption, while the need for a page table traversal in

the case of MMU miss contributes to poor real-time behavior. Additionally, due to

their large sizes, many of the traditional page table organization are infeasible to

adopt in many memory- constrained embedded systems.

Consequently, two major issues need to be addressed when implementing a vir-

134

tual memory support in an embedded system. First, energy-efficient MMU organi-

zations for address translation are needed. Recent research projects have addressed

this problem by introducing new hardware/software address translation schemes,

which target embedded applications and their inherent properties of determinis-

tic application knowledge and the resulting possibility for sophisticated compiler

involvement, such as [60, 68, 54, 55, 11]. Specialized MMU organizations are intro-

duced which provide deterministic and energy-efficient address translation. Most or

all of the needed address translations for a critical program section are pre-loaded

and allocated into the MMU in a deterministic way. These techniques significantly

reduce the number of page table lookups. However, they cannot guarantee that

all memory references will be translated through the MMU. Page table lookups,

even though rare, can still occur, and as such need to be taken into account in the

real-time worst-case analysis.

The second major problem to be addressed in supporting virtual memory is the

page table organization and its contribution to the poor real-time behavior and sys-

tem cost due to its often excessively large memory space demands. Due to cost and

energy constraints many embedded systems lack large secondary storage. In some

cases flash memory could be used as such; however, its size is limited and is usually

optimized and fine-tuned for the application dataset. In these circumstances, page

table size becomes a critical issue in contrast to general-purpose systems. Moreover,

the page table traversal needs to performed in a fast and predictable manner in or-

der to meet real-time constraints. None of the traditional page table organizations

meet these two fundamental requirements for compact size and real-time traversal

135

operations.

We introduce the Interval Page Table (IPT) organization, a page table struc-

tures, which is not only extremely compact in size and significantly smaller than

the traditional page tables, but also provides for a very fast and performance-

deterministic lookup. The IPT traversal is performed completely in hardware and

only the page table maintenance operations, such as inserting or removing an entry,

are implemented as part of the system software.

The IPT organization relies on the fact that embedded applications feature a

number of important and unique properties as compared to general-purpose systems.

The lack of large secondary storage to be used by the virtual memory system to store

physical frames currently not used by the application results in page tables, which

are mostly static with changes occurring in very rare cases, often during the pro-

gram load-time only. Therefore, maintenance operations, such as page re-mapping,

insertion, and deletion, are very infrequent. The page table organization which we

outline in this section follows this principal. Information regarding the virtual and

physical memory footprint is used in order to represent the virtual-to-physical map-

ping in a much more economical way. The set of virtual pages is divided into page

intervals, where each such interval consists of consecutive virtual pages mapped to

consecutive physical memory frames. The proposed Interval Page Table consists of

an entry for each such interval. The information needed is the interval definition,

which includes the starting VPN, the ending VPN, and the access rights for that

interval. The only additional data needed to translate a VPN from a given interval

is the numerical offset between the virtual interval and its corresponding interval of

136

 Virtual Address
 VPN Offset

 PTE2

 PTEn

 PTE1

 ...

Direct Page Table
(a)

PTE

Leaf nodes
with PTE entries

 Virtual Address
 Offset

Root Table

Hierarchical Page Table
(b)

Level−2 Table

PTE Table

Figure 3.30: Traditional hierarchical page table organizations

physical frames. Consequently, the proposed IPT is highly memory efficient, as it

captures information per virtual page intervals rather than virtual or physical pages.

3.4.3 Page Tables Overview

In systems with virtual memory support, the system software is responsible

for creating and maintaining the page tables - data structures, which contain the

virtual-to-physical mappings. Depending on the page table organization, a table

entry, referred to as a Page Table Entry (PTE), may contain a VPN, a PPN, as well

as protection and status information.

In systems with relatively small virtual address spaces only a very limited

number of virtual to physical mappings need to be captured. Thus a Direct Table

which contains all the memory mappings is allocated in physical memory, as shown

in Figure 3.30a, and directly indexed with the VPN. However, as virtual address

spaces increased in size, direct table organizations are no longer capable to capture

all the physical memory mappings, as its size quickly exhausts the available physical

137

memory, even when the application address space contains only a few virtual pages.

Several page table organizations have been introduced in order to resolve this prob-

lem. These approaches allocate only a fraction of the page table or the page table

organization is made to scale with the physical memory, instead of with the virtual

address space.

In the classical Hierarchical Page Tables the linear virtual address space is

viewed as a hierarchical structure of multiple smaller and fixed-size virtual spaces.

In this way, the page table is partitioned into a number of hierarchy levels, which

are looked up sequentially when traversing the table. The top table, which is known

as the root table, is placed in a known memory location and contains the address

of the second level tables, which in tern capture the addresses of the next levels.

The leaf tables, contain the actual PTEs. Figure 3.30b shows the structure of

a 3-level hierarchical page table. Only the parts of the hierarchical table, which

contain translation information of the current memory map of the application need

to be allocated. However, if the program accesses a few but scattered virtual pages,

multiple second- and third- level page tables need to be allocated with very low

memory utilization. As shown in our experimental results, the hierarchical page

tables may require a significant amount of memory.

In the Inverted Page Tables, as depicted in Figure 3.31, only the mappings

of pages present in physical memory are allocated and captured in the page table.

This table organization follows the organization of hash-tables. A hash function

is used to compute the index from the VPN. The potential collisions are resolved

through the utilization of collision chains within the table. The worst case lookup

138

 PTE

 PTE

 PTE

 VPN Offset

 Hash
 Function

Inverted Page Table

 Virtual Address

Collision
Chains

Figure 3.31: Traditional inverted page table organizations

time is determined by the size of the longest collision chain present in the table. The

total table size is scaled to the size of physical memory, as the page table contains

entries for each allocated physical memory frame. Virtual page number are usually

included in each entry in order to resolve the hashing conflicts. In most of the

cases, the physical frame number have to be included in the entry as well, in order

to overcome problems related to memory sharing and collision minimization. The

collision chains are formed either by rehashing or by putting explicit pointers for

each entry. Even though the inverted page tables are smaller in size compared to the

hierarchical tables, their major drawback in the context of the real-time embedded

system is the non-deterministic traversal time. This is due to their organization

as hash tables, which can result in rather lengthy collision chains that need to be

traversed. The worst-case time analysis needs to take into account the possibility

of very long chains, which can result to hundreds of cycles for page table traversal.

As can be readily seen from the review above, none of the traditional page

table organizations is well suited for real-time and resource constrained embedded

139

systems. The hierarchical page tables exhibit deterministic traversal time, however,

they usually require an excessively large amount of memory which prevents them

from utilization in resource constrained systems. The inverted page tables are rel-

atively less memory demanding then hierarchical tables. However, their hash table

structure renders them unusable in real-time systems. The proposed interval page

table organization demands significantly less memory than both the hierarchical and

the inverted page table, while featuring very fast and time-deterministic traversal

times.

3.4.4 The Interval Page Table

The traditional virtual memory implementation assumes no information re-

garding relations between virtual and physical pages, and no knowledge regarding

the physical locations of each page. Consequently, no correlation is assumed between

VPNs and their corresponding PPNs. Therefore, the number of page table entries

is proportional to the number of pages in either virtual space or physical space. In

embedded applications, however, the allocated physical ranges usually conform to

certain rules. For example, data arrays are usually allocated to consecutive physical

addresses due to considerations of memory compaction and the high cost of page

re-mapping. Therefore, if a large data array occupies multiple consecutive virtual

pages, the physical pages to which these VPNs are mapped are consecutive as well.

Thus there exists a strong correlation between all the mappings of the pages of the

data array. Additionally, such sequences of virtual pages usually have identical ac-

140

Page
Interval

Page
Interval

 Vitual Address Space Physical Memory

 ...

 ...

 ...

 ...

Offset1

Offset2 VPN(j)

 VPN(i+1)
 VPN(i)

 VPN(i+n1)

 VPN(j+n2)
 PPN(k+n2)

 PPN(k)

 PPN(m+n1)

 PPN(m+1)
 PPN(m)

Figure 3.32: Page interval example

Page
Interval

Page
Interval

 Vitual Address Space

 ...

 ...
 VPN(j)

 VPN(i+1)
 VPN(i)

 VPN(i+n1)

 VPN(j+n2)

IPT Entry(i)

IPT Entry(j)

 Interval Page Table

Figure 3.33: IPT: An entry per page interval

cess rights as they correspond to data arrays, and structures that are accessed by

the same task, or to an executable binary code.

3.4.4.1 IPT Organization

The proposed interval page table organization considers the virtual address

space as a collection of groups of consecutive VPNs which are mapped to their

corresponding set of consecutive physical frames. As we explained above and also

as observed in our experimental results, such groups of VPNs and PPNs are typical

141

for embedded systems, and which is even more important change very rarely and

are usually defined when the application program is loaded to the system. We refer

to such groups of VPNs and PPNs as page intervals; examples of page intervals are

shown in Figure 3.32. As can be seen from these examples, each mapping from a

VPN to its PPN in a page interval has the evident property that the PPN can be

computed from the VPN by adding a predefined constant. The value of the constant

can be computed by the difference from the first virtual page number and the first

physical frame number from the group of pages.

For any page interval, all the physical frame locations can be computed from

the virtual page by adding a single constant determined from the corresponding vir-

tual interval. Thus rather than using multiple entries and capture physical locations

in each entry, a single combined entry with the interval information and the single

offset constant is enough to maintain all the mappings. As shown in Figure 3.33

where multiple such intervals exist, a much smaller page table can be used with each

entry corresponding to one interval.

Each entry in the IPT captures the information related to a single virtual page

interval, [V PNi1, ..., V PNin]. The mapping between the virtual interval and its

corresponding physical page interval, [PPNi1, ..., PPNin], is established through the

offset constant Oi, which is defined as PPNi1 − V PNi1 and computed during load

time, or by the memory manager when the physical interval or a page is allocated

into the physical memory. Consequently, an entry in the IPT will have the following

structure: {V PNi1, V PNin, Oi, Access−Rights}, plus some additional status bits

defining the access control rights for this page intervals. All the pages in the interval

142

are assumed to have identical access control bits, captured within the IPT entry. If

different access control bits are needed, the interval is split into multiple intervals

each having its own access control bits.

3.4.4.2 IPT Manipulation

The page table is manipulated when entry is added or removed. This mostly

happens during load-time when the table structure is created, or in the cases of

dynamic memory allocation and deallocation. Because of its complexity, dynamic

memory allocation typically occurs outside the critical application regions if it occurs

at all. Nonetheless, the page table needs to be able to handle such operations. In

order to achieve efficient IPT traversal, the IPT PTE entries are maintained in a

sorted order of the page interval VPNs. In the next subsection, we demonstrate

how this sorted order is used by the hardware traversal process to rapidly find the

required page mapping.

When a new VPN to PPN mapping is to be added to the IPT table, two

situations can occur. First, it may be possible to assign the new mapping to an

already existing page interval. Clearly, this is the case when the new mapping can

be “attached” to the beginning or the end of an existing page interval. In this

case, the IPT table entries remain the same and only the information regarding the

expanded interval needs to be modified by updating wither the new starting VPN or

the new length for that interval. The second situation occurs when the new mapping

cannot be assigned to any of the existing intervals. In this case, a new page interval

143

1. NewMap = new IPT PTE entry

2. Interval = FirstIPTEntry;

3. While(Interval!=LastIPTEntry)

4. if(NewMap attaches to Interval)

5. Attach NewMap to Interval; return;

6. if(VPN(NewMap)<StartVPN(Interval)

7. CreateNewInterval(NewMap); return;

8. Interval=NextIPTEntry;

Figure 3.34: Adding an IPT mapping

needs to be created and inserted accordingly into the IPT by preserving the sorted

order of all the intervals. The pseudo-code for adding a page mapping to the IPT

is shown in Figure 3.34. In this pseudo-code, the process of finding the place of the

new mapping is performed through a linear iteration through the IPT. This step

can be performed to run in logarithmic time, O(logn), with respect to the number

of intervals n through binary search. However, the subsequent step of inserting the

new interval takes linear time, O(n), to maintain the IPT sorted and thus the total

running time would be O(n). For the sake of clarity, in our pseudo-code we have

used the linear search procedure for finding the new mapping positions within the

IPT. Similarly, when a mapping is to be removed, its page interval is either left

intact as in the case when the mapping is positioned at the interval border (either

beginning or end of interval), or is split into two new intervals. The pseudo-code for

this operation is shown in Figure 3.35. The time complexity of removing a mapping

144

1. ToRemoveMap = Mapping to be removed;

2. Interval = FirstIPTEntry;

3. While(Interval!=LastIPTEntry)

4. if(ToRemoveMap belongs-to Interval)

5. if(ToRemoveMap is First-Or-Last-Map in Interval)

6. RemoveFrom(Interval,ToRemoveMap); return;

7. else /∗ ToRemoveMap inside Interval ∗/

8. RemoveAndSplitInterval(Interval,ToRemoveMap); return;

9. Interval=NextIPTEntry;

Figure 3.35: Removing an IPT mapping

from the IPT is linear, O(n), with respect to the number of page intervals n captured

by the table. Similarly to adding a mapping, the linear complexity comes from the

situation where an interval needs to be split and the new interval inserted into the

sorted table, and possibly requiring the rearrangement (moving with one entry up)

of the entire table. Again, for the sake of clarity in the pseudo-code we use a linear

search to find the interval to which the mapping that is to be removed belongs to.

It is noteworthy that these two procedures are executed only when there is a

need for a change in a virtual-to-physical mapping. This is a situation occurring

very rarely, especially for embedded systems, and only when a dynamic allocation or

re-allocation has been requested or when the operating system has transferred some

of the physical pages to a secondary storage device. Such operations require not only

a page table manipulation but also a significant execution time inside the memory

145

IPT entry
address

(Vs,Ve,Offset)
IPT Entry

Offset
Adder

Table Base Table Size

offset

Comparator
Range

Left Right

Hit

Generator
IPT Index

VPN

PPN

Figure 3.36: Hardware for IPT traversal

management module of the operating system. If existing at all, such operations

would only be executed either during the initialization phase of the applications

or prior to entering a critical execution section (a function or a loop processing

events) that requires real-time guarantees. For the page table lookup operation, the

frequency and need of which depends on the capability of the hardware translation

buffer, we offer not only fast, but also a time-deterministic procedure.

3.4.4.3 IPT Lookup

Even though page table traversals are rare, especially after the recent offer-

ings for novel MMU organizations for embedded systems, the worst-case real-time

analysis must take them into account. Consequently, it is extremely important

for real-time embedded systems that this operations are completed in a fast and

predictable manner.

The proposed interval page table is traversed by hardware. The IPT page inter-

vals are partitioned into four categories. The code intervals capture the instruction

146

code mappings. The stack intervals map the stack pages, the data intervals repre-

sent the data objects, both statically and dynamically allocated. This partitioning

is performed in order to speed up the IPT table lookup. For this reason, the memory

reference instructions are tagged with two bits, which identify what type of memory

is referred to, i.e. stack, or program data. For the cases, where such ISA tagging is

not feasible, the page intervals are partitioned to code and data intervals references

to which are easy to distinguish without any ISA modifications.

A binary search procedure is applied within the corresponding IPT partition.

The introduced hardware architecture is shown in Figure 3.36. The IPT Index Gen-

erator provides the access indices for the binary search. It requires two short adders

in order to compute in parallel the indices for both the left and the right search

paths. Depending on the results provided by the Range Comparator, one of these

two indices is selected to continue the binary search procedure. The Range Com-

parator consists of two magnitude comparators with width equal to the VPN width.

If the IPTs for all the applications are allocated within one very small memory bank,

then a one cycle implementation for reading an IPT entry and range comparison

will be possible. The two adders within the index generator work in parallel with

the range comparator. The Offset Adder, which provides the PPN, works in parallel

with the range comparator as well. Only when the range comparator finds that

the VPN lies withing the current interval, the output of this offset adder is to be

provided to the MMU and the processor.

Consequently, the number of cycles needed for IPT lookup depends on the

number of page intervals of the corresponding IPT partition (code, stack, data). As

147

Total Hier Hier Hier Inv Inv IPT IPT Red Red

#pgs #pgs size (%) size (%) (bytes) (Hier) (Inv)

adpcm 4 5 40K 0.0 12K 0.4 3 36 99.9 99.7

g721 6 5 40K 0.1 12K 0.6 3 36 99.9 99.7

gsm 12 5 40K 0.1 12K 1.2 4 48 99.9 99.6

epic 17 5 40K 0.2 12K 1.7 8 96 99.8 99.2

jpeg 20 5 40K 0.2 12K 2.0 5 60 99.9 99.5

mpeg 99 5 40K 1.0 12K 9.7 7 84 99.8 99.3

adpcm 16 10 80K 0.1 12K 1.6 7 84 99.9 99.3

/gsm

jpeg 119 10 80K 0.6 12K 11.6 12 144 99.8 98.8

/mpeg

adpcm 22 15 120K 0.1 12K 2.1 10 120 99.9 99.0

/gsm

/g721

jpeg 136 15 120K 0.4 12K 13.3 20 240 99.8 98.0

/gsm

/gsm

Table 3.15: Interval Page Table (IPT) size and comparisons - 8K pages

148

Total Hier Hier Hier Inv Inv IPT IPT Red Red

#pgs #pgs size (%) size (%) (bytes) (Hier) (Inv)

adpcm 8 6 24K 0.1 24K 0.4 3 36 99.9 99.9

g721 12 6 24K 0.2 24K 0.6 3 36 99.9 99.9

gsm 24 6 24K 0.4 24K 1.2 4 48 99.8 99.8

epic 34 6 24K 0.6 24K 1.7 8 96 99.6 99.6

jpeg 40 6 24K 0.7 24K 2.0 5 60 99.8 99.8

mpeg 198 6 24K 3.2 24K 9.7 7 84 99.7 99.7

adpcm 24 12 48K 0.2 24K 1.2 7 84 99.8 99.7

/gsm

jpeg 238 12 48K 1.9 24K 11.6 12 144 99.7 99.4

/mpeg

adpcm 36 18 72K 0.2 24K 1.8 10 120 99.8 99.5

/gsm

/g721

jpeg 272 18 72K 1.5 24K 13.3 20 240 99.7 99.0

/mpeg

/epic

Table 3.16: Interval Page Table (IPT) size and comparisons - 4K pages

149

Total Hier Hier Hier Inv Inv IPT IPT Red Red

#pgs #pgs size (%) size (%) (bytes) (Hier) (Inv)

adpcm 16 7 14K 0.4 48K 0.4 3 36 99.7 99.9

g721 24 7 14K 0.7 48K 0.6 3 36 99.7 99.9

gsm 46 7 14K 1.3 48K 1.1 4 48 99.7 99.9

epic 68 7 14K 1.9 48K 1.7 8 96 99.3 99.8

jpeg 80 7 14K 2.2 48K 2.0 5 60 99.6 99.9

mpeg 396 7 14K 11.0 48K 9.7 7 84 99.4 99.8

adpcm 46 14 28K 0.6 48K 1.1 7 84 99.7 99.8

/gsm

jpeg 476 14 28K 6.6 48K 11.6 12 144 99.5 99.7

/mpeg

adpcm 70 21 42K 0.7 48K 1.7 10 120 99.7 99.8

/gsm

/g721

jpeg 544 21 42K 5.1 48K 13.3 20 240 99.4 99.5

/mpeg

/epic

Table 3.17: Interval Page Table (IPT) size and comparisons - 2K pages

150

this is known or can be efficiently estimated prior to executing the application pro-

gram, a careful real-time program analysis can be performed. Because the number

of page intervals for each IPT group is typically very small, as evidenced by our ex-

perimental results, the number of cycles need for IPT traversal is withing the range

of 2 - 3. Not only is such traversal very fast, but the number of cycles for translating

the four address groups is known prior to the program execution and available for

real-time performance analysis. In the next section we quantify this analysis of the

IPT utility with experiments on a number of well known applications.

Because the IPT is looked up very rarely, i.e. less than 0.001% of all the mem-

ory references as shown in the next sections, the energy overhead of the introduced

traversal hardware is practically non-existent. The area overhead of the introduced

hardware is limited to two short adders, 5-6 bit wide, one offset adder which width

is equal to the VPN width, usually in the range of 20 bits, and one range compara-

tor, which features two magnitude comparators. We estimate the required die area

of this logic to be less than 1% of the total area of a modern embedded processor

featuring pipelining, media instructions, and on-chip instruction and data caches.

3.4.5 Experimental Results

To evaluate and analyze the proposed interval page table, we have performed

an experimental study with the M5 full-system simulator [116]. This simulator

models a complete computing system with an Alpha-like ISA. The ISA is a classical

RISC architecture similar to the ISA used by many modern embedded processor.

151

The M5 simulator boots the Linux kernel v2.6 and executes binaries compiled with

a gcc-based cross compiler.

We have evaluated the IPT for a set of widely used embedded applications

from the Mediabench [103] benchmarks, including speech coders, image, and video

processing. We have also created multitasking benchmarks by running simultane-

ously two or three of this benchmarks. We have modified the Linux kernel in order

to monitor the page table operations and to collect statistics regarding the virtual

to physical maps and the number of the page table manipulation and traversal op-

erations. The Linux kernel implements a traditional 3-level hierarchical page table;

we have included it as a baseline in our experimental results. As another point of

comparison we have included a traditional inverted page table organization as well.

These two baseline page table configurations are evaluated separately and compared

to the proposed IPT. For the hierarchical page table, the total table size includes

the sub-tables from all the three levels. We have also provided data regarding the

actual utilization of the page table, i.e. the ratio between the size of the actual PTE

entries versus the size of the entire table. Similar data is provided for the inverted

page table.

To evaluate the proposed interval page table, the page intervals are constructed

using information from both the linker map and the Linux memory manager after

loading the program. The memory manager provides us with information regarding

the actual physical pages used. In this way, the start/end VPNs for each interval

together with the offset to its physical pages are identified.

Tables 3.15, 3.16, 3.17 show the experimental results collected on the set of

152

Total Code Data Stack

#Intervals Intervals Intervals Intervals

adpcm 6 1(1) 1(2) 1(1)

g721 5 1(2) 1(2) 1(2)

gsm 6 1(4) 2(7) 1(1)

epic 44 2(4) 5(12) 1(1)

jpeg 6 2(11) 2(8) 1(1)

mpeg 8 3(10) 3(87) 1(2)

adpcm/gsm 12 2(5) 3(9) 2(2)

jpeg/mpeg 14 5(21) 5(95) 2(3)

adpcm/gsm/g721 17 3(7) 4(11) 3(4)

jpeg/mpeg/epic 58 7(25) 10(107) 3(4)

Table 3.18: Interval Page Table (IPT) entries characteristic - 8K pages

153

Total Code Data Stack

#Intervals Intervals Intervals Intervals

adpcm 8 1(2) 1(4) 1(2)

g721 7 1(4) 1(4) 1(4)

gsm 7 1(8) 2(14) 1(2)

epic 79 2(8) 5(24) 1(2)

jpeg 7 2(22) 2(16) 1(2)

mpeg 9 3(20) 3(174) 1(4)

adpcm/gsm 15 2(10) 3(18) 2(4)

jpeg/mpeg 16 5(42) 5(190) 2(6)

adpcm/gsm/g721 22 3(14) 4(22) 3(8)

jpeg/mpeg/epic 95 7(50) 10(214) 3(8)

Table 3.19: Interval Page Table (IPT) entries characteristic - 4K pages

154

Total Code Data Stack

#Intervals Intervals Intervals Intervals

adpcm 9 1(4) 1(8) 1(4)

g721 8 1(8) 1(8) 1(8)

gsm 7 1(16) 2(28) 1(4)

epic 149 2(16) 5(48) 1(4)

jpeg 9 2(44) 2(32) 1(4)

mpeg 9 3(40) 3(348) 1(8)

adpcm/gsm 16 2(20) 3(36) 2(8)

jpeg/mpeg 18 5(84) 5(380) 2(12)

adpcm/gsm/g721 24 3(28) 4(44) 3(16)

jpeg/mpeg/epic 167 7(100) 10(428) 3(16)

Table 3.20: Interval Page Table (IPT) entries characteristic - 2K pages

155

benchmarks. The three tables report the collected data for memory pages of size

8K, 4K, and 2K, respectively. The first column contains the benchmark name. The

first six applications are from the Mediabench set of benchmarks. The next four

rows represent groups of benchmarks that are executed in parallel under the control

of the Linux kernel. The second column shows the total number of pages mapped

and accessed by the application. This set of pages corresponds to the entire memory

footprint of the application, including code and data. The next three columns show

the characteristics of the hierarchical page table as implemented by the Linux kernel.

The first column from the group (Hier. #pages) reports the number of memory pages

occupied by the page table itself. The next column shows the total memory size

of the table, while the last column in the group (Hier. util.) reports on the actual

utilization of the page table. The utilization is defined as the ratio between the bytes

actually used to store page mapping information as compared to the total size of

the table structure. The sixth and seventh columns (Inv. size and Inv. util.) show

the total size and the space utilization for an inverted page table. The next two

columns, (#IPT entries and IPT size), report the characteristics of the proposed

Interval Page Table. The first one shows the total number of IPT entries required

by the application, while the second column reports the total size (in bytes) of the

IPT table. Finally, the last two columns report on the space reduction achieved by

the IPT as compared to both the Hierarchical and Inverted page table organization.

It can be seen, for instance, that the IPT requires consistently less than 1% of

the hierarchical page size. It is noteworthy that for many of the applications the

hierarchical page table occupies almost as much memory as the memory needed for

156

adpcm g721 gsm epic jpeg mpeg

Total Mem 22791 469293 458618 104036 45734 2308522

64/48 D(I)TLB 2 ∗ 10−5 9 ∗ 10−7 1 ∗ 10−6 2 ∗ 10−5 2 ∗ 10−5 2 ∗ 10−6

48/32 D(I)TLB 2 ∗ 10−5 9 ∗ 10−7 1 ∗ 10−6 3 ∗ 10−5 2 ∗ 10−5 2 ∗ 10−6

Table 3.21: Number of Page Entry Lookups

the entire program data and code.

Tables 3.18, 3.19, and 3.20 show the IPT entries characteristics - it lists all the

page intervals classified by their type as well as the number of pages for each interval

category. The three tables cover the cases of virtual memory support with page sized

of 8K, 4K, and 2K, respectively. The first column lists the benchmarks, while the

second column (Total Intervals) shows the total number of page intervals identified

for each benchmark. The subsequent three columns show the number of intervals

and the number of pages for the corresponding interval type (in parenthesis) for

code, data, and stack memory pages. It is evident from data in these tables, that

the total number of intervals, i.e. IPT entries is quite small even for benchmarks

exhibiting large memory footprints, such as the mpeg, jpeg, and the epic applications.

From the number of code and data page intervals it can be seen that it takes at

most 2 cycles for IPT lookup for code and data, and only data translations for the

epic benchmark require 3 cycles.

Table 3.21 shows the number of page table lookups for each benchmark. The

first row contains the benchmark name. The second row reports the total number of

157

memory access (x1000). The third and fourth row show the percentage of page table

lookup as a fraction of all memory references. The third row shows a hardware TLB

combination of 64 entry D-TLB and 48 entry I-TLB, while the fourth row shows a

TLB combination of 48 entry D-TLB and 32 entry I-TLB. As shown in the table, the

number of page table lookups in these embedded benchmarks is only a tiny fraction

of all the memory accesses, yet it still occurs and must be taken into account for

real-time guarantees. The fact that this happens extremely rarely results in the zero

energy overhead of the proposed hardware IPT traversal scheme.

158

Chapter 4

Cross-Layer Customization for Multitasking Management

4.1 Introduction

Many modern embedded applications, such as personal organizers, cell phones,

and various hand-held devices, constitute complex computing systems where mul-

tiple execution tasks cooperate in implementing the product specification. Due

to market demands, a large number of capabilities need to be supported, such as

aggregated multimedia data processing (speech, audio, video), communication pro-

tocols (GSM/CDMA, VoIP, Bluetooth, CAN), security functions, user interfaces,

and many others. The utilization of embedded processors for real-time and time-

critical control applications have been growing rapidly. The modern automotive

industry, for instance, has adopted the approach where tens to hundreds of such

processors are used throughout a single automobile [70]. They are used for trac-

tion control, anti-lock brake systems, engine control, and many other control and

time-critical tasks. Many real-time data acquisition and processing systems such as

sensor nodes and networks, impose strict real-time constraints and response time

in order to capture, process, and identify rapidly appearing objects and physical

phenomena. At the same time, all this processing power needs to be achieved with

extremely energy-efficient and low-cost embedded processors.

The inherent multi-tasking nature of these applications has led to implementa-

159

tions where multiple software tasks are mapped for execution on a high-performance

embedded processor such as the Intel XScale [46] and the ARM9 [48], which offer

multi-tasking support in the form of MMUs and hardware timers, and readily avail-

able operating systems (OS) which utilize this hardware to implement various forms

of multi-tasking.

General-purpose OSs have been known to impose deficiencies in meeting the

real-time constraints of many embedded applications. The main reasons for this are

the lack of real-time scheduling and the high cost in terms of performance and delay

of the context switch procedure. Real-time OS (RTOS) kernels [112, 6] have been

introduced in order to achieve more deterministic scheduling of tasks where certain

priorities need to be followed. The RTOS scheduler ensures that tasks are scheduled

for execution according to their completion deadlines. However, the cost of saving

and restoring the task state remains quite high, as this mechanism depends only on

the size of the hardware state that needs to be preserved in order to transparently

restore the preempted task back to execution. For instance, the process state that

needs to be saved on context switch includes program counter, register files, status

registers, address space mapping, etc. Therefore, a significant number of memory

access operations need to be performed in order to store the state of the preempted

task and to load the state of the new task to be executed. To minimize the size of

the state, light-weighted multi-threading was introduced [117]. In this approach, a

number of threads share some of their state, most commonly their address space.

To achieve a context switch, only the register files, and state registers needs to be

saved and restored. Due to stringent power constraints the modern embedded pro-

160

cessors follow the RISC and VLIW paradigms. In these architectures, and even

more so in VLIW, the register file is usually large in order to enable the compiler

or software developer to exploit instruction level parallelism and maintain high in-

struction execution throughput; a typical modern VLIW architecture [77] contains

general-purpose register files of size from 64 to 256. Even though such register files

are clustered, the registers from all the clusters need to be saved on context switch.

This implies that it easily takes a few hundred cycles to save and load the general-

purpose register file on context switch. Such a significant overhead has two major

impacts on the system. First, the system performance is negatively affected, and

second, the response time, which is the time between an event triggering a suspended

task and the moment when the task resumes execution, is significantly degraded.

In this section, a novel cross-layer customization methodology which signifi-

cantly reduces the context-switch overhead is investigated. The proposed low-cost

context-switch mechanisms are achieved through the active cooperation of compiler,

microarchitecture, and operating system (OS). A general-purpose OS or RTOS con-

servatively saves and restores the entire content of the register file. Such a course of

action is needed since no application knowledge is available to the OS task scheduler

regarding which registers are alive in that task and thus need to be saved. Similarly,

when the task execution is resumed all the register values associated to that task

are loaded into the register files. Such a conservative approach has been inherited

from general-purpose computing systems, where no prior knowledge regarding the

application structure is known, and both the microarchitecture and the OS kernel

need to be designed with generality and worse-case assumptions in mind.

161

We present two complimentary techniques for low-cost and rapid task pre-

emption. Both of them follow the principle that through the close cooperation of

compiler, OS, and architecture, very fast and low-cost task switch can be imple-

mented where only a minimal amount of task state is swapped on task preemption.

The techniques differ in the way this is achieved; a trade-off is explored between

hardware support and the number of cycles needed to perform the context switch.

A typical application usually spends most of its execution times in loops or func-

tions, which are generally referred to as phases or hotspots [87, 88]. Consequently,

the code in each such hotspot is typically highly optimized. By applying the pro-

posed methodology independently to each program hotspot all of the benefits from

the proposed approach can be achieved with minimal additional hardware.

In the first approach, the Compiler-driven Context Switch (CCS), the compiler

identifies what is the minimal number of live registers that needs to be preserved

and provides custom software routines to the RTOS kernel. These routines are

synthesized by the compiler to save and restore only the live registers for a few

switch points or basic blocks in the application inner loops and “hot-spot” regions.

The switch points/blocks are being optimally identified by the compiler with the

property that only a minimal number of general-purpose registers are alive at these

points, hence drastically reducing on the overhead of the context-switch procedure.

A minimal hardware support is introduced, which is programmed by software and

captures the addresses of the switch points and blocks. These switch points/blocks,

even though very few, are encountered very often during the program execution

as they are fixed by the compiler at positions which are frequently executed and

162

inside the application inner-loops. The preemption is subsequently deferred to such

a switch point/block, where the OS kernel invokes the custom routine for that

point/block to store the state and then invokes the custom switch routine for the

task which execution is to be resumed.

The second technique introduced in this chapter relies on an introduced pool

of extra registers, which are judiciously used by the compiler and controlled by the

OS to allocate the minimal set of live registers for the switch points/blocks. We

refer to this technique as the Register Mapped Context Switch (RMCS). Similarly,

this is achieved through the close co-operation of the compiler, the OS context

switch mechanism, and a cost-efficient hardware support in the form of a limited

virtualization of the register file address space. Compile-time register live analysis

followed by a register renaming step actively “packs” the set of live registers into

a set of contiguous registers. At context-switch time the OS exploits the limited

mapping capabilities of the register file to re-map the set of registers, which are

alive during the time of preemption. The effect of the proposed technique is similar

to the effect achieved by aggressively replicating the register file to each task and

simply switching between the register file replicas during context switch. However,

such fast context switch is achieved with a significantly smaller hardware overhead

as compared to multiple replicas of the register files. We show that a pool of extra

registers consisting of 25% to 50% of the register file is sufficient to provide a context

switch with no saving and restoring of general-purpose registers for groups of parallel

tasks. When the combined number of live registers for all the parallel tasks exceeds

the pool of available physical registers, only then and only for the less critical tasks

163

1. Save entire
context

2. Load entire
context

Memory

...
Context:
Register File,
PC, SP

1 2

Task1

Task2

3 4

Task1

Figure 4.1: Context-switch mechanism for preemptive multitasking.

that exceed the pool of available physical registers, the corresponding parts (pages)

of the register files containing live registers will be moved to memory.

4.2 Motivation

In preemptive multi-tasking the OS can pause a low-priority task and assign

the CPU to a higher priority task - an OS controlled event referred to as preemption.

Preemptive multi-tasking relies on a timer to generate interrupts at regular time

intervals. When such an interrupt occurs, the execution control is transferred to a

kernel routine that determines whether a task switch needs to be performed and,

subsequently, to perform the context-switch. This process is depicted in Figure 4.1.

When the preemption interrupt occurs, the OS kernel executes two basic procedures

in order to perform the preemption. In Step 1 the kernel saves the state of Task1,

while in Step 2 it loads the state of the preempting Task2. Switching back to the

original task is performed in the same way. When Task2 is preempted, identical

pair of steps are executed, denoted as Step 3 and Step 4 in Figure 4.1.

Figure 4.1 illustrates the mechanism of general-purpose task switch in preemp-

164

tive systems. Before the preempting task can start execution, there are two steps

as shown. First, the state of preempted Task1 is saved and then the state of the

preempting task Task2 is to be loaded into the processor hardware. When Task2 is

brought back to execution, the identical steps but with reversed state are performed.

The context switch overhead is the sum of the execution cycles for all these steps of

saving and restoring the hardware state. In modern RTOS kernels, deciding which

task is next takes only a few cycles in order to lookup a priority queue which does

not depend on the number of tasks in the system [118]. In this section, we focus on

the cost of the context switch only in terms of execution cycles needed to save and

restore the states of the preempted and the preempting tasks.

Reducing the context switch overhead has been the focus of various research

projects. The main goal is to reduce the number of load/store instructions needed

to save and restore the task context. A simple hardware scheme assigns a separate

register file to each task. During task switch, the preempting task immediately

starts execution by using its own register file copy. The obvious drawback of this

approach is the excessive hardware overhead in terms of an extra register file copy

for each parallel task in the system. In practice, a restricted version of this approach

is used where the kernel and user-level code operate on separate register files.

Instead of having a distinct physical register file for each task, another hard-

ware solution is to have a relatively small ISA-visible set of registers, while imple-

menting a significantly larger physical register file. This organization is illustrated

in Figure 4.2. At run-time, each virtual register is renamed to a free physical regis-

ter. This approach is very popular in superscalar processors, such as Intel Pentium

165

...
Physical
Context

Virtual
Context 1

Virtual
Context 2

Reg. Rename

...

Memory

...

Figure 4.2: Hardware register renaming

4 [79] and Alpha 21264 [80]. Such hardware register renaming is mostly used to

exploit the available ILP in the program. Context switches are fast as typically only

a small part of the physical register file needs to be preserved in memory. However,

due to its per-register granularity and the fact that the renaming hardware needs to

be activated at every cycle, the approach suffers from excessive power consumption

and as such is not applicable to embedded systems. With a similar objective, in [81]

the physical register file is implemented as a cache that captures a large number

of virtual registers. Fast access to subroutine and multithread contexts is achieved

with a non-trivial power overhead.

The notion of fast context switch point has been first introduced in [82]. Each

instruction is marked with a special bit to indicate whether a fast context switch is

possible at that point. A fast context switch point is defined as an instruction where

all scratch registers are dead. Scratch registers are a subset of all the registers which

are caller-saved across function call boundaries; the context switch mechanism saves

and restores all the remaining non-scratch registers. Consequently, this is a ”all-or-

nothing” approach targetting old architectures with rather small register files and

166

no register windowing. VxWorks [6], on the other hand, provides a special hard-

ware context for interrupt service code in order to avoid preserving the task context,

and thus improving responsiveness to various system generated events. In [83], the

authors have proposed a Simultaneous Multi-Threading platform with mini-thread

execution. This approach, however, introduces a non-trivial hardware overhead. In

[84], the authors have proposed to reduce the task context in the static OS by finding

the live set of each task and merge the set by using the preemption priority infor-

mation. The authors in [74] utilize and explore cooperative multi-threading instead

of asynchronous preemption. Other research has shown that for some applications

with known set of tasks and well known run-time characteristics and interactions,

an efficient cooperative multitasking system can be synthesized through software

thread integration [85, 86]. In a more dynamic system, however, with preemptive

multitasking, the active task may have to be suspended at arbitrary point so that

another task is placed for execution. Even though the task switch overhead is re-

duced, the system responsiveness is limited as the compiler must statically decide

on the way tasks are interleaved. In a way, the context switch points are explicitly

defined by the compiler or the software developer. The tasks are effectively merged

and various optimizations can be performed across tasks.

The task switch customization methodology we propose achieves the determin-

ism and efficiency of co-operative multitasking with the asynchronous and dynamic

properties of preemptive multitasking. Application-specific information is utilized

at context-switch time to preserve the live portion of the task state either through

application-specific software routines or through register file re-mapping. In the

167

first techniques compiler-generated software routines are used by the context switch

mechanism to preserve only the minimal set of live registers during preemption in

an application-specific manner. In the second methodology the benefits of hard-

ware and software approaches are combined to achieve the fast context switch of

replicated register files by using compiler analysis of application-specific knowledge

regarding live registers. The compiler renames the set of live registers into small

groups of contiguous registers. The physical register file is extended with a small

set of spare registers with limited mapping capabilities. At preemption time the OS

maps the small fraction of the register file containing live registers to a subset from

the pool of registers assigned to capture the live registers of the preempting task at

the moment when it has been previously suspended. The effect of separate regis-

ter files per tasks is achieved with the hardware cost of slightly increased (≤ 50%)

register file.

4.3 State Liveness and Preemption Deferral

The cost of task preemption is largely determined by Steps 1,2,3, and 4, as

shown in Figure 4.1. Deciding which task to schedule for execution is the respon-

sibility of the OS scheduler. In modern RTOS kernels, this part can be very fast

since it takes only a few cycles to lookup a priority queue structure - an operation

which does not depend on the number of tasks in the system [118]. The techniques

outlined in this chapter are independent from the particularities of the task sched-

uler; the focus is on the mechanism of efficiently preserving and restoring the states

168

of two tasks involved in the preemption operation.

The preempting process starts immediately after Step 2. Initially, the state of

the preempted task is saved (Step 1). After that the scheduler spawns or resumes

the new task by loading the context of the preempting task and eventually loads the

PC with the program counter value for the new task. The switch back operation

to Task1 is similar but in reverse order. The context switch overhead is the sum

of the instructions from Steps 1 through 4 where the processor resources are used

for saving and restoring state instead of executing instructions from the application

tasks. The context-switch response interval is the time between the beginning of

Step 1 where the RTOS kernel starts saving the state and the end of step 2 where

the first instruction of the preempting task is executed. The shorter this switch

interval is, the more responsive the preempting task (and the system as a whole)

is. This property is of extreme importance to many time-critical control application

where a suspended task is resumed due to an event from the environment and the

processing of this event needs to start as soon as possible.

4.3.1 Register Liveness Analysis

The timer interrupt which triggers the preemption procedure occurs asyn-

chronously from the application execution, and thus can interrupt the task at arbi-

trary positions. This implies that the processor state actually utilized by the active

task is unknown to the OS kernel. Such a knowledge is impossible to be conveyed to

the OS scheduler from the compiler as it needs to be done for each instruction inside

169

t1

t2

...R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

Execution Time:

ADD R4,R6,R6
ADD R7,R9,R9
SUB R10,R11,R12
ST R6
ST R9
ST R12
...

...

t

t1

2

Live
Range

Figure 4.3: Register live ranges and live state

the application - a tremendous overhead which no real system can afford. Therefore,

the OS kernel must be conservative in its assumption regarding the actual register

utilization and, thus, save all the general-purpose registers. As we mentioned before,

in modern processor architectures, such as VLIW, this number could be easily near

or above a hundred and result in a significant performance/power overhead during

context-switch and deteriorated responsiveness.

If, however, the OS kernel is provided with extra intelligence regarding the

actual usage of the processor state, only the live registers need to be saved as part

of the task context. During compile-time and especially after the register allocation

phase, the compiler has a complete knowledge regarding register utilization. At

each instruction position inside the application, the lists of assigned and free (dead)

registers are available to the compiler as it is the register allocation of the compiler

which allocates the physical registers to program variables.

Figure 4.3 depicts an example of a code sequence including the register live

intervals. The y-axis of the figure corresponds to the instruction sequence (cycles),

while the x-axis represents all the general-purpose registers. The vertical lines for

170

each register correspond to live intervals, which is defined as the time interval be-

tween two instructions during which this register is alive. The live interval starts

with the register definition by the first instruction and ends with the last usage of

that register before it is defined again by a subsequent instruction.

After its last usage and before its subsequent definition by another instruction

this register is dead, and thus does not contribute to the task state during this

interval. From the example assembly code in Figure 4.3 it can be seen that during

the first ADD instruction register R6 becomes alive (we assume that the destination

register of the instruction is the third register). The first ST instruction is the

last usage of register R6 where it is saved to memory. Therefore, after this ST

instruction R6 is no longer alive and it need not be stored during context switch.

Similarly, registers R9 and R12 are no longer alive at time t2. Consequently, for

this example at point t2 three fewer registers need to be saved as part of the task

context. Consequently, it can be seen that for this example at time t1 all registers

from R1 to R12 are alive. Therefore if the timer interrupt happens at this moment

and context-switch is required, all registers need to be saved. It is evident, however,

that if a context-switch is to occur during t2 instead, only the value of the three

live registers, R1, R2, and R3, need to be saved and subsequently restored when the

task is resumed for execution later. The savings are quite significant as only 3 out

of 32 or 64 registers need to be saved and later restored.

As the number of live and dead registers change at each instruction, it is

practically impossible to provide the liveness information to the OS as it would

require a tremendous amount of memory. However, if the live information for t2

171

 B2

 B3

 B1 Live Register Set:
SP1: {R3,R4,R11,R12}
SB1: {R3,R4,R5,R6,R11,R12}
SP2: {R3,R4}
SB2: {R3,R4,R11,R12}

b)

SB1

SB2

SP1

SP2

...

Outer Loop

Li
ve

 R
eg

ist
er

Loop
Inner

Execution Time

SP1 SP2
a)

Figure 4.4: Application “hotspot” with two switch points and blocks.

only is captured, and the preemption action which happened during t1 is postponed

to t2, a very efficient context-switch can be performed. The time between t1 and

t2 is spent in executing useful instructions from the preempted application task,

which improves on the system throughput. Furthermore, since at time t2 only a

small fraction of the registers is to be saved/restored the response time compared to

the general-purpose preemption approach is greatly improved. We present detailed

evaluation results in Section 5.6.

4.3.2 Switch-Points and Blocks

A major contribution of the proposed methodologies is the introduction of

the concepts of the switch-point / switch-block and the mechanism of preemption

deferral until such a point/block is reached in the program. The switch-points are

points (instructions) in the program similar to t2 from the example in Figure 4.3.

The switch-points have the property that the set of live registers is minimal. It

172

is noteworthy that these points correspond to particular program locations, which

can be captured by a PC value and no extra instructions are introduced into the

application code. The switch-blocks is a similar concept but instead of referring to

a single instruction, it refers to an entire basic block from the application’s Control-

Data Flow Graph (CDFG). The set of live registers for each basic block, including

the switch-blocks in particular, is defined as the union of the live registers for all

the instructions within that basic block.

Figure 4.4 shows an example CDFG of an application hotspot consisting of

a two-level loop-nest; the innermost loop consists of a single basic block, while

the outermost features two basic blocks. As explained above, the number of live

registers throughout the CDFG fluctuates and thus exhibit local minimum for some

instructions. From Figure 4.4a it can be seen that one such minimum exists in

the innermost loop and one in the outermost loop nest. These local minimums

points correspond to two switch-points, denoted as SP1 and SP2 in the figure. The

switch-blocks, denoted as SB1 and SB2, correspond to the basic blocks with minimal

number of live registers. Typically these are the basic blocks in which the switch-

points reside. An example sets of live registers for these points and blocks is shown

in Figure 4.4b.

Such a distribution of the switch-points and switch-blocks is representative for

a typical loop. This is due to the fact that the scheduled loop, whether it is heavily

unrolled or not, typically contains a number of load instructions which load the data

to be computed from a number of arrays into a set of registers; it proceeds by the

computation, and finishes up by storing the values in these registers back to memory.

173

0

2

4

6

8

10

12

14

16

18

20
EJ

Execution Time

Li
ve

 R
eg

ist
er

 C
ou

nt

0

5

10

15

20

25

30

35

40
TRI

Execution Time

Li
ve

 R
eg

ist
er

 C
ou

nt

Figure 4.5: Register liveness for

EJ

Figure 4.6: Register liveness for

TRI

This typical sequence ensures that at the end of the loop only a very few registers

are alive and these are the registers carrying a few local variables, including the loop

index registers. Consequently, efficient switch-points/blocks are easily identified at

the end or at the very beginning of even tightly scheduled loop bodies. The graphs

in Figures 4.5 and 4.6 confirm this supposition. These two graphs plot the number

of live registers as a function of execution time for the numerical kernels tri and ej

(tri-diagonal matrix transformation, and extrapolated Jacoby transformation - two

numerical kernels, which we use as part of our experimental setup). It is evident from

this graph that very efficient switch points exist and are easily identifiable as the

local minima in the number of live registers. A drop in the number of live registers

towards the end of the loop body is quite common and is easily explained with the

fact that by the end of the loop all computed values are stored in memory and their

registers are no longer alive. These registers will be defined in the beginning of the

next loop iteration where the next set of data will be loaded from memory.

174

B1

B2 B3

B4

Worst case delay
Preemption decision

Preemption decision
Best case delayMinimal block

Figure 4.7: Switch-points/blocks placement

4.3.3 Live State Preservation

The process of context-switch is deferred and acted upon only at a switch-point

or a switch-block. The decision of whether switch-points or switch-blocks are to be

used is based on the trade-off between responsiveness and state amount that needs

to be preserved. Clearly, the state amount is minimal at the switch-points and as

such less than in the switch-blocks. However, switch-blocks are reachable slightly

faster and in some cases can provide better responsiveness even though a slightly

larger state needs to be preserved. Since the application hotspots are typically

comprised of small amount of code executed iteratively, a very small number of

switch points/blocks will be enough to service the context switch mechanism and

achieve significant reductions in performance overhead and improve significantly

the response interval for each task. As can be seen from the experimental results

reported later in the chapter, for the majority of cases only the definition of a single

switch point/blocks is enough to achieve these improvements.

Identifying the switch-points/blocks for the application hotspot CDFGs is the

175

first phase of the proposed technique. These points/blocks are identified statically

by the compiler subject that the amount of live registers is minimal. In order not

to deteriorate the original response time, the distance between any instruction in

the application hotspot to the nearest switch point/block in the dynamic execution

flow must not exceed the overhead reduction of the context-switch. In other words,

the number of cycles to the nearest switch point/block must be smaller than the

number of cycles saved when performing the preemption at the switch point/block.

In such a case, even though the preemption might be deferred with several cycles,

the response time would be better compared to the general-purpose case. Of course,

this is due to the fact that the proposed technique drastically reduces the number

of registers that need to be saved and restored during context switch. Figure 4.7

illustrates this important point. Basic block B4 has been determined to be the

single switch-block for the application loop shown by its CDFG. The worst case

in terms of preemption deferral corresponds to the situation where the preemption

interrupt has occurred during the first instruction of the loop. In this situation,

the preemption is differed until the execution reaches the switch-block B4 at which

point a very fast task switch following one of the two techniques described in the

following sections is utilized. Clearly, the best case is when the preemption interrupt

occurs while the execution is inside the switch-block. In this case the customized

task switch is immediately executed for the switch-block B4. The compiler identifies

as many minimal points/blocks as needed in order to ensure that even with a worst-

case preemption deferral, the net result is faster than general-purpose preemption.

In our experiments we have observed that one minimal point/block per application

176

hotspot is sufficient for the majority of cases.

Our experiments show that extremely efficient switch points/blocks exist even

for applications with high register utilization due to large amount of ILP. Second,

due to the limited number of switch points for each application hotspot, the in-

formation regarding live registers that need to be utilized by the RTOS kernel

is minimal. The two proposed techniques, CCS and RMCS, efficiently solve this

problem of transferring the application liveness information in to the OS and pre-

serving/restoring the set of live registers with minimal cost. The CCS techniques

uses custom-generates software switch routines for each switch-point/block. These

routines are registered with the OS kernel when loading the application and invoked

by the kernel. The RMCS techniques uses limited register file mapping to preserve

the live state by simply re-mapping the few registers that carry the live state for

the switch-point/block.

4.4 Compiler-driven Context Switch (CCS)

The CCS technique relies on the compiler to synthesize a special pair of soft-

ware routine for each switch-point/block. These routines preserve and restores ex-

actly the minimal set of the live registers at that instruction or basic block. Since

the register liveness information is available after the register allocation phase of

the compiler, the switch points are determined at compile time. Finding the switch-

points and switch-blocks does not introduce any overhead in the compiler, as it

can be done simultaneously with the register allocation phase. As the registers are

177

assigned to each instruction in the generated code, the switch points are dynami-

cally identified as the points in the code with minimal number of live registers. The

number of switch-points/blocks depends both on the size of the hotspots and the

maximal number of switch-points/blocks which the hardware support allows. The

size and structure of the hotspots will determine how many switch points are needed.

This is driven by the constraint that a switch-point must be quickly reachable from

any point within the hot-spot code as explained in the previous section. As we have

observed in our experiments, because of the typical small size of the application

hotspots, one or two switch-points/blocks are usually enough for most of the ap-

plications to cover all the hotspots. In a subsequent section of the chapter we will

describe and analyze the required hardware support for the CCS technique; there

we will show that the proposed approach can easily maintain tens of switch-points

with minimal hardware and power cost, and no performance overhead.

4.4.1 Compiler and OS Support

Fundamentally, the information regarding the set of live register for each such

switch-point needs to be conveyed to the RTOS kernel so that this information is

utilized to minimize the task state that needs to be saved and restored. Traditionally,

the RTOS kernel features a code which as a part of the context switch module saves

the state of the preempted task, including all the general-purpose registers, and load

the entire state of the preempting task. One possible approach would be to save

a list of live register indices in some memory structure, such as the stack frame of

178

the task, and have the RTOS kernel use these indices to save and restore only live

registers. This approach can be implemented efficiently only if a special hardware,

such as a simple DMA-like control unit is used to transfer the set of live registers

to/from kernel memory. A software implementation would be quite inefficient as it

has to read in the indices and decode them to actual register indices in a “switch”-

like statement. The solution we propose through the CCS technique is software only,

but instead of storing a set of live register indices and have the RTOS kernel use

them, our method has the compiler generate the custom software code to be used to

save and restore the set of live registers for each switch point. For instance, if only

registers R1 and R5 are alive for a particular switch-point, the compiler will generate

two special software routines. The first one will simply store R1 and R5 to an address

inside the stack frame of the task, while the second would load these two registers

from the task’s stack frame. Prior to entering the hot-spot these two routines will

be registered with the RTOS kernel and will be called back as a replacement of the

general-purpose RTOS routines for storing and loading the entire register file.

Consequently, for each switch point and its corresponding live register set, one

context saving and one context loading software routine is generated at compile

time. They are implemented in a similar way as the functions inside the RTOS

kernel; there is only store or load instructions in them - no caller save or callee save

mechanisms are needed. The target registers are the live register for that particular

switch-point/block. The entry addresses of these subroutines are associated with the

program counter of the switch point and are registered with the RTOS kernel and

the hardware support prior to entering the application hotspot. In order to avoid

179

preempted task

preempting task

6

7 preempted task

4

2

5

3

8

1

Timer

Figure 4.8: Structure of the CCS live state preservation.

any security issue, these routines even though invoked from within the kernel code,

where the context switch has been decided, will be executed at the privilege level

of the preempted and the preempting tasks. Therefore, these routines can access

only memory within the address space of the task and thus expose no security

problems. The routines can be executed within the task address space since they

use the memory of the task to store the live registers. Clearly, the code of these

custom routines is added to the application code. However, these switch routines

are very small as they consist of a single load/store instruction per live register. As

shown in our experimental results, the number of live registers is extremely small

(within 5 - 15 for most of the cases).

Prior to each hot-spot, the compiler would insert a small setup code the pur-

pose of which is to set the processor into a mode of low-cost task switch and register

the call-back functions for the switch points within the hot-spot to the operation

system kernel. During the preemption phase and the resume phase at runtime, the

operation system will use these functions for each switch point to perform the saving

and loading of the live registers.

180

With the introduced concepts of deferred task switch and switch-points/blocks,

the preemption interrupt signal from the timer and the actual task switch become

decoupled. 1. The structure and sequences of events of the proposed approach

are depicted in Figure 4.8. When the timer interrupt for preemption occurs, it is

registered with the interrupt controller but the execution of the preempted task is

continued until the switch-point is encountered. Step 8 corresponds to the execution

of the preempted application code before reaching a switch-point. As the switch-

points are encountered dynamically quite often, this step is rather short; nonetheless

it includes the execution of actual application code and is, thus, a useful computa-

tion related to the task at hand. While executing the several instructions from the

preempted task leading to the switch-point, a special hardware mechanism is acti-

vated to identify the occurrence of the switch-point and trigger a signal when this

happens. Step 1 is performed at the moment when the switch-point is encountered.

The timer interrupt is now acted upon and the RTOS kernel is invoked. This step

is identical to the one in the original general-purpose context switch mechanism as

was shown in Figure 4.1. Here, the RTOS kernel decides whether a task switch is

warranted. If the RTOS scheduler decides that a task switch is needed, the custom

software routine generated by the compiler to save the live registers is executed;

this corresponds to Step 2. Step 3 is the part of the RTOS scheduler code, which

1It is possible, however, in order to minimize the overhead of taking the timer interrupt to

program the interrupt controller to defer taking this interrupt only when a switch-point/block is

hit. In this way, Step 1 will be executed just before Step 2 and any pipeline flushes associated with

taking an interrupt, if present, will be eliminated.

181

decided which task should be activated for execution. And finally, Step 4, which

is the custom code for loading the state of the preempting task is executed. After

this routine, the control is transferred to the saved PC of the preempting task. An

identical sequence of steps is followed when the new task is preempted in turn from

other task or from the original task. The benefits of the proposed approach stem

from the fact that Steps 2 and 4 are much shorter and faster than their correspond-

ing steps in the general-purpose task switch mechanism, where the entire register

file is saved and restored.

4.4.2 Hardware Support

The purpose of the introduced hardware support is to capture and dynami-

cally identify the switch-points/blocks. This is the only hardware support required

for the CCS technique. Since switch-points/blocks are defined within the appli-

cation hot-spots, inserting instructions to enanle/disable preemption interrupts (in

order to completely eliminate the hardware support) would result in non-trivial

performance overhead. These instructions would have to be executed at each loop

iteration, since preemption interrupts (either timer interrupt or external events)

are asynchronous with respect to the program code and cannot be statically pre-

dicted at what time during loop execution will occur. The scheme that we propose,

instead, does not introduce any new instructions within the application hotspots.

Furthermore, the proposed methodology supports any interrupts that result in task

preemption, such as timer, special external interrupts triggering specific tasks, etc.

182

Interupt
ControllerCM

P

PC(i)

Current PC

Activate

Hit/
Enable

Preemption Interrupt

Custom
Switch
Routine

OS space
Switch Registers

Figure 4.9: CCS Hardware Support

Any such interrupt would triger the detection hardware and be deferred until the

next switch-point/block.

Clearly, the switch-points are uniquely identified with the address of the corre-

sponding instruction in the application hot-spot, while the switch-blocks are defined

by their start and end address. Here we outline the hardware support for identifying

switch-points. The hardware mechanism required for switch-blocks is almost iden-

tical - towards the end of this subsection we explain the difference. The addresses

of the switch-points defined for the particular application hotspot are stored in a

set of special register, which we refer to as switch registers. Once a preemption in-

terrupt/request occurs, the current PC must be compared to the each of the switch

registers at each clock cycle. When there is a match, a signal triggering a switch-

point hit which enables the preemption procedure and initiates the low-cost context

switch mechanism at that point.

The structure of the introduced hardware is shown in Figure 4.9. The addresses

of the switch points are stored into a set of switch registers. This is performed by

a code inserted by the compiler prior to entering the application hotspot. These

183

few instructions are executed only once prior to entering the hotspot. As we have

explained earlier and will show in the next section, one or at most two switch-points

are typically enough per application hot-spot for the majority of the applications.

Therefore, the area overhead of the introduced hardware support is extremely min-

imal, as it contains only several switch registers, each 32-bit wide, and a set of

comparators for the parallel check with the set of active switch registers. It is note-

worthy, that these registers become part of the task state and need to be saved and

restored on context switch. We account for these extra cycles in our experimental

results. In steady state, when the program executes and no preemption interrupt

has been observed, this hardware is disabled. At the moment when a preemption

interrupt (timer or other such interrupt) occurs, the circuit is activated and the

comparison between the PC and the switch registers is performed from this cycle

until a match is found. The preemption is deferred since the interrupt controller

is disabled at that moment and the program execution continues. This is the time

period which coincides with Step 8 in Figure 4.8. Consequently, the power overhead

of this activity is negligently small as this comparison is performed only for several

cycles until the switch point is reached. The index of the switch register which

matches is provided to the RTOS kernel in order to inform it which switch point

has been reached so that the appropriate custom routines for saving the task state

are executed.

To support switch-blocks, an additional range comparator is required. A range

(interval) check is performed only once when the timer interrupt occurs in order to

check whether the PC is currently within the starting and ending address of the

184

switch-block. If a match is detected, the signal triggering the switch-block hit is

set. Otherwise, the task execution continues and the detection of the switch-block

becomes completely identical to the detection of a switch-point by using the starting

address of the switch-block, which is loaded into a switch register.

4.5 Register Mapped Context Switch (RMCS)

The CCS approach still requires several execution cycles in order to preserve

the set of live registers for the switch-point/block. The RMCS technique, outlined

in this section, aims at eliminating even these extra cycles by using an additional

hardware support. This techniques requires limited mapping capabilities of the

register file so that a small part of the register file address space (the first several

registers) is virtualized and can be re-mapped at context switch. Compile-time

register live analysis followed by a register renaming step actively “packs” the set

of live registers into a set of contiguous registers within the mappable parts of the

register file. At context-switch time the OS exploits the mapping capabilities of the

register file to map the set of registers, which are alive during the time of preemption.

Clearly, the RMCS technique requires more hardware support in the form of

extra physical registers and mapping capabilities to a part of the register file. The

hardware support required to detect the occurrence of a switch-point or a switch-

block, as described in Section4.4.2, is required as well since the actual process of

preemption is deferred to such a point or a block. Fundamentally, the only difference

between the CCS and the RMCS is in the way they preserve the minimal live set at

185

Register Live
 Analysis

Register
Renaming

.C

RF Page
Mapper

Compiler Live RFP
Info.

Source

Binary

OS

Figure 4.10: RMCS methodology functional overview

the switch-points/blocks. While the CCS technique explicitly saves and restores this

set of registers, the RMCS approach keeps the live set in the register file by quickly

re-mapping the address space of the register file where the live registers reside. In

effect the live register of the preempted task are being hidden, while the live registers

of the preempting task are mapped back (mounted) to the register file space which

is ISA-visible. As this re-mapping can be achieved in a single clock cycle, the task

switch procedure is almost instantaneous. The only small delay incurred is the delay

of deferring the preemption until a switch-point/block is reached.

4.5.1 Compiler and OS support

At compile-time the Control and Data Flow Graph (CDFG) is being analyzed

with respect to register liveness information at basic-block and single instruction

levels when the switch-points/blocks are identified. An important compiler phase

that needs to be executed for the RMCS technique is that the minimal set of live

registers for the switch-points or blocks is subsequently renamed (by the compiler)

into consecutive registers residing in the low-addresses of the register file. This

186

compile-time register renaming phase has no impact on the performance as it does

not introduce any extra spill/fill code. The register file is extended to contain a

pool of extra (spare) set of registers, which can be efficiently and rapidly (in 1 cycle)

mapped into the ISA-visible register file address space. In order to further control

and minimize the hardware cost for the re-mapping, the register file address space is

partitioned into small Register File Pages (RFP). By mapping the first several RFPs

only into a pool of spare register pages, the context switch procedure is reduced to

a single cycle re-mapping event for all the cases where the small set of live registers

is accommodated within these pages. Figure 4.10 depicts the design flow and the

major steps in applying the RMCS technique.

Figure 4.11 illustrates the organization of the proposed mapped register file.

The first several RFPs are mappable through a simple hardware block, which is

described in details in the next subsection. For our experiments we have considered

RFPs of size 8 and have allowed for only the first 4 RFPs from the register file

address space to be mapped. In this way, different physical register pages can be

mapped to the ISA-visible register address space. The unmapped pages are not

visible to the application code.

The size in registers of the RFPs does not impact the physical organization

of the pool of spare registers. As our mapping hardware simply replaces the most

significant bits from the register address with an offset within the spare register

pool, the size of the RFPs can be easily changed without any modifications to the

table of extra registers. This hardware implementation also provides the ability to

map any of the spare RFPs to any page from the first four in the register address

187

Mapping
Hardware Set of 8 spare

register pages

Mapped
Region

Register File

RFP0
RFP1
RFP2
RFP3

Figure 4.11: Mapped register file organization

space.

At run-time when a preemption event occurs, the special hardware defers the

preemption until a switch-point or a block is reached for which the OS is aware about

its live register RFPs. Subsequently only these few pages are mapped by executing a

single instruction which controls the special register that defines the mapping. As the

switch blocks or instructions have a minimal number of live registers, the number

of RFPs that need to be mapped is minimal and, as shown in our experimental

results, can be achieved for the majority of cases when running several tasks in

parallel. It is demonstrated that a small sized pool of extra register pages is enough

to simultaneously map the set of live registers for several parallel tasks. The effect

of the proposed technique is identical to the effect achieved by dedicating a separate

register file to each task and simply switching between these register files during

context switch.

During task load-time, the OS can estimate whether the set of live register

pages for all the current tasks can be accommodated within the pool of mappable

RFPs. If not, depending on the task priority, the non-critical tasks live pages can

188

be preserved in memory during preemption and not occupy register pages from the

pool. For these tasks the OS saves (and later restores) only the RFPs containing

the live registers of the tasks. It is clear that for this no application-specific routines

are needed as in CCS case - the OS only needs to know which RFPs to save/restore

for each hot-spot and switch-point/block for that task. In such a scenario where

too many parallel tasks co-exist, the OS would assign the most critical ones to non-

swappable register pages in the pool and still take a full advantage of the proposed

technique for the time critical tasks.

4.5.2 Hardware Support

Hardware support is required for two components of the proposed methodol-

ogy. First, an RFP mapping hardware is needed, which would enable the mapping

of the first several RFPs in the register address space to be mapped to a pool of ex-

tra register pages. The second important hardware block is the module that detects

the request for preemption in terms of timer interrupt or external asynchronous

interrupt and subsequently defers the preemption point until a minimal block or

a minimal point is reached. This hardware module was already described in Sec-

tion 4.4.2 since it is required for the CCS technique. In this section, we will focus

on the mapped register file organization.

Figure 4.12 presents the hardware architecture of the mapped register file. The

presented organization assumes 128-entry base register file (ISA-visible) with register

file pages (RFP) of size 8; the first four RFPs are mapped to a pool of extra register

189

4:1

Page 0

...

...

...
Regular Pages

01111111
10000000

Spare Pages

00000000

0001xxx
V[2:0] RFP offset
V[4:3] RFP number
V[6:5] Mapped Region

V[6:0] − Visible Register Address

Mapped Page Number (MPN)
Registers

V[6:3]

V[4:3]

V[6:5]

V[2:0] P[2:0]P[7:0] − Mapped Page Number

P[7:3]

Figure 4.12: Mapped register file architecture

pages. The size of the mapped pages as well as their number can be easily changed -

such a change can also be performed at run-time with only a very small modification

to the hardware we outline below. The ISA-visible register indices corresponding

to the first four register pages can be mapped to either the baseline register file

(their normal location) or mapped to the pool of extra register pages, which is a

small additional register file. The mapping is implemented by replacing the four

most significant bits from the ISA-visible register index with a new 4-bit value (or

fewer bits, depending on the size of the pool) that selects a register page from the

extra pool. The pool of spare registers can be easily implemented as an additional

small register file. As shown in our experimental results, for all practical purposes

the size of this additional set of register is within 50% of the basic register file.

The 4:1 multiplexer in the figure is responsible for replacing the 4-bit register page

number with the 4-bit physical page number. The four 4-bit Mapped Page Number

(MPN) registers are written by the OS and define the mapping of the current task.

Fundamentally, this set of four MPN registers defines the current mapping for the

first four register pages from the ISA-visible register space. The values stored in the

190

four MPNs are analogous to the physical frame numbers used in traditional virtual

memory to represent the address of the physical memory page. In our experiments

we have evaluated both 64-entry and 128-entry register file, which are typical for

modern VLIW processors.

The size of the extra register pool determines the number of parallel tasks

that can benefit from the proposed technique. If the set of all live registers from

the most demanding minimal block in each task can be accommodated within the

extra pool, then no saving/restoring of register is needed for context switch for

that group of tasks. The only action required by the OS context-switch handler

is to replace the values of the four MPN registers. This can be accomplished with

a single instructions as the four MPN registers consist of 16 bits total. When the

extra pool of registers cannot accommodate all the live pages from the tasks, some of

the tasks would be assigned to four pages from the pool, which would be preserved

during context-switch. It is noteworthy that at this step the tasks with highest

demands for responsiveness can be placed in the extra register pool and utilize the

proposed RMCS technique, while the live pages for the less demanding task assigned

to the base register file and (only they) preserved at context-switch.

Overhead Analysis. The area overhead of the introduced hardware con-

sists of the pool of extra registers, the mapping logic, and the preemption deferral

logic. In our experiments we show that 25% or 50% extra registers is sufficient for

achieving zero-cost context switch for several parallel tasks. The mapping logic is

fairly small as it constitutes of a 4-to-1 multiplexer, four MPN registers with a total

volume of 16 bits and a few gates. The preemption deferral logic consists of a range

191

comparator and a value comparator per minimal block. The silicon area needed for

this is minimal compared to the area of modern pipelined embedded processor with

instruction and data caches. In terms of power overhead, the preemption deferral

hardware is active only during the few cycles between an interrupt and context

switch. Only the 4-to-1 multiplexer is activated during a regular register file access;

its power, however, is order of magnitudes smaller than the power needed by a base-

line register file only. The minimal delay of the 4-to-1 multiplexer is introduced in

the register access path, even though it can be mostly overlapped with the address

decoder logic.

4.6 Experimental results

In evaluating the proposed technique, we have performed a quantitative anal-

ysis and comparison of baseline general context switch scheme and the proposed

application-specific context switch mechanism. The evaluation is performed with

the VLIW Example - VEX package [119], which is developed and provided by HP

research labs. It includes a state-of-the-art optimizing VLIW compiler and a simula-

tor tool-chain. The VLIW processor core can be configured into various architectures

including multiple clusters, register files, and functional units. Each cluster is con-

figured to have two register files, four integer ALUs, two 16*32-bit multiply units,

and a data cache port. The cluster can issue up to four operations per instruction.

The register set for each cluster consists of 64 general-purpose 32-bit registers. The

simulator that comes with VEX is a compiled simulator. For the purpose of simula-

192

tion, a C code for a custom VEX simulator is generated for the application program.

Each VLIW instruction is executed as a call to a function that implements the func-

tionality of the operations within the simulated instruction packet. The number of

executed cycles including pipeline stalls and cache misses is maintained captured

and reported.

We have evaluated two baseline register files, one consisting of 64 registers and

one of 128 registers. We have assumed that the first four pages (each of 8 registers)

in the register file are mappable for the purpose of the RMCS technique. To consider

the effect of aggressive VLIW compiler optimizations on the proposed methodology,

we have included two compiler setups: one where the applications are compiled with

heavy loop unrolling and trace scheduling - we refer to this option as an aggressive

optimization; the second optimization setup includes all scalar optimizations but no

loop unrolling - we refer to this as a scalar-only optimization.

By instrumenting the compiled simulator for each benchmark, we mark the

switch points and model the behavior of the hardware and the RTOS kernel when

a switch point is reached. The timer interrupt is modeled by introducing a counter

which keeps track of the executed cycles in a way similar to a hardware timer module.

When a certain number of cycles is reached, we simulate the occurrence of a context

switch. Since in our study we are interested in the responsiveness of the context

switch procedure, we measure the delay between the timer interrupt signaling the

preemption and the execution of the first instruction from the preempting task. This

delay is determined by the preemption deferral interval and the actual cost in terms

of cycle for preserving and loading the state of the two participating tasks. These

193

ej lu tri mmul 2d-dct adp g721 sha sus

of h-s 1 2 2 1 2 1 1 5 1

Freq.(%) 100 49,51 54,46 100 49,51 100 100 19,21,20,20,20 100

SP/SB 1 1,1 1,1 1 1,1 1 5 1,1,1,1,1 1

Table 4.1: Benchmarks characteristics

are the two factors that we take into account in our study.

Prior to instrumenting the compiled simulator, we compile the benchmark

application, and the assembly code for the application hot-spots is parsed by a sep-

arate script which identifies the register live ranges. The traditional algorithm for

this analysis, as described in [120], is used. In a subsequent step, we identify the

switch-points and the switch-points as the positions/basic-blocks in the application

hotspots where the number of live registers is minimal. We report on the delay

and task switch cost reductions for both switch-points and switch-blocks in order to

analyze the advantages and disadvantages of both approaches. The baseline archi-

tectures constitute a single-cluster and dual-cluster cores. In the single-cluster case,

each preemption is assumed to involve 64 store instructions and each resumption has

the same amount of load instructions. For the dual-cluster architecture, the registers

saved are doubled which results to a total of two groups of 128 instructions. For the

CCS approach, we have accounted for the cycles needed by the custom switch rou-

tines to execute the context switch. Similarly to the baseline organization, we have

assumed a single load/store unit per cluster. Consequently, based on the number of

194

live registers for each switch-point/block, we have accounted for the corresponding

execution cycles introduced by the custom switch routines.

In our experimental study, we have utilized two groups of benchmarks. The

computation kernel group includes Matrix Multiplication (mmul), Extrapolated Ja-

coby (ej) method, the LU matrix decomposition (lu), and the TRI triangular matrix

conversion (tri); these kernels manipulate large matrices and are extensively used

in many algorithms. The application group includes the 2D-DCT - discrete cosine

transform that are widely used in many image and video processing applications, the

adpcm and the g721 speech coders from MediaBench[103], the SHA hash algorithm,

and the susan image recognition program from MiBench [104].

Table 4.1 reports the structure of each application benchmark. The first row

shows the number of hotspots, while the second row reports the execution frequency

of each hotspot. The last row of the table shows the number of switch-points and

switch-blocks for each hotspot. In the register live analysis for each application we

have found out that the switch-block always contains the switch-point. It is also

always the case that the switch-block is always the basic block at the bottom of the

hotspot CDFG. As explained earlier, this can be easily explained (and anticipated

by us) by the fact that the registers carrying temporary variables as well as data

items loaded and stored in memory are dead towards the end of the CDFG and only

the registers carrying live variables across the loop iterations are alive.

Tables 4.2, 4.3, 4.4, and 4.5 shows the achieved results. The four baseline

architectures correspond to 64 and 128 entry register files, each with aggressive and

scalar-only compiler optimizations. The aggressive optimizations include very heavy

195

ej lu tri mmul 2d-dct adp g721 sha sus

Live 2/ 20/22, 21/24, 11/17 14/23, 11/ {3/5,7/7 5/20,11/18, 20/

Regs. 8 20/27 15/17 12/24 11 8/8,9/9, 11/14, 20

SP/SB 12/14} 11/18,10/13

CCS 97/ 72/69, 71/67, 85/76 81/68, 85/ {96/93, 93/72, 72/

State 89 72/63 79/76 83/67 85 90/90,89/89, 85/75,85/81, 72

Red.% 88/88,83/81} 85/75,86/82

Avg. 16/ 24/23, 33/31, 18/15 15/4, 21/ 36/32 22/13, 24/

Def. 10 28/23 30/29 19/8 21 13/2,15/12, 24

(cycl) 13/2,15/12

Worst 32/ 47/46, 65/63, 35/30 28/14, 42/ 49/45 42/33, 48/

Def. 25 54/49 60/58 37/24 41 25/10,29/26, 47

(cycl) 25/10,29/26

RMCS 88/ 81/82, 74/76, 86/90 88/97, 84/ 72/75 83/90,90/98, 81/

Resp. 92 78/82 77/77 85/94 84 88/91, 81

Red.% 90/98,88/91

CCS 84/ 50/48, 41/40, 69/63 66/57, 66/ 59/61 75/55,73/68, 50/

Resp. 78 47/38 53/52 66/53 66 71/68, 50

Red.% 73/68,73/70

Table 4.2: Characteristics and response reductions with aggressive compiler opti-

mizations for 64-entry register file

196

ej lu tri mmul 2d-dct adp g721 sha sus

Live 3/ 27/28, 29/33, 15/22 20/42, 15/ {3/5,7/7 6/16,11/20, 21/

Regs. 16 20/38 20/24 18/40 15 8/8,9/9, 24/24 26

SP/SB 12/14} 11/18,10/13

CCS 98/ 81/81, 80/77, 90/85 86/71, 90/ {98/97, 96/89, 85/

State 89 86/74 86/83 88/72 90 95/95,94/94, 92/86,83/83, 82

Red.% 94/94,92/90} 92/88,93/91

Avg. 15/ 28/27, 40/36, 22/18 16/8, 24/ 49/45 29/23, 24/

Def. 3 28/24 38/36 20/3 24 28/9,30/11, 24

(cycl) 28/11,30/6

Worst 28/ 55/53, 78/74, 42/39 30/22, 48/ 63/59 56/51, 49/

Def. 11 55/51 75/73 38/15 47 54/31,59/26, 44

(cycl) 54/35,59/26

RMCS 88/ 79/79, 69/72, 83/86 88/94, 81/ 62/65 77/82,78/93, 80/

Resp. 98 78/81 70/72 84/98 81 77/95, 80

Red.% 78/91,77/95

CCS 86/ 57/56, 46/53, 71/67 72/59, 70/ 56/59 73/67,70/72, 64/

Resp. 83 63/51 55/53 70/63 70 58/71, 60

Red% 70/72,69/72

Table 4.3: Characteristics and response reductions with aggressive compiler opti-

mizations for 128-entry register file

197

ej lu tri mmul 2d-dct adp g721 sha sus

Live 3/ 18/20, 13/24, 9/13 13/15, 10/ {3/5,7/7 6/6,5/9, 20/

Regs. 14 18/19 10/19 11/13 10 8/8,9/9, 10/14, 20

SP/SB 12/14} 10/15,9/13

CCS 96/ 75/72, 82/67, 88/82 82/79, 86/ {96/93, 92/92, 72/

State 81 75/74 86/74 85/82 86 90/90,89/89, 93/88,86/81, 72

Red.% 88/88,83/81} 86/79,88/82

Avg. 18/ 3/1, 8/1, 4/2 3/1, 14/ 40/36 2/2, 14/

Def. 1 3/1 8/1 3/1 14 5/2,4/2, 13

(cycl) 4/2,4/2

Worst 34/ 5/3, 15/5, 7/4 5/3, 28/ 57/53 4/3, 27/

Def. 7 5/3 15/5 5/3 27 9/6,7/4, 25

(cycl) 7/4,7/4

RMCS 86/ 98/99, 94/99, 97/98 98/99, 89/ 69/72 98/98,96/98, 89/

Resp. 99 98/99 94/99 98/99 89 97/98, 90

Red.% 97/98,97/98

CCS 81/ 70/67, 73/60, 83/78 77/75, 73/ 56/58 89/89,88/84, 58/

Resp. 75 70/69 78/68 80/78 73 81/77, 59

Red.% 81/75,83/78

Table 4.4: Characteristics and response reductions with scalar-only compiler opti-

mizations; 64-entry register file

198

ej lu tri mmul 2d-dct adp g721 sha sus

Live 4/ 18/20, 13/24, 9/13 13/15, 11/ {3/5,7/7 8/8,5/9, 20/

Regs. 17 18/19 10/20 11/13 11 8/8,9/9, 10/15, 20

SP/SB 12/14} 10/14,9/13

CCS 97/ 88/86, 91/83, 94/91 91/90, 92/ {98/97, 94/94, 86/

State 88 88/87 93/86 92/91 92 95/95,94/94, 97/94,93/90, 86

Red.% 94/94,92/90} 93/89,94/91

Avg. 17/ 3/1, 8/1, 4/2 3/1, 14/ 54/49 2/1, 11/

Def. 1 3/1 8/1 3/1 14 5/1,5/1, 11

(cycl) 5/1,5/1

Worst 33/ 5/3, 15/5, 7/4 5/3, 28/ 71/67 3/2, 21/

Def. 7 5/3 15/5 5/3 27 10/3,10/4, 20

(cycl) 9/4,9/4

RMCS 87/ 98/99, 94/99, 97/98 98/99, 89/ 58/62 98/99,96/99, 91/

Resp. 99 98/99 94/99 98/99 89 96/99, 91

Red% 96/99,96/99

CCS 84/ 84/83, 84/79, 90/88 88/87, 80/ 52/55 92/92,92/91, 76/

Resp. 84 84/84 86/82 89/88 80 88/88, 76

Red.% 88/86,89/88

Table 4.5: Characteristics and response reductions with scalar-only compiler opti-

mizations; 128-entry register file

199

loop unrolling coupled with instruction scheduling. The scalar-only optimizations

include no loop unrolling but all the basic optimizations including scheduling. The

second row reports the number of live registers at the switch-points and the switch-

blocks for all the benchmarks. This data is represented as a pair of number, the first

corresponding to a switch-point and the second to a switch-block. It is noteworthy

that this number directly corresponds to the number of execution cycles taken by

the custom switch routines. For the single-cluster machine of 64 registers we have

assumed one load/store unit, while for the dual-cluster machine with 128 registers

two load/store units are assumed. Therefore, for the single-cluster organization,

the number of cycles taken by the switch routines is identical to the number of

live registers, while for the double-cluster, the number of cycles is equal to the half

of the number of live registers. The next row reports the reduction in state (in

percentage) that is achieved by storing and restoring the live registers only by the

CCS methodology. Similarly, the data for switch-points and switch-blocks is shown

for all the benchmarks and their application hotspots. The next pair of rows reports

the average and worst preemption deferrals (in cycles) for both switch-points and

switch-blocks. These numbers represent the number of cycles from the moment

a preemption interrupt occurs to the moment of reaching the switch-point/block.

The deferral delay is independent from the type of technique used to preserve the

context (CCS or RMCS). Clearly, the deferral is smaller for switch-blocks as they

are more quickly reachable on average than switch-points. The last two rows in

the tables report the reductions (in percentage) achieved by the RMCS and the

CCS methodologies. The baseline architecture is the general-purpose mechanism

200

A2 B2 A3 B3 A4 B4

25% 1-cluster 0/0 0/0 1/2 0/2 3/5 3/5

2-clusters 0/0 0/0 0/4 0/3 3/7 2/7

50% 1-cluster 0/0 0/0 0/0 0/0 1/3 1/3

2-clusters 0/0 0/0 0/0 0/0 0/3 0/3

75% 1-cluster 0/0 0/0 0/0 0/0 0/1 0/1

2-clusters 0/0 0/0 0/0 0/0 0/0 0/0

Table 4.6: Live pages exceeding page pool; Aggressive optimizations

for storing the entire register file of the preempted task and loading the register file

associated with the preempting task. For the CCS technique, this reduction takes

into account the execution cycles needed by the custom switch routines, which, as

explained above, are directly proportional to the number of live register for that

switch-point/block. For the RMCS technique, a single-cycle switch to remap the

appropriate RFPs is assumed.

It is noteworthy, that not only are the two preemption mechanisms significantly

faster but also useful instructions are being executed from the preempted task during

the deferral interval. This is in contrast with the general-purpose mechanisms where

it is not only significantly slower, but is also the case that the delay is pure overhead

as only system software instructions are being executed.

As is evident from the tables, when more issue bandwidth is available with

the dual-cluster machine, the compiler is more aggressive in unrolling the loops in

201

A2 B2 A3 B3 A4 B4

25% 1-cluster 0/0 0/0 0/2 0/0 2/4 3/3

2-clusters 0/0 0/0 0/1 0/0 0/4 1/1

50% 1-cluster 0/0 0/0 0/0 0/0 0/2 1/1

2-clusters 0/0 0/0 0/0 0/0 0/0 0/0

75% 1-cluster 0/0 0/0 0/0 0/0 0/0 0/0

2-clusters 0/0 0/0 0/0 0/0 0/0 0/0

Table 4.7: Live pages exceeding page pool, Scalar-only optimizations

order to uncover and schedule parallel instructions. The loop body increases due

to the larger unrolling factor, which in turn leads to increase in the number of live

registers throughout the loop body. However, for the minimal points/blocks, the

number of live registers is only slightly increased and not doubled due to their typical

occurrence towards the beginning or the end of the loop body. Nonetheless, this

increase is limited by the available ILP. Furthermore, due to the more load/store

units available for this architecture, the actual reductions achieved by the CCS

technique are higher compared to the single-cluster architecture; the slight increase

in live registers at the switch-points/blocks is compensated by the ability to save

and load pairs of registers simultaneously.

In order to evaluate the impact of the size of the pool of extra registers required

by the RMCS technique, we have formed sets of multiple tasks for parallel execution.

Tables 4.6 and 4.7 show the relation of spare registers pool size and the supported

202

multiple task set for worst case scenarios - when for all the tasks the preemption

occurs within the switch-points/blocks with largest number of live register pages.

If all these live pages cannot be accommodated within the extra pool of register

pages, the number of pages which exceed the pool must be saved and restored at

context switch. Only the non-time critical tasks can be handled in this way, while

the rest of the tasks can use the pool of register pages and benefit from the proposed

methodology. In Tables 4.6 and 4.7 we show for each task set the number of live

register pages, which exceed the pool. We have evaluated three cases for the size of

the pool of extra registers: 25%, 50%, and 75% of the size of the baseline register

file.

The first row in the tables shows the set name. Set Ai consists of the first

i tasks from the computational kernels group; A2={EJ,LU}, A3={EJ, LU, TRI},

A4={EJ, LU, TRI, MMUL}. Sets Bi similarly cover the group of application bench-

marks: B2={2D-DCT, ADPCM}, B3={2D-DCT, ADPCM, SHA}, B4={2D-DCT,

ADPCM, SHA, SUSAN}. Table 4.6 reports the obtained data for aggressive com-

piler optimizations. The three main rows contain the data for the cases of 25%, 50%,

and 75% extra register in the pool of spare register pages in addition to the baseline

register file. For both single- and dual-cluster machines we report the number of

live register pages that need to be saved/restored to memory because of insufficient

registers in the extra register pool. The two reported numbers correspond to the

cases of using switch-points and switch-blocks, respectively. It can be seen from this

data that a 25% extra register pool completely covers all the 2-task sets and some

of the 3-task sets, while 50% pool completely covers all the 2-, 3-, and some of the

203

4-task sets. Even in the cases where not all the live pages can be covered by the

RMCS technique, the critical tasks can be assigned to the spare pages and utilize the

RMCS methodology, while for the remaining non-critical tasks, the context-switch

time can still be reduced as only the registers in the live pages would be preserved

and restored during task preemption.

204

Chapter 5

Compiler-driven Register Re-Assignment for Temperature Control

5.1 Introduction

As feature sizes continue scaling down and clock frequencies steadily increase,

the power density in many modern semiconductor circuits, such as embedded sys-

tems and processors, has been doubling every three years and this rate is expected

to increase even more [121]. Most prominently, the increased power density has

resulted in highly increased temperatures. These new thermal characteristics have,

in turn, resulted in serious design challenges, such as reliability problems [122],

packaging and cooling costs [123], and elevated leakage power [124].

The reliability of an electronic circuit is exponentially dependent on the junc-

tion temperature. A mere 10− 15oC rise in the operating temperature could result

in two times reduction in the life span of the circuit. The packaging and cool-

ing solutions designed to remove the heat from the silicon die surface have been

typically targeted for the worst case peak temperature. However, due to packag-

ing cost becoming extremely expensive with the increasingly rising temperatures -

approximately $10 per Watt after 65oC [123], new design strategies have emerged

where thermal management techniques are used to keep the chip temperature within

the thermal capacity of the cooling package and, thus, prevent both transient and

permanent system failures.

205

Ta
P

T

C

R

Figure 5.1: Thermal RC model

Leakage power, which is expected to constitute over 50% of the total power

consumption in post 90nm CMOS technologies has strong dependency on temper-

ature [124]. The positive feedback loop between leakage power and temperature

causes the temperature to continuously rise and, thus, damage the chip when it

reaches a certain threshold (runaway temperature). Even if the temperature is con-

trolled below the runaway threshold, the high static power consumption could have

a significant impact on many low-power devices operating on battery power.

Due to its high utilization and relatively small area, the register file has been

shown to have the highest peak temperature in several studies [125]. In VLIW

processors, where multiple instructions are packaged into a single large instruction

packet, the register file access frequencies are significantly elevated, which causes

the rise of the power density and, thus, peak temperatures. Consequently, reducing

the register file power density spots would lead to reduction in peak temperatures

for both the entire chip and the register file, which in turn would result in improved

reliability and reduced leakage power.

There exists a well-known duality between the power-temperature relation and

the current-voltage relation in an RC circuit network. Heat flow can be described as

a “current” passing through a thermal resistance, leading to a temperature difference

206

(“voltage difference”) between a neighboring point temperate and the temperature

of the thermal resistance. Figure 5.1 shows an example of a simplified chip thermal

model when only the vertical heat transfer path is considered, which has been shown

to be the majority of the heat transfer. The temperature response at time t for a

given power dissipation can be obtained through the following equation:

T (t) = P (T) · Rth + Ta + (Tinit − P (T) · Rth − Ta) · e
−

t
RthCth (5.1)

where T (t) is the transient temperature, P (T) is the total power consumption

at temperature T ,Ta is the ambient temperature, Tinit is the initial temperature,

Rth is the thermal resistance which includes junction-to-ambient thermal resistance

of the silicon substrate and the package, and Cth is the thermal capacitance. The

steady state temperature is modeled as:

Tsteady = P (Tsteady) · Rth + Ta (5.2)

where P (Tsteady) is the total power dissipation at Tsteady . Equation 5.2 can be

extended into 5.3,

Tsteady =
P (Tsteady)

Achip
· rA0 + Ptotal(Tsteady) · Rheat sink + Ta (5.3)

where Rheat sink is the thermal resistance of the thermal sink and is less affected

by the chip area since the heat is usually spread out more uniformly by the heat

spreader before it reaches the sink. Also the heat sink resistance have to be designed

to be small enough so that the thermal paste resistance dominates the total thermal

207

resistance. rA0 is the unit area thermal resistance of thermal paste and is fixed.

P (T)
Achip

represent the power density of the chip and is determined by the ratio of total

power dissipation and the chip area. Consequently, reducing the power density of a

given block results in effectively reducing the steady temperature for that block.

The proposed temperature reduction methodology introduces a temperature-

aware compiler register re-allocation based on application-specific information re-

garding basic block register accesses and frequency of execution. The register file

peak temperature, the hottest spot in any modern embedded processor, is reduced

by minimizing the peak power density across the register file. If the register file

comprises of multiple banks, the proposed approach distributes the accesses and,

hence, the power density uniformly across all the banks. If a monolithic implemen-

tation is followed, our technique distributes the accesses uniformly throughout the

register file and minimizes the power density and peak temperature. In this case,

the proposed algorithm logically partitions the register file into equally sized small

partitions and uniformly distributes the accesses among them. From this point on

we will use the term “partition” to refer to a group of physically adjacent registers,

which are not necessary implemented as a separate physical bank but are rather

treated by our methodology as a unit entity within the register file.

The power density reduction is achieved through both register name reassign-

ments and register live range reassignments. These tools are used with the objective

of uniformly distributing (spatially) the register accesses across the entire register

file. Since the introduced technique only reallocates live ranges and swaps register

names, no performance overhead is incurred. Moreover, as these transformation are

208

applied during compile time, no hardware support is required, thus no area or power

overheads are incurred as well.

5.2 Related Work

Investigating processor thermal characteristics from architecture and systems

point of view have been the goal of several research groups and projects in recent

years [126]. In [127], the authors have proposed several Dynamic Thermal Man-

agement (DTM) techniques including DVFS, decoder and i-cache throttling, as well

as speculation control. A register relabeling technique is introduced, developed,

and evaluated in [128, 129, 130]. The technique relabels the register names with

the objective of minimizing dynamic power on the I-Cache data bus and address

decoders. In [131] the authors have proposed techniques for reducing cache temper-

ature through power density minimization. A cache block permutation techniques is

introduced, which aims at maximizing the distance between blocks with consecutive

addresses. Register assignments algorithm for low-power VLIW register files are in-

troduced in [132]. The compile-time reassignment algorithm together with hardware

support for dynamically disabling register file sub-banks are used to minimize the

dynamic power of large clustered register files. In [133] techniques are proposed to

minimize the thermal emergencies in NOC-based systems through compiler-directed

power density reduction. Several thermal managing techniques for multicore archi-

tectures are explored in [134]. Various core throttling policies applied at core and

processor level are explored for chip thermal management. The authors in [135] have

209

introduced a power density minimization through computational activity migration,

while in [136], the authors investigate register temperature reduction through reg-

ister file and register duplication. At time intervals the hardware is controlled to

switch to the other available register file bank and, thus control the peak temper-

ature. In [137], the authors explore the temperature dependence on leakage power

of on-chip caches by systematically evaluating and simulating the interdependence

between temperature and cache organization and its leakage power. In [138] the

author have proposed and evaluated a systematic approach for optimally allocat-

ing and placing thermal sensors within a microprocessor. The placement algorithm

provides for accurate thermal measurements to be used for run-time temperature

optimizations. The relationship between task scheduling and run-time thermal be-

havior has been investigated in [139]. High-temperature profile tasks are interleaved

with low-temperature tasks in order to dynamically control the chip temperature.

The methodology in this chapter aims at reducing the peak temperature of

the register file by spreading the register activity and, thus, minimizing the register

file power density. Since the register file peak temperature determines the peak

temperature for the entire processor, our approach reduces the maximum processor

temperature and relaxes the packaging and cooling requirements. Additionally, it

also results in improved reliability and reduced leakage power of the register file and

its surrounding hardware blocks. All this is achieved with no impact on performance

and no additional hardware.

210

Figure 5.2: Histogram of register accesses; Scalar compiler optimizations

5.3 Motivation for Temperature-Aware Register Re-Allocation

A traditional register allocation scheme in temperature unaware compiler starts

by assuming infinite virtual registers for representation and machine-independent

optimization purposes. Each virtual register is used to carry a particular value

from the moment of its definition (writing into it) to the moment of its last usage

before being re-defined. Subsequently, these virtual registers are mapped into the

fixed number of available physical registers. To resolve cases where there are not

enough physical registers, registers are spilled into memory through load/store in-

structions. In effect, the load/store instructions terminate and subsequently resume

the live range associated to a particular virtual register in order to remain within

the limit of available physical registers. The physical registers are usually selected

and mapped to a live range following the linear order of the names of currently

available registers.

The objective of the traditional register allocation approaches is to minimize

the number of load/store instructions introduced for spilling and filling registers.

211

Figure 5.3: Histogram of register accesses; Aggressive compiler optimizations

When the register pressure is high, most of the physical registers are allocated and

have to be moved back and forth from memory. In cases (basic blocks, or other

code fragments) with low register pressure, only a very few physical registers are

allocated and as such contain useful values. The decision regarding which physical

registers in particular to be allocated, however, does not take into consideration

the distribution of the register accesses. Consequently, often times a significant

imbalance in the distribution of the register access activity exists.

Figures 5.2 and 5.3 show the register access distribution for a set of application

benchmarks executed on a state-of-the-art embedded multimedia VLIW processor

as modeled by the VEX infrastructure [119] from HP labs. The 64-entry register file

is logically split into 8 partitions each consisting of 8 registers. The figures report

the percentage of the total register accesses for each bank. Figure 5.2 shows the

access distribution when the benchmarks have been compiled with fairly traditional

optimizations - all scalar optimizations, instruction scheduling and minimal loop un-

rolling, while Figure 5.3 reports the same data but for the case for very aggressive

212

compiler optimizations - aggressive loop unrolling combined with trace scheduling.

In our experimental study, we have used benchmarks from MediaBench [103] and

MiBench[104] such as 2D-DCT (discrete cosine transform widely used in many image

and video processing applications), ADPCM and G721 (speech compression codecs),

SHA (commonly used hashing algorithm in security), SUSAN (image manipulation),

DIJKSTRA (graph optimization). We have also evaluated several numerical com-

putation programs, such as Matrix Multiplication (MMUL), Extrapolated Jacoby

(EJ) method, LU decomposition, and TRI (converting a matrix into a triangular

form).

It is evident from the above two figures that the first few partitions (mostly

the first two) of the physical register file are accessed overwhelmingly many more

times than the other partitions. As the power per single register access is identical

for all the registers, the power density of the first partition is significantly higher

than the power density of the other partitions. The peak temperature of the whole

register thus will be reached in the first partition, which will also become significantly

hotter than the other parts of the register file. If, on the other hand, the register

accesses required by the program and established by the register allocator are evenly

distributed through the register file, the power will be uniformly distributed as well

and no extreme temperature hotspots will be formed. Fundamentally, this is the

objective of the proposed compile-time register re-allocation methodology.

Given a fixed amount of register activity, the lowest power density occurs when

the access activities for all the partitions are identical. By rearranging the physical

register allocation evenly into multiple partitions, the peak power density and hence

213

the peak temperature could be reduced. The magnitude of the reduction depends on

whether the initial distribution which has resulted from the general-purpose register

allocation algorithm is significantly imbalanced.

Since the proposed technique involves register name and live range reassign-

ments only, it can be independently applied on different application hot-spots, which

correspond to heavily executed program phases. In this way, each such execution

phase that iteratively executes a relatively short code sequence can be optimized in-

dependently1. Such an approach ensures that the quality of the proposed solution is

not diluted throughout a large application program with different execution phases.

Furthermore, due to the iterative nature of the execution phases and their relatively

short static code size, this approach ensures that the register file is not only ac-

cessed uniformly as a whole throughout the program, i.e. spatially, but also that

this uniformity of access is preserved within short time intervals, i.e. temporally, as

well.

Fundamentally, the proposed algorithm can be integrated as a part of the

register allocation compiler phase. The selection of an available register to map a

particular live range would be driven by the optimization criteria of the proposed

technique. The additional profile-based information regarding basic block execution

frequency can be provided as a feedback information to the compiler. For the

1In this case, a register transfer instruction may have to be introduced in between the application

hot-spots for each global variable carried by a register across the program hot-spots. Since such

a register transfer, if existing at all, can happen only outside program hot-spots, its impact on

performance is practically zero.

214

Live range for R5:
3 accesses (1 write, 2 reads)

... ...

...
Live range for R5:
7 accesses (1 write, 6 reads)

Live range for R5:
5 accesses (1 write, 4 reads)

6 accesses to R5

5 accesses to R5

N5=1*3+1*7+0.8*6+0.2*5+1*5

B1

80

100

20

B3B2

B4

100
sub R7, R5, ...
add R5, ...

add R6, R5, ...
mul R5, ...

Figure 5.4: A loop Control Flow Graph (CFG) and Register live ranges

purpose of clarity, however, in presenting the algorithm in the subsequent sections

of this chapter we assume that it is applied in a compiler pass after the traditional

register allocation and after profiling the program under compilation.

The proposed algorithm, which utilizes register name and register live range

reassignments does not introduce any performance overhead, because it does not

introduce any new instructions within the frequently executed application hotspots.

It only judiciously reassigns both the register names and the individual live ranges

carried by the registers to carry each incarnation of the program variables in their

define and use cycles. Consequently, the achieved power density and temperature

reductions are achieved at no performance and no hardware costs.

5.4 Temperature-Aware Register Re-Allocation Fundamentals

The fundamental goal of the register allocators is to minimize the amount of

memory traffic by mapping as many as possible variables to registers. The proposed

215

register reassignment for power density minimization is performed after the tradi-

tional register allocation phase. Registers are re-allocated without introducing new

memory transfers; in essence, our technique exploits the available degrees of freedom

that exist when selecting a register name to hold a particular live range.

Figure 5.3 shows an example Control-Flow Graph (CFG) for a simple loop

with four basic blocks. The numbers associated with each basic block correspond

to the percentage of loop execution time spent in the basic block. Such execution

frequency numbers can be obtained through profiling. Since the register reallocation

is performed independently on the different application hotspots, corresponding to

frequently executed loops and functions, the profile-based information regarding

register utilization is extremely stable. For instance, our experiments show that for

the G721 speech coder ran on two completely different input data sets, the register

access weights (the ratio of register accesses of a particular register to the total

number of register accesses) are stable with a worst-case difference of 0.00103. Such

a small fluctuation would have no impact whatsoever on the final results achieved

by the proposed algorithm.

Subsequently, a live analysis is performed after the traditional compiler register

allocation to determine the register live ranges (in case such information is not

directly accessible from the already executed register allocator). A register live

range is defined as the interval of time (or sequence of instructions) starting from the

instruction that writes into the register a new value and ending at the instruction

that reads for the last time from it before the register is written to again. Each

basic block is composed of the live ranges for all the registers. In this representation

216

each register has its own column, while the rows correspond to the linear sequence

of instructions. In this way the live ranges can be represented as vertical lines. A

particular live range can reside within a basic block or can span multiple basic blocks.

For each live range, the register is accessed by one write (the first instruction) and

one or more reads. In Figure 5.3 we have shown the live ranges for R5 and have also

shown the way we compute the number of accesses to R5, which we denote with

N5. The number of accesses to R5 is essentially defined as the weighted sum of the

number of accesses for each live range of R5 with weights equal to the execution

frequency for the basic block. In general, the number of accesses to any register for

a particular CFG, which represents an application hotspot (function or a loop) is

defined by the following equation:

Ni =
nb∑

b=1

Wb(
∑

j∈Li(b)

NLi(j)) (5.4)

where Ni is the number of accesses to register Ri, nb is total number of basic

blocks, Wb is the weight of block b. Li(b) is the set of all the live ranges of register

i residing in basic block b, and NLi(j) is the access number of register Ri in live

range j. If a live range crosses basic block boundaries, its number of accesses is split

and the corresponding basic block weights are used.

As the register file can be divided into several partitions, the number of accesses

for each such partition is defined as the sum of accesses for all the registers from

that partition. We refer to this value as the partition weight.

217

R0 − 250
R1 − 300
R2 − 50
R3 − 50
R4 − 0
R5 − 0
R6 − 0
R7 − 0

R0 − 250
R1 − 0
R2 − 50

R5 − 0
R6 − 300
R7 − 0

R3 − 50
R4 − 0

Register
Renaming

Figure 5.5: Register name reassignment

Wi =
∑

Rj∈Bank(i)

Nj (5.5)

Consequently, the power density for a partition with EB energy per access is:

PDi =
Wi · EB

T ime · Area
(5.6)

Reducing peak temperature is achieved by reducing the power density for all

the partitions, which in turn can be achieved by minimizing the maximal weight of

a register partition. As the total number of register accesses is a constant, mini-

mizing the maximal partition weight is transformed into uniformly distributing the

register accesses to all the partitions. Consequently, the problem is transformed into

minimize the max(Wi) given a constant activity
∑

i Wi.

5.4.1 Register Name Reassignment (RNR)

A first approach to attack the power density minimization problem, at rather

coarse-granularity level, is to employ register name reassignment. If the register

name space is permuted and partitioned in such a way, so that the number of

accesses to the register file partitions are made uniform, then clearly the register

218

file power density will be reduced. Consequently, the Register Name Reassignment

(RNR) problem can be formulated as the procedure of permuting the register name

space after register allocation for each application “hot-spot” with the objective of

uniformly distributing the total number of register accesses throughout the register

file.

The well-known min-max set-partitioning problem, which is a known NP-hard

problem, can be easily reduced to an instance of this problem - the two problems

being almost identical. Such a mapping demonstrates the NP-hardness of our power

density minimization problem. It has been shown that the min-max set-partitioning

problem is very closely related to the scheduling problem [140]. In order to produce

a practical solution we have developed a heuristic algorithm similar to the list-

scheduling algorithm. Theoretically the minimum of the max(Wi) is larger than

or equal to the average of Wi, where the equality holds only when all the Wi are

identical. Consequently, in order to measure the quality of the results produced

by the proposed algorithm, we use the ratio of the peak deviation (max(Wi) -

average(Wi)) to average(Wi), which we denote as PD/AV . For the ideal case

when every partition has identical weight, the PD/AV is equal to 0.

In the example shown in Figure 5.5, 8 registers are divided into four partitions.

The left side of the figure shows the register activity distribution: the max(Wi) is

550, PD/AV = 3.385. The direct and simple way to spread the weight is to exchange

R1 with R6, and R3 with R4. The new distribution is shown on the right side with

PD/AV = 1.846.

This simple exchange of register names across partitions can be easily imple-

219

mented by just reassigning their names and updating the instructions accordingly.

There is no performance overhead in doing this since no new instructions are intro-

duced. Each such interchange of registers Ri with Rj results in a weight reduction of

Ni−Nj for the partition of Ri. Clearly, the granularity of the updates to the register

partition weights is within the range of a number of accesses to a single register for

the entire CFG under considerations. The set of register access numbers can be

substituted for the input set of integers for the set-partitioning problem. The set of

integers corresponding to register accesses per partition needs to be partitioned into

m groups, such that the sum of integers in each group is equal to
∑

i Wi/m, where

m is the number of partitions or subsets of the register file. For this step of our

approach we offer a heuristic, which is similar to the list scheduling heuristic [141]

for m-partitioning. Clearly, the granularity of update is a single physical register,

which is reassigned to another physical register.

5.4.2 Live Range Reassignment (LRR)

The RNR granularity of adjusting the partition weights, however, can be too

large for some programs. Nonetheless, the nature of our problem enables us to

significantly reduce the granularity level of the adjustments. As explained above,

each register is used to “carry” a set of live ranges mapped to it for the particular

CFG. Renaming registers can be thought of as interchanging the entire set of live

ranges with the set of live ranges for another register. In many cases, however, it

is possible to reassign only a subset of the live ranges for some registers instead of

220

20 20

5

6
15

6

5

15

Basic Block − B Basic Block − B

LRR

Rk RjRi Ri Rk Rj

Figure 5.6: Live range reassignment (LRR) procedure

the entire set of live ranges. Such a situation is illustrated in Figure 5.6. The figure

shows the register utilization inside a basic block with the live ranges for two of the

registers. The representation is identical to the one used in Figure 5.3. The number

of register accesses for the live ranges is shown as an integer next to each range.

In this example, between the two dotted lines, the first live range of Ri can be

interchanged with the first live range of Rj. This is possible as there is no conflicts

(overlaps) with other live ranges of these registers. This particular interchange of

live ranges p and q results in a change of NLi(p) − NLj(q). The amount is added

to the number of accesses of Ri and subtracted from the accesses to Rj. The figure

also illustrates a case where a live range (the second of Ri) is moved and reassigned

to Rk. With this operation Nk is increased with NLi(r), while Ni is decreased by

the same amount. It is evident that these two transformations are not the same as

exchanging register names as they work at much smaller granularity levels - that of

a live range. It is also evident that for each of these two operations to be possible,

certain conditions must exist. The live range interchange is possible only when it will

not introduce overlaps with other live ranges and the live range transfer operation is

only possible with a destination register that is “dead” (i.e. contains no live ranges)

221

for the duration of live range under considerations.

The Live Range Reassignment (LRR) procedure effectively utilizes these de-

grees of freedom to permute the register live ranges carried by all the registers with

the similar objective of uniformly distributing the register accesses through the reg-

ister file. Since the LRR algorithm we propose has an iterative nature, it can be

applied as a second step after the RNR procedure. The LRR phase would start

operating on the output of the RNR procedure and would attempt to iteratively

improve the solution. An alternative approach that we evaluate in our experiments

is the application of the LRR procedure as a stand-alone algorithm for power-density

minimization. In this case, the iterative procedure starts with the original register

assignment as provided by the register allocator.

The proposed LRR procedure iteratively attempts at performing the afore-

mentioned two transformations from the partition with maximal weight to the other

partitions. When possible, such transformations are performed only if they will not

increase the weight of the destination partition above certain threshold, which is

below the current maximal partition. In this way, the iterative process is guaran-

teed to terminate as the maximal partition weight monotonically decreases and it

is bound with the optimal solution of ideal uniform distribution of register access

across all the partitions.

Figure 5.7 depicts two alternatives in implementing the proposed register re-

assignment technique. The first alternative is to use the RNR procedure as a first

step in producing a relatively good solution in terms of uniformity of access. Sub-

sequently, this “rough” solution is used as a starting point for the LRR procedure.

222

Live Range Reassignment
(LRR) (iterative)

General purpose compiler
register allocation

General purpose compiler
register allocation

Live Range Reassignment
(LRR) (iterative)

Register Name Reassignment
(RNR)

a) b)

New register allocation
with balanced partition weights

New register allocation
with balanced partition weights

LRR−only solutionRNR+LRR solution

Figure 5.7: Overall algorithms for temperature-aware register reallocation

Because of its iterative nature and finer-granularity in distributing the register ac-

cesses, the LRR procedure can be efficiently exploited in improving the solution

provided by the RNR step. Clearly, in such RNR+LRR approach, the second phase

(LRR) is only used to improve or “fine-tune” the solution of the first phase. An al-

ternative is to start with and execute only the LRR procedure. In this way, the LRR

procedure can have the opportunity to uncover a better global solution as compared

to the first option when it is only used to improve the RNR solution. Of course, it is

impossible to conclude that any of this two approaches is better than the other be-

cause of their heuristic nature. It may well be the case, as our experimental results

show, that for different programs each of the two approaches could produce slightly

better solution. In order to provide the best available solution, a third approach

may involve the execution of both sequences (RNR+LRR, and LRR-only) and then

chose the better solution.

223

Input: Set S = {Ni : i ∈ [1..N]} of original register accesses

Output: Partitions of S: P (S) = {Pj : j ∈ [1..k]}

(1) Initialize Wj=0 for ∀j ∈ [1..k]

(2) Sort S in decreasing order of Ni

(3) for i = 0 to N

(4) Assign Reg. repr. by Si to Pm

s.t. Wm = min{Wj , j ∈ [1..k]} and Pm not full

(5) Wm = Wm + Ni

(6) Re-sort set W

(7) Output new P (S) and W

Figure 5.8: Pseudo-code for RNR set-partition heuristic

5.5 Register Re-Allocation Algorithms

5.5.1 Set-Partition Heuristic for RNR

The Register Name Reassignment (RNR) procedure involves the reassignment

of register names with the objective of uniformly distributing the register accesses

into the physical banks, or parts of the register file if no physical banking exists. The

algorithm we have developed for this step is similar to the List-scheduling heuristic.

The objective function is to assign registers into partitions so that the maximum

partition weight is minimized. The heuristic algorithm is shown in 5.8 in a pseudo-

code format. As explained in the previous section, the RNR procedure permutes

224

the register names with the objective of evenly distributing the register access rates

across all the partitions. The granularity level is a single register and includes all

the live ranges assigned to it by the traditional register allocator.

Initially, the set of Ni, representing the total number of accesses for each

register, is sorted in decreasing order; all the partition weights are initialized with

0. Subsequently, following the sorted order the set is traversed and each register

(associated with the particular Ni) is assigned to the partition, which currently has

a minimal weight. The weight of the partition to which the register (its integer access

rate) is assigned to is updated accordingly. Assigning a register to a partition can be

thought of as assigning the next available register in that partition to the entire set of

live ranges mapped to the initial register by the general-purpose register allocator. In

this way, the registers with highest access rate are assigned first to the partitions - in

the later phase, the register with less utilization are used to “fill-in” the gaps between

the partition weights created by the high utilization registers. The worst-case time

complexity of this algorithm is O(n ∗ log(n)), where n is the number of registers.

This complexity comes from the fact that the algorithm requires one sorting step in

the beginning (Step 2), which can be implemented using a O(n ∗ log(n)) procedure,

such as Heap Sort. Steps 3-6 constitute a linear traversal of the sorted set with an

additional step of re-sorting the set of partition weights. Since the only purpose

of the re-sorting Step 6 is to be able to find the partition with minimal weight,

a min-Heap structure can be used to maintain the set of weights and access the

one with minimal weight and update it. Therefore, this step can be implemented

through a min-Heap structure with O(log(n)) time complexity. Consequently, Steps

225

Input: Partitions of S: P (S) = {Pj : j ∈ [1..k]}

with weights W = {Wj,∈ [1..k]}

Output: New register allocation

(1) while (Reassignment reduces max(Weight) {

(2) Select partition Pm : Wm = max{Wj, j ∈ [1..k]}

(3) for each register in Pm

(4) for each basic blocks in CFG

(5) Find live range reassignments to other Pk

(6) by starting from the partition with minimal weight

(7) if (weight reduction (NLi(j) − NLp(q)) feasible)

(8) Perform the reassignment

(9) } /*end while loop */

Figure 5.9: Pseudo-code for live range reassignment (LRR) procedure

3-6 exhibit also time complexity of O(n∗ log(n)), which results in a time complexity

of O(n ∗ log(n)) for the entire RNR algorithm. For all practical purposes this time

complexity results in extremely fast running times - for all our benchmarks well

below a second.

5.5.2 Live Range Reassignment Algorithm

The live range reassignment procedure in the proposed approach is an iterative

technique that aims at finding a new register allocation, while staying within the

226

optimal point identified by the traditional register allocator. At each step of the

LRR procedure a new live range assignment is identified, which is better in terms of

uniformity of register accesses. At each step the goal is to reduce the weight of the

partition with maximal weight by reassigning live ranges from registers belonging

to it to other partitions. The two transformations of live range exchange and live

range migration as described in the previous section and illustrated in Figure 5.6

are used. The pseudo-code of this algorithmic step is shown in Figure 5.9

The exchange targets the partition with maximal weight. The register with

maximal access rate is selected from that partition, and all its live ranges are sequen-

tially considered for reassignment to registers from other partitions. As a destination

partition the algorithm selects the one with current minimal weight. After selecting

the destination partition, the algorithm iteratively visits all its registers by starting

with the one with minimal access rate. First, a live range migration is attempted as

it usually has a more significant impact on the weight balance than the live range

exchange. Clearly, for a given destination register it may happen that live range

migration is not possible because the destination register carries another live range

that overlaps with the one considered for migration. In this case, a live range ex-

change is attempted. It may also happen that the exchange is not possible as one of

the ranges may overlap with another live range in the destination register; in such

situation the algorithm continues with the next live range from the selected source

register. In the case when the reassignment is possible, it first must be checked for

feasibility before actually performing it. Such a reassignment is allowed only when

the weight reduction (NLi(j)−NLp(q)) to the maximal partition will not cause the

227

weight of the destination partition to rise above a certain threshold. This threshold

is defined to be lower than the current maximum partition weight. This reassign-

ment is referred to as “feasible” in the pseudo-code. All such exchanges will result

in reductions to the maximal weight. The algorithm continues in a similar fashion

with the rest of the registers from the partition with maximal weight in decreasing

order of their access rate.

It is evident that an application of the procedure corresponding to the body

of the while loop in the pseudo-code always results in a reduction of the maximal

weight or unchanged register allocation. This procedure is iteratively repeated until

it cannot produce a better solution. The LRR algorithm is guaranteed to terminate

as the current maximal weight always decreases (the feasibility threshold for live

range exchange is always slightly smaller than the current maximal weight) and it

is bounded by the ideal solution with perfect uniform distribution of the register

accesses across all the partitions.

The worst-case time complexity of the body of the while loop is O(m2 ∗ ls ∗ ld),

where m is the number of registers within a partition, ls is the number of live ranges

within the source partition (with current maximal wight), and ld is the number of

live ranges for all the registers within the destination partition (with current minimal

weight). Since these three values are reasonably small for a typical program hot-

spot, the running times of the LRR algorithm for our benchmarks were practically

unnoticeable and for all of them within a few seconds.

228

5.6 Experimental results

In our experimental study we have implemented and analyzed the proposed

temperature-aware register reallocation algorithms. A quantitative analysis on the

proposed technique as compared to traditional register allocation has been per-

formed. We start by performing an application profiling and extraction of the ap-

plication CFGs. For this we have utilized the VEX package [119], which is developed

and provided by HP research labs. It includes a state-of-the-art optimizing VLIW

compiler and a compiled-simulator tool chain. The VLIW processor core, which is

based on the Lx/ST200 family of processors, can be configured into various archi-

tectures with multiple clusters. Each cluster is configured to have an integer register

file, four integer ALUs, two 16*32-bit multiply units, and a data cache port. The

cluster can issue up to four operations per instructions. The register set for each

cluster consists of 64 general-purpose 32-bit registers and 8 1-bit branch registers.

For our experiments we have assumed a single cluster architecture with a single

64-entry integer register file. In order to explore the sensitivity of the proposed

algorithm on the partition size, we have explored two different cases: 4 partitions

and 8 partitions. In the former case, the 64 registers are partitioned into 4 groups

each of 16 consecutive registers, while in the latter case into 8 groups of 8 registers.

To determine the register live ranges we have implemented a live analysis tool,

which is integrated with our implementation of the proposed register reallocation

algorithm. The CFG and register usage and definitions are produced by parsing

the generated assembly file. The profile information, as well as the baseline register

229

access rate and access distributions are obtained through simulations by using the

compiled simulation technology of VEX. We have obtained the power characteris-

tics of the register file by modeling it with CACTI 4.2 [109]. The per access power

consumption is provided, which we have used to compute the total dynamic power

consumed at the register files and partitions. In the last step, in order to determine

the temperature of each register partition we have used the Hotspot [126] tempera-

ture modelling tool. As an input it uses the traces of dynamic power expended at the

register file together with a floor-plan of the register file/partitions modules. The

power simulation and the temperature estimation phases are executed iteratively

until temperature converges to a steady value.

We have performed the control flow and register liveness analysis on the VEX

generated assembly files. The register access statistics for all the live ranges inside

the basic blocks is collected as well. In order to analyze the impact of aggressive

compiler optimizations on the proposed methodology, we have used two compiler se-

tups. The first setup uses optimization options, which include very aggressive loop

unrolling and code scheduling. The other option that we have explored includes

traditional scalar optimizations but no loop unrolling. We have experimented on 10

benchmarks programs from various application domains, such as speech, audio, im-

age, and numerical/signal processing programs. The set of benchmarks was outlined

in Section 5.3.

Table 5.1 shows the thermal characteristic of the baseline case with aggressive

compiler optimizations and its associated traditional, temperature-unaware register

allocation. In that table we report the results for both 8 and 4 register file parti-

230

2D DCT ADPCM SHA SUSAN DIJKSTRA

AVRG (x1K,4-B) 4327 9639 122254 24128 215249

AVRG (x1K,8-B) 2163 4820 61127 12064 107624

SDev (x1K,4-B) 6519 10996 153430 24640 372822

SDev (x1K,8-B) 3288 6243 81265 18568 233806

PD/AV (4-B/8-B) 2.59/2.7 1.78/1.87 2.07/2.21 1.29/3.59 3/5.62

Peak Temp. (C) 73.05 69.45 76.95 66.85 78.85

G721 MMUL EJ LU TRI

AVRG (x1K,4-B) 1196918 1388 12970 12218 989

AVRG (x1K,8-B) 598459 694 6485 6109 495

SDev (x1K,4-B) 1848463 1842 13246 12217 960

SDev (x1K,8-B) 1061323 978 7364 6290 512

PD/AV (4-B/8-B) 2.67/4.38 2.23/2.87 1.31/1.79 1.45/1.6 1.15/1.53

Peak Temp. (C) 84.85 76.85 78.65 92.25 73.75

Table 5.1: Baseline thermal characteristics; Aggressive compiler optimizations

231

2D DCT ADPCM SHA SUSAN DIJKSTRA

AVRG (x1K,4-B) 5789 10215 167969 24752 278319

AVRG (x1K,8-B) 2895 5107 83984 12376 139160

SDev (x1K,4-B) 10027 17362 290817 24863 482063

SDev (x1K,8-B) 6851 9020 171449 16967 346398

PD/AV (4-B/8-B) 3/6.23 2.94/3.9 3/5.16 1.13/2.73 3/6.58

Peak Temp. (C) 55.25 64.45 65.75 64.95 70.85

G721 MMUL EJ LU TRI

AVRG (x1K,4-B) 1435179 2116 21401 11269 1429

AVRG (x1K,8-B) 717590 1058 10701 5635 715

SDev (x1K,4-B) 2468377 3666 37068 19428 1817

SDev (x1K,8-B) 1794100 2289 18807 12440 964

PD/AV (4-B/8-B) 2.98/6.61 3/5.59 3/3.6 2.99/5.74 2.11/2.24

Peak Temp. (C) 67.65 59.75 83.65 68.85 71.35

Table 5.2: Baseline thermal characteristics; Scalar compiler optimizations

232

tions. The first two rows report the average number of accesses per partition (in

thousands) for the case of 4 and 8 partitions, respectively. The average number

of accesses per partition represents the optimal solution for our problem of evenly

distributing the register accesses and is used to measure the quality of the solutions

produced by our technique. The subsequent two rows in the table report the stan-

dard deviation of the register access distribution throughout the 8 and 4 partitions,

respectively. The next row, labeled PD/AV, reports the peak deviation (the differ-

ence between the maximal access number and the average access number) to the

average access. This is the value of PD/AV as described in Section 5.4. For the

ideal case of perfectly uniform distribution, this ratio is zero. Each cell of this row

reports the two values for 8 and 4 partitions, respectively. The last row, labeled Peak

Temp., shows the peak (maximal) temperature (in C) selected out of all the register

file partitions. This temperature represents the hottest point in the register file and

its minimization is the goal of our methodology. Table 5.2 has an identical orga-

nization and content, and it reports the baseline temperature characteristics where

the application benchmarks are compiled with traditional scalar optimizations only.

Minimal loop unrolling and instruction scheduling is performed, while no aggressive

trace scheduling is performed. It can be observed that the peak temperatures for

the scalar-optimizations are lower. This can be explained by the fact that with

scalar-only optimizations, the register file is not as frequently accessed and exhibits

a lower baseline temperature. Since the compiler does not aggressively exploit ILP,

the number of register accesses per unit time is significantly less than in the case of

aggressive loop unrolling and scheduling.

233

2D DCT ADPCM SHA SUSAN DIJKSTRA

SDev (4-B/8-B) x1K 6/57 143/124 86/65 0.4/1579 100/18880

PD/AV (4-B) 0.00086 0.01482 0.00040 0.00001 0.00069

PD/AV (8-B) 0.060 0.010 0.004 0.340 0.110

Peak Temp. (4-B) 68.65 66.15 72.45 64.55 72.25

Peak Temp. (8-B) 67.95 65.45 71.55 64.15 71.65

Reduct. (C) (4-B/8-B) 4.4/5.1 3.3/4 4.5/5.4 2.3/2.7 6.6/7.2

G721 MMUL EJ LU TRI

SDev (4-B/8-B) x1K 511/6812 4/81 115/168 0.007/0.1 0.2/4

PD/AV (4-B) 0.00047 0.00467 0.00920 0.00000 0.00014

PD/AV (8-B) 0.009 0.240 0.010 0.000 0.010

Peak Temp. (4-B) 78.05 72.05 75.25 87.25 70.95

Peak Temp. (8-B) 77.05 71.55 74.25 85.95 70.15

Reduct. (C) (4-B/8-B) 6.8/7.8 4.8/5.3 3.4/4.4 5/6.3 2.8/3.6

Table 5.3: RNR+LRR thermal characteristics; Aggressive compiler optimizations

234

2D DCT ADPCM SHA SUSAN DIJKSTRA

SDev (4-B/8-B) x1K 5/14 142/123 86/65 291/4795 117/18899

PD/AV (4-B) 0.00075 0.01480 0.00040 0.01665 0.00054

PD/AV (8-B) 0.00000 0.01000 0.00040 0.34390 0.10850

Peak Temp. (4-B) 68.55 65.85 72.25 64.25 72.25

Peak Temp. (8-B) 67.85 65.45 71.55 64.35 71.75

Reduct. (C) (4-B/8-B) 4.5/5.2 3.6/4 4.7/5.4 2.6/2.5 6.6/7.1

G721 MMUL EJ LU TRI

SDev (4-B/8-B) x1K 553/6485 4/267 59/124 0.006/4 0.2/2

PD/AV (4-B) 0.00048 0.00523 0.00459 0.00000 0.00013

PD/AV (8-B) 0.00870 0.24000 0.02000 0.00043 0.00000

Peak Temp. (4-B) 77.95 71.85 75.05 86.95 70.85

Peak Temp. (8-B) 77.05 72.05 74.25 85.95 70.15

Reduct. (C) (4-B/8-B) 6.9/7.8 5/4.8 3.6/4.4 5.3/6.3 2.9/3.6

Table 5.4: LRR-only thermal characteristics; Aggressive compiler optimizations

235

2D DCT ADPCM SHA SUSAN DIJKSTRA

SDev x1K 439 143 86 192 8855

(4-B/8-B) /830 /189 /1154 /1655 /30783

PD/AV (4-B) 0.08 0.01 0.0003 0.0078 0.049

PD/AV (8-B) 0.43 0.01 0.02 0.31 0.11

Peak Temp. (4-B) 52.75 60.85 61.55 62.55 65.35

Peak Temp. (8-B) 52.55 60.15 60.95 62.35 65.05

Reduct. (C) 2.5/2.7 3.6/4.3 4.2/4.8 2.4/2.6 5.5/5.8

(4-B/8-B)

G721 MMUL EJ LU TRI

SDev x1K 14781 191 392 415 25

(4-B/8-B) /337669 /377 /1028 /1329 /24

PD/AV (4-B) 0.017 0.16 0.03 0.06 0.02

PD/AV (8-B) 0.6 0.41 0.17 0.2 0.02

Peak Temp. (4-B) 63.65 56.65 77.25 64.15 67.55

Peak Temp. (8-B) 63.35 56.55 76.25 63.85 66.65

Reduct. (C) 4/4.3 3.1/3.2 6.4/7.4 4.7/5 3.8/4.7

(4-B/8-B)

Table 5.5: RNR+LRR thermal characteristics; Scalar compiler optimizations

236

2D DCT ADPCM SHA SUSAN DIJKSTRA

SDev x1K 452 143 86 5685 17722

(4-B/8-B) /6851 /9020 /171449 /16987 /346398

PD/AV (4-B) 0.07617 0.01 0.0003 0.19247 0.08649

PD/AV (8-B) 0.08000 0.01 0.0100 0.31000 0.11000

Peak Temp. (4-B) 52.25 60.15 61.55 62.35 65.15

Peak Temp. (8-B) 52.05 59.65 60.95 62.65 64.95

Reduct. (C) 3/3.2 4.3/4.8 4.2/4.8 2.6/2.3 5.7/5.9

(4-B/8-B)

G721 MMUL EJ LU TRI

SDev x1K 25566 391 376 1015 26

(4-B/8-B) /1794100 /2289 /188807 /12440 /964

PD/AV (4-B) 0.01736 0.16549 0.03007 0.07733 0.01809

PD/AV (8-B) 0.59000 0.41000 0.16000 0.19000 0.02000

Peak Temp. (4-B) 62.75 55.65 76.05 63.05 66.45

Peak Temp. (8-B) 62.85 56.35 75.65 62.95 66.05

Reduct. (C) 4.9/4.8 4.1/3.4 7.6/8 5.8/5.9 4.9/5.3

(4-B/8-B)

Table 5.6: LRR-only thermal characteristics; Scalar compiler optimizations

237

Tables 5.3, 5.4, 5.5, and 5.6 show the power-density and temperature char-

acterstics after the application of the proposed methodology. The four tables have

identical structure; the first two tables report the temperature reduction results for

the case of aggressive compiler optimizations, while the last two are for the case

of scalar optimizations. Tables 5.3 and 5.5 report the results for the RNR+LRR

methodology, while the other two are for LRR-only approach. The first row in each

table shows the standard deviation (in thousands) of the register access distribution

throughout the register partitions. The standard deviations for the case of 4 and

8 partitions are reported in each cell, respectively. The next two rows report the

achieved PD/AV ratio for 4 and 8 partitions, respectively. The subsequent two rows

show the achieved peak temperatures for 4 and 8 partitions, respectively, while the

last row reports the achieved temperature reduction for both cases.

It can be seen from the results that after applying the proposed algorithm,

the standard deviation and the PD/AV ratios are significantly reduced and for all

of the benchmarks are very close to their optimal achievable value. As a result, the

obtained peak temperature reductions are in the range of 4 to 7 degrees Celsius. The

achieved reductions are somewhat similar for the two different compiler optimization

cases - slightly smaller for the scalar-only optimizations. This follows from the fact

that with scalar-only optimizations, the register file is not as frequently accessed and

exhibits a lower baseline temperature, as was explained for the baseline results. The

achieved results also demonstrate that the temperature reductions for 8 partitions

are consistently larger (with up to 1 C degree) than the reductions for 4 partitions.

Both the RNR+LRR and LRR-only approaches consistently find better solutions

238

Figure 5.10: Achieved register access distribution; Aggressive compiler optimizations

Figure 5.11: Achieved register access distribution; Scalar compiler optimizations

when more partitions are available for distributing the register accesses.

Figures 5.10 and 5.11 depict and compare the register access distribution

achieved by the RNR+LRR and the LRR-only approaches. The percentage of uti-

lization for each partition is depicted as a point in the graphs. The graphs visually

compare the results of the two methodologies. The figures show results for the case

of 8 partitions, since the differences between the two approaches are more prominent

in this case. It is evident from the figures that the achieved distribution and the

correspondent peak temperature reductions are very close for both approaches with

239

slightly more stable and uniform solutions provided by the RNR+LRR algorithm.

An extreme case where the RNR+LRR stability is evident is the susan benchmark.

It can be seen that the LRR-only approaches underutilizes one partition for either

case of compiler optimizations, while the RNR+LRR sequence provides better so-

lutions in terms of uniformity of access even though the peak densities are almost

identical for both approaches.

240

Chapter 6

Conclusion

As process technologies continue to evolve, the semiconductor integration den-

sity would achieve even higher levels in the future. This in turn would result in more

complex application systems integration on the SOC platform. The overall system

optimization would be performed with multi-dimensions of considerations including

performance, power consumption, security, design cost, time-to-market, flexible up-

grade and maintenance. Reconfigurable SOC platforms integrated with processors

and customized hardwares would continue expanding the market deployments and

increasingly drawing the attentions from both industries and academia.

In the cross-layer customization methodology, system-level information includ-

ing intra-tasking information such as CDFG, intra-task run-time information such

as task preemption graphs, and hardware information such as the caches utilization

can be exploited all at the same framework. Thus with specific target of optimiza-

tion objective, the global optimization methods can by utilized. The customization

controls are partitioned into different layer and loaded in the platform with the bi-

nary source code. During the run-time, all the customized modules can collaborated

with each other to fine-tune the system components according to the run-time ap-

plication properties and system requirement. The overall system performance and

power efficiency can be significant improved.

241

Multi-Processor SOC design has been widely utilized by industry. Task par-

allelization, data locality and memory bandwidth are all critical considerations of

multiple processor systems design. On the other hand, communication and synchro-

nization among tasks introduce new design constraints. The memory systems and

inter-processor interconnection strongly affect the performance and power overhead,

and dominate the scalability of the whole system. The general purpose mechanisms

for preserving cache consistency and task synchronization have significant redun-

dancy. Application knowledge regarding computation and communication patterns,

and time of synchronization can be efficiently exploited by a customizable commu-

nication architecture so that the associated power and performance overhead are

minimized.

In the future researches, more design space exploration and efficient global op-

timization need to be further investigated. The new era of multi-processor platform

(MPSOC) bring new dimensions of complexity. There are more design challenges in

the MPSOC platforms such as application mapping, inter-task communication and

synchronization, memory hierarchy(cache) coherence management, and interconnec-

tion networks configuration. The cross-layer customization could also be extended to

cross the processor customization by utilizing potential inter-processor information.

242

Bibliography

[1] H. Fleisher and L. I. Maissel, “An Introduction to Array Logic”, IBM J. Res.
Develop., pp. 98–109, March 1975.

[2] R. A. Wood, “A High Density Programmable Logic Array Chip”, IEEE Trans.
on Computers, vol. C-28, n. 9, pp. 602–608, September 1979.

[3] Claus Kuhnel, Avr Risc Microcontroller Handbook, Elsevier, 1998.

[4] Steve Furber, ARM System Architecture, Addison-Wesley Longman, 1998.

[5] IBM, PowerPC Architecture Book.

[6] WindRiver, VxWorks, http://www.windriver.com, Wind River.

[7] Karim Yaghmour, Building Embedded Linux Systems, O’Reilly Media, Inc.,
2003.

[8] Edward L. Lamie, Real-Time Embedded Multithreading : Using ThreadX and
ARM, CMP Books, 2004.

[9] James Y. Wilson and Aspi Havewala, Building Powerful Platforms with Win-
dows CE, Addison-Wesley Professional, 2001.

[10] X. Wang and S. Ziavras, “Parallel LU Factorization of Sparse Matrices on
FPGA-Based Configurable Computing Engines”, 2004.

[11] X. Zhou and P. Petrov, “Energy-efficient address translation for virtual mem-
ory support in low-power and real-time embedded processors”, in International
Conference on Hardware/Software Codesign and System Synthesis, pp. 33–38,
New York, NY, USA, 2005, ACM Press.

[12] X. Zhou and P. Petrov, “Direct Address Translation for Virtual Memory
in Energy-Effcient and Real-Time Embedded Systems”, to appear in ACM
Transactions on Embedded Computing Systems (TECS).

[13] X. Zhou and P. Petrov, “Arithmetic-based address translation for energy-
efficient virtual memory support in low-power, real-time embedded systems”,
in Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 86 –
91, September 2005.

[14] X. Zhou and P. Petrov, “Low Power and Real-Time Translation through
Arithmetic Operations for Virtual Memory Support in Embedded Systems”,
to appear in IET Computers and Digital Techniques.

[15] X. Zhou and P. Petrov, “Low Power Cache Organization Through Selective
Tag Translation for Embedded Processors with Virtual Memory Support”, in
Great Lakes Symposium on VLSI Systems (GLSVLSI), pp. 398 – 403, May
2006.

243

[16] X. Zhou and P. Petrov, “Heterogeneously Tagged Caches for Low-Power Em-
bedded Systems with Virtual Memory Support”, under review after first round
revision in ACM Transactions on Design Automation of Electronic Systems
(TODAES).

[17] X. Zhou and P. Petrov, “The interval page table: virtual memory support
in real-time and memory-constrained embedded systems”, in Conference on
Integrated Circuits and Systems Design (SBCCI), pp. 294–299, 2007.

[18] X. Zhou and P. Petrov, “Rapid and Low-Cost Context-Switch through Em-
bedded Processor Customization for Real-Time and Control Applications”, in
Design Automation Conference (DAC), pp. 352 – 357, July 2006.

[19] X. Zhou and P. Petrov, “Cross-Layer Customization for Rapid and Low-Cost
Task Preemption in Multi-Tasked Embedded Systems”, under review in ACM
Transactions on Embedded Computing Systems (TECS).

[20] X. Zhou and P. Petrov, “Application-Driven Register File Mapping for Rapid
Task Preemption in Real-Time, Multi-Tasked Embedded Systems”, in Work-
shop on Application Specific Processors (WASP), October 2007.

[21] X. Zhou, C. Yu, A. Dash and P. Petrov, “Application-Aware Snoop Filtering
for Low-Power Cache Coherence in Embedded Multiprocessors”, to appear in
ACM Transactions on Design Automation of Electronic Systems (TODAES).

[22] X. Zhou and P. Petrov, “Compiler-Driven Register Re-Assignment for Reg-
ister filer Power-Density and Temperature Reduction”, accepted in Design
Automation Conference (DAC) 2008.

[23] N. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir and N. Vijaykrishnan, “Leakage Current - Moore’s Law Meets
Static Power”, 2003.

[24] T. Pering, T. Burd and R. Brodersen, “Dynamic Voltage Scaling and the
Design of a Low-Power Microprocessor System”, 1998.

[25] T. Simunic, L. Benini, A. Acquavia, P. Glynn and G. De Micheli, “Dynamic
voltage scaling and power management for portable systems”, in 38th DAC,
pp. 524–529, June 2001.

[26] Intel, Intel XeonTM Processor at 1.40 GHz, 1.50 GHz, 1.70 GHz and 2 GHz.

[27] Transmeta, Crusoe LongRun Power Management White Paper.

[28] C. H. Tan and J. Allen, “Minimization of Power in VLSI Circuits Using
Transistor Sizing, Input Ordering, and Statistical Power Estimation”, in Intl
Workshop on Low Power Design, pp. 75–80, April 1994.

244

[29] S. C. Prasad and K. Roy, “Circuit Optimization for Minimization of Power
Consumption Under Delay Constraint”, in Intl Workshop on Low Power De-
sign, page 1520, April 1994.

[30] Anantha P. Chandrakasan, Low-Power Digital CMOS Design, PhD thesis,
University of California at Berkeley, 1994.

[31] P. Landman and J. Rabaey, “Black-box capacitance models for architectural
power analysis”, in International Workshop on Low Power Design, page 65170,
April 1994.

[32] S. Powell et al., “Estimating power dissipation of VLSI signal processing chips:
The PFA technique”, in VLSI Signal Processing, page 250259, 1990.

[33] S. Manne, A. Klauser and D. Grunwald, “Pipeline gating: speculation control
for energy reduction”, in 25th ISCA, pp. 132–141, June 1998.

[34] Ganesh Dasika, “Partitioning Variables across Register Windows to Reduce
Spill Code in a Low-Power Processor Rajiv A. Ravindran, Student Member,
IEEE, Robert M. Senger, Eric D. Marsman,”.

[35] J. Kin, M. Gupta and W. H. Mangione-Smith, “The filter cache: an energy
efficient memory structure”, in 30th MICRO, pp. 184–193, April 2001.

[36] A. Ma, M. Zhang and K. Asanovic, “Way memoization to reduce fetch energy
in instruction caches”, in Workshop on Complexity-Effective Design, 28th
ISCA, June 2001.

[37] H. Lekatsas, J. Henkel and W. Wolf, “Code compression for low power em-
bedded system design”, in Design Automation Conference, pp. 294–299, June
2000.

[38] P. P. Sotiriadis and A. Chandrakasan, “Low power bus coding techniques
considering inter-wire capacitance”, in Custom Integrated Circuits Conference,
pp. 507–510, 2000.

[39] Chinnakrishnan S. Ballapuram, Hsien-Hsin S. Lee and Milos Prvulovic, “Syn-
onymous address compaction for energy reduction in data TLB”, in ISLPED
’05: Proceedings of the 2005 international symposium on Low power electron-
ics and design, pp. 357–362, New York, NY, USA, 2005, ACM Press.

[40] W. Yuan and K. Nahrstedt, “Integration of dynamic voltage scaling and soft
real-time scheduling for open mobile systems”, 2002.

[41] P. Petrov, D. Tracy and A. Orailoglu, “Energy-Efficient Physically Tagged
Caches for Embedded Processors with Virtual Memory”, in Design Automa-
tion Conference, pp. 17–22, June 2005.

[42] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulka-
rni, A. Vandercappelle and P. G. Kjeldsberg, “Data and memory optimization
techniques for embedded systems”, ACM Transactions on Design Automation
of Electronic Systems, vol. 6, n. 2, pp. 149–206, 2001.

245

[43] L. Benini, A. Macii and M. Poncino, “Energy-aware design of embedded mem-
ories: A survey of technologies, architectures, and optimization techniques”,
ACM Transactions on Embedded Computing Systems, vol. 2, n. 1, pp. 5–32,
2003.

[44] P. Denning, “Virtual Memory”, ACM Computing Surveys, vol. 28, n. 1,
pp. 213–216, 1996.

[45] B. Jacob and T. Mudge, “Virtual memory: issues of implementation”, IEEE
Computer, vol. 31, n. 6, pp. 33–43, June 1998.

[46] Intel Corporation, Intel XScale Microarchitecture.

[47] S. B. Furber, ARM System-on-Chip Architecture, Addison-Wesley Publishing
Co, Boston, MA, 2000.

[48] ARM Ltd., ARM920T Technical Reference Manual.

[49] M. Ekman, F. Dahlgren and P. Stenstrom, “TLB and snoop energy-reduction
using virtual caches in low-power chip-microprocessors”, in ISLPED, pp. 243–
246, August 2002.

[50] J. Montanaro et al., “A 160Mhz, 32b 0.5W CMOS RISC Microprocessor”, in
IEEE ISCC, pp. 214–229, February 1996.

[51] T. Juan, T. Lang and J. J. Navarro, “Reducing TLB power requirements”, in
ISLPED, pp. 196–201, August 1997.

[52] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju and G. Chen,
“Generating Physical Addresses Directly for Saving Instruction TLB Energy”,
International Symposium on Microarchitecture (MICRO), page 185, 2002.

[53] X. Qiu and M. Dubois, “Towards virtually-addressed memory hierarchies”, in
HPCA, pp. 51–62, January 2001.

[54] D. Fan, Z. Tang, H. Huang and G. Gao, “An energy efficient TLB design
methodology”, in International Symposium on Low Power Electronics and
Design (ISLPED), pp. 351–356, August 2005.

[55] C. Ballapuram, H. Lee and M. Prvulovic, “Synonymous address compaction
for energy reduction in data TLB”, in International Symposium on Low Power
Electronics and Design (ISLPED), pp. 357–362, August 2005.

[56] H. Lee and C. Ballapuram, “Energy efficient D-TLB and data cache using
semantic-aware multilateral partitioning”, in International Symposium on Low
Power Electronics and Design (ISLPED), pp. 306–311, August 2003.

[57] C. Zhang, “Balanced Cache: Reducing Conflict Misses of Direct-Mapped
Caches”, in International Symposium on Computer Architecture (ISCA), pp.
155–166, June 2006.

246

[58] T. Givargis, “Zero Cost Indexing for Improved Embedded Processor Cache
Performance”, ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 11, n. 1, pp. 3–25, January 2006.

[59] J. H. Lee, J. S. Lee, S. Jeong and S. Kim, “A banked-promotion TLB for high
performance and low power”, in ICCD, pp. 118–123, September 2001.

[60] M. Kandemir, I. Kadayif and G. Chen, “Compiler-Directed Code Restructur-
ing for Reducing Data TLB Energy”, in International Conference on Hard-
ware/Software Codedesign and System Synthesis, CODES+ISSS, pp. 98–103,
September 2004.

[61] M. Simpson, B. Middha and R. Barua, “Segment protection for embedded
systems using run-time checks”, in International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), pp. 66–77, 2005.

[62] B. Calder, C. Krintz, S. John and T. Austin, “Cache-conscious Data Place-
ment”, in Proceedings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 139–149, Oc-
tober 1998.

[63] L. Benini, F. Menichelli and M. Olivieri, “A Class of Code Compression
Schemes for Reducing Power Consumption in Embedded Microprocessor Sys-
tems”, IEEE Transactions on Computers, vol. 53, n. 4, pp. 467–482, 2004.

[64] T. M. Chilimbi, M. D. Hill and J. R. Larus, “Cache-conscious structure lay-
out”, in PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, pp. 1–12, 1999.

[65] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor and H. De Man, “Cache Con-
scious Data Layout Organization for Conflict Miss Reduction in Embedded
Multimedia Applications”, IEEE Transactions on Computers, vol. 54, n. 1,
pp. 76–81, 2005.

[66] J. Kim, S. Min, S. Jeon, B. Ahn, D. Jeong and C. Kim, “U-cache: a cost-
effective solution to synonym problem”, in HPCA, pp. 243–252, January 1995.

[67] P. Petrov, D. Tracy and A. Orailoglu, “Energy-Efficient Physically Tagged
Caches for Embedded Processors with Virtual Memory”, in DAC, pp. 17–22,
June 2005.

[68] I. Kadayif, P. Nath, M. Kandemir and A. Sivasubramaniam, “Compiler-
directed physical address generation for reducing dTLB power”, in Inter-
national Symposium on Performance Analysis of Systems and Software (IS-
PASS), pp. 161– 168, 2004.

[69] B. Middha, M. Simpson and R. Barua, “MTSS: multi task stack sharing for
embedded systems”, in CASES, pp. 191–201, New York, NY, USA, 2005.

247

[70] H. Hansson, L. Lawson, O. Bridal, C. Eriksson, S. Larsson, H. Lon and
M. Stromberg, “BASEMENT: an architecture and methodology for dis-
tributed automotive real-time systems”, IEEE Transactions on Computers,
vol. 46, n. 9, pp. 1016–1027, September 1997.

[71] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer and D. Culler, “TinyOS: An operating
system for wireless sensor networks”, Ambient Intelligence, Springer-Verlag,
2005.

[72] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruen-
wald, A. Torgerson and R. Han, “MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms”, MONET, Special
Issue on Wireless Sensor Networks, vol. 10, n. 4, pp. 563–579, Auguest 2005.

[73] S. Shivshankar, S. Vangara and A. Dean, “Balancing Register Pressure and
Context-Switching Delays in ASTI Systems”, in Proceedings of the 2005 Inter-
national Conference on Compilers, Architectures and Synthesis for Embedded
Systems, pp. 286–294, September 2005.

[74] C. Albrecht, R. Hagenau, and A. Doring, “Cooperative software multithread-
ing to enhance utilization of embedded processors for network applications”,
in 12th Euromicro Workshop on Parallel, Distributed and Network-Based Pro-
cessing (PDP 2004), pp. 300–307, 2004.

[75] J. Nieh and M. S. Lam, “A SMART scheduler for multimedia applications”,
ACM Trans. Comput. Syst., vol. 21, n. 2, pp. 117–163, 2003.

[76] A. Chandra, M. Adler, P. Goyal and P. Shenoy, “Surplus Fair Scheduling:
A Proportional-Share CPU Scheduling Algorithm for Symmetric Multiproces-
sors”, in Symposium on Operating System Design and Implementation, pp.
45–58, October 2000.

[77] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Homewood, “Lx: A
Technology Platform for Customizable VLIW Embedded Processing”, in In-
ternational Symposium on Computer architecture (ISCA), June 2000.

[78] J. Hill and D. Culler, “A wireless embedded sensor architecture for system-
level optimization”, Technical report, U.C. Berkeley, 2001.

[79] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker and P. Rous-
sel, “The Microarchitecture of the Pentium 4 Processor”, Intel Technology
Journal, Q1 2001.

[80] R. Kessler, “The Alpha 21264 Microprocessor”, IEEE Micro, vol. 19, n. 1,
pp. 24–36, March/April 1999.

[81] D. Oehmke, N. Binkert, T. Mudge and S. Reinhardt, “How to Fake 1000
Registers”, in MICRO, pp. 7–18, 2005.

248

[82] T. Baker, J. Snyder and D. Whalley, “Fast Context Switches: Compiler and
Architectural Support for Preemptive Scheduling”, in Microprocessors and
Microsystems, pp. 35–42, September 1995.

[83] J. Redstone, S. Eggers, and H. Levy, “Mini-threads: Increasing TLP on
small-scale SMT processors”, in HPCA ’03: Proceedings of the The Ninth
International Symposium on High-Performance Computer Architecture, pp.
19–30, 2003.

[84] V. Barthelmann, “Inter-Task Register-Allocation for Static Operating Sys-
tems”, in LCTES-SCOPES, June 2002.

[85] A. G. Dean, “Software Thread Integration and Synthesis for Real-Time Appli-
cations”, in Conference on Design, Automation and Test in Europe (DATE),
pp. 68–69, 2005.

[86] A. G. Dean, Software thread integration for hardware to software migration,
PhD thesis, 2000.

[87] M. Merten, A. Trick and R. Barnes, “An Architectural Framework for Runtime
Optimization”, IEEE Transactions on Computers, vol. 50, n. 6, pp. 567–589,
2001.

[88] T. Sherwood, E. Perelman, G. Hamerly S. Sair and B. Calder, “Discover-
ing and exploiting program phases”, IEEE Micro, vol. 23, n. 6, pp. 84–93,
November-December 2003.

[89] M. Kandemir, J. Ramanujam, M.J. Irwin, N. Vijaykrishnan, I. Kadayif and
A. Parikh, “A compiler-based approach for dynamically managing scratch-
pad memories in embedded systems”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, n. 2, pp. 243– 260, February
2004.

[90] M. J. Absar and F. Catthoor, “Compiler-Based Approach for Exploiting
Scratch-Pad in Presence of Irregular Array Access”, in DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe, pp. 1162–1167,
2005.

[91] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor and J. M. Men-
dias, “An integrated hardware/software approach for run-time scratchpad
management”, in Design Automation Conference (DAC), pp. 238–243, 2004.

[92] M. Verma, L. Wehmeyer and P. Marwedel, “Dynamic overlay of scratchpad
memory for energy minimization”, in CODES+ISSS, pp. 104–109, September
2004.

[93] S. Udayakumaran and R. Barua, “Compiler-Decided Dynamic Memory Al-
location for Scratch-Pad Based Embedded Systems”, in ACM International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
November 2003.

249

[94] R. Banakr, S. Steinke, B. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad
memory: design alternative for cache on-chip memory in embedded systems”,
in CODES, pp. 73–78, May 2002.

[95] R. Heckmann, M. Langenbach, S. Thesing and R. Wilhelm, “The influence
of processor architecture on the design and the results of WCET tools”, Pro-
ceedings of the IEEE, vol. 91, n. 7, pp. 1038– 1054, July 2003.

[96] S. Baase and A.V. Gelder, Computer Algorithms, Addison-Wesley, Boston,
MA, 2000.

[97] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons Inc, 1990.

[98] M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh, A. Sangiovanni-Vincentelli and
L. Lavagno, “Hardware-Software Codesign of Embedded Systems”, IEEE
Micro, vol. 14, n. 4, pp. 26–36, 1994.

[99] R. Kirner and P. Puschner, “Transformation of Path Information for WCET
Analysis during Compilation”, in Euromicro Conference on Real-Time Sys-
tems (ECRTS), page 29, 2001.

[100] K. Flautner, N. Kim, S. Martin, D. Blaauw and T. Mudge, “Drowsy caches:
simple techniques for reducing leakage power”, in International Symposium
on Computer Architecture (ISCA), pp. 148–157, May 2002.

[101] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin and M. Kandemir, “Exploit-
ing Program Hotspots and Code Sequentiality for Instruction Cache Leakage
Management”, in International Symposium on Low Power Electronics and
Design (ISLPED), pp. 402–407, August 2003.

[102] P. Shivakumar and N. Jouppi, “CACTI 3.0: An Integrated Cache Timing,
Power and Area Model”, Technical report, Western Research Lab, 2001.

[103] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: A Tool
for evaluating and synthesizing multimedia and communications systems”, in
International Symposium on Microarchitecture (MICRO), pp. 330–335, De-
cember 1997.

[104] M.R Guthaus, J. S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge and R.B.
Brown, “MiBench: A free, commercially representative embedded benchmark
suite”, in WWC-4: Workshop on Workload Characterization, pp. 3–14, De-
cember 2001.

[105] T. Austin, E. Larson and D. Ernst, “SimpleScalar: An infrastructure for com-
puter system modeling”, IEEE Computer, vol. 35, n. 2, pp. 59–67, February
2002.

[106] V. Stojanovic and V.G. Oklobdzija, “Comparative analysis of master-slave
latches and flip-flops for high-performance and low-power systems”, IEEE
Journal of Solid-State Circuits, vol. 34, n. 4, pp. 536 – 548, April 1999.

250

[107] D. Woo, M. Ghosh, E. Ozer, S. Biles and H.-H. Lee, “Reducing Energy
of Virtual Cache Synonym Lookup using Bloom Filters”, in International
Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES), pp. 179–189, October 2006.

[108] M. Cekleov and M. Dubois, “Virtual-address caches. Part 1: problems and
solutions in uniprocessors”, IEEE Micro, vol. 17, n. 5, pp. 64–71, September
1997.

[109] D. Tarjan, S. Thoziyoor and N. Jouppi, “CACTI 4.0: An Integrated Cache
Timing, Power and Area Model”, Technical report, HP Laboratories Palo
Alto, June 2006.

[110] M. Vratonjic, B. Zeydel and V. Oklobdzija, “Low- and Ultra Low-Power
Arithmetic Units: Design and Comparison”, in International Conference on
Computer Design (ICCD), pp. 249–252, 2005.

[111] Y. Tan and III V. J. Mooney, “WCRT analysis for a uniprocessor with a
unified prioritized cache”, in Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), pp. 175–182, 2005.

[112] D. C. Sastry and M. Demirci, “The QNX Operating System”, Computer,
vol. 28, n. 11, pp. 75–77, 1995.

[113] G. Reinman and N. Jouppi, “An Integrated Cache Timing and Power Model”,
Technical report, Western Research Lab, 1999.

[114] C. Nagendra, M.J. Irwin and R.M. Owens, “Area-time-power tradeoffs in
parallel adders”, IEEE Transactions on Analog and Digital Signal Processing,
vol. 43, n. 10, pp. 689 – 702, October 1996.

[115] Alan Jay Smith and Rafael H. Saavedra, “Measuring Cache and TLB Per-
formance and Their Effect on Benchmark Runtimes”, IEEE Trans. Comput.,
vol. 44, n. 10, pp. 1223–1235, 1995.

[116] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi and S. Reinhardt, “The
M5 Simulator: Modeling Networked Systems”, IEEE Micro, vol. 26, n. 4,
pp. 52–60, 2006.

[117] G. Byrd and M. Holliday, “Multithreaded processor architectures”, IEEE
Spectrum, August 1995.

[118] D. Bovet and M. Cesati, Understanding the Linux Kernel (2nd Edition),
OReilly, 2002.

[119] J. Fisher, P. Faraboschi and C. Young, Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers and Tools, Morgan Kaufmann, 2005.

[120] A. Aho, R. Sethi and J. Ullman, Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1986.

251

[121] R. Mahajan, “Thermal management of CPUs: A perspective on trends, needs
and opportunities”, in Keynote presentation, THERMINIC-8, October 2002.

[122] L.T. Yeh and R. Chu, Thermal management of microelectronic equipment,
American Society of Mechanical Engineers, 2001.

[123] S.Gunther, F. Binns, D.M. Carmean and J.C. Hall, “Managing the impact of
increasing microprocessor power consumption”, in Intel Technology Journal,
2001.

[124] Y.Zhang, “HotLeakage: A temperature-aware model of subthreshold and gate
leakage for architects”, Technical report, CS-2003-05, University of Virginia,
2003.

[125] J. Srinivasan and S. Adve, “Predictive dynamic thermal management for
multimedia applications”, in ICS, pp. 109–120, 2003.

[126] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan and
D. Tarjan, “Temperature-aware computer systems: Opportunities and chal-
lenges”, IEEE Micro, vol. 23, n. 6, pp. 52–61, Nov.-Dec. 2003.

[127] D. Brooks and M. Martonosi, “Dynamic Thermal Management for
High-Performance Microprocessors”, in International Symposium on High-
Performance Computer Architecture (HPCA), pp. 171–182, 2001.

[128] Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin, Rita Chen and De-
bashree Ghosh, “Techniques for low energy software”, in International Sym-
posium on Low Power Electronics and Design (ISLPED), pp. 72–75, 1997.

[129] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, “The design and use
of simplepower: a cycle-accurate energy estimation tool”, in Design Automa-
tion Conference (DAC), pp. 340–345, June 2000.

[130] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, W. Ye and I. Demirkiran, “Regis-
ter relabeling: A post compilation technique for energy reduction.”, in Work-
shop on Compilers and Operating Systems for Low Power (COLP), Philadel-
phie, PA, USA, October 2000.

[131] J.C. Ku, S. Ozdemir, G. Memik and Y. Ismail, “Thermal Management of On-
Chip Caches Through Power Density Minimization”, in MICRO, pp. 283–293,
2005.

[132] D. Atienza, P. Raghavan, J. Ayala, G. De Micheli, F. Catthoor, D. Verkest
and M. Lopez-Vallejo, “Compiler-Driven Leakage Energy Reduction in Banked
Register Files”, Lecture Notes in Computer Science, vol. 4148, n. 1, pp. 107–
116, September 2006.

[133] S.H.K. Narayanan, M. Kandemir and O. Ozturk, “Compiler-Directed Power
Density Reduction in NoC-Based Multi-Core Designs”, in ISQED, pp. 570–
575, 2006.

252

[134] J. Donald and M. Martonosi, “Techniques for Multicore Thermal Manage-
ment: Classification and New Exploration”, in International Symposium on
Computer Architecture (ISCA), pp. 78–88, 2006.

[135] S. Heo, K. Barr and K.Asanovic, “Reducing power density through activity
migration”, in ISLPED, pp. 217–222, August 2003.

[136] K. Patel, W. Lee and M. Pedram, “Active bank switching for temperature
control of the register file in a microprocessor”, in Great Lakes Symposium on
VLSI Systems (GLSVLSI), pp. 231–234, 2007.

[137] Peng Li, Yangdong Deng and Lawrence T. Pileggi, “Temperature-Dependent
Optimization of Cache Leakage Power Dissipation”, in International Confer-
ence on Computer Design (ICCD), pp. 7–12, 2005.

[138] R. Mukherjee and S. Memik, “Systematic temperature sensor allocation and
placement for microprocessors”, in Design Automation Conference (DAC),
pp. 542–547, 2006.

[139] E. Kursun, C. Cher, A. Buyuktosunoglu and P. Bose, “Investigating the Ef-
fects of Task Scheduling on Thermal Behavior”, in Workshop on Temperature-
Aware Computer Systems (TACS), June 2006.

[140] L. Babel, H. Kellerer and V. Kotov, “The k-partitioning problem”, Mathe-
matical Methods of Operations Research, vol. 47, n. 1, pp. 59–82, Feb. 1998.

[141] E. G. Coffman, Computer and Job-shop Scheduling Theory, John Wiley &
Sons Inc, 1976.

253

