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Abstra
tIn this paper we 
onsider the problem of moving a large amount of data from several di�erent hosts to asingle destination in a wide-area network. Often, due to 
ongestion 
onditions, the 
hoi
e of paths by thenetwork may be poor. By 
hoosing an indire
t route at the appli
ation level, we may be able to obtainsubstantially higher performan
e in moving data through the network. We formulate this data transfer(
olle
tion) problem as a network 
ow problem. We show that by using a min-
ost 
ow algorithm on anappropriately de�ned time-expanded (network) graph, we 
an obtain a data transfer s
hedule. We show thatsu
h s
hedules 
an be an order of magnitude better than s
hedules obtained by transferring data dire
tlyfrom ea
h host to the destination. In fa
t, this holds, even though we make no assumptions about knowledgeof the topology of the network or the 
apa
ity available on individual links of the network. We simply useend-to-end type information and 
ompute a s
hedule for transferring the data. Finally, we also study theshort
omings of this approa
h in terms of the gap between the network 
ow formulation and data transfersin a wide-area network.1 Introdu
tionLarge-s
ale data 
olle
tion problems or uploads 
orrespond to a set of important appli
ations. Theseappli
ations in
lude online submission of in
ome tax forms, submission of papers to 
onferen
es,submission of proposals to granting agen
ies, Internet-based storage, and many more. In the past,mu
h resear
h has fo
used on downloads or data dissemination appli
ations; in 
ontrast, large-s
alewide-area uploads have largely been negle
ted. However, upload appli
ations are likely to be
omesigni�
ant 
ontributors to Internet traÆ
 in the near future, as digital government programs as wellas other large s
ale data transfer appli
ations take advantage of the proliferation of the Internetin so
iety and industry. For instan
e, 
onsider the online submission of in
ome tax forms. USCongress has mandated that 80% of tax returns to be �led ele
troni
ally by 2007. With (on theorder of) 100 million individual tax returns �led in US yearly, where ea
h return is on the order of100 KBytes [17℄, s
alability issues are a major 
on
ern.Re
ently, a s
alable and se
ure appli
ation-level ar
hite
ture for wide-area upload appli
ationswas proposed [1℄. This upload ar
hite
ture is termed Bistro, and hosts whi
h parti
ipate in thisar
hite
ture are termed bistros. Given a large number of 
lients that need to upload their data bya given deadline to a given destination server, Bistro breaks the upload pro
ess into three steps:(a) a timestamp step whi
h ensures that the data is submitted on-time without having to a
tuallytransfer the data, (b) a data transfer step, where 
lients push data to intermediate hosts (bistros),whi
h ensures fast response time for the 
lients, and (
) a data 
olle
tion step, where a destinationserver (termed destination bistro) pulls data from bistros, i.e., the destination server determineshow and when the data is transferred from the bistros. We note that during step (b) re
eipts
orresponding to 
lients' transfers are sent by the (intermediate) bistros to the destination bistro;hen
e the destination bistro knows where to �nd all the data whi
h needs to be 
olle
ted duringstep (
). (A more detailed des
ription of Bistro is in
luded in the Appendix for 
ompleteness).Performan
e of the data 
olle
tion step is the fo
us of this paper.1



Spe
i�
ally, we fo
us on the 
olle
tion of reasonably large amounts of data, su
h as in the onlinetax submission example given above whi
h 
an easily result in approximately 10 Terabytes of data
orresponding to individual tax forms alone (business tax returns 
an be signi�
antly larger). Insu
h appli
ations, long transfer times between one or more of the hosts (holding this data) andthe destination server 
an signi�
antly prolong the amount of time it takes to 
omplete the data
olle
tion pro
ess. Su
h long transfer times 
an be the result of poor 
onne
tivity between a pair ofhosts, or it 
an be due to wide-area network 
ongestion 
onditions, e.g., due to having to transferdata over one or more (so-
alled) peering points whose 
ongestion is often 
ited as 
ause of delayin wide-area data transfers [21℄. Given the 
urrent state of IP routing, 
ongestion 
onditions maynot ne
essarily result in a 
hange of routes between a pair of hosts, even if alternate routes exist.Thus, we 
onsider appli
ation-level approa
hes to improving performan
e of large-s
ale data
olle
tion. We do this in the 
ontext of the Bistro upload framework. However, one 
ould 
on-sider other appli
ations where su
h improvements in data transfer times is an important problem.One example is high-performan
e 
omputing appli
ations where large amounts of data need to betransferred from one or more data repositories to one or more destinations, where 
omputation onthat data is performed [9℄. Another example is data mining appli
ations where large amounts ofdata may need to be transferred to a parti
ular server for analysis purposes.Consequently, in this paper we 
onsider large-s
ale data 
olle
tion from a set of sour
e hosts(bistros) to the destination host (destination bistro) where our data 
olle
tion problem 
an be statedas follows.Givena set of sour
e hosts, the amount of data to be 
olle
ted from ea
h host, anda 
ommon destination host for the dataour goal is to
onstru
t a data transfer s
hedule whi
h spe
i�es on whi
h path, in whatorder, and at what time should ea
h \pie
e" of data be transferred to thedestination hostwhere the obje
tive is tominimize the time it takes to 
olle
t all data from the sour
e hosts, usuallyreferred to as makespan.The data 
olle
tion problem is a non-trivial one be
ause the issue is not only to avoid 
ongestedlink(s), but to devise a 
oordinated transfer s
hedule whi
h would a�ord maximum possible uti-lization of available network resour
es between multiple sour
es and the destination. We formulatethis notion more formally in the remainder of the paper.We note that the 
hoi
e of the makespan metri
 is di
tated by the appli
ations stated at thebeginning of this se
tion, i.e., there is no 
lients in the data 
olle
tion problem and hen
e metri
s2



that are 
on
erned with intera
tive response time (su
h as mean transfer times) are not of as mu
hinterest here. Sin
e the above mentioned appli
ations usually pro
ess the 
olle
ted data, the totaltime it takes to 
olle
t it (or some large fra
tion of it) is of greater signi�
an
e. We also note thatin our 
ase there is no need for a distributed algorithm for the above stated problem sin
e Bistroemploys a server pull approa
h, with all information needed to solve the data 
olle
tion problemavailable at the destination server. Also not all hosts parti
ipating in the data transfer need to besour
es of data; this does not 
hange the formulation of our problem sin
e su
h hosts 
an simplybe treated as sour
es with zero amounts of data to send to the destination. In the remainder of thepaper we use the terms hosts, bistros, and nodes inter
hangeably.There are, of 
ourse, simple approa
hes to solving the data 
olle
tion problem; for instan
e:� transfer the data from all sour
e hosts to the destination host in parallel, or� transfer the data from the sour
e hosts to the destination host sequentially in some order, or� transfer the data in parallel from a 
onstant number of sour
e hosts at a time and possiblyduring a predetermined time slot,as well as other variants. These methods are all \dire
t", in the sense that they send data dire
tlyfrom the sour
e hosts to the destination host. In this paper, we show that \indire
t" methodswhi
h re-route data through other hosts 
an result in a signi�
ant performan
e improvement as
ompared to \dire
t" methods (refer to Se
tion 3 for details of dire
t methods used for 
ompari-son purposes). Consequently, our fo
us in this work is on development of algorithms for indire
t
oordinated transfer methods for the data 
olle
tion problem.Sin
e we are fo
using on appli
ation-level solutions, a path (in the above stated data 
olle
tionproblem) is de�ned as a sequen
e of hosts, where the �rst host on the path is the sour
e of the data,intermediate hosts are other bistros in the system, and the last host on the path is the destinationhost. The transfer of data between any pair of hosts is performed over TCP/IP, i.e., the path thedata takes between any pair of hosts is determined by IP routing.Given the above stated problem, additional possible 
onstraints in
lude (a) ability to split
hunks of data into smaller pie
es, (b) ability to merge 
hunks of data into larger pie
es, and (
)storage 
onstraints at the hosts. To fo
us the dis
ussion, we 
onsider the following 
onstraints. Forea
h 
hunk of data we allow (a) and (b) to be performed only by the sour
e host of that data andthe destination host. We also do not pla
e storage 
onstraints on hosts but rather explore storagerequirements as one of the performan
e metri
s in evaluation of indire
t methods (refer to Se
tion7). We note that a more general problem where there are multiple destination hosts is also ofsigni�
ant importan
e, e.g., when the same set of bistros is simultaneously used for multiple uploadappli
ations or events. For the experiments in this paper, we only 
onsider the single destination
ase, for ease of exposition. However, by employing multi
ommodity 
ow algorithms [2℄, rather3



than a single 
ommodity min-
ost 
ow algorithm (refer to Se
tion 5) we 
an solve this problem aswell. In other words, there is nothing about our approa
h that would fail for the 
ase of multipledestinations for di�erent pie
es of data.The 
ontributions of this work are as follows. We propose novel algorithms, whi
h we term\indire
t" methods in 
ontrast to the dire
t methods mentioned above, for the large-s
ale data
olle
tion problem de�ned above, intended for an IP-type network. The main bene�t of thesemethods is appli
ation-level 
oordinated re-routing of large-s
ale data transfers around 
ongestionspots or poor 
onne
tivity between a sour
e of data and its �nal destination. We evaluate theperforman
e of these algorithms in a simulation setting (using ns2 [15℄). We show that the indire
tmethods perform signi�
antly better than dire
t methods. Spe
i�
ally we show one to two orders ofmagnitude improvement under high 
ongestion 
onditions (without losses in performan
e under no
ongestion 
onditions). These improvements are a
hieved under low storage requirement overheadsand without signi�
ant detrimental e�e
ts on other network traÆ
 (refer to Se
tion 7 for details).We note that it is not the purpose of this work to propose novel te
hniques for identifying
ongestion 
onditions or determining available 
apa
ity or bottlene
k link 
apa
ity. Rather, ourgoal is to propose algorithms for 
onstru
ting data transfer s
hedules (as de�ned above) under theassumption that su
h te
hniques are (or will be
ome) available (e.g., as in [4, 7℄) and show thatsigni�
ant bene�ts 
an be gained from su
h algorithms.The remainder of the paper is organized as follows. In Se
tion 2 we brie
y survey relatedwork. Se
tion 3 gives several simple dire
t methods for the data 
olle
tion problem as des
ribedabove; these are used for 
omparison purposes. Se
tion 4 gives an overview of our approa
h for
onstru
ting indire
t methods for solving this problem, and Se
tions 5 and 6 give the details of thisapproa
h. In Se
tion 7 we give a quantitative evaluation of our approa
h to the data 
olle
tionproblem. Se
tion 8 gives 
on
luding remarks. (We also in
lude an Appendix at the end of thepaper, whi
h brie
y des
ribes the Bistro ar
hite
ture. We note that it is in
luded for reviewers'bene�t only .)2 Related WorkAs stated in Se
tion 1, in this paper we fo
us on algorithms for large-s
ale data transfers overwide-area networks, in the 
ontext of upload appli
ations. In [1℄ an appli
ation-level frameworkfor large-s
ale upload appli
ations, termed Bistro, is proposed. To the best of our knowledge noother large-s
ale upload ar
hite
ture exists to date. Hen
e, we do this work in the 
ontext ofBistro, although as noted above, other types of appli
ations 
an bene�t as well. Spe
i�
ally, wefo
us on the performan
e of the data 
olle
tion step as des
ribed in Se
tion 1 where our goal is to
onstru
t algorithms for 
oordinated data transfers from multiple sour
e hosts to the destinationhost. Moreover, we fo
us on methods whi
h re-route data, in a 
oordinated fashion, through otherhosts at the appli
ation-level. Hen
e, below we brie
y survey works whi
h 
onsider appli
ation-level4



re-routing issues.Re-routing at the appli
ation level has been used to provide better end-to-end performan
e oreÆ
ient fault dete
tion and re
overy for wide-area appli
ations. For instan
e, in [27℄ the authorsperform a measurement-based study of 
omparing end-to-end quality of default routing vs alternatepath routing (using metri
s su
h as round-trip time, loss rate, and bandwidth). Their results showthat in 30% to 80% of the 
ases 
onsidered, there is an alternate path with signi�
antly superiorquality. This work provides eviden
e for existen
e of alternate paths whi
h 
an outperform defaultInternet paths.Other frameworks or ar
hite
tures whi
h 
onsider re-routing issues in
lude Detour [26℄ and RON[3℄. The Detour framework [26℄ is an informed transport proto
ol. It uses sharing of 
ongestioninformation between hosts to provide a better \detour path" (via another node) for appli
ationsin order to improve the performan
e of ea
h 
ow and the overall eÆ
ien
y of the network. Detourrouters are inter
onne
ted by using tunnels (i.e., a virtual point-to-point link); hen
e Detour isan in-kernel IP-in-IP pa
ket en
apsulation and routing ar
hite
ture designed to support alternate-path routing. This work also provides eviden
e of potential long-term bene�ts of \detouring"pa
kets via another node by 
omparing the long-term average properties of detoured paths againstInternet-
hosen paths.The Resilient Overlay Network (RON) [3℄ is an ar
hite
ture whi
h allows distributed Internetappli
ations to dete
t failure of paths (and periods of degraded performan
e) and re
over fairlyqui
kly by routing data through other (than sour
e and destination) hosts. It also provides aframework for the implementation of expressive routing poli
ies.We note that the above mentioned re-routing works, for the most part, fo
us on ar
hite
tures,proto
ols, and me
hanisms for a

omplishing appli
ation-level re-routing through the use of overlaynetworks. These works also provide eviden
e that su
h approa
hes 
an result in signi�
ant perfor-man
e bene�ts. In this work, we 
onsider a similar environment (i.e., appli
ation-level te
hniquesin an IP-type wide-area network). However, in 
ontrast we fo
us on algorithms for large-s
aletransfers when re-routing opportunities exist. Another important distin
tion here is that the abovementioned works do not 
onsider 
oordination of multiple data transfers. That is, all data transfersare treated independently, and hen
e ea
h takes the \best" appli
ation-level route available. In
ontrast, our work fo
uses on 
oordination of multiple data transfers destined for the same host.(As noted earlier, our approa
h 
an also be extended to multiple destination hosts.) As pointed outin Se
tion 1, this additional 
onsideration, whi
h 
ontributes to the diÆ
ulty of our data 
olle
tionproblem, is a result of the appli
ations motivating this work.
5



3 Dire
t MethodsIn this se
tion we give the details of the dire
t methods used for 
omparison purposes (as des
ribedin Se
tion 1). Spe
i�
ally, we 
onsider the following dire
t methods:� All-at-on
e. Data from all sour
e hosts is transferred simultaneously to the destination server.This 
ontinues until all transfers are 
omplete.� One-by-one. The destination server randomly sele
ts one sour
e host from a set of hosts whi
hstill have data to send; all data from that sour
e host is then transferred to the destinationserver. On
e this transfer 
ompletes, the destination server then randomly 
hooses anothersour
e host for transferring its data. This 
ontinues until all sour
e hosts have their datatransferred to the destination server.� Spread-in-time-GT . The destination server 
hooses values for two parameters: (1) group size(G) and (2) time slot length (T ). At the beginning of ea
h time slot, the destination serverrandomly sele
ts one group (of size G) and then the data from all sour
e hosts in that groupis transferred to the destination server; these transfers 
ontinue beyond the time slot lengthT , if ne
essary. At the end of a time slot (of length T ), the destination server sele
ts anothergroup of size G and the transfer of data from that group begins regardless of whether the datatransfers from the previous time slot have 
ompleted or not. (That is, data transfers whi
hstarted during di�erent time slots might overlap in time.) This 
ontinues until all sour
ehosts have 
ompleted their data transfer.� Con
urrent-G. The destination server 
hooses a group size (G). It then randomly sele
ts G ofthe sour
e hosts and begins transfer of data from these hosts. The destination server alwaysmaintains a 
onstant number, G, of hosts transferring data, i.e., as soon as one of these hosts
ompletes its transfer, the destination server randomly sele
ts another sour
e host and itsdata transfer begins. This 
ontinues until the last sour
e host 
ompletes its data transfer.Clearly, there are a number of other dire
t methods that 
ould be 
onstru
ted as well as variationson the above ones. However, this set of dire
t methods is reasonably representative for us to make
omparisons to indire
t methods (refer to Se
tion 7).We note, that ea
h of the above methods has its own short
omings. For instan
e, if the bot-tlene
k link is not shared by all 
onne
tions, then dire
t methods whi
h explore some form ofparallelism in data transfer (su
h as the all-at-on
e method) might be able to better utilize ex-isting resour
es and hen
e perform better than those that do not exploit parallelism (su
h as theone-by-one method). On the other hand, methods su
h as all-at-on
e might result in worse e�e
tson (perhaps already poor) 
ongestion 
onditions. Methods su
h as 
on
urrent and spread-in-timerequire proper 
hoi
es of parameters and their performan
e is sensitive to these 
hoi
es.Regardless of the spe
i�
s of a dire
t method, due to their dire
t nature, none of them areable to take advantage of network resour
es whi
h are available on routes to the destination server6



other than the \dire
t" ones (i.e., those di
tated by IP). Taking advantage of su
h resour
es 
anbe espe
ially important when the \dire
t" routes to the destination server are poor or 
ongested.Indire
t methods proposed in this paper are able to take advantage of su
h resour
es and thereforeresult in signi�
antly better performan
e, as illustrated in Se
tion 7.4 Overview of Our Approa
hAn overview of our approa
h to the problem stated in Se
tion 1 and the subsequent evaluation ofthat approa
h is as follows:� Step 1. Constru
t a graph representation of the hosts and the 
orresponding 
ommuni
a-tion network. This in
ludes spe
i�
ation of nodes, 
onne
tivity between nodes, (estimated)
apa
ities of the 
orresponding 
onne
tions, and so on.� Step 2. Generate a time-expanded version of the graph 
onstru
ted in Step 1.� Step 3. Determine a data transfer s
hedule on the time-expanded graph by optimizing a givenobje
tive fun
tion under the appropriate set of 
onstraints. In this paper, we fo
us on theobje
tive of minimizing the total amount of time it takes to 
olle
t the data from the sour
ehosts, i.e., makespan, and we pla
e some 
onstraints on splitting and merging of data 
hunks.� Step 4. Convert the solution produ
ed in Step 3 under the graph theoreti
 formulation to adata transfer s
hedule for a 
ommuni
ation network, taking into 
onsideration the networkproto
ols to be used for the transfers (e.g., TCP/IP). As stated in Se
tion 1, this s
hedulemust spe
ify on what path and in what order should ea
h \pie
e" of data be transferred tothe destination host, where a path is de�ned as a sequen
e of hosts, with the �rst host on thepath being the sour
e of the data, intermediate hosts on the path being other hosts, and thelast host on the path being the destination host.� Step 5. Exe
ute the data transfer s
hedule produ
ed in Step 4 using ns2 [15℄ in order toevaluate the \goodness" of this data transfer s
hedule (i.e., this step is performed to evaluateour approa
h).The details of Steps 1 through 3 are given in Se
tion 5. The details of Step 4 are given in Se
tion6. Lastly, the details of Step 5 (as well as determination of parameters needed in Step 1) and the
orresponding performan
e evaluation results are given in Se
tion 7.5 Graph Theoreti
 Formulation of the Data Colle
tion ProblemWe assume that the network topology is spe
i�ed by a graph GN = (VN ; EN ). There are two kindsof nodes in the network, namely end-hosts and routers. The sour
es S1; : : : Sk and destination Dare a subset of the end-hosts. There is a 
apa
ity fun
tion 
 that spe
i�es the 
apa
ity on the linksin the network. In addition, ba
kground traÆ
 exists, whi
h e�e
ts the available 
apa
ity on thelinks. 7



In a wide-area network su
h as the Internet, we may not be aware of the exa
t topology ofthe entire network or the exa
t 
apa
ity fun
tion 
. We will model the network by an overlaygraph 
onsisting of the set of sour
e hosts and the destination host. (For ease of presentationbelow we dis
uss our methodology in the 
ontext of sour
e hosts and destination host; however,any end-host 
an be part of the overlay graph, if it is parti
ipating in the Bistro ar
hite
ture. Inthat 
ase, the node 
orresponding to this host would simply have zero amount of data to send inthe exposition below.) We refer to the overlay graph as GH = (VH ; EH). The overlay graph is adire
ted (
omplete) graph where VH = fS1; : : : ; Skg [ fDg. (See Figure 1 for an example wherewe do not show outgoing edges from D sin
e they are never used.) The 
apa
ity fun
tion modelsavailable 
apa
ity 
0 on ea
h edge and is assigned as the bandwidth that is available for data transferbetween end-hosts. (This takes into a

ount the ba
kground traÆ
, but not any traÆ
 that we areinje
ting into the network for the movement of data from the sour
es to the destination.) In otherwords, this is the bandwidth that is available to us on the path that the network provides us inthe graph GN , subje
t to the ba
kground traÆ
. Note that sin
e we may not know the underlyingtopology or the routes that the paths take, we may not be able to properly model 
on
i
ts between
ows. In other words, node S2 may not simultaneously be able to send data at rate 1 to ea
h of Dand S3 sin
e the paths that are provided by the network share a 
ongested link and 
ompete forbandwidth. Su
h knowledge (if available) 
ould be used to spe
ify a 
apa
ity fun
tion on sets ofedges, and one 
ould use Linear Programming [5℄ to obtain an optimal 
ow under those 
onstraints.
Host
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Figure 1: Network topology and the overlay graph.From the overlay graph GH we 
onstru
t the \time-expanded" graph GT [8, 13℄ (see Figure 2)whi
h is the graph that our algorithms will use for 
omputing a s
hedule to route the data fromthe sour
es to the destination. Given a non-negative integer T , we 
onstru
t this graph as follows:for ea
h node u we 
reate a set of T +1 verti
es u(i) for i = 0 : : : T . We pi
k a unit of time t (referto Se
tion 7 for the 
hoi
e of t) and add edges in GT from u(i) to v(i+1) with 
apa
ity t � 
0(u; v).8



(For example, suppose we have available 
apa
ity between u and v of 20 Kbps and de�ne a unit oftime t to be 2 se
onds. In this 
ase, we 
an transfer 40 Kb from u to v in \one unit of time".) Wede�ne the 
apa
ity of the edge from u(i) to v(i+ 1) as the amount of data that 
an be transferredfrom u to v in one unit of time. In addition, we have edges from u(0) to u(i) whi
h are referred toas the \holdover" edges. This just 
orresponds to keeping the data at that node without sendingit anywhere. We also add edges from D(i) to a virtual destination D0. Ea
h sour
e Si(0) has a
ertain amount of 
ow available at time 0. All the 
ow has to be shipped to the virtual destinationD0. Note that by disallowing edges from u(i) to u(i+1) for i > 0, we hold 
ow at the sour
e nodesuntil it is ready to be shipped. In other words, 
ow is sent from S2(0) to S2(1) and then to S1(2),rather than from S2(0) to S1(1) to S1(2) (whi
h is not allowed sin
e there is no edge from S1(1)to S1(2)). This has the advantage that the storage required at the intermediate nodes is lower.Hoppe and Tardos [14℄ argue that allowing edges of the form u(i) to u(i+1) does not de
rease theminimum value of T .
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1
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Figure 2: Time-expanded graph.Our �rst goal then is to 
ompute the minimum value T su
h that we 
an route all the data tothe destination D0. We 
an �nd T , in O(log T ) time by doing a \doubling" sear
h, followed by abinary sear
h on
e we �nd an interval that 
ontains the minimum T for whi
h a feasible solutionexists.On
e we �nd the minimum value T , we �nd a min-
ost 
ow [2℄ in the graph as follows. Weasso
iate a 
ost of C1 �C2 � 
0(u; v) with every transfer edge u(i) to v(i+ 1), where C1 and C2 are
onstants and C1 � C2 � 1. Our solution would prefer sending data over high 
apa
ity links if9



two solutions have the same total number of transfers. This also provides a more regular patternin the 
ow solution (whi
h 
an be useful in the PathMerge algorithm des
ribed in Se
tion 6). Toevery holdover edge u(0) to u(i), we assign a 
ost of i. This ensures that data is sent as soon aspossible. In other words, on
e we �nd the minimum T , there 
ould be several feasible 
ows thatroute the data. Among su
h 
ows we prefer the ones with the property that the data arrives earlierat D0. The 
ost is 0 for all other edges. The 
ost fun
tion is 
hosen so as to obtain a feasible 
owwith 
ertain properties, as opposed to an arbitrary 
ow. Imposing 
osts simply guides the solutionso that we �nd a solution that sends the 
ow earlier rather than later and prefers larger 
apa
ityedges to smaller 
apa
ity edges. Modi�
ations to this 
ost fun
tion 
an be made if other propertiesare desired (e.g., based on network and/or proto
ol 
hara
teristi
s).In our problem T is not very large so it is feasible to build the entire time-expanded graph andto run a min-
ost 
ow algorithm on it. If T is extremely large, then one 
ould use other algorithms(see Hoppe and Tardos [13, 14℄) whi
h are faster.The min-
ost 
ow algorithm 
omputes a 
ow fun
tion fT that spe
i�es the 
ow in the timeexpanded graph GT . (For 
omputing the min-
ost 
ow, we used Goldberg's 
ode [11, 12℄.) We nowneed to 
onvert this 
ow into a s
hedule for transferring data in the real network.Remark 1: An alternative to our formulation above is to use the overlay graph, GH , to 
omputethe \best" path in GH from ea
h host to the desination, independently. For instan
e, S2 may
hoose the path (S2; S1;D) sin
e it is the maximum 
apa
ity path to D, and send all of its dataalong this path. This alternative would 
orrespond to the appli
ation level re-routing me
hanismssurveyed in Se
tion 2, and hen
e we refer to it as ALR below. However, note that this optiondoes not permit for (a) any 
oordination between transfers from di�erent sour
e hosts, (b) expli
itload balan
ing as ea
h node makes its own de
ision as to whi
h route to send the data on, and (
)maximum possible utilization of available network resour
es between a sour
e and the destination.More formally, in our time-expanded graph, ALR 
orresponds to a feasible 
ow in a graph GTifor some Ti. Note that in fa
t Ti � Tmin where Tmin is the solution obtained by our algorithm,whi
h allows for sending of data along multiple paths between a sour
e and the destination. Infa
t, by sending the data along several paths, our algorithm obtains a better solution than ALR (asdes
ribed above). This di�eren
e be
omes espe
ially signi�
ant, if several good appli
ation levelroutes exist, but ALR strategies send their data along the \best" path, thus 
ausing 
ongestionalong this path.Remark 2: Note that in our formulation, we 
ompute the 
apa
ity fun
tion on
e initially (referto Se
tion 7), to estimate the available 
apa
ity between pairs of hosts. On
e we do this we willassume this as the available bandwidth for the entire duration of the transfer. Of 
ourse, if thetransfer is going to take a long time, we 
annot assume that the network 
onditions are stati
. Inthis 
ase, we 
an always 
ompute a new estimate of available bandwidth during the s
heduling ofthe transfer and 
ompute a new transfer s
hedule for the remaining data. (Our algorithm itself10



is very fast, and so this does not 
ause a problem even if the 
urrent transfer is stopped, and thes
hedule is 
hanged.) In fa
t, the algorithm itself 
an dete
t when transfer times are not behavingas predi
ted and 
ompute a new estimate of 
apa
ities.Also note that we are dealing with the network at the appli
ation layer, where we 
an 
ontrolthe route within the overlay network that the data takes to the destination without any 
hange tothe network proto
ols (su
h as IP or TCP).Finally, the formulation above is quite robust and we 
an use it to model situations where datamay be available at di�erent sour
es at di�erent times.6 Constru
tion of Network Transfer S
heduleWhat remains is to 
onstru
t a data transfer s
hedule, fN (de�ned as the goal of our data 
ol-le
tion problem in Se
tion 1), from the 
ow fun
tion fT 
omputed in Se
tion 5, while taking into
onsideration 
hara
teristi
s of wide-area networks su
h as the TCP/IP proto
ol used to transferthe data. This 
onversion is non-trivial partly due to the dis
repan
ies between the graph theoreti
abstra
tion used in Se
tion 5 and the way a TCP/IP network works. (Below we assume that ea
hdata transfer is done using a TCP 
onne
tion.)One su
h dis
repan
y is the la
k of varian
e in data transfers in the graph theoreti
 formulation,i.e., a transfer of X units of data always takes a �xed amount of time over a parti
ular link. Thisis not the 
ase for data transferred over TCP in a wide-area network, partly due to 
ongestion
hara
teristi
s at the time of transfer and partly due to TCP's 
ongestion avoidan
e me
hanisms(e.g., de
reases in sending rate when losses are en
ountered). Another dis
repan
y in the graphtheoreti
 formulation is that it does not matter (from the solution's point of view) whether the Xunits are transferred as a single 
ow, or as multiple 
ows in parallel, or as multiple 
ows in sequen
e.However, all these fa
tors a�e
t the makespan metri
 when transferring data over TCP/IP. Again,these distin
tions are partly due to TCP's 
ongestion avoidan
e me
hanisms.Thus, we believe that the following fa
tors should be 
onsidered in 
onstru
ting fN , given fT :(a) size of ea
h transfer, (b) parallelism in 
ows between a pair of hosts, (
) data split and merge
onstraints, and (d) syn
hronization of 
ows. In this paper, we propose several di�erent te
hniquesfor 
onstru
ting fN from fT , whi
h di�er in how they address issues (a) and (d). We �rst give amore detailed explanation of these issues and then des
ribe our te
hniques. Note that, we use theterm \transfer" to mean the data transferred between two hosts during a single TCP 
onne
tion.Size of ea
h transfer.If the size of ea
h transfer is \too large" we 
ould unne
essarily in
rease makespan due to la
kof pipelining in transferring the data along the path from sour
e to destination (in other words,in
reased delay in ea
h stage of the indire
t routing). For example, suppose fT di
tates a transfer11



of 100 units of data from node S2 to S3 to D. S3 does not start sending data to D until all 100units of data from S2 have arrived. If the size of ea
h transfer is 10 units, S3 
an start sendingsome data to D after the �rst 10 units of data have arrived. On the other hand, if the size of ea
hdata transfer is \too small" then the overheads of establishing a 
onne
tion and the time spent inTCP's slow start 
ould 
ontribute signi�
antly to makespan.In this work, we address the \too small" problem in two ways. First, we ensure that ea
h transferis of a reasonably large size by 
arefully pi
king the time unit and data unit size parameters in thegraph 
onstru
tion step (refer to Se
tion 7 for details). Se
ond, we provide a me
hanism for mergingdata transfers whi
h are deemed \too small" (details given below in the PathMerge algorithm). The\too large" problem is addressed by a proper 
hoi
e of the time unit parameter (as des
ribed inSe
tion 7).Parallelism between 
ows.One 
ould try to obtain a greater share of a bottlene
k link for an appli
ation by transferringits data, between a pair of hosts, over multiple parallel TCP 
onne
tions. However, we do notexplore this option here, mainly be
ause it is not as useful (based on our simulation experiments)in illustrating the di�eren
e between the dire
t methods and the indire
t methods sin
e both typesof methods 
an bene�t from this. In fa
t, we made a 
omparison between the all-at-on
e methodemploying parallel 
onne
tions and our indire
t methods without parallel 
onne
tions, and theresult was that indire
t methods 
ould still a
hieve an order of magnitude better performan
e.Data split and merge 
onstraints.The fT solution of Se
tion 5 allows for arbitrary (although dis
rete) splitting and merging of databeing transferred. However, in a real implementation, su
h splitting and merging (of data whi
hrepresents uploads 
oming from many di�erent 
lients) 
an be 
ostly. For instan
e, in the in
ometax submission forms example, if we were to arbitrarily split a user's in
ome tax forms along thedata transfer path, we would need to in
lude some meta-data whi
h would allow pie
ing it ba
ktogether at the destination server. Sin
e there is a 
ost asso
iated with splitting and merging ofdata, in this paper we allow it only at the sour
e of that data and the destination, i.e., we do notallow intermediate hosts, through whi
h the data is transferred, to split or merge data. To ensurethis 
onstraint is met, the �rst step in our fN 
onstru
tion te
hniques is to de
ompose fT into 
owpaths (see details below).Evaluation of potential additional bene�ts of splitting and merging is ongoing work. For in-stan
e, if we do not want to allow any splitting of the data, we 
ould 
onsider formulating the prob-lem as an unsplittable 
ow problem. Unfortunately, unsplittable 
ow problems are NP-
omplete[19℄. Good heuristi
s for these have been developed re
ently, and 
ould be used [6℄.Syn
hronization of 
ows.The fT solution of Se
tion 5 essentially syn
hronizes all the data transfers on a per time step ba-sis, whi
h leads to proper utilization of link 
apa
ities. This syn
hronization 
omes for free given12



our graph theoreti
 formulation of the data 
olle
tion problem. However, in a real network, su
hsyn
hronization will not o

ur naturally. In general, we 
ould implement some form of syn
hro-nization in data transfers at the 
ost of additional, out-of-band, messages between bistros. Sin
ethe Bistro ar
hite
ture employs a server pull of the data (refer to Se
tion 1), this is a reasonableapproa
h, assuming that some form of syn
hronization is bene�
ial. Thus, in this paper we explorethe bene�ts of syn
hronization.Splitting the 
ow into paths.Given that splitting and merging of data is restri
ted, we now give details of de
omposing fT intopaths, whi
h is the �rst step in 
onstru
ting fN from fT . To obtain a path from fT , we traverse thetime-expanded graph (based on fT ) and 
onstru
t a path from the nodes we en
ounter during thetraversal as follows. We start from a sour
e host whi
h has the smallest index number. Considernow all hosts that re
eive non-zero 
ows from it. Among those we then 
hoose the one with thesmallest index number, and then pro
eed to 
onsider all hosts that re
eive non-zero 
ows from it.We 
ontinue in this manner until the virtual destination is rea
hed. The data transfered over theresulting path p is the maximum amount of data that 
an be sent through p (i.e., the minimumof 
ow volume over all edges of p). We note that a path spe
i�es how a �xed amount of data istransfered from a sour
e to the destination. For example (see Figure 2), a path 
an be spe
i�ed as(S2(0); S2(1); S1(2);D(3);D0), whi
h says that a �xed amount of data is transferred from node S2to node S1 at time 1, and then from node S1 to the destination D at time 2 (and D0 is the virtualdestination). In fa
t, for this path the value of the 
ow is 4.To split the 
ow network into paths, we �rst obtain a path using the pro
edure des
ribed above.We then subtra
t this path from fT . We then obtain another path from what remains of fT and
ontinue in this manner until there are no more 
ows left in fT . At the end of this pro
edure, wehave de
omposed fT into a 
olle
tion of paths. (An example of this 
ow de
omposition is givenunder the des
ription of the PathSyn
 algorithm below and in Figure 3.)Imposing Syn
hronization Constraints.What remains now is to 
onstru
t a s
hedule for transferring the appropriate amounts of data alongea
h path. We propose the following methods for 
onstru
ting this s
hedule whi
h di�er in howthey attempt to preserve the time syn
hronization information produ
ed by the time-expandedgraph solution given in Se
tion 5.The PathSyn
 Method.In this method we employ 
omplete syn
hronization as pres
ribed by the time-expanded graphsolution obtained in Se
tion 5. That is, we �rst begin all the data transfers whi
h are supposed tostart at time step 0. We wait for all transfers belonging to time step 0 to 
omplete before beginningany of the transfers belonging to time step 1. When all transfers from time step 0 
omplete, webegin all transfers from time step 1. We 
ontinue in this manner until all data transfers in thelast time step are 
omplete. We term this approa
h PathSyn
100 (meaning that it attempts 100%13



syn
hronization as di
tated by fT ).Re
all that the 
apa
ity of an edge in the time-expanded graph is the volume of data that 
anbe sent over it during one time unit. Sin
e estimates of available 
apa
ity may not be a

urate(refer to Se
tion 7), and sin
e we may not know whi
h transfers do or do not share the samebottlene
k link (unless, e.g., we employ te
hniques in [25℄), it is possible, that some transfers maytake a signi�
antly longer time to �nish than di
tated by fT . Given the stri
t syn
hronization rulesabove, one or two slow transfers 
ould greatly a�e
t makespan. An alternative is to syn
hronizeonly X% of the transfers. That is, as long as a 
ertain per
entage of the data transfers have
ompleted, we 
an begin all the transfers 
orresponding to the next time step, ex
ept, of 
ourse,those that are waiting for the previous hop on the same path to 
omplete. We term this alternativePathSyn
X where X indi
ates the per
entage of transfers needed to satisfy the syn
hronization
onstraints, e.g., PathSyn
90 requires that 90% of transfers from time step i to 
omplete beforetransfers from time step i+ 1 
an begin.An example of PathSyn
 is depi
ted in Figure 3 whi
h shows a 
olle
tion of paths obtainedfrom de
omposing fT . At time step 0, PathSyn
100 starts the transfer from S1(0) to D(1), S2(0)to S3(1), S2(0) to D(1), and S3(0) to D(1), sin
e all these transfers belong to time step 0. Whenall these transfers have �nished, PathSyn
100 starts the transfers belonging to time step 1, namelyS1(1) to D(2), S2(1) to S1(2), S2(1) to S3(2), et
.
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,Figure 3: Solution obtained after 
ow de
omposition.We will show in Se
tion 5 that the PathSyn
 method performs quite well, espe
ially when the14



per
entage of transfers that satisfy the syn
hronization requirements is a bit lower than 100%. Thisis an indi
ation that it is worth while to attempt to preserve the timing 
onstraints pres
ribed bythe solution of the time-expanded graph (as long as these bene�ts are not subsumed by the harmfule�e
ts of potentially high varian
e in the transfers). Sin
e syn
hronization between bistros is notfree in a real implementation, we also 
onsider a method whi
h does not require it.The PathDelay Method.In the PathDelay method we do not attempt any syn
hronization between transfers on
e a transferalong a parti
ular path begins. That is, as long as a parti
ular data transfer along one hop ofa path 
ompletes, the transfer of that data begins along the next hop of that path. The onlysyn
hronization performed in this method is to delay the transfer of that data from the sour
enode until an appropriate time, as di
tated by fT . For example, after the de
omposition of fT intopaths, there is a path (S2(0); S2(2); S1(3);D(4);D0) of size 4 (see Figure 3). Sin
e the data is heldat the sour
e S2 until time step 2 in fT , we s
hedule the S2(2) to S1(3) transfer at \real" time 2 � t,where t is our time unit (refer to Se
tion 7).One 
ould also 
reate variations on PathDelay by expanding or 
ontra
ting the time unit, usedin 
omputing fT , when 
onstru
ting fN , again to a

ount for varian
e in data transfer in a realnetwork as 
ompared to the graph theoreti
 formulation. For instan
e, PathDelayX would refer toa variation where the time unit t in fT is modi�ed to be Xt in fN .The PathMerge Method.We 
onsider one more variant in 
onstru
tion of fN as 
ompared to PathDelay. We �rst observethat after we split fT into paths, some paths may visit exa
tly the same sequen
e of hosts, but atdi�erent time steps. For instan
e, in Figure 3 we have a path 
arrying 1 unit of 
ow from S2(0) toS3(1) to D(2), and another path 
arrying one unit of 
ow from S2(1) to S3(2) to D(3). Sin
e thesetwo paths are transferring the 
ow along the same path, we 
ould 
ombine them into a single transferif the amount of data in ea
h one is too small. We 
all two su
h paths 
onse
utive sin
e the data istraveling on the same route, just shifted in time by 1 unit of time. PathMerge merges all 
onse
utivepaths before initiating data transfers. After that it behaves just like PathDelay. An example ofPathMerge is given in Figure 4. Consider S1 whi
h sends 5, 5, 1, and 1 units of data to D at timesteps 0, 1, 2, and 3, respe
tively (refer to Figure 3). Sin
e these are 
onse
utive paths, PathMergemerges all of them into a single transfer of size 12, whi
h starts at time 0 from S1 to D. Moreover,note that path (S2(0); S2(1); S1(2);D(3);D0) of size 4 and path (S2(0); S2(2); S1(3);D(4);D0) ofsize 4 are also 
onse
utive (also in Figure 3). PathMerge merges them into a path of size 8, whi
hstarts at time step 1, from S2 to S1 to D.We have observed from our simulation experiments that data transfer sizes 
an e�e
t themakespan metri
 in a TCP/IP network (e.g., when these sizes are \too small' as des
ribed above).In general, one might try to optimize the size of ea
h data transfer, after obtaining fT , and thePathMerge te
hnique fa
ilitates su
h optimization. For instan
e, su
h an optimization might be15
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Figure 4: Solution obtained after merging paths.done by taking into 
onsideration the path taken by the transfer and through the use of TCPthroughput equations [24℄ or possibly by using the pipelining optimization work in [30℄. On
e anappropriate data size is obtained, the PathMerge te
hnique 
an be used to merge 
onse
utive pathsuntil a proper data transfer size is rea
hed (i.e., the aggressiveness of PathMerge 
an be 
ontrolled).This is an ongoing e�ort. Current experiments show that only if the volume of data is too small,or too large, this 
auses an in
rease in the makespan sin
e typi
ally, we are re-routing the datathrough relatively few intermediate hosts.Note that we do not perform path merging in 
onjun
tion with the PathSyn
 te
hnique sin
emerging of paths along the time dimension and syn
hronization of transfers are essentially opposinggoals.7 Validation and Performan
e EvaluationIn this se
tion we evaluate the performan
e of dire
t and indire
t methods to illustrate the bene�tsof using indire
t approa
hes. (Refer to Se
tion 3 for a detailed des
ription of dire
t methods; referto Se
tions 4 through 6 for a detailed des
ription of our indire
t methods.) This evaluation is donethrough simulation; all results are given with at least 90%� 10% 
on�den
e.Experimental SetupWe use ns2 [15℄ for all simulation results reported below. In 
onjun
tion with ns2, we use theGT-ITM topology generator [16℄ to generate a transit-stub type graph for our network topology.Spe
i�
ally, we use GT-ITM to 
reate a transit-stub graph with 152 nodes. The number of transitdomains is 2, where ea
h transit domain has, on the average, 4 transit nodes with there beingan edge between ea
h pair of nodes with probability of 0:6. Ea
h node in a transit domain has,on the average, 3 stub domains 
onne
ted to it; there are no additional transit-stub edges andno additional stub-stub edges. Ea
h stub domain has, on the average, 6 nodes with there beingan edge between every pair of nodes with probability of 0:2. A subset of our simulation topology(i.e., without stub domain details) is shown in Figure 5. The 
apa
ity of a \transit node to transit16
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link to stub domain:Figure 5: The simulation topology.node" edge within the same transit domain is 1 Mbps. The 
apa
ity of a \transit node to transitnode" edge a
ross di�erent transit domains is 512 Kbps. The 
apa
ity for a \transit node to stubnode" edge or a \stub node to stub node" edge is 256 Kbps. Our motivation for assigning a lower
apa
ity to the \transit node to transit node" edge a
ross di�erent transit domains is to emulatepoorer performan
e 
onditions that exist at the so-
alled peering points [21℄. Note that, the sizeand parameters of our network model and the following experimental setup are motivated by whatis pra
ti
al to simulate with ns2 in a reasonable amount of time. However, sin
e our goal is toillustrate bene�ts of indire
t methods, this will suÆ
e.We lo
ate the destination server in the stub domain 
onne
ted to A1, and we lo
ate 7 otherbistros in stub domains 
onne
ted to other transit nodes. Ea
h bistro holds a total amount of datawhi
h is uniformly distributed between 25 MBytes and 75 MBytes with an additional 
onstraintthat the total amount of data in all bistros is 350 MBytes. In addition to the upload traÆ
, wegenerate ba
kground traÆ
 
onsisting of in�nite ftp 
ows, where the number of su
h 
ows is variedfrom 0 (i.e., no ba
kground traÆ
) to 120. The in�nite ftp 
ows all traverse the B1 to A1 link. We
hoose this simple 
ongestion pattern for 
larity of illustration. Let x be the number of in�nite ftp
ows in a parti
ular experiment. Then, the ba
kground traÆ
 is generated by randomly 
hoosing xsour
e stub domain nodes (
onne
ted to either B1, B2, or B3 transit nodes) as well as x destinationstub domain nodes (
onne
ted to either A1, A2, or A3 transit nodes) to parti
ipate in the in�niteftp 
ows. To illustrate a reasonably interesting s
enario, all nodes parti
ipating in ba
kgroundtraÆ
 are lo
ated in stub domains that are di�erent from those holding the bistros parti
ipatingin upload traÆ
. This 
hoi
e avoids the non-interesting 
ases (at least for makespan) where asingle bistro ends up with an extremely poor available bandwidth to all other bistros (in
ludingthe destination server) and hen
e dominates the makespan results (regardless of the data transfermethod used).Constru
tion of Corresponding GraphWe now give details of 
onstru
ting graph GH of Se
tion 5 from the above network. The eight17



bistros make up the nodes of GH , with the destination bistro being the destination node (D) andthe remaining bistros being the sour
e nodes (Si) with 
orresponding amounts of data to transfer.The link 
apa
ities between any pair of nodes in GH is determined by estimating the end-to-endmean TCP throughput between the 
orresponding bistros in the network. In our experiments thesethroughputs are estimated in a separate simulation run, by measuring the TCP throughput betweenea
h pair of bistros while sending a 2 MByte �le between these bistros. These measurements areperformed with ba
kground traÆ
 
onditions 
orresponding to a parti
ular experiment of interestbut without any upload traÆ
 or measurement traÆ
 
orresponding to other bistro pairs. We dothis in order to have a reasonably a

urate and simple estimate of 
ongestion 
onditions. However,we note, that it is not our intent to advo
ate parti
ular measurement and available bandwidthestimation te
hniques. Rather, in a real implementation, we intend to use whatever te
hniques areavailable at the time, su
h as: (a) 
omputing link bandwidth by a
tively sending probe pa
kets[7, 18, 22, 4℄, (b) 
omputing link bandwidth through pa
ket pairs and potential bandwidth �lteringte
hniques [20℄, or (
) obtaining link bandwidth information by keeping some shared passive mea-surements [29℄. Potential sour
es of su
h information in the future might also be servi
es su
h asSONAR [23℄, Internet Distan
e Map Servi
e (IDMaps) [10℄, Network Weather Servi
e (NWS) [31℄,and so on.In order to 
onstru
t GT from GH we need to determine the time unit and the data unit size.The bigger the time unit is, the less 
ostly is the 
omputation of the min-
ost 
ow solution butpotentially (a) the less a

urate is our abstra
tion of the network (due to dis
retization e�e
ts) and(b) the higher is the potential for large transfer sizes (whi
h in turn 
ontribute to la
k of pipelininge�e
ts as dis
ussed in Se
tion 6). The smaller the time unit is, the greater is the potential for
reating solutions with transfer sizes that are \too small" to be eÆ
ient (as dis
ussed in Se
tion6). Similarly, the data unit size should be 
hosen large enough to avoid 
reation of small transfersizes and small enough to avoid signi�
ant errors due to dis
retization (as dis
ussed in Se
tion 6).In the experiments presented here we use a time unit whi
h is an order of magnitude larger thanthe maximum round trip time (RTT) on the longest path, as generated by the GT-ITM topologygenerator [16℄ (we note that sin
e we use GT-ITM these delay parameters are not under our 
ontrol).Spe
i�
ally, in the experiments of this se
tion, this RTT is 6:9 se
, and hen
e we use a time unitof 69 se
. The data unit size is 
hosen to ensure that the smallest transfer is large enough to getpast the slow start phase and rea
h maximum available bandwidth without 
ongestion 
onditions.Sin
e without ba
kground traÆ
 a bistro 
an transmit at a maximum window size of 256 Kbps �6:9 se
 (on the longest path), we use a data unit size a bit larger than that, spe
i�
ally 256 KBytes.Performan
e Metri
s.The performan
e metri
s used in the remainder of this se
tion are: (a) makespan and makespanX,i.e., the time needed to 
omplete transfer of at least X per
ent of the total amount of data from allbistros, (b) maximum storage requirements averaged over all bistros (not in
luding the destinationbistro sin
e it must 
olle
t all the data), and (
) mean throughput of ba
kground traÆ
 during the18



data 
olle
tion pro
ess, i.e., we also 
onsider the e�e
t of upload traÆ
 on other network traÆ
.We believe that these metri
s re
e
t the quality-of-servi
e 
hara
teristi
s that would be of interestto large-s
ale data 
olle
tion appli
ations. (As noted in Se
tion 1, we do not 
onsider the meanbistro transfer times sin
e there are no 
lients in the data 
olle
tion problem and hen
e intera
tiveresponse time related metri
s are not an issue.)Evaluation Under the Makespan Metri
.We �rst evaluate the dire
t methods des
ribed in Se
tion 3 using the makespan metri
. As illus-trated in Figure 6(a) dire
t methods whi
h take advantage of parallelism in data delivery (su
has all-at-on
e) perform better under our experimental setup. Intuitively, this 
an be explained asfollows. Given the makespan metri
, the slowest bistro to destination server transfer dominates the
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Figure 6: Dire
t and Indire
t Methods under the Makespan Metri
.makespan metri
. Sin
e in our 
ase, the bottlene
k whi
h determines the slowest transfer in dire
tmethods is not shared by all bistros, it makes intuitive sense to transfer as mu
h data as possible,through bottlene
ks whi
h are di�erent from the one used by the slowest transfer, in parallel withthe slowest transfer.Sin
e all-at-on
e is a simple method and it performs better than or as well as any of the otherdire
t methods des
ribed in Se
tion 3 under the makespan metri
 in our experiments, we now
ompare just the all-at-on
e method to our indire
t methods (as des
ribed in Se
tions 4 through6). This 
omparison is illustrated in Figure 6(b) where we 
an make the following observations.All s
hemes give 
omparable performan
e when there is no other traÆ
 in the network (this makesintuitive sense sin
e the 
apa
ity near the server is the limiting resour
e in this 
ase). When there is
ongestion in the network and some bistros have signi�
antly better 
onne
tions to the destinationserver than others, our indire
t methods do result in a signi�
ant improvement in performan
e,espe
ially as this 
ongestion (due to other traÆ
 in the network) in
reases. For instan
e, in Figure6(b) we observe improvements from more than 2 times under 20 ba
kground 
ows as high as 7519



times when the ba
kground traÆ
 is suÆ
iently high (in this 
ase at 120 
ows).It is diÆ
ult to observe di�eren
es between the indire
t methods in Figure 6(b) sin
e the per-forman
e of the dire
t methods is so mu
h worse. Hen
e, we now fo
us on the indire
t methodsonly, and we note the di�eren
es between them under the makespan and the makespan90 met-ri
s. This is illustrated in Figure 7(a) where we make the following observations. Enfor
ing full
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Figure 7: Indire
t Methods under the Makespan Metri
.syn
hronization (as in PathSyn
100) 
an be harmful whi
h is not surprising sin
e a single slowstream 
an lead to (a) signi�
ant in
reases in overall data 
olle
tion time (although nowhere assigni�
ant as the use of dire
t methods) and (b) in
reased sensitivity to 
apa
ity fun
tion estimatesand parameter 
hoi
es in GH and GT . We 
an observe (a), for instan
e, by 
omparing the overallperforman
e of PathSyn
100 and PathSyn
95 in Figure 7(a). We 
an observe (b), for instan
e, bynoting the di�eren
e in performan
e of PathSyn
100 and PathSyn
95 at 60 vs 80 ba
kground 
owsor 100 vs 120 ba
kground 
ows (in Figure 7(a)). Intuitively, we expe
t the makespan metri
 to bemonotoni
ally non-de
reasing as a fun
tion of in
reasing ba
kground 
ows. What happens here isthat due to dis
retization and 
apa
ity estimation errors in 
onstru
tion of GH and GT , the highly
ongested link is set to zero at 80 and 120 
ows and it is set to a very small 
apa
ity at 60 and100 
ows. Hen
e, in the latter 
ase, a very small amount of traÆ
 is still routed by the min-
ost
ow algorithm through the highly 
ongested link. This results in poorer performan
e of the indi-re
t methods whi
h are more sensitive to varian
es in data transfers, i.e., su
h as PathSyn
100.However, by relaxing the syn
hronization 
onstraints, e.g., as in PathSyn
95, one 
an signi�
antlyredu
e su
h sensitivity.We note that we made small modi�
ations to the ba
kground traÆ
 from the time the 
apa
ityestimates were done to the time the upload traÆ
 was run (these 
hanges were in sizes of pa
ketsused for ba
kground traÆ
). When su
h 
hanges were not made, PathSyn
100 performed anywherefrom almost identi
ally to � 50% better (although in most 
ases improvements were more modest);20



this is another indi
ation that it is sensitive to 
apa
ity fun
tion estimates. We also tried modi�-
ations to data unit size (during the dis
retization step in 
onstru
ting GH and GT ) and observedsimilar e�e
ts on PathSyn
100, for reasons similar to those given above. (We do not in
lude thesegraphs here due to la
k of spa
e).Su
h sensitivity is exhibited by the PathMerge algorithm as well. We believe that this is dueto the fa
t that in these experiments PathMerge ended up being more aggressive in a few 
ases inmerging paths than was ne
essary. This is evident, for instan
e, from observing the di�eren
e inPathMerge under the makespan metri
 in Figure 7(a) and the makespan90 metri
 in Figure 7(b) aswell as by observing the di�eren
e between PathMerge and PathDelay. However, other experimentswith smaller initial amounts of data per bistro indi
ate that PathMerge 
an perform better thanPathDelay (we do not in
lude them here due to la
k of spa
e). Hen
e we believe there is a needfor more \
ontrolled" path merging; this is an ongoing e�ort.Above observations raise another question, whi
h is how mu
h syn
hronization is really neededin the data 
olle
tion s
hedule. By 
omparing PathDelay with PathSyn
 (and its variants) onemight say that ensuring that transfers are initiated at the appropriate times (and then not syn-
hronizing them along the way) is suÆ
ient, sin
e PathDelay performs well in the experiments ofFigure 7. However, the experiments in this �gure are relatively small s
ale and hen
e have rela-tively few hops in the paths 
onstru
ted from fT . Other experiments indi
ate that as the numberof hops on a path (in GT ) in
reases, PathDelay begins to su�er from getting out of syn
 with thes
hedule 
omputed in fT and performs worse than PathSyn
95, for instan
e. (We do not in
ludethese �gures due to la
k of spa
e as well as due to the fa
t that they are also relatively small s
aleexperiments.)Another question might be whether the notion of simply assigning time slots (to bistros) duringwhi
h to transfer data is a reasonable approa
h, whi
h is essentially the idea behind dire
t methodssu
h as spread-in-time. We note that the good performan
e of PathDelay seems to indi
ate thatthis idea is on the right tra
k, as long as it is done in the 
ontext of indire
t methods. Of 
ourse,this type of a 
omparison between spread-in-time and PathDelay is not entirely fair sin
e dire
t vsindire
t is not the only di�eren
e between them. However, we still believe that this is an indi
ationthat 
lever approa
hes to spreading load in time without 
onsidering the bene�ts of re-routing that
an be obtained from indire
t methods do not lead to suÆ
iently good solutions.In order to estimate how mu
h room is left for improvement, we 
onstru
t a lower bound onthe makespan metri
 in the 
ontext of our experimental setup as follows. We assume that all thedata that needs to be 
olle
ted is lo
ated at the \best" bistro, i.e., one with the best 
onne
tion tothe destination server, without ba
kground traÆ
. We then simulate the transfer of all data fromthe \best" bistro to the destination server without any other traÆ
 on the network and observethe resulting performan
e using the makespan metri
. The result of this experiment is depi
ted inFigure 7(a) along with our indire
t methods whi
h illustrates that there is relatively little room21



left for improvement in this 
ase. We observe less than a 3% di�eren
e between the lower boundand the best performing indire
t method (at any one point).However, we note that this is not a general lower bound. Spe
i�
ally, it works as a lower boundin our 
ase, be
ause we have a fairly symmetri
 setup and without ba
kground traÆ
 all bistrosexperien
e a bottlene
k at the same pla
e (near the server). Hen
e, no bene�t would be gained fromparallelism (i.e., splitting the data between multiple bistros and sending it in parallel) under these
onditions (as 
an also be seen from Figure 6(a) when there is no ba
kground traÆ
). Therefore,in general, there may be room for improvement.Evaluation Under the Storage Metri
.Next, we evaluate the indire
t methods with respe
t to the storage requirements metri
. We notethat the dire
t methods (e.g., as those des
ribed in Se
tion 3) do not require additional storage, i.e.,beyond what is o

upied by the original data itself. In 
ontrast, indire
t methods do, in general,require additional storage, sin
e ea
h bistro might have to store not only its own data but also thedata being re-routed through it to the destination server.Figure 8 illustrates the normalized maximum per bistro storage requirements, averaged over allbistros (other than the destination), of the indire
t methods as a fun
tion of in
reasing 
ongestion
onditions. These storage requirements are normalized by those of the dire
t methods. We use the
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Figure 8: The Storage Metri
.dire
t methods as a baseline sin
e they represent the inherent storage requirements of the problem asnoted above. As 
an be seen from this �gure, the additional storage requirements of our algorithmsare small. In all experiments performed by us, storage overheads of all PathSyn
 variations wereno more than 4%. PathMerge and PathDelay resulted in storage overheads of no more than 41%(this makes sense sin
e greater storage is needed when less stringent 
ow syn
hronization is used).We believe these are reasonable given improvements in overall data 
olle
tion times as high as one22



to two orders of magnitude (and, also given the 
urrent storage 
osts).Evaluation Under the Throughput Metri
.Lastly, we evaluate the indire
t methods under the normalized mean throughput metri
, i.e., howthey a�e
t the throughput of the ba
kground traÆ
 whi
h represents other traÆ
 in the network.The results are normalized by the throughput a
hieved by the ba
kground traÆ
 without presen
eof the data 
olle
tion traÆ
.We �rst evaluate the throughput of the dire
t methods. As illustrated in Figure 9(a), the one-by-one heuristi
 allows for the highest ba
kground traÆ
 throughput. This is not surprising, sin
e
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Figure 9: Dire
t and Indire
t Methods under the Throughput Metri
.one-by-one is the most 
onservative dire
t method in the sense that it inje
ts the the data 
olle
tiontraÆ
 into the network one 
ow at a time.We 
an now evaluate the throughput due to indire
t methods and 
ompare it to that of the one-by-one method. As 
an be seen from Figure 9(b), the indire
t methods result in lower ba
kgroundtraÆ
 throughput, but not signi�
antly. The largest di�eren
e we observed was no more than17%. This, of 
ourse, is not surprising sin
e the indire
t methods are more aggressive than dire
tmethods in taking advantage of bandwidth available in the network. We believe that this is anindi
ation of the fa
t that they are taking su
h advantage without signi�
antly adverse e�e
ts onother traÆ
 in the network. We also note that the higher (as 
ompared to one-by-one) throughputof ba
kground traÆ
 under the indire
t methods at, for instan
e, 80 ba
kground 
ows has to dowith indire
t methods not using the highly 
ongested link at all at that point (as a result of thedis
retization and 
apa
ity estimation errors in 
onstru
ting GH and GT , as detailed above).
23



8 Con
lusionsThe main 
ontribution of this work is to show that 
oordinated indire
t routing 
an be an orderof magnitude better than dire
t routing. A network 
ow based solution, utilizing a time-expandedgraph, gives us an optimal routing poli
y, given the 
onstraints on knowledge of the topology and
apa
ity of the network. Experimentally, we have established that the la
k of knowledge of thepaths provided by the network to send data, are not a signi�
ant barrier. Of 
ourse, the more weknow about the available 
apa
ity and paths 
hosen by the network, the better our modeling 
anbe. If su
h information were available, we 
ould use an LP solver to obtain an optimal min-
ost
ow. In 
urrent work, we are exploring how to utilize su
h information (if it is available), sin
e thismay further improve the results to some extent. There are easy extensions to the 
ase of multipledestinations by using multi
ommodity 
ow algorithms.Referen
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Appendix: Ba
kground on BistroIn this appendix we give a more detailed des
ription of the Bistro framework. This is in
luded forthe reviewers' bene�t only (i.e., it is not intended as part of the paper or its 
ontributions). In thisexposition we fo
us on upload appli
ations with reasonably large data transfers and deadlines for
lients to submit their data, e.g., su
h as the online in
ome tax submission appli
ation mentionedin Se
tion 1. However, we note that deadlines are not a fa
tor in this work sin
e the fo
us of thispaper is on the performan
e of Step 3 below, whi
h would typi
ally be performed after the deadline.Hen
e, there is no deadline asso
iated with this step, but its performan
e is still 
ru
ial sin
e thedata 
annot be pro
essed by the appli
ation until it is 
olle
ted.Brie
y, the Bistro upload ar
hite
ture works as follows (refer to [1℄ for details). Given a large
bistros

Bistro System
Destination bistro

(a) upload without the Bistro System (b) upload with the Bistro System

Server

Clients

...
Clients

...

...

...

Figure 10: Upload Problem.number of 
lients that need to upload their data by a given deadline to a given destination server(refer to Figure 10(a)), the Bistro ar
hite
ture breaks the upload problem into three steps (asillustrated in Figure 10(b)):� Step 1, the timestamp step, whi
h must be a

omplished prior to the deadline for 
lients tosubmit their data to the destination server. In this step, ea
h 
lient sends to the server amessage digest of their data [28℄ and in return re
eives a timestamp ti
ket from the destinationserver as a re
eipt indi
ating that the 
lient made the deadline for data submission. Thepurpose of this step is to ensure that the 
lient makes the deadline without having to transfertheir data whi
h is signi�
antly larger than a message digest and might take a long time totransfer during high loads whi
h are bound to o

ur around the deadline time. It is alsointended to ensure that the 
lient (or an intermediate bistro used in Step 2 below) does not
hange their data after re
eiving the timestamp ti
ket (hen
e the sending of the messagedigest to the destination server). All other steps 
an o

ur before or after the deadline.� Step 2, the transfer of data from 
lients to intermediate hosts, termed bistros. This results ina low data transfer response time for 
lients sin
e (a) the load of many 
lients is distributedamong multiple bistros and (b) a good or near-by bistro 
an be sele
ted for ea
h 
lient toimprove data transfer performan
e. Sin
e the bistros are not trusted entities (unlike the26



destination server), the data is en
rypted by the 
lient prior to the transfer.� Step 3, the 
olle
tion of data by the destination server from the bistros. The destinationserver determines when and how the data is 
olle
ted in order to avoid hotspots around thedestination server (i.e., the original problem of having many sour
es transfer their data tothe same server around the same time). On
e the destination server 
olle
ts all the data, it
an de
rypt it, re
ompute message digests, and verify that no 
hanges were made to a 
lient'sdata (either by the 
lient or by one of the intermediate bistros) after the timestamp ti
ketwas issued.A summary of main advantages of this ar
hite
ture is as follows: (1) hotspots 
an be eliminatedaround the server be
ause the transfer of data is de
oupled from making of the deadline, (2) 
lients
an re
eive good performan
e sin
e they 
an be dispersed among many bistros and ea
h one 
an bedire
t to the \best" bistro for that 
lient, and (3) the destination server 
an minimize the amountof time it takes to 
olle
t all the data sin
e now it is in 
ontrol of when and how to do it (i.e.,Bistro employs a server pull). Algorithms for performan
e improvement of Step 3 is the fo
us ofthis paper.
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